
The Developer is the Enemy

Glenn Wurster
Carleton Computer Security Lab

School of Computer Science
Carleton University, Canada

gwurster@scs.carleton.ca

P. C. van Oorschot
Carleton Computer Security Lab

School of Computer Science
Carleton University, Canada

paulv@scs.carleton.ca

ABSTRACT

We argue that application developers, while often viewed as
allies in the effort to create software with fewer security vul-
nerabilities, are not reliable allies. They have varying skill
sets which often do not include security. Moreover, we argue
that it is inefficient and unrealistic to expect to be able to
successfully teach all of the world’s population of software
developers to be security experts. We suggest more effi-
cient and effective alternatives, focusing on those develop-
ers who produce core functionality used by other developers
(e.g. those who develop popular APIs – Application Pro-
gramming Interfaces). We discuss the benefits of designing
APIs which can be easily used in a secure fashion to encour-
age security. We also introduce two straw-man proposals
which integrate security into the work-flow of an application
developer. Data tagging and unsuppressible warnings pro-
vide the basis for further work where the most natural use
(path of least resistance) results in secure code. We believe
there are benefits to co-opting developers into programming
securely.

Categories and Subject Descriptors

D.4.6 [Software]: Security and Protection; D.2.3 [Software]:
Coding Tools and Techniques; D.2.6 [Software]: Program-
ming Environments

General Terms

Human Factors, Security

Keywords

software developers, human factors, software security, us-
ability, education, development tools, persuasion

1. INTRODUCTION AND OVERVIEW
According to Adams et al. [1], many security policies are

enforced on a need-to-know basis. This need-to-know men-
tality seems historically to have been based on the idea that

c©ACM, 2008. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the New Security
Paradigms Workshop 2008.
NSPW’08, September 22–25, 2008, Lake Tahoe, California, USA.
Copyright 2008 ACM 978-1-60558-341-9/08/09 ...$5.00.

increased knowledge of security mechanisms and threats in-
creases the potential for information leaks. The authors
argue that this need-to-know mentality results in a situa-
tion where users are less motivated to work securely. In a
related position, Vidyaraman et al. [46] argued that it can
be beneficial to security to consider users as the enemy, in
that their actions directly influence system security and they
often perform tasks that actively reduce security.

Application developers are currently treated different than
users. Often, API (Application Programming Interface) de-
velopers provide functionality and application developers
use this functionality to create applications. The security
community relies on application developers to be knowledge-
able and to understand how to use each API securely. In
effect, we rely on all application developers to be security
experts. In recent years, it has been widely acknowledged
that software developers do not by any means have sufficient
security expertise to make this model work [47, 6]. Conse-
quently, some major players in industry have mounted sub-
stantial efforts towards increasing the security knowledge of
general developers [26]. We argue that not only is relying
on all developers individually to code securely doomed to
failure, but that extensive training (even if it were possible)
to give all software developers detailed security expertise
is not the right approach. We suggest additional focus on
providing development environments where even application
developers without security expertise are less likely to make
security errors; as developer skill sets become increasingly
customized, requiring all developers to have security exper-
tise as a core competency is too heavy a tax to pay.

It has often been said that complexity is the enemy of se-
curity. This complexity is present at the user interface level
of software, in programming libraries and tools available to
the developer of an application, as well as in system code.

The modern developer no longer builds applications from
scratch. Instead, most developers essentially glue different
libraries together to perform a task. Different developers
are responsible for different parts of the resulting applica-
tion. Given this situation, it is unreasonable to assume or
require that all developers will be properly educated and
proficient in security (e.g. graphic artists are unlikely to be
well versed in web server application security issues, and it’s
not clear why they should be, as we don’t require security
experts to be artists). While it is generally accepted that
“more user training” is not a viable solution to some secu-
rity problems, apparently many in the security community
continue to believe that developer education will solve the
problem. In fact, we have been placing more burden on the

developer to create usable security mechanisms as a result of
continuing research into encouraging secure user behaviour
[17, 22, 21, 31]. Conservatively considering developers as
the enemy motivates us to take the security of the system
out of their hands. In order to do this, we argue the best ap-
proach is to develop and enforce technical solutions instead
of assuming that developers can be educated to do the right
thing (and actually do it).

Furthermore, not all libraries are well documented in their
proper use, and security caveats known to experts remain
little-known to most application developers. This is exas-
perated by the fact that library developers are often in dif-
ferent groups, companies, or countries than the application
developers who use their libraries.

Developers both directly and indirectly affect the security
of systems. While we know that developers can affect the
security of a system in many different ways (e.g. allowing
buffer overflows), to date, the focus has been on giving de-
velopers more options and tools in order to improve security.
On a related note, because developers are task oriented, they
are often the most vocal in requesting additional functional-
ity which allows them to complete their task more easily or
faster (even if this sometimes means reduced security [16]).
A recent example of this is the numerous requests for a loos-
ening of the same-origin policy [35, 49], or the expanding
banking APIs [2]. Apparently many developers requesting
additional functionality are not fully aware of the negative
security implications of their requests.

