
The Futility of DNSSec
Alex Cowperthwaite

School of Computer Science
Carleton University

Ottawa, ON Canada K1S 5B6
acowpert@ccsl.carleton.ca

Anil Somayaji
School of Computer Science

Carleton University
Ottawa, ON Canada K1S 5B6

soma@ccsl.carleton.ca

Abstract—The lack of data authentication and integrity guar-
antees in the Domain Name System (DNS) facilitates a wide
variety of malicious activity on the Internet today. DNSSec,
a set of cryptographic extensions to DNS, has been proposed
to address these threats. While DNSSec does provide certain
security guarantees, here we argue that it does not provide
what users really need, namely end-to-end authentication and
integrity. Even worse, DNSSec makes DNS much less efficient
and harder to administer, thus significantly compromising DNS’s
availability—arguably its most important characteristic. In this
paper we explain the structure of DNS, examine the threats
against it, present the details of DNSSec, and analyze the benefits
of DNSSec relative to its costs. This cost-benefit analysis clearly
shows that DNSSec deployment is a futile effort, one that provides
little long-term benefit yet has distinct, perhaps very significant
costs.

I. INTRODUCTION

The Domain Name System (DNS) has become an vital
part of the modern Internet. DNS translates human readable
host names such as www.carleton.ca to machine routable
IP addresses such as 134.117.1.32. These operations are
performed automatically as part of nearly every transaction
across the Internet today.

DNS was designed in the early 1980’s to be fast, efficient,
and highly available in the face of network disruptions [1],
[2]. These were all essential design goals given the limited
and unreliable nature of the computational and networking
resources at their disposal. To achieve these goals DNS used
a distributed hierarchical database, a simple query response
protocol, and aggressive caching with permissibly stale data.
With the rapid and global growth of the Internet, the DNS
system has scaled very well and maintained its core attributes
of efficiency and high availability; unfortunately, it has also
maintained its lack of data authenticity and integrity. These
omissions have become increasingly significant as malicious
activity has increased on the Internet. A falsified DNS reply
can redirect an unsuspecting user to an attacker-controlled
host, making them vulnerable to phishing, malware distribu-
tion or numerous other malicious activities.

DNS Security Extensions (DNSSec) addresses DNS’s lack
of data authentication and integrity. DNSSec provides these
guarantees by using public key cryptography to sign each
DNS record. DNSSec has been carefully designed to be as
efficient and scalable as possible; as we will explain, however,
the bandwidth, computational, and administrative overhead of

DNSSec do potentially compromise DNS’s essential avail-
ability properties. More significant, however, is that DNSSec
solves the wrong problem: it secures hostname to IP address
mappings when what is really needed is better end-to-end
security guarantees. Thus we believe that the deployment of
DNSSec is a futile gesture, one that will lead to minimal long-
term security benefits while resulting in significant security
and economic costs.

We proceed to make this argument in the rest of this paper
as follows. First, we describe the Domain Name System in
more detail in Section II. Next, we discuss cache poisoning
attacks, the most serious current threat to DNS, in Section III.
Section IV presents DNSSec and explains how DNSSec can
block cache poisoning attacks. We then explore how DNSSec
reduces the availability of DNS in Section V; Section VI
discusses how attackers could circumvent the protections
provided by DNSSec. Section VII presents potential alterna-
tives to DNSSec adoption while Section VIII discusses more
general issues relating to DNSSec and end-to-end security.
Section IX concludes.

II. THE DOMAIN NAME SYSTEM

The Domain Name System is a distributed database for
storing information on domain names, the primary namespace
for hosts on the Internet. While the primary purpose of DNS
is to map domain names to IP addresses, it actually supports
several kinds of records. The primary record types are as
follows:

• A records specify an IPv4 address for a host.
• AAAA records specify an IPv6 address for a host.
• NS records point to the authoritative name servers for a

zone (domain).
• CNAME records allow the specification of host

aliases, e.g. make www.example.com refer to
berners-lee.example.com.

• MX records identify mail servers that can receive email
for a domain.

The DNS system is composed of two types of systems, name
servers and resolvers. Name servers return information about
domains or zones when queried by DNS resolvers. DNS
resolvers send queries to one or more name servers in order
to service DNS requests from applications.

When a name server is configured as authoritative for its
zone, its resource records are always interpreted as correct.



