
User-Centered Security:
Stepping Up to the Grand Challenge

Mary Ellen Zurko
IBM Software Group
mzurko@ibm.us.com

Abstract

User-centered security has been identified as a

grand challenge in information security and assurance.
It is on the brink of becoming an established
subdomain of both security and human/computer
interface (HCI) research, and an influence on the
product development lifecycle. Both security and HCI
rely on the reality of interactions with users to prove
the utility and validity of their work.

As practitioners and researchers in those areas, we
still face major issues when applying even the most
foundational tools used in either of these fields across
both of them. This essay discusses the systemic
roadblocks at the social, technical, and pragmatic
levels that user-centered security must overcome to
make substantial breakthroughs. Expert evaluation and
user testing are producing effective usable security
today. Principles such as safe staging, enumerating
usability failure risks, integrated security, transparent
security and reliance on trustworthy authorities can
also form the basis of improved systems.

1. The Problem of User-Centered Security

The importance and challenge of the relationship
between human users and security mechanisms has
been recognized since the dawn of time in the systems
security field. Saltzer and Schroeder [43] defined the
principle of psychological acceptability in their seminal
1975 paper on the protection of information in
computer systems.

“It is essential that the human interface be

designed for ease of use, so that users routinely and
automatically apply the protection mechanisms
correctly. Also, to the extent that the user’s mental
image of his protection goals matches the
mechanisms he must use, mistakes will be
minimized. If he must translate his image of his
protection needs into a radically different
specification language, he will make errors.”

The mode of interaction with security mechanisms

was users applying them consciously and directly as
standalone tools in a context they understood. The
challenge was to make the security model of the tools
consistent with the user’s mental model of security, so
that undesirable errors would be minimized.

By 1996, humans’ relationships to computers had
changed dramatically. The World Wide Web, invented
in 1989, was popularized with a GUI in 1992, and
began its steady rise to ubiquity. The more diverse,
distributed, and popular uses of the web, the network,
and computers became, the more obvious it became
that problems with the usability of existing security
mechanisms would compromise their effectiveness.
Simon and I [58] defined the term user-centered
security to refer to “security models, mechanisms,
systems, and software that have usability as a primary
motivation or goal.” We foresaw the following three
categories of solutions: (1) applying human-computer
interaction (HCI) design and testing techniques to
secure systems, (2) providing security mechanisms and
models for human collaboration software, and (3)
designing security features directly desired by users for
their immediate and obvious assurances (for example,
signatures). Security researchers pursued the usability
in some of the most important and intractable areas,
including trust models, encryption and signing, and
authentication. HCI researchers began to attack the
same problems. Sometimes these even talked to each
other.

Two years ago, in November 2003, Computing
Research Association held a conference on “Grand
Challenges in Information Security & Assurance” [10].
One of the four resulting grand challenges was:

“Give end-users security controls they can
understand and privacy they can control for the
dynamic, pervasive computing environments of
the future.”
In the 28 years since psychological acceptability was

defined, the problem has increased in urgency.
While there has been substantial work in usable

security in the last nine years, the CRA’s grand
challenge indicates that the problem is not only

unsolved, but has become more pressing. Our personal
and social processes and interactions rely more and
more heavily on computers, communications, and
applications. The world and the information that feeds
it are getting more connected, more available, and
more accessible, and all at an increasingly rapid rate.
These changes provide the value to people and to
society, and cause the difficulties with securing that
value.

This essay provides an overview of the user-
centered security challenges behind the grand
challenge and a discussion of the tools and approaches
that have progressed the furthest and hold the most
promise for near term results. It attempts to answer the
following question: why have we lost ground in usable
security since 1975? Throughout this essay I also
highlight areas where further research is needed.

2. Opportunities in User-Centered Security

There is no such thing as problems, there are
only opportunities

My boss at Prime Computer, circa 1986

The largest roadblocks to providing user-centered

security break down into three categories; (1) human
and social relationships to usable security, (2) technical
challenges best attacked with research, and (3) further
difficulties with implementation and deployment.

2.1. Human and Social Relationship to Security

There is much about the human and social
relationship to computer security that we still do not
sufficiently understand. What is the best we can hope
for when we ask humans to understand a quality of the
system so complex that it cannot be understood by any
single architect, developer, or administrator? Since
humans are part of the system and the system’s security,
how much responsibility should be assigned to them?
Since usable security is so obviously a universally
desirable attribute, why aren’t we applying resources to
it commensurate with its desirability?

2.1.1. Understanding vs. Effectively Using Security
Controls.

If we go on explaining, we shall cease to
understand one another.

Talleyrand

What are people’s relationship to computer security,

as individuals, as a group, as an organization, and as a
society? Technology thinkers who understand technical
complexity see usable security being enabled by
security mechanisms that end users can understand. As

computer systems get more complex, it is unfortunate
that the security of those systems has also been getting
more complex. For example, interpreters that enable
active content attacks exist in simple print and display
programs. They are at the core of the web technology
that forms the basis of most people’s interactions with
computers today. How can users ever understand
anything that complex?

Emphasizing understanding can produce profound
changes in the creation and design of security
mechanisms, when making them understandable is a
primary design goal. This idea is at the heart of the
reference monitor concept. Security mechanisms that
cannot be understood cannot be effective. Making
security features explicable to an imagined, presumed,
or tested representative user extends this traditional
security design goal.