In the following sections, we examine the issue with re-
lying on application developers to operate securely and the
problems that causes. We explore the problem from the
perspective of the security of programming APIs and tools,
pointing out the problems of leaving security to application
developers (who may not be experts in security). We believe
that the current status quo of relying on all developers for
security results in a greater number of application vulnera-
bilities. We consider what might be done to relieve some of
the burden currently placed on application developers.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some current approaches at improving secu-
rity in light of viewing the developer as the enemy. Section
3 examines the problems and advantages of incorporating
usable security into developers’ libraries and tools. Section
4 discusses how developers unfamiliar with security end up
contributing to the problem, and influencing security neg-
atively. Section 5 discusses how to co-opt developers into
using security tools and libraries. Section 6 presents two
new straw-man proposals which encourage secure applica-
tion development. Section 7 discusses related work. We
conclude in Section 8.

2. REVIEWING SOME APPROACHES TO

IMPROVING APPLICATION

SECURITY
While we are not the first to propose securing developer

tools, we believe proposed solutions fail to address the entire
problem.

In the security community, attackers are always regarded
as the enemy. For each new technology proposed, the criti-
cal question of how it can be bypassed is also asked. With
developers, the same has not traditionally been true. New
technologies are introduced and it is assumed the developer

will correctly use the technology. Operating as if the de-
veloper is the enemy, we must examine ways in which the
developer can bypass or misuse the technology. When the
developer is presented with an option, we can not assume
they will choose the more secure alternative. We now com-
ment on several existing technologies in light of viewing de-
velopers as the enemy.

Type-Safe Languages. While these languages exist,
nothing forces the developer to use them (as discussed in
Section 4.2). Even though type-safe languages prevent some
classes of programming errors, other errors can still be made
by the developer (and even strongly-typed languages may
contain subtle security issues [29]). In order to permanently
eradicate certain classes of programming errors (e.g. buffer
overflows), type-safe languages would need to be mandated
in all environments.

Security Analysis Tools. As discussed in Section 3.3,
there is no assurance that a developer will always run a
particular security tool or understand the results. In treat-
ing the developer as the enemy, we must somehow persuade
them to use available security analysis tools. We must also
ensure the tools are designed such that the security expertise
required to use them is minimal.

Secure Libraries. As discussed in Section 4.2, devel-
opers are not obliged to use one library (or API) over an-
other. In treating developers as the enemy, we would need
to prevent them from using insecure libraries. We believe,
however, that preventing the distribution or use of insecure
libraries is akin to blocking the distribution of illegal copies
of copyrighted work – a near-impossible task. We therefore
concede that benefits in this area are most likely to come
from ensuring secure APIs are also the easiest to use (as
discussed in Section 3.4).

Auto-Escaping Data. Auto-escaping input data [38]
has the potential to fix many security vulnerabilities (includ-
ing XSS and SQL injection). Input data to an application
is automatically escaped by the interpreter in an attempt
to protect against common vulnerabilities (normally associ-
ated with output data). Commonly escaped characters in-
clude quotes in an attempt to protect against SQL injection
attacks. Unfortunately, it does not always work. The in-
put data is escaped before it is known what the data will be
used for. Input data can be used for any number of different
purposes, each of which requires a different form of escaping
in order to sanitize the data properly. With auto-escaping
enabled, the application is still forced to unescape the in-
put and then re-escape it correctly depending on the output
data format.1 Because of this inability to escape properly,
many developers write code to remove escaping before input
is processed by the rest of the application – negating the ben-
efits of auto-escaping. Only output APIs have a reasonable
possibility of being able to correctly escape untrusted data.

3. SECURITY AND USABILITY OF API’S

AND DEVELOPERS’ TOOLS
Traditionally, usability and security research has focused

on software applications as used by end users. How this
is impacted indirectly by software developers, and the APIs

1Because of its inability to determine the proper output es-
caping format, magic quotes gpc functionality (which auto-
escapes input) has been removed from PHP version 6 (along
with register globals as discussed in Section 3.3).

they use, has received much less attention. This relationship
can be seen by examining Figure 1. In modern development
environments, the role of the application developer is often
to combine functionality from many different APIs (and as-
sociated libraries).

API Developer Application Developer End User

API Application

Figure 1: Creation and flow of developer code

We note that developers, as end-users of development
tools, can benefit from usable security research into develop-
ment tools, as they affect the security of resulting applica-
tions. We also note that even though a developer is generally
an expert computer user, this does not mean that they can
be relied upon to use APIs in a secure way. Additionally,
we do not believe developers can reasonably be relied upon
to “correctly” use security tools with poor user interfaces;
or in fact to willingly use them at all.

Our view of application development in Figure 1 provides
a finer granularity perspective on what impacts the security
of an application. If the libraries used by the application
developer are not secure, then the resulting application is
also unlikely to be secure2 (e.g. as a well-known example,
the gets family of C library functions leads to many vulner-
able programs). This provides an opportunity: we believe
security vulnerabilities can be reduced by focusing on a rel-
atively small number of widely used programming libraries
(as opposed to each individual application). Some simple
security guidelines already exist for API development (e.g.
always take a length parameter with a buffer, security sensi-
tive data structures should have a version number, etc.). We
encourage study on how more subtle API changes affect the
security of subsequent applications (including changes af-
fecting aspects of the API covered by our broader definition
in Section 3.1). We do not believe shifting responsibility
for verifying program security from the developer to end-
user to be a wise solution (even through mechanisms such
as approval dialog boxes).