To improve availability and reduce upstream server load,
resolvers may also cache resource records until they have
expired; while some domains specify time-to-live values on
the order of minutes, it is more common for domains to permit
their records to be cached for days. Cached records are not
considered to be authoritative, i.e., they may contain incorrect
or stale information; most consumers of DNS information,
however, do not distinguish between authoritative and non-
authoritative results.

Applications normally send queries to simple stub resolvers
implemented as library functions. Stub resolvers forward
requests to standalone recursive resolvers that perform the
multiple name server queries normally required to answer
any request. Recursive resolvers work best when most re-
sponses can be answered using cached queries (i.e., they see
multiple requests for the same information). ISPs normally
operate DNS servers with recursive, caching resolvers for their
customers; alternately, users can configure their systems to
connect to other open DNS servers.1

DNS name servers are structured as a hierarchical tree
where the tree levels correspond to the dot-separated compo-
nents of a domain name. A complete lookup follows a chain
starting from the DNS root servers to a top level domain (TLD)
down to any number of domains and subdomains below. We
review the steps in a typical DNS lookup below.

1) An application (e.g., a web browser) invokes a lo-
cal stub resolver to look up the IP address of
www.example.com.

2) The stub resolver sends the request to a local DNS server
(a recursive, caching DNS resolver).

3) The DNS server will check its cache for an entry for
www.example.com. If it is does not have an entry
it will request a lookup from a randomly chosen root
server. The IP addresses of standard root servers are
built in to DNS servers.

4) The root server will reply with the NS record describing
the name of the authoritative name server for the Top
Level Domain (TLD) .com. To reduce traffic, it will
also append “the glue”: the A record (IPv4 address) for
the .com TLD name server.

5) The recursive DNS resolver will request a lookup
for www.example.com from the .com authoritative
name server (as specified in the returned glue A record).

6) The .com name server will reply with the authoritative
name server record for example.com. It will also ap-
pend the A record for the example.com authoritative
name server.

7) The recursive DNS resolver will then ask the authorita-
tive name server for example.com for the lookup of
www.example.com

8) The name server for example.com will reply with
an authoritative answer for www.example.com, likely

1Traditionally recursive resolvers and name servers were both implemented
as part of the same application (e.g., BIND 9 and earlier[3]); Newer DNS
server designs, however, divide these functions into separate programs (e.g.,
tinydns and dnscache of djbdns [4]).

only an A record.
9) Optionally, the recursive DNS resolver will add or

update this entry in its cache.
10) The recursive DNS server will then return a non-

authoritative answer (an A record) to the requesting
application’s stub resolver.

Each DNS query and response is normally sent in a single
UDP packet. The query and response use the same structure;
the query is sent with the response field blank. A 16 bit query
ID field used to distinguish outstanding requests [5], [6].

Note how multiple characteristics of DNS make it both effi-
cient and highly available. Queries are simple and small (there
are few record types and the amount of information in each
is small), minimizing bandwidth and storage overhead. Full
and partial results are easily cached (i.e, servers cache results
from every level of the hierarchy). And, DNS’s database is
distributed in a simple, scalable way that is (relatively) easily
debugged and tuned—i.e., if you don’t get an appropriate
response, you can quickly identify what server gave you
incorrect information.

III. DNS CACHE POISONING

While DNS has many positive characteristics, note that DNS
has no integrity, authenticity, or confidentiality guarantees.
Confidentiality can be added by encrypting queries (e.g.,
via IPsec); integrity and authenticity cannot be so easily
added, however, because of the distributed nature of DNS.
DNS responses can be modified or completely forged almost
trivially by an intruder-in-the-middle attack. Indeed, because
DNS normally uses UDP, attackers do not even need to hijack
TCP connections. The weaknesses of DNS are actually even
worse, however, because the existing DNS infrastructure can
be used to deliver malicious responses.

Specifically, malicious responses can originate from le-
gitimate, otherwise uncompromised servers through the use
of cache poisoning attacks [7]. With standard DNS cache
poisoning attacks, a victim can be redirected to a malicious
host through the injection of a forged A record. The key idea
behind such attacks is that a caching resolver has no way to
authenticate received data; it will accept any query response
that “looks right.” An attacker even has many chances to
generate authentic-looking responses as unexpected responses
will simply be discarded.

While such attacks are problematic enough, in the summer
of 2008 Dan Kaminsky described a direct extension to known
DNS cache poisoning techniques that made them much more
dangerous and reliable. Kaminsky’s primary observation was
that instead of spoofing the final A record of the destination,
an attacker could spoof any one of the query responses in the
lookup process. By forging an NS record, an attacker could
take over an entire domain, up to and including a TLD such
as .com.

