Optimising Malware

[Extended Abstract]

~José M. Fernandez
Ecole Polytechnique de Montréal
P.O. Box 6079, Station Centre-Ville
Montréal, Québec, Canada

jose.fernandez@polymtl.ca

ABSTRACT

In recent years, malicious software (malware) has become
one of the most insidious threats in computer security, hav-
ing been used, in its various forms, with high level of success
for a myriad of nefarious purposes. However, this is arguably
not the result of increased sophistication in malware design
or attack strategies, but rather of the increased presence
of computers and computer networks within every aspect
of society, offering an increased number of services through
increasingly complex and vulnerability-ridden software.

In this paper, we address and defend the commonly shared
point of view that the worst is very much yet to come. We
introduce an aim-oriented performance theory for malware
and malware attacks, within which we identify some of the
performance criteria for measuring their “goodness” with
respect to some of the typical objectives for which they are
currently used. We also use the OODA-loop model, a well-
known paradigm of command and control borrowed from
military doctrine, as a tool for organising (and reasoning
about) the behavioural characteristics of malware and or-
chestrated attacks using it. We then identify and discuss
particular areas of malware design and deployment strat-
egy in which very little development has been seen in the
past, and that are likely sources of increased future malware
threats. Finally, we discuss how standard optimisation tech-
niques could be applied to malware design, in order to allow
even moderately equipped malicious actors to quickly con-
verge towards optimal malware attack strategies and tools
fine-tuned for the current Internet.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—

Security and Protection; D.4.6 [Operating Systems]: Se-
curity and Protection—Invasive Software; K.6.5 [Manage-
ment of Computer and Information Systems]: Secu-
rity and Protection—Invasive Software, Unauthorized Ac-
cess

Permission to make digital or hard copies of all or part of this work for

~ Pierre-Marc Bureau
Ecole Polytechnique de Montréal
2500 chemin de Polytechnique
Montréal, Québec, Canada

pierre-marc.bureau@polymtl.ca

General Terms

Design, Performance, Security, Theory

Keywords

Malicious software, malware attacks, malware performance,
malware optimisation, OODA loop.

Cria cuervos y te comerdn los ojos. ..
— Spanish proverb

1. INTRODUCTION AND BACKGROUND

The term malware, a derivation from malicious software,
has been coined to describe a broad category of software
tools that have been programmed for malicious purposes.
This generic term includes, among others, viruses, trojan
horses, back doors, spyware and worms. From the onset of
the widespread use of computing, malware has always rep-
resented a considerable nuisance. However, in recent years,
whether as independent agents (e.g. viruses and worms) or
as tools in coordinated attacks (e.g. trojan horses, back-
doors, spyware), the use of malware has become one of the
most insidious threats to computer security. One of the im-
portant reasons why this is so is simply because the stakes
are higher. Computers and computer networks are now in-
volved in many critical aspects of our society, from finance,
management of critical infrastructure, governance, commu-
nications, biomedical applications, etc. Our wealth, our pro-
ductivity, and in certain cases even our lives, depend on the
services provided by these computers. As a consequence the
motivation of those having villainous objectives to attack
them has increased. Due to the shear size of the networks
involved and the technical complexity of the software and
hardware configurations involved, the use of malware tools,
whose generation and use has become automated to various
degrees, has become a prevalent method among the many
tools used to attack such systems.

While the use of malware and the negative impact it is
having on our society is on the rise, it is debatable whether
this is a consequence of a significant increase in sophistica-
tion in malware technology. To address this question, let us
consider briefly some of the most significant events of the

personal or classroom use is granted without fee provided that copies arepast history of malware.

not made or distributed for profit or commercial advantage and that copies

Malware has been present in computers for a very long

bear this notice and the full citation on the first page. To copy otherwise, t0 tjme. The first virus found in the wild targeted the Apple II

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Malware’06 April 10-12, 2006, Phoenix, Arizona USA
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

computer around 1981. In November 1988, the early In-
ternet was paralysed by the first worm epidemic caused by
the Morris worm [15], named after its author’s name, Robert



Tappan Morris Jr. Besides being the first worm, it is impor-
tant to note that the Morris worm was quite sophisticated,
incorporating several different attack vectors. Nonetheless,
detailed analysis of its code showed that it contained several
flaws and was relatively inefficient. Two years later, the first
in-the-wild viruses using code polymorphism and other anti-
virus evasion techniques saw the day, indicating a significant
evolutionary step: a primitive sense of awareness and abil-
ity to adapt to the environment. Ten years later, a group
called the “Cult of the Dead Cow” released its famous back-
door programme, Back Orifice, allowing a malicious actor
to remotely control a Windows system without the knowl-
edge of its victim. The introduction of such tools (of which
Back Orifice was only to be the first of a long list) allowed
malicious actors to re-enter the attack process in the mid-
dle of its execution, by giving them the ability to remotely
control infected machines and thus (theoretically) adapt the
execution of an attack according to changes observed in the
environment.

In 2003, the fastest ever propagation of malware was ob-
served with the Slammer worm [8]. This program infected
90% of the vulnerable population in less than 10 minutes
using a single UDP packet as its attack vector. Curiously,
things could have been worse: a programming flaw in the
pseudo-random number generator in Slammer made it inad-
vertently repeat-hit many previously infected targets. Fi-
nally, the last two years have seen an increasing use of
botnets [7], networks of infected machines controlled and
managed by automated tools, that allow its “Owners” to
use them for their purposes, such as sending unsolicited e-
mails and conducting distributed denial-of-service (DDoS)
attacks.

What can be learned from History? For one, that writ-
ing good and completely autonomous malware (specially
worms) is probably very hard... This is probably one of the
reasons why the most common (and probably the more suc-
cessful) network attack strategies combine automated net-
work reconnaissance with the limited use of attack vectors
on selected targeted machines, in order to construct large
botnets [5]. Second, that most significant developments have
been concentrated on the penetration, propagation and de-
tection avoidance aspects.

As far as penetration is concerned, the large numbers of
available attack vectors [12] used in automated and directed
malware attacks can hardly be attributed to significant ad-
vances in malware technology. Most of these vectors re-use
the same handful of software vulnerability classes and sys-
tem misconfiguration errors. The variety of available vectors
is simply a function of the variety of software of increasing
complexity providing services on networked systems, and
thus providing an ever increasing number of opportunities
for undetected and/or unpatched vulnerabilities and mis-
configuration errors to be exploited. On the other hand,
the increased virulence and propagation ratios observed in
recent worm epidemics is due mostly to the large number
of machines and the high level of instant interconnectivity
provided by the Internet. In fact, safe for some theoretical
models of proposed fast-spreading worms (which we will dis-
cuss in Section 3), the propagation algorithms observed in
in-the-wild worms and other forms of malware is relatively
unsophisticated (when not flawed...). As for detection avoid-
ance, there is little new under the sun. While there has been
a recent recrudescence of techniques such as code polymor-

phism, code hiding and anti-virus detection and neutralisa-
tion, the first appearance of these dates back to the days
of boot-sector and executable file viruses. There are how-
ever, two interesting novelties in this area: the detection of
virtual environments and the use of covert channels in com-
bination with backdoors. While these provide an interesting
example of co-evolution [9] between malware and malware
counter-measures (honeypots and/or manual malware code
reverse engineering in the former, and intrusion detectors
in the latter), we believe that such innovations, like most
others in malware technology, belong more in the “careful
craft” rather than in the “significant paradigm shift” cat-
egory. In other words, there has been so far little science
and engineering in malware design. Today, this is somewhat
surprising, especially given the fact that other sectors of ma-
licious activity on the Internet, such as spam, have shown
increasing levels of sophistication, to the point that some
of the techniques used today were the object of academic
research barely a few years ago.