3.1 What Constitutes an API
We use the term “API” in this paper a bit differently than

many others. The API is traditionally defined as only the
interface for accessing programming functionality – a col-
lection of function prototypes and data types. We find it
beneficial to view an API as more than the set of function
prototypes. In this paper, we expand the term “API” to
cover several additional attributes. In our use of the term,
the API description also takes into account all calling re-
strictions.

From a security perspective, all APIs implement some
form of access control to a resource (be it fully open or other-

2A security expert may be able to select and use only the se-
cure pieces of an insecure library, but as we mention earlier,
we should not assume that all developers are also security
experts.

wise). Access control policy is enforced through what func-
tionality the API exposes (e.g. not providing a write API
function to prevent file modifications) and the exceptions
thrown when illegal actions are attempted (e.g. writing to a
file you don’t have access to). There also may be restrictions
on the order that API functions can be called (e.g. writing to
a file which is not open may violate the calling restrictions,
resulting in an error). The code implementing the functions
exposed in an API enforces all these order and access control
calling restrictions. In order to accomplish a task, applica-
tions using an API must not only call the functions correctly,
but also abide by the additional calling restrictions. As a
concrete example, we would consider the same-origin policy
[40] intrinsically tied to the API which a web browser makes
available to JavaScript code, even though it is not related
to any particular function prototype or argument. Capa-
bility based systems have long restricted access to sensitive
objects based on context [15].

From a security perspective, violations to the calling re-
strictions should always be flagged as errors instead of begin
allowed (leading to unexpected, undefined, or unintended
consequences). This is especially true when the developer
cannot be relied upon to use the API correctly, as is the case
when we consider them to be the enemy.

3.2 Security, Usability and End-Security of APIs
The insight that APIs affect application security leads us

to a new matrix of API design factors. The traditional view
of usability and security (see Figure 2) dictates that an in-
terface can be usable (A), secure (B), both (C), or neither
(D). We say that an API is secure if the functionality can
not be exploited to perform some undesired task [9]. We say
that an API is usable if the developer can easily use it to
accomplish a task [32]. Traditionally, we have attempted to
make APIs which are usable. More recently, we have started
to focus on APIs which are secure. This is still not the full
picture, however. There is a third category which has been
relatively unexplored (to our knowledge). We note with em-
phasis that design choices made when developing an API can
also influence the security of applications which are built us-
ing that API. Similar to cryptography, there are algorithms
which are secure but may be commonly used incorrectly in
protocols (leading to vulnerabilities). This expanded view of
how the API affects application security is shown in Figure 3
(where a good API would fall near E). We say that one API
promotes security better than a second API if applications
employing the first API are more likely to be free of vulner-
abilities than those employing the second. While “security
promoting” characteristics remain an open research area, we
discuss one proposal in Section 6.1.

Usability

Security

A

B

C

D

(0,0)

Figure 2: Usability and security box

Usability

Security

End Security

A

B

E

C

D

API

API

(0,0,0)

Figure 3: API usability, API security, and end secu-
rity (i.e. security of resulting application) cube. A
fourth dimension could be added, usable security of
the resulting application.

3.3 Support Tools
While support tools such as static analysis checkers and

program analyzers have the capability to detect some classes
of programming errors [28], it seems clear that such tools
cannot hope to protect against all programming-induced
vulnerabilities. Any support tool which the developer must
independently run is also not likely to be run by all develop-
ers. Furthermore, many of these support tools still require
manual intervention on the part of the developer, who must
also be able to understand the security error reported by
the tool and respond properly to it. Another threat is from
developers who are unaware of new security technologies, or
who ignore them. These are developers we cannot influence
easily.

There is an interesting lesson to be learnt from the exam-
ple of attempting to protect against buffer overflow attacks.
Many tools aimed at developers were designed to assist in
detection of buffer overflows [51], but few of these (if any) en-
joy widespread deployment. In contrast, library changes and
minor API tweaks to the major operating systems (e.g. no-
execute memory protection [33, 10] and address layout ran-
domization [7]) were deployed and had a much larger impact
on security. We believe that this example provides a strong
case for focus on designing and deploying solutions that do
not require ordinary developers to become security experts.3

The libraries and API now default to a more secure state.
With no-execute memory protection, some old applications
such as just-in-time compilers had to be updated to request
executable data pages. We perceive security mechanisms
which are invisible to the application developer4 as having
the greatest effect.

Another example of changing an API to increase security
is the removing of register globals in PHP. This function-
ality causes all user-supplied input to be assigned to global
variables in a PHP script. It was realized that this function-
ality lead to a large number of security vulnerabilities and
hence it has been removed from PHP 6 [37]. Application

3In fact, it also presents an argument against removing se-
curity protections perceived as outdated – segmented ad-
dressing also would have reduced the number of exploitable
buffer overflows.
4While the security mechanism can not be invisible to all
developers, most developers will not need to concern them-
selves with the policy in order to operate within its con-
straints.

developers can no longer use register globals. Both these
examples have required old programs to be updated.

