
Towards Network Awareness
Evan Hughes and Anil Somayaji – Carleton University

ABSTRACT

Network and system administrators need to analyse network traffic for maintenance, security,
and planning purposes. The volume of data on modern networks, however, make such analysis
extremely difficult using existing open source tools. In this paper we argue that administrators
need tools that will allow them to be more aware of the state of their networks, and we describe
our vision for tools that would support such ‘‘network awareness’’ by analysing and visualising
packet aggregations that are defined by both packet headers and payloads.

As a first step towards such tools, we have developed a library called qcap, a framework for
packet and stream reconstruction that allows applications to tap packets at all layers of the network
stack: from network, to transport, to the application layer. qcap is fast, able to process network data
at speeds of 120 megabytes per second on commodity hardware; it is easy to use, providing a
simple API that requires only a few lines of code to perform complex parsing tasks; and it is
extensible, using BNF-like grammars to describe TCP protocols. We believe that qcap can provide
the foundation for tools that will support greater network awareness for system administrators.

Introduction

The behaviour of computer networks is one of
the great unknowns of computer science. Most net-
work protocols are well known, the communicating
hosts act (in some sense) on the behalf of their human
masters, and network data are available at well known
points in the network; nevertheless, we still cannot eas-
ily answer the question ‘‘what is the network doing?’’
High volume network traffic conspires with our lack of
protocol reconstruction tools to obscure network con-
tent from us. Simple tasks require the construction of
specialised software tools [15] to look for known or
expected network events. Meanwhile, the flood of
expected traffic obscures unexpected [8, 31] and possi-
bly malicious traffic. The irony of this predicament
should not be ignored: computers are information pro-
cessors, and computer networks are designed to share
information, and yet we do not have the means to
understand the information processing that these
human-made constructs are performing on our behalf.

General curiosity is not the only reason why we
need to know what happens on computer networks as
there are more pragmatic reasons to care. Network
administrators need to fully understand the resources
they control. Data flowing across the network dictates
how the network should expand and be optimised; the
more resources administrators can draw upon to
understand the network, the more informed their deci-
sions will be. Administrators also need to know the
nature of network traffic for security reasons: when
utilisation changes, they must be able to understand
what has changed, and why. Further, other areas of
computer science would benefit from a better under-
standing of network phenomena. For example, proto-
col designers must understand the environment their
protocols are to inhabit. Additionally, network security

researchers and practitioners need to understand the
network and the effects of attacks.

The problem of analysing multiple high-band-
width data streams in an online, complex environment
exists in other contexts. For example, many
researchers have recognised that complex displays and
multiple alarm signals can reduce the ‘‘situational
awareness’’ of pilots and other operators of complex
equipment, making them more prone to errors [13].
Similarly, network administrators are distracted by
voluminous logs and detailed packet dumps, all of
which give important information, but none of which
can be relied upon to give the salient information for a
given situation. Members of the agent community
have recognised that in can be important for mobile
code to be aware of the state of available network
resources [9]; we believe, though, that such network
awareness is potentially even more important for
human administrators.

The importance of understanding network traffic
has been recognised by others. The U. S. Department
of Homeland Security rephrases our question into the
term situational awareness, which it defines as ‘‘the
ability to identify, process, and comprehend the critical
elements of information about what is happening to
the team with regards to the mission.’’ [22] The DHS
definition can be generalised to ‘‘knowing what is
going on around you.’’ [18] We use the term network
awareness to refer to situational awareness applied to
the area of computer networking, which we will define
as ‘‘knowing what is happening on the network.’’

Most tools for monitoring high-bandwidth net-
work connections analyse netflow records (such as
those described in the proceedings of VizSec 2004 [30,
22, 6, 24, 16]), concentrating on traffic source and des-
tination fields. Limiting enquiry to a subset of packet

19th Large Installation System Administration Conference (LISA ’05) 11 3

To w a r d s Network Awareness Hughes and Somayaji

headers makes sense for scalability reasons: at high
data rates, packet payloads cannot be processed in a
timely manner with commodity hardware. However,
discarding packet payloads limits the scope of informa-
tion available to administrators and researchers. With-
out the ability to analyze packet payloads, it is impossi-
ble to ascertain precise knowledge of the data crossing
the network. To truly understand what is happening on
a network, however, we need more than simple pay-
load information. We must be able to reconstruct IP
packets and TCP streams to provide our analysis tools
with the same information available to the hosts at the
endpoints of communications. We must then analyze
the reconstructed data in a manner that allows us to
detect what is happening in high level protocols, so
that we can assign ‘‘intent’’ to network events, accu-
rately saying why an event took place.

Thus, a tool that supports network awareness will
allow network packet headers and payloads to be ana-
lysed and aggregated efficiently using an easy-to-use,
responsive interface. As explained elsewhere, no such
tool currently exists in the open source world. As a first
step towards developing such a tool, we have designed
and implemented qcap, a library for efficiently recon-
structing network packets and streams, as well as
analysing application level protocols. In the future, we
plan to use qcap to develop user-friendly tools for
understanding network data. Although qcap is not fast
enough to analyze high-bandwidth data in real time, it
is efficient enough to enable fast interaction with multi-
gigabyte network captures using commodity hardware.

In our recent work on mitigating network denial
of service [5], we have been studying strategies for
automatically constructing packet aggregates. qcap
was inspired by the lack of tools for analysing network
content, and providing and explanation of network
events. Because of the general need for better under-
standing of network behaviour, however, qcap should
have a much wider appeal.

The rest of the paper proceeds as follows. In sub-
sequent sections, we refine and explore the concept of
network awareness; we provide an overview of exist-
ing tools that provide some degree of network aware-
ness; we explore the possibilities network awareness
offers us. We then present our work on qcap, a library
for network awareness. We conclude with a discussion
of limitations, challenges, and plans for future work.

Network Awareness

Network awareness is the ability to answer ques-
tions quickly and accurately about network behaviour.
It is a well-developed understanding of a particular
computer network that allows a system administrator
(for example) to easily explain its behaviour, allowing
the administrator to make rapid, well informed deci-
sions. Because of the vast amounts of data involved,
we cannot expect the administrator to be aware of

every passing bit, but we can expect them to under-
stand what classes of data to expect, the usual sources
and destinations for most traffic types, and the identi-
ties of the users involved. Under normal network con-
ditions, we expect that an administrator should be able
to make reasonable accurate predictions about the net-
work state in the near future. Under abnormal condi-
tions, the administrator should be able to quickly
quantify and describe the abnormality.