Kaminsky also improved the reliability of cache poisoning
attacks. Previously, if an entry was cached attackers would
have to wait for the cached entry to expire before they could
attempt to replace it; thus, it was relatively hard to poison



the cache of popular domains. Kaminsky, however, noted
that by querying an obscure subdomain not already cached
(i.e. reallyobscuresubdomain.example.com) an at-
tacker could force a lookup. The lookup would go directly
to the authoritative namesever for the domain, assuming it
was cached. This creates an opportunity for an attack to
forge a reply with no answer for the obscure subdomain
but include an additional update for the A record of the
authoritative nameserver. The opportunistic caching resolver
will update their cache with the false record. This method
allows an attacker to repeat the attack many times giving them
a greater chance of returning an answer that will be accepted,
successfully poisoning the cache. [8]

The easiest to implement defense against these cache poi-
soning attacks is to make responses harder to predict. Clearly
the 16-bit query ID field does not have enough entropy to
prevent brute force attacks. This entropy can be supplemented
by randomizing the outgoing request port. If every available
port could be used, that would give us 32 bits (as UDP
ports are 16 bit quantities); while we cannot reach this upper
bound in practice, we can get close enough to make cache
poisoning attacks much harder. Even with such improvements
, however, it is still possible to mount DNS cache poisoning
attacks. To prevent forged requests, ideally we need the
kind of authentication guarantees that are best provided by
cryptographic mechanisms. DNSSec was designed to provide
precisely these guarantees.

IV. DNSSEC

DNSSec is a set of extensions to DNS that are designed
to authenticate and protect the integrity of DNS responses
through the use of public key-based digital signatures. The
design of DNSSec started in the mid-1990s, motivated by the
growing recognition of the dangers of DNS cache poisoning
[7]. The first version of DNSSec was officially published as
RFC 2065 in January 1997 [9]; an improved version followed
in RFC 2535 (March 1999)[10]; after trial deployment expe-
rience, the current version of DNSSec was finalized in RFC
4033-4035 in March 2005 [11], [12], [13].

DNSSec allows domain owners to digitally sign resource
records. One key design decision in DNSSec is that name
servers do not implement any cryptography; signatures are
generated offline, while signatures are checked by resolvers.
While this design choice minimizes the computational over-
head of DNSSec, it also greatly complicates the process of
authenticating DNS responses because the results returned by
every authoritative name server in a query chain must be in-
dividually verified. Thus, for resolving www.example.com,
the responses from the root, .com, and example.com name
servers must each be authenticated independently.

The information necessary to authenticate responses is
stored in a set of new DNS record types:

• RRSIG records contain digital signatures for other re-
source records. Each regular DNS resource record should
have its own RRSIG record (except for the DNSKEY
record).

• DNSKEY records contain public keys for verifying
RRSIG records. Note that a zone may have multiple
DNSKEY records.

• DS, or designated signer records, store cryptographic
hashes of the public keys of a zone’s children. DS records
are what allow .com to specify what key should sign
example.com’s records, thus enabling trust chains. DS
records should be signed with a corresponding RRSIG
record.

• NSEC and NSEC3 records provide authenticated denial
of existence. NSEC provided this information by speci-
fying two hostnames between which no other hostnames
exist. NSEC allows attackers to enumerate the hosts
in a domain; NSEC3 [14] addresses this problem by
specifying the ranges in terms of hashes of domain names
rather than the domain names themselves.

To authenticate a resource record, a resolver first checks that
the RRSIG signature on the requested record was generated
by the zone’s key, as specified by its DNSKEY record. To
make sure the DNSKEY record has the right value, the
corresponding DS record of the zone’s parent is checked to
see if it has the hash of the DNSKEY key. Then, to verify the
DS record is genuine, its RRSIG has to be checked against
the parent zone’s DNSKEY public key. This process repeats
until we get to the root zone; here, we assume the resolver
already knows the authentic public keys belonging to the root
name servers.

Note that DNSSec clearly defeats cache poisoning attacks.
Responses can only be forged if the underlying cryptography is
broken. Because resolvers will only forward or cache authentic
responses, the resolver’s cache would remain uncorrupted.
Unfortunately this benefit comes along with significant costs.

