
Security Visualization Tools and IPv6 Addresses∗

David Barrera and P.C. van Oorschot

School of Computer Science, Carleton University, Canada

ABSTRACT

Visualization is used by security analysts to help detect patterns and
trends in large volumes of network traffic data. With IPv6 slowly
being deployed around the world, network intruders are beginning
to adapt their tools and techniques to work over IPv6 (vs. IPv4).
Many tools for visualizing network activity, while useful for detect-
ing large scale attacks and network behavior anomalies still only
support IPv4. In this paper, we explore the current state of IPv6
support in some popular security visualization tools and identify
the roadblocks preventing those tools from supporting the new pro-
tocol. We propose a filtering technique that helps reduce the occlu-
sion of IPv6 sources on graphs. We also suggest using treemaps for
visually representing the vast space of remote addresses in IPv6.

Index Terms: K.6.5 [Management of Computing and Information
Systems]: Security and Protection (D.4.6, K.4.2)—Unauthorized
access (e.g., hacking, phreaking); I.6.8 [Simulation and Modeling]:
Types of Simulation—Visual

1 INTRODUCTION

IPv4, the well-known protocol employed for practically every type
of network communication, has been used for over 25 years. Un-
fortunately, its limited address space is projected to be exhausted
by April 2012 [9]. With this date fast approaching, system admin-
istrators, vendors, ISPs, and end users around the world are slowly
adopting IPv6. As IPv6 becomes more widely deployed, adver-
saries are updating their tools to use it, and benefiting from the fact
that IPv6 is often overlooked, disabled, or otherwise unsupported in
many network analysis tools. While Internet-scale enumeration of
IPv6 hosts is unfeasible, attackers are using advanced features in the
new protocol for local network enumeration and reconnaissance.

In security visualization, remote (source) IP addresses are fre-
quently used as one of the displayed fields to discover trends or
patterns of activity in groups of hosts. Since IP addresses uniquely
identify devices on a network, visualizing their behavior provides
better insight into the structure and location of networks. Many
security visualization tools have been designed to support IPv4 ex-
clusively, e.g., graphs which enumerate the 32-bit address space (or
segments thereof) on axes. Working with the 128-bit addresses of
IPv6 is not as simple.

In this paper we review why visualization of remote IP addresses
is important, and why IPv6 remote addresses specifically are diffi-
cult to graph. We analyze the structure of IPv6 addresses as well as
the current IPv6 address allocation trends and use our observations
to develop two new techniques for visualizing the IPv6 address
space. One technique filters out unused IPv6 address ranges, allow-
ing analysts to visualize the effective IPv6 address space seen gen-
erating traffic during a network capture. In the second technique,
we propose the use of an existing visualization tool (treemaps) to
visualize IPv6 datasets.

The rest of this paper is structured as follows. Section 2 reviews
technical details of IPv6 and how it differs from IPv4, and surveys

∗Version July 7, 2009. Contact author: dbarrera@ccsl.carleton.ca

related work. Section 3 considers the general architecture of visual-
ization systems and issues that must be addressed to support IPv6.
Section 4 describes the dataset used to demonstrate visualizations
in this note. Section 5 proposes two new techniques for visualiz-
ing network traffic containing IPv6 addresses. Section 6 presents
concluding remarks.

2 BACKGROUND AND RELATED WORK

To better understand the security visualization challenges faced
when trying to visualize IPv6, we first review how it differs from
IPv4.

2.1 IPv6 Review

IPv6 extends IPv4 from 32 to 128-bit addresses [6] and includes
simplified headers that help improve packet processing perfor-
mance. Although the IPv6 specification has existed for over 10
years, deployment has been relatively slow. An October 2008 study
by Google [7] found that IPv6 penetration worldwide is still less
than 1% in any country (measured by the number of hosts request-
ing AAAA DNS records from Google domains). The study also
found that 67.9% of IPv6 users worldwide are using 6to41 as op-
posed to native, IPv6-only connectivity. For the United States and
Canada, 95% of IPv6 users are using 6to4, presumably because of
the small number of ISPs offering native IPv6 in these countries.
China and France on the other hand are over 70% native.

