
NETWORK SCANNING DETECTION STRATEGIES FOR

ENTERPRISE NETWORKS

by

David Whyte

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

at

CARLETON UNIVERSITY

Ottawa, Ontario

September, 2008

c© Copyright by David Whyte, 2008

Table of Contents

List of Tables v

List of Figures vii

Abstract ix

Acknowledgements xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Network-based Intrusion Detection Schemes 3

1.3 Contributions . 5

1.4 Overview of Chapters . 10

Chapter 2 Background 12

2.1 Passive and Active Network Discovery Techniques 13

2.2 Network Scanning Strategies . 16

2.2.1 Wide-range Reconnaissance 16

2.2.2 Target-specific Reconnaissance 18

2.2.3 Worm Propagation Methods 19

Chapter 3 Related Work 23

3.1 External Network Scanning Detection Strategies – TRW 23

3.2 External Network Scanning Detection Strategies – Other 38

3.3 Internal Network Scanning Detection Strategies 42

3.4 Summary . 45

Chapter 4 Exposure Maps: Approach and Evaluation Methodology 47

4.1 Exposure Maps: Approach . 47

4.1.1 Use of Exposure Maps for Scanning Detection 52

ii

4.1.2 Automated Response using Exposure Maps 54

4.1.3 Exposure Profiles: Host Discovery and Asset Classification . . 56

4.1.4 Determining the Success of Network Service Enumeration as a

Result of Scanning Campaigns 58

4.1.5 Bro Implementation . 64

4.2 Evaluation: Datasets and Methodology 68

Chapter 5 Exposure Maps: Evaluation and Discussion 73

5.1 Evaluation of Exposure Maps . 73

5.1.1 Results: Scanning Detection – Comparison With Threshold

Random Walk (TRW) . 80

5.1.2 Results: Advanced Scanning Detection 97

5.1.3 Results: Active Response . 100

5.1.4 Results: Exposure Profiles . 103

5.1.5 Results: Reconnaissance Activity Assessment (RAA) 104

5.2 Scalability and Stability of Exposure Maps 106

5.3 Further Discussion and Limitations 110

5.4 Summary . 116

Chapter 6 Internal Network Scanning Detection Strategy 1: DNS-

based 117

6.1 DNS-based Scanning Detection: Approach 117

6.1.1 High-Level System Design . 118

6.2 Prototype Evaluation . 124

6.2.1 Data Set for Prototype Evaluation 124

6.2.2 CCSL Network Monitoring Analysis 126

6.2.3 IDN Monitoring Analysis . 127

6.2.4 Discussion of False Positives and Negatives 127

6.3 Detection Circumvention and Current Limitations 133

6.3.1 Detection Circumvention . 133

6.3.2 Current Detection Limitations 135

iii

6.4 Extended Applications . 136

6.5 Summary . 138

Chapter 7 Internal Network Scanning Detection Strategy 2: ARP-

based 140

7.1 ARP-based Scanning Detection: Approach 140

7.1.1 High-Level System Design . 146

7.2 Prototype Evaluation . 150

7.2.1 Data Set for Prototype Evaluation 151

7.2.2 Simulating Scanning Worm Activity 154

7.2.3 Discussion of False Positives and Negatives 156

7.3 Limitations . 159

7.4 Suppression and Containment Extensions 161

7.5 Summary . 163

Chapter 8 Summary and Future Directions 164

8.1 Summary of Research Contributions 164

8.2 Future Work . 168

Bibliography 170

Appendix A Supplementary Material 177

A.1 Acronym List . 177

A.2 IANA Port Assignment List . 178

iv

List of Tables

Table 3.1 Bro Connection States (adapted from [10]). 29

Table 4.1 Details about the Network Datasets. 71

Table 4.2 Exposure Maps Capability Evaluation. 71

Table 5.1 Parameters Used for Comparing TRW to the Exposure Maps

DCA Heuristic (CCSL Dataset). 76

Table 5.2 Affect of Hits and Misses on TRW Hypotheses Selection.

(θ0 = .80, θ1 = .20, α = .01, β = .99). 76

Table 5.3 Expected Number of Connection Events (E[N |H1]) to Confirm

a Remote Host is a Scanner With α = .01 and β = .99 Kept

Constant. 77

Table 5.4 NEM Details for CCSL Network. 81

Table 5.5 Scanning Detection Results for CCSL Dataset with the Exposure

Maps DCA Heuristic. 82

Table 5.6 Scanning Detection Results for CCSL Dataset with the TRW

and Modified TRW Techniques. 82

Table 5.7 Additional Exposure Maps Results for the CCSL Dataset. . . . 86

Table 5.8 Scanning Detection Comparison LBNL/ICSI 2004-12-15 Dataset. 91

Table 5.9 Additional Exposure Maps Results for the LBNL/ICSI 2004-12-

15 Dataset. 91

Table 5.10 Scanning Detection Comparison LBNL/ICSI 2004-12-16 Dataset. 94

Table 5.11 Additional Exposure Maps Results for the LBNL/ICSI 2004-12-

16 Dataset. 94

Table 5.12 Three Detected Distributed Scans. 98

Table 5.13 Scan/Attack Activity. 98

Table 5.14 Distributed Scan Characteristics. 99

Table 5.15 Exposure Profiles Port Assignments. 104

Table 5.16 Exposure Profiles. 104

v

Table 5.17 Enhanced CCSL NEM showing Application Information. 105

Table 5.18 RAA for CCSL Dataset. 105

Table 6.1 Network Data Set. 125

Table 6.2 DNS Datagrams. 126

Table 6.3 IDN Worm Activity. 128

Table 6.4 Additional IDN Alerts. 128

Table 6.5 CCSL Network Alerts. 129

Table 6.6 False Positive Results Analysis. 130

Table 6.7 Probability of False Negatives due to Remote DNS Monitoring. 133

Table 6.8 CCSL Network Whitelist. 134

Table 6.9 IDN Whitelist. 135

Table 7.1 ARP Statistics for Prototype System on CCSL Network. 150

Table 7.2 Alarm Threshold Analysis . 154

Table 7.3 Network ARP Statistics . 155

Table 7.4 Anomaly Factor Triggering Probabilities in Testbed 159

Table A.1 Acronyms. 177

Table A.2 IANA Assigned Port Numbers to Specific Network Services. . . 178

vi

List of Figures

Figure 2.1 Network Scanning Activity. 17

Figure 3.1 Using Likelihood Ratio to Classify Remote Hosts. 25

Figure 3.2 trw-impl.bro Policy Interaction. 28

Figure 3.3 Rejected TCP Connection. 30

Figure 3.4 Normal TCP Connection. 30

Figure 3.5 Host Classification Possibilities for the trw-impl.bro Policy Script. 32

Figure 3.6 trw-impl.bro Pseudo Code - Inputs and Parameters. 33

Figure 3.7 trw-impl.bro Pseudo Code - Main Body of Function. 34

Figure 4.1 Example NEM. 50

Figure 4.2 Scanning Potentials versus Network Exposures. 54

Figure 4.3 Exposure Maps Automated Response Logic. 55

Figure 4.4 Exposure Profiles. 57

Figure 4.5 Enhanced NEM - RAA Logic. 59

Figure 4.6 Basic and Enhanced NEM. 60

Figure 4.7 Example of an RAA. 61

Figure 4.8 Bro Architecture Implementing Exposure Maps Policies. . . . 65

Figure 5.1 Expected Number of Connection Events to Confirm a Remote

Host is a Scanner With α = .01 and β = .99 Kept Constant. . 78

Figure 5.2 DCA Activity for CCSL Dataset (Using Exposure Maps Tech-

nique). 83

Figure 5.3 Number of Unique Remote Hosts Generating DCAs in the

CCSL Dataset (Using Exposure Maps Technique) per Geo-

located Country of Origin. 84

Figure 5.4 Fraction of Remote Hosts Generating DCAs Against at Most x

Local Hosts. CCSL Dataset, Using Exposure Maps Technique. 85

vii

Figure 5.5 CDF of DCA Activity for the CCSL Dataset (Using the Expo-

sure Maps Technique) – Number of DCAs. 86

Figure 5.6 DCA Activity for LBNL/ICSI 12-15 Dataset (Using Exposure

Maps Technique). 88

Figure 5.7 Fraction of Remote Hosts Generating DCAs Against at Most

x Local Hosts. LBNL 12-15 Dataset, Using Exposure Maps

Technique. 89

Figure 5.8 CDF of DCA Activity for LBNL/ICSI 12-15 Dataset (Using

Exposure Maps Technique) – Number of DCAs. 90

Figure 5.9 DCA Activity for LBNL/ICSI 12-16 Dataset (Using Exposure

Maps Technique). 92

Figure 5.10 Fraction of Remote Hosts Generating DCAs Against at Most

x Local Hosts. LBNL 12-16 Dataset, Using Exposure Maps

Technique. 93

Figure 5.11 CDF of DCA Activity for LBNL/ICSI 12-16 Dataset (Using

Exposure Maps Technique) – Number of DCAs. 95

Figure 5.12 Distributed Scan of the SSH Service on CCSL Network IP Ad-

dresses. 101

Figure 5.13 Distributed Scan of the SSH Service on Port 22/TCP of CCSL

Network IP Addresses. 102

Figure 6.1 High-level System Design. 119

Figure 6.2 DNS-based Detection Logic. 120

Figure 6.3 IDN Worm Activity. 129

Figure 7.1 Peer List For a Small Network With Four Active Devices. . . . 143

Figure 7.2 High Level Design of Prototype Implementation 147

Figure 7.3 ARP-based Detection Logic. 149

viii

Abstract

The Internet is saturated with nonproductive network traffic that includes a variety

of reconnaissance activities to identify vulnerable systems. Individual systems exhibit

anomalous behavior in their interactions with physical and logical interconnections

that define the enterprise network when they are scanning or are the target of a

scan. We take advantage of this observation through the development of a suite of

network scanning detection techniques to detect internal (intra-enterprise) scanning

using the address resolution protocols (i.e. Domain Name System (DNS), Address

Resolution Protocol (ARP)), and external (inter-enterprise) scanning using darkports

– the unused ports on active systems, which we identify during the construction of

exposure maps.

Specifically, to detect intra-enterprise network scanning activity, we note that

scanning systems exhibit anomalous behavior when using the address resolution pro-

tocols. These techniques offer the possibility to identify local scanning systems within

an enterprise network after the observation of only a few scanning attempts with a

low false positive and negative rate. To detect external scanning activity directed at a

network we make use of the concept of exposure maps that are identified by passively

characterizing the connectivity behavior of internal hosts in a network as they re-

spond to both legitimate connection attempts and scanning attempts. The exposure

maps technique enables: (1) active response options to be safely focused exclusively

on those systems that directly threaten the network, (2) the ability to rapidly char-

acterize and group hosts in a network into different exposure profiles based on the

services they offer, and (3) the ability to perform a Reconnaissance Activity Assess-

ment (RAA) that determines what specific information was returned to an adversary

as a result of a directed scanning campaign.

In a direct side-by-side comparison with the Threshold Random Walk (TRW)

scanning detection technique of Jung (2006, MIT Ph.D., thesis) exposure maps of-

fered an equivalent scanning detection capability while arguably being lightweight,

ix

and offering additional functionality. This dissertation describes the design, imple-

mentation and evaluation of fully functional prototypes to detect internal and external

scanning activity at an enterprise network.

x

Acknowledgements

I would like to express my sincere gratitude to my advisor Professor Evangelos

Kranakis. Your expert knowledge, unfailing encouragement and personal guidance

has been a source of inspiration to me for a number of years. You gave me the

confidence to pursue this degree and allowed me to follow and realize my dreams.

I am deeply grateful to my advisor Professor Paul C. van Oorschot for the detailed,

insightful, and constructive comments he provided not only for this thesis but for

all my research and publications. I cannot overstate how important your unfailing

support, personal guidance, and excellent advice has benefited me. I especially thank

you for the many hours and late nights you spent helping me improve this thesis. You

have had a remarkable influence on my academic research.

I would also like to take this opportunity to thank the members of my thesis

committee that consisted of Professor Tet Yeap, Professor Anil Somayaji, Professor

Ashraf Matrawy and Professor John McHugh. A special mention is warranted for

both Professor Somayaji and Professor McHugh whose helpful comments and keen

observations have certainly improved the quality of this work.

I extend a special thanks to all the members of the Digital Security Group at

the Carleton Computer Security Lab. The lab has proved not only to be a great

facility to conduct research but also a wonderful environment where top notch security

researchers can both challenge and inspire one another. Thanks to Glenn Wurster

and Mohammad Mannan for your continual support and encouragement over the last

few years.

I am indebted to my many professional colleagues for whom I have great regard.

To all of my colleagues, I appreciate your advice, comments, and support. I extend a

special thanks to Griffith Ince, Carl Reid and Deborah Abbott who made it possible

for me to devote full-time study at critical points in my research. I would not have

been able to complete this degree without these times of focused research. For that,

I offer you all my heartfelt thanks and a debt of gratitude. To Donald MacLeod and

Joe MacGillivray, your expert technical advice both professionally and academically

xi

has been of immeasurably benefit.

Lastly, and most importantly, I wish to dedicate this thesis to my family. To

my parents, Donald and Sharon, thank you for instilling in me the importance of

education and for always believing in my abilities. To my wife Michelle, this would not

have been possible without your love, support, and encouragement. As I completed

this work, you spent many nights and weekends alone taking care of our children. In

this, as in all things, you enable me to realize my potential. To my children Carter

and Kylie, let this serve as proof that if you work hard you too can realize your

dreams. Always remember, I will be there to help you along the way.

xii

Chapter 1

Introduction

To safeguard an enterprise network, it is desirable that all forms of external and in-

ternal scanning activity be detected to identify information leakage to an adversary

in an attempt to prevent follow-on attacks. To accomplish this goal, this dissertation

presents network scanning detection strategies that: (1) are sufficiently accurate and

efficient to support automated countermeasures (e.g. containment by ingress/egress

blocking, connection throttling), (2) can detect both new (i.e. zero-day) and sophis-

ticated forms of scanning activity, (3) provide a mechanism to determine what type

of information about the network has been obtained by an adversary as a result of

network scanning, and (4) are suitable to detect inter and intra-enterprise network

scanning activity. The remainder of this chapter contains sections on the motiva-

tions for this work, an attempt to broadly classify our network detection strategies

based on their underlying detection principles, a summary of the contributions of this

dissertation, and finally an outline for subsequent chapters.

1.1 Motivation

Networks are under constant bombardment from a variety of unproductive network

activity that includes probes from compromised systems (e.g. worms, auto-rooters

[66]), misconfigured systems, Internet cartographers, and backscatter traffic [40].

Yegneswaren et al. [79] estimated that there were, already in the 2002 timeframe,

25 billion global intrusion attempts per day and this activity continues to increase.

Panjwani et al. [44] estimated in a 2005 paper that 50% of attacks against systems

are preceded by some form of network scanning activity. Network reconnaissance

or scanning is the first stage of an intrusion attempt that enables an adversary to

remotely locate, target, and exploit vulnerable systems. Network scanning activity

directed at an enterprise network can occur from systems within (i.e. a host inside

1

2

the administrative domain of the network scanning local subnets) or external to the

network.

Automated tools (e.g. auto-rooters) methodically probe large blocks of Internet

address space seeking vulnerable systems for recruitment into botnets [20, 51, 15, 47,

5]. Large numbers of worm-infected systems randomly scan the Internet searching for

susceptible systems to exploit. Over the past few years, and perhaps best character-

ized by the the period 2001 – 2003 (with Code Red, Nimda, Slammer, and Blaster),

worm outbreaks of very large size and severity have rapidly spread across vulnerable

systems destabilizing the Internet. In fact, there have been worm outbreaks that have

been able to scan and infect 90% of all the vulnerable host on the Internet in less

than 10 minutes [39].

Perhaps most worrisome for a network operator is when a determined adversary di-

rects specific scanning activity solely against their network searching for weaknesses

that provide an entry vector. This type of reconnaissance is typically precise, de-

liberate, and focused. In contrast to the indiscriminate scanning activity typically

associated with autorooter and worm propagation activities, skilled adversaries will

go to considerable lengths to mask their activities.

Almost all current scanning detection algorithms correlate scanning activity based

on the perceived last-hop origin of the scans; we call these attribution-based detection

schemes. However, there are situations (i.e. in cases of remote scanning of an en-

terprise network) where determining true attribution (e.g. the actual scan controller,

where this differs) is not possible. Furthermore, in some cases the use of attribution-

based detection schemes is entirely ineffective as the scans may either be so slow or so

broadly distributed that they exhaust the finite computational state of scanning de-

tection systems or fail to exceed some predefined alert threshold. Although a network

operator may be interested in knowing what type and amount of scanning activity is

occurring, this is largely irrelevant if the proper security countermeasures are in place

and relevant software patches are available and up-to-date. However, the situation is

different if any of the scans are a more likely precursor to a successful attack. Current

scanning detection techniques do not take advantage of this observation. Our view

is that against a growing array of scanning strategies from remote hosts, attribution

3

is becoming a quixotic approach to scan detection that overlooks an often critically

important question that we suggest should be a much higher focus of scanning detec-

tion, namely, “What is the adversary looking for and, are we vulnerable with respect

to that resource?”

Our thesis is that network scanning detection techniques can both leverage and

benefit from local knowledge obtained from considering an enterprise network’s topol-

ogy and the perceived origin (i.e. internal or external to the network) of the scanning

activity. Specifically, systems exhibit anomalous behavior in their interactions with

physical and logical interconnections that define the enterprise network when they are

scanning or are the target of a scan that can provide indications of scanning activity.

The research presented in this thesis pursues the following 3 hypotheses.

Hypothesis 1: to better defend the enterprise network, it is possible to design and

deploy a suite of practical scanning detection techniques, that improve upon existing

approaches, with acceptably low false postive/negative rates, and that are responsive

within a very small number of scans (e.g., 1 to 3 scans - as low as a single scanning

attempt).

Related to hypothesis 1, this thesis explores 3 new techniques to detect the differ-

ing topological vantages of attack (i.e. remote to local, local to remote, and local to

local) within an enterprise network.

Hypothesis 2: it is possible to make novel use of address resolution protocols to

detect malicious network activity, including some zero-day worms.

Hypothesis 3: it is possible to devise a highly efficient scan detection technique

which does not rely on who is doing the scanning, but rather on what service (or

in general, what resource) is being scanned for. Here, as one example of efficiency,

system state (in terms of main memory consumed) need not increase linearly with

bursts in external scanning activity.

1.2 Network-based Intrusion Detection Schemes

Network scanning activities are typically undertaken to locate and identify active

hosts in the network and the associated services they offer (i.e. designated by open

ports). A variety of complex heuristics have been successfully developed to detect

4

scanning activity including the observation of connection failures [29, 58], statisti-

cal measures [31, 64], abnormal network behaviors [71, 76, 18], and connections to

network darkspace (i.e. the unused IP addresses within a network) [19, 36]. Those

network scanning detection algorithms that identify remote host (i.e. hosts external

to the local network) scanning activity can be considered attribution-based as they

focus largely on observing and classifying external network behavior (i.e. incoming

network connection attempts) to detect scanning systems and therefore experience

the limitations described in the previous section.

Network scanning detection techniques are implemented in a number of network-

based intrusion detection systems. A number of definitions exist that attempt to

define network-based intrusion detection systems based on a characterization of their

underlying detection principles, however, they can be broadly classified into three

types (adapted from [59]): (1) misuse detection, (2) anomaly detection, and (3)

specification-based detection.

• Misuse detection is implemented by comparing collected network data to

known malicious intrusion signatures (e.g. patterns). Misuse detection systems

typically do not require any training periods and are fairly simple to use and

deploy. They are limited in that they are only able to detect malicious activity

based on prior knowledge (e.g. some unique discernible pattern of the attack is

known) and therefore new or novel attacks may not be detected.

• Anomaly detection is implemented by comparing the behavior of the network

or systems that comprise it with a model of expected behavior. The model of

normal behavior is typically constructed through the use of a training period

or datasets and the use of machine learning techniques. In general, an impor-

tant consideration for any technique that requires a training period is that any

existing malicious activity may become part of the baseline. Techniques based

on anomaly detection have the potential benefit of being able to detect new or

novel attacks but they usually involve a time intensive endeavor to keep updated

and can be complex to use. For instance, additional analysis will be required

to identify both the type and severity of any detected attack.

5

• Specification-based detection is implemented by developing specifications

of legitimate system behavior for comparison against observed system behavior.

Although this technique is similar to anomaly-based detection, it does not rely

on machine learning techniques but rather manually developed specifications of

accepted system behavior. In practice, specification-based detection techniques

avoid the typically high false positive rate experienced by anomaly-based tech-

niques but at the expense of a significant amount of time to develop proper and

comprehensive specifications.

The network scanning detection strategies developed in this thesis can be catego-

rized as anomaly-based detection techniques. Specifically, our techniques rely on the

passive observation of internal network hosts as they interact with hosts both within

and external to the local enterprise network.

1.3 Contributions

The overall contributions of this dissertation can be summarized as follows.

1. Internal Network Scanning Detection Techniques: we present two new

techniques to detect scanning systems within a local network based on the

anomalous behaviors they exhibit when using the address resolution protocols

(i.e. Address Resolution Protocol (ARP) [48], and Domain Name Service (DNS)

[37]). Based on our evaluation, using datasets obtained from a small university

network, these techniques offer a significant improvement over existing scan-

ning detection techniques. Specifically, in certain network environments, these

techniques can identify scanning hosts within an enterprise network after the

observation of only a single scanning attempt with a low false positive and

negative rate. Preliminary results appear in two published papers [71, 72].

(a) ARP-based detection: this behavioral signature is based on the ob-

servation that a scanning host targeting systems within its own network

exhibits anomalous behavior distinct from normal ARP activity; specifi-

cally, scanning hosts exhibit discernible behavioral changes in the amount

6

and pattern of ARP request activity of the scanning host, because a scan-

ning host targeting local network hosts triggers the broadcast of anomalous

ARP requests.

(b) DNS-based detection: we exploit the observation that the vast major-

ity of publicly available services are accessed through the use of DNS as

this protocol provides the mapping between numeric IP addresses and the

corresponding alphanumeric names. Many fast scanning worms and au-

tomated scanning tools use a pseudo random number generator (PRNG)

to generate 32-bit random numbers that correspond to an IPv4 address.

The use of a numeric IP address, instead of the qualified domain name of

the system, obviates the need for a DNS query. If we do not observe DNS

activity before a new connection is initiated, we consider this connection

anomalous and potential scanning activity.

2. External Network Scanning Detection Strategies: we present a technique

that detects network scanning activity (both UDP and TCP scanning) directed

against a local network from remote hosts. We exploit, for defensive purposes,

the concept of exposure maps and darkports. Exposure maps are tables listing

the open ports (ports actively providing service) on active systems. Darkports

refer to the unused ports on active systems.

(a) Exposure maps: are built by passively observing and characterizing the

connectivity behavior of internal hosts in a network as they respond to

both legitimate connection attempts and scanning attempts. Exposure

maps differ from current scanning detection techniques as they rely on

identifying the services offered by the network instead of tracking external

connection events. The result is a scanning detection technique in which

the utilized system detection state does not grow in proportion to the

amount and fluctuation of external network traffic, but rather increases

only with the number of services offered by the network, regardless of the

size of the network and the external network activity. Preliminary results of

this technique have been published [73, 75]. Unlike most attribution-based

7

scanning detection techniques (that detect remote scanning systems), the

scanning detection approach does not rely on identification of the scanning

source to detect scans against a network. Thus, it can detect certain classes

of sophisticated scanning techniques that make determining the root cause

of the scanning activity impractical. However, this approach does not

preclude the use of some form of attribution post scan detection. Scanning

worm propagation and auto-rooters are two prevalent examples of scanning

activities where immediately denying the scanning source access to the

network is both relevant and important.

(b) Comparison to Threshold Random Walk (TRW): TRW is a scan-

ning detection technique [29, 28] and has been positioned as the gold stan-

dard in existing scanning detection algorithms [22]. We performed a lim-

ited comparison (i.e. only a few selected values of TRW parameters were

chosen in our comparison; a more complete analysis would explore a full

range of values) with TRW and a modified TRW technique we developed

through augmentation with the exposure maps technique, using three dif-

ferent network datasets. Our results show that exposure maps offers an

equivalent scanning detection capability while offering additional function-

ality. Namely, exposure maps can be used to detect sophisticated scanning

activity, enable fine-grained automated defense against automated malware

attacks, provide a mechanism to identify the network information gained

by a successful scanning system, and detect real-time changes in a network

that may indicate a successful compromise. As well, the modified TRW

technique offers the possibility of better performance than TRW in terms

of faster scan detection as the use of the NEM obviates the need to wait

in the determination if a connection attempt will succeed or fail.

(c) Use for sophisticated scan detection: unlike existing scanning de-

tection schemes that rely on the correlation of multiple network events

(e.g. number of failed or successful connection attempts observed) to de-

tect and report scanning activity, the exposure maps technique generates

and records individual connection attempts to darkports (i.e. darkport

8

connection attempts – DCAs) that can be used for further analysis to de-

tect sophisticated scanning activity. We define the darkports on a given

(populated) host as those ports that have not been observed offering any

services, and thus are not expected to accept external connection requests

(see Section 4.1). We have developed post-scan parsing scripts that pro-

cess and use heuristics to: (1) classify DCAs into their respective scanning

campaigns, and (2) identify and correlate the DCAs that comprise a form

of distributed scanning. As one example, we analyze in detail a distributed

scan involving the coordination between 14 scanners detected by our tech-

nique in one of the network datasets. The raw output from exposure maps

supports the rapid development of additional heuristics to identify other

types of simple or sophisticated scanning activity (e.g. slow scanning).

3. Other Applications of Exposure Maps: the exposure maps technique offers

the additional benefit of enabling the following capabilities.

(a) Automated response: the identification of darkports during the con-

struction of the exposure maps provides network-centric knowledge en-

abling fine-grained automated responses, e.g. to identify and deny specific

systems network access when they are found to be both performing scan-

ning activity and thereafter trying to access a legitimate service in the net-

work (common behavior for auto-rooters and scanning worms [44]). This

introduces the ability of selective automated response: a focused real-time

active response option that limits the introduction of new access control

rules to exclusively deny only those scanning systems known to be directly

threatening network assets (i.e. those known to be targeting actual services

offered by the network). We emphasize the subtle point, that (using our

technique) systems that scan for services not offered by the network may be

simply identified (i.e. scan recorded) but otherwise ignored (e.g. no access

control rule need be introduced to block the associated source IP address).

This ability to initiate selective automated response reduces network con-

figuration changes, complexity errors (e.g. by avoiding a dramatic increase

9

in router/firewall rules, and possibly leading to a self-imposed denial of ser-

vice), and avoids unnecessary performance degradation of network security

devices [8, 78].

(b) Network asset identification and discovery: the exposure maps tech-

nique can be used on both enterprise and backbone networks to logically

classify systems into exposure profiles that identify and group systems ac-

cording to the services they offer. We provide a risk-based example of how

hosts can be grouped into profiles by the services they offer and the per-

ceived threat to the network (e.g. a host that offers a service on a known

trojan port would be grouped into the high risk profile). The exposure pro-

files are configurable and therefore suitable for any network environment.

Additionally, we discuss the practical application of exposure profiles and

how they can be used to identify malicious network activity (e.g. botnets

and worm outbreaks). The technique requires very little computational

overhead and easily scales to large enterprise environments or even back-

bone networks.

(c) Reconnaissance Activity Assessment (RAA): we extend the basic

exposure maps concept to include information obtained by recording ap-

plication banners associated with the IP address and port/protocol of the

host offering the service (i.e. an enhanced exposure map). Application ban-

ners are routinely sent by servers that offer frequently used protocols (e.g.

SMTP, HTTP, SSH) responding to client requests. These banners typi-

cally contain information such as type of application software and version

number. An enhanced exposure map is analogous to an overall catalogue

of the host application information (i.e. type and version) divulged by

the local network to friend and foe alike. It provides a mechanism to

enumerate, record, and report this information leakage in near-real time

that enables: (1) confirmation that the applications installed on specific

hosts are in compliance with the network security policy and (2) a method

to determine what network services (i.e. IP address, port, protocol) and

application (e.g. banner, server strings) information was divulged to an

10

adversary as a direct result of specific network scanning campaigns. The

framework developed to passively detect the application banners for inclu-

sion in an exposure map is extensible (i.e. using a Bro policy script that

contains signatures using special text strings known as regular expressions

(regex) [52] that can precisely describe search patterns) and can accom-

modate new or custom application identification. Thus, we provide an

answer for the question, “What information has been revealed about the

network as a result of a specific detected scanning activity?”

The above contributions are supported by prototype implementations. The three

scanning detection techniques mentioned above (described in items 1 (a), 1 (b) and

2 (a)) have been fully implemented (including both UDP and TCP scanning detec-

tion) and tested in either a software prototype (for the DNS-based and ARP-based

techniques) or as Bro [45] policy scripts (for the exposure maps technique) using

commodity platforms. Additionally, we built and tested a new variant of the TRW

scanning detection algorithm that augments TRW with our exposure maps technique

in a Bro policy.

1.4 Overview of Chapters

The overall structure of the dissertation is as follows. Chapter 2 provides basic back-

ground on network discovery techniques, and network scanning strategies. Chapter 3

discusses related work in the field and the current state of the art in network scanning

detection techniques. Chapter 4 describes our evaluation approach and methodol-

ogy for the exposure maps technique including our implementation in a Bro policy.

Chapter 5 discusses our evaluation datasets and testing results for all of the expo-

sure maps capabilities including a limited side-by-side comparison with TRW and a

modified TRW technique that has been augmented with an exposure maps NEM.

Chapter 6 describes our evaluation of our DNS-based scanning detection technique

that includes a detailed discussion of our implementation, evaluation methodology,

testing results, and limitations. Chapter 7 describes our evaluation of our ARP-based

11

scanning detection technique that includes a detailed discussion of our implementa-

tion, evaluation methodology, testing results, and limitations. Chapter 8 summarizes

the contributions this dissertation and describes future research directions. Finally,

Appendix A contains reference material that includes an acronym list as well as a list

of network services with the associated TCP/IP port numbers.

Chapter 2

Background

In this chapter we provide a discussion of passive and active network discovery tech-

niques as well a variety of network scanning strategies.

Some form of reconnaissance activity often precedes an attack. An effective mech-

anism used by an adversary to remotely probe a network is port scanning [16]. A port

scan can be defined as sending packets to a particular IP/port combination to elicit

a response in an attempt to discover active systems in the network and the particular

services they offer. Even in the instance where no response is given from the host be-

ing port scanned, the adversary still learns something about the host or the network

where it resides. Namely, the host is either unreachable due to network constraints

(e.g. not accessible remotely, behind a firewall) or the service being scanned is simply

not offered. Port scans are directed against a host using either the UDP or TCP pro-

tocol on one or more of the 217 possible ports (i.e. 216 TCP ports and 216 UDP ports).

Herein when the terms scanning or scan are used in this thesis we are referring to port

scanning. Additionally, we refer to a series of connection attempts (i.e. one or more)

to IP/port combinations in which there is insufficient evidence to determine if the

activity is a scan or simply the result of legitimate connection attempts as ambiguous

connection attempts.

We define how exposure maps detects scanning activity in Section 4.1.1 and de-

scribe two heuristics we developed for analyzing Darkport Connection Attempts (see

Section 4.1.1, page 43) generated by the exposure maps technique for use in our

side-by-side comparison with TRW and the detection of distributed scanning activ-

ity in Sections 5.1 and 5.1.2 respectively. We define how the modified TRW and

TRW techniques classify network activity as scanning activity in Sections in 4.1.5

and 3.1 respectively. Finally, we define how the DNS-based scanning detection (i.e.

anomalous DNS activity) and ARP-based scanning detection (i.e. anomalous ARP

12

13

activity) techniques classify network activity as scanning activity in Sections 6.1 and

7.1 respectively.

2.1 Passive and Active Network Discovery Techniques

Network scanning is a form of active scanning. The term active is used to describe

this activity as some stimulus (i.e. packet) is injected in the network to generate a

response from the recipient. Active scanning is a technique employed by malicious

adversaries to probe a network. However, active scanning has legitimate uses as a part

of a robust network security policy that incorporates vulnerability scanning. Active

scanning allows a network operator to discover the open services in the network so

they can be checked for known vulnerabilities. For instance, Nessus [41] is an active

vulnerability scanner that can discover the type of operating system, applications,

databases, and network services running on individual hosts. This information can

be checked against a database of known vulnerability information to determine if a

discovered host is potentially vulnerable to any of these known attacks. In contrast,

passive service discovery is the process of monitoring network layer traffic to detect

network topology, offered services, and applications. Passive service discovery does

not generate any network traffic between the servers and clients in a network.

Remote operating system fingerprinting is the action of trying to remotely deter-

mine the operating system of a particular host of interest. For instance, Nmap [21]

is an active OS fingerprinting tool that sends packets to a host so that any responses

(or lack of responses) can be analyzed. The responses to these sequences of packets

form a signature or fingerprint for the remote operating system that can be compared

against a signature database of known operating system versions. Operating system

fingerprinting takes advantage of the observation that each operating system’s net-

work stack (i.e. software that implements the TCP/IP protocol) has slight variations

in the way it responds to certain packets. These variations offer the ability to re-

motely determine the type of operating system. For instance, one OS fingerprinting

test is to send a TCP SYN packet with no flags set (i.e. known as a NULL packet) to

the host being scanned. The type of response (or lack of a response) to this packet

gives insight about the type of operating system being scanned. A series of additional

14

similar tests are performed concurrently (using other forms of unusual packets) and

once the results are correlated and analyzed, the type and version of the operating

system is usually revealed. In contrast, p0f [81] is a passive operating system finger-

printing tool. It can determine characteristics such as the presence of a firewall or

proxy, distance (hop-count) to the physical system, host up-time, and the link speed

of the remote host. p0f does not generate any packets on the network it is monitoring.

Instead, p0f relies on extracting features exclusively from the passive observation of

network activity between hosts of interest.

Application fingerprinting is the action of trying to remotely determine the ap-

plications or services running on a particular host of interest. Servers routinely send

information about the applications they are running to client systems during normal

connection activities. The initial text sent by servers during a connection attempt

is known as a banner. The act of harvesting banners (i.e. banner grabbing) during

passive or active identification of network systems and their applications is a well

understood concept. For instance, banner grabbing would be routinely performed

during vulnerability testing (e.g. penetration testing) of the network. The software

versions advertised in application banners can identify potential security issues if it

is determined that the software version contains known vulnerabilities.

An examination of the Server field in the HTTP response header, such as

Apache 2.0.54 (Debian GNU/Linux), provides an example of how banner grabbing

can be used to identify HTTP servers. This response exhibits the type of server

software, software version, and underlying operating system. The purpose of an

application banner is to facilitate determining how a client system can best interact

with the server based on the applications it is running. This information also divulges

to an attacker potential vulnerabilities in the system associated with the specific

version of the software.

Passive Asset Detection System (PADS) [61] is signature-based software used to

passively detect network assets using application fingerprinting. It attempts to pro-

vide an accurate and current listing of the hosts and services offered on the network.

It utilizes the TCP, ARP, and ICMP protocols to perform its signature matching.

15

One of the methods it uses to perform application layer fingerprinting is banner grab-

bing. Trickler is another publicly available (upon request) software tool to do passive

network characterization [34]. It can passively fingerprint hosts without the use of

signatures and track the state of tens of millions of hosts on commodity hardware.

Considerations for Passive and Active Techniques. Active scanning

techniques are well suited to find the open services currently on a network. However,

these techniques are not without their drawbacks. The results from an active scan can

only be considered a snapshot in time of the services being offered on the network and

may quickly become out of date and inaccurate. Furthermore, the scans generated by

these techniques can be invasive and in some instances cause service interruptions due

to the type of packets (e.g. malformed, unlikely flag combinations, etc.) that may be

sent when trying to identify a host or service. In contrast, passive network discovery

techniques continuously monitor the network providing a near real-time view of the

offered services and active hosts. As no packets are injected in the network, there is

no risk of unintentional service disruption. Passive monitoring also has the advantage

of being able to find intermittently offered or protected services that are often missed

by active probing (e.g. behind a firewall) [6]. However, passive monitoring techniques

are much slower at detecting inactive hosts and transient services. Additionally,

passive network discovery techniques can identify hosts and variations in versions of

the services they offer only if it is discernible in network traffic (i.e. the particular

software version transmits some type of unique pattern). For instance, if a patch

was applied to a new version of an application that did not change its behavior on

the network, it would not be possible to determine if the host was using the old or

new version of the software. It is important to note that active scanning techniques

will also have this limitation if a type of probe cannot be developed to differentiate

between software versions. Finally, there have been techniques proposed to defeat

OS fingerprinting [62] that could be extended to application fingerprinting. In this

scheme, a network scrubber is used in-line to modify packets sent by local network

hosts to remote systems thus obfuscating the features required by OS fingerprinting

tools.

16

2.2 Network Scanning Strategies

Network scanning activity in an enterprise network can be characterized as occurring:

local to local (L2L), local to remote (L2R), and remote to local (R2L).

L2L network scanning refers to a host that scans systems within the boundaries

of the enterprise network in which it resides (see Figure 2.1(c)). Topological scanning

worms frequently employ this type of scanning strategy. In larger enterprise networks,

it is not unusual for network segments to be either logically or physically separated.