V. DNSSEC AVAILABILITY ISSUES

While DNSSec does provide strong integrity and authentic-
ity guarantees for DNS responses, it also requires significantly
more computer resources and requires a significant investment
in key management. Both of these factors reduce DNS’s
availability and so counterbalance the potential security gains
from DNSSec.

A. Resource Usage

DNSSec significantly increases the computational and space
footprint of DNS. DNSSec requires additional computation for
generating and verifying records. These costs are either offline
or are borne by requesting clients and/or their local resolvers;
as such, cryptographic overhead shouldn’t be a problem for
most DNSSec deployments.

The most obvious source of increased space usage with
DNSSec is the use of additional records: every regular
record requires a RRSIG signature, along with at least one
nameserver-specific DNSKEY and verifying DS (from the
parent) records. While the space impact of this increase
isn’t too large given the relatively small size of DNS zone
files, these additional records must also be communicated,
increasing DNS’s bandwidth requirements significantly.



No.of
packets

Total
Size
(bytes)

Amplification
factor

DNS Reply 1 208 2.9
DNSSec Reply
(actual)

1 1215 17.3

DNSSec Reply
(expected)

1 2257 32.2

DNSSec Reply
Chain (actual)

5 3045 43.5

DNSSec Reply
Chain (expected)

5 11865 169.5

Fig. 1. Amplification relative to one 70 byte DNS query packet for
www.dnssec.se.

Given today’s computers and networks, this increased re-
source consumption should be very manageable under normal
circumstances. Root and TLD DNS servers, however, have
been and will continue to be targets of distributed denial-of-
service (DDoS) attacks [15], [16]. The increased bandwidth
requirements of DNSSec will require significant hardware,
especially bandwidth, upgrades to maintain the same level of
DDoS resistance. Any outage or latency at the root or TLD
servers will be felt through out the internet.

The increased bandwidth consumption is particularly wor-
risome because of its asymmetric nature: small DNS requests
can result in large DNSSec replies. This characteristic makes
DNSSec-enabled systems more attractive for DNS DDoS
amplification attacks. Such attacks happen when a DDoS
attack is passed through DNS servers to amplify the volume of
data being sent to a target. Amplification attacks are feasible
because it is so easy to forge the source address of UDP
packets; thus, any open resolver can be used to send packets
to almost any host on the Internet [17], [18].

To evaluate the possibility of the amplification attack,
we recorded DNS lookups using Wireshark and the DNS
lookup utility dig (See Figure 1). We looked up the host
www.dnssec.se using the L root server and the open .se
DNSSec test server. We chose these servers because they offer
some of the strongest DNSSec support at the time of this
writing. We found that many servers do not fully implement
DNSSec as RFC 4033–4035 specify, so we report both the
actual values observed on the wire and the expected values
based on the RFCs. Specifically, we manually reconstructed
the full chain of DNS replies that is supposed to be returned
when the checking disabled (CD) flag is set. From our data it
is clear that DNSSec greatly increases the opportunity for an
amplificaion attack.

DNS amplification attacks can be mitigated in multiple
ways. DNS resolvers can be shielded from external requests
through firewall rules or through IP address-based request
filters on DNS servers themselves. Unicast Reverse Path For-
warding (URPF), defined in RFC 3074 [19], limits the scope
of IP address spoofing. Such defenses, however, have only

been partially delpoyed; further, even where delpoyed limited
forms of IP address spoofing are still possible. With DNSSec
deployment attackers will need far fewer DNS amplifiers
to perform potent denial of service attacks, making DNS
amplification attacks that much more feasible.

While neither the increased DDoS susceptibility and the in-
creased potential for DNS DDoS amplification attacks should,
by themselves, stand in the way of DNSSec deployment, they
are both clear drawbacks to a transition to DNSSec.

B. Key Management

We think a more significant DNSSec disadvantage will
be key management in practice. DNSSec has a number of
provisions designed to make key management easier. It allows
a zone to have as many signing keys (DNSKEY records)
as they wish, and those keys can be divided into separate
functions, e.g., Zone Signing Keys (ZSK) and Key Signing
Keys (KSK). The fundamental fact is, however, is that DNS
administrators will have to become public-key infrastructure
(PKI) administrators as well. They will have to secure private
signing keys, decide who has access to them, and generate
signatures for new and old information as records change and
as keys expire. DNS administrators are already busy people;
certificate management is a new, non-trivial responsibility for
which many (arguably most) DNS administrators do not have
the background, training, or experience. The most obvious
potential issue with such inexperienced DNSSec administra-
tors is that they will store and use keys insecurely, making
themselves vulnerable to attack. While such direct attacks may
be a concern, we think such issues will be minor compared to
two others: DNSSec-caused denial of service and false alarms.