It is important to note that low current use of IPv6 on the public
Internet does not mean hosts using the protocol should be ignored.
Despite the aforementioned statistics, IPv6 penetration is growing
everyday and is now enabled by default in many network applica-
tions. Hosts are capable of simultaneously using IPv6 for inter-
nal network communication, and IPv4 for Internet communication.
Thus, even if a host does not have Internet-wide IPv6 connectivity,
it might still be exploitable over IPv6 within its subnet.

Transition Mechanisms. To help speed up IPv6 deployment
and help ease migration, several RFCs provide methods allowing
IPv4 and IPv6 to inter-operate during an initial transitional phase.
These transition mechanisms bring new issues to security analy-
sis. For instance, if a network application uses one of the transition
mechanisms such as a tunnel2 or 6to4, the source and destination
IP addresses on those packets may not represent the actual commu-
nication endpoints.

Address Representation. IPv6 addresses are not written in the
IPv4 dotted-decimal notation, but rather as a group of eight 16-bit
hextets (as opposed to four 8-bit pieces in IPv4). Leading zeroes in
each hextet can be omitted, and up to one group of two or more
hextets consisting of only zeroes can be expressed as “::”. The
following examples show different possible notations for an IPv6
address.

2001:0DB8:0000:0078:9ABC:0000:0000:0000

2001:0DB8:0:0078:9ABC:0:0:0

2001:DB8:0:78:9ABC::

1The 6to4 transition mechanism encapsulates IPv6 packets inside IPv4

packets to help connect “islands” of IPv6 networks. IPv4 addresses are

written in the last 2 hextets of the IPv6 address.
2A tunnel is a point to point IPv4 link between an end-user and an ISP

through which IPv6 packets are encapsulated.

21

6th International Workshop on Visualization for Cyber Security 2009
11 October, Atlantic City, New Jersey, USA
978-1-4244-5413-6/09/$25.00 ©2009 IEEE

The representation of prefixes in IPv6 is similar to the Classless
Inter-Domain Routing (CIDR) notation in IPv4. The prefix length,
which specifies how many of the leftmost contiguous bits compro-
mise the prefix, is appended after the IP address. For example, a
network block where 64 bits are used for assigning to hosts and 64
remain constant would be expressed as: 2001:DB8:0:78::/64.

2.2 Other Differences from IPv4 and Visualization Impli-
cations

The updated IPv6 packet header omits rarely used fields and has
been simplified to allow faster processing by network devices.
Headers now contain fewer fields, by eliminating the header length,
identification (IPID), flags, fragment offset, and header checksum.
The version, traffic class, payload length, next header and hop limit
fields in IPv6 headers are either the same as in IPv4, or used for
similar purposes, making them somewhat compatible in both anal-
ysis and visualization tools. The flow label field is unique to IPv6
and provides a method of tagging all packets belonging to the same
end-to-end conversation.

Since IPv6 and IPv4 operate at the Internet layer of the IP stack,
there are only differences between protocols at this specific layer.
TCP, UDP and any other protocols that run over IP are unchanged,
and therefore visualization tools that graph only transport or appli-
cation layer data generally do not need to be modified to work with
IPv6. On the other hand, security visualization tools that display In-
ternet layer data, such as IP addresses or other header fields might
require changes to work with IPv6.

The address space in IPv6 is far too large for brute-force enu-
meration to be feasible (attackers cannot sequentially probe all IP
addresses in IPv6). This means that remote host discovery is much
less likely (unless it targets specific, small subnets). However there
are some related IPv6 features such as neighbor discovery and mul-
ticast which should not be overlooked. Multicast addresses can al-
low a single device to discover all other IPv6 devices on a local
network as described by Moore [13] using The IPv6 Attack Toolkit
[4] (a collection of network tools for discovering and attacking IPv6
enabled devices).

Another interesting feature of IPv6 is address auto-configuration.
Hosts can now assign themselves an IP address without the need for
a DHCP server. Using ICMPv6, a server broadcasts the IPv6 pre-
fix which all hosts should prepend to their auto-configured address
(this is designed to be collision free since the host’s MAC address
is used as part of the address). While address auto-configuration
helps for network renumbering, it makes monitoring hosts on an
IPv6 network a more complicated task.