3.4 Working within a security mechanism
If we are to attempt to create, or encourage the creation

of, programming libraries (and associated APIs) which re-
sult in applications with fewer vulnerabilities, we must also
ensure that developers can easily use the resulting APIs.
While this remains an open research problem, it is worth
noting a few observations in this area.
1. User interface of APIs. As application developers be-
come experienced with an advanced API, they often find
more efficient or secure ways of using its functionality. How
to design a function and document its API so as to reduce
the time it takes to become proficient with its use is an open
usability and security question we pose. We have learnt from
cryptography that providing cryptographic algorithms alone
does not ensure security [52, 8]; using these algorithms se-
curely is more difficult. The same is true for many software
libraries.
2. Developer-friendly security mechanisms. As discussed
in Section 1, many of the security mechanisms proposed to
increase end-user security place an additional burden on the
application developer (e.g. PKI certificates are not easy for
developers to work with [45]). Another open research area
is how to design and deploy new security mechanisms which
do not increase the security expertise required by generic
application developers – that is, which are more usable by
developers.
3. Integrated vs. opt-in security tools. Many security-related
development tools are “opt-in.” The developer must explic-
itly run or enable the tool. It seems clear that standalone
tools will never enjoy the same deployment and use as in-
tegrated security solutions, just as opt-in security function-
ality for end-users has traditionally yielded underwhelming
results. Security solutions embedded into the libraries used
by developers will enjoy the broadest distribution.

4. HOW DEVELOPERS INDIRECTLY

INFLUENCE SOFTWARE SECURITY
Developers end up indirectly influencing the security of

a system in many ways. We now discuss four classes of
examples.

4.1 Feature Requests which Negatively Impact
Security

Application developers are task oriented and often re-
quest additional functionality from API developers. This
sometimes negatively affects security. One example is the
request to loosen the same-origin policy [35, 49], which cur-
rently prevents JavaScript on one domain from being able to
access properties on content from another domain [40, 41].
This helps isolate web client applications from each other.5

This separation is currently based on domain name. If a
server makes available a web client application at one do-
main, it can be reasonably assured that clients interacting
with the server are not scripts associated with a different do-
main; scripts associated with a remote domain are limited to

5We define web client applications as those applications run-
ning in the web browser on a client, and web server appli-
cations as applications which run on the server and make
available content to the web browser.

simple operations [30]. This design, however, restricts devel-
opers who would like to involve multiple unrelated domains
in the same web client application. Despite the negative se-
curity implications, developers are requesting [49, 35] that
web client applications be allowed to interact with domains
other than the origin.

4.2 Choice of Libraries and Languages
A second way in which developers end up strongly influ-

encing security is when there are multiple libraries available
that perform the same operation. Developers will, in gen-
eral, choose the library which is easiest to use. If this hap-
pens to be insecure, then an insecure library may become
the most often used (and hence standard) library. Ensuring
that the libraries considered to be the most secure (among
alternatives) have usable APIs is important if we wish to
encourage use of secure libraries. If a secure but relatively
unusable implementation of functionality exists, developers
are likely to create another implementation which is more
usable but perhaps less secure. In this regard, developer
preferences can be a powerful influence on software security.

The same can be said of programming languages. When
writing a program, many developers are likely to choose the
language with which they are most familiar, regardless of
the security of the language.

4.3 Perceived Trade-offs
One common argument against security is the perceived

performance penalty. Developers may intentionally ignore
security in an effort to have their code run more quickly.
Furthermore, developers will disable or ignore compile-time
tools designed to assist in creating secure code in order to
meet production deadlines. Developers often believe that
their code is not security critical. With the interconnected
nature of today’s applications, however, a vulnerability in a
single application can have an effect on the security of the
entire system [18]. Such developers are choosing to trade
security in favour of other aspects of the software.

Related to security trade-offs is the the fact that develop-
ers are rarely measured on the security of their code. Focus-
ing on code security often does not lead to any short-term
reward (and developers, like others, are poor at evaluating
long-term consequences [4]).

4.4 Testing is not a first-choice job
A third way in which developers end up dictating security

has to do with the way they create software. When faced
with implementing a piece of software, developers typically
break the task up into a set of features (or sub-tasks), each of
which may be further broken down into manageable tasks
which can be implemented sequentially and tested. This
practise happens regardless of the design process.

This development style can affect the security of a product
in several ways:
1. Developers, like other creative individuals, thrive on
novelty, and implementing a new feature provides a greater
sense of accomplishment than testing it. Given the choice
of implementing a feature or running vulnerability analysis
tools, many developers prefer to implement the feature.
2. Most developers concentrate best on a single task at a
time. In fact, many source control systems implicitly assume
that all files edited are part of the same feature when they
are checked in. One needs to create multiple distinct copies

of the source in order to work on different features – a time
consuming process in large projects.6 Often developers may
realize in the course of implementing a feature that they
need to go back and check other areas of the code to ensure
that they did not make a mistake. Usually, these checks
will be put off until the current task is done. By putting
off checking other code until the current feature is done,
developers run the risk of forgetting to do testing, some of
which may be security related.