In fact, an enterprise network may be comprised of several distinct subnets (often

referred to as cells). This separation can occur for a variety of reasons including

security, ease of administration, and geographic location. Figure 2.1(a) shows a net-

work containing three logical cells. L2L network scanning activity can occur within

or between network cells.

L2R network scanning refers to a host within administrative control of the enter-

prise network scanning systems outside the network boundary (see Figure 2.1(d)). In

this context, the scanning host is performing network reconnaissance against external

systems.

R2L network scanning refers to scanning activity directed at a network by a host

outside the target network’s administrative control (see Figure 2.1(b)).

The majority of publicly available research to date has been focused on detecting

R2L network scanning activity. We have developed scanning detection strategies that

detect R2L as well as L2L, and L2R scanning activity.

The following two subsections describe network scanning approaches that can be

broadly characterized into two categories: wide-range reconnaissance, and target-

specific reconnaissance.

2.2.1 Wide-range Reconnaissance

Wide-range reconnaissance can be defined as the rapid scanning of large blocks of

Internet addresses in the search for a specific service or vulnerability. Typically, there

is little human interaction in this type of reconnaissance. This is characteristic of

auto-rooters [66] and worm propagation. Auto-rooters are composite tools that aug-

ment basic port scanning functionality by launching an attack as soon as an open

17

!"#$%"$#

&'()*+,

-./

&'()*+,

(a) Network Cells.

!!!!!!!!!"#$%&#%$

'()*+,!

-./

'()*+,!

'01##2#3

(b) Remote to Local (R2L) Scanning Activity.

(c) Local to Local (L2L) Scanning Activity.

!!!!!!!!!"#$%&#%$

'()*+,!

-./

'()*+,!

'01##2#3

(d) Local to Remote (L2R) Scanning Activity.

Figure 2.1: Network Scanning Activity.

18

port is located on a target system [4]; they are often used for the rapid enrollment

of vulnerable systems into botnets of tens or hundreds of thousands of compromised

systems [5]. Simple scanning worms propagate by indiscriminately probing the In-

ternet as rapidly as possible to locate and infect vulnerable systems. Scans from

auto-rooters and scanning worms can usually be attributed to the true source as the

scans themselves are the first stage of the actual exploit attempt (e.g. a response,

from the target, to a TCP SYN connection request will start the exploit in the same

session). The next section explores worm propagation strategies in detail.

2.2.2 Target-specific Reconnaissance

In contrast to such indiscriminate scanning, skilled adversaries may go to considerable

lengths to mask their activities. Numerous sophisticated scanning techniques allow

stealthy, focused scanning of a predetermined target (host and/or network); some of

these make attribution to the scanning source impractical, rendering most current

scanning detection techniques ineffective. The following techniques belong to this

category.

Indirect scanning occurs when an attacker uses one system (or systems) to scan a

target and another system to attack the target. This separation defeats attribution

attempts. If the scanning activity from the scanning system is detected (e.g. blocked

at a network router, or by system administrator intervention), the attacker simply

uses another scanning system. A slightly more sophisticated variation uses throw-

away scanning systems, i.e. previously compromised systems that have little value to

an attacker other than being able to provide a disposable platform to perform tasks.

Any scanning activity traced back to the source, will be attributed to the owner of

the compromised system.

Distributed scanning occurs when multiple systems act in unison using a divide

and conquer strategy to scan a network or host of interest. Typically, one system

will act as a central node and collect the scanning results from all participating

systems. Distributing the scanning activity reduces the scanning footprint from any

single system and thus reduces the likelihood of detection. An extreme version of

distributed scanning involves an attacker using a botnet (see below) to scan a target

19

in a coordinated manner resulting in very stealthy scans.

Botnet scanning occurs when a collection of compromised systems (bots or zom-

bies) are used to scan a target. A botnet can provide an attacker with, in essence, an

unattributable method of reconnaissance. For instance, consider a botnet owner that

has an exploit capability against a network service. A botnet of approximately 65,000

systems would be able to scan an entire Class B network for this service by sending a

single packet from each bot (each with a unique IP address). In this example, even if

it were possible to correlate this activity to a single scanning campaign, it still would

not reveal the true adversary as the bots are simply zombie participants.

Idle scanning [57] allows an attacker to port-scan a target without sending a single

packet from the attacker’s own system.1 The attacker first sends a SYN packet to the

port of interest on the target host spoofing the source address of the packet with

the IP address of an innocent system (hereafter referred to as a bot). If the port

is open, the target responds to the bot with a SYN ACK. The bot does not expect

this unsolicited SYN ACK packet so it responds with a RST packet to the target

and increments the 16-bit identification field (IPID) it includes in its IP header. The

attacker then sends a SYN packet to the bot and observes the IPID field of the RST

packet the bot sends back. If the IPID has been incremented, the port on the target

was open. Idle scanning utilizes side-channel communication by redirecting the scan

and bouncing it off a third-party system. Most scanning detection algorithms will

erroneously identify the third-party system as the scanner.

Low and slow scanning occurs when an attacker slowly scans a target host or

network (e.g. a single scanning campaign may take days, weeks or months). Slow scans

may blend into the network noise never exceeding detection thresholds or exhausting

detection system state.

2.2.3 Worm Propagation Methods

A computer worm is a program that can self-propagate across a network by exploit-

ing vulnerable systems [69]. Worms are typically classified based on two attributes:

methods used to spread, and the techniques used to exploit vulnerabilities. Every

1See also: Idle Scan and related (IPID) games, http://www.insecure.org/nmap/idlescan.html

20

vulnerability a worm can exploit allows it to self-propagate across a network. Most

worms propagate by using indiscriminate scanning of the Internet to identify vulner-

able systems. As revealed by Slammer [39], the faster a worm can locate systems

the more rapid the infection rate. Staniford et al.’ s study [65] used empirical data

from actual worm outbreaks to derive a common effective propagation strategy, the

random constant spread (RCS) model, wherein a worm randomly scans through the

entire Internet IPv4 address space, of 232 systems, searching for vulnerable systems.

Traditional Propagation Methods. The limiting factors which dictate how

fast a worm can spread are [68]: (1) the rate of scanning used to detect vulnerable

systems, (2) the population of vulnerable systems, (3) the time required to infect

vulnerable systems, and (4) its resistance to countermeasures. The spread of a random

scanning worm can be described in three phases [82]: the slow spreading phase, fast

spreading phase, and slow finishing phase.

In the slow spreading phase, the worm is building up an initial base of infected

systems. Although it is infecting systems at an exponential rate, the small initial

population limits the propagation speed. Once a certain threshold of infected hosts

is reached, the worm begins the fast spreading phase. Models derived from actual

worm data indicate that this threshold is approximately 10,000 systems [65]. Worms

can use a number of different techniques to propagate including [65]:

1. Random Scanning. The Internet IPv4 address space consists of 232 unique IP

addresses. Using a pseudo random number generator, the worm randomly scans

the Internet address space searching for systems to infect.

2. Subnet Scanning. A subnet is a range of logical IP addresses within a defined

network address space. Using the host’s own IP address as a reference, the worm

scans the IP addresses in that subnet. Generally, systems within a subnet will

be located physically close to one another and have a similar security stance.

3. Topological Scanning. Instead of performing random or subnet scanning, the

worm uses information resident on the host to find vulnerable systems. This

information includes URL caches, peer-to-peer connections, trusted network

connections, and email addresses from address books on the host machine.

21

4. Mass email. Using host-resident emailers, worms can utilize information as in

topological scanning, for example harvested email addresses from existing email

address books, the inbox of the email client, and web page caches. Copies of

the worm are then sent to all the hosts corresponding to the harvested email

entries.

5. Network Share Traversal. Through shared network drives, systems often have

access to directories on other systems. By placing itself on a host that is part of

a shared system, a worm can use this shared access to infect other systems. The

worm can also take a more active role and change permissions on directories or

add guest accounts. This technique is also related to topological scanning.

6. Web-based Attacks. There are a multitude of web server attacks available that

can be used by worm writers to infect systems [50]. Once the worm has infected

the system, it can append malicious code to specific or random web pages.

Systems that access these modified web pages with a vulnerable web browser

will be infected.

7. Hit-list Scanning. A hit-list is a list of vulnerable systems that are high-

probabillity-of-success candidates for infection. Typically, a hit-list is generated

by previous reconnaissance activities such as: network scanning, web surveys,

DNS queries to obtain IP addresses, and web spiders. A hit-list is used to allow

a worm to rapidly spread in the first few minutes. This increases its virulence

and its chances of survival.

8. Permutation Scanning. Random scanning of the Internet for vulnerable hosts

can be inefficient because many addresses may be probed multiple times. One

way to address this limitation is to have the worms share a common pseudo

random permutation of the Internet address space. Infected systems can start

scanning at a specific point in the permutation selected in such a way as to avoid

unnecessary duplication in scanning between infected systems. If the worm

detects an infected system within its scanning permutation order, it simply

picks a new random point in the permutation and begins scanning again. Thus,

no communication between infected systems is required to reduce the amount of

22

redundant reinfection and this technique also imposes a measure of coordination

on the worm.

Items 7 and 8 are hyper virulent worm propagation strategies described by Weaver

et al. [65]. Prior to 2004, these strategies were apparently not implemented by worm

writers. The analysis of the Witty worm [60] suggests that due to the propagation

characteristics, simultaneous scanning likely occurred due to the use of a hit-list or

because of a timed release from a group of previously compromised systems.

Chapter 3

Related Work

In this chapter, we review the relevant literature on techniques and methods to per-

form network scanning detection for an enterprise network. Section 3.1 contains an

analysis of the Threshold Random Walk (TRW) scanning detection algorithm that

includes a description of a specific implementation of the algorithm by Jung et al.

[29]. Sections 3.2 and 3.3 respectively, discuss a variety of additional external network

scanning detection (i.e. R2L) strategies and internal network scanning detection (i.e.

L2L and L2R) strategies.

3.1 External Network Scanning Detection Strategies – TRW

Jung et al. [29] developed an algorithm called Threshold Random Walk (TRW), to

identify malicious scanning activity from remote hosts. We summarize their work

here. The approach uses sequential hypothesis testing to evaluate each new connection

request. They based this algorithm on the observation that scanners are more likely to

try and access hosts and services that do not exist than legitimate remote hosts. Thus,

if a host tries to connect to a system and the destination exists, then there is support

for the hypothesis that the source is benign. If the destination does not exist, this

is used as support for the hypothesis that it is more likely a scanning system. Once

there is enough evidence gathered through observation of ongoing network activity,

one of two hypotheses is either accepted or rejected.

Specifically, the algorithm evaluates two possibilities, H0 and H1, where H0 is the

hypothesis that the remote source of the connection attempt (r) is benign and H1

is the hypothesis that r is a scanner. Given a remote host r, let Yi be the random

variable that represents the outcome of the connection attempt by r to the ith distinct

local host, where

23

24

Yi =

0 ; if the connection attempt is a success

1 ; if the connection attempt is a failure
(3.1)

If we assume that conditional on the hypothesis Hj, the random variables Yi, i =

1, 2, ... are both independent and identically distributed, then variable Yi can be ex-

pressed as

Pr[Yi = 0|H0] = θ0; Pr[Yi = 1|H0] = 1− θ0

Pr[Yi = 0|H1] = θ1; Pr[Yi = 1|H1] = 1− θ1

(3.2)

We would expect θ0 to be relatively high, and θ1 to be relatively low (as discussed

further below). As each new connection attempt is observed, the likelihood ratio for

the remote host is defined as [29]

Λ(r) =
n∏

i=1

(
Pr[Yi|H1]

Pr[Yi|H0]
) (3.3)

where Yi is the collection of events observed thus far involving the specific remote host

r, and n is the total number of observed connection attempts by r to the local network.

The likelihood ratio is compared to a lower threshold, η0, and an upper threshold,

η1. If Λ(r) ≤ η0 then hypothesis H0 is accepted. If Λ(r) ≥ η1 then hypothesis H1

is accepted. After a certain number of connection attempts or a timeout period is

observed if neither η0 or η1 is reached, the remote host is classified as undetermined,

i.e. it is not possible to determine if it is a scanner or benign (see Figure 3.1).

The two hypotheses (H0, H1) can generate four possible outcomes.

1. True Positive: this decision occurs when H1 is selected and H1 is true.

2. False positive: this decision occurs when H1 is selected and H0 is true.

3. False negative: this decision occurs when H0 is selected and H1 is true.

4. True Negative: this decision occurs when H0 is selected and H0 is true.

The TRW probability of detection variable, PD, and the false positive probability,

PF , are used to bound the performance conditions of the algorithm. The detection

probability, PD, is the probability that H1 is selected when H1 is true while the false

25

!1

!0

Undecided

Scanner

Benign

Time

Ratio

Figure 3.1: Using Likelihood Ratio to Classify Remote Hosts.

positive probability, PF is the probability that H1 is selected and H0 is true. The

upper threshold (η1) that supports hypothesis H1 is

η1 =
PD

PF
(3.4)

When PD and PF are replaced by the user defined values β and α respectively, η1 is

defined as

η1 :=
β

α
(3.5)

The lower threshold (η0) that supports hypothesis H0 is

1− PD

1− PF
= η0 (3.6)

When PD and PF are replaced by the user defined values β and α respectively, η0 is

defined as

η0 :=
1− β

1− α
(3.7)

The average number of connections a remote host needs to make (N) before a

determination of whether it is benign or a scanner can be made is a function of α, β,

26

θ0, and θ1. Specifically, the expected number of observations required to determine if

a remote host is benign, E[N |H0], or a scanner, E[N |H1], is defined as [29]

E[N |H0] =
α ln

β

α
+ (1− α) ln

1− β

1− α

θ0 ln
θ1

θ0
+ (1− θ0) ln

1− θ1

1− θ0

E[N |H1] =
β ln

β

α
+ (1− β) ln

1− β

1− α

θ1 ln
θ1

θ0
+ (1− θ1) ln

1− θ1

1− θ0

(3.8)

The alert threshold (η0 and η1) is defined based on both the desired detection and

false positive/negative rates. The typical assignment for a desired false positive rate

(α) is .01 and .99 for the desired detection rate (β) [29]. The θ0 and θ1 variables define

the calculations of the likelihood ratio based on whether a successful connection from

a remote host is from a benign or scanning host respectively.

The value chosen for θ1 should be dependent on the network being monitored. A

reasonable setting for θ1 would be based on a ratio of the number of remotely accessible

active hosts in the network (i.e. density of remotely accessible hosts) to total local

network address space. For instance, in a quarter class C network (not including

broadcast addresses) with 3 remotely accessible servers, a value of θ1 = .04838 (i.e.

3/62) may be appropriate. It is more subjective as to what the value θ0 should be

set. However, given that θ0 is the probability that a benign host makes a successful

connection attempt it should be set relatively high. In the original paper [29], the

authors set the value of θ0 = .80 and θ1 = .20 based on their analysis: that very few

benign hosts made connections to more than four distinct IP addresses; the observed

differences in the network behavior of scanning and benign hosts within the network

datasets; and the knowledge of the host density of the network.

Using these same values if a remote host made four failed connection attempts, in

the absence of any successful connection attempts, it would be considered a scanner

[29]; there was an additional constraint for this specific implementation in that these

failed connection attempts had to occur against unique hosts. Note that from equation

(3.3), the smallest positive integer x such that Λ(r) = (1−θ1
1−θ0

)x ≥ η1 is x = 4. It was

27

argued that requiring the observation of at least four failed connection attempts to

unique hosts in the network before a remote host could be classified as a scanner

would reduce the number of false positives that a lower threshold would produce

due to either peer-to-peer (P2P) or backscatter traffic [40]. In the case of a remote

host that makes both successful and failed connection attempts to the local network,

the likelihood ratio will either be reduced or increased by an amount dependent, in

part, on the values of θ0 and θ1. The calculations of the likelihood ratio, and the

comparisons to the thresholds, will continue until some threshold (η0 or η1) is reached

thereby selecting a hypothesis, or the connection pattern history of the remote host

does not allow the algorithm to reach a decision on whether the remote host is benign

or a scanner (e.g. an insufficient number of connection attempts are observed or the

connection patterns are such that no decision on a hypothesis can be made). It should

be noted that the summing of values θ0 = .80 and θ1 = .20 to 1 is purely coincidental

and leads to symmetries (e.g. in terms of the number of failed or successful connection

attempts to declare a remote host is a scanner or benign) that do not hold in general.

TRW, as discussed above, has been implemented as a scanning detection algorithm

in Bro. Bro [9] is an open source intrusion detection system developed by Paxson.

Bro passively monitors a network link and uses an event engine to generate a variety

of events based on the network traffic it intercepts. Events are then processed by

user-supplied policy scripts to perform both network and security analysis in near

real-time. Policy scripts contain event handlers that can perform various actions

based on the corresponding event generated. The event handlers can generate and

maintain global state information as well as specify the actions Bro should take (e.g.

record activity to log file, update data structures, generate an alert) in response

to network events. Bro inspects and groups packets into connections for analysis.

This model is a natural fit for the TCP protocol. The UDP and ICMP protocols

are connectionless but nonetheless are also modeled as connections using a flow-like

definition. Specifically, a flow can be described as a set of TCP or UDP packets that

share the same connection parameters (i.e. source IP, destination IP, source port, and

destination port) indicating they are part of the same connection.

The trw-impl.bro policy implements the TRW algorithm by Jung et al. [29]

28

for the TCP protocol. In order to understand how TRW is implemented as a Bro

policy, we now discuss in detail relevant aspects of Bro as well as the high-level TRW

implementation details found in the trw-impl.bro policy.

Bro Monitoring System

Bro Policies

alarm.bro

trw-impl.bro

conn.bro

trw-impl.bro

tcp.bro

conn.bro
2. initiate function call

3. return boolean value

generate TRW scan alerts

1. network event

Figure 3.2: trw-impl.bro Policy Interaction.

The TRW algorithm is implemented as a function (i.e. trw-impl.bro) called when

any of the following events are handled in the conn.bro policy: event connection

_established, event connection_attempt, or event connection_rejected (see

Figure 3.2). When these events occur, connection information (i.e. a Bro-defined

connection record) as well as a boolean variable reverse is passed to the TRW func-

tion for evaluation. The reverse variable, if true, indicates that a TCP connection

has been established due to the detection of a SYN ACK packet but the associated

SYN packet that should have started the three-way TCP handshake has not been ob-

served. Although this is a natural possibility, it may also be as a result of SYN ACK

scan (i.e. a scan that consists of packets with the SYN ACK flag set) or more likely

backscatter traffic [40]. Ordinarily, Bro interprets the end point system that sends

the SYN ACK packet as the responding host. In this case, the end point system that

sent the SYN ACK packet is actually the originator of the connection (in the context

of responding and originating systems). Bro switches the systems roles accordingly.

The conn.bro policy is primarily responsible for generating one line summaries of

29

Table 3.1: Bro Connection States (adapted from [10]).
*indicates the state is associated with a failed connection attempt.

State Name Description

S0* SYN packet detected, indicating a new connection but no reply
was observed.

S1 Connection established, not terminated.
SF Normal connection establishment and termination.

REJ* Connection attempt rejected.
S2 Connection established and close attempt by originator seen

(but no reply from responder).
S3 Connection established and close attempt by responder seen

(but no reply from originator).
RSTO* Connection established, originator aborted (sent an RST).
RSTR Connection established, responder aborted.

RSTOS0 Originator sent a SYN followed by a RST, no associated SYN
ACK packet was observed from the responder.

RSTRH Responder sent a SYN ACK followed by an RST, we never saw a
SYN from the (purported) originator.

SH Originator sent a SYN followed by a FIN, we never saw a SYN
ACK from the responder (hence the connection is half open).

SHR Responder sent a SYN ACK followed by a FIN, no SYN from
the originator.

OTH* No SYN seen, just midstream traffic (a partial connection that was
not later closed).

observed connection information. Each connection is assigned a state as defined in

Table 3.1.

Figure 3.4 shows the sequence of events for the establishment and termination of

a normal TCP connection. Mapped within the state portion of this figure are seven

of the associated states identified in Table 3.1 at the point in the connection attempt

where they would be generated if the connection ended at the associated time (t).

For instance, the state S0 is generated when a SYN packet is observed at time (t)but

no other packets for this connection are seen. State S1 is generated as a result of a

TCP connection being fully established (i.e. three-way handshake was completed from

time t until time t+5) but no subsequent termination of the connection was observed

i.e., FIN and ACK packets expected between time (t+7+n) and (t+13+n) did not

occur. The value n ≥ 0 indicates some arbitrary amount of time has elapsed during

30

data transfer which depends on the specific connection. A state of SF indicates that

a complete TCP session was successfully established and terminated, i.e., all events

from (t) until (t+13+n) occurred.

Figure 3.3, shows the sequence of events that occur during a rejected TCP con-

nection. In this case, Host B rejects Host A’s TCP connection request and sends it a

packet with the REJ flag set.

The remaining states RSTRH, RSTOS0, SH, SHR, OTH from Table 3.1 are not

present in Figures 3.4 and 3.3. These states are generated as a result of some part

of the normal connection activity not being observed in the network traffic. For

instance, the OTH state indicates that the three-way handshake of the connection

was never observed in the network traffic.

Time Event

t

t+1

Host A sends a SYN packet to Host B

Host B receives Host A's SYN packet

t+2 Host B sends a REJ packet REJ

State

Figure 3.3: Rejected TCP Connection.

Time Event

t

t+1

Host A sends a SYN packet to Host B

Host B receives Host A's SYN packet

t+2 Host B sends a SYN ACK packet to Host A

S0

t+3

t+4

Host A receives Host B's SYN ACK packet

Host A sends Host B an ACK packet

t+6+n Data transfer occurs

t+7+n

t+8+n

Host A sends a FIN packet to Host B

Host B receives Host A's FIN packet

t+9+n Host B sends an ACK packet to Host A

t+10+n

t+11+n

Host A receives Host B's ACK packet

Host B sends Host A a FIN ACK packet

t+12+n Host A receives Host B's FIN ACK packet

t+13+n Host A sends Host B an ACK packet

S1

S2 S3

SF

RST0 RSTR

State

t+5 Host B receives Host A's ACK packet

Figure 3.4: Normal TCP Connection.

31

The S0, REJ, OTH, and RSTO states all indicate some form of connection failure

has occurred (see Table 3.1). The trw-impl.bro policy uses these connection states

to determine if a connection attempt has succeeded or failed. Recall that the TRW

algorithm is based on the observation that a scanner’s connection attempt is more

likely to fail than a benign host’s connection attempt.

The trw-impl.bro policy script attempts to classify hosts into five categories

(see Figure 3.5) based on the connection behavior they exhibit in accordance with

the pseudo code algorithm described in Figures 3.6 and 3.7. Specifically, a host that

exceeds a predetermined threshold of failed connection attempts it is considered a

scan source. The individual hosts within the local network that were scanned by the

scan source are known as failed locals. A host that exceeds a predetermined threshold

of successful connection attempts is considered to be a benign source. The individual

hosts within the local network that participated in the connections from the benign

source are known as successful locals. Finally, an external host that has been accessed

by an internal host prior to initiating a connection is considered a friendly remote.

Figure 3.6 (derived from [9]) shows the inputs, parameters, and associated default

values for the trw-impl.bro policy script. The following four parameters are used to

classify hosts based on their activity as described above as well as to determine the

overall sensitivity of the detection rate and the tolerated false positive rate:

1. target_detection_probability: the probability that a scan will be detected.

2. target_false_positive: the tolerated false positive probability.

3. theta_zero: the probability that a given remote host’s connection will succeed.

4. theta_one: the probability that a scanner’s connection attempt will succeed.

We now discuss how each of these parameters are set and provide a complete de-

scription of the pseudo code representation of the TRW algorithm found in Figure 3.7

(adapted from [9]). The connection record c for a particular connection event pro-

vides the source IP address, destination IP address, destination port, and connection

state information used in the trw-impl.bro policy script. First, at line 1, a check is

made to determine if the source IP address is part of the local network. If it is, the

32

Internet

Local Network

Scan Source

Internet

Local Network

Internet

Local Network

Friendly Remote

Benign SourceFailed Locals Successful Locals

Figure 3.5: Host Classification Possibilities for the trw-impl.bro Policy Script.

destination IP is checked to see if (1) it is not included in the scan_scources list, (2)

the destination port is not a member of the triggered_outbound_services set, and

(3) the connection state is not equal to OTH. The scan_sources set contains the set

of hosts that have been identified as scanners. If these checks are true, the destination

IP address is added to the friendly_remotes list and the function returns with the

boolean value of false (indicating this was not scanning activity). These checks serve

to identify local host initiated connections to remote hosts in which case the remote

hosts is considered to be friendly. There is one exception to subsequent inclusion in

the friendly_remotes set that occurs when a local host attempts to connect to a

destination port listed in the triggered_outbound_services list.

The triggered_outbound_services set contains a list of services (e.g. finger,

ident, FTP) known to make a host initiate a connection in response to a previously

received connection. For instance, the ident service [27] was designed to identify the

user or users of a TCP connection. The service normally runs as a server daemon

33

Figure 3.6: trw-impl.bro Pseudo Code - Inputs and Parameters.
Inputs:

1: c: connection record.
2: state: the observed end state of connection.
3: reverse: boolean.

Parameters:
4: target_detection_prob = 0.99 :probability of detection.
5: target_false_positive_prob = .01 :probability of generating a false

positive.
6: failed_locals = set of IP addresses indexed by the IP address pair of the

scanner IP address and a unique host IP address it has scanned.
7: successful_locals = set of IP addresses indexed by the IP address pair

of a remote host IP address and the unique host IP address it has made
successful connections to.

8: lambda = table of TRW values associated with each host for comparison
with the TRW threshold. Indexed by the IP addresses of remote hosts.

9: num_scanned_locals = the size of the set of unique local host IP addresses
a scanning system has scanned.

10: theta_zero = 0.8 :probability that a legitimate remote’s TCP connection
attempt to a unique host will succeed. Depends on the TRW model and the
local network topology.

11: theta_one = 0.2 :probability that a scanner’s TCP connection attempt to a
unique host will succeed. Depends on the TRW model and the local
network topology.

12: eta_one = .99 :based on equation (3.5) using the values of
target_detection_prob and target_false_prob.

13: eta_zero = 0.01 :based on equation (3.7) using the values of
target_detection_prob and target_false_prob.

14: triggered_outbound_services = ident, finger, 20/TCP :list of
services exempt from scanning detection.

15: friendly_remotes = set of IP addresses of the remote hosts that have been
accessed by internal hosts.

16: scan_sources = set of IP addresses of the remote hosts that have been
identified as scanners.

17: benign_sources = set of IP addresses of the remote hosts that have made
previous successful connection attempts.

18: established = false :initializing established variable.
19: flag = 0 :initializing flag variable.

34

Figure 3.7: trw-impl.bro Pseudo Code - Main Body of Function.
Main:

1: if {(src_ip) is a local network address}
2: if {(dest_ip) not in scan_sources}
3: and {dest_port not in triggered_outbound_services}
4: and {state <> OTH}
5: add (dest ip) to friendly remotes
6: return false
7: endif
8: endif
9: if {(src_ip) in scan_sources}
10: return true
11: endif
12: if {state is one of S0, REJ, OTH, RST0}
13: established := false
14 endif
15: if {not established}
16: if {(src_ip, dest_ip) not in failed_locals}
17: flag := 1
18: add (scr ip, dest ip) to failed locals
19: ratio := (1- theta_one)/(1- theta_zero)
20: endif
21: elseif {(scr_ip, dest_ip) not in successful_locals}
22: flag := -1
23: add (src ip, dest ip) to successful locals
24: ratio := theta_one/theta_zero
25: endif
26: if {flag = 0}
27: return false
28: endif
29: updated_lambda[src_ip] := lambda[src_ip] * ratio
30: if {updated_lambda[src_ip] > eta_one}
31: add (src ip) to scan sources
32: raise alert scan detected
33: return true
34: endif
35: if {updated_lambda[src_ip] < eta_zero}
36: add (src ip) to benign sources
37: return false
38: endif

35

on a system, accepting ident requests on port 113/TCP (i.e. port 113 is the default

ident TCP port). Although no longer standard practice, some legacy servers (e.g.

mail, FTP, and telnet servers) send an ident request to a client system in response to

a connection request. If the ident service is running on the client an ident response is

given. However, if ident is not an offered service most client systems simply respond

with a TCP reset and the connection to the server still occurs normally. To not

erroneously categorize such attempts triggered by legitimate local host activity as

scans, any connection attempts to the ident port are simply ignored by the TRW

algorithm.

The next check on line 9 of Figure 3.7 determines if the source IP address is

contained in the scan_sources set. If it is, a boolean true is returned by the function

(indicating this is scanning activity). This ensures that a source IP address already

determined to be a scanner (i.e. having previously exceeded the TRW threshold) is

not evaluated again so that additional alerts will not be raised as a result of previously

detected scanning activity.

If the connection state is equal to S0, REJ, OTH, or RSTO this indicates that a failed

connection attempt has occurred and the boolean variable established is set to false.

In effect, this check on line 12 can be regarded as a connection oracle (TRW-oracle)

that answers true or false to the question “Is the new connection attempt a success?”

If established is false and the source IP and destination IP address pair is not in the

failed_locals set, flag is set to 1 and the source and destination IP address pair is

added to the failed_locals set. The failed_locals set is the list of unique hosts

scanned by a scanner. Thus, subsequent failed connection attempts by a source IP

address to the same destination IP address are ignored. The implication of ignoring

repeated failed connection attempts from a source IP address to the same destination

IP address is that only scanning activity to unique destination IP addresses will be

considered when determining the source IP address’s associated likelihood ratio for

comparison with the TRW threshold.

If established is set to true, which means the connection has succeeded, then

flag is set to -1 and the source and destination IP address pair is added to the

36

successful_locals set (line 22 of Figure 3.7). Repeated successful connection at-

tempts from a particular source IP address to the same destination IP address are

ignored. This is done to ensure only successful connection attempts to unique desti-

nation IP addresses are considered when determining if a host has exhibited enough

past successful connection attempts to be considered benign and thus exempt from

further consideration as a scanner for a finite period of time (default one hour).

The flag variable determines how the ratio variable is defined, based on the

values of theta_one and theta_zero. For instance, using the values found in Figure

3.6 for theta_one and theta_zero, the ratio variable would be updated to either

4, when flag is 1, or 0.25, when flag is -1 (see lines 28 and 30 of Figure 3.7).

The updated_lambda table holds a value for each source IP address being tracked.

Each entry in the table contains a value equal to the product of the individual values

of the ratio variable for each trial. Thus, the updated_lambda table provides an

indication of each tracked source IP address’s past connection behavior in terms of

its connection successes and failures. Specifically, a failed connection attempt will

cause the value of the associated source IP address’s entry in updated_lambda[] to

increase by a factor of 4 while a successful connection attempt will decrease its value

by a factor of 4. If the updated_lamba[] for a given source IP address exceeds the

threshold eta_one, the host at the source IP address is considered to be a scanner.

The host’s IP address is added to the scan_sources set, an alarm is raised, and a

boolean value of true is returned. Conversely, if the value of updated_lamba[]is

below the threshold eta_zero (e.g. .01 per line 13, Figure 3.6), the source IP address

is considered to be benign. The host’s IP address is added to the set benign_sources

and a boolean value of false is returned. Based on these default settings, a host will be

considered to be a scanner after a series of 4 failed connection attempts to unique hosts

is observed (see equation (3.3)). Similarly, a host will be considered to be benign after

a series of 4 successful connection attempts to unique hosts is observed (see equation

(3.3)). If some combination of successful and failed connection attempts are observed

by the host, additional connection attempt observations (the specific number will vary

depending on the settings of the variables listed in Figure 3.6) will have to be made

in order to determine if the host can be classified as a scanner or a benign system.

37

This specific implementation of TRW (taken from [9]) however, also takes into

consideration factors other than the succeed/fail information provided by the four

designated connection states of Table 3.1 in an attempt to classify a system as either

scanning or benign. These factors include the following.

i. The use of time windows. The connection successes and failures for a remote

system are tracked and assessed using a 30 minute (default value) time window.

ii. Previous scanning activity. Once a remote host has been identified as a scan-

ning system, subsequent notifications of any additional scanning activity are

suppressed for one day. Thus, a detected scanning system can generate a max-

imum of a single alert per day.

iii. Identified friendly remote hosts. If a local host initiates a connection with a re-

mote host, subsequent connection attempts (even failed attempts) are ignored

from the remote host when determining if the remote host is undertaking scan-

ning activity. A possible exception to this occurs if the local host attempts

to connect to a remote system using a protocol known to make a local host

initiate a connection attempt to a remote host in response to receiving one (i.e.

triggered_outbound_services).

iv. Identified benign remote hosts. If a remote host makes a number (based on a

factor determined by the parameter settings previously discussed) of successful

connection attempts, it is considered to be benign and exempt from further

consideration as a scanner for a period of one day.

v. The number of unique hosts scanned by a remote host. Failed connection at-

tempts from a remote host to a unique local host are added to the remote host’s

anomaly score for comparison against the TRW threshold. However, subsequent

failed connection attempts from the remote host to the same local host are not

considered during a predetermined time window (i.e. 30 minutes, see item i.).

Weaver et al. [70] developed a scan detection and suppression algorithm based

on a simplification of TRW that makes it suitable for both hardware and software

implementations. Similar to the original TRW algorithm [29], the success or failure

38

of a connection attempt is only tracked for new IP pairs (i.e. a unique source and des-

tination IP) with repeated connection failures between the same IP pair exempt from

further evaluation. The technique uses approximate caches (i.e. caching approximate

values instead of exact values for performance gains) to store the first occurrence of

IP pairs associated with a failed connection attempt, connection attempts to new

IP addresses, connection attempts to new ports at old addresses, and connection at-

tempts to old ports at old addresses if the associated entry in the cache has been been

timed out. One drawback with using an approximate cache is that a new entry in

the cache may generate an insertion collision (i.e. a different IP pair may hash to the

same index entry in the cache) and necessitate either an entry deletion or some form

of entry combination. The authors chose to deal with collisions by combining the

entries in such a way that allows false negatives but not false positives, thus making

the technique suitable for automated response options. Any entry in the cache idle for

more than ten minutes is automatically deleted. This technique can detect scanning

worm infections with a sustained scanning rate of one scan per minute, within the

first 10 scanning attempts. The authors also devised a method to implement this

algorithm using cooperation among the worm detectors deployed within the network

cells to rapidly contain worm outbreaks.

3.2 External Network Scanning Detection Strategies – Other

TAPS [63] is a connectionless portscan detection algorithm that can perform fast scan

detection on high speed backbone networks. The detection of port scanning activ-

ity in large transit backbones is a challenging problem due to the speed, complexity

(i.e. traffic diversity), and lack of configuration knowledge of the hosts that commu-

nicate within the respective links. The algorithm is based on a time-based access

pattern sequential hypothesis testing algorithm, whose underlying premise is that a

scanning host’s connection behavior will exhibit a high connection ratio of unique IP

address/port (number of destination IPs/number of ports) combinations that exceeds

some predetermined threshold within a specified time period. Based on this ratio, it

will be possible to determine (statistically) if a host is exhibiting scanning or benign

39

behavior within a specific time bin. A test for the hypothesis of whether a host is be-

nign or a scanner is then performed over a number of time bins. TAPs relies solely on

counting the number of distinct IP address/port combinations a system has accessed

within a given time bin. As no connection state information is required to perform

this counting, it makes the algorithm ideal for detection of both UDP and TCP scan-

ning activity within high speed links. TAPS is implemented in an architecture called

CMON. CMON uses specialized hardware (i.e. DAG packet capture cards) to operate

at backbone wire speed (e.g. 10 Gbps). The authors provide a good description and

justifications for their proposed algorithm and the trade-offs they have made (i.e.

Flajolet Martin distinct counters, number of hash functions required, implications of

accuracy of the distinct IP addresses and ports recorded) to work at backbone speed.

They further claim that in side-by-side comparisons with both Snort and Bro, TAPS

exhibited the best performance in terms of detection and false positive and negative

rates.

The basic idea of exposure maps was introduced in a position paper [73], and

developed as an example of an attribution-free scanning detection technique. Anal-

ysis (which we justify in Section 5.1 of this thesis) indicates that it can detect both

sophisticated and simple forms of network scanning activity.

Passive scanning techniques continuously monitor the hosts and services available

in a network (see Section 2.1). Extrusion detection [7] refers to identification of

unauthorized internal network activity by inspecting outbound network traffic; it is

used to identify outgoing attack attempts from compromised internal systems and

identify unauthorized network activity (e.g. removal of sensitive information from the

network, evidence of internal attacks).

In contrast, active scanning2 software (see Section 2.1), both open source and

commercial, allows a security audit on a host or network [21, 67, 54]. Active scanning

can be an integral part of a security audit to confirm that a host or network is in

compliance with the network security policy. This activity however, can be costly in

terms of human resources as it requires personnel to perform the required scanning

2Active scanning involves injecting packets into the network in order to elicit some observable
response.

40

activity (i.e. configure and operate the software) and interpret the results. Further-

more, active scanning provides only a snapshot in time of the active hosts and services

in a network. Any new hosts or services offered by the network will only be detected

at the next scheduled active scanning session.