2.3 Focus on Remote IP Addresses

IP addresses uniquely identify hosts on networks. The vast major-
ity of network analysis tools use IP addresses either to group or
classify hosts at the network level. Visualizing IP addresses is use-
ful for detecting similar behavior among groups of hosts as well as
mapping the origin of a connection to an approximate geographical
location.

It is useful to distinguish between externally initiated connec-
tions and internally initiated. In this paper, we focus on the former;
the remote hosts in question are remote addresses, while those as-
signed to devices located within a local network perimeter are local
addresses. Remote and local addresses are also referred to as source
and destination addresses, respectively.

A network administrator should always have local knowledge of
the network being defended, that is, which segments of the address
space are populated or active. For this reason, monitoring target or
local IP addresses in IPv6 is somewhat easier than doing the same
for remote addresses. For instance, even if an administrator has
264 addresses available for assignment, in all likelihood only a very

small (known) subset of these will be actually used, and the cor-
responding devices can easily be monitored. Many security visual-
ization tools graph the host segment of the IP address for displaying
internal addresses. With this approach, no information is lost from
the IP address because the network segment of the address is con-
stant.

Remote IP addresses on the other hand are more difficult to mon-
itor, since it is impossible to know ahead of time which remote
hosts will initiate connections, and visualizing a small portion of
the address could hide information from the user. It is common to
see tools visualizing the entire remote IP address or the network
segment of the address, with the drawback of losing the host-level
accuracy. In this paper we focus on visualizing remote IP addresses
and attempt to limit the loss of accuracy.

2.4 Related Work

We are not aware of any literature that specifically addresses visual-
ization of IPv6 traffic. The existing literature on security visualiza-
tion also does not explicitly state that the focus is IPv4 traffic, but
typically implicitly assumes that IPv4 is the underlying protocol of
the analyzed network traffic. Several visualization tools [10, 11, 17]
which provide good insight into remote IP behavior are limited to
IPv4 addresses.

Nakamae et al. [16] attempted to visualize the structure of an
IPv6 network. This differs from our approach in several ways. They
did not display IPv6 addresses in their visualizations, or analyze
IPv6 network traffic, but rather display the connections linking dif-
ferent ISPs (obtained from routing table entries) within a specific
region. They do not aim to help visualize the behavior of groups of
IPv6 hosts. They focus on representing the IPv6 address hierarchy
(see Section 5.2) through an interactive three-dimensional display.
Their results produce attractive 3D visualizations rich in informa-
tion (compared to 2D), with the accompanying trade-off of requir-
ing the user to actively interact with the tool to see information that
may be occluded by other parts of the graph. The Cooperative As-
sociation for Internet Data Analysis (CAIDA) has also produced
visualizations displaying IPv6 autonomous system (AS) intercon-
nections [5].

3 CONSIDERATIONS FOR VISUALIZING IPV6 DATASETS

Most visualization tools follow these steps to visually represent net-
work traffic captures:

1. Capture raw data. Data off the wire is captured by a com-
mon network monitoring tool (Tcpdump, Wireshark, Net-
Flow, etc.).

2. Parse. The raw dumps are then parsed to extract information
from the data structures used by the monitoring tools. This
extracted data is written to text files.

3. Process and reformat. Text files are then processed for field
selection and modified into the format required by the visual-
ization tool.

4. Display. Graphically represent the data.

Data Capturing and Parsing. Popular data capturing tools
have included support for IPv6 for a few years. These tools are
capable of detecting IPv6 in IPv4 encapsulation, detecting the dif-
ferent types of addresses, and understanding the new security en-
hancements (e.g., IPSec) that are built-in to IPv6. For example, the
SiLK tools [3] allow the analyst to display IPv4 flows as IPv6 flows
containing 6to4 addresses. SiLK is also being improved to sup-
port faster manipulation of IPv6 addresses using high-performance
data structures [12]. Since there is very good support for capturing
IPv6, this part of the visualization process requires practically no

22

changes. The main point is to make sure that network analysts en-
able the IPv6 capture feature as it might be disabled by default in
some capture tools.