The most notable exception to this, we believe, is the in-
troduction of backdoors and their use as control tools for co-
ordinated malware attacks, and the subsequent introduction
of botnets, which by automating the process make it possible
to effect control on significantly larger structures. This sig-
nificant change immediately suggests a natural connection
between the planning and execution of malware attacks and
considerations of military doctrine, on the one hand, and
resource optimisation (such as in operations research), on
the other. The objectives and preoccupations arising from
these fields, naturally inspire questions about malware at-
tacks like: What would be the most effective strategy for
effectively constructing, using and maintaining botnets for
a given pre-determined purpose? On the technological level,
this question becomes the following: what new malware cod-
ing techniques or algorithms would most effectively serve
this higher purpose?

Addressing these questions has been the motivation of our
research. In this paper, we introduce in Section 2 a basic
performance theory for malware and malware-based attacks
within which to formalise what it means for malware to be
“good”. We then describe and discuss in Section 3 the per-
formance criteria that are the most likely indicators of suc-
cess for the various types of objectives that malware is cur-
rently used for. We use the OODA-loop model in Section 4,
a well-known paradigm of military doctrine used to describe
command and control functions, to organise and classify the
various aspects of malware attacks strategy and malware de-
sign that constitute the decision and design space of malware
construction and use. The use of the OODA-loop model al-
lows us to identify in Section 5 what aspects of malware
strategy and design remain mostly unexplored. We further
discuss how standard optimisation techniques could be used
to construct the malware threats of tomorrow. We close in
Section 6 with a summary of our results, main conclusions,
and directions of future research.

2. BASIC CONCEPTS AND
PERFORMANCE MODEL

We use the term malware attack in a broad sense, to refer
to any action performed by a malicious actor with the help
of malicious software in order to achieve a precise purpose.
In such attacks, the malicious actor may use different kinds



of malware and execute several concurrent instances of it
on different machines. Malware instances may only play
a small part in the general execution of the attack. For
example, a malicious hacker penetrating a system to steal
valuables by obtaining passwords by social engineering, or
even by using an exploit tool to take advantage of a software
vulnerability, does not constitute a malware attack per se.
On the other hand, an attack with the same purpose using
Trojan horses distributed by email to obtain passwords or
to plant backdoors, would constitute a malware attack, even
if malware was not involved in all phases of the attack.

If we compare a computer to a battlefield and a computer
network or large computer system to a region or country,
then a malware attack is akin to conducting an offensive
campaign against the targeted systems. The malware tools
used in that campaign are the tactical units that are used to
fight specific battles or to perform specific tasks throughout
the campaign. To use common military terminology, ques-
tions about how a campaign is conducted are called strategic
and questions about how the individual battles are fought,
are called tactical. In our case, we will use the term strategy
to refer to the design and execution of the overall attack,
which might be implemented or controlled directly by the
malicious actor or software he is using'. The techniques
used in the construction of malware and the tasks executed
by them on the targeted systems, we will refer to as tactics.

Let us now turn to the question of performance of mal-
ware and malware attacks. Malware can be seen as intrusion
agents built to help their creator reach their objectives. A
given type of malware will have been programmed with par-
ticular characteristics or behavioural traits, that are para-
metrised by an associated set of variables. Each instance
of this type of malware will behave differently, depending
of the particular values of these parameters, whether these
are fixed by design or are dynamically set as a result of in-
teraction with their environment. For example, some of the
characteristics of a malicious software include the algorithm
it uses for propagation and reproduction and the penetra-
tion methods, while the associated parameters might include
speed of propagation, the particular exploit(s) used to pene-
trate the targets, etc. Because these malware instances will
operate under different environments, it is to be expected
that their performance will be affected.

The same pattern can be applied to malware attacks. A
malware attack might be planned and conducted accord-
ing to a particular strategy (chosen within a strategy “play
book” or strategic design space), defined by a set of char-
acteristics or traits that they include (e.g. a reconnaissance
phase). Each of these traits might in turn be parametrised
by values (e.g. the range of IP addresses to be explored, the
type of scanning, etc.).

The performance model we will use for malware attacks,
and for malware agents performing tasks within, is based on
the following principles:

1. “Performance” is not uniquely defined and several dif-

Note that in our definition, for example, a software tool
that helps a malicious actor control and manage a botnet is
not itself malware, even though the use of the botnet con-
stitutes a malware attack because the presence of malicious
software on the infected machines (backdoors). Similarly, in
the absence of malware slave clients, or if this client software
is non-malicious (e.g. on a computing grid), then there is no
malware attack per se.

ferent performance criteria might exist and be relevant,
depending on the objectives..

Some examples of performance criteria are detection
rate, infection coverage, bandwidth utilised, etc. Which
criteria are pertinent depend on the objectives of the
malware actor. For example, if a malicious actor con-
ducts a malware attack to steal credit card numbers,
the performance of this attack will be evaluated on the
number of stolen credit card numbers and the preser-
vation of the anonymity of its author. If as part of that
attack he writes a Trojan horse that is sent to potential
victims to obtain their credit card numbers, the perfor-
mance of that particular malware might be measured
in terms of attraction rate. Finally, if a malicious actor
wants to construct a botnet to perform DDoS attacks,
the performance of the attack will be evaluated accord-
ing to the number of hosts that have been infected and
their total available upstream bandwidth. We will dis-
cuss the various relevant performance criteria that are
relevant to malware in Section 3.

2. The performance criteria might be influenced by the
characteristics present in the malware design or mal-
ware attack strateqy, and the corresponding parameter
values.

For example, the type of scanning algorithm and the
choice of exploits used by malware within the context
of a given malware attack will affect the number of
infected hosts, which is one of the many performance
criterion that the attack might be evaluated by. More
examples and a general description of the relevant mal-
ware characteristics is given in Section 4. This princi-
ple motivates in turn the principle of optimised mal-
ware design that is the basis of this paper (see Sec-
tion 5). In essence, the hope of the malware designer
and malware attack strategist is that by changing the
characteristics of the malware and those of the attack
strategy, a set of choices will be found that optimises
the performance criteria that are most important to
him.

3. The performance criteria might be influenced by the
characteristics of the operating environment within
which the malware operates or on which the malware
attack is conducted.

The relevant characteristics of the environment might
include, for example, the network topology, the op-
erating systems and software installed on the targets
and the defence posture of the network being attacked
(i.e. presence of defensive software or hardware counter-
measures, level of awareness and readiness of system
administrators, etc.). In general, these environmental
characteristics might include almost every aspect that
the malware actor cannot control during the attack.

