A solution to Knuth’s TALG brain teaser

James A. Muir
School of Computer Science
Carleton University
jamuir@scs.carleton.ca

Time-stamp: <05/09/30 00:49:10 jamuir>

1 Introduction

A “Problems Column” by Khuller appears in the inaugural edition of the journal TALG (ACM Transactions
on Algorithms, Vol. 1, No. 1, July 2005, pp. 157-159). One of the contributions to the column, entitled
“Searching Graphs”, is a brain teaser by Knuth. Here we present a solution to Knuth'’s exercise.

If you think you might like to try solving the problem yourself, then please stop reading and get to it. If
you have any comments or corrections on what you read here, then | would be glad to receive them.

2 The Problem

Here is the problem as it is displayed in the journal:

=}

A graph withn vertices{0, 1, ..., n — 1} andm edges can be specified by an array wfidtegers, where the edges jo
vertices{a[2k], a[2k + 1]} for 0 < k < m.

Leto be a given vertex and assume thas an integer array of size. Find<Statementl> and<Statement2>
such that the C-language subroutalidistances shown below will set[u] to the distance from vertex to
vertexu, for 0 < u < n. (If u is unreachable from, the “distance” between them is considered tajeDoes the
program run in linear time?

void alldistances(int m, int a[], int n, int d[], int v)
{
register int i,j,k,l;
int *b=(int*)malloc(n*sizeof(int));
int *link=(int*)malloc(2*m*sizeof(int));
for (j=0; j<n; j++) b[j]=-1, d[j]=n;
for (k=0; k<m+m; k++) <Statementl>;
d[v]=0, k=b[v], b[v]=-1, j=-1, I=1;
while (k>=0) {
v=alk];
if (b[v]>=0) {
d[v]=l;
for (i=b[v]; link[i]>=0; i=link[i]);
<Statement2>;

}
k=link[K];
if (k<0) l++, k=j, j=-1;

}

<Statementl> begins link[k]= ", and<Statement2> begins 1ink[i]=

3 Solution

3.1 Statementl
]Iink[k]:b[a[k‘l]], bla[k"1]]=k

In C, the expressioiXY evaluates to a bitwise xor of the valugsand Y. If you don't like bitwise
operations, then, for our purposes, the expreskidn could be replaced witlk%2)?(k-1):(k+1)
This last expression employs C’s ternary operator.
3.2 Statement?2

[link[il=j, j=b[v], b[v]=-1

3.3 Correctness

The array$ andlink are used to hold indices into the arylmmediately after the “for” loop containing
<Statementl> is executed, for any vertax we have that

b[u] isthe largestindey,, intoa such that the vertea[i] is a neighbour ofi; if no such index exists,
thenb[u]=-1

link[b[u]] is the second largest indeix, into a such that the vertea[i] is a neighbour oti; if no
such index exists, thdmk[b[u]]=-1

link[link[b[u]] is the third largest index,, into a such that the vertea[i] is a neighbour ofi;
if no such index exists, thdmk[link[b[u]]]=-1

... and so on.

So, the “for” loop containing<Statementl> essentially constructs an adjacency list for each vertex
in the graph. With these adjacency lists at hand, it now becomes easier to see how the algorithm might
implement a breadth-first search.

<Statement2> accomplishes the following. As the algorithm discovers all vertices at, say,devel
in the graph (i.e. all verticesy, with d(u,v) = ¢), <Statement2> concatenates their adjacency lists
together. To discover all vertices at level 1, the algorithm then traverses this list. Some of the vertices in
this list have been previously visited by the algorithm (they are the verticegth b[u] = —1). The other
vertices are correctly identified as being at lefret 1.

3.4 Running Time

We need to determine if the program rungdiin + m) time.

In its initialization stage, the algorithm tak€3(n) + O(2m) time. However, after that, things get a
bit more tricky. We bound the running time by considering the number of vertices that are visited in the
remaining part of the algorithm.

For example, if the input is the 3-cycl§),1, 1,2, 2,0] , with source vertex = 0, then the
algorithm continues after the initialization stage by visiting 0. Then, we visit the vertices adjacent to O (i.e.

its neighbours), namely 2 and 1. When we visit vertex 2 we must also visit its neighbours, and the same
goes for vertex 1. In all, the algorithm makes 11 visits to vertices. The visits are summarized as follows:

v =0|v =2, and neighbours,0 [v =0
v =1, and neighbours,® | v =1
p=0

=2

Counting visits in this way, if we consider the algorithm applied to the complete gkaphyherem =
n(n—1)/2, we can determine the number of visits to be exactiy(i—1)n+(n—1)(n—1) = 2n>—3n+2.
For the complete graph, the adjacency lists are as large as possible, so this gives us an upper bound.

Now,
1+(n=—Dn+ (n—=21)(n—1) =14 2m+ O(2m) = O(m).

The running time is now bounded &4n) + O(2m) + O(m) = O(n+ m). So, yes, the running time of the
program is linear.

void alldistances(int m, int a[], int n, int d[], int v)
{
register int i,j,k,l;
int *b=(int*)malloc(n*sizeof(int));
int *link=(int*)malloc(2*m*sizeof(int));
for (j=0; j<n; j++) b[j]=-1, d[j]=n;
for (k=0; k<m+m; k++) link[k]=b[a[k"1]], b[a[k 1]]=k;
d[v]=0, k=b[v], b[v]=-1, j=-1, I=1;
while (k>=0) {
v=a[k];
if (b[v]>=0) {
d[v]=l,
for (i=b[v]; link[i]>=0; i=link][i]);
link[i]=j, j=b[v], b[v]=-1;
}
k=link[K];
if (k<0) I++, k=j, j=-1;
}
}

