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Abstract. Responding to the PIN cracking attacks from Berkman and Ostrovsky (FC 2007), we outline a
simple solution called salted-PIN. A randomly generated salt value of adequate length (e.g. 128-bit) is stored on
a bank card in plaintext, and in an encrypted form at a verification facility under a bank-chosen salt key. Instead
of sending the regular user PIN, salted-PIN requires an ATM to generate a Transport Final PIN from a user
PIN, account number, and the salt value (stored on the bank card) through, e.g., a pseudo-random function.
We explore different attacks on this solution, and propose three variants of salted-PIN that can protect against
known attacks. Depending on the solution variation, attacks at a malicious intermediate switch now may only
reveal the Transport Final PIN; both the user PIN and salt value remain beyond the reach of an attacker’s switch.
Salted-PIN requires modifications to service points (e.g. ATM, point-of-sale), issuer/verification facilities, and
bank cards; however, changes to intermediate switches are not required.

1 Introduction

Attacks on financial PIN processing APIs revealing customers’ PINs have been known to banks and security re-
searchers for years, e.g., [10], [6], [8], [9], [7] (failure modes of ATM PIN encryption were first discussed in An-
derson [2]). Apparently the most efficient of these ‘PIN cracking’ attacks are due to Berkman and Ostrovsky [4].1

However, proposals to counter such attacks are almost non-existent in the literature, other than a few suggestions; for
example, maintaining the secrecy (and integrity) of some data elements related to PIN processing (that are considered
security insensitive according to current banking standards) such as the ‘decimalization table’ and ‘PIN Verification
Values (PVVs)/Offsets’ has been emphasized [8], [4]. However, implementing these suggestions requires modifica-
tions to all involved parties’ Hardware Security Modules (HSMs). Commercial solutions such as the PrivateServer

Switch-HSM [1] rely mostly on ‘tightly’ controlling the key uploading process to a switch and removing ‘unnecessary’
APIs or weak PIN block formats. Even if the flawed APIs are fixed, or non-essential attack APIs are removed to
prevent these attacks, it may be difficult in practice to ensure that all intermediate (third-party controlled) switches
are updated accordingly. Thus banks rely mainly on protection mechanisms provided within banking standards, and
policy-based solutions, e.g., mutual banking agreements to protect customer PINs.

A solution such as Mobile Password Authentication (MP-Auth) [13] is apparently capable of preventing these
attacks in addition to saving PINs from false ATM keypads and card reader attacks. However, MP-Auth relies
on public key operations, and thus cannot be deployed without significant modifications to ATMs, switches and
verification facilities. Another obvious solution (as suggested in [8], [4]) is to update the PIN processing APIs, which
also requires modifications to all involved parties’ Hardware Security Modules (HSMs).2 Even if the flawed APIs are
fixed, or non-essential attack APIs are removed (as in ARX PrivateServer HSM [1]) to prevent these attacks, it may
be difficult in practice to ensure that all intermediate (third-party controlled) switches are updated accordingly.

Designing solutions to mitigate PIN cracking attacks pose some interesting challenges. PIN transfers in banking
networks rely on symmetric key cryptography where the third-party controlled intermediate switches also possess
shared keys to decrypt encrypted PINs (although have no access to issuer/verification keys). Although decrypted
PINs (and the decryption key itself) are not (ideally) accessible from outside of an HSM, API flaws allow attackers
to realistically extract enough information from the HSM (through ‘legitimate’ API calls) that enable PIN cracking
attacks. Thus PIN cracking solutions must protect user PINs travel through third-party switches which may be less
security conscious or even actively malicious. Our solution attempts to address threats from such an adversary as

⋆ Version: April 29, 2008. Contact author: mmannan@scs.carleton.ca. A 5-page version of this manuscript has been accepted
as a short paper in Financial Cryptography and Data Security (FC) 2008.

1 We encourage readers unfamiliar with financial PIN processing APIs and PIN cracking attacks to consult Section 2 for
background, and Section 7 for a summary of attacks by Berkman and Ostrovsky [4].

2 For an overview of HSMs and related attacks, see Anderson et al. [3]
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well as hostile parties at a verification facility with limited access (e.g. one who can call API functions from an HSM,
but cannot access verification keys). However, we do not consider ATM frauds such as false keypads and card reader
attacks that are not scalable.