Leckie et al. [31] use probabilistic models of port connection information in order

to detect scanning activity. These models require that each host in the local network

be assigned a probability of how likely a given remote host will try and connect to

it. In essence, the model assigns an access distribution probability for each host in

the local network in terms of the number of remote hosts that have tried to make a

connection to the specific local host. This technique relies on the premise that remote

scanning hosts will access local hosts with equal probability during a scan. Thus, the

distribution of scanning systems and benign system (i.e non-scanners) should exhibit a

strong modality that will allow scanning systems to be identified by their connection

patterns. This technique has some limitations. Specifically, if the local network

contains a small number of busy systems (e.g. servers), the probability distribution

for less busy systems (e.g. clients) may be characterized too low and introduce a

high rate of false positives. To remedy this, the method used to assign probabilities

to individual systems should take this scenario into account. Additionally, as with

any technique that relies on a training period, any ongoing scanning activity present

in the training dataset will skew the probability distribution of the model for the

local network incorrectly base-lining some scanning activity as legitimate connection

behavior.

Stealthy Portscan and Intrusion Correlation Engine (SPICE) [64] was a DARPA-

sponsored project developed by Staniford et al. to detect port scanning activity. The

technique is based on two components, a network anomaly detector (SPADE – Sta-

tistical Packet Anomaly Detection Engine) and a correlation engine. Port scanning

activity is detected by assigning anomaly scores to incoming packets. Specifically,

SPADE estimates the probability distribution of normal network traffic and assigns

each packet an anomaly score based on an associated entropy measurement. This

technique relies on the assumption that the more frequently a port/IP address com-

bination is accessed, the less anomalous it is for packets to be sent to that particular

41

port/IP address combination and thus a lower associated anomaly score should be

assigned. The anomaly score is derived by taking the negative log of the probability

of a packet being sent to a particular port/IP address combination. SPADE was

implemented as a Snort [56] preprocessor. SPADE will alert on packets that exceed a

predetermined anomaly score threshold. The correlation engine keeps the alerts gen-

erated by SPADE as events stored in main memory. Events are inserted into graphs

where each node represents a packet and links between the nodes represent a con-

nection. Links are assigned weights that indicate the strength of correlation between

nodes. The more anomalous the score associated with the alert, the longer the event

will be kept in the graph. The correlation engine then tries to link the events into

groups of associated events that may indicate a scanning campaign.

Network darkspace is the unused IP addresses in a network and thus it should have

no legitimate network activity directed to it; connection attempts to IP addresses that

have no hosts assigned are considered anomalous. A number of commercial products

(e.g. [36, 19]) make use of network darkspace to detect malicious network activity. A

darknet is typically a large unused block of Internet-routable darkspace monitored for

inbound packet activity. The larger the darknet, the better the darknet’s ability to

detect scans and attacks during an observation period [40, 38]. A related but subtly

different approach by Harrop et al. [25] uses greynets, defined as regions of darknet

address space that contain some active systems (i.e. some of the IP addresses in the

darknet are assigned to active hosts). One of the motivations is that it is not possible

for most enterprise network operators to have large regions of contiguous unused

address space assigned to them. However, it would be useful to have some means to

detect anomalous events if dark space was available on the network. Interspersing

valid light (i.e. used) and dark (i.e. unused) addresses throughout a network will

presumably make it difficult for malware to avoid targeting greynet addresses.

The observation of network service use, such as DNS, offers a means to detect

anomalous network activity. Kruegel et al. [30] proposed the use of application

specific knowledge of network services to enable detection of malicious content in

individual packets. Their approach was to use statistical anomaly detection to detect

R2L attacks targeted at essential network services. Anomaly scores for specific packets

42

are based on deviations from expected values in a predetermined profile. Once a

threshold is exceeded, an alarm is generated. They based their experimental analysis

on a prototype that processed both HTTP and DNS network traffic.

Snort is an open source IDS that has scanning detection capability [56] through

the use of the Snort preprocessor sfPortscan [55]. Snort’s preprocessors work by im-

plementing a plug-in model. Specifically, any detection algorithm that requires some

form of packet decoding or transformation can be implemented as a preprocessor mak-

ing the associated network traffic easier for Snort to handle. Preprocessors are flexible

and provide a variety of functions including alerting, classifying, or dropping packets

before they are passed to Snort’s detection engine. sfPortscan provides the capability

to detect TCP, UDP, and ICMP scanning; its sensitivity is set using the sense level

parameter (low, medium, or high). Types of scans detected by Snort include: 1)

portscans (single host scans multiple ports on a single host); 2) distributed portscans

(multiple hosts scan multiple ports on a single host); and 3) portsweeps (single host

scans a single port on multiple hosts). The sfPortscan preprocessor detects scans by

counting RST packets from each perceived target during a predetermined timeout

interval [32]. Before declaring a scan, 5 events (i.e. RST packets) are required from

a given target within a window. The sliding timeout window varies from 60 to 600

seconds by sensitivity level; at the highest level, an alert will be generated if the 5

events are observed within 600 seconds.

3.3 Internal Network Scanning Detection Strategies

Ganger et al. [23] present a software architecture to enable self-securing network in-

terfaces to examine packets as they move between network links and host software,

detecting and potentially blocking malicious activity. This host-based approach in-

cludes a detection technique that enables detection of scanning worm propagation.

The technique involves shadowing a host’s DNS table and checking the IP address of

each new connection against it. The basic premise of this approach is that its abnor-

mal for a host to make a large number connection attempts without DNS activity.

Williamson [76] devised a method to limit or throttle the rate of malicious mobile

code by determining the rate at which a host is trying to connect to new IP addresses.

43

This algorithm is based on the assumption that when a human interacts with a

host during normal activities (e.g. web surfing, email) new connections to unique

systems will be at a low rate whereas a worm infected system that requires no human

interaction to spread will have a high rate of new connection requests to unique hosts.

Thus, this technique relies on the hypothesis that during normal application usage, a

stable rate of new connections is initiated by a non-malicious host. A host trying to

make rapid connections to multiple unique IP addresses could indicate some form of

malicious scanning activity. Hosts that exhibit this type of behavior should be limited

or throttled to restrict the rate of new connections. The rationale for throttling hosts

with high connection rates to unique IP addresses is that targeting the propagation

method (i.e. reducing the scanning rate) of a scanning worm infected system you limit

the rate of infection. Each host of interest has a working set of hosts that models

its past connection behavior. Outgoing connections to any host within the working

set experience no delays. Connections to hosts outside the working set are placed

in a delay queue until the queue is full at which point new connections are simply

dropped. The queue makes use of of a least recently used (LRU) eviction strategy

to drop connections to IP addresses that have been accessed least recently. In this

way, new connections to random IP addresses are prime candidates for eviction while

connections to previously contacted hosts are more likely to be allowed. The paper

recommends a working set of five hosts and a queue length of 100 IP addresses. The

small working set size ensures that the scheme is somewhat restrictive in allowing

rapid connections to new unique hosts. The suggested delay queue length however,

allows connections of up to 100 additional hosts with only a small delay and without

any of the new connections being dropped.

Wong et al. [77] performed an empirical analysis of rate limiting mechanisms.

The techniques they analyzed were designed to mitigate the propagation of scanning

worms by slowing down the rate at which infected hosts can initiate connections to

new victims while limiting the impact on legitimate systems. With all the rate lim-

iting schemes, false positives impact legitimate hosts while false negatives will allow

worm propagation to occur. The authors examined three rate limiting techniques,

Williamson’s IP throttling technique [76], a failed connection rate limiting technique

44

by Chen et al. [11], and a credit-based rate limiting technique by Schechter et al.

[58]. As well, the authors proposed a new rate limiting technique based on DNS.

Williamson’s technique relies on limiting the connection rate of hosts based on the

number of connections to unique hosts while both Chen and Schechter’s techniques

rate limit hosts based on the number of failed connection attempts. The DNS-based

rate limiting technique is based on the observation the worms make connection at-

tempts without first making a DNS request. In this scheme, connection requests to

systems that have been located using a DNS request are permitted without delay.

Connection requests to systems in which a preceding DNS request has not been ob-

served are delayed using a cascading bucket scheme. Specifically, connections that

have had no prior DNS requests associated with them are added to a bucket (i.e. as

an entry in a bucket which is a finite queue) and delayed for a specific time interval.

Bucket sizes are finite and once a bucket is full, any new connection requests that

need to be added to a bucket are stored in subsequent buckets; thus one bucket cas-

cades into another. The greater the number of connection requests that need to be

stored in the buckets, the greater the delay imposed on new entries. The number of

buckets is also finite and once all buckets are full, any new connections are simply

dropped. The technique can be implemented at both the host and network level. A

comparison of all techniques revealed that the DNS-based technique had the lowest

rate (i.e. below 1%) of both false positives and negatives.

Dagon et al. [14] use a modified collection of honeypots to detect scanning activity

in a local network using a scheme called Honeystat. A number of services are run vir-

tually on a host that monitor main memory, hard disk and the network for the most

common exploited software vulnerabilities. The type of honeypots used for Honeystat

are both high interaction and multi-homed (to emulate a larger IP address space so

that the likelihood of an exploit attempt is greater). All relevant data associated with

a generated alert is captured for secondary analysis. This includes operating system

type, application patch versions, network stack state, main memory events, and net-

work packets associated with the exploitation attempt. Unlike traditional honeypots,

Honeystat nodes are efficient script-driven systems that monitor large ranges of IP

45

addresses. The additional benefit of this approach is that it can provide more infor-

mation than a traditional honeypot including identification of binary signatures and

specific attack vectors.

A technique developed by Sharif et al. [24] uses a two-phase local scanning worm

detection algorithm call DSC (Destination-Source Correlation) that takes into con-

sideration both infection patterns and scanning patterns of worm-infected systems.

The technique is deployed on distributed sensors within the local network and can

incorporate local victim information (i.e. the actual scanning strategies the infected

system employs) to enable practical real-time response to stop internal network worm

propagation.

3.4 Summary

To effectively minimize the success of automated attacks as a result of scanning

activity, detection must occur regardless of whether the scanning activity originates

from within or outside of the network boundary. Although some progress has been

made to develop techniques to detect localized (i.e. internal) scanning activity, there

is a dearth of published research in this area. It can be argued that the most serious

threats to a network occur from compromised systems within the network due to a

typically higher level of trust given to internal systems and the tendency for network

operators to install countermeasures primarily at the network boundary. New research

in this area is important to address a critical gap in the available detection capabilities

for internal network scanning activity. We pursue this in chapters 6 and 7 in this

thesis.

More progress has been made in the development of network scanning detection

techniques that attempt to identify external network scanning activity. However,

most of these techniques rely on the identification and correlation of external con-

nection events to detect scans. This introduces a serious limitation in that with

mechanisms known to date, a significant amount of system state (e.g. main mem-

ory, network topology information, secondary storage) needs to be maintained by the

monitoring system in order to perform effectively. These techniques to date have

employed strategies to minimize the amount of state information maintained by the

46

monitoring system by using such methods as reducing the detection time window

in which connection events are tracked or using timeouts to accommodate network

traffic fluctuations. These graceful retreats can cause both false negatives and pos-

itives. In contrast, in chapters 4 and 5, we describe a technique to detect external

scanning activity that requires only a minimal amount of state information that does

not fluctuate in proportion with increases in detected external scanning activity.

Chapter 4

Exposure Maps: Approach and Evaluation Methodology

This chapter proposes a new R2L network scanning detection technique called expo-

sure maps/ darkports. Specifically, we describe how exposure maps can be used in

the following security applications: (1) scanning detection, (2) automated response,

(3) host discovery and asset classification, and (4) network service enumeration. Our

discussion will include design and implementation details of our techniques using a

suite of Bro policies. Finally, we will describe the three network datasets used to

evaluate and test our techniques, the results of which are discussed in chapter 5.

4.1 Exposure Maps: Approach

Exposure maps passively identify the services which have been confirmed (through an

observed response during a training period) as being offered by the hosts of a given

network. TCP packets with the SYN flag set start the three-way connection hand-

shake. When a connection request is sent to a specific destination IP address/port,

if a service is bound to that port and the port is listening (open), the target host

response is a packet with SYN ACK flag set, to start a session. Listening services,

because they respond to connection attempts or incoming packets, leak information

to scanners; they typically correspond to the active ports in a network and can be

tracked in terms of what we define below as the HEM and the NEM. Once verified

as permitted activity, the HEMs and NEM define the authorized access to individual

hosts and the network.

Each UDP datagram can be regarded as a discrete event and a potential new

communication between hosts. As UDP is connectionless, other measures must be

taken to identify and track communications streams between host pairs exchanging

UDP datagrams. For instance, two hosts observed exchanging UDP datagrams will

be considered by convention, as participating in a session, with the host that initiates

47

48

the exchange considered the client. A host that responds (after receiving an initial

UDP datagram) by sending back a UDP datagram will be regarded as a server and its

corresponding UDP source port is regarded as open. A HEM for the UDP protocol,

associated with a fixed IP address, is the set of ports observed responding to an initial

incoming UDP datagram that signifies the start of a UDP datagram exchange.

More specifically, a host exposure map (HEM), associated with a fixed IP ad-

dress (host), is the set of ports observed over a predefined period, responding to

external connection attempts. For each active host i in the network, HEMi is a

set of elements each of which begins with the IP address of i, followed by a port

number j; there is such an element for each portj that has responded to a con-

nection attempt within a predefined period. In symbols, we can abbreviate this as

HEMi =
{
IPi : portj

∣∣∣ portj was observed responding
}
.

The HEM is the externally visible interface of a host and can be considered to

represent information leakage from the host that may reveal characteristics that can

be used to exploit it. Subsequent to the training period, as additional ports respond

to external connection attempts, by definition the HEM is augmented by these ports.

The network exposure map (NEM) is defined as the collection of HEMs in a given

network N at any given point in time. The NEM defines how we expect the network

to respond to external connection attempts. In symbols, NEMN =
⋃

i∈N HEMi. We

will often drop the subscript N in NEMN when the target network is implied by

context. This also allows the natural definition of NEMS for any subnetwork S ⊂ N ,

i.e. where S is a subset of the populated IP addresses in N . In this context, we define

the term populated IP address as an active host (i.e. not network darkspace).

In an implementation, once the NEM has been built, the individual HEMs that

comprise it can be checked for compliance with the network security policy. A NEM

that complies with the network security policy is called a vetted NEM. We assume that

any service (IP address/port pair) not compliant with the network security policy will,

once detected, either be shutdown, or implicitly becomes part of the security policy.

Thus, movement from a NEM to a vetted NEM is always possible where a defined

and verifiable network security policy exists. Figure 4.1 shows a NEM composed of

six HEMs.

49

In some network environments, the defined network security policy may be one

that is, by design, very permissive. For instance, specific rules concerning allowed

network activity may be defined for the systems within a few secure enclaves in

the network while other subnets and/or systems in the network will have little or

no restrictions placed on their associated network activity. In this instance, NEM

construction and vetting could be limited to only the systems that comprise secure

enclaves.

Conversely, some network environments may simply be too diverse, distributed,

or transient (e.g. permit mobile devices, guest users) to enforce and apply a single

uniform network security policy. In these cases a NEM can still be constructed but

not vetted against a network security policy. Although such a NEM is referred to

as an unvetted NEM, it is, by lack of a meaningful security policy, analogous to a

vetted NEM. Specifically, due to the permissive nature of the network, all services

are simply allowed and deemed to be compliant with standard operating procedures.

One important difference between a vetted and an unvetted NEM is that an unvetted

NEM does not require a training period during its construction and maintenance (see

discussion on Exposure Map Construction and Maintenance below).

We define the darkports on a given (populated) host as those ports that have not

been observed offering any services (during the training period in the case of a vetted

NEM), and thus are not expected to accept external connection requests (TCP) or

UDP datagrams.3 The set of darkports for a host is the complement of its HEM. The

set of darkports for a network is the union of the darkports on all its populated hosts.

For example, a host with a HEM of only three TCP ports 22, 80, and 443 would

have 216 − 3 TCP darkports i.e., all TCP ports excluding these three. If a darkport

responds to an external connection attempt, it becomes a trans-darkport (transitioned

darkport). In the case of a vetted NEM, this occurs either when a host offers a new

service (whether authorized or rogue), or a connection is made to a service that was

not accessed during the training period. Either event causes the HEM to expand,

and by definition the NEM expands and will differ from the vetted NEM. Once a

3Although a connection attempt to any port at a darkspace IP address (no hosts assigned) will
not accept a TCP connection attempt or UDP datagram, we restrict the term darkport to unused
ports on a populated host address.

50

trans-darkport is detected, service on this port can be checked against the network

security policy so that the vetted NEM can be updated or any unauthorized service

can be stopped. In the case of an unvetted NEM, the NEM automatically expands

as new services are offered (i.e. no checks are made against a known security policy).

Although a new service detected in the network will be automatically entered into

an unvetted NEM, this does not preclude checking the NEM on an ad hoc basis to

determine if any known malicious network services (e.g. known backdoor trojan ports)

are being offered by hosts on the network (see discussion in Section 4.1.3)

HEM

HEM

HEM

HEM

Internet

DMZ

SUBNET

DMS

DMS - Darkport Monitoring System

Host Ports

A

 B

6881-6889/TCP

22/TCP

 C 6881-6889/TCP

A B C

HEM

NEM

HEM

D

E F

D
 E

80/TCP, 443/TCP

22/TCP, 53/TCP

 F 25/TCP, 110/TCP

Figure 4.1: Example NEM.

Exposure Map Construction and Maintenance. In summary, exposure

maps are created by passively observing a target network’s responses to incoming

connection attempts (both legitimate connections and scanning attempts) or UDP

datagrams with or without the benefit of a training period (respectively as part of

a vetted or unvetted NEM respectively). Every time a host responds to an external

TCP connection attempt or incoming UDP datagram, the IP address and port of the

host offering the service is recorded. While the construction and maintenance of a

vetted and unvetted NEM is similar, there is potentially a fundamental difference in

the way that trans-darkports will be interpreted by the network operator.

In the case of a vetted NEM, each host in the network during the training period

51

will reveal services that it offers; the corresponding ports are recorded in its HEM.

After the training period, the vetted NEM can be used to identify all the active hosts

on the network by their representative HEMs. Thereafter during ordinary network

operation, passive observation of network packets continues, and for each connection

attempt (i.e. each TCP SYN packet or incoming UDP datagram) compliance with the

vetted NEM is tested in real-time. If the services offered by a host expand beyond the

vetted NEM, an alert is generated to provide notification that trans-darkports have

been detected; this indicates to the network operator that either the vetted NEM

needs to be updated, or some form of unauthorized activity is occurring.

In general, an important consideration for any technique that requires a training

period is that any existing malicious activity (e.g. unauthorized services) may become

part of the baseline. In our particular case, a HEM can be verified against an existing

network security policy to detect any unauthorized service offerings by the host.

The required length of the training period will vary with each network environment

depending on a number of factors including number of active hosts, network security

policy, permitted user applications, and frequency of service usage; see Section 5.2

for further discussion.

An unvetted NEM will typically be used in a very dynamic network or one where

compliance with a network security policy is either not practical or not possible.

Thus, we expect that during ordinary network operation new hosts and services will

be revealed and the unvetted NEM will expand in near real-time. An alert can be

generated (or suppressed as a configuration option) to notify that a new network

service and/or host is active as determined by the emergence of a trans-darkport.

A number of possibilities exist for automatically removing stale (i.e. inactive or

unresponsive hosts and/or services) entries in a (vetted or unvetted) NEM. One possi-

ble method is to keep track of the last access time of each NEM entry when processing

incoming connection attempts during construction and ongoing maintenance (as de-

scribed above). Entries that have not been accessed within a certain period of time

can be automatically deleted or an alert can be generated to notify that the NEM

entry is a viable candidate for deletion (see Section 4.1.5).

52

4.1.1 Use of Exposure Maps for Scanning Detection

To use exposure maps for scanning detection, first a vetted NEM is constructed as

previously described. A connection attempt to any port-IP combination not present

in the vetted NEM (i.e. a darkport or darkspace) is defined as a darkport connec-

tion attempt (DCA). A DCA represents a connection attempt (often resulting in a

failed connection) to a host or service not offered in the network that is a typical

indication that some form of scanning activity is occurring. The 5-tuple (source IP,

destination IP, destination port, protocol, timestamp) of any DCA is recorded to

secondary storage (hard disk) in a DCA activity log file for further analysis to de-

termine the type and scope of scanning activity. This approach requires only that

the NEM information be maintained in system detection state (not the darkports or

external connection requests), thus allowing detection of all the connection attempts

(i.e. DCAs) that constitute even very slow or distributed scans, using only a small

amount of main memory. In contrast to most scanning detection techniques that rely

on the identification and correlation of external connection events to detect scans, we

thus do not require strategies like reducing the detection time window in which con-

nection events are tracked or timeouts, to accommodate network traffic fluctuations.

Connection attempts to hosts within the NEM to port 113/TCP (i.e. ident) and port

79/UDP (i.e. finger) are ignored to eliminate a possible source of false positives (see

triggered_outbound_services discussion in Section 3.1).

Unlike most attribution-based scanning detection techniques, our scanning detec-

tion approach does not rely on identification of the scanning source to detect scans

against a network. Thus, it can detect certain classes (see Section 5.1.2) of sophis-

ticated scanning techniques that make determining the root cause of the scanning

activity impractical. However, this approach does not preclude the use of some form

of attribution post scan detection. Scanning worm propagation and auto-rooters are

two prevalent examples of scanning activities where immediately denying the scan-

ning source access to the network is both relevant and important. In these cases,

a successful scan (i.e. one triggering a response from a host) typically leads to an

immediate attack from the scanning systems. Other post scan detection activities

may include the use of heuristics to classify DCAs into their respective scanning

53

campaigns. An example of such a heuristic is given in Section 5.1.2 to identify and

correlate DCAs that comprise a distributed scan. Alsaleh et al. [3] have successfully

used the output of the exposure maps technique as a filter to select subsets of poten-

tially malicious network traffic in order to detect sophisticated scanning activity (i.e.

distributed scans) through visualization.

Analogous to a vetted NEM, any connection attempt to any port-IP combination

not present in an unvetted NEM is considered a DCA and recorded as such. However,

an unvetted NEM presents us with the following boot-strapping issue. Intuitively, we

should expect the frequency of trans-darkport occurrences for an unvetted NEM to

be higher than that of a vetted NEM, assuming the unvetted NEM is used due

to the dynamic nature of the hosts or services offered. Therefore, we expect not

all new connection attempts will match an unvetted NEM entry, and a successful

connection to an unknown service (i.e. unknown to the unvetted NEM) may still occur.

Such activity is classified as trans-darkport activity and results in the unvetted NEM

being automatically updated. Unfortunately, the initial NEM-membership test of the

destination IP and port/protocol of the new connection attempt, that is performed to

detect a possible scan, will have already occurred and failed, resulting in a DCA being

recorded. To account for this spuriously recorded DCA, a notification is generated

that a DCA has been recorded as a result of trans-darkport activity and should

be deleted (recall that DCAs are written to disk for subsequent processing). In

practice, the vast majority of legitimate connection attempts (with the exception

of the first observed connection attempt to a particular service that causes trans-

darkport activity) are quickly checked against the unvetted NEM and discarded as

not being potential scanning activity.

A vetted NEM has the benefit of a training period to determine the composition

of a NEM and provides a priori knowledge of permitted connections. Although new

service/host offerings for a vetted NEM are also considered trans-darkport activity,

we expect such activity to be infrequent (otherwise an unvetted NEM should be used)

and results in an alert to the network operator to confirm the newly detected service

being offered is compliant before entry into the NEM.

To fully scan all the TCP services on a network (scanning of UDP services is

54

analogous) of n hosts, a scanning tool would need to scan E = n ∗ 216 ports. For

instance, in a Class C or /24 network (254 hosts excluding broadcast addresses),

≈ 224 unique TCP port/host pairs could be scanned. In practice, often only a subset

of available ports is scanned, as attackers try to locate well-known services in the

reserved port range (i.e. 0-1023) or backdoor trojan ports listening on ephemeral

ports. Let A be the actual number of services scanned in a network, i.e. the number

of unique IP/port combinations of all the detected scans. Within A, each scanning

attempt can result in one of three possible outcomes: (1) a probe directed against a

darkspace address, (2) a probe against a darkport (note: such a host has a HEM),

or (3) a probe sent to a host on an active port (an entry in the NEM). Figure 4.2

shows the general relationship between the potential service ports scanned (E), actual

service ports scanned (A), darkspace scanned, darkports scanned, and the NEM for

a network.

4.1.2 Automated Response using Exposure Maps

NEM

Darkports

Darkspace

A

E

Figure 4.2: Scanning Potentials versus Network

Exposures.

Due to the dynamic nature of an

unvetted NEM and its associated

bootstrapping issue (see discus-

sion in Section 4.1.1) it would

be inadvisable to use it for auto-

mated response capability. Thus,

we consider an automated re-

sponse capability for network en-

vironments that employ vetted

NEMs.

Exposure maps can be used

in an automated response appli-

cation as follows. When a new connection request is observed, the destination IP

address and port are compared with the vetted NEM to determine if there is a match

(see Figure 4.3). If there is no match to an entry in the NEM, the connection is con-

sidered a possible scan attempt and the source IP address is added as an element in

55

a scanners list (implemented e.g., using a hash table). The 5-tuple that characterizes

the connection attempt is then recorded as a DCA in the DCA activity log file.

New Connection Request Scanners

 NEM

NETWORK

Y

N

Yes

No

Y

N

Y

N

Check Scanners List

DCA

Activity Log

Allow Connection

Block Connection

Dest IP/Port in Vetted NEM?

Add Entry in Scanners List and

Record Event

Figure 4.3: Exposure Maps Automated Response Logic.

On the other hand if there is a match, the source IP is checked against the scan-

ners list. If the source IP address matches an entry in the list, the 5-tuple that

characterizes this connection attempt is recorded and connection should be dropped

as this entity has possibly undertaken reconnaissance activity against the network.

Our implementation is passive and only produces alerts that could enable some form

of containment (e.g. ACL change), but does not actually do the latter; one option

would be to integrate this application on a network device capable of performing

containment such as a firewall. If the source IP address does not match an entry in

the scanners list, the connection is permitted; the entity has no previous history of

scanning activity and is connecting to a valid service offered by the network.

The vetted NEM provides context to determine if an incoming connection request

is part of a scanning campaign and whether it will likely elicit a response. This in-

formation provides us with the precision to limit containment to (e.g., automatically

block) only those scanning systems targeting services offered by the network. Con-

tainment could alternately be performed using a number of network devices including

firewalls, routers, or intrusion prevention systems using current scanning detection

56

techniques. However, given the prevalence of scanning activity, frequent dynamic

updates to these core network devices would be required in order to stop attacks in

real-time, and would pose a number of challenges. For instance, Bobyshev et al. [8]

have shown that the size of access control lists (ACLs) and the frequency of dynamic

updates can significantly impact router CPU utilization and forwarding capabilities.

Furthermore, the addition of multiple blocking rules may make ACLs and config-

uration files cumbersome and hard to vet by network personnel. In fact, frequent

configuration changes to these network devices may actually decrease the overall se-

curity posture of the network over time [78]. The proposed technique allows a precise

active response option to be taken exclusively against the most critical known threats

to the network; namely, those scanning systems targeting services offered by the net-

work. Scanning systems trying to access services not offered by the network are noted

(i.e. in the DCA activity log and the scanners list) but no action is needed or taken

to block the connection.

Our analysis on a four-week network data set reveals a majority of scanning at-

tempts directed against services not offered by the network (see Section 5.1.3). In the

instances when the scanning was directed against a service offered by the network, an

attack almost always followed (see Table 5.10). Thus, our approach can significantly

reduce the frequency and number of updates to the ACLs of network security devices

while providing a measured and robust security response to real-time threats.

4.1.3 Exposure Profiles: Host Discovery and Asset Classification

In large network environments, it may be useful to discern the number and types

of systems within the network which offer services to external entities, and logically

group them together. Exposure maps provide a mechanism to identify and group

hosts that offer similar services into the same exposure profiles. As an example, the

following three exposure profiles could be generated based on the perceived risk to

the network:

i. Low Risk : web, DNS, mail, printing, network management.

ii. Medium Risk : open proxies, P2P services.

iii. High Risk : known worms, known trojan backdoors.

57

In general, the exposure profiles used would vary greatly in terms of the number

and types of services in each, depending on the specific network. In our example,

the low risk profile includes only well-known traditional services offered by the host.

The medium risk profile indicates hosts that offer non-malicious but potentially risky

services. The high risk profile denotes those systems that offer a service on a port

that has known malicious activity associated to it. Logically grouping hosts by the

contents of their HEMs provides a means to rapidly apply some action to a collection

of similar systems if required (e.g. deny network access to hosts in the high risk profile

to limit potential malicious activity). Furthermore, a change to a host’s darkports

may move it from one profile to another and necessitate some real-time action be

taken on that specific host. Exposure profiles can be constructed using both vetted

and unvetted NEMs. Figure 4.4 shows an example of two exposure profiles (low and

medium risk) for a small network.

Internet

DMS

DMS - Darkport Monitoring System

Medium Risk Profile

C

D E

Server Ports

C

 D

8080/TCP

6881-6889/TCP

 E 4661/TCP

HEM

Medium Risk - NEM

HEM
HEM

Server Ports

A

 B

80/TCP, 443/TCP

22/TCP, 53/UDP

Low Risk - NEM

Low Risk Profile

A B

HEM

HEM

Port Service

22/TCP

53/TCP

SSH

DNS

 80/TCP HTTP

 443/TCP HTTPS

 8080/TCP HTTP

 6881-6889/TCP BitTorrent

 4661/TCP eDonkey2000

Figure 4.4: Exposure Profiles.

58

Exposure profiles are useful for other applications. An ISP could use exposure

profiles in response to global cyber events (e.g. worm outbreak, new exploit, botnet

DDoS attack) creating an applicable profile to identify hosts that are at risk or ex-

hibiting signs of a successful compromise. Accordingly, to ensure the efficient use

of resources, different monitoring thresholds and security applications could be ap-

plied to the subset of hosts within the network based on their exposure profile. For

instance, hosts that belong to a server farm exposure profile (e.g. hosts that offer

HTTP services in a network enclave) might be afforded a different type or greater

level of monitoring than hosts with other exposure profiles. At the most basic level,

exposure profiles could be used to simply differentiate between clients and servers in

a network, or for network operators simply as a method to discover and baseline the

services offered in their network.

4.1.4 Determining the Success of Network Service Enumeration as a Re-

sult of Scanning Campaigns

The overall goal of network scanning can vary among scanning entities, although it is

typically to gain information about the network and the hosts that compose it, for an

immediate (e.g. worms) or future (e.g. following some form of analysis on the scanning

results) exploitation attempt. Attackers have a variety of scanning strategies at their

disposal (see Section 2.2). In the case of more patient adversaries, considerable time

may be taken to carefully probe the network to both avoid detection and gather as

much information as possible before the formulation of a suitable attack vector. For

instance, an attacker may have acquired an exploit that allows a buffer overflow to

be executed on an HTTP server that gives them remote root access and the ability

to execute arbitrary code. Buffer overflows however, are typically application-specific

and will only work on a particular version of software running on a specific underlying

hardware platform. In this example, it is an attacker’s best interest to determine not

only that an HTTP server is present in the network, but also the type, version, and

patch-level of the application software it is currently running. Most servers routinely

divulge this type of information during normal operation (see Section 2.1).

It would be useful for a network operator to utilize such data to know what

59

application information about network hosts is being divulged to remote systems.

This would allow a catalogue of the host application information sent from the network

to be enumerated, recorded, and reported in near-real time. This catalogue could be

used to confirm that the servers in the network are running the proper versions of

approved applications in compliance with the network security policy. Secondly, it

could provide a mechanism to determine what network (i.e. IP address, port, protocol)

and application (e.g. banner, server strings) information was returned to an attacker

during a scanning campaign.

New Connection Request Scanners

 Enhanced NEM

NETWORK

Y

N

Yes

No

Y

N

Y

N

Check Scanners List

DCA

Activity Log

Dest IP/Port in NEM?

Add Entry in Scanners List and

Record Event

Generate Alert with Associated

Application Information

Figure 4.5: Enhanced NEM - RAA Logic.

Enhanced NEM Construction and Maintenance. We define the enhanced

NEM as a basic NEM augmented to incorporate application information (e.g. ban-

ners) as well as network information (e.g. IP address, port number/protocol). An

enhanced NEM may be vetted or unvetted. The vetting of an enhanced NEM would

require confirming that hosts in the network were offering both the proper services

and running approved applications in accordance with the network security policy. An

enhanced NEM is created in the same manner as a basic NEM, by passively observing

a target network’s responses to incoming connection attempts. However, every time

a host responds to an external TCP connection attempt or incoming UDP datagram,

any transmitted application banners are recorded and associated with the IP address

60

Port 22/TCP

Internet

SUBNET

Network Layer

Port 80/TCP

Port 443/TCP

Port 22/TCP

A

B

NEM

Port Protocol

22/TCP

 80/TCP

SSH

HTTP

443/TCP SSL

(a) Basic NEM.

Apache 2.0.54 (Debian GNU/Linux)

Port 22/TCP

Enhanced NEM

Port 80/TCP

Port 443/TCP Generic TLS 1.0 SSL

OpenSSH 4.3p2 (Protocol 2.0)

Network Layer Application Layer

Internet

SUBNET

Scanner

A

B Port 22/TCP OpenSSH 4.3p2 (Protocol 2.0)

(b) Enhanced NEM.

Figure 4.6: Basic and Enhanced NEM.

61

Scan Footprint

Port 80/TCP

Port 135/TCP

Port 80/TCP

Port 135/TCPInternet

SUBNET

Scanner

A

B

Port Protocol

80/TCP

135/TCP

HTTP

MS-RPC

(a) Scanning Campaign Overview.

Apache 2.0.54 (Debian GNU/Linux)

Port 22/TCP

Enhanced NEM / Scan Footprint Overlay

Port 80/TCP

Port 135/TCP

Port 443/TCP Generic TLS 1.0 SSL

OpenSSH 4.3p2 (Protocol 2.0)

Network Layer Application Layer

Internet

SUBNET

Scanner

A

B

Port 22/TCP OpenSSH 4.3p2 (Protocol 2.0)

Port 135/TCP

Port 80/TCP

(b) Enhanced NEM Overlaid with Scan Footprint from a Scanning Campaign.

Figure 4.7: Example of an RAA.

62

and port/protocol of the host offering the service. For example, an entry in the en-

hanced NEM could look like [192.168.1.1:80/TCP:Apache 2.0.54 (Debian GNU/

Linux1)]. Recall that a HEM, associated with a fixed IP address, is the set of active

ports responding to a connection attempt within a predefined period (see Section 4.1).

Each one of these active ports responds (typically) as a result of offering a service.

Reconnaissance Activity Assessment (RAA). An enhanced NEM provides

an expectation of how the network will respond to external connection attempts at

both the network (i.e. TCP/IP) and application layer. An enhanced NEM can be

used to determine the network services enumerated due to scanning activity, known

as an RAA, as now explained (see Figure 4.5).

When a connection request is observed, the destination IP address and port are

compared with the NEM (vetted or unvetted) to determine if an entry is a match.

If there is no match to an entry in the NEM, the connection is considered a DCA;

the source IP address is added as an element in a scanners list and the 5-tuple that

characterizes the connection attempt is recorded as a DCA in the DCA activity log

file.

If there is a match, the source IP is checked against the scanners list. If the source

IP address matches an entry in the list, the 5-tuple that characterizes this connection

attempt is recorded as usual as a DCA. Additionally, any application information

within the enhanced NEM associated with the destination IP and port/protocol is

assumed to have been sent to the remote host initiating the connection. An alert is

generated that notifies what application information (i.e. string that contains the ap-

plication banner) has been sent to the remote host as a result of this connection. The

collection of all such alerts generated by a specific remote host provides a mechanism

to group and therefore determine what network services were enumerated as a direct

result of a specific scanning campaign.

An RAA reveals the relative success of a specific scanning campaign in terms

of the network services that were revealed (i.e. enumerated) verses the amount of

scanning activity undertaken on the network. More specifically, an RAA is defined

as the network service information4 gained by an adversary during reconnaissance

4Here, network service information includes network or host topology, open ports, offered services,
OS system versions, application software versions, and configuration specifications.

63

activity as a direct result of executing a specific scanning campaign.

The overall network service information revealed by the network is defined as

network service information divulged by the hosts on a network as a direct result

of external connection attempts (both legitimate connection attempts and network

scanning activities). The respective entries in an enhanced NEM in its entirety rep-

resents a comprehensive corpus of information leakage from the network to remote

hosts.

The following example illustrates how an enhanced NEM is used to provide an

RAA. Figure 4.6(a) shows a NEM composed of two HEMs that offer services on a

total of four ports. Figure 4.6(b) shows the same network using an enhanced NEM

that reveals not only the open ports/protocols but the applications running on these

ports based on passive observation of application banners sent to remote systems.

Consider the scenario of an adversary with a scanning footprint depicted in Figure

4.7(a). Hosts A and B were scanned on ports 80/TCP and 135/TCP respectively. In

this example, only host A responded to the scan on a single port (i.e. port 80/TCP in

red, which corresponds to a NEM entry) and the attacker was sent an HTTP Server

string. The rest of the scans (to port 80/TCP on host B as well as all scans to port

135/TCP) are shown in grey as no response was given as a result of the scanning

activity. An examination of the scan footprint (i.e. the set of IP addresses/port

combinations an attacker is interesting in characterizing) overlaid with the enhanced

NEM (see Figure 4.7(b)), reveals that port 80/TCP is only offered on host A and port

135/TCP is not offered on the network. Furthermore, it shows that the adversary was

returned the application banner Apache 2.0.54 (Debian GNU/Linux) that reveals

the web server type/version and operating system of the underlying platform. The

use of an enhanced NEM allows us to determine what information about the network

was obtained by the attacker and provides a measure to determine how effective the

scanning activity was. Specifically, in this scenario four unique DCAs were sent into

the network and only a single response was returned to the scanning host.