To help define the scope of network awareness,
we present a series of questions whose answers pro-
vide some improvement in network awareness. While
these questions are not comprehensive, they provide
an indication of the kinds of issues that we might wish
to understand but that are difficult to answer using
currently available tools.

• Who is using the network? Many different
entities use a network. We want to be able to
determine who uses the network, and how they
are using it. We are interested in different gran-
ularities of ‘‘user ’’: applications, hosts, people,
and other networks.

• How is a host using the network? We should
be able to determine the services a host is pro-
viding and utilising. Services may run on non-
standard ports, and may be tunnelled through
other protocols.

• How do different network events relate to
each other? Many network events occur as
part of a larger chain of events. We can use an
HTTP connection to illustrate: it begins with a
DNS request, followed by an ARP (requesting
the MAC address returned by the name server),
followed by a TCP/IP connection to the named
IP address. Finally, one or more HTTP requests
are made to the requested web server. All of
these events are causally related, and should be
grouped together. Conceptually, we could go so
far as to say that they are part of a single action.

• How do low level protocols behave while
being used by high level protocols? We should
be able to gauge how IP and TCP react to higher
level payloads, such as SMTP.

• What network traffic is encrypted? It is nor-
mal for TLS and ssh traffic to be encrypted;
other encrypted traffic on the network, how-
ever, could be evidence of attackers who are
trying to conceal their actions.

• What content is the network carrying? In
order to understand network use, some inkling
of user-level intent should be available. The
closest we can get to judging intent via the net-
work is by attempting to reconstruct the
human-level activities that the network is being
used for. As such, we need to be able to use
user-level concepts where necessary, such as
emails, print jobs, and uploads.

• What credentials are being used on the net-
work? Individual users may be associated with

11 4 19th Large Installation System Administration Conference (LISA ’05)

Hughes and Somayaji To w a r d s Network Awareness

multiple credentials. Where possible, we should
be able to associate credentials with users. In
environments where administrators have access to
the encryption keys of users, it should be possible
to decrypt passing traffic for further analysis.

• What is the TCP state of all existing TCP
streams? Stream state can be an indicator of
malicious activity: many new streams, unclosed
streams, or streams that are timing out may be
indicative of abnormal behaviour.

• What is the meaning of some bytes in a spe-
cific stream? Given the existence of signature-
based intrusion detection schemes [4], it may
be useful to put signatures into a context by
reconstructing the streams around the signature
match, to better understand the significance of
the region.

• What classes of interactions exist on the net-
work? Protocols can carry almost any type of
data. Interactions should not be classified solely
by the protocol(s) used, but by the content car-
ried. For example, when dealing with emails
that are being sent or received, it would make
sense for POP, IMAP, and SMTP to be grouped
together. However, some HTTP connections
also carry email: so it would make sense for
HTTP connections to web-based mail providers
(such as Hotmail, and Yahoo) to be placed in
the same class.

Note that these questions can only be answered
through analysis of complete packets (headers and pay-
loads), and that such analysis requires the aggregation
of packets using syntactic, semantic, and temporal cri-
teria. In particular, we will need to reconstruct packet
streams (e.g., TCP streams, UDP-based multimedia
traffic) in order to determine context and meaning.

While a detailed analysis of the current state of a
network can help answer specific questions, the com-
plexity of even small networks make such analysis
difficult to comprehend for even the most skilled
administrator. To accommodate this complexity, net-
work awareness requires one to understand how net-
work behaviour has changed over time. Because many
changes are benign, we wish to know what looks
anomalous about the current state relative to the past
state. While anomaly detection in general is a difficult
problem, the ability to classify packets more accu-
rately should facilitate the development of improved
network anomaly detection methods.

Existing Infrastructure

Although the questions described in the previous
section are straightforward, current tools provide only
limited support for answering these types of network
awareness questions. Most of the tools described
below were not designed as network awareness tools
but have been pressed into service because of a lack of
alternatives. Our tour of tools will start with libraries

and work up to full applications. Note that this list is
not intended to be exhaustive so much as illustrative:
it provides examples of classes of application, not
every application in each class.

The root of many existing packet capture tools is
the BSD Packet Filter [23], which defines an elegant
approach for winnowing packets based upon a textual
predicate. The predicate is compiled into instructions
for a tiny virtual machine, which can run in the packet
capture device driver within the kernel. The BPF
architecture has been widely accepted and incorpo-
rated into the libpcap [28] packet capture library.

In turn, libpcap and its parent application, tcp-
dump, have spawned a number of command-line based
open-source progeny, including tcpstat [19] and tcp-
trace [1], that are well suited to auditing and debug-
ging network traffic. In the more complex niches, we
find ChaosReader [17], a command-line based stream
reconstruction tool that is able to rebuild application
level streams and store them as files; Snort [4], a sig-
nature-based intrusion detection tool; and Ethereal [2],
a graphical packet display tool. These tools are
designed primarily as network debugging and intru-
sion detection systems. Other tools [11, 10, 20] are
useful for monitoring networked devices, diagnosing
faults, and other administrative tasks. While each of
these applications is well suited to locating known
events, they are not well suited to providing informa-
tion about the general state of the network.

The next level of abstraction to consider are net-
work awareness tools. These are explicitly designed to
provide network administrators with some sort of pic-
ture of the state of the network, usually for security
purposes. An entire crop of these tools were presented
at VizSec 2004 [22, 30, 6, 24], although older tools
exist as well [7]. In general, most of these tools are
graphical and use some variant of a two or three
dimensional display to render network activity. The
displays usually place network endpoints on two axes
and the volume of traffic traveling between those end-
points on the third axis. Most of these tools present
their output as a scatterplot [22, 6, 24], although dual
axes graphs were also used [30].

For the most part, the VizSec 2004 tools provide
statistical information on data traveling between
source and destination endpoints. The endpoints may
take the form of one or more networks, hosts, or ports.
The data may be presented in terms of packets, con-
nections, bytes, or some other volumetric measure-
ment. Although volumetric data gives some indication
of who is talking to whom, it does provide an indica-
tion of what is being said. Volumetric analysis does
not provide answers to the questions we listed. We
assert that volumetric analysis is insufficient to pro-
vide network awareness.