One primary reason that PIN cracking attacks are possible is that actual user PINs, although encrypted, travel
from ATMs to a verification facility through several (untrustworthy) intermediate switches. If, for example, hashed
PINs were sent in an encrypted form, attackers may not be able to reveal user PINs even in the presence of API flaws.
However, as PINs are generally short (4 digits), an offline dictionary attack may still easily allow recovery of actual
PINs. From reviewing the history of API attacks, we also note that even a complete overhauling of PIN processing
APIs may be subject to presently-unknown API flaws that might be exploited to reveal user PINs. Therefore we seek
a solution that precludes real user PINs being extracted at verification facilities, and especially at switches (which
are beyond the control of issuing banks), even in the presence of API flaws. One possible solution in this direction is
not to send the actual user PIN itself through untrusted intermediate nodes. Our proposal follows such a direction.

While PIN cracking attacks get more expensive as the PIN length increases, it is unrealistic to consider larger
(e.g. 12-digit) user PINs, for usability reasons.3 As part of our proposal, we assume that a unique random salt value
of sufficient length (e.g. 128 bits) is stored on a user’s bank card, and used along with the user’s regular four-digit PIN
(‘Final PIN’) to generate4 a larger (e.g. 12 digits) Transport Final PIN (TFP). This TFP is then encrypted and sent
through the intermediate switches. Thus we essentially expand the 4-digit PIN to 12 digits. We build our salted-PIN

solution on this simple idea. Our proposal requires updating bank cards (magnetic-stripe/chip card), service-points
(e.g. ATMs), and issuer/verification HSMs. However, our design goal is to avoid changing any intermediate switches,
or requiring intermediate switches be trusted or compliant to anything beyond existing banking standards.

Salted-PIN provides the following benefits.

1. It does not depend on policy-based assumptions, and limits existing PIN cracking attacks even where intermediate
switches are malicious.

2. It significantly increases the cost of launching known PIN cracking attacks; for example, the setup cost for the
translate-only attack for building a complete Encrypted PIN Block (EPB) table now requires more than a trillion
API calls in contrast to 10,000 calls as in Berkman and Ostrovsky [4].

3. Incorporating service-point specific information such as ‘card acceptor identification code’ and ‘card acceptor
name/location’ (as in ISO 8583) into variants of salted-PIN, we further restrict attacks to be limited to a
particular location/ATM.

Organization. Background on financial PIN processing is provided in Section 2. We outline the proposed salted-PIN
solution in Section 3. Known attacks against the basic version of salted-PIN are discussed in Section 4. In Section 5
we introduce three variants of salted-PIN to counter these attacks. Implementation challenges to salted-PIN are
briefly discussed in Section 6. In Section 7, we review several (representative) attacks as outlined by Berkman and
Ostrovsky [4]. Section 8 concludes.

2 Background

In this section, we provide a basic overview of PIN processing and PIN block formats. More background on banking
networks is discussed elsewhere (e.g. [10], [14]).

PIN Processing Architecture. When a user inputs her PIN at an ATM, the PIN is encrypted to form an Encrypted
PIN Block (EPB) using a transport key shared between the ATM and the next switch connected to the ATM. A
switch can be a stand-alone facility for PIN transportation (and other related bank network activities), or part of a
bank’s verification facility. PIN blocks are processed inside Hardware Security Modules (HSMs). Each switch shares
a transport key with other switches that it is connected to. At a verification center, a switch may also have the
issuer key (for PIN verification). A standardized set of PIN processing APIs is used for PIN creation, transportation,
and verification. The intent is that this allows banks to protect user PINs from application programmers (or anyone
having access to PIN processing APIs) at verification facilities as well as in switches.

There are several standardized PIN block formats (see below). An EPB may travel across several HSMs on its
way to a verification site. When transmitted from one HSM to another, re-formatting (i.e. translating from one PIN

3 A 12-digit PIN can be constructed by storing eight digits on the bank card while a user memorizes the other four digits as
usual. However, as the real PIN is sent encrypted in this solution, attackers at a malicious switch can recover the PIN and
create fake cards. (An anonymous FC 2008 referee pointed this solution and its relative advantages and disadvantages to us.)

4 For example, through a pseudo-random function (PRF).
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block format to another) may be required. Thus all HSMs must implement translation APIs to allow reformatting
of an EPB. A switch decrypts an EPB, checks the PIN block format (e.g. validity of PIN digits, PIN length),
changes the format if required, and re-encrypts the PIN block with the destination switch’s transport key. As all
PIN operations are performed by HSMs, an application programmer (ideally) cannot learn anything about PINs
transported as EPBs.