64

4.1.5 Bro Implementation

To implement the exposure maps technique, we used Bro [45] the open-source network

-based IDS (see Section 3.1). Our Bro implementation of the exposure maps algorithm

employs two custom policy scripts and modifies four generic policy scripts supplied

by the Bro framework as follows (see Figure 4.8).

i. darkport.bro: a custom policy script that implements the exposure maps tech-

nique.

ii. darkport-sig.sig: a custom signature file that contains the regular expres-

sions of known application string patterns (i.e. application banners) to detect

transmitted application information. The signature file is extensible and new

regular expressions can be added to identify additional applications.

iii. brolite-dp.bro: a modified version of the brolite.bro policy script that

loads the required custom and modified Bro policies to implement the exposure

maps technique.

iv. signatures-dp.bro: a modified version of the signatures.bro policy that

interprets the darkport-sig.sig policy.

v. trw-impl-dp.bro: implements a modified trw-impl.bro policy augmented by

using the exposure maps algorithm as a substitute method to determine con-

nection success or failures.

vi. local-dp.bro: contains a modified version of the local.bro policy script that

specifies the local network IP address information. It allows the user to precisely

specify a range of IP addresses that will compose the local network subnet or

subnets. A Bro-defined module is_local_addr makes use of the local network

information to determine if the IP address belongs in the local network.

We make use of three generic Bro events (connection_established, UDP_reply,

and new_connection) in our custom policy scripts to implement the exposure maps

technique. More specifically, the NEM is constructed using information obtained by

intercepting the Bro connection_established and UDP_reply events. The

65

connection_established event indicates that a TCP three-way handshake has oc-

curred and therefore a host has responded to a connection request on a specific TCP

port. The UDP_reply event is used to determine the first occurrence of a UDP packet

sent in response to an incoming UDP packet indicating a host has responded on a

specific UDP port. In both cases, we extract the destination IP, port, and protocol in-

formation from the connection for consideration as a NEM entry. To determine when

new incoming connection attempts are occurring that need to be checked against the

NEM, we intercept the Bro connection_attempt event. Again, the destination IP,

port, and protocol information is extracted from the connection that generated this

event for comparison against the NEM. If these features match a NEM entry, it is

considered a valid connection attempt; if not, it is considered a DCA.

Network

trw-impl-dp.bro

Libpcap

Event Engine

Policy Script Interpreter

Policy Script
Real-time Notification

Record to Disk

Event Control

Tcpdump Filter

Event Stream

local-dp.bro

Filtered Packet

Stream

signatures-dp.bro

darkport-sig.sig

brolite-dp.bro

darkport.bro

Packet Stream

Exposure Map/Darkports Custom

Policy Scripts

Figure 4.8: Bro Architecture Implementing Exposure Maps Policies.

66

To save information in state between different invocations in Bro (e.g. hardware

replacements, software upgrades) the persistent attribute is used. Any information

contained in a specific variable or data structure that is identified as being persistent

is written to disk and loaded when the next invocation of Bro occurs. This feature

is useful if for any reason monitoring is stopped for a period of time (e.g. software or

hardware upgrades) and then restarted. In order to remove the values from specific

variables or elements in a data structure, we make use of the read_expire and

create_expire attributes. Specifically, the read_expire deletes a value or element

from the respective data structure when the specified amount of time has elapsed

since the element was accessed, while the create_expire performs a deletion after a

specified amount of time has lapsed since the value or element was created.

Our darkport.bro policy script uses three main data structures:

• services: a persistent set that holds the NEM information. Entries in the

NEM are automatically removed after a configurable amount of time using the

read_expire attribute (the default is two weeks).

• scanners_list: the set of remote IP addresses that have been identified as

performing scanning activity against the local network. Elements in this set

are maintained for a configurable amount of time using the create_expire

attribute (the default is 48 hours) and then removed.

• services_appinfo: the set that holds the enhanced NEM populated with ap-

plication information obtained from the signatures contained in the darkport

-sig.sig file. Entries in the enhanced NEM are automatically removed in

accordance with the read_expire attribute set for the basic NEM.

The darkport policy script utilizes four distinct notifications and alerts that are

respectively written to both the notice.log and alert.log files:

• NewService: a notification that a new service (i.e. trans-darkport) in the local

network has been detected and is a candidate for inclusion in a vetted NEM. In

the case of an unvetted NEM, inclusion is automatic.

67

• DCA: an alert indicating a DCA event has been detected. The alert contains

the 5-tuple of information that characterizes the DCA.

• DCADeletion: a DCA alert has been generated as a result of trans-darkport

activity from an unvetted NEM and is a candidate for deletion.

• PossibleTargetedScan: an alert that a source IP address in the scanners_list

has made a connection attempt to an IP port number/protocol that matches

an entry in NEM.

The training period for a vetted NEM is implemented by setting the learning_

mode parameter to TRUE. This allows the NEM to be populated with IP addresses

and associated port/protocol information but suppresses both inclusion of the source

IP addresses of possible scanners into the scanners_list and all alert types. Once

the training period has concluded, the learnng_mode parameter can be set to FALSE

and the scanners_list and the alerting functions become active. The training period

allows the necessary bootstrapping to occur to populate the NEM for vetting. In the

case of an unvetted NEM, the learning_mode parameter is set to FALSE and not

used.

Additionally, the darkport.bro policy script allows the user to specify what expo-

sure maps/ darkports capabilities to use. Although the default is all (i.e. see Sections

4.1.1 – 4.1.4), the active response and RAA capabilities can be turned-off. This should

significantly reduce system resource usage (see discussion in Section 5.2) as the need

to construct and maintain both the scanners list and the enhanced NEM entries is

not required.

Bro has the facility to write information to log files based on user-defined schedules.

We generate three reports on a daily basis: (1) nem.log: the NEM entries,

(2) scanners_list.log: the list of remote IP addresses detected undertaking possible

scanning the local network, and (3) possible_targeted_scanners.log: the list

of remote IP addresses that are suspected of previously performed reconnaissance

activities against the network and are attempting to connect to an IP address/port

combination in the NEM. Any associated application information obtained from the

enhanced NEM (if used) is also recorded with each DCA.

68

The trw-impl-dp.bro policy makes use of the TRW algorithm (see Section 3.1)

and augments it by including the NEM data structure exported from the darkport.

bro policy. Herein, we refer to our implementation of the TRW algorithm augmented

with a NEM as the modified TRW technique. Specifically, we use the NEM as a

second connection oracle (NEM-oracle) to perform an additional check to determine

if the connection will be a failure or success. If the destination IP and destination

port/protocol of the incoming connection matches an entry in the NEM, the connec-

tion is assumed to be a success and the function returns a value of false (i.e. not a

scan). If there is no match, the function proceeds and uses its own connection oracle

(the original TRW-oracle) to determine if the connection is a success or failure. If the

TRW-oracle also determines the connection is a failure then a possible scan against

the network has been detected and the relevant information is updated. If the con-

nection is considered a success and the destination IP is located in the local network,

the NEM is updated accordingly. The modified TRW technique makes use of all the

parameters (i.e. θ0, θ1, α, and β) associated with the TRW algorithm and updates

its likelihood ratio, when a new connection attempt success or failure is observed, for

comparison with thresholds η1 and η0. The internal logic of the modified TRW is the

same as the original TRW algorithm with the exception of the addition of a NEM

which is used as a secondary check to determine if a new connection attempt is a

success or failure.

4.2 Evaluation: Datasets and Methodology

We evaluated the Bro implementation of our exposure maps technique using network

traces obtained from two different network environments. The three datasets in total

were taken from a small secure network (i.e. Carleton Computer Security Lab – CCSL)

and a medium-sized enterprise network (i.e. the LBNL/ICSI 12-15 and LBNL/ICSI

12-16 datasets described below). Table 4.1 contains selected characteristics about

these network traces.

CCSL Dataset. The CCSL network is a small university research network of

62 Internet reachable addresses connected to a university Internet accessible Class B

network. All systems access the Internet through a firewall not permitting inbound

69

connections unless initiated by an internal system. The CCSL dataset is a network

trace archive that consists of months of full take (i.e. packets headers and content)

capture files. To test our exposure maps technique, we used four weeks (September

2006) of network traces from this repository.

LBNL/ICSI Dataset. We arbitrarily selected two days worth of packet traces

from the Lawrence Berkeley National Laboratory and International Computer Sci-

ence Institute (LBNL/ICSI) Enterprise Tracing Project [46]. The packet traces were

collected hourly and consist of anonymized packet headers with the content removed.

The anonymization policy used to obfuscate the source and destination IP addresses

as well as the tool used to perform the anonymization the tool (i.e. tcpmkpub) are

described by Pang et al. [43].

This publicly available data set provides a corpus of network traffic for security

researchers to use in the evaluation of new network-based detection algorithms. Un-

fortunately, the data capture and anonymization methodology has introduced both

unwanted artifacts and gaps in the network traces [42]. Perhaps the three most rele-

vant examples of these issues stem from the limitations of the system used to perform

the network data captures, the need to preserve of anonymity of internal system

addresses in the presence of certain forms of scanning activity, and the blocking of

external scanning activity at the LBNL network border. We now describe these issues

in turn.

The datasets in the LBNL/ICSI repository were obtained from two internal lo-

cations at the central routers. The collection system consisted of a commodity PC

running the FreeBSD operating system and four network interface cards (NICs). Each

NIC received unidirectional traffic streams that were merged using timestamp syn-

chronization implemented in a custom NIC driver. The collection system could only

monitor 2 of the over 20 routers ports at any given time, thus limiting the ability of

the collected traffic to give a comprehensive view of the enterprise network activity.

Additionally, network traffic was collected to and from the individual subnets but

not inside the subnets thereby preventing any analysis of host activity within a given

subnet. Finally, although no packet drops were reported from the collection system,

subsequent analysis of TCP traffic revealed that some packet loss had occurred (see

70

discussion in Section 5.1.1).

The second issue deals with the possibility that if a consistent mapping of IP ad-

dresses is used during anonymization, it may be possible to derive the original host

and subnet addressing scheme by observing the order of internal hosts accessed during

a sequential scan. In order to preserve the IP address anonymization undertaken in

the network traces, scanners that sequentially probed a large number of IP addresses

were identified and the associated network traffic was placed in network trace files

separate from the non-scanning network traffic. The destination IP addresses probed

by the scanners were then mapped with a separate subnet distinct from the destina-

tion IP addresses associated with non-scanning activity. This remapping results in a

scanner’s IP address being kept consistent within the trace but the target destination

IP addresses of the scans are mapped using a different subnet than when the same

destination IP address is associated with non-scanning activity. Remote hosts were

classified as scanners if they attempted to access a minimum of 20 distinct systems

in which at least 16 were in strictly descending or ascending order by IP address.

An unfortunate consequence of mapping the destination IP addresses associated with

the scanning activity using different subnets is that this makes it impossible to de-

termine the total number of distinct internal IP addresses scanned by a particular

scanner. However, this limitation of the datasets does not adversely affect the overall

testing results of our evaluation. Specifically, the determination of the total number

of distinct IP addresses scanned by a particular scanner was not part of the overall

evaluation criteria. In our evaluation, we took all the individual normal and scanning

one-hour packet traces for each day and merged them together into two trace files

(i.e. LBNL/ICSI 12-15 and LBNL/ICSI 12-16) for analysis purposes.

The third and final issue is a result of the scan filtering performed at the LBNL

gateway that blocks most TCP external scanning activity prior to data capture and

subsequent inclusion in the datasets (see [42], section 3, page 3). As a result, a

substantial amount of external TCP scanning activity directed at the network was

never included in the archived datasets. Accordingly, the use of the LBNL/ICSI

datasets in our evaluation introduces the real possibility that our results may unfairly

favor the exposure maps technique and additional evaluations using more realistic

71

Table 4.1: Details about the Network Datasets.
CCSL LBNL/ICSI 12-15 LBNL/ICSI 12-16

Number of Packets 44 278 382 66 719 636 2 938 133
Trace Start Sep 1, 00:46-06 Dec 15, 03:08-04 Dec 16, 11:15-04
Trace End Oct 1, 00:47-06 Dec 16, 01:46-04 Dec 16, 22:19-04
Contiguous Yes Yes Yes
Packet Payload Yes No No
Local Network Subnets 10.0.0.0/192 128.3.0.0/16 128.3.0.0/16

131.243.0.0/16 131.243.0.0/16
Unique IPs (all) 13 930 25 434 20 948
Non-local Unique IPs 13 866 14 334 12 297

Table 4.2: Exposure Maps Capability Evaluation.
CCSL LBNL/ICSI 12-15 LBNL/ICSI 12-16

Scanning Detection Yes Yes Yes
Advanced Scanning Detection Yes No No
Active Response Yes No No
Exposure Profiles No Yes Yes
RAA Yes No No

datasets may cause the exposure maps technique to generate more false positives.

Evaluation Methodology. To test the scalability of the various applica-

tions of exposure maps, it was important to understand how they would react in

large network environments with a diverse user population using a variety of soft-

ware applications. Accordingly, we evaluated the scalability of the prototype on the

LBNL/ICSI datasets. The volume of network traffic and diversity of network activity

in these datasets makes them ideal to test the scalability of the NEM with respect to

scanning detection and the logical grouping of hosts into exposure profiles. As these

datasets only contain anonymized packet headers and each merged packet trace spans

approximately 24 hours, the concept of training period was not applicable. Therefore,

during the scanning detection capability tests, an unvetted NEM was used. Further-

more, as there is no content within the payload of the anonymized packets, testing of

the RAA capability was not possible using these datasets. Finally, the LBNL/ICSI

datasets contains internal enterprise network traffic. To test the R2L scanning de-

tection capabilities of our exposure maps technique, we selected two network subnets

72

and defined these as the local network (see Table 4.1). Any IP addresses outside

of these two subnet ranges (although still inside the network) are considered to be

remote hosts. Accordingly, any scanning activity between local hosts (L2L) or from

local hosts to remote hosts (L2R) will not be detected.

To complement these tests, we tested scanning (simple and advanced) detection,

selected automated response, and RAA capabilities using the CCSL network dataset.

The contiguous time period this dataset spanned (i.e. 28 days) allowed us to undertake

a training period to make use of a vetted NEM and perform greater scan detection

analysis to confirm our experimental results when evaluating the actual capabilities of

the technique. As the network boundaries for this dataset are known, this allowed us

to validate the NEM against a known network security policy. Additionally, having

access to the full network traces allowed us to extract the necessary application layer

information from the packet payloads to test the RAA capabilities of the technique.

A summary of the specific exposure maps capabilities tested with each dataset is

included in Table 4.2.

Chapter 5

Exposure Maps: Evaluation and Discussion

Our analysis herein of exposure maps is based on the experimental results observed

through of a series of tests with three network datasets, and includes a side-by-side

comparison with the TRW algorithm (see Section 3.1). This work was undertaken

to show how exposure maps can be used to detect sophisticated scanning activity;

analyze the effectiveness of using the exposure maps scanning detection capabilities to

perform a real-time fine-grained automatic response to attacks; validate the network

discovery and asset identification feature of exposure profiles/darkports in a mid-

sized enterprise network environment; and verify the technique can perform an RAA

as well as determine the overall network service information revealed by the network.

We conclude with an examination of the limitations of the technique (Section 5.3), a

brief summary of our approach and noteworthy experimental results (Section 5.4).

5.1 Evaluation of Exposure Maps

To validate the scanning detection capability of the exposure maps technique, we

compared our results from both the CCSL network and LBNL/ICSI datasets with:

(1) the TRW algorithm as implemented in the Bro policy trw-impl.bro as described

by Jung [28], and (2) our modification of the TRW algorithm, which is augmented

with an exposure maps connection oracle (i.e. NEM-oracle, as described in Section

4.1.5).

To set the TRW parameters for the CCSL network environment we considered

both the number of active hosts (host density) and services (service density) in the

network. The exposure maps technique provides both the number of active hosts on

the network (which is the number of HEMs in the network, i.e. 3 in our case) and

the services offered in the network as represented by the number of active IP/port

combinations (which is the number of entries in the NEM that contain TCP ports,

73

74

i.e. 7 in our case). We restricted the service density count to consider TCP ports

exclusively for our comparison as the TRW implementation used for comparison only

detects TCP scanning. To calculate a suitable value for θ1 based on host density, we

used the ratio of active hosts to total hosts in the network, .04838 (i.e. θ1 = 3/62).

To calculate the second value of θ1 based on the service density of the network we

analyzed the data traces to determine the number of unique port/IP combinations

probed by remote hosts. Specifically, we manually inspected the CCSL data traces

using both the output of the Bro conn.log file and the exposure maps technique and

determined that remote hosts made connection attempts to a total of 2 037 unique

TCP port/IP combinations within the CCSL network over the four week period.

Thus, the value of θ1 based on service density is .00344 (i.e. θ1 = 7/2 037). Our

side-by-side comparison with TRW and the modified TRW technique consisted of

two tests using the above mentioned host and service density values for θ1 while θ0

was set to .80 based on the analysis of Jung [28]. To set the TRW parameters for

the LBNL/ICSI dataset, we selected the values determined by Jung [28]: θ0 = .80,

θ1 = .20, α = .01, and β = .99.

Evaluation Limitations. In order for the proper interpretation of our evalu-

ation results to be made, two limitations of our side-by-side comparison of exposure

maps, the modified TRW and the Bro TRW implementation are now discussed. The

first limitation of our evaluation stems from the fact that the exposure maps tech-

nique does not take into consideration the source of the connection attempts when

recording DCAs (see Section 4.1.1 for details). Therefore, unlike TRW, successful

connection attempts are not individually tracked by remote hosts and thus are not a

factor in the identification of scanning activity. Accordingly, there is no concept of a

likelihood ratio in exposure maps nor do they attempt to identify benign hosts based

on connection behavior. It is possible that non-malicious remote hosts may also

possibly generate DCAs for a variety of reasons (e.g. mis-configuration, attempted

connections to a relocated or no longer offered service). Depending on the heuristic

used to process the DCAs, a legitimate remote host that makes a few unsuccessful

connection attempts to the local network could be misclassified by the exposure maps

technique as a scanner thereby generating a false positive (see discussion below).

75

Given the limitation of the exposure maps technique in its inability to track suc-

cessful connections, the heuristic we developed to analyze DCAs for our comparison

with TRW (herein referred to as the Exposure Maps DCA Heuristic) is confined to

considering the number of failed connections a given remote host makes to unique

local hosts per a predetermined time window in the absence of any successful con-

nections. Furthermore, the Bro TRW implementation we used in our evaluation only

considers failed connections to unique local hosts, repeated failed or successful con-

nections to the same local host are simply ignored (see Section 3.1). Thus, we need

to determine the minimum number of failed connection attempts (in the absence of

successful connection attempts) to unique local hosts that need to occur for TRW to

declare a remote host a scanner for a given set of parameters. Using the parameters

selected for TRW on the CCSL dataset (i.e. the values of θ1 that reflect both the

host and service density, θ0 = .80, α = .01, and β = .99) the expected number of

observations (i.e. connection attempts), as defined by equation 3.8, that would be

needed to confirm a remote host is a scanner by TRW is E[N |H1] = 3.339 when θ1

is set to the host density and E[N |H1] = 2.847 when θ1 is set to the service density.

Using the logic in the trw-impl.bro Bro policy of Section 3.1, the threshold η1 will

be reached, implying that a remote host is classified as a scanner, if a remote host

makes failed connection attempts to at least 3 unique local hosts in the absence of

any successful connection attempts (see Figure 3.1; note Λ(r) = (1−θ1
1−θ0

)x ≥ .0101 in

equation 3.3 for x ≥ 3). This is in terms of the values of θ1 based both on the service

and host density of the network.

Using the parameters selected for TRW on the LBNL/ICSI dataset (i.e. θ1 = .20,

θ0 = .80, α = .01, and β = .99) the expected number of observations (i.e. connection

attempts), as defined by equation 3.8, that would be need to be observed to confirm

a remote host is scanner is E[N |H1] = 5.414. Threshold η1 will be reached such that

a remote host is determined to be a scanner if it makes failed connection attempts to

4 unique local hosts (i.e. using the logic in the trw-impl.bro Bro policy resulted in

(1−θ1
1−θ0

)4 ≥ η1; see equation (3.3)) in the absence of any successful connection attempts.

Herein, we define the minimum number of unique local hosts a remote host must

make failed connections to in order to be considered a scanner by the exposure maps

76

Table 5.1: Parameters Used for Comparing TRW to the Exposure Maps DCA
Heuristic (CCSL Dataset).

uniq-localhosts-scanned θ0 θ1 β α

Exposure Maps 3 n/a n/a n/a n/a
TRW θ1 Host Density n/a .80 .04838 .99 .01
TRW θ1 Service Density n/a .80 .00344 .99 .01

Table 5.2: Affect of Hits and Misses on TRW Hypotheses Selection.
(θ0 = .80, θ1 = .20, α = .01, β = .99).

Remote Host (RH) Connection Attempts Selected Hypothesis

RH1 H H H H H0 – Benign
RH2 H M H H H H H0 – Benign
RH3 M M M M H1 – Scanner
RH4 H M H M M H M Undetermined
RH5 M M M H M M H1 – Scanner

DCA heuristic we developed for our comparison with TRW as uniq-localhosts-scanned.

Table 5.1 shows the parameters used by the exposure maps technique, the modified

TRW technique, and TRW for our evaluation with the CCSL dataset. Both the TRW

and modified TRW techniques used the TRW parameters associated with the service

and host density values for θ1 listed in the table.

A remote host will be classified as benign if it makes a number of successful

connection attempts to unique local hosts (using the Bro TRW implementation) such

that the likelihood ratio drops below the threshold η0. Specifically, when θ1 = .04838,

the expected number of observations (i.e. connection attempts) to determine that a

remote host is benign is E[N |H0] = 2.330 and this value drops to E[N |H0] = 1.115

when when θ1 = .00344 (see discussion in Section 5.3). A remote host is considered

undetermined (i.e. could be a scanner or benign) if it neither crosses above threshold η1

nor below η0 within the predetermined time window. The desired detection rate and

false positive probability parameters in the policy were set to .99 and .01 respectively.

Again, to set the TRW parameters for the LBNL/ICSI dataset, we selected the values

determined by Jung [28]: θ0 = .80, θ1 = .20, α = .01, and β = .99. Thus, for

the LBNL/ICSI datasets, the number of expected observations required to classify a

remote host as benign is E[N |H0] = 5.414.

77

Table 5.3: Expected Number of Connection Events (E[N |H1]) to Confirm a Remote
Host is a Scanner With α = .01 and β = .99 Kept Constant.

θ0 = 0.6 θ0 = 0.7 θ0 = 0.8 θ0 = 0.9

θ1 = 0.01 5.259327 3.951920 2.924977 2.024272
θ1 = 0.05 6.456205 4.675788 3.356582 2.258148
θ1 = 0.10 8.177836 5.670416 3.930451 2.561878
θ1 = 0.15 10.405763 6.883874 4.600825 2.904754
θ1 = 0.20 13.450660 8.431242 5.413975 3.304537
θ1 = 0.25 17.828219 10.477150 6.428308 3.781217
θ1 = 0.30 24.502386 13.286996 7.728387 4.361244
θ1 = 0.35 35.477595 17.321938 9.444900 5.082008
θ1 = 0.40 55.531504 23.449129 11.791352 5.998822
θ1 = 0.45 98.554592 33.468740 15.138563 7.197142
θ1 = 0.50 220.627018 51.656208 20.180809 8.815567

TRW provides the capability of declaring a remote host a scanner after some

combination of successful and unsuccessful connection attempts. The exposure maps

DCA heuristic we developed to compare exposure maps with TRW does not take

into consideration any successful connection attempts and thus any intermingled suc-

cessful connection attempts by a remote host are simply ignored. Table 5.2 provides

illustrative examples of how successful and failed connection attempts affect the se-

lection of the hypothesis that a remote host is performing scanning activity. An H

or hit represents a successful connection attempt, while an M or miss represents an

unsuccessful connection attempt. A shaded table cell that contains an H or M repre-

sents when a hypothesis (i.e. H0 (benign host) or H1 (scanner)) was selected by TRW

based on the connection history of the remote host to the local network. In one case,

there is not enough evidence to declare a remote host a scanner or benign and in this

case the hypothesis about the remote host is classified as undetermined (e.g. RH4 in

Table 5.2).

Due to the inability of exposure maps to track successful connection attempts,

there may be some instances where a remote host would be classified as either be-

nign or undetermined by TRW and a scanner by the exposure maps technique. For

instance, using the exposure maps DCA heuristic we developed (i.e. uniq-localhosts

-scanned ≥ 4 within the predetermined time window for the LBNL/ICSI dataset) to

78

 1

 10

 100

 1000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
[N

|H
1
]

!1

!0 = .60
!0 = .70
!0 = .80
!0 = .90

Figure 5.1: Expected Number of Connection Events to Confirm a Remote Host is a
Scanner With α = .01 and β = .99 Kept Constant.

compare the scanning detection capability of exposure maps with the Bro implemen-

tation of TRW, RH4 (see Table 5.2) would be classified as undetermined by the latter

and a scanner by the former. The modified TRW technique used in our evaluation

uses the NEM only as a second connection oracle (NEM-oracle) to perform an addi-

tional check to determine if the connection will be a failure or success (see Section

4.1.5). As it makes use of the TRW algorithm tracking both connection successes and

failures, it does share this limitation with the exposure maps technique.

The second limitation of our evaluation stems from selection of the θ0 value during

our evaluation. A value of θ0 = .80 was selected for all our testing on all three

datasets. The expected number of observations (i.e. connection attempts) required to

confirm a remote host is either benign or a scanner can be determined by equation 3.8.

Specifically, E[N |H1] is a function of four parameters, α, β, θ0 and θ1 which represents

that false positive and detection probabilities and the degree to which benign hosts

and scanners differ in their probability to generate failed connection attempts. The

79

greater the number of accessible servers and services in a network, the greater the

probability that a scanner will be able to successfully make a connection to a target.

Accordingly, as the value of θ1 increases, the greater the number of observations are

required to declare a remote host as a scanner. Table 5.3 and Figure 5.1 show the

affect of θ0 and θ1 (with α = .01 and β = .99 held constant) on the expected number

of observations required to classify a host as a scanner. A more rigorous analysis

would explore a full range of values of both θ0 and θ1 for these datasets to determine

the overall affect on the comparison of the three techniques.

Limited Ground Truth. In order to determine the false positives and negatives

produced during the evaluation, it was necessary to gain a limited ground truth of the

overall scanning activity present within the dataset. We define limited ground truth

as confirmation of scanning results through the use of ancillary information. For the

purpose of our evaluation, the ancillary information we used to determine the limited

ground truth consisted of the output of the unmodified TRW implementation and

manual inspection of the datasets used in the evaluation. Specifically, any unique

scanning activity detected by any of the techniques (after careful analysis) would

either result in a source of false positives (for the technique that detected the scan)

if the activity was determined to be benign or a source of false negatives (for the

technique that did not detect the scan) if the activity was determined to be part of

a scanning campaign.

To determine the number of false positives generated during the evaluation, careful

manual analysis of every scan detected by each technique was undertaken to confirm it

was actual scanning activity. This manual analysis consisted of using the destination

IP, source IP, and timestamp information from each scan to identify the associated

network traffic (i.e. failed and successful connection attempts) for subsequent viewing

and analysis using both tcpdump[2] and the relevant Bro conn.log files. Through

user error or misconfiguration, a connection attempt might be made to a host or

service not offered by the network. In this instance, the intent of the connection

attempt was not to scan some portion of the network, but rather it is simply a failed

attempt to access a legitimate service. Regardless, this activity would be classified

as a DCA (or in the case of TRW a failed connection attempt) because an attempt

80

was made to connect to a host/port pair not listed in the NEM. Again, given that

there is no way to measure the intent of a connection attempt, the exposure maps

technique will classify these events as DCAs.

Exposure maps (once vetted against the security policy) define the authorized

access to the network from external sources. Connections attempts or scans outside

these maps are considered a possible scan. Connection attempts that are part of a

scan directed against a port/IP combination contained in the NEM would not be

considered a DCA but rather a connection attempt to a valid service; this might

potentially then be a source of false negatives, and to claim otherwise (i.e. zero false

negatives in general) would imply unknowable knowledge of the intent of the party

requesting the connection. For instance, a scan to port 443/TCP of host 10.0.0.2

(see Table 5.4) in the CCSL network would not be recorded as a DCA. In practice,

although this specific event in a scanning campaign would not be detected, the overall

scanning campaign would likely be detected using exposure maps for scan detection,

as in most cases we would expect with high probability scans to occur against other

hosts in the network not offering SSL (i.e. port 443/TCP darkports). This relies on

the assumption that an attacker is not using a botnet to scan the network (see Section

2.2.2) thus making detection of the specific scanning campaign impractical. In this

case, a network operator would have to rely on observing that an overall increase in

DCAs to a specific port was occurring in order to provide an indication of changes in

detected scanning behavior.

5.1.1 Results: Scanning Detection – Comparison With Threshold

Random Walk (TRW)

To compare our exposure maps technique with the TRW algorithm as implemented in

the trw-impl.bro policy, it was necessary to take into consideration two constraints:

(1) the TRW algorithm only detects TCP protocol scanning activity, and (2) the

TRW algorithm uses an observation time period (i.e. defaulted to 30 mins) that the

exposure maps DCA heuristic must use when determining uniq-localhosts-scanned.

The darkport.bro policy implementation of our exposure maps technique detects

both TCP and UDP scanning activity. We restricted our comparison with TRW to

81

Table 5.4: NEM Details for CCSL Network.
Host TCP Ports Description

10.0.0.1 25/TCP, 53/UDP, 631/TCP, 993/TCP SMTP/DNS/IPP/IMAP
10.0.0.2 22/TCP, 53/UDP, 80/TCP, 443/TCP SSH/DNS/HTTP/SSL
10.0.0.3 22/TCP SSH

TCP scanning. An off-line parsing script to process the TCP DCAs generated by our

technique that used (1) the same observation time period as the trw-impl.bro policy

(i.e. 30 mins), and (2) using the thresholds for the exposure maps DCA heuristic (see

Section 5.1, page 62) created for our evaluation derived from the TRW parameters

described in Section 5.1 that require 3 uniq-localhosts-scanned per observation time

window for the CCSL dataset and 4 uniq-localhosts-scanned per observation time

window for the LBNL/ICSI datasets.

CCSL Network Dataset. The NEM for the CCSL dataset is comprised of three

HEMs (see Table 5.4). Two of these have four active ports; the third has one active

port. The NEM thus has in total nine port/IP entries. We used a one-day training

period to construct the NEM; it stabilized within the first 20 hours of network traffic

and vetting confirmed that no services or hosts beyond those allowed by the existing

network security policy were detected.

Tables 5.5 and 5.6 summarize the results of the side-by side comparison of the

exposure maps technique against the TRW and modified TRW (using a NEM-oracle)

technique, for the CCSL dataset. The same results were obtained for exposure maps,

Bro TRW, and modified TRW implementation and thus are only shown once in the

table. The variable θ1 used for the TRW and modified TRW techniques was set

to reflect the host density (θ1 = .04838) and the service density (θ1 = .00344) of

the network. The variable θ0 was set to .80 for both tests. All three techniques

declared 2 233 port scans. 279 remote hosts were determined to be scanners and 183

remote hosts could be classified as either undetermined or benign based on the TRW

and modified TRW implementation. The exposure maps DCA heuristic detected no

ambiguous connection attempts (see discussion of false negatives for the LBNL/ICSI

datasets within this section).

Figure 5.2 shows the scanning activity in terms of the number of TCP and UDP

82

Table 5.5: Scanning Detection Results for CCSL Dataset with the Exposure Maps
DCA Heuristic. A value of 3 uniq-localhosts-scanned per observation time window

was used for the exposure maps DCA heuristic.
Exposure Maps DCA Heuristic

Declared Scans 2 233
False Positives 0
False Negatives 0
Ambiguous Connection Attempts 0
Unique Scanners 279
Undetermined and Benign Hosts n/a

Table 5.6: Scanning Detection Results for CCSL Dataset with the Bro TRW and
Modified TRW Techniques. θ0 was set to .80 for both tests.

Technique Host Density Service Density
θ1 = .04838 θ1 = .00344

Bro TRW TRW-Scans Detected 2 233 2 233
False Positives 1 0
False Negatives 0 0
Ambiguous Connection Attempts n/a n/a
Unique Scanners 279 279
Undetermined and Benign Hosts 183 183

Modified TRW TRW-Scans Detected 2 233 2 233
False Positives 1 0
False Negatives 0 0
Ambiguous Connection Attempts n/a n/a
Unique Scanners 279 279
Undetermined and Benign Hosts 183 183

83

DCAs generated by unique remote hosts as detected by the exposure maps algorithm.

The y-axis is set to log scale. The number of unique remote hosts is the sum of unique

IP addresses extracted from both the UDP and TCP DCAs for each day. TCP DCA

activity dominates UDP DCA activity for the majority of the four week period.

 1

 10

 100

 1000

 10000

02-09 09-09 16-09 23-09

D
C

A
 A

c
ti
v
it
y

Day-Month

Unique Remote Hosts
UDP DCAs
TCP DCAs

All DCA Activity

Figure 5.2: DCA Activity for CCSL Dataset (Using Exposure Maps Technique).

We extracted the source IP addresses of the detected DCAs and geolocated them

using the MaxMind geolocation database [33] to determine the countries of origin.

At the country level, a purported geolocation accuracy of 99% is claimed. Figure

5.3 shows that both Canada and the United States have the greatest number of ob-

served remote hosts responsible for generating DCAs. The circles in the figure were

arbitrarily placed on the capital city of the country of DCA origin. The Canadian

IP addresses may be partially explained by the fact that the CCSL network is a

small subnet of the much larger Class B Carleton University network. A number of

the remote hosts have IP addresses that fall within this address range. This is not

84

an unusual occurrence as a number of scanning techniques (typically worms and au-

torouters, see Section 2.2.1) have a bias to scan local network ranges as determined by

the the scanning system’s IP address. This affinity skews the geographic distribution

of the remote hosts.

 1

 10

 100

 1000

Figure 5.3: Number of Unique Remote Hosts Generating DCAs in the CCSL
Dataset (Using Exposure Maps Technique) per Geo-located Country of Origin.

(Figure requires color image.)

Figure 5.4 depicts the cumulative distribution function of the number of unique

local hosts for which DCAs were generated by remote hosts detected with the exposure

maps technique. Approximately 60% of the remote hosts generating TCP DCAs and

85% of the remote hosts generating UDP DCAs did so against a single local host.

Approximately 35% of the remote hosts that generated TCP DCAs and less than

10% of the remote hosts generating UDP DCAs did so against three or more unique

local hosts (i.e. the threshold determined for the exposure maps DCA heuristic used

by the exposure maps technique). Two key observations from the DCA activity of

remote hosts are: (1) remote hosts that generate TCP DCAs are more likely to do

85

so against greater numbers of local hosts, and (2) a large number of remote hosts

generated DCAs (both UDP and TCP) against a single local host.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70

C
u
m

u
la

ti
v
e
 F

r
a
c
ti
o
n
 o

f
R

e
m

o
te

 H
o
s
ts

Number of Local Network IPs

TCP DCAs

UDP DCAs

Figure 5.4: Fraction of Remote Hosts Generating DCAs Against at Most x Local
Hosts. CCSL Dataset, Using Exposure Maps Technique.

Figure 5.5 depicts the cumulative distribution function (x-axis was set to log scale)

of number of the DCAs generated by remote hosts detected with the exposure maps

technique. It is interesting to note that less than 10% of the remote hosts generating

TCP DCAs, and 80% of the remote hosts generating UDP DCAs, generated exactly

one DCA. This would indicate that the approximately 50% of the remote hosts gen-

erating TCP DCAs against a single local host (recall that 60% of the remote hosts

generating TCP DCAs did so against a single host) did so using more than one DCA.

Relatively few DCAs detected from a remote host within a long time period may

mean either a very slow scan or simply a false positive as a result of a system mis-

configuration or backscatter (see false positive discussion below). The slope of the

TCP DCA distribution is steeper than the UDP DCA distribution slope indicating

that there is more variation for remote hosts generating UDP DCAs in the number

of actual DCAs they generate. TCP DCA activity was the most prevalent observed

in the dataset in terms of both number of unique remote hosts generating DCAs and

86

Table 5.7: Additional Exposure Maps Results for the CCSL Dataset.
Exposure Maps

of NEM Entries (TCP) 7
Total DCAs (TCP and UDP) 747 320
Unique Remote Hosts (TCP and UDP) 1 489

the overall number of DCAs. In fact, we detected three remote hosts that generated

over 50 000 TCP DCAs each. Table 5.7 shows that 747 320 DCAs were associated

with 1 489 remote hosts over the four week period.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000

C
u
m

u
la

ti
v
e
 F

r
a
c
ti
o
n
 o

f
R

e
m

o
te

 H
o
s
ts

Number of DCAs

TCP DCAs

UDP DCAs

Figure 5.5: CDF of DCA Activity for the CCSL Dataset (Using the Exposure Maps
Technique) – Number of DCAs.