Forensic tools [3, 11] delve into the contents of
data streams. They provide reconstructions of data

19th Large Installation System Administration Conference (LISA ’05) 115

Towards Network Awareness Hughes and Somayaji

stream contents, often indexing it for searching, and
support retrieval of text deemed to be of interest to
users. They provide some idea of the classes of infor-
mation that can be detected with full packet analysis.
In particular, these tools can normalise network events
into conceptual events and display those conceptual
events grouped by type. For example, a listing of all
discrete ‘‘login’’ events for the network can be pre-
sented, indexed by the credential used, and the
resource acquired; as can all downloads (via HTTP,
FTP, or BitTorrent); message sends (via SMTP, IM,
SMS, or IRC); or file access (via SAMBA, NFS, or
DAV). They can also provide access to the payload of
application layer streams using an appropriate ren-
derer (such as reconstructing and playing the audio
portion of VoIP traffic).

While forensic tools might appear to be ideal
tools for network awareness, their list-oriented inter-
faces are biased towards answering specific (not gen-
eral) questions, provide little support for correlating
high-level semantics with low-level packet behaviour,
and offer few mechanisms for comparisons and anom-
aly detection. These limitations arise because these
tools are designed to help dissect the specifics sur-
rounding a particular incident rather than to help
detect patterns that are not known in advance.

Client

192.168.0.1

Server

10.0.1.1

Protocol State

HTTP

Request

Response

Delay

image/png
foo.png
200px by 100px

GET /images/foo.png
Keep−Alive: true

Response: 400 OK

POST /cgi−bin/form.php
name="fred", pass="999",...

Keep−Alive: true

Request

Figure 1: Display of protocol state relative to time from HTTP view.

Interestingly, Q1 Labs QRadar [21] already pro-
vides a sophisticated network awareness tool.
Although it provides many features that we are inter-
ested in and provides a mechanism to answer many of
the questions listed above, we still feel that qcap is
necessary. Although QRadar provides many features
for real-time network awareness, it does not appear to
provide sophisticated visualizations, a low-level API
for traffic analysis, or provide mechanisms for per-
forming automated analysis of stream content. These
are not flaws in the product, per se, but are indications
of Q1 Labs target market of security officers in large

corporations. In contrast, qcap is aimed at the broader
community of systems administrators and researchers
who need to develop automated systems and custom
visualization tools for studying network traffic.

The Promise of Network Awareness

To better understand the kind of applications we
envision for qcap, here we present several visualisa-
tion idioms that would provide network awareness by
quickly informing a network observer of the state of
the network. There are clearly a huge number of other
visualisation idioms, each well suited to some class of
information; thus, this list is illustrative, not exhaus-
tive. qcap provides the basic operations and abstrac-
tions that would be required to implement these visu-
alisations efficiently.

Protocol State vs. Time

The intent of protocol state versus time display is
to show how the state of two (or more) hosts change
over time. Figure 1 shows a sample protocol state rela-
tive to time.

Figure 1 is ordered chronologically from top to
bottom. Each side of the graph represents one of the
hosts involved in the conversation. The left side is the
initiator of the TCP connection, with IP address
192.168.0.1. The right side is the server 10.0.1.1; here
the term ‘‘server ’’ is used solely to denote that 10.0.1.1
was not the initiator of the connection. 192.168.0.1 is
responsible for the first two packets sent, indicated with
a right-pointing arrow angled down. Each arrow indi-
cates an IP packet sent from one host to another; the
height of the arrow indicates the amount of data the
packet is carrying.

The meaningful data carried from one host to
another causes the protocol to change states. Each
state is global to the protocol and shown as a coloured
rectangle. The rectangle encompasses all packets that

116 19th Large Installation System Administration Conference (LISA ’05)

Hughes and Somayaji Towards Network Awareness

are sent and received while the protocol is in the given
state. Each state is coloured according to type, to
allow the user to visually group the states.

Packets may carry information from multiple
states. In other words, a hypothetical packet may con-
tain three bytes, the first pushes the protocol into
State1, the second pushes the protocol into State2, and
the third pushes the protocol into State3. The arrow
representing the packet would be shown as passing
through State1, State2, and State3 in order.

Some of the packets exchanged on behalf of
lower level protocols are meaningless to higher level
protocols, so they are displayed in a different colour.
Such packets include the TCP ACKs in Illustration 1,
which are lightly greyed out, indicating that that do not
carry any useful information for this protocol layer.

The display is annotated with blocks of text to
the right and left of the state boxes. Each annotation
supplies extra information about the state. Information
supplied by a host is shown under that host. This
means that the client sent a GET, which the server
replied to with an image; later, the client sent a POST.

The protocol state at the top of the graph is
intended to function as a combo box, allowing the user
to select which level of the protocol stack they wish to
view. Illustration 1 would therefore offer a selection
between Ethernet, IP, TCP, or HTTP. If the interaction
were part of a larger SOAP conversation, the SOAP
view would be available as well.

This visualisation type is already provided by
some existing commercial tools [10, 20].

Time

Pa
ck

et
 V

ol
um

e

IPP

HTTP

SSH

Shoutcast

Figure 2: Display of traffic volume against time.

Volume vs. Time
Figure 2 shows a traffic frequency graph that

maps network activity to time. The x-axis is time, with
the right-most portion of the graph being the most
recent, and the leftmost being the oldest. The y-axis
represents some value that changes over time. Like the
host/aggregate vs. time graph, the traffic frequency
graph can display one of many different y types
(packet volume, traffic volume, average packet size,
percentages of some total, or some attribute of a

conversation that changes over time). The entities
graphed are ordered vertically from least to most and
named.

The graph is intended to be modal. The user
should be able to switch the aggregates being graphed
from protocols (shown) to hosts, groupings of hosts,
or any grouping of conversations. In addition, the user
should be able to drill down into a class of traffic, to
display on that with finer granularity divisions.

Aggregate State vs. Time

The state of a host can be viewed by watching its
actions change over time. Figure 3 displays permuta-
tions of the host/aggregate against time. Although any
variable could be displayed on the vertical axis, for
ease of explanation, we shall assume that the variable
being displayed is that of packet volume.