Ideally, DNSSec would be used such that any signature
verification error would cause a DNS lookup to fail. If DNSSec
is deployed this way, however, any key management or sig-
nature generation error would result in a denial of service.
Sign using the wrong key—site goes down. Sign with an
expired key—site goes down. Forget to update signatures
when a key expires—site goes down as well. Anecdotally
we know users occassionally experience certificate verification
errors with SSL [20]; when every domain on the Internet must
manage keys, and when every hostname must be appropriately
signed, user-visible key management errors will inevitably go
up dramatically.

We hypothesize that these errors will be so common that it
will not be feasible for DNSSec to cause DNS queries to fail;
instead, DNSSec authentication errors will be used to generate
warnings that users or administrators can choose to follow
or ignore—just as with SSL certificates. And, as with SSL
certificates, most users will choose to ignore these warnings
[21].

In other words, key management with DNSSec will be
problematic enough that either users will have to tolerate a
significant loss in system availability due to non-malicious
authentication failures, or they will become accustomed to
ignoring DNSSec warnings, eliminating any security benefit
DNSSec provides.



VI. CIRCUMVENTING DNSSEC SECURITY

When properly deployed, DNSSec does guarantees integrity
and authenticity of DNS data. Even if we assume that DNSSec
is used optimally, however, that does not mean that we get
what we really want, namely secure communications. Attack-
ers have two basic strategies for circumventing DNSSec: they
can attack from below or from above.

Attackers can get “below” DNSSec by targeting other
aspects of network communication. DNS, at best, tells a
computer the IP address of another computer. An attacker
who mounts an intruder-in-the-middle attack (using, say, ARP
spoofing on a local network [22] or BGP route hijacking
[23], [24]) can potentially take over any IP address they
desire. Thus, DNS data can be completely secure yet attackers
can still make victim machines connect to malicious hosts.
Targetting the actual IP communications with the host instead
of the DNS lookup, an attacker easily circumvents any security
gained through DNSSec.

Of course, all this assumes that the DNS hostname we are
attempting to resolve is the right hostname. Phishing attacks
have demonstrated that users are easily fooled into visiting
malicious sites via links containing fraudulent hostnames [25].
Users do not understand the significance of hostname compo-
nents and their ordering. Indeed, why shouldn’t a regular user
visit a URL with www-mybank.secure.com when their
bank is really located at www.mybank.com? A proper ex-
planation requires a basic understanding of DNS—something
that we cannot expect regular users to know about.

DNSSec is a (potentially) strong defense surrounded by
insecurity both above and below. While DNSSec deployment
might reduce the incidence of DNS-specific attacks, we cannot
see how it would have a significant impact on the number or
severity of security incidents on the Internet. It is simply too
easy for an attacker to use other means to get systems and
users to connect to malicious hosts.

VII. BEYOND DNSSEC

While there are alternatives to DNSSec such as DNSCurve
[26] that are more efficient and that arguably have better
security properties, to address the above concerns we need
to realize that DNS, by itself, is not the security problem
that we need to address. What is needed are better ways to
provide end-to-end security: when a person uses a computer to
interact with a remote host, we need ways to authenticate that
remote host to defend against intruder-in-the-middle attacks
and attacker attempts to masquerade as that remote host.
DNSSec does not provide end-to-end authentication because
IP-level traffic is not authenticated and because people can
easily confuse malicious domain names with legitimate ones
(or, they’ll just ignore malicious domain names).

Today we have two technologies in wide use for providing
end-to-end authentication. One, SSL/TLS [27] as it is imple-
mented on the web, authentication occurs using trust chains
grounded in public keys bundled with web browsers. The other
is Secure Shell (SSH) [28], where the public keys of remote
hosts are either cached or supplied by an administrator. With

SSL, a third party (a certificate authority), generally unknown
to a user, vouches that the host being accessed is the one
denoted by its domain name (e.g., Verisign says that we are
connecting to www.bankofamerica.com when browsers
visit that domain), and with the new extended validation cer-
tificates, that third party says what organization controls that
server (e.g., Verisign says that www.bankofamerica.com
belongs to Bank of America Corporation). Alternately, with
SSH on our first connection we cannot authenticate the host;
however, on subsequent connections SSH authenticates the
remote host by correlating the domain name and server-
supplied public key with the key information that was saved
previously. So long as you connect to the same hosts you have
in the past, you are protected from attackers masquerading or
intercepting traffic at the network level.

