
A solution to Knuth’s TALG brain teaser

James A. Muir
School of Computer Science

Carleton University
jamuir@scs.carleton.ca

Time-stamp: <05/09/30 00:49:10 jamuir>

1 Introduction

A “Problems Column” by Khuller appears in the inaugural edition of the journal TALG (ACM Transactions
on Algorithms, Vol. 1, No. 1, July 2005, pp. 157–159). One of the contributions to the column, entitled
“Searching Graphs”, is a brain teaser by Knuth. Here we present a solution to Knuth’s exercise.

If you think you might like to try solving the problem yourself, then please stop reading and get to it. If
you have any comments or corrections on what you read here, then I would be glad to receive them.

2 The Problem

Here is the problem as it is displayed in the journal:

A graph withn vertices{0, 1, ..., n − 1} andm edges can be specified by an array of 2m integers, where the edges join
vertices{a[2k], a[2k + 1]} for 0 ≤ k < m.

Let v be a given vertex and assume thatd is an integer array of sizen. Find<Statement1> and<Statement2>
such that the C-language subroutinealldistances shown below will setd[u] to the distance from vertexv to
vertexu, for 0 ≤ u < n. (If u is unreachable fromv, the “distance” between them is considered to ben.) Does the
program run in linear time?

void alldistances(int m, int a[], int n, int d[], int v)
{

register int i,j,k,l;
int *b=(int*)malloc(n*sizeof(int));
int *link=(int*)malloc(2*m*sizeof(int));
for (j=0; j<n; j++) b[j]=-1, d[j]=n;
for (k=0; k<m+m; k++) <Statement1>;
d[v]=0, k=b[v], b[v]=-1, j=-1, l=1;
while (k>=0) {

v=a[k];
if (b[v]>=0) {

d[v]=l;
for (i=b[v]; link[i]>=0; i=link[i]);
<Statement2>;

}
k=link[k];
if (k<0) l++, k=j, j=-1;

}
}

<Statement1> begins “link[k]= ”, and<Statement2> begins “link[i]= ”.

1



3 Solution

3.1 Statement1

link[k]=b[a[kˆ1]], b[a[kˆ1]]=k

In C, the expressionXˆY evaluates to a bitwise xor of the valuesX andY. If you don’t like bitwise
operations, then, for our purposes, the expressionkˆ1 could be replaced with(k%2)?(k-1):(k+1) .
This last expression employs C’s ternary operator.

3.2 Statement2

link[i]=j, j=b[v], b[v]=-1

3.3 Correctness

The arraysb andlink are used to hold indices into the arraya. Immediately after the “for” loop containing
<Statement1> is executed, for any vertexu, we have that

b[u] is the largest index,i , into a such that the vertexa[i] is a neighbour ofu; if no such index exists,
thenb[u]=-1 .

link[b[u]] is the second largest index,i , into a such that the vertexa[i] is a neighbour ofu; if no
such index exists, thenlink[b[u]]=-1 .

link[link[b[u]]] is the third largest index,i , into a such that the vertexa[i] is a neighbour ofu;
if no such index exists, thenlink[link[b[u]]]=-1 .

... and so on.

So, the “for” loop containing<Statement1> essentially constructs an adjacency list for each vertex
in the graph. With these adjacency lists at hand, it now becomes easier to see how the algorithm might
implement a breadth-first search.

<Statement2> accomplishes the following. As the algorithm discovers all vertices at, say, level`

in the graph (i.e. all vertices,u, with d(u, v) = `), <Statement2> concatenates their adjacency lists
together. To discover all vertices at level` + 1, the algorithm then traverses this list. Some of the vertices in
this list have been previously visited by the algorithm (they are the vertices,u, with b[u] = −1). The other
vertices are correctly identified as being at level` + 1.

3.4 Running Time

We need to determine if the program runs inO(n + m) time.
In its initialization stage, the algorithm takesO(n) + O(2m) time. However, after that, things get a

bit more tricky. We bound the running time by considering the number of vertices that are visited in the
remaining part of the algorithm.

For example, if the input is the 3-cycle,[0,1, 1,2, 2,0] , with source vertexv = 0, then the
algorithm continues after the initialization stage by visiting 0. Then, we visit the vertices adjacent to 0 (i.e.

2



its neighbours), namely 2 and 1. When we visit vertex 2 we must also visit its neighbours, and the same
goes for vertex 1. In all, the algorithm makes 11 visits to vertices. The visits are summarized as follows:

v = 0 v = 2, and neighbours 1, 0 v = 0
v = 1, and neighbours 2, 0 v = 1

v = 0
v = 2

Counting visits in this way, if we consider the algorithm applied to the complete graph,Kn, wherem =

n(n−1)/2, we can determine the number of visits to be exactly 1+(n−1)n+(n−1)(n−1) = 2n2
−3n+2.

For the complete graph, the adjacency lists are as large as possible, so this gives us an upper bound.
Now,

1 + (n − 1)n + (n − 1)(n − 1) = 1 + 2m + O(2m) = O(m).

The running time is now bounded asO(n) + O(2m) + O(m) = O(n + m). So, yes, the running time of the
program is linear.

void alldistances(int m, int a[], int n, int d[], int v)
{

register int i,j,k,l;
int *b=(int*)malloc(n*sizeof(int));
int *link=(int*)malloc(2*m*sizeof(int));
for (j=0; j<n; j++) b[j]=-1, d[j]=n;
for (k=0; k<m+m; k++) link[k]=b[a[kˆ1]], b[a[kˆ1]]=k;
d[v]=0, k=b[v], b[v]=-1, j=-1, l=1;
while (k>=0) {

v=a[k];
if (b[v]>=0) {

d[v]=l;
for (i=b[v]; link[i]>=0; i=link[i]);
link[i]=j, j=b[v], b[v]=-1;

}
k=link[k];
if (k<0) l++, k=j, j=-1;

}
}

3