False Negatives for the CCSL Dataset. We relied on the output of the

unmodified TRW implementation and manual inspection of both the failed and suc-

cessful connection attempts based on the output of the Bro conn.log file to provide a

limited ground truth of the scanning activity present within the dataset (see Section

5.1). The exposure maps DCA heuristic detected all the scans identified by the TRW

algorithm. Thus relative to TRW, for this dataset, our analysis for exposure maps

87

(Tables 5.5 and 5.6) revealed no false negatives. In terms of the false negatives anal-

ysis for the TRW and modified TRW techniques, this was determined by comparing,

after careful analysis, the output of any unique scans detected by the exposure maps

technique. Again relative to TRW, for this dataset our analysis revealed no false neg-

atives. The modified TRW technique also generated no false positives or negatives

for the dataset after careful analysis as previously described.

False Positives for the CCSL Dataset. The exposure maps DCA heuristic

created for comparison with the TRW and modified TRW techniques would declare

a remote host as a scanner when uniq-localhosts-scanned ≥ 3 within a finite time

window. Remote host activity resulting in only 1 or 2 DCAs are below the minimum

detection threshold for all three of the detection techniques used in our comparative

evaluation (i.e. the minimum required observations to determine if a remote host is a

scanner did not occur within the finite time window) eliminating these as a possible

source of false positives during our evaluation. We recorded no false positives for

the exposure maps algorithm, or for the TRW and modified TRW techniques over

the two test runs. While no false positives occurred in our CCSL dataset test for

the exposure maps technique, we do not claim this in general. Whenever a vetted

NEM is used, false positives will be generated whenever new legitimate services are

introduced on the network or services are utilized which were not accessed during

the training period (with identification as a trans-darkport until the service has been

added to the vetted NEM). We expect trans-darkports to occur infrequently in tightly

controlled enterprise environments (e.g. in most government departments, financial,

and health care). However, the use of an unvetted NEM provides a mechanism (i.e. an

automated scan event deletion message – the DCADeletion notification (see Section

4.1.5)) to remove DCAs caused by trans-darkport activity.

LBNL/ICSI 12-15 Dataset. Figures 5.6 to 5.8 inclusive were generated using

the results of the exposure maps technique on the LBNL/ICSI 12-15 dataset. Figure

5.6 shows the network DCA activity detected by the exposure maps technique for the

LBNL/ICSI 12-15 dataset. The y-axis plots the number of DCAs set to log scale and

the x-axis is set at hourly intervals. The amount of TCP DCA activity is dominant

over UDP DCA activity for the majority of the dataset.

88

 1

 10

 100

 1000

04-15 06-15 08-15 10-15 12-15 14-15 16-15 18-15 20-15 22-15 00-16

D
C

A
 A

c
ti
v
it
y

Hour-Day

Unique Remote Hosts
UDP DCAs
TCP DCAs

All DCA Activity

Figure 5.6: DCA Activity for LBNL/ICSI 12-15 Dataset (Using Exposure Maps
Technique).

The cumulative distribution function of the number of unique local hosts that were

the subject of DCAs by remote hosts detected with the exposure maps technique for

the LBNL/ICSI 12-15 dataset is given in Figure 5.7. Approximately 82% of the remote

hosts that generated TCP DCAs and 65% of the remote generating UDP DCAs did

so only against a single host. Even the most active remote hosts responsible for both

TCP and UDP DCAs generated DCAs against less than 80 unique local hosts in total

out of approximately 11 000 possible local hosts.

Figure 5.8 depicts the cumulative distribution function of the number of DCAs

generated by remote hosts detected with the exposure maps technique for the LBNL/

ICSI 12-15 dataset. Approximately 90% of the remote hosts generated less than 50

UDP and TCP DCAs each. The remote host with the most DCA activity generated

a total of 1 161 TCP DCAs (with multiple DCAs detected against different ports on

the same local hosts).

The NEM for the LBNL/ICSI 12-15 dataset consisted of 3 604 entries; 2 372 of

89

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100

C
u
m

u
la

ti
v
e
 F

r
a
c
ti
o
n
 o

f
R

e
m

o
te

 H
o
s
ts

Number of Local Network Hosts

TCP DCAs

UDP DCAs

Figure 5.7: Fraction of Remote Hosts Generating DCAs Against at Most x Local
Hosts. LBNL 12-15 Dataset, Using Exposure Maps Technique.

these were TCP ports (see Table 5.9). We used an unvetted NEM for our evaluation

and therefore did not require a training period. Table 5.8 lists the results of the side-

by side comparison of the exposure maps technique against the TRW and modified

TRW (using a NEM-oracle) technique.

The exposure maps DCA heuristic detected 42 scans one of which we deter-

mined was an ambiguous connection attempt (see discussion of false negatives for

the LBNL/ICSI datasets later within this section). The TRW and modified TRW

technique both detected a total of 41 scans. The TRW and modified TRW technique

both classified 67 remote hosts as benign. We can see that all three algorithms per-

formed very well in terms of false positive and negative rates. The exposure maps

technique generated no false positives or negatives. The TRW and modified TRW

techniques each had a total of 1 false positive and no false negatives respectively. A

discussion of how the false positive and negative rates for all three techniques were de-

termined for both the LBNL/ICSI 12-15 and LBNL/ICSI 12-16 datasets is included

90

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 o

f
R

e
m

o
te

 H
o
s
ts

Number of DCAs

TCP DCAs

UDP DCAs

Figure 5.8: CDF of DCA Activity for LBNL/ICSI 12-15 Dataset (Using Exposure
Maps Technique) – Number of DCAs.

at the end of this section. Table 5.9 shows 5 176 DCAs were associated with 501

unique remote hosts.

LBNL/ICSI 12-16 Dataset. Figures 5.9 to 5.11 inclusive summarize the results

of the exposure maps technique on the LBNL/ICSI 12-16 dataset. Figure 5.9 shows

the DCA activity detected by the exposure maps technique for the LBNL/ICSI 12-16

dataset. The y-axis plots the number of DCAs set to log scale and the x-axis is set at

hourly intervals. TCP DCA activity volume dominates UDP DCA activity volume

for the majority of the dataset.

The cumulative distribution function of the number of unique local hosts that were

the subject of DCAs by remote hosts detected with the exposure maps technique for

the LBNL/ICSI 12-16 dataset is given in Figure 5.10. Approximately 38% of the

remote hosts generating UDP DCAs and 35% of the remote hosts generating TCP

DCAs did so against a single local host. The most active remote hosts responsible

for generating TCP and UDP DCAs respectively, did so against more than 1 000 and

91

Table 5.8: Scanning Detection Comparison LBNL/ICSI 2004-12-15 Dataset. The
values θ1 = .20 and θ0 = .80 were used for the Bro TRW and modified TRW

techniques and a value of 4 uniq-localhosts-scanned per observation time window
was used for the exposure maps DCA heuristic.

Technique

Exposure Maps Declared Scans 42
False Positives 0
False Negatives 0
Ambiguous Connection Attempts 1
Benign Hosts n/a

Bro TRW TRW Scans 41
False Positives 1
False Negatives 0
Ambiguous Connection Attempts n/a
Benign Hosts 67

Modified TRW TRW Scans 41
False Positives 1
False Negatives 0
Ambiguous Connection Attempts n/a
Benign Hosts 67

Table 5.9: Additional Exposure Maps Results for the LBNL/ICSI 2004-12-15
Dataset.

Exposure Maps
of NEM Entries (TCP) 3 604 (2 372)
DCAs - TCP 3 929
DCAs - UDP 1 247
Total DCAs (TCP&UDP) 5 176
Unique Remote Hosts (TCP&UDP) 501

92

 1

 10

 100

 1000

11-16 12-16 13-16 14-16 15-16 16-16 17-16 18-16 19-16 20-16 21-16 22-16

D
C

A
 A

c
ti
v
it
y

Hour-Day

Unique Remote Hosts
UDP DCAs
TCP DCAs

All DCA Activity

Figure 5.9: DCA Activity for LBNL/ICSI 12-16 Dataset (Using Exposure Maps
Technique).

200 unique local hosts in total out of approximately 8 500 local hosts in the network.

Figure 5.11 depicts the cumulative distribution function of the number of DCAs

generated by remote hosts detected with the exposure maps technique for the LBNL/

ICSI 12-16 dataset. Approximately 85% of the remote hosts that generated UDP

DCAs and 90% of the remote hosts that generated TCP DCAs produced less than

ten DCAs. The remote host with the most activity generated a total of 929 TCP

DCAs.

The NEM for the LBNL/ICSI 12-16 dataset consisted of 2 695 entries; 1 652 were

TCP ports (see Table 5.11). We used an unvetted NEM for our evaluation and

therefore did not require any training period. Table 5.10 lists the results of the side-

by side comparison of the exposure maps technique against the TRW and modified

TRW (using a NEM-oracle) technique. The exposure maps DCA heuristic detected

17 scans one of which we determined was an ambiguous connection attempt (see

discussion of false negatives for the LBNL/ICSI datasets within this section). The

93

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140 160 180

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n
 o

f
R

e
m

o
te

 H
o
s
ts

Number of Unique Local Network Hosts

TCP DCAs
UDP DCAs

Figure 5.10: Fraction of Remote Hosts Generating DCAs Against at Most x Local
Hosts. LBNL 12-16 Dataset, Using Exposure Maps Technique.

TRW and modified TRW technique both detected a total of 16 scans. All three

techniques did not produce any false positives or negatives. Table 5.11 shows 3 071

DCAs generated by 287 unique remote hosts.

False Negatives for the LBNL/ICSI Datasets. The exposure maps DCA

heuristic detected all scans identified by the TRW algorithm and therefore generated

no false negatives relative to the TRW output, for these datasets (i.e. LBNL/ICSI 12-

15 and LBNL/ICSI 12-16); see Tables 5.5 and 5.7. The exposure maps DCA heuristic

did generate two ambiguous connection attempts, one in LBNL/ICSI 12-15 dataset

and one in the LBNL/ICSI 12-16 dataset. This was determined by comparing, after

careful analysis, the output of any scans uniquely detected by the exposure maps

technique.

Further analysis (using tcpdump) of the TCP connections that generated these

ambiguous connection attempts revealed the following common characteristics:

94

Table 5.10: Scanning Detection Comparison LBNL/ICSI 2004-12-16 Dataset. The
values θ1 = .20 and θ0 = .80 were used for the Bro TRW and modified TRW

techniques and a value of 4 uniq-localhosts-scanned per observation time window
was used for the exposure maps DCA heuristic.

Technique

Exposure Maps Declared Scans 17
False Positives 0
False Negatives 0
Ambiguous Connection Attempts 1
Benign Hosts n/a

Bro TRW TRW Scans 16
False Positives 0
False Negatives 0
Ambiguous Connection Attempts n/a
Benign Hosts 38

Modified TRW TRW Scans 16
False Positives 0
False Negatives 0
Ambiguous Connection Attempts n/a
Benign Hosts 38

Table 5.11: Additional Exposure Maps Results for the LBNL/ICSI 2004-12-16
Dataset.

Exposure Maps
of NEM Entries (TCP) 2 695 (1 652)
TCP DCAs 2 401
UDP DCAs 670
Total DCAs (TCP&UDP) 3 071
Unique Remote Hosts Generating DCAs (TCP&UDP) 287

95

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 o

f
R

e
m

o
te

 H
o
s
ts

Number of DCAs

TCP DCAs

UDP DCAs

Figure 5.11: CDF of DCA Activity for LBNL/ICSI 12-16 Dataset (Using Exposure
Maps Technique) – Number of DCAs.

• no initial three-way handshake: the set-up of the connection between the origi-

nator and responder of the connection was not present in the dataset.

• no graceful connection shut-down: the termination of the connection between

the originator and responder in the connection was not present in the dataset.

• low remote host network interaction: the remote hosts (i.e. the scanners) asso-

ciated with these ambiguous connection attempts had no other network activity

present in the dataset other than the traffic that caused this unusual network

activity.

• no destination service interaction: the destination hosts in the local network

were never observed offering (i.e. no NEM entry for) the service being accessed

by the remote hosts that generated these ambiguous connection attempts in

these traces over the entire dataset.

96

Bro classified the connections that generated these ambiguous connection attempts

using the OTH state indicating that the connection information it extracted from the

network traffic to construct these flows was incomplete. Regardless, Bro makes an

attempt to guess the roles of originator and responding system in the connection

even when the three-way handshake that signifies the start of a TCP session is not

present. It is not clear if these incomplete connections were an artifact introduced

by anonymization, loss of packets during data collection due to the location of the

collection equipment, or the result of ongoing long-term connections (see discussion

in Section 4.2). In the exposure maps technique, as no three-way handshake for

these connections was present in the dataset, the NEM would not have the IP/port

entry of the responding system as an entry (i.e. the connection_established event

would not be triggered which populates the NEM). However, this network traffic does

trigger the Bro new_connection event and in the absence of an associated NEM entry

for the destination IP and port/protocol, this activity is deemed a DCA. The TRW

and modified TRW techniques did not flag this activity as a scan; they make use of

connection states instead of connection events (see Section 3.1) allowing for a more

fine-grained determination of whether a connection succeeded or failed and therefore

did not consider this activity as failed connections.

Nonetheless, the TCP connection fragments that caused these ambiguous connec-

tion attempts are anomalous network activity (i.e. no connection set-up or tear-down)

that may either be malicious in nature or simply an artifact of the method used to

capture the datasets (see Section 4.2). Unfortunately, due to the fact that the datasets

consisted only of anonymized headers, further analysis was not possible. Accordingly,

although this network activity is suspicious, there is not enough information to sup-

port conclusion that the associated network traffic is a result of either benign or

scanning activity.

Finally, the modified TRW technique also detected all scans identified by the

original TRW algorithm. As previously discussed, scans directed against a port/IP

combination contained in the NEM are not considered part of a scan but rather a

connection attempt to a valid service; this might potentially then be a source of false

negatives, and to claim otherwise (i.e. zero false negatives in general) would imply

97

unknowable knowledge of the intent of the host requesting the connection.

False Positives for the LBNL/ICSI Datasets. As previously discussed,

failed attempts to access a legitimate service would be classified as a DCA by the

exposure maps technique as an attempt was made to connect to a host/port pair not

listed in the NEM. Given that there is no way to measure the intent of a connection

attempt, it is possible that if a remote host generated a number of these events

(i.e. DCAs) against enough unique local hosts, this activity could be classified as a

scan by the exposure maps DCA heuristic used in our comparison with TRW. As

revealed in Figures 5.8 and 5.11, a significant number of remote hosts each generated

a single DCA. Any remote host activity resulting in a single DCA would be below

the minimum detection threshold for all three techniques used in this evaluation

thus eliminating these as a possible source of false positives. The single false positive

attributed to the TRW and modified TRW technique in the LBNL/ICSI 12-15 dataset

was for the same scanning activity (i.e. the source and destination hosts as well as

the associated network timestamps matched). Analysis of the network trace revealed

that the remote host scanned a total of 3 unique systems not the 4 required by the

threshold. We suspect that this phenomenon is a flaw in the implementation (i.e.

software bug) and not the TRW algorithm.

5.1.2 Results: Advanced Scanning Detection

Attackers may disperse the scanning activity among several sources to reduce the

overall scanning footprint in an effort to evade detection. To detect distributed scan-

ning we propose classifying DCAs using the following criteria.

i. DCAs and target destination ports. The number of DCAs per unique source

IP address is determined (in post-processing), through analysis of the DCA

scanning activity log, over a configurable time interval (e.g. seconds, days).

Similar numbers of DCAs from individual sources are grouped into clusters,

which are then grouped by target destination ports. This final comparison

reveals remote hosts with a similar scanning frequency (i.e. number of DCAs

per unit time) and the same target service. We consider clusters of three or

more remote hosts that target the same destination ports as a distributed scan;

98

Table 5.12: Three Detected Distributed Scans.
of Scanned # of Hosts Follow-on

Scanners Ports Scanned Attack

3 80/TCP 62 No
14 22/TCP 62 Yes
9 25/TCP 62 Yes

53/TCP

Table 5.13: Scan/Attack Activity.
NEM Entry Scan/Attack Scans or

Entities Attacks

10.0.0.1:25/TCP 5 5
10.0.0.2:22/TCP 40 4 545
10.0.0.2:80/TCP 17 120
10.0.0.2:443/TCP 4 9
10.0.0.3:22/TCP 40 10 601

the number of systems in a cluster is configurable.

ii. Source IP proximity and target destination ports. DCAs are first sorted by

unique source IP address. Remote hosts in the same one-quarter class C subnet

address range (i.e. /26) are grouped into a cluster. These clusters are then

grouped by target destination ports. This reveals remote systems sharing a

similar contiguous address space (which could indicate a single entity 0wns the

remote hosts) and target (i.e. service). Again, we consider clusters of three

or more remote hosts as scanners that target the same destination ports as

a distributed scan. Using these distributed scan heuristics, we detected three

distributed scans in the CCSL network dataset (cf. Table 5.12).

The first consisted of three source IPs targeting port 80/TCP (HTTP). The scan-

ning campaign was directed against the entire IP address range of the CCSL network

(i.e. 62 systems). Once the scanning activity completed, no attacks were detected

from these scanning sources. In fact, the only network activity exhibited by the sys-

tems participating in the distributed scanning campaign in the network trace was this

specific distributed scan.

99

Table 5.14: Distributed Scan Characteristics.
DCAs

18:01:30 10.0.138.232 > 192.168.1.3.22
18:01:30 10.0.138.237 > 192.168.1.6.22
18:01:30 10.0.138.229 > 192.168.1.9.22
18:01:30 10.0.138.237 > 192.168.1.2.22
18:01:30 10.0.138.229 > 192.168.1.10.22
18:01:30 10.0.138.226 > 192.168.1.14.22
18:01:30 10.0.138.236 > 192.168.1.18.22
18:01:30 10.0.138.230 > 192.168.1.24.22
18:01:30 10.0.138.234 > 192.168.1.16.22
18:01:30 10.0.138.234 > 192.168.1.11.22
18:01:30 10.0.138.233 > 192.168.1.8.22
18:01:30 10.0.138.228 > 192.168.1.25.22
18:01:30 10.0.138.236 > 192.168.1.21.22
18:01:30 10.0.138.231 > 192.168.1.29.22

The second distributed scan consisted of 14 systems targeting port 22/TCP (SSH).

The scan was also directed at the entire IP address range of the CCSL network. Two

of the hosts in the CCSL network offer services on port 22/TCP. In contrast to the

first distributed scan, two of the scanning systems attacked both systems in the CCSL

network that offered the service (cf. Table 5.4). The number of DCAs from the 14

scanning systems ranged from 2 to 7. The network address space was scanned in

non-sequential order and the entire scan lasted 1 second. Table 5.14 summarizes the

characteristics of this distributed scan by showing the first 15 DCAs of the scanning

campaign. During the entire campaign, the source IP address varies among the 14

scanning hosts with no occurrence of two DCAs arriving one directly after the other

from the same source IP. Approximately 2 minutes after the scan concluded, all 14 of

the systems that participated in the distributed scan attacked (with repeated login

attempts) precisely the two systems in the network that offered SSH. Analysis of the

network traces showed that the repeated SSH login attempts were all unsuccessful.

To visualize this specific distributed scan and subsequent attack, we make use of

the Bro connection information stored in the conn.log and plotted it in a directed

graph. Figure 5.12 shows the 14 distributed scanners (i.e. red oval nodes) attempting

to make a connection to port 22/TCP on all the hosts within the CCSL network (i.e.

100

blue oval nodes labeled H1 to H62 that represent the 62 hosts in the local network

address range). 60 of the nodes do not accept the incoming connection attempts

(i.e. Bro connection state REJ in the red rectangle), however two nodes accept the

incoming connection attempts (i.e. the Bro states SF and S0 indicate the service is

offered, the blue and purple rectangles).

Figure 5.13 shows this same activity plotted in a directed graph in terms of con-

nections to the targeted port of the distributed scan (i.e. 22/TCP). The distributed

scanners (red nodes) all made connection attempts to port 22/TCP (yellow node) on

all 62 local network hosts. 60 of the hosts (white nodes) did not respond while two

of the hosts (light blue nodes) did.

Finally, the third distributed scan detected consisted of 9 scanning systems tar-

geting ports 53/TCP (DNS) and 25/TCP (SMTP). One of the hosts in the network

offers services on port 25/TCP and two offer services on port 53/UDP (not 53/TCP)

respectively. Again, all 62 hosts in the CCSL network were scanned with an attack

immediately following on the system that offered port 25/TCP.

The distributed scanning detection heuristics described above illustrate how DCAs

detected and recorded through exposure maps can be post-processed to detect sophis-

ticated scanning activity. Other heuristics may be developed that use the raw output

from exposure maps scanning logs to identify other types of simple or sophisticated

scanning activity (e.g. slow scanning). For instance, as an example third heuristic, to

detect slow scans to a particular service (i.e. port) one can use the timestamp feature

from the recorded scan events. Some time-constrained set of detected DCAs is sorted

by source IP address. Using the timestamp as a reference, scan intervals of less than 5

minutes from a particular source IP address to the same destination port are ignored.

This heuristic would detect scans from a single host to the same destination port on

multiple hosts with a scan interval of 5 minutes or greater.

5.1.3 Results: Active Response

Of the 813 remote hosts responsible for generating DCAs in the CCSL dataset, 66

launched a total of 15 280 DCAs intermingled with attacks (unsuccessful) against the

network, e.g., repeated attempts to relay mail through the mail server, and attempted

101

Figure 5.12: Distributed Scan of the SSH Service on CCSL Network IP Addresses.

102

Figure 5.13: Distributed Scan of the SSH Service on Port 22/TCP of CCSL
Network IP Addresses.

logins to an SSH service. Mail relaying is prohibited by the CCSL network’s mail

server and the responses from the mail server to the attacking system indicate that

103

no relaying occurred; analysis of the network traces also showed that the repeated

SSH login attempts were all unsuccessful. Some of these remote hosts scanned and

attacked multiple services; this explains why the number of scan/attack entities in

Table 5.13 is 106, while the actual number of unique IPs addresses was 66. With the

exception of a single distributed scan, two characteristics of this activity occurred: (1)

scanning was always the precursor to the actual attack, and (2) whenever a scan was

directed against a service offered by the network (i.e. entry in the NEM), an attack

followed once a response to the scan was sent. This “scan then attack” activity fits

the profile of autorooter or worm activity as described in Section 2.2.1. The attacks

were directed against four services offered by the network: SMTP, HTTP, SSL, and

SSH.

Without the knowledge of what services are offered and in active use by the

network, in a standard perimeter defense all 813 source IPs that generated DCAs

over the four week period might need to be blocked at the router or firewall. The

NEM provides up-to-date knowledge of the external interface of the network. The

NEM, coupled with the technique of Section 4.1.2, allows a minimal set of only 66

remote hosts should be denied access to the network. This represents a 92% reduction

in the number of dynamic updates to the network security ACLs.

5.1.4 Results: Exposure Profiles

Exposure profiles offer the ability to passively perform host discovery and identifi-

cation. To determine how well exposure maps can be used to identify and group

hosts with similar HEMs into exposure profiles, we tested this feature on the two

LBNL/ICSI network traces. We classified all the HEMs using the profiles of Section

4.1.3; specific ports/protocol for the types of applications listed in two of the example

profiles are listed in Table 5.15. The mapping from port number to network ser-

vice is contained in Appendix A.2, Table A.2. These specific profiles were selected to

demonstrate the feasibility of using HEMs to group their respective hosts into specific

network profiles. Accordingly, the number of profiles and specific services included in

each are configurable for different network environments.

Exposure profiles can be used to rapidly partition a NEM’s hosts into subsets of

104

Table 5.15: Exposure Profiles Port Assignments.
Risk Level Ports

Low 21/TCP, 22/TCP, 23/TCP, 25/TCP, 53/TCP, 53/UDP, 80/TCP,
110/TCP, 111/TCP, 111/UDP, 113/TCP, 119/TCP, 138/UDP,
143/TCP, 161/UDP, 427/UDP, 443/TCP, 515/TCP, 554/TCP,
993/TCP, 995/TCP, 1755/TCP, 1863/TCP, 5050/TCP, 5061/TCP,
7000/TCP

Medium 135/TCP, 445/TCP, 1433/TCP, 3389/TCP

Table 5.16: Exposure Profiles.
LBNL/ICSI Datasets

Network Trace # of HEMs Low Risk Medium Risk
12-15 1 741 1 370 316
12-16 1 410 1 077 434

the NEM, based on the entries in their HEM. For instance, Table 5.16 summarizes the

number of HEMs (hosts) within two exposure profiles for the selected network traces

from the LBNL/ICSI datasets. A HEM’s placement in a profile in this example is

determined by the highest risk service it offers; a HEM that contains entries 22/TCP,

80/TCP, and 1433/TCP would be included in the Medium Risk profile.

5.1.5 Results: Reconnaissance Activity Assessment (RAA)

Table 5.17 shows the CCSL NEM enhanced with application information that is

transmitted by the active hosts in the CCSL network when a connection is made to

an offered service (i.e. a NEM entry). The entries represent the externally visible

interface (network and application layer) of the network.

Recall that Table 5.13 shows the scan/attack results from the CCSL dataset. Table

5.18 is a result of overlaying this information with the enhanced NEM. The enhanced

NEM makes it possible to perform RAA and determine what specific application

information from the network was sent to the detected scanning systems. For instance,

the 14 distributed scanners that targeted port 22/TCP on all 62 hosts in the CCSL

network (cf. Table 5.12) would have had at least the following information returned

to them as a result of their scanning campaign:

105

Table 5.17: Enhanced CCSL NEM showing Application Information.
Host Port Application Information

10.0.0.1 22/TCP OpenSSH 3.8.1p1 (Protocol 2.0)

25/TCP Generic SMTP Exim (shakespeare.ccsl.carleton.ca)

631/TCP Unknown HTTP (HTTP/1.1)

993/TCP University of Washington IMAP daemon1

10.0.0.2 22/TCP OpenSSH 3.8.1p1 (Protocol 2.0)

80/TCP Apache 2.0.54 (Debian GNU/Linux)

443/TCP Generic TLS 1.0 SSL

10.0.0.3 22/TCP OpenSSH 3.8.1p1 (Protocol 2.0)

Table 5.18: RAA for CCSL Dataset.
NEM Entry Scan/Attack Scans or Application Information

Entities Attacks

10.0.0.1:25 5 5 Generic SMTP Exim (shakespeare.ccsl.
carleton.ca)

10.0.0.2:22 40 4 545 OpenSSH 3.8.1p1 (Protocol 2.0)

10.0.0.2:80 17 120 Apache 2.0.54 (Debian GNU/Linux)

10.0.0.2:443 4 9 Generic TLS 1.0 SSL

10.0.0.3:22 40 10 601 OpenSSH 3.8.1p1 (Protocol 2.0)

106

i. Host 10.0.0.1: port open – OpenSSH 3.8.1p1 (Protocol 2.0).

ii. Host 10.0.0.3: port open – OpenSSH 3.8.1p1 (Protocol 2.0).

iii. All remaining hosts in the network (10.0.0.2, 10.0.0.4-62): ports closed – no

response.

A variety of regex expressions [52] are included in the darkport-sig.sig file to

detect a number of popular applications. This file is easily extensible to accommodate

new applications.

5.2 Scalability and Stability of Exposure Maps

The size of the NEM will be determined by numerous factors, the two most impor-

tant being the number of distinct hosts using the monitored link (or network), and

the variety of applications those hosts use. We tested exposure maps technique on

the LBNL/ICSI network datasets to determine scalability in larger and more diverse

environments; individual traces included tens of thousands of unique source and des-

tination IP addresses.

The resource consumption of exposure maps includes system detection state and

disk storage. The former refers to storage for the features extracted from network

events (i.e. port/IP address for a NEM and port/IP address/associated application

information for an enhanced NEM) that must be maintained at all times in main

memory, that will provide, at wireline speed, the context to build and maintain the

exposure maps as well as perform its various applications.5 A number of techniques

are used by other network-based scanning detection approaches to limit their use of

allocated system resources (CPU cycles, main memory, disk storage). These include

connection timeouts, reduction of monitoring windows, fixed sized memory buffers

and analyzing only certain events/protocols all of which may have an adverse effect

on the accuracy of the detection technique. The disk storage usage as a result of

using the exposure maps technique will depend on the detected scanning activity,

increasing with the number of DCAs recorded. We now discuss the system detection

5Depletion of this finite resource, due to traffic volume or an intentional DoS attack, can overload
and defeat a detection system. Resilience to attack is discussed separately; see end of this section.

107

state and disk storage requirements for the various applications of exposure maps,

and computational overhead.

Scanning Detection Scalability. For scanning detection with exposure

maps, (1) the NEM (vetted or unvetted) must be constructed and maintained, and

(2) DCAs must be written to disk in a DCA activity log file. To understand the

amount of detection system state for (1), consider the largest NEM observed in the

LBNL/ICSI 12-15 dataset, consisting of 3 604 entries. Each NEM entry contains 6

bytes: 4 for IP address and 2 for port. Thus, the total memory footprint for this

NEM is 6∗3 604 ≈ 22K bytes plus additional overhead for storage in a data structure

(i.e. in our implementation the Bro set data structure). Thus, with an allocation of

less than fifty Kilobytes in system detection state (i.e. main memory), we can perform

scanning detection for this network. As new connection requests are received, a single

lookup is performed on the NEM with the destination IP and port fields from the

incoming request to determine if there is a match. The small amount of detection

system state coupled with the minimal computational overhead required to determine

if an incoming connection request matches a port/IP pair in the NEM (i.e. analogous

to a single lookup in a hash table) make this technique suitable for use at wire speed

even in large enterprise environments.

To estimate the disk storage required for DCAs in the DCA log file, we examined

the LBNL/ICSI and CCSL datasets. The unoptimized 5-tuple and associated notifi-

cation/alarm type (e.g. DCA, NewService – see Section 4.1.5) that represents each

DCA, in character delimited ASCII, requires 146 bytes of storage. To store approxi-

mately one day of DCAs for the LBNL/ICSI 12-15 dataset would require 5.7 Gbytes;

or for one month, 171 Gbytes.6 In contrast, to store the 747 320 DCAs detected in the

CCSL dataset (4 week period) in the DCA log file would take 104 Mbytes. Assuming

the dataset represents an average level of DCAs, an entire year of DCAs for the CCSL

network (≈ 1.2 Gbytes) could be stored on a single DVD or USB key.

Long term event storage is useful for applying heuristics to detect sophisticated

scanning activity (e.g. slow scanning) and scanning trend analysis. Part of our future

work includes optimizing the way that DCAs are stored, to significantly reduce the

6A commodity external hard disk with this storage capacity costs ≈ $50. The LBNL/ICSI 12-15
dataset had a local network that consisted of approximately 11 000 hosts.

108

disk storage required e.g., through the use of binary output, DCA aggregation, and

compression.

Automated Response Scalability. The automated response application is

more expensive on system detection state than the scanning detection application

due to the scanners list (recall Section 4.1.2). Each entry in the scanners list requires

an additional 4 bytes (plus additional overhead for storage in a data structure). As

connection requests are received, an additional lookup is required (i.e. a check against

both the NEM and the scanners list) to determine if the source IP address matches an

entry in the scanners list. We detected 831 suspected scanners in the CCSL dataset.

With an additional allocation of 10K or less in system detection state, we could enable

the automated response application. The length of time an IP address determined to

be a remote scanner stays on the scanners list is configurable.

Exposure Profiles Scalability. The exposure profile application is the least

expensive in terms of system resources. To build exposure profiles, we need to con-

struct and maintain the NEM as for the scanning detection application. The HEMs

in the NEM are simply sorted and logically grouped by their respective ports into the

respective profiles. There is no requirement to write any information to secondary

storage.

Reconnaissance Activity Assessment (RAA). To perform RAA in the

network an enhanced NEM is required. This is more expensive in terms of system

detection state than a regular NEM (i.e. composed solely of IP/port entries). The

additional information stored in each enhanced NEM entry consists of any applica-

tion information extracted from the network in near-real time as a result of the regex

expressions found in the darkport-sig.sig file. As, the regex expression performs

pattern matching on network traffic in real-time (the same technique employed by

misuse network intrusion detection systems), the greater the number of regex pat-

terns to be matched or the faster the speed of the network link, the greater the

potential for a negative effect on the performance of the system.

Stability. The time for a NEM to become stable (i.e. infrequent trans-darkport

activity) will vary greatly depending on the environment in which it is used. In an

enterprise network with a tight network security policy (e.g. government, finance,

109

health care), we would expect the NEM to stabilize quickly and thus be suitable for

use in a scanning detection technique. As noted in Section 5.1.1, in the CCSL network

the NEM stabilized in 20 hours. In other environments, service usage may vary by

day of the week. In a network environment with an open network security policy,

an unvetted NEM may be used which will scale well but not stabilize as new hosts

continually enter and leave the network (e.g. mobile users) and new applications and

services are continually added to client systems (e.g. P2P file sharing, open proxies).

An unvetted NEM is suitable to use in the core network of an ISP as the concept

of network boundaries and universal network security policies are not applicable.

Additionally, in these fluid network environments, exposure maps remain useful, e.g.

as a tool to perform network discovery through the application of exposure profiles,

as discussed in Sections 4.1.3 and 5.1.4.

DoS Attacks. A potentially serious attack on many scanning detection mecha-

nisms is one that specifically targets the detection system. In this context, we review

the general construction and maintenance of basic exposure maps, plus the four main

applications considered (scanning detection, automated response, exposure profiles,

and RAA).

The construction and maintenance of either basic or enhanced exposure maps

(both vetted and unvetted) appears resilient to DoS attack. Incoming scans (bursts

or sustained activity) do not increase an exposure map’s size (i.e., the number of

HEM entries), which reflects only the number of services offered by the corresponding

host. Incoming scans do need to be passively monitored, and connection requests are

checked for matches against the NEM; however, the processing required for this is

minimal, and we would expect any problems caused by volume of requests to cause

other elements of a network to fail, e.g., having adverse affect on core network devices

such as routers, or firewalls. Similar to basic exposure maps, the exposure profile

application appears resilient, as neither disk storage nor system detection state are

adversely affected by attack; exposure profiles rely only on exposure maps to logically

group system devices based on the services they offer.

In the scanning detection application, secondary storage may be adversely affected

by a large botnet DoS effort, because detected scanning activity is recorded. For

110

example, for a 100,000 system botnet executing a scanning campaign on a target

network, three simultaneous scans by each bot would consume 41.8 Mbytes in the

DCA activity log. A sustained scanning effort by such a botnet would exhaust disk

storage in most networks. However, such an attack would also likely cause core

network devices to fail as noted above.

The automated response application would experience the same impact on disk

storage as the scanning detection application, plus system detection state would be

consumed for source IP addresses added to the scanners list (as incoming connection

requests to port/IP combinations outside the NEM result in new scanners list entries).

A botnet of size 100,000 would consume more than 400Kbytes of (in a scanner list)

system detection state; this state consumption does not increase after the first scan

from each source IP address. The most successful attack would likely be an attacker

intentionally trying to exhaust scanner list state by spoofing source IP addresses

during a large scanning campaign; this could adversely affect the platform executing

the automated response application.

The RAA application is resistant to DoS as well. As is the case with the basic

NEM, incoming scans do not increase an enhanced exposure map’s size which reflects

only the number of services offered by the corresponding host. Although the enhanced

NEM is constructed by regex pattern matching, only those connections that succeed

need to be processed. The majority of scans do not succeed (see Section 5.1.3) and

therefore result in half-open or rejected connections with no traffic content being

sent between the server and client. Only in those instances where a scan succeeds

will connection processing be required to perform pattern matching for the enhanced

NEM (if used).

5.3 Further Discussion and Limitations

In order to evaluate the exposure maps technique, we used the datasets from two

different network environments and performed a side-by-side comparison with (1) the

TRW scanning detection algorithm [29] implemented as a Bro policy and (2) a mod-

ified TRW technique augmented with a NEM as a second check to determine the

111

success or failure of new connections (described in Section 4.1). The evaluation in-

cluded two test runs on the CCSL network dataset that varied the detection threshold

of the TRW algorithm by changing the sensitivity of the detection technique based on

the number of active hosts and services offered in the network to determine the effect

on the false positive and negative rates. Specifically, two values of θ1 were selected to

reflect the probability that a scanner’s connection attempt would succeed based on

the host and service density in the network. All three techniques recorded no false

negatives or positives over both test runs.

The comparison was limited as a result of both the implementation of the exposure

maps technique and the parameters chosen for TRW in our tests (see evaluation

limitation discussion in Section 5.1). Specifically, the limitation of the exposure maps

algorithm that constrained our evaluation stems from the fact that, unlike TRW,

successful connection attempts are not individually tracked by remote hosts and thus

are not a factor in the identification of scanning activity. The exposure maps technique

has no concept of a likelihood ratio nor are any attempts made to identify benign

hosts based on connection behavior. Thus, depending on the heuristic used to process

DCAs, a legitimate remote host that makes a few unsuccessful connection attempts to

the local network could be misclassified by the exposure maps technique as a scanner

thereby generating a false positive. During our evaluation, while we did not experience

any false positives due to this type of connection behavior, this remains a potential

source of false positives for the exposure maps technique in a direct comparison with

TRW in different network environments or datasets.