Motivated by these principles, we put forth the thesis that
the analysis of performance should always take into consid-
eration these three aspects: 1) characteristics of the malware
or malware attack, 2) the particular performance criterion
being considered, and 3) the environment within which they
are operating. This main thesis is the basis of our model and
is illustrated in Figure 1. Thus, typical statements about
malware performance could take one of the forms below:



. Characteristics
Environment
of malware

Performance

Figure 1: Basic performance model of malware

Fixed E, Fixed P = P(Cy) < P(Ch) (1)
Fixed C, Fixed P = P(E;) < P(E3) (2)
FixedC = Pi(E) = f(P2(E)) (3)
Fixed E = P, (C) = g(P:(C)) (4)

Equation 1 describes the situation where, for example, a
malware programmer wants to optimise the choice of char-
acteristics (Cy or C2) with respect to the required perfor-
mance criterion P and when the environment characteristics
E are fixed. Equation 2 describes the variation of a given
performance criterion P of a malware (attack) with fixed
characteristics C' but under different operating environments
FEq and FE». Finally, Equations 3 and 4 represent trade-
offs between two different performance criteria P; and Ps.
Equation 3 describes how different performance criteria of
a given malware might interact as the operating environ-
ment changes; this is useful for malicious actors trying to
understand how different objectives might conflict as the
characteristics of the target vary. On the other hand, under-
standing the trade-offs in Equation 4 might help “defenders”
of a particular system (i.e. the operating environment E of
the malware) understand how risk reduction with respect to
one threat (corresponding to a given malicious objective and
associated performance criterion P;) might interact with ex-
posure to another threat (possibly with different objectives,
and hence a different associated performance criterion P),
as the strategy and tactics of the attack (represented by C)
vary.

In this paper, we will concentrate on Equation 1, in that
we consider scenarios in which a malicious entity (person or
organisation) having a pre-determined aim wants to opti-
mise the characteristics and parameters of a malware attack
in a fixed target environment (e.g. the Internet of today).

3. AIM-ORIENTED PERFORMANCE
ANALYSIS

In order to evaluate the performance of malware attacks,
we need to establish performance criteria, as described in the
previous section. We base our analysis of the performance
of malware on the assumption that all malware attacks have
a purpose. By that we mean that an attack is planned and
performed to achieve a certain, definite goal or goals. The
performance criteria become the metrics of achievement of
the aim behind the malware attack.

3.1 Previous work on malware performance

Other researchers have already studied the performance
of malware and malware attacks. Most of them have con-

centrated on the propagation rate metric. Propagation of
malware is the easiest characteristic to study in malware
behaviour. This task is made easy because malware tends
to spread quickly and with a signature that differs from
normal human usage of computer resources. Staniford et
al.[16] have used the “classical epidemic model”to analyse
the spread of the Code Red worm. Zou et al.[18] devel-
oped a general model for Internet worms called the “two-
factor worm model”. This model considers the contagion of
a worm and the human reaction to its propagation. Chen et
al.[3] developed a discrete-time model that considers patch-
ing and cleaning effects on the propagation of a malicious
software. Note that both of these works already consider
the interaction between malware performance (in this case
propagation rate) and environmental characteristics (human
reaction, patching, cleaning, etc.), a reflection of our third
principle. Furthermore, the respective findings could in prin-
ciple be expressed in terms similar to those of Equation 2.
Finally, Garetto et al.[4] have presented an analytical tech-
nique based on Markov Chains to capture the spreading
characteristics of malware.

However, our objective is to introduce a more general the-
ory of malware performance that considers other plausible
performance criteria. Here we are more interested in be-
ing more thorough in the qualitative identification of all (or
most) pertinent criteria, albeit at the detriment of quanti-
tative results that may be obtained from some of the math-
ematical models in previous work (possibly in the forms of
Equations 1-4). We are not saying that such models and
quantitative precision are not desirable and worthy of study,
but rather that (as we will argue in Section 5) from the mal-
ware designer’s point of view, minimal experimental data in
the same form might be sufficient and an adequate alterna-
tive for malware optimisation purposes.

As stated, we base our analysis on the fact that perfor-
mance is a metric of success, and that since success depends
on the initial aim, performance thus depends on the ulte-
rior motivation behind a malware attack. There are various
reasons that could motivate a programmer to create mali-
cious software. For the purposes of our analysis, we have
identified five main motivations to write malware.

1. Fraud,

2. Information theft,

3. Sale of access to computing resources,

4. Plain destruction (cyber vandalism), and
5. Information warfare.

We do not consider this list necessarily complete nor per-
manent. It is based on today’s menace landscape and will
probably change in the future. What is important is that it
allows us to identify and classify the essential performance
criteria for malware. We have thence divided the perfor-
mance criteria we have found into two broad categories:
generic performance criteria, that are applicable to all of
the above objectives, and specific performance criteria, that
are applicable to one, or a few, of the above motivations.

3.2 Generic performance criteria

Even if malware can be used to fulfil various objectives,
we can extract three performance criteria that can always by



observed on malware and that are useful to evaluate perfor-
mance: number of infected hosts, persistence, and anonymity.

The number of infected hosts represents the sum of
systems that were infected by the malware under evalua-
tion. This performance criteria will influence the bandwidth
available for conducting DDoS attacks, number of informa-
tion that can be stolen from a network, communication in-
frastructures, etc. One of the basic characteristic of mal-
ware is the fact that it spreads from computer to computer
automatically. The number of infected hosts metric shows
how effective the target discovery and propagation methods
are. A high number of infected hosts will denote a malware
that has good propagation mechanism but could decrease its
stealthiness. Note that while this is essentially a strategic
metric, not only can it be affected by strategy decisions by
malware attacker but also by tactical actions taken by the
malware itself.

Persistence of a malware is its ability to stay present on
an infected system. It is a tactical performance metric as-
sociated with the actual malware. In other words, malware
is persistent if it is hard to disinfect a system that it has
compromised. It also value at the strategic level, because
the persistence of malware is profitable to its creator as it
guarantees that his piece of software keeps working for him.
Various techniques can be used to ensure persistence on a
system. Process hiding or kernel modification are examples
of malware characteristics that make malware hard to detect
and destroy.

Anonymity of a malware creator or controller means
that his true identity can not be discovered. Anonymity
is important for malicious users to avoid being brought to
justice or avoid revenge from victims. To ensure anonymity,
a malware programmer needs to leave no traces of its iden-
tity in its code. Furthermore, he needs to be very cautious
when he communicates with his malware instances in order
to be hard to trace. Hence, this performance criterion is
influenced by both tactical and strategic level actions.

3.3 Aim-specific performance criteria

We know turn to describe the performance criteria specific
to each of the five objective categories we have identified.

Fraud. Cybercriminals are using malware to conduct fraud,
there is no question about. This aim is clearly getting more
and more popular amongst malware programmers. Fraud
is a deception for personal gain, and it aims toward obtain-
ing money or property by false pretences. In the case of
malware, the primary objective is often to steal credit card
number or bank account information in order to gather sums
money. The performance analysis of malware intended for
fraud will be impacted by the amount of money that can
be illicitly acquired while preserving the anonymity of its
author. To perform computer fraud, a piece of malware will
often have to convince users to give private information,
this feature will also make the difference between “good”
and “better” malware, i.e. malware that is more credible
and deceiving the targeted user; the associated performance
criterion is the malware credibility or deception ratio.