The graph is divided into five rows. Each row is
a different mode of display that provides a summary of
information about the entity on the left side of the row.
The entity is shown as a glyph (either a single host in
rows 1 to 4, or a subnet in row 5). Beside the glyph is
a listing of protocols the entity is using. To the right of
the protocol list, the state vs. time listing is shown.
The graph displays information about the network
against time. Note that all time-based graphs scroll
from right to left: the rightmost data is the most recent.

The first row shows an aggregation of values for
a host. The host, 192.168.1.2, is producing a volume
of data for three listed protocols (HTTP, POP, and
SSH). The graphs are summaries for all conversations
that the host is participating in. In other words, it may
be involved in many POP connections, but the value
shown is the total for all POP connections. As the ‘‘+’’
to the left of the protocol name suggests, there is a
hierarchical listing of information that the user may
gain access to by ‘‘opening’’ that protocol.

Since there are many ways of grouping aggre-
gated information together, rows 2 and 3 will illustrate
three possible forms of grouping. It is our intent that
the ‘‘+’’ beside the protocol name be a means of
cycling through the three possible views.

19th Large Installation System Administration Conference (LISA ’05) 117

Towards Network Awareness Hughes and Somayaji

Row 2 provides a brief textual description of the
state of each protocol the host is using. The descrip-
tions are protocol dependent. The third row features a
detailed summary of the HTTP traffic of 10.0.0.1. The
only two items available for HTTP are the total num-
ber of connections, as well as the total number of con-
nections to unique hosts. The values displayed depend
on the protocol being viewed: they could easily
include the number of web pages downloaded; the
average number of objects per web page; the hosts
currently connected to; or the user agent performing
the requests.

WAN

+HTTP

+SSH

+POP

192.168.1.2

−HTTP
20 Connections
12 Unique

10.0.0.1

+HTTP

+SSH

+POP

192.168/16 +Hosts

−HTTP

ResponseReqResponseReq
10.0.1.2

20.2.2.2

30.3.3.3

+HTTP

+SSH

+POP

2 Conversations, using RSA, 50KB/s

1 Conversation, Logged in as fred@nowhere.com

20 Conversations, 2 Authenticated, 1 page/5min

10.10.10.10

1

2

3

4

5

Figure 3: Display of aggregate state against time. Each row indicates the state of a specific entity.

The fourth row shows a breakdown of conversa-
tions that the host 10.0.1.2 is participating in. It is one
of the modes mentioned under ‘‘Row 3.’’

• The top line, labelled ‘‘HTTP,’’ shows a graph
of the total volume of traffic for the given pro-
tocol type; this total is the total for all of the
conversations listed underneath it.

• The second line shows a graph of the volume of
traffic for the conversation 10.0.1.2 is having
with 20.2.2.2.

• The third line shows the conversation that
10.0.1.2 is having with 30.3.3.3 as a listing of
protocol states. Each state is concisely named,
and tagged with a protocol-specific colour. If the
state is too thin to display a name, it will simply

be coloured. Because the rightmost side is the
‘‘ n e w e s t ’’ side, the states will be described in an
English-readable manner.

The fifth row shows a grouping of hosts on the
network 192.168.*.*. Like the per-host display, each
protocol is displayed as a graph. The protocol can be
opened to display either a textual summary or a listing
of all conversations it contains.

With the aid of a context menu, the user could
add or remove hosts from this aggregate.

Summary

The three visualisations described in this section
require features not present in known open source
libraries and tools. They include:

• Indexing provides fast access to network infor-
mation based upon queries, or walking dis-
plays. This allows the graphical display to be
recomputed quickly, by processing only those
packets that are relevant to the current visuali-
sation.

• Random access into packet traces must be
provided to allow the visualisation tool to prop-
erly exploit the features of indexing. Even if the
tool is designed to run online, it will have to
keep either a rolling buffer of recent data if any
kind of historic display is to be provided.

118 19th Large Installation System Administration Conference (LISA ’05)

Hughes and Somayaji Towards Network Awareness

‘‘Recent data’’ in this context can refer to pack-
ets or aggregates of traffic information that are
stored in memory.

• Task-specific internal models allow large data
sets to be aggregated, manipulated, and dis-
played quickly and efficiently. Such models
also provide the means to create very informa-
tive and expressive slaved visualisations [26].

• Access to network, transportation, and
application layer data is necessary to provide
a high level view of data.

More complete discussions of the basics of visualisa-
tion are available in [27, 26].

A Library for Network Awareness: qcap

The features listed in the Summary cover a wide
variety of computer science disciplines, from database
maintenance and access to visualisation techniques,
that have been thoroughly addressed elsewhere. How-
ever, one feature is currently missing from the pan-
theon of tools and libraries available: we have no tools
for the wholesale decomposition of large volumes of
packets in speeds approaching real-time. There are no
known APIs or libraries for reconstructing conversa-
tions from packet traces, and subsequently decompos-
ing those conversations into their logical parts.1 We
wish to gain access to the payload of packets to exam-
ine the relationships between application-layer payload,
individual packets, transportation layer interactions,
and network events. In order to do that, we need a
means of reconstructing application-layer streams that
preserves network layer information. The best means
that we can see to do that is to provide a processing
layer that sits on top of a BPF implementation and pro-
vide higher network reconstruction functionality.

We have created the qcap library to address these
needs. It is an open source library that uses an IP and
TCP reconstruction engine derived from libnids library,
which in turn was derived from a version of the Linux
2.0 networking stack [29]. It can translate individual
packets into complete conversations. Those conversa-
tions can be tapped at any point during reconstruction,
to allow the tool-user to fully understand the signifi-
cance of each packet. qcap provides:

• Packet parsing which allows an application to
query fields in a packet. For example, given a
domain name query packet, we would be able
to query for any of the fields in it: be they IP,
UDP, or DNS.

• Packet reconstruction rebuilds fragmented IP
packets. Different network stacks can recon-
struct corrupted or malicious fragmented packets
in different ways [25]. qcap provides a mecha-
nism to allow an application to control how frag-
mented packets are rebuilt, allowing qcap to
properly emulate different network stacks.

1libnids [29] performs stream reconstruction, but does not
provide packet or stream decomposition.

• Stream reconstruction creates stream
‘‘ o b j e c t s ’’ from a set of packets. The stream
objects allow the application to read a data-
stream that is identical to that on the receiving
end of the connection.