Once data has been saved to a capture file, parsers (generally
written in scripting languages, e.g., Perl or Python) are used to read
relevant fields from the capture. Parsers work with plain text so
they should be able to extract IPv4 and IPv6 without much diffi-
culty. When working with parsers, just as with capture tools, ana-
lysts need to make sure the parser is not discarding IPv6 records,
since IPv6 addresses are written differently and may cause a poorly
written IPv4-only parser to crash or ignore that part of the file.

Data processing and Visualizing. After parsing the file, data for
the visualization must be selected. Common network fields that are
used in visualization are: source and destination address, the IPID,
and source and destination ports. Of these, only the source and
destination ports remain unchanged in IPv6. Source and destination
addresses have become 128 bits, and the IPID is removed from the
header. Visualization tools must not try to extract an IPID (or other
non-existent fields) from an IPv6 packet, nor attempt to display an
IPv6 address when processing data records from an IPv4 space;
existing tools that do so must be modified to prevent them from
breaking when processing IPv6 traffic.

Current visualization tools generally don’t support IPv6 in the
sense that they assume the capture is IPv4 only, and therefore as-
sume 32-bit addresses. For example, the Inetvis [18] cube is hard-
coded for IPv4. If a dual stack capture3 is loaded, the tool will just
ignore the IPv6 packets and not display them. NVisionIP [11] and
Flovis [17] are other examples of tools where only 32-bit source
addresses are currently supported. Koike et al. [10] also describe
a technique similar to NVisionIP in which source and destination
addresses are visualized in a 2D matrix; only IPv4 addresses can be
displayed.

4 DATASET

The dataset we used for our sample visualizations was obtained
from the MAWI Working Group Traffic Archive [2]. This archive
contains a large number of up-to-date traffic captures on several In-
ternet backbone links, including two sets of network traces that con-
tain only IPv6 data, and several other sets with dual-stack captures.
We used one capture from Samplepoint-C (one of their 16 sampling
points), which contains 2 million IPv6-only packets, generated June
18, 2008 between 9:00 am and 1:36 pm, and anonymized using a
modified version of tcpdpriv to comply with WIDE standards. Pay-
loads were removed, but protocols and ports were left unchanged
by tcpdpriv. The IP addresses were scrambled, with sources sharing
the same address prefix preserving this property (two IP addresses
A and B on the same subnet X would both be placed in a new subnet
Y) throughout the duration of the capture period. The dataset con-
tains 19244 unique source IP addresses generating traffic at an aver-
age 221kbps. Traffic is distributed as TCP (50.3%), UDP (29.6%)
and ICMP (19.7%) as well as a small number of other protocols.

5 VISUALIZATION OF REMOTE IP ADDRESSES

To represent IP addresses in IPv6, trying to grow the range of an
axis from 232 to 2128 does not work. One must rethink how to dis-
play information to gain insight on how connections are distributed
and where they come from. Additionally, we seek to work with the
existing visualization tools with as little disruption as possible, even
though such tools might not be ready for IPv6.

5.1 Whitespace filtering

One of the problems for visualization in IPv6 is that the address
space is very sparsely populated. Most of the leftmost 4 bits are

3A dual stack capture is a capture that contains both IPv4 and IPv6 data.
41466 out of the 1924 addresses generated only TCP and UDP traffic.

reserved by the IETF for future use, which leaves only one prefix
(2000::/3) that can be globally routed. To demonstrate how un-
evenly distributed the remaining addresses are, in Figure 1(a), we
plot the dataset of Section 4 using the full IPv6 address range on
the y axis. Note that we can only distinguish six horizontal lines
(corresponding to addresses beginning with 20, 24, 26, 2A, 3F and
FE). Figure 1(b) zooms into the bottom line of Figure 1(a); what
appeared to be a single address is actually a group of hundreds of
addresses (displayed as horizontal lines). Even on a high-resolution
display (e.g., 1920x1200), we could potentially still have thousands
of remote IP addresses overlapped onto a single row of pixels of
the screen (not the case in this example, since the capture contained
only 1924 source addresses).