Encrypt PAN

PAN

PIN Key 

(issuer)

Decimalization 

     Table Decimalize the encrypted PAN

Natural PIN (4 leftmost digits)

EPB

PIN block 

  format Transport 

   Key

Decrypt EPB and extract

               Final PIN

Final PIN - Natural PIN

Offset

Fig. 1. Offset calculation (adapted from [14])

PIN Block Formats. We outline four PIN block formats from ISO 9564-1 [12], three of which are approved by
VISA for online transactions (e.g. through ATMs). Assume that a PIN is four decimal digits long. A PIN block
is composed of 16 hex digits, i.e., 64-bits. Let ‘P’ be a PIN digit (0 to 9), PAN the least significant 12 digits of a
customer’s Primary Account Number (excluding the check digit), and let ‘A’ be a PAN digit (0 to 9). An ISO-0 PIN
block is calculated as follows.

ISO-0 PIN Block = Original PIN Block ⊕ Formatted PAN

Here, Original PIN Block = 04 PPPP FFFF FFFF FF,

with ‘F’ denoting the hex digit F

Formatted PAN Block = 00 00AA AAAA AAAA AA

The leftmost zero in the original PIN block stands for ISO-0, and the digit 4 is the PIN length (which could be
as high as 12). An ISO-0 PIN block is the result of XORing an original PIN block with a formatted PAN. The ISO-1
PIN Block format is 14 PPPP RRRR RRRR RR, where ‘R’ is a random hex digit (0 to F). The ISO-2 PIN Block format
is 24 PPPP FFFF FFFF FF, which is used only when creating a card. An ISO-3 PIN block is calculated as follows.

ISO-3 PIN Block = Formatted PIN Block ⊕ Formatted PAN

Here, Formatted PIN Block = 34 PPPP RRRR RRRR RR,

with ‘R’ a hex digit from A to F

Formatted PAN Block = 00 00AA AAAA AAAA AA

In summary, ISO-2 is the weakest PIN format; it is not allowed for online processing, and it has not been used in
the PIN cracking attacks. ISO-0 and ISO-3 PIN blocks depend on a user PIN and account number. ISO-1 format is
not bound to a user’s account number, and is recommended to be used in situations where the PAN is unavailable.
Attacks exploiting translate-only APIs (see Section 7.1) depend on the fact that any ISO-0 and ISO-3 PIN formats
can be translated to the less secure ISO-1 format (as the ISO-1 format does not depend on the user PAN). Translation
APIs are also generally implemented by all HSMs.
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IBM Calculate-Offset API. IBM’s calculate-offset API outputs an offset using a PAN and EPB. If the calculated
offset value corresponds to the stored value for that PAN, then the PIN inside the EPB is verified. Offset values are
assumed by the banking standards to be security insensitive, and are generally stored in plaintext. Fig. 1 illustrates
how an offset value is calculated for PIN verification. Here, a Natural PIN is calculated from a customer’s PAN, and
the Final PIN is a customer-chosen PIN. Subtraction is digit by digit modulo 10. An issuer key (residing inside an
HSM) is used to encrypt a user’s PAN. The encrypted PAN may contain hex digits (A to F), and it is decimalized
using a decimalization table (mapping hex digits to decimal digits). The four left-most digits of the decimalized
encrypted PAN constitute the user’s Natural PIN. The Final PIN is extracted from the user’s PAN, EPB (containing
the user’s encrypted Final PIN), the PIN block format, and the transport key (residing inside the HSM). The offset
is calculated by subtracting the Natural PIN from the Final PIN.

VISA PIN Verification Value (PVV). Fig. 2 depicts how a VISA PIN Verification Value (PVV) is calculated.
PVVs are used in a similar fashion as IBM offset values, and also (generally) stored in a plaintext database. A
customer’s PVV may be written on her bank card as well (for offline PIN verification).
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PAN

PIN block 

  format

Transport 

   Key
Decrypt EPB and extract

      Final PIN (4 digits)

Transformed Security Parameter (TSP) = 

11 PAN digits || PIN Key Index || Final PIN

Encrypt TSP
PVV Key

  (issuer)

Extract 4 decimal digits

Fig. 2. PVV calculation (adapted from [14], || denotes concatenation)

3 Salted PIN

Here we present the salted-PIN proposal in its simplest form.