• Stream parsing provides a means for the appli-
cation to easily dissect a conversation. qcap
parses the stream text, allowing the application
to request specific syntactically defined por-
tions of that text.

Design of qcap
We use libpcap as a guide for our design. It is old,

well established, and still actively maintained. It
appears to be the most popular open source packet
acquisition library, used in numerous open source
projects [28, 19, 1, 4, 2, 29]. Its design is simple, offer-
ing a subscription interface to listen for packet arrival.

We provide two subscription interfaces, one for
packets, and one for portions of TCP streams. The
packet subscription function is qcap_packet_han-
dler_add(), which associates the callback with a spe-
cific stage of packet reconstruction or stream assem-
bly. Meanwhile, TCP streams can be subscribed to
with qcap_tcpstr_handler_add(), which causes a callback
to be triggered when a specified syntactic element in
an application-level stream is found.

To support these two functions, we have three
types of object: qcap_packet_t, qcap_tcpstr_t, and qcap_
tcpstr_pos_t.
Packets

Network level objects are instances of
qcap_packet_t’s . Because our network level provides
packet reconstruction for fragmented IP packets and an
indication of logical events each packet generates, we
add two flags to each packet: the artificial flag and the
discarded flag. The artificial flag is used to denote
defragmented IP packets, while the discarded flag is used
to denote packets that are known to have been dropped.

Our packet abstraction provides the following
information:

• Text is the data sent across the network layer. It
is used for reconstruction by higher layers.

• Arrival time when the packet was received at
the sampling point.

• Discarded is a flag that indicates whether or
not the packet has been dropped before final
delivery, either due to network state, or the
reconstruction policy of the recipient endpoint.

• Artificial is a flag that indicates if the packet
was constructed artificially from other packets.

• Constituents is a list of packets that this packet
was built out of. Only artificial packets have
constituents.

• Fragment is a flag indicating that this packet is
a part of another packet.

• Processing state is the stage of processing that
the packet is in. There are many stages, they are

19th Large Installation System Administration Conference (LISA ’05) 119

Towards Network Awareness Hughes and Somayaji

used to indicate how the destination network
stack is expected to treat the packet. Possibili-
ties include: if a packet was discarded due to
some logic error (such as a failed IP CRC
check), if the packet triggered the creation of a
new TCP connection, or if it is being queued
due to TCP ordering issues.
Each packet passes through many states as it is
processed. The application may subscribe to
packets entering any state.

TCP Streams

A TCP stream (or qcap_tcpstr_t) is an ordered
collection of qcap_packet_t’s, in proper TCP order.
qcap_tcpstr_t is an opaque data type, but can be queried
with stream positions (or qcap_tcpstr_pos_t).
TCP Stream Positions

Stream positions are positions at exact locations
within a stream. They are implemented as an opaque
data type that can be copied, walked forward in the
stream, and have the byte at their location queried.
Given two positions in the same stream, the applica-
tion can request all of the bytes between the positions.

Because the qcap_tcpstr_t type is opaque and only
queryable through qcap_tcpstr_pos_t types, it allows
qcap to perform reference counting and garbage col-
lection on individual packets within a qcap_tcpstr_t.
Analysing Fields in Packets

In addition to the callback interfaces described
above, qcap also provides a mechanism to query fields
from packets. In protocols that have primarily fixed-
length fields, such as IP, TCP, and UDP headers, query-
ing fields is trivial: it only requires byte-order conversion
and a cast to a native type. However, other protocols
such as DNS have arbitrary-length fields and non-stan-
dard data encoding, meaning that an application-writer
must write complex code to perform a simple task.

Field querying is done with the qcap_getter_t type.
A call to qcap_getter_compile() creates a ‘‘getter ’’ from a
string specification. Packets can be queried by calling
qcap_getter_apply(). The result is converted into a partic-
ular form, such as a string, or a boolean, and returned.

Implementation

qcap is written in C and is built on top of libpcap.
Although heavily modified and extended, parts of pcap
are also derived from libnids. At this stage, pcap does
not use any other utilities outside of the standard plat-
form libraries. As the bulk of the newly written code
deals with parsing stream-based protocols, we shall
discuss that code here.

One of the non-functional requirements surround-
ing qcap was that it must be easy to extend with new
protocols. Towards this end, qcap internally uses con-
text-free grammars that are generated from static C code.
As it turns out, however, many protocols cannot practi-
cally be defined solely with a context-free grammar, as

the protocol carries information about its own syntax.
Such information is carried in a field providing a
parameter, such as the length of a subsequent field, or
a field that provides a terminating delimiter for some
subsequent field.

For example, consider HTTP. Well formed HTTP
streams consist of requests (originating with the
client), and responses (originating with the server).
Both requests and responses can carry an optional
‘‘body’’ that can have an arbitrary length. The length
of the body is usually defined with a ‘‘Content-
Length’’ field that contains an integer indicating the
number of bytes in the body. We could express the
‘‘Content-Length’’ statically in the HTTP context-free
grammar, by enumerating every possible value of
‘‘Content-Length’’, and defining the length of the sub-
sequent body in the context-free grammar. However,
that would result in an extremely verbose grammar.

To avoid such large grammars, qcap implements a
series of protocol-specific registers for each parser. As
the parser is walking a stream, it places the value of
specific stream elements into the associated register,
which can be used later during the parse. Continuing
with our example from above, qcap would store
HTTP’s Content-Length field with a content_length reg-
ister in the stream parser. Upon encountering the Con-
tent-Length field, the parser would decode the associ-
ated value as an integer and store it in the content_length
register. Later, when the parser encounters the subse-
quent body, it will read exactly content_length characters.

While current grammars are built by hand, we are
researching mechanisms for automatically generating
the necessary static C code from protocol specifica-
tions in Augmented Backus-Naur Form (ABNF) [12].

Evaluation

In our opinion, the most interesting feature of
qcap is the analysis of application-layer protocols. We
believe that qcap will be most useful if it is able to per-
form application-layer analysis at speeds approaching
real-time.

We have developed two test applications to test
qcap’s speed:

• reader opens a trace and parses it, performing IP
defragmentation and TCP stream reconstruc-
tion. It provides no useful output and is used for
timing purposes.