Information theft. While attacks with this objective as mo-
tivation have not been widely observed on the Internet, they
are on the rise and they do pose serious threat to organi-
sations present on it. The objective of this type of attack

is to penetrate deeply in an organisation’s network to steal
sensitive information. The author can then sell this infor-
mation to a third party or use it to black mail the target
organisation. Information that can be stolen include source
code, blue prints, financial records, etc. The performance
criteria that have to be considered when building malware
for information theft are the penetration ratio, where the
malware attempts to deeply penetrate into the network un-
der siege. Stealth is also an advantage because the longer
a network is infected without the knowledge of the admin-
istrators, the bigger the amount of information that can
be stolen. The communication between malware nodes and
their owner needs to be fast to easily transfer big amounts
of data. Finally, the location of infected hosts on the
network has to be considered because in most cases, sensi-
tive information will be concentrated in a network segment
and on very few hosts. In this case, infecting hundreds of
workstation when sensitive information is stored on a central
repository is not in the malware attacker’s advantage

Access for SaleA new trend in malware has been to create
networks of infected systems, i.e. botnets, and to sell access
to them for various purposes [13]. Such botnets have been
used in the past to send unsolicited e-mails, conduct distrib-
uted denial of service attacks, and perform large scale com-
putation. The performance of malware attacks aimed for
access sale is impacted by the total available upstream
bandwidth (specially for conducting DDoS attacks) and
the security of access to the infected hosts. The available
bandwidth can be calculated by summing the bandwidth
available to each infected host. The access security to nodes
of the botnet is also important in this type of attack. A
botnet that is available to everyone will be worth less than
a secure botnet with restricted access.

Destruction.In terms of numbers, most malware attacks
on the Internet have been aimed toward destruction, whether
through targeted (DDoS attacks, web site defacings) or non-
targeted (paralysing viruses and worms). In addition, even
certain malware observed in the wild without any active pay-
load, have caused by their mere propagation traffic serious
damage to network infrastructures [8]. A higher number of
infected hosts will allow the attacker to perform wider at-
tacks. Also, the speed of propagation or propagation
rate, will impact how much damage an epidemics can do.
The total upstream bandwidth of the infected network
will increase DDoS-attack capability and the location of
infected hosts will also change the impact of the destruc-
tion. In certain situations, it is possible to damage physical
components of a computer system from a software, for ex-
ample by changing settings in BIOS memory from the oper-
ating system. If furthermore the affected computer systems
are connected to and control critical infrastructure systems,
such as railway traffic lights, oil refineries, electric power
grid, etc., damage in hardware would not be necessarily
limited to the infected computer systems themselves. In all
cases, another specific performance criterion would the total
amount of hardware and material damage inflicted as
a direct or indirect consequence of the malware attack.

Information Warfare.Information Warfare is the exten-
sion of the battlefield to information technology. In doc-
trinal terms, it is the offensive and defensive use of infor-



mation and information systems to deny, exploit, corrupt,
or destroy, an adversary’s information or information sys-
tem. It targets government or economic infrastructures and
military communication channels. For Information Warfare,
performance criteria include the speed of action, the lo-
cation of infected hosts and amount of disturbance or
hardware and material damage inflicted. The speed of
action is important to lower the chances of reaction by the
defender. The disturbance is the action to disrupt informa-
tion systems or to use them for malicious purposes; these ef-
fects need to be measured. Finally, the location of infected
hosts will impact the amount of damage inflicted, as dis-
cussed above, but also on the effectiveness of the attack on
other non-material levels. For example, the information op-
erations and psychological warfare aspects of an Information
Warfare campaign will be affected by the overall disinfor-
mation exposure (i.e. number of client stations that will
surf them) of targeted web sites that have been defaced or
altered.

In summary, we have identified here various aim-specific
performance criteria, some of which are common to two
or more of the broad categories of motivation we have de-
scribed; they are shown in Table 1. Again, we do not claim
that this list of criteria is necessarily exhaustive. It does
however contain what we believe are some of the most rele-
vant criteria, that must be considered when evaluating the
performance of malware attacks. What the “ultimate” list
of performance criteria should be, only the malware attack
really knows...

4. CHARACTERISATION OF
MALWARE ATTACKS

In order to perform performance analysis on malicious
software, we need to establish characteristics that will be ob-
served and try to understand their impact on performance
criteria. Various researchers have studied the characteristics
of malware. Nazario [10] proposed six classes of character-
istics to describe computer worms: reconnaissance capabil-
ities, specific attack capabilities, command interface, com-
munication capabilities, intelligence and unused attack ca-
pabilities. Weaver et al [17] proposed a different taxonomy.
They use the following characteristics to analyse worms: tar-
get discovery, carrier, activation, payload and attackers. Sk-
oudis [14] compares malware to a missile and separates its
characteristics in five categories: warhead, propagation en-
gine, target selection algorithm, scanning engine, and pay-
load.

Even if various malware taxonomy have been developed,
we bring forward a new framework to analyse the charac-
teristics of malware. Our model is more general and can
contains all of the previous taxonomies. Furthermore, the
model we use to analyse malware applies to multiple do-
mains including military and business processes. This model
is also oriented towards evolution and optimisation which
fits our purpose.

As stated before, we assume that in general malware, like
any other category of software, are written for a purpose.
This means that malware are built to fulfil an objective.

Knowing that malware are independent agents and exist
to reach some objectives, we can use notions from military
doctrine to describe the organisation of their attacks. Like
military operations, malware coordination needs command

and control. With command and control, the creator of mal-
ware sends commands to its resources in order to reach its
objectives. Its units are controlled by his orders and send
feedback of their effort using pre-established communication
channels. Many models have been developed to analyse the
performance of command and control. These models de-
scribe and evaluate the capacity of an organisation to ac-
complish its objectives. One of the most commonly used
model in the military for command and control is the OODA
loop.

4.1 The OODA loop paradigm

The concept of OODA Loop was developed by Colonel
John Boyd [2] at the end of the twentieth century. This
American fighter pilot and military strategist described the
process by which an entity reacts to an event. According to
this concept, the key to victory is to speed up the decision
process in order to progress faster than your opponent.

Observation

Command
and
Control

Action Orientation

Decision

Figure 2: OODA loop

Figure 2 gives an overview of the key components of the
OODA loop. The four key elements are observation, orien-
tation, decision and action.

The observation phase of the OODA loop answers the
question “What do you see?”. It is the phase where an
observer collects raw data of what is around him and what
has changed since the last observation. The second phase is
the orientation. It is the phase where the agent adds infor-
mation about itself, its allies, and its past to the observation
done in the first phase. The information is used to build a
cognitive model of the situation in which the agent evolves.
A decision is done based on the cognitive model elaborated
in the orientation phase and the objectives that were given
to the agent prior to its mission. An action can then be
taken to implement the decision made, which constitutes
the last step of the OODA loop, the action phase. The ac-
tion phase includes every operation an agent can perform.
For example, an agent could decide, based on the knowledge
of its environment that it is better to defend itself by hiding
instead of attacking the enemy.