SSH gives us easy-to-use end-to-end authentication (and
more) so long as we connect to the same remote hosts; it
provides no authentication for connections to new hosts. SSL
gives us remote host authentication so long as we trust the
certificate authority keys included with our browsers, we verify
the domain name we are visiting is, indeed, the correct one,
and we cancel connections to hosts that generate certificate
errors. Of course, all three of these assumptions are not ac-
tually true: sometimes certificate authorities are organizations
that many people distrust [29], [30] and users regularly ignore
malicious URLs and certificate errors [25]. As we discussed
earlier, however, these issues also apply to DNSSec or, indeed,
any scheme that relies on the DNS namespace and arbitrary
third-party signers of keys.

Both SSH and SSL are built on top of DNS and they
both provide the authentication DNS lacks. Even better, they
provide host authentication, not host IP address authentication,
although with some issues. Thus, it is reasonable to argue that
SSH and SSL together provide remote host authentication for
all users who want or need such authentication, and they do so
in a way that also provides end-to-end security, thus obliviating
the need for DNSSec. Yet neither address the bigger problem
of bridging the gap between hostnames and the remote host
(and organization) a user actually intends to access.

VIII. DISCUSSION

The Domain Name System is efficient, fault tolerant, and
fundamentally insecure—much as is the case with TCP/IP.
Both are foundational technologies for the Internet. Since
the mid-1990’s, many researchers have worked on developing
secure variants of both protocols, namely DNSSec and IPsec;
neither of these more secure proposals have been widely de-
ployed. Note that while DNSSec by itself can be circumvented
by IP-level attacks, IPsec and DNSSec together provide a
very secure foundation. So, why haven’t they been widely
deployed?

Part of the reason is simple laziness (in the most reasonable
sense): both of these transitions would involve significant
ongoing cost because of the burden of key management, and
without widespread deployment their security benefits are min-
imal. The more fundamental reason, though, is that complete



layer-level changes are simply infeasible today on the Internet.
They may happen over time, but only if circumstances are
just right. The normal case is to expect fragmentation—some
will adopt the new technology while others won’t. IPv6 and
software patches are in the same boat as DNSSec and IPsec—
some will deploy but all will not. In this environment, the more
a solution requires universal or near-universal acceptance to
provide benefits, the more likely it will never provide those
benefits.

While DNS cannot provide end-to-end security without a
cryptographic extension such as DNSSec, we could make DNS
immune to cache poisoning attacks, the main source of DNS
insecurity, with a variety of relatively minor changes (e.g., by
increasing the size of the query ID field from 16 to 64 bits)—
that is, assuming that the existing best practice of randomizing
source ports and query IDs is not sufficient protection. To get
end-to-end security, we simply need to encourage more sites to
adopt SSL or, as appropriate, SSH. SSL is already ubiquitous
and SSH provides benefits even in limited deployments.

Some advocates of DNSSec are arguing that it should be
adopted not because of the security guarantees it provides, per
se, but because of the new, more secure applications that could
be built on top of it [31], [32]. But this argument assumes
widespread deployment, something that has not happened and
may never happen in a way that allows other applications to
be built on top of it. Rather than waiting for a technology that
has been in development for fifteen years to suddenly take off,
why not use existing technologies to achieve the same ends?

But pushing for better end-to-end security at the DNS level
(using DNSSec, SSL, or SSH) misses the larger security issues
of authenticating destinations for network communications,
particularly web-based communications initiated by users. The
fundamental issue here is that the hostnames namespace is
not one that regular people understand. People understand
brands and, to a lesser extent, company names. Given the
numerous and still growing number of top-level domains,
there exists no clean mapping between brands, companies, and
hostnames. Many Internet users have discovered a very simple
strategy for dealing with this confusion: they do not access
sites via domain names and URLs; instead, they use search
engine queries. Such use of search engines can sometimes
lead to users accessing the wrong site (this happened with
Facebook recently [33]). Accessing hosts via search engines
is potentially insecure because there is no guarantee that the
link the search engine returns is the one the user actually
wants; however, this method is fast, relatively reliable, and
understandable to end users. If we wish to secure Internet
communications, we must take into account how computer
users actually behave, not how we would like them to behave.