• ip_identity opens a trace, and gathers credentials
sent from each IP address in the trace. Cur-
rently, ip_identity only parses FTP usernames
and passwords, SMTP senders, and HTTP
authorisation requests [14].

Both ip_identity and valid reconstruct all IP frag-
ments and TCP streams. qcap could be set to ignore
TCP/IP traffic going to ports that we aren’t interested
in, but these tests provide us with a stronger worst-
case idea of processing time.

120 19th Large Installation System Administration Conference (LISA ’05)

Hughes and Somayaji Towards Network Awareness

To test timing, we ran each program against the
Lincoln Laboratory DARPA Intrusion Detection Eval-
uation datasets [32]. The first five datasets are DIDE-1
to DIDE-5, which correspond to the Monday-Friday
traffic of the LBL week 1 traffic set, DIDE-6 to
DIDE-10 correspond to the data gathered during week
3. Each represents one day’s worth of traffic.

The tests were run on an unloaded 2.8 Ghz Pen-
tium 4 system with 1 GB of RAM, 512K of processor
cache, and two 36.4 Gb, 10,000 RPM SCSI drives. Each
test was run 1000 times, and the values were averaged.

In order to minimise the amount of time spent on
output, we ran tcpstat with an invalid BPF filter, ensur-
ing that it would not waste too much time writing data.
Since reader does not produce output, and ip_iden-
tity only produces brief output at the end of the trace,
we did not modify either application to reduce their
volume of output.

During our experiments, we discovered that qcap
analyses data at a rate of roughly 2.11 microseconds
per packet, as compared to tcpstat which analysed traf-
fic data at a rate of 0.694 microseconds per packet.
The difference in processing speed amounts to an
order of magnitude: however, as shown in Table 4,
processing times are still low: to process a 468 MB
trace file (DIDE-6) containing 2.1 million packets
with qcap only takes about 5.7 seconds.

Since ethereal seems to be the flagship open
source packet processing tool, we also timed how long
it took ethereal to open each packet trace. In our expe-
rience, this provides a ballpark figure on how long it
takes ethereal to perform a search. These tests were
performed a handful of times on the same machine
mentioned above, with the lowest timing result pro-
vided. As shown in Table 4, ethereal is between 3 and
20 times slower than qcap.

File Processing Time (seconds) Time Per Packet (microseconds)
Test Packets tcpstat ip_identity reader ethereal tcpstat ip_identity reader ethereal

DIDE-1 1,362,869 0.74 4.48 2.93 69 0.54 3.29 2.15 50.6
DIDE-2 1,157,328 0.68 4.35 2.65 60 0.58 3.76 2.29 51.8
DIDE-3 1,616,713 0.87 5.23 3.43 86 0.54 3.24 2.12 53.2
DIDE-4 1,807,060 1.07 6.32 4.09 94 0.59 3.50 2.26 52.0
DIDE-5 1,349,635 0.70 4.25 2.82 70 0.52 3.14 2.09 51.9
DIDE-6 2,106,744 1.12 5.67 3.94 109 0.53 2.69 1.87 51.7
DIDE-7 1,831,648 0.97 5.45 3.48 98 0.53 2.97 1.90 53.5
DIDE-8 1,849,753 1.13 6.97 4.35 113 0.61 3.77 2.35 61.1
DIDE-9 1,559,156 0.74 3.38 2.65 85 0.48 2.17 1.70 54.5
DIDE-10 1,635,425 1.01 6.67 3.93 101 0.62 4.08 2.40 61.8

Figure 4: Observed processing speeds of qcap compared to those of tcpstat.

In our judgment, the rates achieved by qcap are
acceptable: we can analyze a 1 GB trace in roughly 10
seconds. As we increase the number of protocols that
we are parsing and the complexity of the protocol
parsers, this execution time will increase; however, we
expect the parse time to stay within the same order of

magnitude. In addition, the current implementation of
qcap has not undergone any optimisation, suggesting
that we may be able to achieve speed improvements
with minimal effort.

Discussion

At this point, skeptical readers may be asking
themselves what is new about qcap: tools already exist
for analysing packet traces. Indeed, any of the infor-
mation we acquire with qcap can also be acquired by
using existing tools. For example, if a user wants to
parse all of the cookie headers out of an HTTP conver-
sation, they could use ngrep with a specially con-
structed regular expression. Or, if a user wanted to
find the contents of a TCP session, they could use
tcpflow to pull all of the TCP sessions out of a trace,
and then analyze them by hand or open them with
ethereal. And general connection statistics can be gath-
ered with much simpler tools, like tcpdump or tcptrace.
Alternatively, snort could be used for any of the afore-
mentioned tasks.

Those skeptical readers should realize that qcap
has been designed specifically for network awareness.
It is not designed to find individual packets in a net-
work trace, nor is it designed to find statistics on a
specific class of event. Instead it is designed to:

• Provide a standard interface to analyze traffic,
regardless of protocol.

• Perform full stream reconstruction, allowing
the application to parse strings that are split
across multiple TCP packets, without having to
be aware of the packet divisions. Applications
can, however, request the information to be
made available to them.

• Perform the drudge work of protocol syntax
analysis, allowing the application to concen-
trate on the meaning of the traffic.

• Provide a simple mechanism for collecting a
wide variety of data and statistics.

• Handle large volumes of data quickly.
To our knowledge, no other open-source library pro-
vides this functionality. We have not seen an open-
source tool that correlates large volumes of applica-
tion-level network data.

19th Large Installation System Administration Conference (LISA ’05) 121

Towards Network Awareness Hughes and Somayaji

Limitations

While we believe qcap is quite promising, it is
also a new library with many limitations. For example,
because qcap builds upon libpcap, we can, for the most
part, say that qcap shares a subset of libpcap’s limita-
tions. There are a number of other limitations, how-
ever, that are specific to pcap.

First, qcap is not suited to searching for known
strings in input text, either as a literal string, or a regu-
lar expression. Specialised tools, such as ngrep per-
form those tasks well. However, since qcap is a thin
wrapper around libpcapthere is no reason why such
tools could not be ported to use qcap.

Next, even though qcap’s protocol parsing capa-
bilities are well-developed, it does not deal with
lookahead. Lookahead means scanning further in the
stream of text being parsed to discover if any text in
the near future would prevent the current text from
being deemed valid.