One of the advantage of Boyd’s model is the fact that it
can be used to describe behaviour of agents at different lev-
els of a process. The action of the higher agent is enhanced
with the capacity to give orders to other agents he controls.
The “lower” agent then executes requested operation and
sends feedback to its controller. Figure 3 shows how OODA
loops can be integrated one into another to produce a richer



Generic Fraud Information theft Access sale Destruction Information Warfare
Number of hosts || Money Penetration Upstream BW | Propagation Speed
Persistence Credibility | Stealth Security Upstream BW | Host Location
Anonymity Amount of information Host Location | Damage

Host location Damage Exposure

Table 1: Generic and specific aim-oriented performance criteria

Figure 3: Nested OODA loops corresponding to dif-
ferent levels of command and control.

model. Commands by the higher level condition actions at
the lower level, while observations at the lower level influ-
ence observation, and hence orientation, at the higher level.
In the case of malware attacks, the outer loop corresponds
to the human malware actors, while the inner loops corre-
sponds to the deployed malware agents.

With the nesting of behaviour model, we can get a clear
picture of the situation that includes strategies of controlling
agents and tactics of operation units. In the case of malware
attacks, the malicious actor build a strategy and sends order
to malware instances he control to reach his objectives.

4.2 OODA loop and malware

The OODA loop model is useful to us because it is a good
framework to organise malware characteristics. The classi-
fication of characteristics according to Boyd’s model allows
us to identify areas of improvement and further develop-
ment in malware attacks. After identifying areas of possible
development, we can predict possible optimisations.

The OODA loop model helps us shed new light on the
characteristics of malware from a generic point of view. The
first step in the spread of malware is the identification of a
target. When a vulnerable system is identified, the malware
tries to penetrate it with its attack vector. If the host is com-
promised, the malware sends a copy of itself to the newly
infected system and thus propagates. After replication, mal-
ware instances can elaborate defences or communicate be-
tween them. Finally, the malware activates its payload in
order to achieve its objective.

The identification of a new target consists in finding other

systems that could be infected with the malware. This can
be done using network scanning techniques to find hosts that
are active on the network or by reading the address book of
a newly infected system. Looking for targets thus involves
observation of various types of data, such as network traf-
fic, OS fingerprints, etc. However, making a decision about
what is a target is itself part of the orientation process.

The attack phase of a malware include the actions that
are taken to obtain execution control on the target system.
In the case of computer worm, this action is performed using
a vulnerability in one of the services that is active on the
victim. In the case of a virus that spreads via e-mail, the
virus is going to send itself with an e-mail in hope of being
executed by one of its potential victims. Attacking is clearly
part of the action phase described by Boyd.

Malware propagation is the operation by which it copies
itself to a newly infected system. This can be done, for
example by sending an executable file via e-mail or down-
loading it from a web site. Some malware also copy their
programme using FTP transfers from the attacking node to
the newly infected victim. We include the propagation in
the set of actions that can be taken by a malware.

Different methods can be used by malware to establish
communication with their creator or to coordinate between
infected nodes. For example, an IRC network is often used
by botnet creators [7] to communicate with infected sys-
tems and issue command or upload new modules for their
programs. In relation with the OODA loop, communication
can be placed all phases of the OODA loop. Communicating
the result of observation, analysis (orientation) or action, ei-
ther to the upper level of command and control or to other
malware agents, is itself an action than can be taken by
malware. Conversely, Communication is seen as an action
when it is used to issue commands to the infected hosts. In
the absence of a decentralised command and control struc-
ture, which is the norm in most malware attacks up to now,
communication through more or less stealthy means such as
IRC or peer-to-peer networks is the only way to transmit
the result of command decisions taken by the malware at-
tacker. On the other hand, communication is part of the
orientation process when information concerning other in-
fected nodes is broadcasted in order to coordinate action.
Finally, communications between infected systems and/or
defensive systems can itself be the object of observation.

Defensive actions that can be taken by a malicious pro-
gram include operations to hide from the system user or
administrator, or make it harder to be deleted. Stealth on
the network side is also considered as part of the defensive
actions malware can use to defend themselves against net-
work intrusion detection or prevention systems.

The last characteristic of malware is related to their pay-
load. Payload is the programme code that is carried by the
malware and that is executed on the newly infected host af-
ter the propagation phase in order to achieve the ultimate



purpose of the attack. For example, in the case of a botnet,
the payload of the malware is to install an IRC client and to
connect to a predefined IRC server in order to receive more
information from its creator. Payload activation is also part
of the action malware can perform.

Table 2 shows the different phases of a malware life and
compares them to the behaviour of an agent in the OODA
loop model.

4.3 History of malware revisited

Now that we have a rich model to illustrate complex sit-
uation of command and control, we can apply it to analyse
in hindsight some of the most notorious malware epidemics
that have been seen on the Internet.

The first worm epidemic that was observed on the Inter-
net was caused by the Morris Worm [15]. This malware
was released on the Internet in November 1988. The Mor-
ris worm attacked Unix systems that were connected to the
Internet. It used a variety of attack vectors to compromise
its victims. It was also one of the only worm that used a
zero-day attack, meaning that it exploited a security flaw
that was not publicly known at that time. This malicious
software exploited a buffer overflow vulnerability in the fin-
gerd daemon, a debugging flaw in sendmail’s mail server and
trust relationship between hosts running rsh. Once a victim
was infected by the worm, it sent a single UDP packet to a
machine on the Berkeley network before starting to propa-
gate. This packet is thought to have been a simple way for
the author to keep track of the systems that were infected
by its program.

If we evaluate the characteristic of the Morris worm from
Boyd’s point of view, the first thing that comes to mind are
the multiple attack vectors that were used by this malware.
We can classify this range of attacks in the action section of
the OODA loop. The observation phase is pretty basic and
consists of checking trust relationship between hosts to dis-
cover what are the other computer systems in the neighbour-
hood. The information gathered in the observation phase
is the only one that is used in the decision process of this
independent agent. Furthermore, the decision process is ex-
tremely simple: if there is a vulnerable system in reach, the
malware attacks it. To sum up, the action range of the Mor-
ris worm is rich because it includes various attack vectors
and a simple communication method. On the other side,all
other components are very poor. The observation and deci-
sion phase are very unsophisticated.

A macro virus is a virus composed of a sequence of instruc-
tions that is interpreted, rather than executed directly [1].
This kind of virus is interesting because it shows that pas-
sive data files can also be used as propagation mechanism
for malicious software. Omne of the most well known epi-
demics of macro virus was caused by the Melissa worm[14].
The Melissa worm infected Microsoft Word files and spread
by reading the victim’s address book and e-mailing copies
of itself to all the entries in the address book. When the
malicious macro is infected, it checks a registry key to see if
the system has already been compromised. If so, the virus
stops, otherwise it infects the normal.dot template file to
ensure that every document opened from this document is
infected.

In 2003, the Slammer worm appeared [8]. This very fast
worm was able to infect 90% of the vulnerable population
in less than 10 minutes. This program exploited a security

flaw in Microsoft’s SQL server. The fact that only one UDP
packet had to be sent in order to exploit the vulnerability
and gain administrative privileges on the victim greatly im-
proved the propagation speed of this software. This worm
generated random numbers, converted them to IP addresses
and finally attacked them using it’s UDP packet. No defence
mechanism were used and no active payload were activated
on the victim.

The decision characteristics of the Slammer Worm are
simple, it generates a random IP address with a random
number generator and then attacks the machine at that ad-
dress. The worm instances do not perform any orientation
phase to try to see where other infected instances can be
located. This absence of orientation caused link saturation
and slowed down the worm propagation. Furthermore, the
observation process for the Slammer Worm does not exists.
The worm simply guesses addresses for new targets and in-
fects them. This characteristic obviously helped the worm to
take rapid action but also has the consequence of not reach-
ing any other objectives than infecting as many systems as
possible.