Threat model and notation. Our threat model assumes attackers have access to PIN processing APIs and
transaction data (e.g. Encrypted PIN Blocks, account number) at switches or verification centers, but do not have
direct access to keys inside an HSM, or modify HSMs in any way. Attackers can also create fake cards from information
extracted at switches or verification centers and use those cards (perhaps through outsider accomplices). We primarily
consider large scale attacks such as those that can extract millions of PINs in an hour [4]. We do not address attacks
that are not scalable, such as card skimming, attacks on EMV5 PIN entry devices [11], or cases where an accomplice
steals a card and calls an insider at a switch or verification center for an appropriate PIN. PIN cracking attacks that
we consider are successful only when online PIN verification is applied (i.e. encrypted PINs are sent to a verification
center for approval). In addition to magnetic-stripe cards, these attacks are also valid for chip/EMV cards except when
offline/on-chip PIN verification is used (assuming card issuers allow EMV cards to fallback to magstripe processing
for backward compatibility or chip failure). The following notation is used:

5 EMV is a growing standard for chip-based bank cards, initially developed by Europay, MasterCard, and VISA; see
http://www.emvco.com.
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PAN User’s Primary Account Number (generally 14 or 16-digit).
PIN User’s Final PIN (e.g. 4-digit, issued by the bank or chosen by the user).
PINt User’s Transport Final PIN (TFP).
Salt Long-term secret value shared between the user card and issuing bank.
fK(·) A cryptographically secure Pseudo-Random Function (PRF).6 Here K is the PRF key.

3.1 Generating Salted-PINs

A randomly generated salt value of adequate length (e.g. 128 bits, to make dictionary attacks infeasible) is selected
by a bank for each customer. The salt is stored on a bank card (chip-card or magstripe) in plaintext, and in an
encrypted form at a verification facility under a bank-chosen salt key. API programmers (i.e. those who use HSM
API) have access to this encrypted salt (but do not know the salt key or plaintext salt values). Encrypted salt values
also cannot be overwritten by API programmers. A user inputs her PIN at an ATM, and the ATM reads the plaintext
salt value from the user’s bank card and generates a Transport Final PIN (TFP) as follows.

PINt = fSalt(PAN, PIN) (3.1)

The PRF output is interpreted as a number and divided by 1012; the 12-digit remainder (i.e. PRF output modulo
1012) is chosen as PINt and treated as the Final PIN from the user. Note that the maximum allowed PIN length by
ISO standards is 12. The ATM encrypts PINt with the transport key shared with the adjacent switch, and forms an
Encrypted PIN Block (EPB). An intermediate switch decrypts an EPB, (optionally) reformats the PIN block, and
re-encrypts using the next switch’s transport key. Additional functionalities are not required from these switches.

To set the initial offset or PIN verification value (PVV), an issuer generates a random PIN (e.g. 4 digits long)
and salt for a user, and then uses equation (3.1) to generate PINt. The transport key of the verification HSM is
used to encrypt PINt and form an EPB. This EPB is used to call a calculate offset/PVV function with the user’s
PAN and encrypted salt to generate the initial offset/PVV (note that each of these values is now 12 digits long).
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Fig. 3. Salted-PIN verification for the IBM offset method

6 For example, as used in PwdHash [15].
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3.2 Offset/PVV Verification with Salted-PIN

The salted-PIN verification for the IBM offset method (recall Section 2) is shown in Fig. 3. The Natural PIN is
calculated from a PAN using an issuer’s PIN key. The encrypted salt value corresponding to the PAN is decrypted
using a salt key (like the PIN key and transport key, the salt key also resides inside an HSM). The Transport Natural
PIN is generated from the Natural PIN using equation (3.1). The Transport Final PIN is extracted from an EPB,
and the Transport Natural PIN is subtracted from it (digit by digit modulo 10 subtraction) to get the offset. This
calculated offset value is compared with the corresponding PAN’s stored (e.g. in a database) offset value. The salted-
PIN verification for VISA PVV is shown in Fig. 4. The salt value is appended at the end of the Transformed Security
Parameter (TSP), which is encrypted and decimalized to calculate the PVV. Note that we design the offset/PVV
verification functions to keep them similar to the existing functions although these can be further simplified; for
example, instead of storing offset/PVV values, EPBs directly may be stored and compared with incoming EPBs.
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Fig. 4. Salted-PIN verification for VISA PVV

3.3 Salted-PIN Protection against PIN Cracking Attacks

We discuss attacks (e.g. translate-only [4]) that reveal a user’s TFP in Section 4. An attacker with write-access to
the PVV database at a verification facility can choose any PIN for a specific account (see Section 7.3). With the
salted-PIN solution, an attacker can still choose any PIN to pack in an EPB and write the resulting PVV to a
database. However, without knowing the salt value, overwriting a user’s PVV does not help in an attack for the
following reason. The salted-PIN verification function for PVV (Fig. 4) ensures use of the encrypted salt value as
indexed by a user’s PAN; thus for a successful PVV verification, a user’s salt must be known or the encrypted salt
value must be replaced.