The expected number of observations for TRW (per the parameters studied) to

classify a remote host as benign in the CCSL network is E[N |H0] = 2.330 when θ1

is set to the host density value and drops to E[N |H0] = 1.115 when θ1 is set to

the service density value (see Section 5.1). In fact, the Bro TRW implementation of

TRW we used in our evaluation when testing θ1 that reflects the service density of

the CCSL network will classify a remote host as benign after the observation of only

a single successful connection (in the absence of any failed connections). It could

be argued that a single observation of a successful connection attempt is not enough

evidence to conclusively support H0. Specifically, the requirement of only a single

112

successful connection attempt (in the absence of any failed connection attempts) for

a remote host to be considered benign may erroneously lead to the misclassification

that a scanner is benign.

For instance, a number of scans observed against the CCSL network were from

remote systems sequentially scanning specific ports on every host in the network

starting at the low order address in the subnet and working their way through the

entire network address space in strictly ascending or descending order (e.g. 10.0.0.1,

10.0.0.2, 10.0.0.3 ...). In the scenario where a network is configured such that the

low order addresses are populated with active hosts (a typical configuration), the

scanners we detected performing sequential scanning would have been misclassified

as benign generating a significant number of false negatives. Fortunately, for TRW in

this specific instance, the three active hosts on the CCSL network are not assigned to

the start of the network address block and thus sequential scanning activity was easily

detected by the TRW technique even when the service density value for θ1 was used.

Regardless, for the CCSL network we recommend that when using TRW, θ1 be set

to the host density to minimize the possibility of scanners begin misclassified by the

TRW technique as benign. This emphasizes the need to select the TRW parameters

carefully to balance quick detection (the classification of a host as scanners or benign)

with the objective of producing low false positives and negatives.

If successful and failed connection attempts are interspersed, a greater number of

connection attempts observations are required by TRW before a remote host can be

reclassified from undetermined to either benign or a scanner. One drawback of TRW

is that it is an attribution-based network scanning detection technique: attribution

of the remote hosts is required to assign each host a score based on the connection

history with the local network for comparison with thresholds η0 and η1. Attribution

presupposes that the identification of the root cause of scanning activity is possible.

This assumption makes the technique unsuitable for detecting a growing number of

sophisticated scanning techniques (e.g. distributed scanning).

The tests on the LBNL/ICSI datasets used the TRW parameter values as de-

scribed by Jung [28]. The exposure maps technique (using our exposure maps DCA

113

heuristic) had no false positives or negatives recorded during the tests but did iden-

tify 2 ambiguous connection attempts. The TRW and modified TRW technique each

had no false negatives and 1 false positive respectively. The ambiguous connection

attempts detected by the exposure maps technique were caused by incomplete TCP

connections most likely caused as an artifact of the dataset used in the evaluation

(Section 4.2). Although we do not consider this network activity definitive proof that

a scan has occurred, we do believe that such anomalous network activity is worth

identifying as suspicious. Accordingly, we did not consider this a false positive for the

exposure maps technique nor a false negative for the TRW and modified implementa-

tions. The TRW algorithm uses failed connection attempts to determine if a host is

performing scanning activity and these incomplete TCP fragments were interpreted

by the TRW algorithm as the a result of a successful connection rather than a failed

connection attempt. The inability of the TRW and modified TRW technique to de-

tect these ambiguous connection attempts can be attributed to its implementation

in Bro rather than the conceptual technique. The TRW and modified TRW tech-

nique requires a correct determination that a new connection has either succeeded or

failed in order to determine if scanning activity is occurring. The specific Bro events

these techniques utilized to determined connection success or failure determined these

TCP fragments were part of a successful connection. If the Bro implementation was

modified to incorporate other Bro events or additional logic was used to interpret

these types of incomplete TCP fragments as anomalous (i.e. not part of a successful

connection) then this activity would be detected.

The exposure maps technique has the benefit of using its knowledge of the network

services offered by individual hosts in order to classify a new connection as legitimate

or a DCA. The exposure maps technique interpreted these incomplete TCP fragments

as DCAs. Subsequent in-depth analysis of the dataset for this network traffic is

inconclusive as there is not enough evidence to determine if these connections were

caused by scanning activity, an artifact of the data collection process, or simply

benign traffic. Although the exposure maps technique offered equivalent performance

in terms of the false positive and negative rates, it has the benefit of offering the

possibility, through the passive recording of all the services offered by the network (i.e.

114

NEM), of providing additional capabilities beyond scanning detection, as discussed

in Section 5.4.

The modified TRW technique makes use of the TRW algorithm as implemented

in the trw-impl.bro policy script. It is augmented with a NEM (see Section 4.1.5)

and relies on both the NEM and Bro generated connection states to determine if a

connection either succeeded or failed. In order for a connection to be considered a

failure, both the check against the NEM and the interpretation of the connection

states associated with the TCP connection (trw-impl.bro) have to indicate a con-

nection failure. Accordingly, the modified TRW technique had the same false positive

and negative rates as the TRW technique. However, a benefit of the modified TRW

technique is that the NEM acts as a connection oracle that obviates the need for the

algorithm to wait for connection responses in order to determine successes or failures.

This could dramatically improve the performance of the TRW algorithm in terms of

speed of detection. The modified TRW technique also has the benefit of offering the

possibility, through the passive recording of all the services offered by the network

(i.e. through the NEM), of providing an awareness of active hosts, network darkspace,

and darkports. This information could be used to enable the other capabilities the

exposure maps technique provides (described above).

Scanning Activity Trends. Another application of exposure maps is as fol-

lows. As in Section 4.1.1, each connection attempt to a darkport is recorded in the

DCA activity log. Over time, the scanning activity detected by exposure maps can

be analyzed to determine specific scanning activity patterns or long-term trends. For

instance, a sudden burst in scanning activity directed against a service offered by the

network may prompt the network operator to confirm the patch level for the soft-

ware associated with that service. A number of open source security sites could be

consulted (e.g. CERT) to determine if the activity may be the result of an emerging

exploit or zero-day vulnerability. In the event no suitable explanation is found, the

network operator may choose to closely monitor activity to the hosts that offer this

service until the scanning activity returns to normal levels.

Non-standard ports. One of the strengths of the basic exposure maps ap-

proach (i.e. the basic NEM not the enhanced NEM) is that it need only maintain

115

very little state when operational. It need not inspect or decode the content of a

TCP connection, but only to observe external connection attempts (i.e. SYN pack-

ets) and record the IP address and source port if there is a response (SYN-ACK).

Thus, the exposure maps technique uses port numbers to identify the offered service.

Although port numbers are a good indication of the type of service offered, users may

choose to install services that use non-standard ports, e.g., an HTTP server using port

8080/TCP or 8000/TCP instead of port 80/TCP. Of course, use of non-standard ports

may limit access as client systems must know the listening port number before access-

ing the service. This has the greatest potential impact on exposure profiles, which

group systems according to the services they offer; a standard server application using

a non-standard port may be misclassified into another profile. In the case of creating

a vetted NEM for scanning detection, this issue is less of a concern; non-standard

port usage should be detected after training when the NEM is vetted.

However, if an enhanced NEM is used, a determination can be made on which

applications are running on specific ports in a HEM to detect non-standard port

usage. For instance, a HEM that offers a service on port 8888/TCP associated

with the application information Apache 2.0.54 (Debian GNU/Linux) would indi-

cate that a web server was being hosted on a non-standard port. Of course, while the

darkport-sig.sig file is extensible, it can only detect application information for

which it has an a priori signature. Signatures can be developed to identify specific

applications if they exhibit some form of unique network traffic. The exposure maps

technique makes use of application banners to identify the applications running on

specific hosts (see Section 5.1.5).

Anonymized Headers. Two of the network datasets used in our evaluation (i.e.

the LBNL/ICSI 12-15 and LBNL/ICSI 12-16 traces) contained only packet headers,

anonymized using tcpmkpub [43], which scrambles IP addresses to preserve privacy.

It is important that all occurrences of a specific IP address are consistently mapped to

a single address within a dataset, to allow meaningful analysis of the network traffic.

Consistency over longer periods is advantageous for analysis but also makes it easier

to defeat the anonymization and recover private information [12]. The LBNL/ICSI

116

datasets were analyzed separately and thus their respective durations are short. Fur-

thermore, the traces contained no payload information precluding their use for testing

the RAA capability as well as the ability to conduct in-depth post-evaluation analy-

sis on the scanning detection results (e.g., only a cursory false positive and negative

analysis could be performed).

5.4 Summary

A primary advantage of exposure maps technique is that is efficient to implement – it

requires the passive observation, recording, and maintenance of a list of the services

offered by the hosts in a network. Incoming scans (bursts or sustained activity)

do not increase an exposure map’s size (i.e., the number of HEM entries), which

reflects only the number of services offered by the corresponding host. This simplicity

translates into a very efficient use of system detection state (i.e. main memory) and

computational resources that easily scales for use in large enterprise and backbone

networks.

During our evaluation, our implementation of the exposure maps scanning detec-

tion application performed as well, in a direct side-by-side comparison, with both

the TRW and modified TRW scanning detection techniques. The exposure maps

technique also offers the benefit of the following capabilities.

i. Network-centric awareness. The identification of active hosts, network dark-

space, and darkports allowing network-centric context that increases the fidelity

of its scanning detection.

ii. Fine-grained automated response. The ability to deny access only to those

scanning systems that directly threaten hosts in the network.

iii. Network service identification. The ability to classify hosts into exposure profiles

based on the services they offer.

iv. Reconnaissance Activity Assessment (RAA). A mechanism to perform to deter-

mine the specific application information obtained by an adversary as a result

of a specific scanning campaign.

Chapter 6

Internal Network Scanning Detection Strategy 1: DNS-based

This chapter describes a new technique to detect internal network scanning activity

(i.e. L2R) using the domain name system (DNS) address resolution protocol. DNS

provides a mapping between numeric IP address and alphanumeric domain names.

Address resolution is the process of finding an address (logical or physical) of a host in

a network. We have observed that scanning activity within a network can be detected

by observing suspected scanning systems failing to utilize the DNS protocol. Although

this technique was designed for the detection of network scanning worms in mind, the

scanning methodology employed by known network scanning tools [21, 67, 66] is the

same (see Section 7.2.2) and therefore they can be detected using this technique. We

describe how this technique can be used to detect internal hosts performing remote

network scanning as well as present our evaluation results using this technique. This

approach has been published in Whyte et al. [71].

6.1 DNS-based Scanning Detection: Approach

In random scanning, the use of a numeric IP address by the worm, instead of the

qualified domain name of the system, obviates the need for a DNS query. New

connections from the network that cannot be associated with any DNS activity are

considered anomalous. If we can observe and correlate all locally generated DNS

activity and new connection attempts within an enterprise network, we have the

means to detect L2L inter-cell or L2R network scanning activity. The technique does

not detect R2L or intra-cell (i.e. within the boundaries of a cell) network scanning

activity.

However, this approach must take into account valid instances where no DNS

query is required to access a particular system or resource. Our analysis of DNS

activity within a network reveals two instances where this occurs. The first results

117

118

from accessing distributed application and content delivery services. The HTTP

protocol allows URLs consisting of numeric IP addresses to be embedded within the

data payload of an HTTP packet. It is common practice for busy websites to maintain

or outsource their content to larger centralized image servers to allow for better web

page retrieval performance. When a user accesses a website to retrieve a webpage,

they may be retrieving the requested material from several geographically separated

servers. It is not uncommon for the web page content to include an IP address of

a centralized image server that the browser uses to retrieve an image or media file.

In this instance, the browser uses this numeric IP address to retrieve the image and

does not require a DNS resource record. Instead of having to perform a DNS request

for the object, the numeric IP address is provided to the browser in the content of

the web page. We consider this a valid connection attempt incidentally obtained by

a previous DNS query.

The second instance includes those servers and services that are simply not ac-

cessed with DNS. An application may have the numeric IP addresses of systems it

needs to access embedded in its configuration file. A user may specify connections to a

server by entering an IP address from memory at a command line. In these instances,

the application or user has a priori knowledge of the IP address of the server they

wish to access. This can include but is not limited to network server communications,

remote administration tools, and certain peer to peer (P2P) applications. HTTP, cer-

tain applications, and users are all legitimate sources of numeric IP addresses that

can enable access to services and systems. Legitimate use of numeric IP addresses by

applications and users can be identified and added to a whitelist for exclusion from

the detection algorithm. Taking these exceptions into consideration (see Whitelists

in Section 6.1.1), we consider any system that tries to access another system without

receiving a valid DNS response as undertaking network scanning.

6.1.1 High-Level System Design

Our software system design uses the libpcap [2] library and is comprised of two logical

components: the PPE and DNSCE. The Packet Processing Engine (PPE) is responsi-

ble for extracting the relevant features from the live network activity or saved network

119

trace files. The DNS correlation engine (DNSCE) maintains in state all relevant DNS

information, a whitelist, and numeric IP addresses embedded in HTTP packets ex-

tracted by the PPE. This information is used to verify both outgoing TCP connections

and UDP datagrams. In this context, verifying means ensuring that the destination

IP address of an outgoing TCP connection or UDP datagram can be attributed to

either a DNS query, an HTTP packet, or an entry in the whitelist. The software can

process either live network traffic or saved network traces in the pcap [2] file format.

To detect L2R worm propagation, the software system must be deployed at all ex-

ternal network egress/ingress points. To detect worm propagation between network

cells, a system would need to be deployed in each cell at the internal ingress/egress

points.

5-tuple TCP

5-tuple HTTP

5-tuple DNS

5-tuple DNS

5-tuple DNS

5-tuple DNS

Packet Processing Engine

Network

5-tuple Connection Candidate

5-tuple Connection Candidate

5-tuple Connection Candidate

5-tuple Connection Candidate

Connection Candidate Data Structure

5-tuple TCP

DNS Correlation Engine

Prototype

Alert

Alert

Alert

Figure 6.1: High-level System Design.

Figure 6.1 reveals the high-level design of the prototype. In this example, the

PPE extracts the relevant features from live network activity and bundles these into

data tokens. The data tokens are comprised of the appropriate 5-tuple of features

based on the protocol extracted. These tokens are consumed by the DNSCE. The

DNSCE uses the tokens to maintain a list of destination IP addresses it deems valid

120

and checks any new connection attempts from within the enterprise network against

this list. The DNSCE will generate an alert if it determines the new connection is

being initiated to a destination IP that is not contained in its list (see Figure 6.2).

New Connection Request

NETWORK

Y

N

Yes

No

Y

N

Alert

Is 5-tuple in Connection Candidate Data Structure?

 DNS Correlation Engine

5-tuple Connection Candidate

5-tuple Connection Candidate

New DNS Request or HTTP Packet
Y

N

Update TTL

Is IP Address of Remote Host in

Connection Candidate Data Structure?

Add Entry in DNSCE

 With Embedded IP Address

IP Address and/or Port

in Whitelist?

N

N

Y

YIP Address and/or Port

in Whitelist?

No Action

Figure 6.2: DNS-based Detection Logic.

Packet Processing Engine. The PPE is responsible for processing packets of

interest from pcap files or live off the network and extracts a variety of information

from several protocols. Specifically, the software must extract relevant features from

new connection attempts, embedded IP addresses within HTTP packets, and all DNS

activity occurring within the network cell.

In order to discover new TCP connection attempts, all TCP packets with the

SYN flag set are examined. TCP packets with the SYN only flag set indicate the

start of the three-way handshake that signifies a new connection attempt. UDP is

121

connectionless and does not have the concept of a session. Each UDP packet is treated

as a discrete event and thus a potential new connection. Feature extraction for either

new TCP connections or non-DNS UDP datagrams includes the 5-tuple of source IP,

source port, destination IP, destination port, and timestamp.

Packets that contain a source port of 80 or 8080 are captured and categorized as

HTTP packets. All HTTP packets are decoded and the payload inspected for any

embedded IP addresses. Any IP addresses discovered in the payload are extracted

along with the previously defined 5-tuple.

DNS A records are generated when systems within the network wish to contact

systems in other cells or external to the network. Any DNS requests originating from

the network cells and any DNS replies coming into the network cells are extracted and

decoded. Feature extraction for DNS datagrams includes the 5-tuple of DNS source

IP, DNS source port, TTL, domain name, and resolved IPv4 address.

DNS Correlation Engine. The DNS correlation engine (DNSCE) is respon-

sible for processing information passed by the PPE. The two major functions of the

DNSCE are: (1) to create and maintain a data structure of IP addresses and associ-

ated features that are considered valid connection candidates; and (2) to validate all

new TCP and UDP connection attempts between cells or to remote systems against

the connection candidate data structure. A valid connection candidate data structure

is produced by processing DNS A records, embedded IP addresses in HTTP packets,

and the whitelist.

Connection Candidate Data Structure. All DNS A resource record 5-

tuples are parsed and added to the connection candidate data structure. The TTL

from each 5-tuple is used just as it is in the cache of a DNS server. Once the TTL

expires, the resource record is purged from the DNSCE’s connection candidate list.

Although DNS activity provides the majority of IP addresses to the connection can-

didate data structure, numeric IP addresses within HTTP packets must also be con-

sidered.

As previously discussed, numeric IP addresses are regularly embedded within

HTTP packets. All HTTP 5-tuples are parsed and added to the connection can-

didate data structure. Unlike an IP address provided by DNS A records, these IP

122

addresses do not have an associated TTL that can be used to discard the IP address

entry from the connection candidate data structure. We can assume that a DNS

query and response had to occur in order for the web site to be initially accessed.

Therefore, we can use the TTL of the DNS A record of the original request as the

TTL for the embedded IP address. All IP addresses harvested from HTTP decoding

are then are maintained in state. That is, the assigned TTL values are respected and

these addresses are valid only as long as the TTL has not expired.

Whitelists. To address those client applications that legitimately do not rely

on DNS, a whitelist is generated. A whitelist provides a list of IP addresses and

port combinations that are exempt from the detection algorithm. For example, in

most networks there are systems that regularly communicate with one another by

using IP addresses specified in configuration files rather than fetched in DNS records.

Furthermore, specific applications and users (see further discussions below) may also

use numeric IP addresses instead of DNS to access services or communicate with other

systems.

In practice, internal network server communications are either well-known or eas-

ily discovered. If a hard-coded IP address is contained in a network configuration

parameter or file, it is easily confirmed. These server interactions can be modeled

and the appropriate IP address port combination added offline to the whitelist for

exclusion. However, in the case of users, the use of numeric IP addresses may be more

pervasive and more unpredictable. There are two cases worth discussion. In organi-

zations which impose restrictive network security policies, end users are restricted to

using a finite list of well known services deemed permissible in the security policies.

For instance, it may be permissible to access FTP and Telnet servers using numeric

IP addresses. To accommodate this, the list of frequently accessed FTP servers IP

addresses could be added to the whitelist. Alternatively, so as not to weaken the

security posture of the network, in such environments (e.g. financial and government)

where an organization has tight control over its employees, users could be told to

enter in domain names instead of the IP address. The second case, which may be

more problematic for whitelists, involves end users which enjoy unrestricted or open

network security policies. In this case, the number of whitelisted protocols may limit

123

the effectiveness of the detector.

The whitelist is granular enough to exempt not only specific IP addresses but also

provide for IP address and port pairing. For instance, it is possible to specify that a

communication must contain the correct source and destination IP addresses as well

as the correct destination port in order to match the applicable whitelist entry. Over

time this list will need to be updated in order to reflect changes to the network, user

activity, and new technology. The more open a network security policy, the greater

the amount of effort required to maintain the whitelist.

New Connection Validation. The PPE only extracts the relevant informa-

tion from a single TCP packet for each new TCP connection attempt it detects. This

includes TCP SYN packets addressed to systems outside the cell the prototype is

monitoring. Once a new TCP connection attempt is detected, the IP destination

address is compared with the addresses listed in the connection candidate data struc-

ture. If the address is not found and it does not match an entry in the whitelist, the

connection is considered to be anomalous and an alert is generated.

UDP datagrams are regarded as discrete events. The PPE extracts the relevant

information from the UDP datagrams and passes this information to the DNSCE.

Once a new UDP datagram is detected, the IP destination address is processed as

described in the previous paragraph.

Alerts. An alert is generated when a connection attempt to a system in another

cell or remote system is detected for which there is no associated entry in the con-

nection candidate data structure. Multiple connection attempts between the same

two systems within a specified time window are regarded as a single alert. This

alert grouping reduces the number of alerts generated without reducing the relevant

warning information to the operator. It is not unusual for a new TCP session to

require a number of connection attempts before an actual connection can be estab-

lished. Systems may be busy, unable or simply unwilling to establish a session. If

a separate alert were generated for each unsuccessful connection attempt, a single

communication between two systems may generate several alerts.

In regards to UDP, the decision to consider each UDP datagram as a possible new

connection could result in numerous alerts that could quickly overwhelm an operator.

124

The important intelligence from these alerts is the identification of the potentially

infected system and the intended victim. The fact that it took the worm multiple

connection attempts or datagrams to infect the system does not aid in our propagation

detection. The timestamp from the first TCP SYN packet or UDP datagram that

generated an alert is used as the timestamp for the alert. The alert contains the time

the activity was detected, protocol, source and destination IP address and source and

destination port number.

6.2 Prototype Evaluation

6.2.1 Data Set for Prototype Evaluation

To validate our DNS-based detection approach, we developed and tested a fully func-

tional software prototype. The software was installed on a commodity PC with a

Linux operating system and a 10/100 network interface card. The prototype imple-

ments all features discussed in Section 6.1.1. To conduct our evaluation, one week of

network traffic was collected at a firewall in front of one of our university’s research

labs (i.e. the Carleton Computer Security Lab – CCSL). A Linux system using tcp-

dump was connected to a tap in front of the firewall to collect and archive the network

traces. We monitored both incoming and outgoing network traffic to the lab. The

CCSL router is connected to the university’s Internet accessible Class B network.

The CCSL network consists of a one quarter Class C network (i.e. 62) of Internet

reachable IPv4 addresses. Our evaluation did not include a side-by-side comparison

of this technique with another L2R scanning detection technique as, to the best of

our knowledge, no comparable publicly available L2R scanning detection technique

exists.

The CCSL network contains one authoritative DNS server that all internal systems

in the network are configured to use. The CCSL network’s DNS server has entries

associated with the CCSL network’s mail server, web server, and Kerberos server.

The firewall does not permit any inbound connections to client systems unless they

were first established by an internal system. All systems within the CCSL network can

access the Internet directly through the firewall, which is the sole egress/ingress point

125

for the network. Using the cell definition previously described, the CCSL network

can be considered one cell in the university’s enterprise network. The CCSL network

analysis allowed us to test the prototype’s ability to detect L2R worm propagation.

During the course of our network traffic collection in front of the CCSL network

firewall, network traffic from a separate internal university network was also captured.

We will refer to this network as the Internal Departmental Network (IDN). The IDN

has its own authoritative DNS server that all its internal systems are configured to

use. The IDN can be considered another cell in the university’s enterprise network.

This incidental collection provided us with the opportunity to perform additional

analysis. In addition to running the prototype against the CCSL network traces, we

ran the prototype against a filtered version of the IDN network traces. To address

privacy concerns, we restricted our inspection of the IDN’s network traces to those

packets that contained either a source or destination address that matched a CCSL

network IP address. The IDN analysis allowed us to test the prototype’s ability to

detect worm propagation between cells.

At the start of our analysis, we flushed the CCSL network DNS server’s cache.

This ensured that any new connections from CCSL systems would result in an exter-

nal DNS query to retrieve the appropriate A record instead of accessing the CCSL

network’s DNS server’s cache. From our vantage at the network boundary, we are

only able to detect DNS replies as they enter the CCSL network, not those gener-

ated internally from the DNS server’s cache. The flushing of the CCSL network’s

DNS cache ensures that the DNSCE will contain the same DNS information as the

CCSL network’s DNS server. In our analysis, all IP addresses have been modified to

keep the actual IP addresses anonymous. The university network’s IP addresses are

represented by the 192.168.0.0/16 IP address range.

Table 6.1: Network Data Set.
Network Protocol Packet Count

TCP packets 5,969,266
TCP connections 18,634

ICMP packets 4,955
UDP packets 5,301,489

Other 805,604

126

Table 6.2: DNS Datagrams.
Date Total Packets DNS Request Datagrams DNS Reply Datagrams

06-24-2004 2,101,243 6,485 6,264
06-25-2004 2,491,663 5,525 4,951
06-26-2004 847,687 1,192 658
06-27-2004 889,251 2,231 3,174
06-28-2004 1,339,283 5,225 4,752
06-29-2004 1,382,642 6,121 5,998
06-30-2004 1,081,451 4,973 4,164

Network traffic was collected for a seven-day period from June 24th to June 30th,

2004. The network traces are comprised of all network activity that reached the CCSL

network’s router from internal systems, systems in the IDN cell, and the Internet.

During this period, over 5 million UDP packets were observed as well as almost 6

million TCP packets. A total of 18,634 individual TCP connections occurred. Table

6.1 provides the observed protocols and their respective quantities.

DNS is transported mainly over UDP. DNS zone transfers use the TCP protocol

but it is a standard acceptable security practice to disallow this feature. Table 6.2

shows the number of DNS request and reply datagrams that were detected in the

network traces. Overall, we observed that the total amount of DNS traffic is a small

percentage of the total amount of network traffic. An individual DNS reply may

contain multiple records. In fact, the 10,162 DNS replies we received in the network

actually generated 99,994 individual DNS resource records.

6.2.2 CCSL Network Monitoring Analysis

The CCSL network deployment was used to test the prototype’s ability to detect L2R

worm propagation. Initially, we observed the network for a three-hour period the day

prior to our data set to generate a whitelist. Section 6.3.1, Table 6.8 contains the seven

entries that comprised the CCSL network’s whitelist. In order for network activity

to be identified as complying with the whitelist, the protocol, source IP, source port,

destination IP, and destination port must all match. The first four entries consist

of communications between specific servers. The fifth entry specifies a single server

allowed to initiate connections with other systems on a specific port. Finally, the

127

last two entries allow any system in the CCSL network to initiate connections to any

other systems as long as they adhere to the particular port and protocol specified.

Over the course of the one week, a total of 52 alerts were generated by the pro-

totype. Table 6.5 gives the alert breakdown by day. None of the alerts could be

attributed to worm propagation but in contrast, see Section 6.2.3. This is not sur-

prising since the CCSL network is a well-maintained hardened network administered

by security-aware personnel. A full analysis of the true false positives generated by

the prototype is given in section 6.2.4.

6.2.3 IDN Monitoring Analysis

The IDN deployment was used to test the prototype’s ability to detect worm propaga-

tion between cells. Initially, we observed the network for a three-hour period the day

prior to our data set to generate a whitelist. The whitelist for the IDN consisted of

four entries (see Table 6.9 in Section 6.3.1). All of these entries consisted of allowed

communications between specific servers. Over the one-week period, 74,610 alerts

were generated as a result of worm propagation attempts from the IDN to the CCSL

network. Table 6.3 contains the specific propagation attempts by date for each worm.

Using the Symantec taxonomy for a naming convention, the three worms detected

were: W32.Sasser, W32.Blaster, and a variant of W32.Gaobot. We estimate that

these worms infect a total of 195 IDN hosts. Figure 6.2 illustrates the worm activity

of the three worms over the entire analysis period.

In addition to the worm activity, the prototype detected other forms of scanning

activity and as a result generated 191 alerts. Table 6.4 reveals the number and type

of alerts generated. A full analysis of the false positives generated by the prototype

is given in section 6.2.4.

6.2.4 Discussion of False Positives and Negatives

False Positives Results Analysis. 52 false alerts were generated from moni-

toring the CCSL network cell, and 191 false alerts from the IDN cell. Based on our

analysis in the previous section, we have categorized these false positives as occurring

due to:

128

Table 6.3: IDN Worm Activity.
Alerts

Date Sasser Blaster Gaobot
06-24-2004 25,052 1,104 3,299
06-25-2004 5,946 539 9,137
06-26-2004 8,894 721 761
06-27-2004 4,680 1,353 2,516
06-28-2004 739 1,085 21
06-29-2004 2,731 532 1,778
06-30-2004 1,383 1,680 659

Total 49,425 7,014 18,171

Infected Hosts
Worm Sasser Blaster Gaobot
Total 101 38 56

Table 6.4: Additional IDN Alerts.
Alerts Activity

125 Optix Pro Trojan Horse scanning: port 3410 TCP
5 Random scanning: port 60510-60518 TCP

12 Ident/auth service: 113 TCP
49 Common Unix Printing System (CUPS): 631 TCP

Total Alerts: 191

i. Authorized network communications that could be incorporated into a whitelist

but were not in our prototype testing.

ii. Network configuration errors that could be eliminated with proper system ad-

ministration.

iii. Suspicious scanning activity other than worm propagation.

iv. True false positives.

These are discussed in turn below.

Authorized network communications. For the purposes of our analysis,

we initially allowed for a three hour training period to generate the whitelist. If this

was extended to a few days, the whitelist could be augmented with additional entries,

greatly reducing the instances of legitimate network activity generating false alerts.

129

Table 6.5: CCSL Network Alerts.
Date # of Alerts Known False Positives True False Positives

06-24-2004 18 6 Internal CCSL Network, 9 HTTP
3 Streaming Audio

06-25-2004 20 4 Streaming Audio 16 HTTP
06-26-2004 1 1 HTTP
06-27-2004 6 6 HTTP
06-28-2004 1 1 HTTP
06-29-2004 4 2 Port 90 TCP 2 HTTP
06-30-2004 2 1 Port 90 TCP 1 HTTP

Total 52 16 36

 0

 5000

 10000

 15000

 20000

 25000

24/06/04 25/06/04 26/06/04 27/06/04 28/06/04 29/06/04 30/06/04

N
u

m
b

e
r

o
f

O
b

s
e

rv
e

d
 W

o
rm

 S
c
a

n
s

Date

Observed Daily Worm Scans

W32.Blaster
W32.HLLW.Gaobot.gen

W32.Sasser
Total Activity

Figure 6.3: IDN Worm Activity.

130

Network configuration errors. 6 of the false positives were due to an

isolated network configuration problem. Non-routable IP addresses passed through

the firewall as a result of a router configuration error. Increasing the training period

should also allow for sufficient time to detect any network configurations errors that

may generate alerts.

Suspicious scanning activity. 125 alerts were generated as a result of an

IDN system scanning for the Optix Pro Trojan horse [1] (i.e. port 3410 TCP). 5

alerts were generated as a result of an IDN system scanning for services listening on

port numbers between the ranges of 60510 and 60518 TCP. Our preliminary version

of the prototype software does not distinguish between scanning for the purposes of

worm propagation or for some other activity. Although these alerts are considered

false positives, they do warn an administrator that potentially malicious activity is

occurring within the network cell. We discuss this in greater detail in Section 6.4.

True false positives. Those alerts that cannot be attributed to the previous

three categories are considered true false positives.

After further analysis of the CCSL network monitoring results, we determined that

10 of the 52 alerts resulted from authorized network communications. 6 of the alerts

resulted from a network configuration error. The remaining 36 alerts we classify as

true false positives. With respect to the IDN monitoring results, we determined that

130 alerts were caused by non-worm related malicious activity and 61 alerts resulted

from authorized network communications. None of the alerts were what we classify

as true false positives. Table 6.6 summarizes the number and type of false positives

generated from monitoring the CCSL network and IDN cells.

Table 6.6: False Positive Results Analysis.
CCSL Network IDN

Total Alerts 52 74,801
Worm Propagation Alerts 0 74,610
Pre-Analysis False Positives 52 191
Whitelist Inclusion 10 61
Network Configuration Errors 6 0
Suspicious Activity 0 130
True False Positives 36 0

131

Based on manual inspection of the network traces, we offer some insight into the

cause of the 36 true false positives. The majority were caused by TCP connections

initiated using a DNS resource record with a very low TTL and then not properly

closed. It was a prototype design decision to detect a new TCP connection by simply

observing a packet with the SYN flag set. The individual connections themselves

were not tracked and maintained in state. Subsequently, we have observed HTTP

connections that have been initiated using a DNS resource record with a TTL as low

as 10 seconds. Several of these low TTL connections, all to the same web server, do

not terminate properly. The client (i.e. inside the CCSL network) does not send the

final ACK in the FIN ACK exchange. Instead, in some cases, the client sends a SYN

to start a new session with the same server. This connection is initiated after the

TTL has expired.

Approximately 60% (i.e. 22 alerts) of our true false positives were caused by this

type of network traffic. Subsequent versions of our detection prototype could account

for this network activity in two ways:

i. Enforce a minimum TTL: those TTL values lower than a minimum threshold

(e.g. 600 seconds), could be given a default value (e.g. 600 seconds) in the

DNSCE. According to our analysis, this would have reduced our true false

positive count from 36 to 14 (i.e. 60% reduction). The increased probability of

a false negative due to this arbitrary increase in TTL values would be negligible

(see discussion later in this section).

ii. Require a second anomalous connection: we could modify our algorithm to

generate an alert after two anomalous connections were observed from a system

trying to connect to two separate systems within a finite time window. Accord-

ing to our analysis, this would have reduced our true false positives from 36

to 4. Requiring the observation of a second connection attempt would greatly

reduce our false positives and only slightly degrade our detection precision (i.e.

detect worm propagation after observing only two infection attempts).

Finally, although no UDP based alerts were generated during our analysis, we must

comment on the false positive potential of persistent UDP connections. UDP data-

grams are treated atomically by our prototype in that each datagram is verified

132

against the connection candidate list. If the exchange of datagrams between the two

systems is longer than the TTL of the DNS resource record that initially started the

exchange, a false positive will be generated. This could become a concern if the TTL

of the resource record is very low (i.e. typically the default TTL value is 1 day).

False Negatives Results Analysis. A false negative occurs when malicious

activity occurs and no subsequent alert is generated. It was a design decision to

monitor the network cell at the ingress/egress points, so that all new connections

could be easily detected. Another consideration for this design decision was the fact

that an end user can specify any DNS server they wish to use thus excluding the

one administratively provided to them. As long as the network egress/ingress point

is monitored, any external DNS queries can be detected and incorporated in the

detection algorithm. However, by not monitoring the cell activity to the local DNS

server, we will not be able to detect when the local systems contact the local DNS

server. The prototype system maintains the DNS resource records in state respecting

the TTL values for each record. If we detect an internal system starting a new

connection to a remote system, the prototype checks the candidate connection list to

determine if the connection is valid. In effect, we do not verify that the individual

system has actually requested and received the DNS resource record, but rather that

the resource record is available in the local DNS server. This is a subtle but important

distinction.

Consider the scenario where an internal system becomes infected with a scanning

worm. There exists the possibility that it may scan a system whose IP address is in

the connection candidate data structure. That is, the intended victim was previously

accessed by a system in the cell and the associated entry in the connection candidate

data structure still exists. To determine the probability of this, we used the worm

model discussed by Staniford et al. [7].

We assume that the worm targets victims at random over the entire IPv4 address

space. Therefore, if r is the number of scans, a single host has a N = 1
232 probability

of being reached by the scan. If N is equal to the number of entries in the connection

candidate data structure, the probability that a scan from the internal network will

133

Table 6.7: Probability of False Negatives due to Remote DNS Monitoring.
DNS Records 100 Infected 200 Infected 500 Infected

Systems Systems Systems
500 5.821× 10−6 1.164× 10−5 2.328× 10−5

1000 1.164× 10−5 2.328× 10−5 4.656× 10−5

2000 2.328× 10−5 4.657× 10−5 9.313× 10−5

5000 5.821× 10−5 1.164× 10−4 2.328× 10−4

10000 1.164× 10−4 2.328× 10−4 4.656× 10−4

be directed at one of the data structures entries is

β = r
N

232
. (6.1)

For example, with a 10,000 entry connection candidate list and a network that has

500 infected systems, if all of the systems began scanning at precisely the same time,

the probability that after a single scan at least one of the scans would match an entry

in the connection candidate list is only .04%. Table 6.7 contains probabilities, for

various parameters, that a false negative will occur due to a single scan simultaneously

occurring from each infected system targeting a previously cached IP entry in the

connection candidate list.

6.3 Detection Circumvention and Current Limitations

In this section, we give an overview of possible ways our detection technique can be

defeated and its current limitations.

6.3.1 Detection Circumvention

Any new worm detection algorithm will be the subject of scrutiny for both security

researchers and malicious actors. The former seeks to validate and improve new ideas

to realize improvements in overall network security countermeasures. The latter will

devise ways to exploit weaknesses in the algorithm to circumvent detection. One

method a worm writer could employ to evade detection from our approach is to have

the worm do a preemptive valid DNS query before each infection attempt (i.e. scan).

However, performing valid DNS queries before every infection attempt would have

negative consequences for an attacker, e.g. it would:

134

Table 6.8: CCSL Network Whitelist.
Activity Whitelist Entry Reason
1 IMAP 192.168.1.33:993 - 192.168.200.50:993 TCP Mail server
2 IMAP 192.168.1.25:993 - 192.168.200.50:993 TCP Mail server
3 NTP 192.168.1.12:123 - 192.168.200.2:123 UDP Server clock synch
4 NTP 192.168.1.12:123 - 192.168.200.1:123 UDP Server clock synch
5 IMAP 192.168.1.5:993 TCP Mail server
6 FTP 192.168.1.0/191:21 TCP FTP sessions
7 SSH 192.168.1.0/191:22 TCP SSH sessions

i. Require worms writers to adopt a new infection paradigm to randomly generate

valid domain names instead of numeric IP addresses for targeting.

ii. Slow propagation as worms perform DNS queries in order to spread.

iii. Increase DNS activity as every infection attempt will pose a significant and

noticeable impact on the DNS server.

iv. Reduce the number of reachable vulnerable systems because not all systems

(e.g. home users, client systems in an enterprise networks) have qualified do-

main names being simply clients that do not offer any services. These client

systems could comprise a significant portion of the susceptible Internet pop-

ulation depending on the exploitable vulnerability (e.g. Windows XP buffer

overflow).