In IPv4, for an analyst to detect patterns and trends using a vi-
sualization tool, it is useful to look at neighboring addresses (in the
same subnet or class). This can help identify hosts that are collab-
orating or exhibiting similar behavior. Furthermore, being able to
see the behavior of all subnets simultaneously proves to be useful
in detecting Internet-wide attacks. IPv6 doesn’t immediately add
more hosts to visualizations, just a much wider address range. Re-
moving the unused or unpopulated addresses, i.e., the whitespace
(sometimes referred to as darkspace in scan detection literature),
should restore the same, Internet-wide visualizations as with IPv4.

Eliminating the whitespace is easily done as follows. During the
network capture, build a list of unique remote IPv6 addresses ob-
served. To preserve relative placement (so that if address A numeri-
cally follows B, this relation is retained in the new list) of addresses,
sort the resulting list by numerical value . Finally, when displaying
data, display the index of the IP address in the list instead of the full
address.

As an optional step, subnet information can be preserved in the
graphs, by deliberately inserting gaps. We insert 2 null elements
into the previously mentioned IPv6 address list between each pop-
ulated 64-bit subnet. The end result is a list where all addresses
in the same /64 subnet are contiguous, and all /64 subnets are sepa-
rated by a small space. This optional step may help the user identify
subnets visually rather than trying to otherwise validate findings in
the original raw dataset.

To save the analyst from changing his workflow by having to
look-up the address that matches a given index, visualization tools
could be modified to display the address when mousing over an
index.

Figure 2(a) presents our dataset as an example IPv6 capture be-
ing visualized with no filtering at all. The x axis displays the 128-
bit addresses as an integer value. Due to the uneven distribution of
addresses, as well as the huge IPv6 address space, the populated
addresses all overlap on the left side of the scatterplot. In Figure
2(b), unused address space has been eliminated, and each remote
IPv6 address has been indexed. The resulting scatterplot is able
to display over 1400 remote addresses and what destination ports
each one targets during the capture period. This filtered scatterplot
reveals that traffic to UDP port 53 (DNS) was frequent throughout
the entire capture period, and that no single host attempted connec-
tions to a large number of destination ports (noted by the absence of
vertical lines in Figure 2(b)). Note that the horizontal axis in Figure
2(b) displays the address index rather than the full address.

5.2 Using IPv6 Address Hierarchy with Treemaps

IPv6 address allocation standards dictate that addresses must be as-
signed in a hierarchical manner, due to the extremely large address
space. Assigning IPv6 addresses otherwise (e.g., in an ad hoc way)
would lead to huge routing tables on backbone Internet routers.

RFC 3587 [8] specifies a global unicast format for aggregating
IPv6 addresses in order to keep global routing tables efficient. In
this format bits of the address are grouped together forming a three
level hierarchy: the global routing prefix, the subnet ID and the in-

23

(a) Remote IPv6 hosts seen generating packets during the capture period. At

this scale, all points on the scatterplot overlap to the first byte of precision.

(b) 70000x zoom on the y axis focusing on the bottom solid line. Significant

overlap of points remains on the y axis

Figure 1: The sparsely populated IPv6 address space

(a) Full address space (b) Using index value in place of absolute IP address

Figure 2: Filtering out unpopulated address space

terface ID. Moving down the hierarchy (i.e., reading more bits of
the IPv6 address from left to right), reveals more about the IP ad-
dress. The global routing prefix might tell us what regional regis-
trar owns the address block, while the subnet ID might tell us what
country and ISP own the sub-block. Finally the interface identifier
will uniquely identify a host or endpoint.

One visualization tool that can represent hierarchy effectively
is a treemap [15]. Treemaps have been used in the past for rep-
resenting hard drive space (by using the file directory structure as
hierarchy). One implementation of the treemap algorithm is a Java
application written by the HCI Lab at the University of Maryland
[14]. The application reads in a text file in a specific format and
outputs a treemap that can be navigated with dynamic tree height
selection, node filtering and different layout types. We used this
tool to illustrate how treemaps can be used to visualize IPv6 remote
addresses.