A trivial example involves HTTP requests. A
valid HTTP request consists of the request-line, such
as a ‘‘GET <url> <protocol>’’. When qcap is parsing
the request-line, and it reaches the end of the url field,
it will inform the application that a url field has been
encountered and then continue parsing with the proto-
col field. If the protocol field turns out to be invalid
(because it contains the text ‘‘foo’’ instead of
‘‘HTTP/1.1,’’ for example), then the entire request-
line should be deemed invalid, meaning that qcap
should not of informed the application that an url was
discovered earlier.

The difficulty with lookahead is that it involves
reading data into memory before deciding if a chunk of
text is a part of a valid stream. If we need to perform
lookahead to the end of a large piece of data, we could
flood memory with data: consider an HTTP response
that contains a 50 MB file – the response headers can-
not be considered valid until the entire response is
received, but that means that qcap would have to read
the full 50 MB file into memory before deciding if it
should accept or reject the response headers. Instead,
we force the application developer to be aware of the
protocol structure, and watch for failed requests.

qcap, because of limitations in libnids, does not
currently support any kind of parameterisation to state
how streams should be rebuilt in circumstance not
defined by the IP and TCP RFCs. Such situations
include packets with invalid CRCs, overlapping pack-
ets, et cetera.

One potential issue for some applications is that
qcap currently has no mechanism for synchronizing
the two sides of a stream during parsing. Strictly
speaking, such synchronisation is necessary to ensure
that proper protocol state is maintained at all times.
However, in practice we have not yet found the lack of
synchronisation tracking to be a problem.

However, one of the features we feel will be nec-
essary for any offline analysis GUI tool built on top of
qcap is analysis of network traces larger than one giga-
byte. In order for such an analysis to be relatively fast,
and put a low load on the workstation, a minimum of
data should be kept in memory; suggesting that, where
possible, information about specific packets should be
kept on disk, and read as necessary. To speed up over-
all performance and searching, we assume that indices
would be built during the initial load.

In order for packet data to be left out of memory,
we need a means to provide random access to a static
trace file on disk – meaning that we should be able to
read packets from the file in an arbitrary order. How-
ever, libpcap does not support random access into trace
files, meaning that solely reading specific packets
from disk is not possible.

There are two possible approaches to this prob-
lem: either petitioning the libpcap maintainers to
include random-access to libpcap files; or building our
own file reading routines into qcap. Clearly, the first
option is preferable. At the time of writing, we are
engaged in petitioning the libpcap maintainers to
include this functionality.

Future Work
While internal parts of the library are still evolv-

ing, at the time of writing, the qcap API is almost com-
plete. The existing functions are unlikely to change for
the foreseeable future, even though new calls may be
added. Having said this, there are are some issues that
we hope to address in the near future.

First, there are currently no mechanisms for
decoding stream content. qcap should be able to
decode either an entire stream (such as ssh or SSL), or
portions of a stream (such as gzip-encoded HTML
responses), in a manner that is transparent to the appli-
cation. It should be possible for encoded regions to
contain semantic elements that are to be recognised by
stream parsers. Such additions would significantly
improve the utility of qcap.

We also plan to develop bindings to allow higher
level languages such as Python, Perl, and Java to
access qcap functionality. Such changes and additions
should help facilitate the development of novel net-
work awareness applications. The qcap distribution
contains sample programs that provide interesting
functionality not seen in other open source tools:
ip_identity trawls network traces for credentials; and
valid tests streams to see if they follow the protocol
semantics for the ports they are using. While such
tools can be useful, much larger scale applications are
also possible:

• a fast protocol debugger, along the lines of ethe-
real, but supported by a database back-end that
would provide fast searching and display.

• anomaly-detection tools that consider the val-
ues of individual fields in a protocol stream.

122 19th Large Installation System Administration Conference (LISA ’05)

Hughes and Somayaji Towards Network Awareness

• ‘‘leak’’ detection tools that sniff passing traffic
for sensitive content that should never leave
hosts.

• a fast classification tool that classifies streams
by their purpose, either in gross terms; such as
‘‘exchanging email’’ for SMTP, POP, IMAP,
Gmail, and Hotmail connections; or specific
terms, such as ‘‘instant messenger conversation
between Alice and Bob.’’

In the long term, optimisation and improvement
of qcap will allow it to process extremely high vol-
umes of data. Ideally, qcap will eventually be able to
handle data at rates approaching those seen by
medium-to-large ISPs and enterprises. When it does,
our definition of network awareness can grow from
today’s analysis of traffic volumes to and from hosts
to include content-specific and aggregate analysis that
will finally help us figure out what our networks are
actually doing.

Acknowledgements and Availability

This work was supported by the Canadian gov-
ernment through an NSERC Discovery Grant and
MITACS. The qcap library can be downloaded from
http://www.ccsl.carleton.ca/projects/qcap. It is licenced
under the GNU General Public License (GPL).

About the Authors

Evan Hughes graduated from Carleton Univer-
sity in Ottawa, Canada in 2000 with a BCS. Since then
he has worked for a number of start-up companies in
the software space; before retiring from the 9-5 world
to do good works contracting with charities. Given his
fondness for food and shelter, he quit contracting for
the penniless and has enrolled at Carleton University
for his MCS. He is currently doing research work in
the Carleton Computer Security Lab. Email reaches
him at evan.c.hughes@gmail.com .

Anil Somayaji is an assistant professor in the
School of Computer Science at Carleton University
and is associate director of the Carleton Computer
Security Laboratory. His research interests include
operating system security, intrusion detection, com-
plex adaptive systems, and artificial life. He received a
B.S. in Mathematics from the Massachusetts Insitute
of Technology in 1994 and a Ph.D. in Computer Sci-
ence from the University of New Mexico in 2002. He
can be reached at soma@ccsl.carleton.ca.

Bibliography

[1] tcptrace homepage, http://www.tcptrace.org ,
Accessed May 3, 2005.

[2] Ethereal homepage, http://www.ethereal.com ,
Accessed May 3, 2005.

[3] Netwitness homepage, http://www.netwitness.com ,
Accessed May 3, 2005.

[4] snort homepage, http://www.snort.org/ , Accessed:
May 3, 2005.