What we need are ways for users to specify remote hosts
precisely and securely, using a namespace that does not require
a computer science degree to understand and properly use. We
then need a way to handle authentication failures in a way that
people are more likely to follow, not ignore them. These are
hard questions, ones that need further research.

The arguments we have made against DNS and DNSSec

have been made separately by many others; our contribution
here is to bring them together and to put them in perspective
versus the real security problem of end-to-end security. For
administrators, we hope this work will help them better evalu-
ate security technologies such as DNSSec. Also, we hope that
once researchers see the limited benefits and the significant
drawbacks of DNSSec that they will move on to developing
incrementally deployable solutions that address the true end-
to-end security needs of users on today’s Internet.

IX. CONCLUSION

DNSSec is designed to improve Internet security by pro-
viding authentication and integrity protection for DNS. While
DNSSec would potentially protect against DNS cache poison-
ing, it does so at the cost of increased susceptibility to DDoS
attacks, increased utility for DDoS amplification attacks, and
significant human administrator overhead for key management.
The key management issue is particularly important because
poor key management (which we expect to be the rule, not
the exception) will result in denials of service or, more likely,
in users being trained to ignore DNSSec-based warnings.

These significant tradeoffs take place against a backdrop of
other, simpler methods for defending against cache poison-
ing attacks such as source-port randomization and DNSSec’s
inability to provide end-to-end authentication. While DNSSec
could be extended to provide such protection, we already have
solutions that provide essentially the same guarantees: SSL
and SSH.

The true futility of DNSSec, however, arises from the fact
that it addresses the wrong problem. Users do not understand
the semantics of DNS well enough to distinguish between
malicious and legitimate hosts. While extended validation SSL
certificates are a small step in the right direction, interface
issues [34] and user reliance on search engines instead of
URLs [33] make them a partial solution at best.

Rather than adopt DNSSec, we argue that the Internet
community should invest in making DNS more robust to cache
poisoning attacks without relying upon a PKI infrastructure
while SSL and SSH should be more widely adopted. Mean-
while, research is needed in ways to close the gap between
user perception and remote host authentication.

ACKNOWLEDGEMENTS

We wish to thank the members of Carleton Computer
Security Laboratory and the anonymous reviewers for their
suggestions.

This work was supported by Canada’s Natural Sciences and
Engineering Research Council (NSERC) through the Internet-
worked Systems Security Network (ISSNet) and Discovery
Grant programs.

REFERENCES

[1] P. Mockapetris, “Domain names: Concepts and facilities,” RFC 882,
Internet Engineering Task Force, Nov. 1983. [Online]. Available:
http://www.ietf.org/rfc/rfc882.txt

[2] ——, “Domain names: Implementation specification,” RFC 883,
Internet Engineering Task Force, Nov. 1983. [Online]. Available:
http://www.ietf.org/rfc/rfc883.txt



[3] I. S. Consortium, “Isc bind.” [Online]. Available: https://www.isc.org/
software/bind

[4] D. J. Bernstein, “dnjdns.” [Online]. Available: http://cr.yp.to/djbdns.html
[5] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034

(Standard), Internet Engineering Task Force, Nov. 1987, updated
by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592. [Online]. Available:
http://www.ietf.org/rfc/rfc1034.txt

[6] ——, “Domain names - implementation and specification,” RFC 1035
(Standard), Internet Engineering Task Force, Nov. 1987, updated by
RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181,
2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343. [Online].
Available: http://www.ietf.org/rfc/rfc1035.txt

[7] S. Bellovin, “Using the domain name system for system break-ins,” in
The 5th Usenix UNIX Security Symposium. Usenix, June 1995.

[8] S. Friedl, “An illustrated guide to the kaminsky dns vulnerability,”
Aug 2008. [Online]. Available: \url{http://unixwiz.net/techtips/
iguide-kaminsky-dns-vuln.html}

[9] D. Eastlake 3rd and C. Kaufman, “Domain Name System Security
Extensions,” RFC 2065 (Proposed Standard), Internet Engineering Task
Force, Jan. 1997. [Online]. Available: http://www.ietf.org/rfc/rfc2065.txt

[10] D. Eastlake 3rd, “Domain Name System Security Extensions,” RFC
2535 (Proposed Standard), Internet Engineering Task Force, Mar. 1999.
[Online]. Available: http://www.ietf.org/rfc/rfc2535.txt