5. EMBEDDING SOLUTIONS
In keeping with the rest of the paper, we realize that devel-

oping any new security tool in isolation is insufficient. Any
technology developed must be embedded into the tools the
developer actually uses. We see three methods of persuading
developers to use security technologies.

1. Eliminate aspects of security tools which incline de-
velopers to avoid the tools. This involves ensuring that the
tools developed are user-friendly. During the design process,
usability must be considered as critical in designing tools.
This goes against conventional reasoning that usability is
less critical in designing tools only used by experts, but is
not inconsistent with reasoning in the fields of human factors
[39].

2. Provide the developer with rewards or incentives for
coding securely (related to Section 4.3) or for using secu-
rity tools. Rewards can be company internal (e.g. financial
incentives by management) or external (e.g. documenting
the number of warnings still existing in a shipped product).
For those companies where management does not take se-
curity seriously, the rewards or incentives would have to be
external.

3. Mandate the use of specific tools or libraries. This
works well for large companies with leverage (e.g. forcing
third-party developers to use analysis tools, specific lan-
guages, specific compiler flags, and other elements). Man-
dates can also come from management within a company
(e.g., forcing all developers to run a static analysis tool).
Clients, system vendors, and others can also mandate the
use of security tools.

While each of these approaches may work in a specific
circumstance, the best solution likely involves some mix of
all three. The hope is that contributing positively to usable
security solutions leads to developers being more enthused,
building customer loyalty instead of resentment.

6. STRAW-MANPROPOSALSTO INCREASE

APPLICATION SECURITY
Because not all developers have security as a primary skill,

we believe there is a benefit in studying methods other than
developer education to improve application security. In this
section, we examine two straw-man proposals designed to
incorporate security into the work-flow of developers. These
proposals are designed to assist developers in creating secure
applications. We recognize that these straw-man proposals
must still be included into the developer work-flow through
some method (see Section 5).

6There are exceptions to this, e.g., the recent source control
system GIT [23] allows each developer to maintain their own
source-control tree containing patches which have not been
checked into the main repository.

6.1 Data Tagging
A good example of specialization of developer skill sets is

the use of template engines as they relate to modern web
development. Template engines such as Smarty [43] allow
program functionality to be separated from web site visual
layout. They allow core developers to concentrate on back-
end functionality without worrying about how this content
is displayed. Furthermore, graphic designers are able to cus-
tomize the template to increase the visual aesthetic of the
web site without touching core functionality. The template
language provides a mechanism which the graphic designer
can use to access variables which the back-end explicitly
makes available. The graphic designer can be expected to
be artistic, without being a proficient developer.

The problem with this approach is that some security
vulnerabilities are directly related to the display of data
exported by the back-end. User-submitted data exported
to the graphic designer by the back-end must be properly
escaped to prevent cross-site scripting (XSS) vulnerabilities
[24]. Escaping data correctly requires knowing both the con-
text in which the data is displayed, and the markup language
being used – both of which, with current tools, are deter-
mined at display time by the graphic artist. This places
the security of websites in the hands of graphic artists, re-
quiring them to be security experts – to properly escape
all data that originates from user input. Because determin-
ing what input is from the user is a task best done in the
core functionality of the web server application, we explore
a method of making this information available in the API
used by graphic artists in the template engine language. Our
proposal helps facilitate coding securely (for all developers,
including graphic artists).

A Tagging Proposal. To further motivate our first pro-
posal, consider an API which returns data to a developer (a
more general case of the template engine discussion above).
Making this data explicitly available to an application may
result in it being used insecurely (e.g. to compromise pri-
vacy). One effective defence which is well known, but seldom
used (for various reasons) is to encapsulate the data in an
object which provides limited access methods, with raw data
never being available to the application developer. Because
of the increased number of functions required to support
various uses of the data, the size of the API is large (which
tends to discourage use somewhat). Taint checking has also
been proposed to combat the problems of using untrusted
data returned by an API [34, 48]. However, this requires
security-aware developers, and only provides an indication
that the data is potentially malicious, not why, what it can
be used for, or how to neutralize it.

Our proposal is to extend the idea of tainting to data tag-
ging. Instead of tainting data (signalling that it may be
bad for some reason), the API developer tags the data with
various labels, indicating why the data requires special care
(e.g. it is personal information, is from an untrusted source,
was set by the user, or has not been verified as correct).
In the context of template engines, data which needs to be
properly escaped may be tagged with an escapehtml tag.
Similar to tainting, a warning or error would be displayed if
the developer attempts to output the data without escaping
it (using available escaping functions). Multiple tags may
be assigned with any piece of data. We believe that data
tagging would provide a convenient method for the API de-
veloper to allow the application developer to correctly use

data returned by the API, with improved usability (usable
security), as the application developer is informed why the
data is tagged. Our proposal is best suited for high-level
programming languages.