One of the limitations of the detection technique is that it cannot detect intra-cell

and R2L attacks. A skilled attacker could use these limitations in concert to remain

undetected while infecting the network. For example, a R2L attack is launched against

the network and the worm infects a single system within a cell. Using the network

information obtained from the infected system (e.g. netmask, broadcast domain), the

worm can limit its scans to within the network cell. In parallel, another R2L attack

could be executed against a system within another network cell and the process

repeats.

135

Table 6.9: IDN Whitelist.
Activity Whitelist Entry Reason
1 IMAP 192.168.200.50:993 - 192.168.1.33:993 TCP Mail server
2 IMAP 192.168.200.50:993 - 192.168.1.25:993 TCP Mail server
3 NTP 192.168.200.2:123 - 192.168.1.12:123 UDP Sever clock synch
4 NTP 192.168.200.1:123 - 192.168.1.12:123 UDP Server clock synch

6.3.2 Current Detection Limitations

Our approach has limitations. As discussed in Section 6.1, it cannot detect R2L

or intra-cell worm propagation. Automated attack tool activity (e.g. auto-rooters,

network scanners, Trojan horses scans, etc.) will be detected but categorized as

worm propagation.

Although it depends on the implementation, a worm that targets DNS servers

may introduce irregularities that could limit the detection technique. Our detection

technique also assumes that all applications honor TTL values; this may not be the

case for all applications. Topological, metaserver, and passive worms may not trigger

the detector depending on the behavior of the host programs [69]. Additionally, worm

propagation via email/network share traversal will not be detected.

Finally, the use of whitelists in certain network environments could constrain the

detection technique, as discussed in Section 6.1.1. Whitelists are used to exempt

specific network activities and systems from the detection algorithm to reduce the

occurrence of false positives. Tables 6.8 and 6.9 contain the whitelist entries for the

CCSL and IDN networks respectively. These exemptions can be applied to the entire

network (e.g. Activity 6, Table 6.8) or just to specific systems (e.g. Activity 5, Table

6.8). During our analysis of both networks, the following protocols comprised the

respective whitelists:

i. Internet Message Access Protocol (IMAP): IMAP is a TCP based protocol that

allows a client to remotely access email from a server [13].

ii. Network Time Protocol (NTP): NTP is a UDP based protocol used to synchro-

nize computer clocks over a network [35].

iii. File Transfer Protocol (FTP): FTP is a TCP based protocol used to remotely

exchange files [49].

136

iv. Secure Shell Protocol (SSH): SSH is a TCP based protocol used to encrypt a

data stream to eliminate eavesdropping [80].

The CCSL and IDN networks have a strict security policy that restricts the type

of services allowed within the network. Therefore, the whitelist entries for these

networks were limited to a few systems and protocols. In a network with a very open

security policy, the whitelist may become so large that maintenance becomes an issue

and the detection algorithm either exempts too much network activity or creates too

many false negatives to be useful. In this scenario, we believe that the DNS detection

technique would best be used in conjunction with other detection techniques. For

instance, the scan detection and suppression algorithm developed by Weaver et al.

[70] could use our detection technique as another detection signal. In this scenario,

our detection technique could provide a means to assign connections that did not use

DNS a greater anomaly score than those that used DNS.

6.4 Extended Applications

Our DNS-based detection approach could be applied to five additional areas, which we

believe warrant future investigation: (1) automated attack tool detection; (2) R2L

worm propagation detection; (3) covert channel and remote access Trojan (RAT)

detection; (4) mass mailing worm detection; and (5) integration with other anomaly

based detectors. We discuss these in turn.

Automated Attack Tools. Automated attack tools share the same exploit

methodology as scanning worms. Their goal is to rapidly identify and compromise as

many systems as possible. A typical configuration parameter for automated attack

tools is a range of numerical IP addresses that they use as their target information.

The faster they scan, the faster they can compromise vulnerable systems.

Our DNS-based scanning worm detection technique can be used to detect auto-

mated attack tools. As part of our analysis during the prototype testing, we deter-

mined that 130 false positives were attributed to scanning for vulnerable services and

previously installed malicious software (i.e. the Optix Trojan).

R2L Worm Propagation. R2L worm propagation refers to worm propagation

attempts that originate from outside the enterprise network boundary. Our detection

137

technique relies on observing DNS activity and new connection attempts from systems

within the enterprise network. As we can observe all DNS activity initiated by internal

systems, it is easily adapted to correlate this activity with new connections.

We believe that it would be possible to observe and correlate all DNS requests and

new connection attempts initiated from remote systems. To determine the precision

of the detection algorithm, requires further investigation of the difficulty of correlating

DNS server requests with individual system connection requests.

Covert Channels. Covert channels are used to provide a communications

method that violates the security policy of the system or network. Once a system has

been compromised, an attacker typically requires some means to access the system to

either exfiltrate data or maintain command and control. RATs typically use covert

channels to communicate with their respective controllers outside the network. Covert

channels are often created through software that can tunnel communications through

well known and security policy sanctioned protocols in the network. For instance,

several publicly available tools allow a user to tunnel data through the HTTP protocol.

Often an attacker uses a previously compromised system to attack other systems

to evade detection. A large percentage of Internet systems (e.g. home users) do not

have a fully qualified domain name associated with their IP address. Furthermore,

it would not fit the profile of being covert if a compromised system had to perform

a DNS query to identify the system that had surreptitious control of it. In this

scenario, our DNS-based detection approach would be able to detect covert channel

communications.

Mass-mailing Worms. Mass-mailing worms infect systems by sending infected

email messages. The worm payload is typically contained within an email attachment.

As part of the installed code base, these worms often contain their own Simple Mail

Transfer Protocol (SMTP) engine. To avoid the need to detect and then use disparate

email clients on victim systems, worms install their own fully functional SMTP server,

ensuring that they can generate infected emails regardless of the email client software

used by the victim. This increases a worm’s propagation rate.

In contrast to a normal email message generation, a mass-mailing worm automati-

cally composes the infected email message with no human intervention. In fact, unless

138

a virus scanner or some other malicious code detection device detects the infection,

the system owner is typically unaware that a worm is resident on the system. Using

its built-in SMTP server, the infected system bypasses the corporate mail server when

it attempts to send infected emails to the respective recipients.

In this scenario, the SMTP engine of the infected system is responsible for propa-

gating the worm and delivering infected emails. In order to determine the mail server

that services a particular recipient, the infected system, not the local mail server,

queries the local DNS server for the MX record associated with the email recipient’s

address. Some worms also contain a list of Internet accessible DNS servers that they

can query if communication to the local DNS server from the infected host fails.

Our approach can be used to monitor for MX record queries to uncover systems

that query the DNS server directly for MX records. If a local system other than the

mail server requests an MX record, we may consider this activity to be anomalous.

In order to detect mass-mailing worm propagation, we simply observe all locally

generated MX queries to the local DNS server that originate from systems other than

the network mail servers. This technique has been validated [74], though we do not

claim that published work as part of this thesis.

Anomaly Detection Integration. We have identified that this detection

technique can be prone to significant amounts of false positives and negatives when

used in an open network environment. In this scenario, we believe this technique could

be useful if integrated into more sophisticated anomaly based detectors to avoid false

positives and negatives.

6.5 Summary

We present a technique, implemented in a software prototype, to both rapidly and

accurately detect worm propagation in an enterprise network. We have demonstrated

through our evaluation and analysis that this internal network scanning detection ap-

proach can be used in certain network environments to detect L2R scanning activity.

Regardless of the scanning rate, the detection algorithm is able to detect a scanning

system after only a single scanning attempt. It relies on a network service found

in every network (i.e. DNS). The precision of this first-mile detection enables the

139

use of automated containment and suppression strategies to stop scanning worms be-

fore they leave the network boundary. The DNS-based worm propagation detection

approach is an effective way to detect network scanning activity within appropri-

ate enterprise networks. Depending on the network environment and security policy

however, the number of protocols added to the whitelist may potentially limit the

applicability of this technique as a stand alone detector. In these scenarios, this de-

tection method could be used as an additional detection signal in concert with other

worm detection schemes instead of being used as the primary detection technique.

Finally, we believe that this detection approach could be easily modified to detect

additional classes of malicious activity including: covert channel detection, mass-

mailing worms, automated scanning tools, and remote to local worm propagation.

Chapter 7

Internal Network Scanning Detection Strategy 2: ARP-based

This chapter describes a new technique to detect internal network scanning activity

(i.e. L2L) using the address resolution protocol (ARP) [48]. ARP provides a mapping

between an IP address to the physical hardware addresses of network devices. We

have observed that scanning activity within a network can be detected by observing

suspected scanning systems as they generate anomalous ARP requests. Although

this technique was designed for the detection of network scanning worms in mind,

the scanning methodology employed by known network scanning tools [21, 67, 66] is

the same (see Section 7.2.2) and therefore they can be detected using this technique.

We describe how this technique can be used to detect internal hosts performing local

network scanning as well as present our evaluation results using this technique. This

approach has been published in Whyte et al. [72].

7.1 ARP-based Scanning Detection: Approach

Devices that reside within the same network cell use ARP rather than the Domain

Name Service (DNS) to communicate. ARP is a layer 2 protocol (i.e. data link

layer) used by the IP protocol to map IP addresses to the physical hardware (MAC)

addresses of network devices. When a device needs to resolve a given IP address to

a MAC address, it broadcasts an ARP request. The ARP request packet contains

the sender’s IP address (source protocol address), the sender’s MAC address (source

hardware address), and the destination IP address (target protocol address). Each

device within the common broadcast domain receives this packet. The ARP protocol

specifies that only the device with the specified destination IP address will respond

with an ARP reply. An ARP reply contains both the IP address and MAC address of

the device that responds. ARP activity is a necessary precursor to communications

between devices as it provides the data link layer with the necessary mappings between

140

141

the IP and MAC addresses of communicating devices.

An ARP request indicates that a system is trying to resolve an IP address to

a MAC address for some type of connection (regardless of the destination port).

However, it is possible for a host to connect to a device without an immediately

preceding ARP request. Once a device performs an ARP request, the MAC-to-IP

address mapping within an ARP reply is maintained locally in the device that receives

it in a table called an ARP cache. Only the device that made the ARP request receives

the ARP reply. The ARP cache entries also have an associated time to live (TTL) and

are dynamically entered and removed. If an ARP reply is received by a device and

the MAC address already appears within its cache, it is overwritten by the update.

As long as the ARP reply remains in the local cache, subsequent connections to the

same device will result in the MAC address being obtained from the cache rather than

through an ARP request. The affect of ARP caches on our approach is discussed in

Section 7.2.3. Our technique can be deployed on any device within the broadcast

domain, even in a switched network fabric, and as it only processes ARP requests, it

is extremely efficient.

L2L worm propagation can occur within a particular cell or span multiple cells

depending on the scanning strategy of the worm. L2L scanning activity results in

unusual ARP activity, namely: (1) an infected device will use ARP to try to connect

to some devices within the internal network with which it had no previous history of

connecting to pre-infection; (2) the number of ARP requests generated per fixed unit

time (e.g. every 60 seconds) will increase; and (3) in those networks where not all IP

addresses within a netblock have been allocated, ARP requests will be generated for

nonexistent systems (i.e. for internal network dark space). We now discuss in turn

how we use each of these behaviors to derive an aggregate anomaly score for each

device within a cell.

Peer List (Customary ARP request targets). A training period is used

to determine normal device interactions within a cell. ARP requests observed during

the training period allow us to characterize normal device interactions through the

use of a peer list (see Figure 7.1). A peer list is indexed by all the devices which made

ARP requests (i.e. served as a source protocol address within an ARP request) during

142

a training period. Each ARP chain contains entries of the devices being queried in

requests by the indexing device (i.e. target protocol address within the ARP request).

The source protocol address of an ARP request is the IP address of the device

trying to resolve an IP address to its corresponding MAC address. The target protocol

address, encapsulated within an ARP request, is the IP address of the system being

queried which will be the eventual target of a connection. Each time an ARP request

is generated, any observed new source protocol address is recorded as an index entry

within the peer list. Figure 7.1 contains four entries within its index (i.e. 192.168.1.1,

192.168.1.2, 192.168.1.5, and 192.168.1.9). The four ARP chains contain 2, 3, 1 and

3 elements respectively. Each ARP chain is comprised of an index value equal to an

ARP requester’s IP address. The index and the associated collection of ARP chains

is known collectively as the peer list. The corresponding target protocol addresses

of the respective queries are added as entries indexed by the corresponding source

protocol address. Over a training period, we build an index of active systems within

the network cell (i.e. ARP requesters) and the list of devices (ARP chains) they

are trying to connect with. The individual elements within each ARP chain are

derived from the set of IP addresses queried by the ARP requester. If an ARP

requester queries the same device more than once, this activity is ignored (i.e. no

duplicate entries exist within an ARP chain). Typically, individual devices will only

communicate with a small subset of other internal devices that offer some sort of

service (e.g. DNS, file, router, etc.).7

For each device i in a cell, we assign an anomaly score for the peer list factor (a1)

as: a1,i = x where x is the number of ARP requests as made by device i (in the

current sample interval) which are outside of device i’s ARP chain. In our testbed,

the device identifier i corresponds to the last octet in the device’s IP address. For

instance, if two ARP requests are made by device 192.168.1.9 to two different IP

addresses not contained within its ARP chain within the current sample interval,

then a1,9 = 2. Subsequent distinct connection attempts outside a device’s ARP chain

within the detection window (see Setting Alert Thresholds in this section) result in a

linear growth for this anomaly factor.

7Of course, this assumption is violated e.g. in P2P networks and highly distributed cooperative
network environments. We discuss this further in Section 7.3.

143

192.168.1.2 192.168.1.5
 192.168.1.1

ARP Chain

Index 192.168.1.2

 192.168.1.5

192.168.1.1 192.168.1.5 192.168.1.9

192.168.1.1

 192.168.1.9 192.168.1.1 192.168.1.2 192.168.1.5

ARP Chain

ARP Chain

ARP Chain

Figure 7.1: Peer List For a Small Network With Four Active Devices.

The running total of the a1 factor for device i is the sum of the a1,i values over

all sample intervals in the current detection window. More specifically, at sample

interval j, let a1,i as defined above be shorthand for a(j)
1,i ; then the running total for

a1,i for the current detection window of width w is A1,i =
∑w−1

k=0 a(j−k)
1,i .

If a device tries to connect to another device outside of both its ARP chain and

the peer list, it is assigned an anomaly score based on the internal network dark space

factor described in this section. Note that a possible source of false positives results

from the fact that although perhaps suspicious, a device may legitimately contact

another device outside of its ARP chain (e.g. a legitimate infrequently occurring

interaction between two devices may not be captured during the training period thus

not all such occurrences are necessarily an indication of a scanning worm).

ARP Activity (Number of ARP requests). The number of ARP requests

is recorded for each active device within the network over discrete sample intervals

(e.g. 60 seconds) during the training period. Once the training period is complete,

the mean (x) and standard deviation (σ) of the observed ARP request activity are

calculated for each individual device. The standard deviation reveals the normal

fluctuation in ARP activity that can be expected during sample intervals.

We set a (somewhat arbitrary) upper bound and call it the expected maximum

144

ARP request activity (Ei) for device i within a sample interval:

Ei = x + 2σ (7.1)

A primary factor in choosing this value is that in a normal (i.e. Gaussian) distribution,

95 % of the data values will fall within two standard deviations of the mean value;

however, it should be clear that other selections may be equally or more useful.

Once the training period has ended, the observed (i.e. subsequently monitored) ARP

request activity Oi for each device i, is compared to Ei. Oi > Ei may indicate

anomalous scanning activity.

We assign an anomaly score for the ARP activity factor (a2) for device i as follows:

a2,i =

Oi − Ei ; if Oi > Ei

0 ; if Oi ≤ Ei

(7.2)

Similar to the a1 factor, this calculation is performed during each sample interval

to determine a running total within the detection window (see Setting Alert Thresh-

olds in this section) for each device. As device i’s ARP request activity (Oi) increases

beyond Ei, a2,i increases linearly. For instance, server 192.168.1.11 has x = 1.57974,

σ = 1.03620, and E11 = 3.65214. If O11 = 5 then a2,11 = 1.34186. This factor is

particularly useful in addressing the affect of local ARP caches and large ARP chains

(as discussed in Section 7.2.3).

Internal Network Dark Space. Internal network dark space is defined

during the training period. Looking at the peer list in its entirety, we derive a set

of internal system addresses that comprise the active systems within the cell during

the training period. ARP requests for IP addresses not contained within this set we

consider to be anomalous, and refer to as internal network dark space.

Each network consists of a block of network addresses. Although it is not unusual

for an internal network to consist of IPv4 Internet addresses, most internal networks

use non-routable IP address schemes. If RFC 1918 [53] is followed, the internal

address space can be as large as a Class A network. This allows internal networks to

consist of potentially millions of hosts. Regardless of whether the IP addresses within

a network are non-routable or Internet-accessible, there may exist IP addresses that

are not bound to any device within the cell. Connection attempts to these vacant IP

145

addresses are anomalous. We assign an anomaly score for the internal network dark

space factor (a3) during a given sample interval as:

a3,i =

0 ; if no dark space scans

y ; if device i scans dark space
(7.3)

We suggest that the value y be assigned such that it is the same for all devices (i)

and a single observed connection to an internal network dark space address should

generate a value a3,i sufficient on its own to meet the alert threshold r and generate

an alarm (i.e. in our prototype, we set y = r; see Setting Alert Thresholds below).

Setting Alert Thresholds. Our implementation requires that a scanning

worm exhibit a minimum sustained scanning threshold of one scan per minute. There-

fore, we define a sample interval as 60 seconds (i.e. t = 60 seconds). The choice of

sample interval directly affects the amount of state information that must be main-

tained by the prototype. The detection window of width w (= number of sample

intervals) is the period of time in which observed anomaly scores for factors a1 and

a2 must be maintained in state. In our implementation, we set w = r (see definition

of r below).

For example, for r = 1 the detection window is 60 seconds and an alert is generated

upon a single anomalous scan observed within a one minute period. If we set r = 2,

the detection window is 120 seconds and two anomalous scans must occur within two

minutes to trigger an alarm. Anomalous scans get aged out over time; scans which

slide out as the current detection window moves no longer contribute to the anomaly

score. Anomaly scores are attributed to devices as ARP requests are processed by

the prototype. Therefore, alarms can be generated at any time regardless of the size

of the detection window or when they are observed within a sample interval.

For each sample interval and each device, we derive the total anomaly score for

device i as:

aT,i = a1,i + a2,i + a3,i (7.4)

If the current sample interval is denoted as sample interval j, and aT,i above is

shorthand for a(j)
T,i, then the total anomaly score for a window of width w ending at

146

sample interval j is:

Ai =
w−1∑

k=0

a(j−k)
T,i (7.5)

An alarm is generated when Ai ≥ r for any device i. With respect to factor a1

and a2 (or a combination thereof), the configurable alert threshold (r) for Ai is the

minimum number of anomalous scans that must be made by device i within the

detection window before an alarm is generated. As usual, a balance must be struck

between incurring false positives and negatives (refer to Section 7.2.3). The lower the

alert threshold, the more sensitive to ARP fluctuations the detection system becomes

and the greater the possibility of a false positive. r can be manually set before the

training period or automatically determined by the detection system. Our prototype

automatically sets r to the floor of the highest Ei value it has calculated over the

training period. For instance (cf. Table 7.1), 192.168.1.11 has the highest Ei score

(3.65214) therefore r = 3. We discuss how the three anomaly factors interact next to

produce Ai.

The first two factors (a1, a2) reflect the number of anomalous scans observed

within the detection window. An anomalous scan for device i is considered to be

any of: (1) each ARP request outside of a device’s ARP chain (a1 factor); (2) each

scan by which Oi is in excess of Ei (a2 factor); or (3) the detection of a single scan

to internal network dark space (a3 factor). The third factor is unique in that per

our parameter settings, an alarm was triggered after a single observation of a scan to

internal network dark space regardless of the value of r and the time of observation.

For instance, if r = 2 an alert will be generated after detection of two anomalous

scans within the detection window (i.e. A1,i + A2,i = r) or the single observation of a

scan to internal network dark space (i.e. A3,i = y = r).

7.1.1 High-Level System Design

Our software implementation uses the libpcap [2] library and is comprised of two log-

ical components: PPE and ACE. The Packet Processing Engine (PPE) is responsible

for extracting the relevant features from the live network activity or saved network

trace files. The ARP Correlation Engine (ACE) includes a dynamically generated

peer list and the list of IP addresses it considers to be internal network dark space.

147

3-tuple ARP Request

3-tuple ARP Request

3-tuple ARP Request

Packet Processing Engine

Network

Peer List

ARP Correlation Engine

Prototype

Alert

Alert

Alert

ARP Request

Host 2

Host 1

Host 3

ARP Activity Monitor

Active System

Anomaly

Scores

Internal Dark Space Monitor

3-tuple ARP Request

Figure 7.2: High Level Design of Prototype Implementation

The ACE maintains in state all relevant ARP information extracted by the PPE.

To detect worm propagation between network cells, an instance of such a prototype

would need to be deployed in each broadcast domain. Figure 7.2 shows the high-level

design.

Packet Processing Engine (PPE). The PPE is responsible for extracting

all ARP request packets from network capture files or live off the network. Due to

the transmission mechanism of ARP requests (i.e. broadcast), the prototype can be

deployed on any device within the network cell. Other forms of ARP activity (e.g.

ARP replies) are ignored making this scheme stateless. Feature extraction from the

ARP request packets includes 3-tuple tokens (source IP address, target IP address,

timestamp) which are passed to the ACE for processing.

ARP Correlation Engine (ACE). The ACE processes all network features

148

passed to it by the PPE. The ACE is responsible for four major functions. During the

training period, the ACE: (1) creates individual-device specific ARP request statistics,

and (2) creates the peer list. Once the training period is complete the ACE: (3) uses

ARP request activity to generate a three-factor anomaly score, and (4) generates

alarms when the alert threshold has been met or exceeded.

Network ARP Statistic Extraction. During the training period, all tokens

passed by the PPE are processed to determine system specific ARP request activity.

The ACE maintains ARP request statistics for each active device (i) within the

network. ARP requests, encapsulated in tokens from the PPE, are processed in

sampling intervals of duration t. For our implementation, we chose a value of t such

that it matched the default ARP cache time to live (ttl) of our devices (i.e. Linux

operating systems). Therefore the mean and standard deviation for number of ARP

requests is made per sample interval of 60 seconds during the training period. Max

ARP requests in Table 7.1 refers to the maximum observed ARP requests over any

sample interval during the training period. If within a sampling interval there is

no ARP request activity, this observation is excluded from final mean and standard

deviation calculations. This is to compensate for frequent periods of inactivity (e.g.

nights and weekends) that would skew the ARP request statistics giving them lower

values than in peak usage times. At the end of the training period, the mean and

standard deviation of ARP request activity is calculated for each device (see for

example Table 7.1). These values comprise the expected maximum (Ei) ARP request

activity for each individual device within the cell.

Peer List. The peer list, constructed during the training period, contains a

listing of all live devices and the IP addresses of the internal devices they were in

communication with. In a typical network environment (i.e. client server model),

internal devices will try to access only a subset of the devices within their local

subnet, as recorded by their respective ARP chains. For any given device, connecting

to a device within its respective ARP chain should occur at a higher probability

than other devices within the peer list. If a worm performs unrestricted scanning

of a network cell, anomalous ARP activity will result. First, ARP requests between

system pairs (i.e. infected host and a subset of victims) that have not been observed

149

communicating during the training period will occur. Second, as an infected host

tries to connect to internal devices the number of ARP requests it issues per unit

time will increase.

Anomaly Score and Generating Alerts. Once the training period is com-

plete, an anomaly score for each individual device within the network cell is main-

tained (see Section 7.1). An alert is generated when Ai ≥ r for any device i. The

timestamp from the triggering ARP request is used as the timestamp for the alert,

which also indicates the alert triggering source and destination address (see Figure

7.3).

ARP Request

NETWORK

Y

N

Yes

No

Y

N

 Peer List

Host 1

Host 2

ARP Request to Internal Darkspace?

Y

N

Source IP in Peer List?

Anomaly Score Exceed Threshold?

Y

N

N

Alert
Update ARP Activity Score

Alert

Y

Anomaly Score Exceed Threshold?

Alert

 ARP CORRELATION ENGINE

No Action

Host 1

Host 2

Anomaly Score

Anomaly Score

Update ARP Peer List Score

Figure 7.3: ARP-based Detection Logic.

150

Table 7.1: ARP Statistics for Prototype System on CCSL Network.
Servers

IP Address ARP ARP Chain Mean Standard Max ARP
Requests Size Deviation Requests

192.168.1.11 13 532 21 1.57974 1.03620 8
192.168.1.12 13 335 17 1.20305 0.61021 9
192.168.1.13 11 318 16 1.17641 0.42872 4
192.168.1.14 2 701 2 1.01310 0.11376 2

Workstations
IP Address ARP ARP Chain Mean Standard Max ARP

Requests Size Deviation Requests
192.168.1.15 10 216 8 1.29761 0.51830 4
192.168.1.16 8 254 10 1.24309 0.46756 4
192.168.1.20 9 080 9 1.21419 0.46745 5
192.168.1.21 3 335 8 1.17489 0.47421 5
192.168.1.22 6 016 9 1.21649 0.44508 3
192.168.1.23 5 513 10 1.20426 0.44432 4
192.168.1.24 6 863 8 1.17125 0.42354 4
192.168.1.25 5 546 9 1.20074 0.43677 5
192.168.1.26 5 642 11 1.06825 0.26134 3
192.168.1.27 2 311 9 1.19744 0.46979 5
192.168.1.30 7 708 5 1.72427 0.67429 4
192.168.1.31 5 746 4 1.52241 0.63850 3
192.168.1.33 17 782 6 1.23520 0.44930 3
192.168.1.45 57 4 1.07547 0.26667 2
192.168.1.51 99 4 1.42307 0.75006 4
192.168.1.52 10 5 1.45454 0.93419 4

7.2 Prototype Evaluation

In this section, we describe the network and data set (network traffic) we used with

our software prototype as a proof-of-concept to validate our proposal and refine our

system design, and discuss how our prototype performed. We did not perform a side-

by-side comparison of this technique with another L2L scanning detection technique

as, to the best of our knowledge, no comparable publicly available L2L scanning

detection technique exists. Four weeks of network traffic was collected in one of our

university research labs (i.e. the Carleton Computer Security Lab – (CCSL)). The first

two weeks of the network data set was used as the training period. We then tested

151

the prototype on the remaining two weeks of data, to determine both the validity

of our detection technique, and the affect of the configured alert thresholds on false

positive rates. We tested two different approaches to setting alert thresholds:

i. Common threshold approach (Section 7.2.1): give every device within the net-

work cell the same alert threshold r.

ii. Function-specific threshold approach (Section 7.2.1): partition the network cell

to give devices that perform different functions (e.g. server, workstation) dif-

ferent alert thresholds rj where j is the function used to partition the network

cell.

Finally, we will describe our scanning worm simulations and report on the performance

of our detection software in detecting these scans.

7.2.1 Data Set for Prototype Evaluation

To validate our approach, we developed and tested a fully functional software pro-

totype with all features discussed in Section 7.1. The software was installed on a

commodity PC running Linux with a 10/100 network interface card. The CCSL net-

work consisted of a one quarter Class C network of Internet-reachable IPv4 addresses

(i.e. 62). Using the cell definition from Section 7.1, the CCSL network contained one

cell. The CCSL network analysis allowed us to test the prototype’s ability to detect

L2L intra-cell worm propagation. Network traffic was collected from November 11 to

December 11, 2004.

From the two week training period the prototype automatically determined each

device’s peer list size, mean number of ARP requests per minute, standard deviation

of ARP requests per minute, and the largest number of ARP requests observed by

each device within the sampling interval (we used a 60 second period). The last

characteristic is not used in the determination of the anomaly score but as an input to

analyze the effectiveness of the approach as previously discussed. After the training

period we recorded, for analysis, ARP activity within the network cell in a single

pcap file for the next two weeks. During this analysis period, we monitored the CCSL

network independently with an intrusion detection system (i.e. snort [56]) to ensure

152

no worm activity was included within the data set. Finally, we simulated scanning

worm propagation within the CCSL network using the Nmap [21] security scanner to

test our detection software.

The respective ARP request activity for each active system within the CCSL

network is included in Table 7.1. Network infrastructure devices (i.e. firewall and

switches) were excluded from analysis and thus do not appear as index entries within

the peer list. The total size of ARP request traffic for the entire four week period was

approximately 9 MB.

Approach 1: Common Threshold. Table 7.1 separates servers and worksta-

tions in our testbed. Note that, with the exception of one server (a secure log server),

the servers within the network have the largest ARP chains. The device with the

largest peer list (i.e. 192.168.1.11) was the DNS/mail server for the CCSL network.

This is not unexpected in a typical client-server model. Likewise, the servers within

the CCSL network also had the largest observed ARP requests within the sampling

intervals.

By applying our technique on all the devices within the network, we determined

the number of false alarms generated as a function of our alert threshold. Applying a

common alert threshold to all devices (common threshold approach), we ran the pro-

totype on the second two weeks of archived ARP request data, varying this threshold

to observe the affect on false positive rates. Each trial run of the prototype (i.e.

processing a two week data file) took less than one minute to complete. A subset of

our results are captured in Table 7.2.

Setting r = 1 resulted in 99 false positives over the two week dataset. Recall

that a scan to an IP address considered to be internal network dark space was set

to immediately generate an alarm regardless of r by our suggested configuration of

y = r. As expected, we observed no scans from internal devices to internal network

dark spaces.

Setting the alert threshold at r = 2 causes an alarm to be generated after observing

two anomalous scans within two time intervals (i.e. 2 minutes). With r = 2, 22

false positives resulted over the two-week period. For contrast, for r = 3 (the value

automatically selected by the prototype, see Setting Alert Thresholds), only 5 false

153

positives resulted over the two-week period. For use in an automated response system,

the occurrence of 5 false positives within a two-week period may be too great. In

our test network, as we increased r, the number of false positives decreased. If we

manually set r = 6 only 1 false positive from all devices is generated within a two-week

period.

Approach 2: Function-Specific Thresholds. One method to refine our

approach is to use different alert thresholds, for different categories of devices based

on the system function (not currently implemented by our prototype). For instance,

we observed that most servers (with one exception) have a higher ARP chain counts

than workstations. Additionally, two servers have the two highest observed per minute

ARP request counts during the training period (servers 192.168.1.11 and 192.168.1.12,

see Table 7.1). Not surprisingly, a server must be able to handle bursts of requests

from other network devices. However, legitimate bursts in ARP request activity may

cause the a2 factor to exceed its alert threshold causing false positives. All 5 false

positives generated at the r = 3 threshold were caused by the two servers with the

highest per-minute ARP request count. We refer to distinguishing of devices within

the network cell to allow differing alert thresholds based on the function of a device

(e.g. server or workstation) as the function-specific thresholds approach. We could

allow the workstations alarm threshold to be set at r = 3 reducing their false positive

rate to zero (i.e. for our test network). Increasing the server alarm threshold to r = 5

reduced not only their false positive rate but the overall false positive rate for the

two-week period to 2.

Varying alarm thresholds could be extended to other classes of systems within

the network cell if required, depending on the nature of applications running on the

network. An example would be relaxing r on devices that use distributed or P2P

applications. We expect that these devices would repeatedly initiate a greater num-

ber of connections (ARP requests) than other devices during the sampling intervals.

This increased activity would typically give these devices larger mean and standard

deviation scores causing higher Ei values. Devices with larger Ei values will require

the observation of more ARP requests than less active devices (i.e. lower Ei) before

r will be met or exceeded. In this scenario, the ability to assign differing r values to

154

Table 7.2: Alarm Threshold Analysis
Alerts

Threshold r Server Workstation Total
1 scan 37 62 99
2 scans 19 3 22
3 scans 5 0 5
4 scans 3 0 3
5 scans 2 0 2
6 scans 1 0 1

Anomalous Connection Activity
Server Workstation Total

Outside ARP chain 181 36 217
Dark space 0 0 0

devices with similar Ei would minimize both false positives and negatives. However,

as r increases so does the number of worm scans before an alarm is generated.

7.2.2 Simulating Scanning Worm Activity

To simulate scanning worm propagation within a network cell we used the port scan

option of the Nmap security scanner. Just like a worm, the kernel and networking

components of the workstation performing Nmap scans use ARP in order to make

contact with the devices within the network cell. We configured Nmap to scan a

single port (port 80/TCP) on all the devices within the network cell. Ignoring the

two broadcast addresses left 62 usable IP addresses. These port scans simulated a

scanning worm trying to find versions of vulnerable HTTP servers within the network

cell. The device we used to scan the network cell was a workstation that had the

highest ARP chain count (192.168.1.26 had 11 ARP chain entries; see Table 7.1).

We set our alert threshold to r = 3. Based on Section 7.2.1, this was the minimum

threshold that incurred no false positives from workstations during testing and it was

also the value automatically selected by our prototype. To fully exercise our detection

software, Nmap was run in two modes, each with two types of scanning strategies as

follows.

The first two tests consisted of scanning port 80 on every device within the net-

work cell using Nmap’s normal mode (scanning the network as quickly as possible)

155

employing both the sequential and random scanning strategies. The last two tests

consisted of scanning port 80 on every system within the network cell using sneaky

mode (waiting 15 seconds between scans in an effort to become stealthy) employing

both the sequential and random scanning strategies.

Table 7.3: Network ARP Statistics
Number of Scans Before Detection

Normal Sneaky
Sequential 2 2
Random 1 3

Worm Simulation Results. Nmap Sequential Scanning Strategy. The

sequential scans for both normal and sneaky mode were detected within two port

scans (see Table 7.3). Nmap was configured to sequentially scan the host range

from 192.168.1.1 until 192.168.1.62 (thus omitting network broadcast addresses).

192.168.1.2 was the target of the second scan in both sequential scans. IP address

192.168.1.2 was assigned to a network switch and does not appear within the peer

list and therefore is considered internal network dark space. In these cases, sequential

scanning detection was triggered by the a3,26 factor within the aggregate anomaly

score for the system.

Nmap Random Scanning Strategy. In normal mode, the random scan was

detected within one scan. Of the 62 usable addresses within the network, the total

peer list size of servers and workstations was only 21 (i.e. approximately 66% of our

network was defined during the training period to be internal network dark space).

The first random scan in normal mode was to an internal network dark space. Again,

the a3 factor dominated the aggregate anomaly score and caused an alarm to be

generated after the first scan.

In sneaky mode, the random scan was detected within three scans. In this case,

although statistically improbable, no internal dark space addresses were scanned.

The a2,26 factor became the dominant factor and triggered after detecting three ARP

requests above Ei for the device within a three minute period. However, it is statis-

tically probable that subsequent tests using the same parameters would be detected

by the a3 factor before three scans.

156

The Affect of Dark Space on Sequential and Random Scanning De-

tection. Overall, our detection testbed implementation benefited from the sparse

internal IP addressing scheme within the network cell. Internal network dark space

comprised approximately 66% of the network cell’s usable IP addresses. If p is the

probability that a random scan will be to internal network dark space then 1 − p

is the probability that a random scan will not be to internal network dark space

(e.g. 0.3387). Random scans are independent events. The probability that the a3,i

factor will trigger causing an alarm after the occurrence of three random scans is

1− (1− p)r = 1− .33873 = 0.9611.

The large amount of internal network dark space also aided our prototype in

detecting sequential scanning. Topological worms typically harvest network config-

uration information from their victims for new targets [69]. In our testbed, any

sequential scanning strategy that started from the lowest IP value within a device’s

network subnet configuration value (i.e. 192.168.1.1) would be detected within the

second scan.

7.2.3 Discussion of False Positives and Negatives

We now discuss the impact and causes of false positives and negatives on our detection

technique. Since the analysis is valid for both the common threshold and function

specific thresholds approaches, we discuss only the specific results of the approach

with the greatest number of false positives (i.e. common threshold approach).

False Positives. All five false positives which arose when the alert threshold was

set to r = 3 (triggering at r or more scans) were caused by servers, and specifically by

bursts in server activity. A typical scenario for normal network activity involves users

logging onto their workstations and requesting network services (e.g. DNS, mail, etc.)

that allow them to execute desired tasks. As a workstation generates an ARP request

to determine the MAC address of the server, the server also typically generates ARP

requests to determine the MAC address of other servers that assist them in performing

their tasks. When a number of users access services simultaneously, this will cause a

burst in ARP requests from the servers. The two most active servers (i.e. 192.168.1.11

and 192.168.1.12) in our testbed have the highest observed maximum ARP requests

157

in the sampling interval. ARP request bursts caused by servers answering legitimate

service requests can produce false positives. The occurrence of false positives could

be reduced by raising r. However, each increment of r allows another scanning worm

infection attempt to occur before an alarm is raised.

Automated attack and scanning tools share the same searching strategies as scan-

ning worms. These tools can perform random or sequential scanning at differing

speeds to either exploit or identify vulnerable systems. Our ARP-based detection

technique discovers intra-cell scans caused by such tools (e.g. if the minimum sus-

tained scanning rate exceeds one scan per minute), but does not distinguish them

from scans resulting from a scanning worm.