Figure 3 shows an example treemap created from the dataset of
Section 4. The treemap represents all remote IPv6 addresses seen
during the 4.5 hour capture period, the number of packets matching

each port and their protocol. The size of each rectangle is propor-
tional to the number of packets, and the color represents the proto-
col. The treemap is hierarchical (using each hextet of the remote
IPv6 address as a level) so viewing the first 3 hextets would display
only the global routing prefix, and viewing the first 4 would display
the subnet ID as well. The user can zoom in as far as the last hex-
tet of the address, with the drawback of a more cluttered treemap.
Rectangles that are too small to display a label can be expanded to
full screen when clicked. Mousing over any rectangle gives a popup
label displaying the packet count.

The treemap algorithm has generated five large rectangles
(marked with black borders in Figure 3) corresponding to the first
16 bits of the IPv6 address: 2001, 2A01, 2620 and 2A02 which are
IANA assigned prefixes; and FE80 which is a link local block. The
analyst can zoom in to the tree by double clicking on any of the la-
bels, at which point the treemap will be redrawn using the selected
node as the root of the tree. The tree is also searchable which might
allow analysts to look for specific prefixes or network blocks. Cor-
relating this data with the list of IPv6 unicast assignments [1] by

24

Figure 3: A treemap representing IPv6 source address, destination port and packet count (ICMP (white), TCP (dark grey), UDP (light grey),
everything else (black)). Best viewed in color. Full resolution version available at http://bit.ly/vizsec1

IANA reveals geographical location of nodes.
One of the benefits of treemaps is that the user can quickly find

sources behaving similarly by looking at the contents of nodes.
For instance, in Figure 3 to the left, we notice that the highlighted
hosts (mostly white nodes in the treemap) were seen sending mostly
ICMPv6 traffic during the capture period. Some of these hosts were
also seen sending TCP traffic on port 179, corresponding to the Bor-
der Gateway Protocol (BGP). These hosts are therefore probably
routers or monitoring devices (or devices being monitored).

Another example of using treemaps for detecting specific types
of hosts is presented in Figure 4. In this treemap all hosts from our
dataset except those seen generating UDP traffic have been hidden.
The resulting treemap displays 3 nodes with a distinctive destina-
tion port layout. All three nodes show the most common destination
port contacted was 32769 UDP (the second ephemeral port avail-
able by default on Unix-based operating systems) followed by 53
UDP and then many other high numbered UDP ports. At a first
glance, the contents of their nodes would suggest the three hosts
behave similarly. This intuition is confirmed by searching for these
IPv6 addresses using the SiLK tools, revealing that all three hosts
only responded to requests on port 53 during the 4.5 hour capture.

5.3 Limitations

Both of the previously described techniques have advantages and
drawbacks. The first method (removing unused addresses) will
work well with datasets that have a small number of IPv6 hosts, and
therefore has questionable scalability. The dataset of Section 4 only
contained 1466 source IP addresses generating TCP or UDP traffic,
which generated uncluttered visualizations. In IPv4, we know that
there can be at most 232 remote addresses (actually far less due to
reserved addresses) and that network address translation (NAT) de-
vices may hide a large number of hosts behind a single IP address.

In IPv6, each Internet enabled device can have its own address, po-
tentially saturating visualizations created with this technique.

Real-time visualizations can be slow to implement with this
method since they require a list to be sorted each time a new IP ad-
dress is added. Treemaps are faster to update real-time, but require
the user to interact with the tool to reveal hosts with low volumes
of traffic (e.g., low and slow scans).

The transition mechanisms described in Section 2.1 will also
require the analyst to further investigate points of interest, since
source and destination IP addresses might not represent the end
device, but rather a tunnel endpoint. Address ranges reserved for
transition mechanisms also appear to be more densely populated.

As networks gradually transition to IPv6, dual stack captures will
become more common. This paper has focused on IPv6-only data
captures and visualizations excluding visualization of dual stack
captures.