4 Attacks on Salted-PIN

We now discuss attacks against the basic version of salted-PIN.

4.1 Enumerating EPBs through Translate-only Attacks

Here the goal of an attacker is to create a table of EPBs, and then crack all or a subset of user accounts. The following
attacks in part follows an efficient variant of the translate attack as outlined by Berkman and Ostrovsky [4]. For
these attacks, we assume an attacker Mi is an insider (e.g. application programmer) at a switch or verification center,
and an outsider accomplice Ma who helps Mi in carrying out user input at an ATM. These attacks are possible for
the following reason. Although a TFP is calculated from a long (e.g. 128 bits, sufficient to deter dictionary attacks)
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salt value, only 12 digits of the PRF output are used. Thus an attacker only requires any pair of salt and PIN
combination that can generate a targeted account’s TFP instead of finding the actual salt/PIN values.

Targeting all accounts. Assume that Mi extracts the salt value (Salta) and PAN from a card he possesses, and
uses equation (3.1) to generate the 12-digit TFP PINat (through software or a hardware device, using any PIN
PINa). Let PINat consist of p1p2p3 . . . p12 where each pi (i = 1 to 12) is a valid PIN digit. Then Ma inserts this
card to an ATM, and enters PINa. Assume that the generated PINat is encrypted by the ATM to form an EPB,
E1. Mi captures E1 at a switch. If E1 is not in the ISO-1 format, Mi translates it into ISO-1 (to disconnect E1 from
the associated PAN). Let the translated (if needed) E1 in the ISO-1 format be E′

1. E′

1 is then translated from ISO-1
to ISO-0 using p3p4 . . . p1200 as the input PAN. This special PAN is chosen so that the XOR of PIN positions 3 to
12 with PAN positions 1 to 10 removes p3 . . . p12 when the translation API is called; i.e.,

PIN block inside E′

1 = 0 C p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 F F
Input PAN = 0 0 0 0 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 0 0

Resulting ISO-0 PIN block = 0 C p1 p2 0 0 0 0 0 0 0 0 0 0 F F

Assume the resulting EPB is Ep1p2
which is the same as the one containing a TFP p1p20000000000 with PAN 0.

Now we can create all EPBs containing every 12 digit TFPs starting with p1p2 from Ep1p2
. For example, an EPB

with p1p2q3q4 . . . q12 as the TFP can be generated through transforming Ep1p2
using PAN q3q4 . . . q1200 (in ISO-0).

Thus we can create all 1010 EPBs with TFPs from p1p20 . . . 0 to p1p29 . . . 9.
Starting from a different p1p2, all 1012 EPBs containing every 12 digit TFP can be generated as follows. Ma

uses the previous bank card (i.e. the same salt and PAN) with different PINs (obviously, including wrong PINs)
to calculate TFPs using software or a special device. When a TFP is found with the first two digits different than
p1p2, the corresponding PIN is entered at an ATM. The attacker Mi at the switch then generates another set of
1010 EPBs containing TFPs starting with this different p1p2. The attack continues with different PINs until all
100 possible values of the initial two TFP digits are covered. Thus using these 100 EPBs containing TFPs starting
with the different first two digits (i.e. from 00 to 99), Mi can create a table of EPBs for all possible TFPs (with
corresponding PINs). The cost of building this table is slightly over 1012 API calls (for each 100 Ep1p2

, at most two
API calls are required). The cost of selecting the initial EPBs (i.e. that contain TFPs with two different starting
digits) is insignificant as Ma can calculate TFPs offline, i.e., without involving any API calls to HSMs.

To launch an attack, a valid EPB of a target customer is collected. The EPB is translated to ISO-1 (to decouple
it from the target account, if not already in ISO-1), then to ISO-0 with PAN 0. The resulting EPB is then located
on the EPB table (as created in the setup phase). The corresponding PIN from the table can now be used to exploit
a card generated with the target’s PAN, and the attacker’s salt value (i.e. Salta). The cost of this attack is at most
two API calls and a search of O(1012), i.e., O(240).

In summary, the setup cost of this attack is about 1012 API calls with a per account cost of two API calls plus
a search of O(1012). The same translate-only attack by Berkman and Ostrovsky [4] on the current implementation
of PIN processing requires only about 10,000 API calls as setup cost, and a per account cost of two API calls plus a
search of O(103).