[11] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” RFC 4033 (Proposed
Standard), Internet Engineering Task Force, Mar. 2005. [Online].
Available: http://www.ietf.org/rfc/rfc4033.txt

[12] ——, “Resource Records for the DNS Security Extensions,” RFC
4034 (Proposed Standard), Internet Engineering Task Force, Mar. 2005,
updated by RFC 4470. [Online]. Available: http://www.ietf.org/rfc/
rfc4034.txt

[13] ——, “Protocol Modifications for the DNS Security Extensions,”
RFC 4035 (Proposed Standard), Internet Engineering Task Force,
Mar. 2005, updated by RFC 4470. [Online]. Available: http:
//www.ietf.org/rfc/rfc4035.txt

[14] B. Laurie, G. Sisson, R. Arends, and D. Blacka, “DNS Security
(DNSSEC) Hashed Authenticated Denial of Existence,” RFC 5155
(Proposed Standard), Internet Engineering Task Force, Mar. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5155.txt

[15] D. Moore, C. Shannon, D. Brown, G. Voelker, and S. Savage, “Inferring
Internet denial-of-service activity,” ACM Transactions on Computer
Systems (TOCS), vol. 24, no. 2, p. 139, 2006.

[16] N. Brownlee, K. Claffy, and E. Nemeth, “DNS measurements at a root
server,” GLOBECOM-NEW YORK-, vol. 3, pp. 1672–1676, 2001.

[17] R. Vaughn and G. Evron, “DNS amplification attacks,” 2006. [Online].
Available: http://www.isotf.org/news/DNS-Amplification-Attacks.pdf

[18] V. Paxson, “An analysis of using reflectors for distributed denial-of-
service attacks,” ACM SIGCOMM Computer Communication Review,
vol. 31, no. 3, pp. 38–47, 2001.

[19] F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks,”
RFC 3704 (Best Current Practice), Internet Engineering Task Force,
Mar. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3704.txt

[20] C. Herley, “So long, and no thanks for the externalities: The rational
rejection of security advice by users,” in Proceedings of the New Security
Paradigms Workshop (NSPW), 2009.

[21] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, , and L. Cranor,
“Crying wolf: An empirical study of ssl warning effectiveness,” in
Proceedings of the 18th USENIX Security Symposium, 2009.

[22] R. Wagner, “Address resolution protocol spoofing and man-in-the-middle
attacks,” The SANS Institute, 2001.

[23] A. Kapela and A. Pilosov, “Stealing the internet - a routed, wide-area,
man-in-the-middle attack,” in Defcon 16, Las Vegas, August 2008.

[24] R. Kuhn, K. Sriram, and D. Montgomery, “Border gateway protocol
security,” July 2007.

[25] R. Dhamija, J. Tygar, and M. Hearst, “Why phishing works,” in
Proceedings of the SIGCHI conference on Human Factors in computing
systems. ACM, 2006, p. 590.

[26] D. J. Bernstein, “DNSCurve: Usable security for DNS.” [Online].
Available: http://dsncurve.org

[27] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008. [Online]. Available: http:
//www.ietf.org/rfc/rfc5246.txt

[28] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture,” RFC 4251 (Proposed Standard), Internet Engineering Task
Force, Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4251.txt

[29] E. Felten, “Mozilla debates whether to trust chinese CA,”
February 2010. [Online]. Available: http://www.freedom-to-tinker.
com/blog/felten/mozilla-debates-whether-trust-chinese-ca

[30] J. Corbet, “China internet network information center accepted as a
mozilla root CA,” Linux Weekly News, February 2 2010. [Online].
Available: http://lwn.net/Articles/372264/

[31] P. Vixie, “What DNS is not,” Communications of the ACM, vol. 50,
no. 12, pp. 43–47, December 2009.

[32] M. S. Mimoso, “Kaminsky interview: DNSSEC addresses
cross organizational trust and security,” June 2009. [On-
line]. Available: http://searchsecurity.techtarget.com/news/interview/0,
289202,sid14 gci1360143,00.html

[33] T. Maly, “I have some opinions about the RWW facebook login hilarity,”
February 2010. [Online]. Available: http://quietbabylon.posterous.com/
i-have-some-opinions-about-the-rww-facebook-l

[34] J. Sobey, R. Biddle, P. C. van Oorschot, and A. S. Patrick, “Exploring
user reactions to new browser cues for extended validation certificates,”
in Proceedings of the 13th European Symposium on Research in Com-
puter Security. Springer, 2008, pp. 411–427.