The PhatBot appeared at the end of 2003 and is a good
example of modern malware. This software is coded in C++
and targets Windows systems. It uses a modular architec-
ture to make its update as easy as possible. The PhatBot
can be used for different purposes, it really is an intrusion
agent that can be used for stealing information, conduct-
ing denial of service attack or even sending spam e-mails.
This malware uses different techniques to spread. It is pos-
sible for its controller to issue commands to make it spread
to other nearby hosts or to put every malware instance in
“automatic” mode where they automatically and indepen-
dently find vulnerable hosts and infect them, like a net-
work worm. Finally, the malware attacker can communi-
cate with infected hosts using peer-to-peer communication
or IRC chat rooms.

From the OODA loop point of view, this malware has
a very wide range of action and of observation techniques.
Its communication capabilities can be placed in the decision
section of the loop. Once again, the orientation section is
left empty.

Using our general model to describe the behaviour of mal-
ware attacks, we have used the four phases of the OODA
loop to classify their various characteristics of observed mal-
ware. Table 3 shows malware characteristics that have been
observed in the wild and their classification according to
this model. The classification of malware characteristics in
an objective-oriented context shows that wide areas of the
design space for malware have not yet been observed on the
Internet.

5. OPTIMISING MALWARE ATTACKS

In this section we discuss how malware could be made
better. The first question to ask is why, in the absence of
malicious intent, would we want to answer that question?
And further, why would we want to build better malware??.
A fair question with a simple answer: only by anticipat-
ing what future threats might be, can we hope to construct
in time the defensive mechanisms that will counter these

2Indeed, as the much more colourful Spanish version of the
English proverb “You lie down with dogs, you wake up with
flees,” says, “If you raise ravens, they will eat your eyes out.”



Observation Orientation Decision Action
Network scan Target identification | Communication Attack
OS fingerprinting Propagation
VM detection Defence
Payload activation

Table 2: OODA loop and generic malware characteristics

Observation

Orientation | Decision

Action

Trust relationship
Random IP scan
Local IP scan

IRC communication | Various exploits
Peer-to-peer

Denial of service

Personal information theft
Process hiding

Spamming

Polymorphism

Table 3: OODA loop and observed characteristics of in-the-wild malware

threats 3. At the very least, one must theorise about what
these threats might look like and what techniques might be
used to construct them and even to optimise them.

5.1 Future trends in malware design

Indeed, we are not the first to consider this question.
Staniford et al. [16] have described various new kinds of mal-
ware that could be very damaging to computer infrastruc-
tures. They predict the appearance of hit-list worms that
carry a list of potentially vulnerable hosts and attacks them
directly, thus reducing the target identification phase and in-
creasing the infection rate. They also describe permutation
scanning worms that coordinate with other infected nodes
to improve the target identification phase of its propaga-
tion. The third kind of malware that they describe is the
“flash worm” that uses a full list of vulnerable hosts and
that could possibly infect the whole vulnerable population
in a few seconds.

Nazario et al. [11] identify two categories of evolution
for malware: improved defences and organisation between
nodes. These improved defences includes the usage of tech-
niques such as rootkits or covert channels. As for the im-
provement of coordination between infected nodes, the au-
thors describe different organisational groupings (guerilla-
like, directed tree) of infected systems to increase their co-
ordination and reduce their chance of being discovered and
stopped by network administrators. Zou et al. [19] describe
new kinds of malware that use routing table information
to only scan the Internet routable address space. The au-
thors also speculate on the appearance of a worm that uses
geographical information in the BGP routing tables of the
Internet in order to conduct targeted attacks on a country
or region.

Essentially, any such proposed improvements on malware
can be divided into two broad categories, corresponding to
the traditional division between strategic and tactical levels
in military doctrine.

The first category consists in designing and employing
better attack strategies. By this, we mean that the OODA-
cycle at the higher levels of planning and execution of the
attack utilise more sophisticated or more adequate strate-
gies for the goals defined. In addition, the strategy chosen
might be better adapted to the particular environment in

3In other words, Si vis pacem, para bellum.

which the attack will be conducted. This category is closely
related to Information Warfare doctrine (or at least its more
technological aspects) and probably most stands to benefit
from the study of military doctrine. For example, hit-list,
permutation scanning and flash worms do fall in this cat-
egory of improvement and could be said to be a malware
equivalent of the modern doctrine of “surgical warfare” used
in the Gulf wars. In addition efforts in this direction would
also include the implementation of more sophisticated (or
better adapted) command and control structures, such as
those suggested in [11].

The second direction consists in improvements at the tac-
tical levels of the execution of the attack, i.e. those more
closely related with the deployed (and possibly autonomous)
malware agents. This would include design improvements in
the malware agents themselves as well as improvements to
the tools used to support the command and control func-
tions, such as communications and information gathering
and analysis. The use of increasingly sophisticated detection
avoidance techniques, as suggested in [11] and the addition
of additional observables such as routing tables, as suggested
in [19], would fall into that category. In the context of mal-
ware, it is expected that improvements in this area will be
technical in nature and most probably benefit by borrowing
ideas from design optimisation, Artificial Intelligence, etc.
This is the direction in which we will concentrate most of
our analysis.

5.2 The malware design space

An alternative way to categorise possible future improve-
ments to malware, in either its strategic or tactical com-
ponents, is by using again the OODA-loop model. At the
strategic level, this is not a novelty since this is precisely
what this model was originally introduced to describe. At
the tactical level, every programmable behaviour of malware
can be considered as a characteristic of malware in one of
the four categories of OODA.

It is useful to consider the notion of a design space to rep-
resent the set of malware characteristics that malware pro-
grammers can choose from in their quest for the most per-
forming tools and malware agents. Each behavioural char-
acteristic that a particular type of malware might or might
not show can be viewed as a particular “design subspace”,
with each dimension within corresponding to a relevant as-



sociated design parameter. In that way, the overall choices
of active characteristics and particular parameter choices
made by the programmer in a particular malware implemen-
tation can be viewed as point in that space. For example,
a worm might incorporate network reconnaissance behav-
iour: the design subspace associated with this characteristic
would include “dimensions” such as coverage, method of re-
connaissance, speed of scanning, etc. Within this metaphor,
the OODA model simply allows us to organise the various
characteristics (subspaces) into the four basic categories. As
discussed in Section 4, many dimensions of this design space
are relatively unexplored by current malware. It is impor-
tant to study in detail these areas because they represent
weakness in malware design that might be improved upon
in the near future.

By looking at Table 3, we see that the observation phase
of malware is well developed. We have already observed var-
ious kind of techniques used to discover new targets. How-
ever, other techniques that are already used by hackers (at
the strategic level), or even by defensive systems and actors,
can be adopted by malware agents to improve their recon-
naissance capabilities. For example, a malware agent could
listen to network traffic to identify hosts on the network and
the services they use. It could also be possible for a malware
agent to read system logs in order to find new targets that
have previously communicated with the infected system.

The action section of Table 3 also exposes that this cat-
egory of behaviour is well developed in modern malware.