False Negatives. A false negative occurs when malicious activity occurs with-

out triggering an alarm. In this section, we discuss the affect of ARP caches and large

ARP chains on possible false negatives for our detection technique.

ARP Cache. If a device happens to have the MAC address of the device it wants

to communicate with within its local cache, no ARP request is generated. For this

reason, typical scanning worms exploit an infected device’s local ARP cache just as

any legitimate network application would. However, our prototype is network-based

and does not have access to the local ARP caches of the devices within the network

cell. For this reason, with respect to the a2,i factor, this activity is not reflected within

the Oi activity count.

However, our calculation of Ei (see equation (7.1), Section 7.1) does offer some

insight on the affect of ARP caches. For example, system 192.168.1.30 (statistically

the most active workstation in Table 7.1) has x = 1.72427 and σ = 0.67429, making

E30 = 3.07285. This represents the maximum expected number of ARP requests a

device can make within a one minute period without causing a positive a1,30 score.

Recall (see Section 7.1.1) that the default ttl for the entries within the ARP caches of

the devices in our network cell is 60 seconds, which matches our a2,i sampling interval.

ARP replies (i.e. MAC and IP address pairs) are cached locally on the devices that

generated the associated ARP requests.

According to Ei, we expect that three is a reasonable upper bound for the number

of entries within this device’s ARP cache. If a scanning worm happened to select any

158

of the IP addresses within the cache, no network ARP request would be sent and our

prototype would not detect the scan (i.e. Oi would not be incremented by 1). ARP

caches can be a source of false negatives. However, in our calculations of x and σ

for each device, we ignored the affect of long periods of inactivity. This was done to

better approximate the ARP request activity during active usage (i.e. ignoring user

and system inactivity) to ensure that our false positive rates would be minimized

for this factor. Ei represents a reasonable upper bound to the number of entries

within the respective local ARP caches. In practice, the ARP caches will typically

contain fewer entries than the Ei values for each system since by design, Ei exceeds

the corresponding mean value. Therefore, we expect that ARP caches have a minimal

affect on factor a2,1.

Additionally, the a2,i factor is not applied in isolation. In order to avoid any

anomaly score contribution from the remaining two anomaly score factors (i.e. a1,i

and a3,i) all these scans would have to be limited to the device’s ARP chain. The

probability of detection avoidance through limiting scans to the respective ARP chain

is discussed in the next section.

Large ARP Chain. We use ARP chains to characterize normal network in-

teractions. A system with a large ARP chain will be able to connect to the devices

within the chain without contributing to the a1,i factor. The largest ARP chain in our

testbed belonged to the server 192.168.1.11 with 21 entries. The largest workstation

ARP chain belongs to 192.168.1.26 with 11 entries. Table 7.4 shows the probabilities

of the two systems scanning within their respective ARP chains, internal network

dark space, and their peer lists.

As previously discussed, internal network dark space dominates the overall scan-

ning possibilities for worms within our testbed network cell. Even the device with the

largest ARP chain (192.168.1.11) had only a 0.3387 probability of selecting an IP ad-

dress within its ARP chain. During a random scan, the chance of 3 successive scans all

targeting IP addresses in the ARP chain is approximately (1−p)3 = 0.33873 = 0.03885

(see Section 7.2.1). If a sequential scanning strategy was used, the probability that 3

successive scans would all be to devices within an ARP chain would depend on the

IP address composition of the ARP chain. Using the CCSL network as a practical

159

Table 7.4: Anomaly Factor Triggering Probabilities in Testbed
System Specific ARP Request Statistics

ARP Chain x σ
Size

192.168.1.11 11 1.57974 1.03620
192.168.1.26 21 1.06825 0.26134

Scan Location Probability
ARP Dark Peer
Chain Space List

192.168.1.11 0.3387 0.6613 0
192.168.1.26 0.1774 0.6613 0.1613

example, a sequential scan from 192.168.1.11 would deviate from its ARP chain on

the second scan (see Section 7.2.2) and be detected by a1,11 and a3,11. Regardless, if

a scanning worm managed to only scan IP addresses within the device’s ARP chain,

it would have to do so with a sustained scanning rate of less than 1 scan per minute

or it would be detected by a2,11. Therefore, the application of a2 ensures large ARP

chains have a minimal affect on the detection technique.

7.3 Limitations

Limitations. Our detection technique cannot detect L2L inter-cell, R2L and L2R

worm propagation. It would be useful as a complementary technique used in conjunc-

tion with other approaches, e.g. [71] to detect L2L intra-cell scanning worm propaga-

tion. Furthermore, our approach relies solely on the observation of ARP requests. We

do not try to match the associated ARP replies to determine if the subject of the ARP

requests are actually active on the network. In the event that a system broadcasts an

ARP request to a device currently not active on the network (e.g. powered down or

disconnected from the network) due to scheduled maintenance or some unscheduled

failure, this will not be considered a scan to internal network dark space as long as

its address was observed during the training period. In this scenario, the amount

of internal network dark space would be understated as inactive devices would be

considered live. If we extended our approach to correlate ARP requests and replies

we could determine which devices are live or actually internal network dark space.

160

ARP request and reply correlation would also address another potential limitation

that arises in networks that use the Dynamic Host Configuration Protocol (DHCP)

[17]. DHCP allows network devices to determine their IP addresses from a central

server rather than from a static configuration file. When a device becomes active on

the network, it contacts its DHCP server to retrieve an IP address that it can use on

the network. The MAC address of the requesting device is then associated with an

IP address assigned by the DHCP server. DHCP-assigned IP addresses are leased to

the devices that request them. A DHCP lease is the amount of time that the DHCP

server grants permission for a device to use a particular IP address. The devices in our

test network used static IP addresses and thus the MAC and IP pairing was constant.

In a DHCP-enabled network, the MAC address and IP pairing is not guaranteed to

be constant (e.g. when the lease expires a device may receive a different IP address

and thus the IP address MAC pairing is different). Our prototype uses IP addresses

to identify devices and thus would be adversely affected by allowing a device to have

different IP addresses. ARP request and reply correlation would enable us to use the

MAC addresses (which are fixed and never change) of devices for identification which

DHCP has no affect on.

Another limitation is that network dark space addresses are determined by observ-

ing ARP requests on the network and building a peer list. Once the training period

is completed, in our description thus far there is no mechanism to add to the peer

list or determine if previously active devices have been taken off the network. This

may provide an inaccurate accounting of internal network dark space. To address this

limitation, we could correlate ARP requests and replies to determine the emergence

of new devices. Currently, if we observe an ARP request to an IP address outside the

peer list an alarm is generated. If we modified our approach to consider ARP replies,

we could dynamically determine internal network dark space.

In a P2P or distributed computing environment, network devices may interact

with a large number of other devices. The ARP chains for the devices could be quite

large and homogeneous. In this scenario, the a1 factor would be affected as a device

could interact with a large percentage of the network cell and still remain within its

ARP chain. Furthermore, if the device was involved in performing tasks that required

161

frequent interaction with multiple devices over long periods of time its x and σ would

be large. At a minimum, this would require our prototype to observe a greater number

of worm scans before the a2 factor would trigger. However, in a network environment

where frequent and varied P2P activity is prevalent, this technique may be limited in

its ability to discern normal P2P activity from scanning activity.

Attempted Circumvention. A possible worm infection strategy would be to

only perform infection attempts after the device had initiated a connection through

legitimate use. In this scenario, a scanning attempt could be initiated when the IP

address is in the local cache thus obviating the need for an ARP request. A slight

modification to this strategy would be for the worm to install itself on a host and

monitor ARP request activity before propagation. Worm propagation could then be

restricted to those devices that were the subject of ARP requests. In these scenarios,

the a1 and a3 factors would not be affected by this activity. To ensure stealth and

evade detection by this technique, once the propagation began, if the worm’s sustained

scanning rate was kept to less than 1 scan per minute, factor a2 would be unaffected

as well.

7.4 Suppression and Containment Extensions

To suppress and contain scanning worms within a network cell apparently requires

that one employ an automated active response. Two scanning worm containment

strategies are: (1) stop the scans as they traverse the network before they reach

their intended victims; and (2) stop the scans before they leave the infected host.

The first strategy could be achieved through integrating a containment capability

directly into the network fabric (e.g. switches). The second strategy could be achieved

through integrating a containment capability on each host itself. We believe that our

ARP-based detection technique could be used in either strategy to enable automatic

containment. Each strategy has its benefits and limitations; we discuss these in turn.

Integration into Network Fabric. A network switch provides a channel

for incoming data from any one of its input ports to a specific output port that

connects a device to the network. Most network switches have the capability to

maintain statistics on the type and amount of network data passing through its ports.

162

We believe our ARP-based technique could be integrated into switches to allow for

monitoring of ARP activity on all the devices they connect to the network. Switch

integration would enable us to address a current limitation of our approach by allowing

ARP requests and replies to be correlated (see Section 7.3). ARP replies are not

broadcast and must be observed at each individual device at which they are received

or on the switches that forward them. Integration of our detection technique into the

switching fabric would enable us to perform a more complex correlation for better

detection and better provide the ability to take active response. For instance, if

worm activity was detected on a specific port, a switch could simply turn the port

off isolating the device connected to that port from the rest of the network.

A network-based detection approach such as this does have some advantages over

a host-based approach. A network-based device can be hardened against attack and

is typically administered by security conscious personnel. In a host-based detection

approach, the host is the subject of the attack and there is a risk that a successful

attack may include turning detection software off or instructing it to not alarm.

Furthermore, administration and reporting of alarms is typically easier in network-

based detection approaches as fewer devices need to be maintained and monitored.

Host-based Worm Containment. The success or failure of a worm infection

is more easily determined at the host than at the network layer. In a network-

based approach, one may see an attack go by without knowing if it succeeded, unless

one observes subsequent anomalous activity (i.e. attacks) from the suspected victim.

Our ARP-based technique could be integrated into a host’s networking software or

hardware to enable containment. As in Section 7.1, a host-based integration would

also enable us to address a current limitation of our approach by allowing us to

correlate ARP requests and ARP replies (see Section 7.3). ARP replies received at

the individual host would enable us to perform a more complex ARP correlation for

better detection accuracy. Again, as in Section 7.1, a host-based approach would also

give us the capability of an active response on the intended victim. For instance, if

worm activity is detected on the individual host, the host could remove itself from

the network by not forwarding or receiving data.

163

7.5 Summary

This ARP-based anomaly detection approach has been designed to be deployed in a

single cell. We tested the approach in a small network environment (nonetheless with

a reasonable amount of normal network traffic). Obviously tests in larger and more

diverse networks are required to fully exercise the approach; however, our testbed

has provided substantial evidence of the practical viability of this approach. We have

provided specific recommendations for the anomaly score parameters and settings,

based on our network topology. Different network environments will likely require

different parameter settings that can be determined during the training period.

The minimum sustained scanning rate constraint of one scan per minute was a

limitation of our prototype and not the overall approach. The same approach could be

used to detect worms or network scanning tools that scan even less frequently than this

threshold at the expense of more memory and poorer results in terms of accuracy and

false positives. The amount of internal network dark space in our testbed significantly

influenced (positively) the performance of the detection technique.

Our detection system is anomaly-based and therefore has the ability to detect

emerging worms. The prototype automatically calculates the required individual

device statistics and can determine an appropriate network-specific alert threshold (r).

We have developed a full implementation of our ARP-based approach in a software

prototype that runs on commodity hardware. We plan to make this software available

to the public.

Chapter 8

Summary and Future Directions

8.1 Summary of Research Contributions

Hypothesis 1 stated ”to better defend the enterprise network, it is possible to de-

sign and deploy a suite of practical scanning detection techniques, that improve upon

existing approaches, with acceptably low false postive/negative rates, and that are

responsive within a very small number of scans (e.g., 1 to 3 scans - as low as a single

scanning attempt).” We accept this hypothesis. We have developed three scanning

detection techniques (i.e. exposure maps, DNS-based scanning detection, and ARP-

based scanning detection) that can identify network scanning activity regardless of

whether it originates from a local host in the internal network (i.e. L2L or L2R scan-

ning) or it originates from a remote host external to the network (i.e. R2L scanning).

These scanning detection techniques are anomaly-based and rely on behavioral sig-

natures based on the observation that a scanning host exhibits anomalous behavior

distinct from normal hosts. All three have been implemented either as fully functional

stand-alone software implementations or as Bro policies. We plan to make these im-

plementations available to others through standard means such as sourceforge.net.

Our evaluation of these techniques involved the use of three network datasets, one

derived from a small University network and network traces from a large enterprise

network (i.e. the LBNL/ICSI network trace repository).

Network scanning detection techniques can both leverage and benefit from local

knowledge obtained from the interactions of the hosts in an enterprise network and

the perceived origin (i.e. internal or external to the network) of the scanning activity.

All of our techniques exploit network-centric knowledge obtainable only within the

local network.

Hypothesis 2 stated ”it is possible to make novel use of address resolution protocols

to detect malicious network activity, including some zero-day worms.” We accept this

164

165

hypothesis. We have developed two new techniques to detect scanning systems within

the local network based on the anomalous behaviors they exhibit when using the ARP

and DNS address resolution protocols. Our DNS-based scanning detection approach

was developed to combat scanning worm propagation within an enterprise network.

However, this approach is valid for most automated network scanning tools such as

[21, 67, 66] as they share the same exploit methodology as scanning worms. Namely,

their goal is to rapidly identify and compromise as many systems as possible. A

typical configuration parameter for automated attack tools is a range of numerical IP

addresses that they use to target their victims.

During evaluation, our DNS-based scanning detection prototype was successful in

detecting scanning worm propagation as well as automated network scans directed at

the Internal Departmental Network cell of our enterprise network. We have demon-

strated that this network-based detection approach can be used to quickly and ac-

curately detect L2R network scanning activity. Regardless of the scanning rate, the

detection algorithm is able to detect network scanning activity in a single scanning

attempt. It relies on a network service found in every network (i.e. DNS), and being

anomaly-based, has the ability to detect emerging worms or new types of network

scanning tools. We have developed a full implementation of our approach in a software

prototype that runs on non-specialized commodity hardware.

The ARP-based scanning detection approach was also developed to combat scan-

ning worm propagation within an enterprise network (i.e. L2L) but it too could be

used to detect scans originating from most automated network scanning tools such

as [21, 67, 66]. It is based on the observation that a scanning host targeting systems

within its own network exhibits anomalous behavior distinct from normal ARP ac-

tivity. We have provided specific recommendations for the anomaly score parameters

and settings, based on our network topology. Different network environments will

likely require different parameter settings that can be determined during the train-

ing period. The minimum sustained scanning rate constraint of one scan per minute

was a limitation of our ARP-based detection prototype and not the overall approach.

The same approach could be used to detect worms or network scanning tools that

scan even less frequently than this threshold at the expense of more memory, poorer

166

accuracy, and more false positives. The amount of internal network dark space in our

testbed significantly influenced (positively) the performance of the detection tech-

nique. This technique is anomaly-based and therefore we would expect that it has

the ability to detect emerging scanning worms or new types of network scanning tools.

The prototype automatically calculates the required individual device statistics and

can determine an appropriate network-specific alert threshold (r).

Hypothesis 3 stated ”it is possible to devise a highly efficient scan detection tech-

nique which does not rely on who is doing the scanning, but rather on what service

(or in general, what resource) is being scanned for. Here, as one example of efficiency,

system state (in terms of main memory consumed) need not increase linearly with

bursts in external scanning activity.” We accept this hypothesis. Our exploration

of this hypothesis involved the creation of a new R2L scanning detection technique

(i.e. exposure maps) and the development of two heuristics to enable a side-by-side

comparison with TRW (the exposure maps DCA heuristic) as well as provide the

capability to detect distributed scanning activity. Additionally, we developed a mod-

ified TRW technique that uses all the internal logic (i.e. it makes use of a likelihood

ratio and all the associated parameters) of the original TRW algorithm augmented

with a NEM-based oracle.

Exposure maps differ from current scanning detection techniques [29, 58, 31, 64] as

they rely on identifying the services offered by the network instead of tracking external

connection events. Against a growing array of remote scanning techniques attribution

(i.e. the identification of scanning systems) is becoming a quixotic approach to scan

detection that overlooks an often critically important question that we suggest should

be a much higher focus of scanning detection, namely, what is the adversary looking

for? The basic exposure maps technique is based on a simple premise that is efficient

to implement – it requires the passive observation, recording, and maintenance of a list

of the services offered by the hosts in a network. When used as a scanning detection

technique, the result is one in which the utilized system detection state does not grow

in proportion to the amount and fluctuation of external network traffic, but rather

increases only with the number of services offered by the network, regardless of the size

of the network and the external network activity. This obviates the need for shrinking

167

time windows or timeouts to accommodate increases or bursts in network traffic,

allowing scan detection with a footprint of a single packet or a frequency of hours or

days between probes. In contrast, for example, the TRW algorithm implemented in

Bro [29] that we tested in Section 5.1.1 uses a 30 minute time interval to track and

associate related failed connection attempts to identify potential scanning systems.

Exposure maps make very efficient use of system detection state and computational

resources easily scales for use in large enterprise and backbone networks. As an

added benefit, maintaining information about internal hosts in the network instead of

external host activity provides the necessary network-awareness to answer in real-time

questions that should be asked after a scan is detected, such as “What information

has been revealed as a result of the scan?”, and “Has the network behavior changed?”

In an open network environment, the diversity of user population and permitted

activity may make the enforcement of a single comprehensive network security policy

impractical. Furthermore, mobile or transient users may make determining a stable

baseline of all the services offered by hosts in a given network infeasible. An unvetted

NEM was specifically designed for this type of network environment. An unvetted

NEM is used when the permissive nature of the network allows the use of a variety

of network services as part of the standard operating environment. The unvetted

NEM, in effect, becomes the constantly updated corpus of active hosts and services

found in the network. With the exception of the automated response capability,

the unvetted NEM can enable all the capabilities associated with a vetted NEM

(i.e. scanning detection, exposure profiles, and RAA). Alternately, in such diverse

network environments a vetted NEM remains flexible enough to be configured to

monitor a subset of the network to protect core network assets. For instance, a

vetted NEM could be composed of a single HEM (e.g. primary web server or for

host-based intrusion detection) or several HEMs (e.g., web server farm), allowing a

network operator to focus on these mission critical servers.

Our exposure maps technique was evaluated using a side-by-side comparison with

TRW and a modified TRW technique using a NEM-based oracle we developed (i.e. our

evaluation consisted of only a few selected values of TRW parameters for the network

datasets and thus it was a limited comparison; a more complete analysis would explore

168

a full range of values). All of these techniques were tested with 3 network datasets.

The exposure maps technique had the same performance in every individual test

during the evaluation in terms of false positive and negative rates. An additional

benefit of the modified TRW technique is that the NEM acts as a connection oracle

that obviates the need for the algorithm to wait for connection responses in order to

determine successes or failures. This could dramatically improve the performance of

the TRW algorithm in terms of speed of detection.

The network-centric knowledge gathered by our exposure maps technique also of-

fers the ability to identify potentially infected systems through the classification into

exposure profiles based on the services they offer as well as provide a mechanism to

create Reconnaissance Activity Assessments (RAA) identifying the network informa-

tion divulged (i.e. hosts, open services, applications) to an adversary as a direct result

of a specific scanning campaign.

The vetted NEM provides context to determine if an incoming connection request

is part of a scanning campaign and whether it will likely elicit a response. This infor-

mation provides the possibility of limiting containment to (e.g., automatically block)

only those scanning systems targeting services offered by the network. Precise active

response options can be restricted to the most critical known threats to the network;

namely, those scanning systems targeting services offered by the network. Our test-

ing with the CCSL dataset showed that only 8% of the detected scanning systems

targeted a service offered by the network and should be blocked. This represents a

92% reduction in the number of dynamic updates to the network security ACLs if all

scanning systems were candidates for an active response option.

8.2 Future Work

Our exposure maps technique produces DCAs that can be processed and analyzed

using a variety of heuristics. For instance, we developed two heuristics to detect a

form of distributed scanning. Additionally, we discussed a third heuristic that could

be used to detect slow scanning. Other heuristics could be developed that use the

raw output from exposure maps to identify other types of simple or sophisticated

scanning activity (e.g. slow scanning).

169

The RAA provides a mechanism to identify the overall network information di-

vulged as well as the specific network information revealed as a direct result of a

specific scanning campaign. The signature file that enables RAA currently contains

regex patterns for the SMTP, SSH, HTTP, DNS, and SSL protocols. Additional

signatures could be developed to identify other types of applications that could be

added into the signature file.

Our DNS-based detection technique is based on the observation that a local host

performing remote network scanning does not perform a DNS-lookup before making

a connection attempts. This behavior is inherently anomalous and we believe that it

can be extended to detect additional classes of malicious activity including: covert

channels, and remote to local worm propagation. The technique uses a whitelist to

exempt a list of IP addresses and port combinations to eliminate a possible source

of false positives caused by client applications that legitimately do not rely on DNS

to function. For example, in most networks there are systems that regularly commu-

nicate with one another by using IP addresses specified in configuration files rather

than fetched in DNS records. However, in certain network environments (e.g. ad hoc,

P2P) the majority of hosts may initiate new connections without first generating a

DNS lookup. In these network environments the number of IP addresses and proto-

cols added to the whitelist may potentially limit the applicability of this technique as

a stand alone detector. In these scenarios, an investigation could be undertaken of

how this detection method could be used as an additional detection signal in concert

with other worm detection schemes instead of being used as the primary detection

technique.

Our experimentation has shown that the ARP-based detection technique has a

greater speed of detection when the amount of network dark space is large in pro-

portion to active hosts. The development of less coarse thresholds would be worth

investigating when the size of network dark space is relatively small in order to in-

crease both the speed and accuracy of the technique. One such method would be to

evaluate how darkports could be used in conjunction with darkspace to detect L2L

scanning activity.

Bibliography

[1] Optixpro trojan horse. http://securityresponse1.symantec.com/sarc/sarc.nsf/
html/backdoor.optixpro.12.html; accessed on January 24, 2008.

[2] tcpdump/libpcap public repository. http://www.tcpdump.org.

[3] M. Alsaleh, D. Barrera, and P. C. van Oorschot. Improving security visualiza-
tion with exposure map filtering. In Proceedings of the 24th Annual Computer
Security Applications Conference (ACSAC), December 2008.

[4] G. Bakos and V. Berk. Early detection of Internet worm activity by metering
ICMP destination unreachable activity. In SPIE Conference on Sensors, and
Command, Control, Communications and Intelligence, April 2002.

[5] P. Barford and V. Yegneswaran. An Inside Look at Botnets. Special Workshop
on Malware Detection, Advances in Information Security, Springer Verlag, 2006.

[6] G. Bartlett, J. Heidemann, and C. Papadopoulos. Understanding passive and
active service discovery. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, pages 57–70, New York, NY, USA, 2007.
ACM.

[7] R. Bejtlich. Extrusion Detection, Security Monitoring for Internal Intrusions.
Addison Wesley, first edition, 2006.

[8] A. Bobyshev, P. DeMar, and D. Lamore. Effect of Dynamic ACL (Access Control
List) Loading on Performance of Cisco Routers. In Computing in High Energy
Physics, Feb. 2006.

[9] Bro Intrusion Detection System. http://bro-ids.org/; accessed on February 23,
2008.

[10] Reference Manual. Bro Wiki. http://www.bro-ids.org/wiki/index.php; accessed
on February 23, 2008.

[11] S. Chen and Y. Tang. Slowing down internet worms. In Proc. of 24th Interna-
tional Conference on Distributed Computing Systems, Mar. 2004.

[12] S. Coull, C. Wright, F. Monrose, M. Collins, and M. Reiter. Playing devil’s
advocate: Inferring sensitive information from anonymized traces. In Proc. of
the 14th Annual Network and Distributed System Security Symposium, Feb. 2007.

[13] M. Crispin. Internet Message Access Protocol. March 2003. http://www.ietf.org
/rfc/rfc3501.txt?number=3501; accessed on Jan 12, 2008.

170

171

[14] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. Hon-
eyStat: Local worm detection using honeypots. In Proceedings of the 7th In-
ternational Symposium on Recent Advances in Intrusion Detection (RAID’04),
September 2004.

[15] D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation using time zones.
In Proceedings of the 13th Annual Network and Distributed System Security Sym-
posium (NDSS’06), February 2006.

[16] M. de Vivo, E. Carrasco, G. Isern, and G. O. de Vivo. A review of port scanning
techniques. SIGCOMM Comput. Commun. Rev., 29(2):41–48, 1999.

[17] R. Droms. Dynamic Host Resolution Protocol. RFC 2131, March 1997.
http://www.ietf.org/ rfc/rfc2131.txt? number=2131; accessed on January 24,
2008.

[18] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A behavioral approach to worm
detection. In Proceedings of The ACM Workshop on Rapid Malcode, 2003.

[19] Forescout Technologies Inc, Forescout product. http://www.forescout.com
/wormscout.html; accessed on January 24, 2008.

[20] F. C. Freiling, T. Holz, and G. Wicherski. Botnet tracking: Exploring a root-
cause methodology to prevent distributed denial-of-service attacks. In ESORICS,
pages 319–335, 2005.

[21] Fyodor. Remote OS detection via TCP/IP stack fingerprinting. Phrack, 54,
December 1998.

[22] C. Gates, J. J. McNutt, J. B. Kadane, and M. I. Kellner. Scan detection on very
large networks using logistic regression modeling. In ISCC ’06: Proceedings of
the 11th IEEE Symposium on Computers and Communications, pages 402–408,
Washington, DC, USA, 2006.

[23] G. Granger, G. Economou, and S. Bielski. Self-securing network interfaces:
What, why and how. Technical report, Carnegie-Mellon University, CMU-CS-
02-144, May 2002.

[24] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley. Worm detection,
early warning and response based on local victim information. In Proceedings of
the 20th Annual Computer Security Applications Conference (ACSAC’04), pages
136–145, Washington, DC, USA, 2004.

[25] W. Harrop and G. Armitage. Greynets: a definition and evaluation of sparsely
populated darknets. In Proceedings of the 2005 ACM SIGCOMM Workshop on
Mining Network Data, pages 171–172, 2005.

172

[26] IANA TCP/IP Port Assignments. February 2008. http://www.iana.org/
assignments/port-numbers; accessed on February 23, 2008.

[27] M. S. Johns. Identification Protocol. RFC 1413, February 1993. http://www.ietf.
org/rfc/rfc1413.txt; accessed Jan 07, 2008.

[28] J. Jung. Real-Time Detection of Malicious Network Activity Using Stochastic
Models. PhD thesis, Massachusetts Institute of Technology, 2006.

[29] J. Jung, V. Paxson, A. Berger, and H. Balakrishman. Fast portscan detection us-
ing sequential hypothesis testing. In IEEE Symposium on Security and Privacy,
pages 211–225, 2004.

[30] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for intru-
sion detection. Technical report, Technical University Vienna, Vienna, Austria.
TU-1841-2002-28, 2002.

[31] C. Leckie and R. Kotagiri. A probabilistic approach to detecting network scans.
In Eighth IEEE Network Operations and Management Symposium (NOMS 2002),
pages 359–372, 2002.

[32] B. Malmedal. Using netflows for slow portscan detection. Master’s thesis, De-
partment of Computer Science and Media Technology, Gjovik University College,
Norway, 2005.

[33] MaxMind Frequently Asked Questions. MaxMind GeoIP product. http://www.
maxmind.com/app/faq#accurate; accessed on January 24, 2008.

[34] J. McHugh. Acquisition and analysis of large scale network data: Introduction.
Tutorial given at the 21st Annual Computer Security Applications Conference
(ACSAC), December 2005.

[35] D. Mills. Network Time Protocol (Version 3). RFC 1305, March 1992.
http://www.ietf.org/rfcs /rfc1305.txt?number=1305; accessed on January 24,
2008.

[36] Mirage Networks. Mirage NAC. http://www.mirage networks.com; accessed on
January 26, 2008.

[37] P. Mockapetris. Domain Names - Implementation and Specification. RFC 1035,
November 1987. http://www.ietf.org/rfcs /rfc1035.txt?number=1035; accessed
on January 24, 2008.

[38] D. Moore. Network telescopes: Tracking denial-of-service attacks and Internet
worms around the globe. In LISA, 2003.

173

[39] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the Slammer Worm. In IEEE Security and Privacy Magazine, pages 33–
39, July/August 2003.

[40] D. Moore, G. Voelker, and S. Savage. Inferring Internet denial of service activity.
In 10th USENIX Security Symposium, 2001.

[41] Nessus. Tenable Network Security. http: //www.nessus.org.

[42] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first look
at modern enterprise traffic. In IMC’05: Proceedings of the Internet Measurement
Conference 2005 on Internet Measurement Conference, pages 2–2, Berkeley, CA,
USA, 2005. USENIX Association.

[43] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace
anonymization. SIGCOMM Comput. Commun. Rev., 36(1):29–38, 2006.

[44] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier. An Experimental Evaluation to
Determine if Port Scans are Precursors to an Attack. In International Conference
on Dependable Systems and Networks, pages 602–611, July 2005.

[45] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23–24):2435–2463, Amsterdam, Netherlands, 1999.

[46] V. Paxson, R. Pang, M. Allman, M. Bennett, J. Lee, and B. Tierney.
LBNL/ICSI Enterprise Tracing Project (collection). http://imdc.datcat.
org/collection/1-0132-C=LBNL\%2FICSI+Enterprise+Tracing+Project;
accessed on February 12, 2008.

[47] R. Pethia. Attacks on the Internet 2003. Congressional Testimony, Subcommittee
on Telecommunications and the Internet, USA, November, 2003.

[48] D. Plummer. An Ethernet Address Resolution Protocol 826. RFC 826, November
1982. http://www.ietf.org/rfc/rfc0826.txt?number= 826; accessed on January
24, 2007.

[49] J. Postel and J. Reynolds. File Transfer Protocol (FTP). RFC 959, October
1985. http://www.ietf.org/rfc/rfc959. txt?number=959; accessed Jan 02, 2006.

[50] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The
Ghost in The Browser: Analysis of Web-based Malware. In USENIX HotBots
2007, Aug. 2007.

[51] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach
to understanding the botnet phenomenon. In Internet Measurement Conference
2006 (IMC’06), October 2006.

174

[52] Regular-Expressions.info. http://www.regular-expressions.info/; accessed on Feb
23, 2008.

[53] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address
Allocation for Private Internets. http://www.ietf.org/rfc/rfc1918.txt; accessed
on Jan 02, 2006.

[54] RemoteScan Corporation, RemoteScan. http://www.remote-scan.com.

[55] D. Roelker, M. Norton, and J. Hewlett. sfPortscan. 2004. http://cvs.snort.org/
viewcvs.cgi/snort/doc/README.sfportscan?rev=1.6.

[56] M. Roesch. Snort - lightweight intrusion detection for networks. In LISA, 1999.

[57] S. Sanfilippo. Bugtraq: new TCP scan method. December 1998. http://seclists.
org/lists/bugtraq/1998/Dec/ 0079.html.

[58] S. Schechter, J. Jung, and A. Berger. Fast detection of scanning worm infec-
tions. In 7th International Symposium on Recent Advances in Intrusion Detection
(RAID 2004), September 2004.

[59] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.
Specification-based anomaly detection: a new approach for detecting network
intrusions. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, pages 265–274. ACM Press, 2002.

[60] C. Shannon and D. Moore. The spread of the Witty worm. IEEE Security and
Privacy, 2(4):46–50, March 2004.

[61] M. Shelton. Passive Asset Detection System (PADS). http://passive. source-
forge.net; accessed on February 23, 2008.

[62] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP stack fingerprinting.
In SSYM’00: Proceedings of the 9th USENIX Security Symposium, pages 17–17,
Berkeley, CA, USA, 2000. USENIX Association.

[63] A. Sridharan, T. Ye, and S. Bhattacharrya. Connectionless port scan detection
on the backbone. In Malware workshop, IPCCC, Pheonix, AZ, April 2006.

[64] S. Staniford, J. Hoagland, and J. McAlerney. Practical automated detection of
stealthy portscans. In 7th ACM Conference on Computer and Communications
Security, 2000.

[65] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in your spare
time. In Proceedings of the 11th USENIX Security Symposium, August 2002.

[66] M. Tanase. Introduction to Autorooters: Crackers Working Smarter, not Harder.
SecurityFocus, August 2002. http://www. securityfocus.com/infocus/1619.

175

[67] Tenable Network Security, Inc., Nessus Vulnerability Scanner. http://www.
nessus.org; accessed on January 26, 2008.

[68] N. Weaver. Potential strategies for high speed active worms: A worst case
analysis. 2002. http://www.cs.berkeley.edu/˜nweaver/worms.pdf; last accessed
October 20, 2004.

[69] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A taxonomy of com-
puter worms. In The First ACM Workshop on Rapid Malcode, Oct. 2003.

[70] N. Weaver, S. Staniford, and V. Paxson. Very fast containment of scanning
worms. In Proceedings of the 13th USENIX Security Symposium, 2004.

[71] D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based detection of scanning
worms in an enterprise network. In Proc. of the 12th Network and Distributed
System Security Symposium, Feb. 2005.

[72] D. Whyte, E. Kranakis, and P. C. van Oorschot. ARP-based detection of scan-
ning worms in an enterprise network. In Proceedings of the 21st Annual Computer
Security Applications Conference (ACSAC), December 2005.

[73] D. Whyte, P. van Oorschot, and E. Kranakis. Exposure Maps: Removing Re-
liance on Attribution during Scanning Detection. In USENIX HotSec 2006, Aug.
2006.

[74] D. Whyte, P. C. van Oorschot, and E. Kranakis. Addressing SMTP-based mass-
mailing activity within enterprise networks. In Proceedings of the 22nd Annual
Computer Security Applications Conference (ACSAC), December 2006.

[75] D. Whyte, P. C. van Oorschot, and E. Kranakis. Tracking Darkports for Network
Defence. In Proceedings of the 23rd Annual Computer Security Applications
Conference (ACSAC), December 2007.

[76] M. Williamson. Throttling viruses: Restricting propagation to defeat malicious
mobile code. In 18th Annual Computer Security Applications Conference (AC-
SAC), 2002.

[77] C. Wong, S. Bielski, A. Studer, and C. Wang. Empirical analysis of rate limiting
mechanisms. In 8th International Symposium on Recent Advances in Intrusion
Detection (RAID), 2005.

[78] A. Wool. A Quantitative Study of Firewall Configuration Errors. IEEE Com-
puter, 37(6):62–67, 2004.

[79] V. Yegneswaran, P. Barford, and J. Ullrich. Intrusions: Global characteristics
and prevalence. In SIGMETRICS, 2003.

176

[80] T. Ylonen. SSH – secure login connections over the internet. In Proceedings of
the 6th USENIX Security Symposium, pages 37–42, 1996.

[81] M. Zalewski. p0f. http://lcamtuf.coredump.cx/p0f.shtml.

[82] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early warning for
Internet worms. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, 2003.

Appendix A

Supplementary Material

A.1 Acronym List

Table A.1: Acronyms.
ACE ARP Correlation Engine
ACL Access Control List
ARP Address Resolution Protocol
CCSL Carleton Computer Security Lab
DCA Darkport Connection Attempt
DNSCE DNS Correlation System
DHCP Dynamic Host Configuration Protocol
DNS Domain Name Service
HEM Host Exposure Map
HTTP Hypertext Transfer Text Protocol
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IDN Internal Departmental Network
IMAP Internet Message Access Protocol
IP Internet Protocol
NEM Network Exposure Map
L2L Local to Local
L2R Local to Remote
LBNL/ICSI Lawrence Berkeley National Laboratory/International Computer

Science Institute
MAC Media Access Control
P2P Peer to Peer
PPE Packet Processing Engine
R2L Remote to Local
RAA Reconnaissance Activity Assessment
SMTP Simple Mail Transfer Protocol
SSH Secure Shell
SSL Secure Sockets Layer
TCP/IP Transmission Control Protocol/Internet Protocol
TRW Threshold Random Walk
TTL Time to Live
UDP User Datagram Protocol

177

178

A.2 IANA Port Assignment List

Table A.2 contains the assigned port number to well known services according to the

Internet Assigned Numbers Authority’s (IANA) official TCP/IP port list [26].

Table A.2: IANA Assigned Port Numbers to Specific Network Services.
21/TCP File Transfer Protocol (FTP)
22/TCP Secure Shell (SSH)
23/TCP Telnet
25/TCP Simple Mail Transfer Protocol (SMTP)
53/UDP Domain Name Transfer (DNS)
53/TCP Domain Name Transfer (DNS)
80/TCP Hyper Text Transport Protocol (HTTP)
110/TCP Post Office Protocol (POP)
111/TCP SUN Remote Procedure Call
111/UDP SUN Remote Procedure Call
113/TCP Authentication Service
119/TCP Network News Transfer Protocol
135/TCP DCE Endpoint Resolution
138/UDP Netbios Datagram Service
143/TCP Internet Message Access Protocol
161/UDP Simple Network Management Protocol (SNMP)
427/UDP Server Location
443/TCP HTTP Protocol Over TLS/SSL
445/TCP Microsoft-DS
515/TCP Printer Spooler
554/TCP Real Time Streaming Protocol (RTSP)
993/TCP IMAP4 Protocol Over TLS/SSL
995/TCP POP3 Protocol over TLS/SSL
1433/TCP Microsoft SQL Server
1755/TCP MS-Streaming
1863/TCP MSNP
3389/TCP MS WBT Server
5050/TCP Multimedia Conference Control Tool
5061/TCP SIP-TLS
7000/TCP AFS3 Fileserver