Algorithm 1 Steps in the partial table attack

1: for i = 0 to 106 − 1 do

2: Ec0 = TranslateISO−0(Ec, i × 100)
3: if Ec0 is in the table then

4: TFP in Ec = 106 × (six digit TFP from the table) + i

5: Salt and PIN values corresponding to Ec is used to generate a fake card
6: exit
7: end if

8: end for

Trade-off between table size and per EPB attack cost. The per account cost of the above attack is not high
enough to deter an attack. However, the setup cost of building the table with all one trillion EPBs is apparently
significant (although this is a one-time cost). By reducing the table size, the attack can be launched with fewer API
calls although the per EPB attack cost increases accordingly.

Assume that the attacker builds a table of 106 EPBs (i.e. one half of the original table size) containing TFPs
ending with six zeros (000000), i.e., storing only the first six digits of a TFP. With this table, an attacker can calculate
TFP of any target EPB Ec in 106 steps (assuming the EPB arrives in ISO-1 format, or the attacker translates it
into ISO-1); each step then requires one API call. The attack is described in Algorithm 1.
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Now the cost of attacking N accounts is 106 + N × 106 API calls. The attacker can also vary the table size and
the number of steps for each target account. For any table size 10n for n ∈ {2, 3, . . . , 12}, the required number of per
account translate steps is 1012−n. Thus in general the cost of attacking N account is 10n + N × 1012−n.

4.2 Replay Attack

In this attack, an adversary Mi at a switch or verification center collects a valid EPB Ec for a target PAN Ac, and
then creates a fake card with the account number Ac (and any salt value). Note that Mi here does not know the
actual salt value or PIN for the target account. An accomplice Ma uses the fake card with any PIN at an ATM,
and the ATM generates a false EPB Ea. At the switch/verification center Mi locates Ea in transfer, and replaces Ea

with the previously collected correct EPB Ec. Thus the fake card will be verified by the target bank, and Ma can
access the victim’s account.

Note that this attack works against the basic variant of salted-PIN as well as current PIN implementations without
requiring any API calls. Although quite intuitive, this attack has not been discussed elsewhere to our knowledge.

5 Variants of Salted-PIN

As we discussed in Section 4, the basic version of salted-PIN is vulnerable to several attacks. Other than the replay
attack, the setup cost of launching these attacks is not trivial as previous PIN cracking attacks (cf. [4]) although
the per account attack cost is apparently manageable. In this section, we outline three variants of salted-PIN to
practically restrict these attacks by increasing the per account attack cost.

Service-point specific salted-PIN. If a fake bank card is created for a target account (e.g. through the attacks
in Section 4), the card can be used from anywhere as long as it remains valid (i.e. the issuing bank does not cancel
it). To restrict such attacks, we modify equation (3.1) as follows.

PINt = fSalt(PAN, PIN, spsi) (5.1)

Here spsi stands for service-point specific information such as a ‘card acceptor identification code’ and ‘card acceptor
name/location’ as in ISO 8583 (Data Elements fields). The verification center must receive spsi as used in equation
(5.1). Although any PIN cracking attack (Section 4.1) can be used to learn a TFP or build a full/partial EPB table,
the table is valid only for the particular values of spsi. Also, the replay attack (Section 4.2) may succeed only when
the accomplice exploits a compromised card from a particular ATM. Thus this construct generates a localized TFP
for each PIN verification, and thereby restricts the fake card to be used only from a particular location/ATM. Note
that for this variant, the verification facility cannot use PVV or Offset values, because they would be different for
each ATM. Another verification value would need to be designed.

Salted-PIN with double EPBs. ISO PIN block formats restrict PIN length to 12 digits in an EPB. This length
limit enables a search of O(240) in a pre-built table (see in Section 4.1). As a variant, instead of choosing 12 digits
from the result of equation (3.1), we can take 24 digits (i.e. PRF output modulo 1024) and create two PINt blocks,
each 12 digits long. As a result, two EPBs must be sent from an ATM, and a verification facility needs both EPBs to
verify a user’s PIN. However, intermediate switches may not need to be aware of this. An attack similar to Section 4.1
can be launched on each EPB separately, and two tables can be built for both parts of a 24-digit TFP; the cost
of building the table simply doubles (two TFP tables, each has 1012 entries). Using the tables, a 24-digit TFP can
be extracted from the two EPBs of any target account. However, determining a valid pair of salt value and PIN is
not straightforward as the attack in Section 4.1. To generate a fake card (i.e. to find an appropriate salt value and
PIN for the intended TFP) for this variant of salted-PIN, attackers must apparently carry out a computation of
1024 (i.e. O(280)) steps. However, this variant is vulnerable to the replay attack (Section 4.2) when equation (3.1)
is used. Again, service-point specific information as used in equation (5.1) for generating TFP can practically limit
such attacks.