Tagging becomes even more effective when tags are main-
tained across application boundaries (by the applications
themselves, not by the system [11, 25]). If data inserted
into a database retained the labels with which it had been
tagged, stored XSS vulnerabilities [14] would be much easier
to find by web developers and security analysts. Tagging can
also be used to create an alternative to auto-escaping (Sec-
tion 2), allowing proper escaping of tagged data at output
time based on the destination of the data. Tagging allows
input and output APIs to jointly protect application data.

6.2 Unsuppressible Warnings
Related to variable tagging is the notion of warning and

error messages generated during the compiling, translat-
ing, or running of an application (in both interpreted and
compiled languages). Many warnings are suppressed by
the application developer in an effort to decrease develop-
ment time, even though some may indicate security errors
(e.g. the PHP uninitialized variable warning indicates a vari-
able which could be set by an attacker when running with
register globals [37]).

We propose the following. To ensure that developers al-
ways address warnings and errors in their application code,
as a general principle developer tools should be designed
such that these warnings are unsuppressible. If the only
ways of suppressing warnings are to fix or document them,
developers should be much more motivated to ensure that
their code does not generate warnings. Addressing warnings
then becomes part of accomplishing the developer’s primary
task. The developer is forced to examine every warning and
take corrective actions as part of completing their task. In
effect, we propose turning warnings into errors (as can al-
ready be done with GCC by passing the -Wall and -Werror

options). Despite no suitable references in the academic lit-
erature to our knowledge, several major projects already en-
force a no-warning policy (including the Xen hypervisor). To
reach the greatest number of developers, this change would
be a mandatory setting beyond the developers control (un-
like current GCC). With unsuppressible warnings, we can
ensure going forward that newly detected security errors will
not be ignored by developers. During the transition to un-
suppressible warnings, it is inevitable that errors will appear
outside the developer’s code (i.e., in components designed
by others). Encouraging developers to submit bugs/patches
against such warnings would help improve the entire soft-
ware ecosystem.

7. RELATED WORK
Our work is similar to that of Solworth at NSPW 2007

[44], which concentrated on how to successfully deprecate
APIs, providing new APIs using some of the methods de-
scribed in Section 2. In contrast, we examine what can be
further done to increase the security of applications devel-
oped using new APIs.

Data tagging is related to the notion of data labelling,
which is distinct in that its goal is to protect confidentiality
[5]. Data tagging allows multiple tags to be assigned to a
single variable, which is in contrast to allowing a single data
label. Data security policies (such as Clark-Wilson [12]) dif-

fer from data tagging fundamentally in their response to
access violations. One purpose of tagging is to provide in-
formation suggesting what may need to be done in order
to sanitize the data. Furthermore, the Clark-Wilson model
concentrates on protecting data from the system, while tag-
ging concentrates on protecting the system from the data.
Data provenance [42] is concerned with documenting the ori-
gin of data and all transformations performed on that data.
Tagging is related to identifying the source of data, but is
not concerned with logging all data transformations.

Languages like Ada [27] and Java use strong type-checking
stop certain classes of programming errors. Such strongly-
typed languages are not a universal solution because de-
velopers normally choose a language based on functionality
and ease of use [36]. Backwards compatibility and support
are also issues which developers examine when choosing a
language.

AEGIS [20] focuses on assisting developers in creating se-
cure software, by trying to incorporate security into the soft-
ware design process. While this approach is valid, it does
not help software not designed under the AEGIS model.

Other work includes fault isolation [50] and sandboxes (in
both browsers [3] and virtual machines). Both fault isolation
and sandboxes attempt to restrict code which may contain
bugs, but do not work to reduce the number of vulnerabili-
ties which may be present in the software. Our approach of
focusing on usable security attempts to reduce the number
of vulnerabilities which exist.

Vidyaraman et al. [46] explored the position that the user
was the enemy in the computer system.

Microsoft’s Windows Vista contains User Account Control
(UAC), which was partially designed to encourage develop-
ers to restrict security sensitive operations [19]. We believe
that users do not need to be adversely affected in order to
encourage developers.

In the banking industry, API security research has treated
the developer as the enemy, but has concentrated solely on
protecting secrets (e.g. encryption keys) behind the API [2].
Our research attempts to increase the security of the appli-
cations developed as well as the libraries.

Agile software development methods [13] decrease the num-
ber of security vulnerabilities, and we view them being com-
plementary to methods proposed in this paper.

8. CONCLUDING REMARKS
In this paper, we explored the idea that developers influ-

ence software security in many ways (including negatively),
and how the tools and APIs they use are a big part of this.
While security and usability have been previously studied in
the context of end-users, we have seen little prior focus on
the problem of usable security as it relates to programming
libraries, and the resulting impact on applications.

By realizing that not all developers are security experts,
and by improving the security of tools and libraries the typ-
ical developers use, we have the potential to positively influ-
ence all developers to code in a more secure fashion, resulting
in fewer vulnerabilities. It is possible that as a byproduct
of repeated use of appropriate security tools, developers will
change their coding habits in a way which improves the se-
curity of their code. In cases where software libraries are
used by many different applications, the potential exists to
influence the security of a large number of applications by
concentrating on the security of a single library and associ-

ated API. While the security benefit to be gained by focusing
on APIs is hard to quantify, we believe there are significant
advantages still to be found.