Current malware uses various exploitation techniques to com-

promise new systems. They are also able to look for impor-
tant information on infected systems. Some malware have
been given the capacity to conduct DDoS attacks. On the
defensive side, polymorphism and process hiding techniques
are observed as an effort to avoid detection (automatic or
manual) and to improve their persistence on infected sys-
tem.

On the other hand, it is in the orientation and decision
phases that current malware shows most potential for im-
provement. No observed malware has been observed for
which one could say that were was a clear process of con-
structing and maintaining a cognitive model of the environ-
ment and current situation. While some of the future pre-
dictions described above do imply the use of a certain rep-
resentation of reality (non-routable vs. routable addresses,
vulnerable vs. non-vulnerable hosts, etc.), this has not been
described as a dynamic process at the tactical (agent) level.
The decision logic observed in current malware is also very
simplistic. All malware that has been observed to date take
direct action based on what they have observed; at best
it is based on rules whose input are direct observations by
the system; there are no intermediate-level rules applied to
processed/analysed data. None of them consider, for exam-
ple, their past history or their potential “allies” (e.g. sites
compromised by the same attack), nor do they contemplate
options like waiting for a better opening or trying to find a
better way to infect a network.

In both these aspects, the effectiveness of malware could
be greatly improved if malware agents could carry with them
a cognitive model of the network they are attacking. Beyond
the list of vulnerable hosts (as suggested in [16]), consider
cognitive models containing processed information about the
following:

e Hosts that are responding;

e Services that are available on the network;

Operating system and application version of hosts;

e Presence and location of defensive equipment and soft-
ware;

Routes taken by network traffic; and

Usage habits of users

The information carried in such cognitive models could then
be used to take better decision. Decisions could then be
taken by using any of the several decision-making and op-
timisation techniques that have been developed in the field
Artificial Intelligence (AI) techniques that have been devel-
oped in this field of research (see for example [6]). Already,
the use of simpler rule-based reasoning as input the compo-
nents of a richer cognitive model, such as the above, rather
than direct local observations would probably allow for great
improvement, specially in detection avoidance and propaga-
tion speed. For example, such rules could tell a malware
agent that if it finds a defensive equipment on the subnet-
work he is on, he must disable it before continuing its prop-
agation within or out of that network. The natural next
step would involve the use of more sophisticated techniques
from machine learning, that could be used to make malware
“more intelligent” about its decisions, or more precisely al-
low malware agents to make better decisions about the envi-
ronment they were “trained” for. In fact, many of the same
techniques that have been proposed for next-generation IDS
could be used in malware design. For example, fuzzy logic
rules, Bayesian or neural networks could be used to fine
tune the decision phase. Similarly, categorisation techniques
such as data clustering could be used for profiling user or
host types from data directly observable by malware agents,
a kind of automated analysis from which richer cognitive
models could be constructed.

5.3 Design Optimisation

The main reason for introducing the design space metaphor
is in fact to allow us to illustrate and discuss the notion
of malware design optimisation. In principle, each possible
malware implementation is represented by a point in this
space. The “goodness” of such solutions can be represented
in terms of one or several of the performance criteria de-
scribed in Section 3.

As we have seen, many authors expect that the most sig-
nificant improvements in malware technology will come from
the discovery and implementation of new behavioural traits.
Such innovations correspond to an enlargement of the de-
sign space, where the new design choices that the inclusion
of such traits bring are represented by new “orthogonal”
subspaces, where each new parameter corresponds to a new
dimension in the overall space and associated set of possible
values. From a performance standpoint, if an optimal solu-
tion has already been found within the previously known de-
sign space, the addition of new dimensions to explore might
result in the discovery of a new solution of better quality.

However, this point of view misses the potential improve-
ments of applying optimisation techniques within the known
design space. As we have seen in section 4, the design space
for malware is very wide. A malware creator needs to choose
which characteristics to implement in his programmes and



further choose the values for each possible associated para-
meter (including not using them). With the complexity of
the design space, it is not surprising, that a non-directed,
human-driven programming approach to malware construc-
tion has yielded such sub-optimal in-the-wild malware as
we have observed. Consequently, we hypothesise that it is
very likely that the use of standard optimisation techniques
would yield significantly more virulent and dangerous mal-
ware, even if we restrict the design space to characteristics
previously observed in the wild.

In broad terms, and in terms of the basic model of Sec-
tion 2, the generic optimisation problem of malware design
consists in finding the set of malware characteristics and pa-
rameters (points in the design space), that will maximise the
goodness of malware implementations with those character-
istics and parameters, with respect to a specific performance
criterion (or criteria) and within a fixed operating environ-
ment (a fixed set of values of environmental parameters). In
simplified terms and referring back to Equation 1, we are
fixing a performance criterion P and an operating environ-
ment F, and seeking which of the set of characteristics and
parameters, C; or C2 maximises P.

Let us consider as an example the situation where a ma-
licious programmer wants to develop malware that is going
to infect as many systems as possible in order to steal credit
card numbers stored on disk. The performance criteria will
be the number of infected hosts and the amount of infor-
mation gathered. The operating environment would be the
Internet itself. Knowing the performance criteria and en-
vironment for its design, the malware creator now has to
decide what characteristics he will give to its malware.

There are many different optimisation techniques that
could be used to implement such a process. A key factor in
determining their relative suitability is the ability to obtain
good estimates of goodness, i.e. evaluating the chosen perfor-
mance criteria. Directed approaches (gradient descent, sim-
ulated annealing, etc.) would best be suited for situations
where the performance can be directly measured. Such ap-
proaches would be suitable in a situation where the charac-
teristics of the target operating environment are well known.
The performance can then be evaluated in a controlled labo-
ratory setting where the target operating environment could
be emulated. In practice, such a laboratory environment
could be constructed by determined malware actors with ac-
cess to a relatively moderate resources (a few million dollars
would suffice), by combining clusters and virtualisation tech-
nology to emulate realistic operating environment of several
tens of thousands of hosts. Another higher level approach is
the use of coarse-grained simulation models, which can be
used to numerically predict performances of malware. This
approach has been used to study the propagation character-
istics of flash and other types of fast-spreading worms.

However, the most easily available and probably most ac-
curate laboratory for conducting optimisation of malware is
the Internet itself. First of all, there is no shortage of in-
fectable machines that could be unwillingly recruited in this
endeavour. For example, to study certain post-penetration
aspects of performance, botnets of the sizes and variety ob-
served today (several thousands of machines), would proba-
bly provide a good, statistically significant representation of
targets on the Internet at large. However, their usefulness
would be limited to study such performance characteristics
as penetration and propagation rates.

Again, because a sampling of several thousand machines
would probably be statistically significant, “low-noise” test
worms propagating to a limited number of machines and
having a lightweight, low-profile, and detection-avoiding “te-
lemetry” payload, could provide enough feedback to drive
the optimisation process. Today’s Internet is already being
attacked by a variety of malware and hackers that gener-
ate high volumes of malicious traffic. This malicious traffic
can be used by malware creators to hide the propagation of
their test specimen. In fact, it would be relatively easy for
the malicious actor to hide the whole optimisation process
on today’s Internet. In this case, the use of undirected opti-
misation techniques, such as those associated with machine
learning, would be most effective, since only a few high-
level boolean performance indicators would be observable.
For example, while it might be possible to see if one’s test
worm showed up on the anti-virus and IDS rule updates, it
might not be possible to observe where and on what type of
network it was detected.