End-to-end PIN encryption/MAC. Using the stored salt as an encryption key, end-to-end PIN encryption can
be achieved between an ATM and verification center. The salt value can also be used for calculating a message
authentication code (MAC) for a user’s Final PIN. This variant can secure PIN transportation to the extent of the
algorithm used for encryption or MAC. Thus it can effectively eliminate PIN enumeration by an attacker at a switch
or verification center. However, to restrict the replay attack (Section 4.2), one or more service-point specific items
must be used with a PIN for encryption or MAC.
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6 Implementation Challenges

One implementation challenge for salted-PIN could be the storage requirement for the salt (39 decimal digits or 128
bits) that must be stored on a bank card. There are four possible scenarios: (1) magnetic-stripe (magstripe) cards;
(2) chip-card with a magnetic stripe at a magstripe reader terminal; (3) chip-card with online PIN verification; and
(4) chip-card with offline PIN verification. For the last case, as a PIN does not leave the card, PIN cracking attacks
are immaterial. For the first two cases, the amount of data that can be stored on a magnetic stripe is limited by ISO
standards; for example, according to ISO-7811, track one in a magstripe bank card holds 79 six-bit characters (plus
a parity check), and track two holds 40 four-bit (plus a parity) characters. These two tracks are generally present in
most magstripe bank cards (there is also a third track on some cards). A salt may be stored on a magstripe card
by overloading non-essential data fields in track one (e.g. discretionary data, name, expiration date), and redundant
fields in track two (e.g. PAN). Chip-cards offer significantly more storage capability, and thus for the third case,
accommodating the salt may not be an issue.

Salted-PIN requires that service points (e.g. ATMs, point-of-sale terminals) are capable of computing PRF as in
equation (3.1). Thus another implementation challenge is posed by the limited computing ability of old magstripe
reader terminals with limited CPU capabilities and cryptographic support of only a DES chip; recent terminals (e.g.
Motorola’s PD4750) generally operate on a 32-bit processor, and computing a PRF is not a computational issue.

7 Review of Earlier PIN Cracking Attacks

For convenience to the reader and for reference within, here we summarize several representative attacks from
Berkman and Ostrovsky [4]. For reasons of brevity, we omit how some specific assumptions required by these attacks
are met, as well as any efficiency analysis of these attacks (e.g. how many API calls are required for a given attack
to succeed).

7.1 Translate PIN Block Attacks

We now review the translate-only API attack which requires an attacker to generate/collect Encrypted PIN Blocks
(EPBs) of all possible PINs, and access to the translate API function. This attack reveals plaintext PINs, and can
be applied at a switch or verification facility. The steps in the attack are as follows.

1. Let Ax be any attacker chosen PAN.
2. Attackers collect/generate 10, 000 EPBs which pack all possible PINs in any ISO format (i.e. the format and

PAN of those EPBs are immaterial). Suppose i is any 4-digit PIN, and E′

i packs i in any ISO format.
3. Translate all 10, 000 EPBs to ISO-0 EPBs using Ax as the PAN. Assume Ei is the resulting EPB from the

translation API.

Ei = TranslateISO−0(E
′

i, Ax), where i ∈ {0000 . . .9999}.

Now Ei packs PIN i in the ISO-0 format (with respect to Ax). Make a table with the resulting EPBs and PINs,
i.e., (Ei, i).

4. For any customer EPB, Ec, calculate

Et = TranslateISO−0(TranslateISO−1(Ec), Ax).

Here, an attacker first converts the customer EPB to ISO-1 (which unlinks a PIN with the corresponding customer
PAN), and then uses this result with the attacker’s chosen PAN to generate an EPB in ISO-0 format.

5. Locate Et in the table generated at step 3. The corresponding PIN is the PIN packed inside Ec.

7.2 Attacks Exploiting the IBM Calculate-Offset API

The steps in the IBM Calculate-Offset attack at a verification facility and intermediate switch are now outlined.

Calculate-Offset Attacks at a Verification Facility. Here the attacker is someone at a verification facility, e.g.,
an application developer. The steps in the attack are as follows.