Related to the role that developers play in security is the
role that product testers play. While we have focused on
developers in this paper, the usability of testing tools and
how they influence security is a related topic which mer-
its additional research. The possibility of using tools which
automatically identify security issues during the specifica-
tion phase of software development also merits additional
research but is beyond the scope of this paper.

We also discussed the idea of incorporating security into
the task based work-flow of developers. We described two
straw-man proposals which have the potential to encourage
secure software development, even amongst developers not
well versed in security.

As was discussed, many security vulnerabilities are the re-
sult of poor developer choices. Our position is that remov-
ing some of these choices should help all developers perform
their tasks more securely (even if they are not security ex-
perts). A main challenge in specific instances is to find a
restricted set of options, or single option, which is suitable,
agreeable, and useful to everyone.

Because there are a great many more developers than se-
curity experts, we encourage focus by the latter on the se-
curity of tools and libraries which many developers use. We
believe it is a loosing proposition to rely too heavily on uni-
versal education and opt-in security tools if the goal is to
ensure that all developers create secure applications.

Acknowledgements. We thank NSPW participants and
anonymous reviewers for their comments. The first author
acknowledges NSERC for funding his PGS D scholarship.
The second author acknowledges NSERC for funding a Dis-
covery Grant and his Canada Research Chair in Network
and Software Security. Both authors acknowledge MITACS
for partial funding.

9. REFERENCES

[1] A. Adams and M. A. Sasse. Users are not the enemy.
Communications of the ACM, 42(12):41–46, Dec 1999.

[2] R. Anderson. Security Engineering, chapter 18: API
Security. Wiley, 2nd edition, 2008.

[3] V. Anupam and A. Mayer. Security of web browser
scripting languages: vulnerabilities, attacks, and
remedies. In Proc. 7th USENIX Security Symposium,
1998, pages 15–28, 1998.

[4] A. Beautement, M. A. Sasse, and M. Wonham. The
compliance budget: Managing security behaviour in
organisations. In Proc. 2008 Workshop on New
Security Paradigms, Sep 2008.

[5] Y. Beres and C. I. Dalton. Dynamic label binding at
run-time. In Proc. 2003 Workshop on New Security
Paradigms, pages 39–46, 2003.

[6] K. Beznosov and B. Chess. Security for the rest of us:
An industry perspective on the secure-software
challenge. IEEE Software, 25(1):10–12, Jan 2008.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: an efficient approach to combat a board
range of memory error exploits. In Proc. 12th
USENIX Security Symposium, pages 8–23, Jul 2003.

[8] A. Bittau, M. Handley, and J. Lackey. The final nail
in WEP’s coffin. In Proc. 2006 IEEE Symposium on
Security and Privacy, pages 386–400, May 2006.

[9] M. Bond and R. Anderson. API-level attacks on
embedded systems. Computer, 34(10):67–75, Oct 2001.

[10] Z. Brown. Kernel traffic #265 for 30-Jun-2004. Web
Page (viewed 29 Mar 2008), Jun 2004.
http://www.kerneltraffic.org/kernel-

traffic/kt20040630 265.html#4.

[11] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In Proc. 13th USENIX Security
Symposium, 2004, pages 321–336, Aug 2004.

[12] D. Clark and D. Wilson. A comparison of commercial
and military computer security policies. In Proc. 1987
IEEE Symposium on Security and Privacy, pages
184–194, 1987.

[13] A. Cockburn. Agile Software Development. Addison
Wesley, 2002.

[14] N. Daswani, C. Kern, and A. Kesavan. Foundations of
Security: What Every Programmer Needs to Know,
chapter 10: Cross-Domain Security in Web
Applications. Apress, 2007.

[15] J. B. Dennis and E. C. Van Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, Mar 1966.

[16] A. J. DeWitt and J. Kuljis. Aligning usability and
security: a usability study of Polaris. In Proc. 2nd
Symposium on Usable Privacy and Security, pages
1–7, 2006.

[17] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In Proc. 2005
Symposium on Usable Privacy and Security, pages
77–88, 2005.

[18] Security vulnerability in tetex (dvips). Web Page, 10
2002.
http://www.securityfocus.com/advisories/4567.

[19] K. Fisher. Vista’s UAC security prompt was designed
to annoy you. Web Page (viewed 14 Apr 2008), Apr
2008.
http://arstechnica.com/news.ars/post/20080411-

vistas-uac-security-prompt-was-designed-to-

annoy-you.html.

[20] I. Flechais, M. A. Sasse, and S. M. V. Hailes. Bringing
security home: a process for developing secure and
usable systems. In Proc. 2003 Workshop on New
Security Paradigms, pages 49–57, 2003.

[21] A. Y. Fu, X. Deng, L. Wenyin, and G. Little. The
methodology and an application to fight against
unicode attacks. In Proc. 2nd Symposium on Usable
Privacy and Security, pages 91–101, 2006.

[22] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In Proc. 2nd Symposium
on Usable Privacy and Security, pages 44–55, 2006.

[23] GIT user’s manual (for version 1.5.3 or newer). Web
Page (viewed 29 Mar 2008), Mar 2008.
http://www.kernel.org/pub/software/scm/git/

docs/user-manual.html.