It is important to note that the resulting malware could be
very lightweight and furthermore could be built with no ob-
vious signs of the sophistication of the optimisation process.
For example, consider the case where the cognitive model of
a malicious agent was implemented as a neural network of
several thousand nodes, taking as input a few tens of easily
observable inputs. While the training process would require
large training and testing data sets, and the neural network
itself is quite large, the final solution is a simple linear func-
tion that can easily be implemented and hidden in machine
code.

Finally, while conducting optimisation on such a large de-
sign space might be very time consuming and require con-
siderable patience and development effort, it would require
only moderate amounts of computing power. Furthermore,
the optimisation techniques necessary are well-known, pub-
licly available and now part of the curriculum of most un-
dergraduate computer science and engineering programmes.
We thus believe that it would relatively cheap and viable
for current malicious actors to successfully mount such an
optimisation process and is very likely to happen in the near
future, if it is not happening already...

6. CONCLUSIONS

In this paper, we discussed how malware could be opti-
mised, and thus how their performance could be increased.
In order to address that question, we have introduced a per-
formance evaluation framework within which we can prop-
erly define what it means for malware to be “good” or “bet-
ter”. This framework takes into consideration the three fol-
lowing aspects: the environment where a malware attack is
performed, the malware attack characteristics (both strate-
gic and tactical), and the aim-oriented performance crite-
ria associated with particular objectives of the attack. We
have discussed what performance criteria must be consid-
ered based on the assumption that malware or at least mal-
ware attacks have a fixed purpose. Our analysis is limited
by the fact that we have considered the aims of current
malware-based threats. The most dangerous threat is the
one whose purpose we ignore, or alternatively one that has
no rational purpose (or one we cannot understand).

We have used the OODA loop, a well-known model of
representing command and control process in military doc-
trine, to better organise and characterise the design criteria



of malware and malware attacks. This has allowed us to
identify areas in which current malware show little sophisti-
cation and in which improvements are foreseeable, we believe
even in the near-future. The most obvious improvements are
straightforward and simple application of military doctrinal
principles to conduction of malware attacks. On the other
hand, we showed that malware design could be improved by
introducing better decision-making based on richer cognitive
models of reality.

How will malware attack planners and malware develop-
ers ultimately know how to fine tune the best possible attack
strategy and associated malware? We advance that this
process might also be the result of a optimisation, where
one or several characteristics are optimised within certain
types of environment to increase performance. As such, this
process might make use of well-known and time-tested op-
timisation techniques used in Artificial Intelligence, Data
Mining, Machine Learning, and Operations Research. Fur-
thermore, we have argued the viability of such a process,
which, could possibly be implemented with limited resources
and with little chance of detection using today’s Internet as
a laboratory. While here we have concentrated our discus-
sion on the optimisation of malware design, it is conceiv-
able that optimisation techniques might also be used at the
strategic level. In principle, joint optimisation of malware
design parameters and attack strategy would yield more ef-
fective attacks. However, it is unclear to us at this moment
the corresponding optimisation process could be easily im-
plemented on the existing Internet infrastructure without
attracting unduly attention.

An obvious next step in our research work is to implement
some of these techniques and test their viability. Only then
will we know how really likely the appearance in the wild of
such “optimised” malware will be. Furthermore, we need to
elaborate on the description of the environment where mal-
ware evolve; such a description will enrich our performance
analysis framework.

However, the real threat is the one we don’t know about
or cannot even imagine. We are not talking about zero-
day attacks based on unknown vulnerabilities in known soft-
ware (that we can imagine...). We are talking about attacks
based on completely new paradigms, be they strategic (at-
tack planning and execution), tactical (new actions, techni-
cal innovation and coding paradigms) or both. To address
this much more complex threat, we believe it is necessary
to theorise and experiment with controlled co-evolution of
offensive and defensive strategies and software, under vary-
ing environmental conditions. Only by subjecting both ma-
licious and defensive software and strategies to evolution-
ary pressure under changes in adversarial behaviour and en-
vironmental conditions can we expect to observe emergent
malicious behaviour in malware, the Unholy Grail against
which we can only defend once we have observed its form.

7. REFERENCES

[1] M. Bishop. Computer Security: Art and Science.
Addison-Wesley, Boston, USA, 2003.

[2] J. Boyd. A discourse on winning and losing.
Unpublished briefing slides, 1987.

[3] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread
of active worms. In IEEE INFOCOMM, 2003.

[4] W. T. D. Garetto, M.; Gong. Modeling malware
spreading dynamics. In INFOCOM 2003, pages 1869 —

(14]

(15]

(16]

1879. IEEE, 2003.

T. Holz. A short visit to the bot zoo [malicious bots
software]. IEEE Security and Privacy Magazine,
3(3):76-79, 2005.

G. F. Luger and W. A. Stubblefield. Artificial
intelligence (2nd ed.): structures and strategies for
complex problem-solving. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1993.
B. McCarty. Botnets: big and bigger. IEEE Security
and Privacy Magazine, 1(4):87-90, 2003.

D. Moore, V. Paxson, S. Savage, C. Shannon,

S. Staniford, and N. Weaver. Inside the slammer
worm. IEEE Security and Privacy, 1(4):33-39, 2003.
C. Nachenberg. Computer virus-antivirus coevolution.
Commun. ACM, 40(1):46-51, 1997.

J. Nazario. Defense and Detection Strategies against
Internet Worms. Artech House, Inc., Norwood, MA,
USA, 2003.

J. Nazario, J. Anderson, R. Walsh, and C. Connelly.
The future of internet worms, 2001.

E. Rescorla. Security holes. .. who cares? In
Proceedings of the 11th USENIX Security Symposium,
pages 75-90. USENIX, Aug. 2003.

S. E. Schechter and M. D. Smith. Access for sale: a
new class of worm. In WORM °03: Proceedings of the
2003 ACM workshop on Rapid Malcode, pages 1923,
New York, NY, USA, 2003. ACM Press.

E. Skoudis and L. Zeltser. Malware: Fighting
Malicious Code. Prentice Hall series in computer
networking and distributed systems. Prentice Hall
PTR, 2003.

E. H. Spafford. The Internet worm program: An
analysis. Computer Communication Review, 19(1),
Jan. 1989.

S. Staniford, V. Paxson, and N. Weaver. How to own
the internet in your spare time. In Proceedings of the
11th USENIX Security Symposium, pages 149-167,
Berkeley, CA, USA, 2002. USENIX Association.

N. Weaver, V. Paxson, S. Staniford, and

R. Cunningham. A taxonomy of computer worms. In
WORM ’03: Proceedings of the 2003 ACM workshop
on Rapid Malcode, pages 11-18, New York, NY, USA,
2003. ACM Press.

C. C. Zou, W. Gong, and D. Towsley. Code red worm
propagation modeling and analysis. In CCS ’02:
Proceedings of the 9th ACM conference on Computer
and communications security, pages 138-147, New
York, NY, USA, 2002. ACM Press.

C. C. Zou, D. Towsley, S. Cai, and W. Gong. Routing
worm: A fast, selective attack worm based on ip
adress information. Technical report, 2003.