[5] Matrawy, Ashraf, Paul C. van Oorschot, Anil
Somayaji, ‘‘Mitigating network denial-of-service
through diversity-based traffic management,’’
Applied Cryptography and Network Security
(ACNS) 2005, pp. 104-121, 2005.

[6] Ball, Robert, Glenn A. Fink, and Chris North,
‘‘Home-centric visualization of network traffic
for security administration,’’ VizSEC/DMSEC
’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer secu-
rity, pp. 55-64, ACM Press, New York, NY,
2004.

[7] Becker, Richard A., Stephen G. Eick, and Allan
R. Wilks, ‘‘Visualizing network data,’’ IEEE
Transactions on Visualization and Computer
Graphics, Vol. 1, Num. 1, pp. 16-28, 1995.

[8] Bellovin, Steven M., ‘‘Packets found on an inter-
net,’’ SIGCOMM Comput. Commun. Rev., Vol.
23, Num. 3, pp. 26-31, 1993.

[9] Wilmer Caripe, et al., ‘‘Network awareness and
mobile agent systems,’’ IEEE Communications
Magazine, July, 1998.

[10] Clearsight, Clearsight analyzer homepage,
http://www.clearsightnet.com/products-ana-
lyzer.jsp , Accessed May 4, 2005.

[11] Colasoft, Colasoft capsa, http://www.colasoft.com/
products/capsa.php , Accessed May 3, 2005.

[12] Crocker, D. and P. Overell, ‘‘Augmented BNF
for Syntax Specifications: ABNF,’’ RFC 2234,
November, 1997.

[13] Endsley, Mica R. and Daniel J. Garland, editors,
Situation Awareness Analysis and Measurement,
Lawrence Erlbaum Associates, 2000.

[14] Franks, J., P. Hallam-Baker, J. Hostetler, S.
Lawrence, P. Leach, A. Luotonen, and L. Stewart,
‘‘ H T T P Authentication: Basic and Digest Access
Authentication,’’ RFC 2617, November, 1997.

[15] Gates, Carrie, Michael Collins, Michael Duggan,
Andrew Kompanek, and Mark Thomas, ‘‘More
netflow tools: For performance and security,’’
18th Large Installation System Administration
Conference (LISA ’04), pp. 121-132, Atlanta,
Georgia, November, 2004.

[16] Goldring, Tom, ‘‘Scatter (and other) plots for
visualizing user profiling data and network traf-
fic,’’ VizSEC/DMSEC ’04: Proceedings of the
2004 ACM workshop on Visualization and data
mining for computer security, pp. 119-123, ACM
Press, New York, NY, 2004.

[17] Gregg, Brendan, Chaosreader homepage, http://
users.tpg.com.au/bdgcvb/chaosreader.html ,
Accessed May 3, 2005.

[18] U. S. Coast Guard, Te a m coordination training stu-
dent guide, http://www.cgaux.info/g_ocx/training/
tct , Accessed May 4, 2004.

[19] Herman, Paul, tcpstat homepage, http://www.
frenchfries.net/paul/tcpstat/ , Accessed May 1,
2005.

19th Large Installation System Administration Conference (LISA ’05) 123

Towards Network Awareness Hughes and Somayaji

[20] Network Instruments, Observer homepage, http://
www.networkinstruments.com/products/observer.
html , Accessed May 4, 2005.

[21] Q1 Labs, Qradar product page, http://www.q1labs.
com/products/prod_overview.html , Accessed Sep-
tember 27, 2005.

[22] Lakkaraju, Kiran, William Yurcik, and Adam J.
Lee, ‘‘NVisionIP: netflow visualizations of sys-
tem state for security situational awareness,’’
VizSEC/DMSEC ’04: Proceedings of the 2004
ACM workshop on Visualization and data mining
for computer security, pages 65-72, ACM Press,
New York, NY, 2004.

[23] McCanne, Steven and Van Jacobson, ‘‘The BSD
packet filter: A new architecture for user-level
packet capture,’’ Proceedings of the 1993 Winter
USENIX Conference, pp. 259-270, 1993.

[24] McPherson, Jonathan, Kwan-Liu Ma, Paul Krys-
tosk, Tony Bartoletti, and Marvin Christensen,
‘‘Portvis: a tool for port-based detection of secu-
rity events,’’ VizSEC/DMSEC ’04: Proceedings
of the 2004 ACM workshop on Visualization and
data mining for computer security, pp. 73-81,
ACM Press, New York, NY, 2004.

[25] Ptacek, Thomas H., and Timothy N. Newsham,
Insertion, evasion, and denial of service: Eluding
network intrusion detection, Technical report,
Secure Networks, Inc., Suite 330, 1201 5th Street
S.W, Calgary, Alberta, Canada, T2R-0Y6, 1998.

[26] Roberts, Jonathan C., ‘‘Multiple-View and Multi-
form Visualization,’’ Robert Erbacher, Alex
Pang, Craig Wittenbrink, and Jonathan Roberts,
editors, Visual Data Exploration and Analysis
VII, Proceedings of SPIE, Vol. 3960, pp.
176-185, IS&T and SPIE, January, 2000.

[27] Shneiderman, Ben, ‘‘The eyes have it: A task by
data type taxonomy for information visualiza-
tions,’’ Technical Report UMCP-CSD CS-
TR-3665, University of Maryland Computer Sci-
ence Department, 1996.

[28] tcpdump workers, Tcpdump public repository,
http://www.tcpdump.org , Accessed September
27, 2005.

[29] Wojtczuk, Rafal, libnids homepage, http://libnids.
sourceforge.net/ , Accessed May 5, 2005.

[30] Yin, Xiaoxin, William Yurcik, Michael Treaster,
Yifan Li, and Kiran Lakkaraju, ‘‘Visflowconnect:
netflow visualizations of link relationships for
security situational awareness,’’ VizSEC/DMSEC
’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer secu-
rity, pp. 26-34, ACM Press, New York, NY,
USA, 2004.

[31] Zalewski, Michal,Museum of broken packets, http://
lcamtuf.coredump.cx/mobp/ , Accessed May 6,
2005; 2003.

[32] Zissman, Marc, DARPA Intrusion Detection
Evaluation Datasets, http://www.ll.mit.edu/IST/
ideval/data/1999/1999_data_index.html ,
Accessed September 27, 2005; 1999.

124 19th Large Installation System Administration Conference (LISA ’05)