6 CONCLUSION AND FUTURE WORK

As IPv6 infrastructure is deployed, attackers are able to use IPv6,
and have enabled support for it in their applications. Current visual-
ization techniques fail to offer methods for displaying the source of
connections if IPv6 is being used. This allows attackers the oppor-
tunity to remain undetected. We have proposed two new techniques
that allow analysts using security visualization tools to see IPv6 net-
work traffic, without requiring a major rewrite of the existing tools.
While these methods seem to give good results on a sample dataset,
their practical utility once IPv6 deployment becomes mainstream
remains unclear. A main objective has been to raise awareness of
the need for security visualization tools to support IPv6 datasets.
Future work includes finding new visualizations techniques for
IPv6 traffic and improving the current proposed techniques.

25

Figure 4: Finding DNS servers. Best viewed in color. Full resolution version available at http://bit.ly/vizsec2

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees for their helpful
comments. The second author acknowledges NSERC funding un-
der a Discovery Grant and as Canada Research Chair in Network
and Software Security. Partial funding from NSERC ISSNet is also
acknowledged.

REFERENCES

[1] IANA IPv6 Unicast Address Assignments. http://www.

iana.org/assignments/ipv6-unicast-address-

assignments Last updated 2008-05-13.

[2] Measurement and Analysis on the WIDE Internet (MAWI) Working

Group Traffic Archive. http://tracer.csl.sony.co.jp/

mawi/.

[3] SiLK Tools. http://tools.netsa.cert.org/silk/.

[4] The IPv6 Attack Toolikit. http://freeworld.thc.org/thc-

ipv6/.

[5] CAIDA. Visualizing IPv6 AS-level Internet Topology 2008.

http://www.caida.org/research/topology/as_

core_network/ipv6.xml, Accessed April 20, 2009.

[6] S. Deering and R. Hinden. RFC2460 - Internet Protocol, Ver-

sion 6 (IPv6) Specification. http://www.faqs.org/rfcs/

rfc2460.html, Dec. 1998.

[7] S. H. Gunderson. Measuring the current state of IPv6 for ordinary

users. http://bit.ly/QTEXA, October, 2008.

[8] R. Hinden, S. Deering, and E. Nordmark. RFC 3587 - IPv6

Global Unicast Address Format. http://www.faqs.org/

rfcs/rfc3587.html, August 2003.

[9] G. Huston. IPv4 Address Report. Retrieved on July 2, 2009 from

http://www.potaroo.net/tools/ipv4/index.html.

[10] H. Koike, K. Ohno, and K. Koizumi. Visualizing cyber attacks using

IP matrix. In IEEE Workshop on Visualization for Computer Security,

2005. (VizSEC 05), pages 91–98, Oct. 2005.
[11] K. Lakkaraju, W. Yurcik, and A. J. Lee. NVisionIP: Netflow vi-

sualizations of system state for security situational awareness. In

VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on vi-

sualization and data mining for computer security, pages 65–72, New

York, NY, USA, 2004.

[12] J. McHugh. Data Structures for IPv6 Network Traffic Analysis Using

Sets and Bags. In Proc. of FloCon 2009, Scottsdale, AZ, USA, 2009.

[13] H. Moore. Uninformed.org - Exploiting Tomorrow’s Internet Today:

Penetration Testing with IPv6. http://www.uninformed.org/

?v=10&a=3, October 2008.

[14] U. of Maryland Human Computer Interaction Lab. Treemap: Home

page. http://www.cs.umd.edu/hcil/treemap/.

[15] B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In

Proceedings of IEEE Symposium on Information Visualization, 2001.

INFOVIS 2001, pages 73–78, 2001.

[16] J. M. Shu Nakamae, Yuji Sekiya. A Study Into a Visualization of an

IPv6 Network. In Proceedings of the 9th Annual Conference of the

Internet Society INET’99, 1999.

[17] T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks, and

J. McHugh. FloVis: Flow Visualization System. In Conference For

Homeland Security. CATCH ’09. Cybersecurity Applications & Tech-

nology, pages 186–198, March 2009.

[18] J.-P. van Riel and B. Irwin. InetVis, a visual tool for network telescope

traffic analysis. In Afrigaph ’06: Proceedings of the 4th international

conference on computer graphics, virtual reality, visualisation and in-

teraction in Africa, pages 85–89, New York, NY, USA, 2006. ACM.

26