1. Generate an EPB Ea that packs a known Final PIN PFa.



10

2. For any customer account, Ac, calculate:

offset = CalculateOffset(Ea, Ac).

If the customer’s Natural PIN is PNc, then offset = PFa−PNc. Here ‘−’ is digit by digit modulo 10 subtraction;
offset and PFa are known to the attacker. Thus the attacker learns the customer’s Natural PIN. If the attacker
can read the plaintext offset value of the customer, then the customer’s Final PIN is revealed.

Calculate-Offset Attack at a Switch. The steps of a calculate-offset attack at a switch are as follows.

1. Generate an EPB Ea that packs a known Final PIN PFa.
2. Select any (random) PAN Ax.
3. Assume that attackers do not have access to the real issuer key at a switch. However, they can calculate a dummy

offset using a dummy issuer key (i.e. whatever issuer key is available in the switch’s HSM):

offsetd1 = CalculateOffset(Ea, Ax)

i.e., offsetd1 = PFa − PNxd. Here PNxd is the dummy Natural PIN with respect to the account Ax. So now
PNxd can be calculated as both PFa and offsetd1 are known.

4. For any customer EPB Ec which packs the customer’s Final PIN PFc, calculate:

offsetd2 = CalculateOffset(Ec, Ax)

i.e., offsetd2
= PFc − PNxd. The value of PNxd is known from the previous step, thus revealing the customer’s

Final PIN.

7.3 Attacks Exploiting the VISA PIN Verification Value (PVV)

The steps in the VISA PVV attack at a verification facility and intermediate switch are outlined below.

PVV Attacks at a Verification Facility. Attackers need an EPB with a known PIN, and may need write access
to the issuer’s PVV database. Again, like offset values, PVVs are considered security insensitive. The attack is as
follows.

1. Generate an EPB Ea which packs a known Final PIN PFa.
2. For any customer PAN Ac,

pvv = CalculatePVV(Ea, Ac).

3. Use the calculated PVV with known PIN to create new bank cards (this may also require updating the PVV
database at the verification facility).

PVV Attacks at a Switch. Using 10,000 EPBs which pack all possible PINs, attackers can reveal candidate PINs
(less than two, on average) for any customer as follows. Note that the attack HSM here does not have access to the
real issuer PVV key; the attack succeeds if any PVV key is available.

1. Choose any PAN Ax.
2. Generate EPBs for all possible PINs; assume Ei packs PIN i, where i ∈ {0000 . . .9999}.
3. For all EPBs generated in step 2, calculate PVVs with respect to Ax:

pvvi = CalculatePVV(Ei, Ax).

Now sort the values of pvvi and build a table of entries (pvvi, i). More than one (on average less than two) PINs
may be indexed by a given PVV.

4. For any customer EPB Ec, compute

pvv = CalculatePVV(Ec, Ax).

Use the resulting PVV as an index to the table built in step 3. The corresponding PIN is the customer’s Final
PIN PFc; in case of multiple PIN values indexed by pvv, PFc is one of those values; building the table using a
different Ax may resolve collisions.
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8 Conclusion

In the 30-year history of financial PIN processing APIs, several flaws have been uncovered. In this paper, we summarize
some API attacks from Berkman and Ostrovsky [4] for context, and introduce a salted-PIN proposal and three of
its variants to counter these attacks. Our preliminary analysis in this paper indicates that salted-PIN can provide
a higher barrier to these attacks in practice by making them considerably more expensive (computationally). We
have discussed some deployment issues, but acknowledge that this discussion is not exhaustive; deployment barriers
may arise from unseen aspects. Salted-PIN is motivated primarily by the realistic scenario in which an adversary
may control switches, and use any standard API functions to reveal a user’s PIN; i.e., an attacker has the ability to
perform malicious API calls to HSMs, but cannot otherwise modify an HSM.

Our proposal of salted-PIN is intended to stimulate further research and solicit feedback from the banking
community regarding: (1) whether salted-PIN may improve PIN security in real terms; (2) practical barriers of
deploying salted-PIN; and (3) any significant weaknesses of salted-PIN. We focus on providing a technical solution to
update PIN processing APIs, some of which are well-known to be flawed. Instead of relying, perhaps unrealistically,
on honest intermediate parties (who diligently comply with mutual banking agreements), we strongly encourage the
banking community to invest effort in designing protocols that do not rely on such assumptions which end-users
(among others) have no way of verifying. It has been speculated [4] that PIN cracking attacks may explain numerous
unexplained ‘phantom’ withdrawals [5] as reported by many ATM fraud victims.
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