[24] HTML code injection and cross-site scripting:
Understanding the cause and effect of CSS (XSS)
vulnerabilities. Web Page (viewed 4 Apr 2008), Apr

2008.
http://www.technicalinfo.net/papers/CSS.html.

[25] A. Ho, M. Fatterman, C. Clark, A. Warfield, and
S. Hand. Practical taint-based protection using
demand emulation. In Proc. 1st ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2006, pages 29–41, 2006.

[26] M. Howard and S. Lipner. Inside the windows security
push. IEEE Security and Privacy, 1(1):57–61, Jan
2003.

[27] J. D. Ichbiah, B. Krieg-Brueckner, B. A. Wichmann,
J. G. Barnes, O. Roubine, and J.-C. Heliard. Rationale
for the design of the Ada programming language.
ACM SIGPLAN Notices, 14(6b):1–261, Jun 1979.

[28] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting web application
vulnerabilities (short paper). In Proc. 2006 IEEE
Symposium on Security and Privacy, May 2006.

[29] C. Lai. Java insecurity: Accounting for subtleties that
can compromise code. IEEE Software, 25(1):13–19,
Jan 2008.

[30] V. T. Lam, S. Antonatos, P. Akritidis, and K. G.
Anagnostakis. Puppetnets: misusing web browsers as
a distributed attack infrastructure. In CCS ’06:
Proceedings of the 13th ACM Conference on Computer
and Communications Security, pages 221–234, New
York, NY, USA, 2006. ACM Press.

[31] E. Lieberman and R. C. Miller. Facemail: showing
faces of recipients to prevent misdirected email. In
Proc. 3rd Symposium on Usable Privacy and Security,
pages 122–131, 2007.

[32] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi.
Building more usable APIs. Software, IEEE,
15(3):78–86, May 1998.

[33] Microsoft Corporation. A detailed description of the
data execution prevention (DEP) feature in Windows
XP Service Pack 2, Windows XP Tablet PC Edition
2005, and Windows Server 2003. Technical report,
Microsoft Corporation, Sep 2006.
http://support.microsoft.com/kb/875352.

[34] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In Proc. 20th IFIP
International Information Security Conference, Jun
2005.

[35] F. Nimphius. Application security in AJAX. Web
Page (viewed 28 Mar 2008), Oct 2007.
http://ajax.sys-con.com/read/436281.htm.

[36] J. Ousterhout. Scripting: higher level programming for
the 21st century. Computer, 31(3):23–30, Mar 1998.

[37] PHP: Using Register Globals, Nov 2007. http:
//www.php.net/manual/en/security.globals.php.

[38] PHP: What are Magic Quotes, Nov 2007. http://
www.php.net/manual/en/security.magicquotes.php.

[39] J. Preece, D. Benyon, G. Davies, and L. Keller. A
Guide to Usability: Human Factors in Computing.
Addison Wesley, 1993.

[40] J. Ruderman. The same origin policy. Technical
report, Mozilla, 2001. http://www.mozilla.org/
projects/security/components/same-origin.html.

[41] J. Schuh. Same-origin policy part 1: Why we’re stuck
with things like XSS and XSRF/CSRF. Web Page,

Feb 2007.
http://taossa.com/index.php/2007/02/08/same-

origin-policy/.

[42] Y. L. Simmhan, B. Plate, and D. Gannon. A survey of
data provenance in e-science. ACM SIGMOD,
34(3):31–36, 2005.

[43] Smarty: Template engine. Web Page (viewed 28 Mar
2008), Feb 2008. http://smarty.php.net.

[44] J. A. Solworth. Robustly secure computer systems: A
new security paradigm of system discontinuity. In
Proc. 2007 New Security Paradigms Workshop, 2007.

[45] T. Straub. Usability Challenges of PKI. PhD thesis,
Technische Universitt Darmstadt Universitts- und
Landesbibliothek, 2006.

[46] S.Vidyaraman, M.Chandrasekaran, and S.Upadhyaya.
Position: The user is the enemy. In Proc. 2007 New
Security Paradigms Workshop, 2007.

[47] I. A. Tondel, M. G. Jaatun, and P. H. Meland.
Security requirements for the rest of us: A survey.
IEEE Software, 25(1):20–27, Jan 2008.

[48] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel,
E. Kirda, and G. Vigna. Cross-site scripting
prevention with dynamic data tainting and static
analysis. In Proc. 2007 Network and Distributed
System Security Symposium, pages 67–78, Feb 2007.

[49] Access control for cross-site requests. Technical report,
W3C, Feb 2008. http://www.w3.org/TR/2008/WD-
access-control-20080214/.

[50] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation.
SIGOPS Operating System Review, 27(5):203–216,
1993.

[51] J. Wilander and M. Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention.
In Proc. 2003 Network & Distributed System Security
Symposium, pages 149–162, 2003.

[52] H. Wu. The misuse of RC4 in Microsoft Word and
Excel. In Cryptology ePrint Archive: Listing for 2005.
2005. http://eprint.iacr.org/2005/007.pdf.