Attempting to explain what the security expert,
architect, designer, or developer understands about a
mechanism can be useful. Transparency of security
mechanism and their guarantees is at the heart of
evaluation and accreditation efforts such as Common
Criteria [9]. Evaluation by external experts provides a
bridge between the expert understanding and the needs
of users. Evaluations enable informed comparisons in
those cases where the description language is both
consistent and coherent.

Clearly explaining and documenting security
mechanisms and their use can produce more usable
security, both by communicating what is known, and
by providing critical feedback on the degree of
explicability of the mechanisms. Security mechanisms
that are explicit but incomprehensible and not
integrated with the task do not help [61, 20], and the
act of documenting them can highlight this problem.

Graphical user interfaces are often meant to be self-
documenting. Visualizing security is one method for
helping users understand security. Making security
information visually available in the context of the task
enables users to make the right call, though it does not
necessarily give them guidance on determining the
right call [12, 13, 14]. Privacy awareness [7] is another
form of this approach. In Privacy Bird [11], users liked
having the ability to get high level privacy related
information at a glance.

Given the richness and complexity of the security
currently needed by our systems, it may be that we will
never have enough space to explain or visualize (or
audio-ize) everything about the security mechanisms
that users should understand. For example, the Johnny2
CoPilot study [16] was built around an interface and
mechanism specifically designed to make mail
encryption and signing understandable. The researchers
found that users did not know that digital signatures
prevented content modification. While this aspect of
the technology could be explained or visualized as well

(for example with some sort of border or other graphic),
the mechanisms, their benefits, and their limitations,
pile up fast in even a simple scenario. If the mail
message could include active content (for example Java
or Javascript) which is also a security concern, the
complexity of what should be understood has at that
point probably exceeded the bounds or interests of
most users. The majority of users are unlikely to desire
a better understanding of security mechanisms than
they currently have. From a panel at Network
Distributed System Security Symposium 1999 on
“Security and the User” [50] to discussions with very
security knowledgeable customers, what I hear from
users is “Why can’t security just work?”

People do understand something about security
controls in the physical world. The understanding
usually centers on the threats that are repelled by them.
Locks on the house and the car keep burglars out.
Strongboxes inside banks and houses make it harder to
get to the most valuable objects, and slow down the
intruder even more. Hackers and viruses are in the
news; they disrupt systems and corrupt data and steal
identity information for financial fraud. The intrusions,
attacks, hacks, and other incidents are how most users
think about security mechanisms. Will it keep my
identity safe? Will it keep viruses off my computer?
This approach is in direct opposition to how security
mechanisms are designed. Security mechanisms are
designed to withstand both current and potential future
unknown attacks. It is the immediate use and utility of
the security mechanism that makes sense to users, not
their inner workings.

[15] lists the risk management questions that users

ask:
• What could go wrong?
• How likely is it, and what damage would it

cause to me or to others if it did?
• How would I know if something went wrong?
• What reason do I have to believe that it won’t?
• Who is responsible to ensure that it doesn’t, and

what recourse do I have if it does?

Humans know that the likelihood and sophistication

of an attack may depend on the (perceived) abilities
and protections of the person under attack (particularly
if social engineering or scamming is involved), the
abilities of the attacker (and their tools), and the
(perceived) value of the item under attack. They will
trade off the short term and long term benefits applying
security (or not). A UK news outlet traded candy bars
for (ostensible) passwords with commuters [42]. A toy
lock box for ages 6 and up has keys and a combination
[31]. It shows that people can understand how to use a
security control at an early age. Greenwald [21]
suggests that primate dominance games that humans

engage in at a very early age may show that territorial
“security” is hard wired into our brains.

Users need to understand how to use the security
controls that are directly relevant to their task and
context. The desired end result of usable security is that
security controls are applied appropriately and
effectively to provide protection. The risks of using the
features they protect are thus decreased, and are not
exacerbated by the use of and belief in mechanisms
that are not likely to withstand the most common or
risky attacks. The goal is that security controls be
effectively used.

I would rephrase the CRA’s grand challenge stated
above to be:

“Give all users (including developers,
administrators, and end-users) security controls
that protect them, their systems, and their privacy,
that they can use appropriately in the dynamic,
pervasive computing environments of the present
and the future.”

2.1.2. User Slip-ups Are Not User Errors.
I didn’t do it.
 Bart Simpson, cartoon character

When a security breach is said to be caused by “user

error”, the desired implication is that the breach was
not the responsibility of the (computer) system, but of
the user. Acceptance of that implication is one of the
roadblocks to the grand challenge of usable security.
For products that are deployed in both the enterprise
and consumer spaces, the community of security
experts and society at large should never accept “user
error” as a source of a security problem. If a non-
malicious, mistaken end user is blamed for a
vulnerability or breach, we have to ask, why did the
system make the insecure option so easy and
attractive? If the error was “skill-based” [39], an
automatic and unconscious slip-up, then basic usability
techniques should be brought to bear. These will
minimize the potential of serious breaches arising from
the equivalent of a typographical error. For example,
the Therac-25 error [29] which killed several people,
was due to a bad editor. If the “user error” is a
conscious action (or lack of a conscious action) that
was mistaken, then the design problem that needs to be
fixed runs deeper.

Tog [49] points out that a security breach is the fault
of the security designer (assuming a single product and
the actual existence of a security designer). Security
professionals, like the stereotype of legal professionals,
may run on the first principle of ensuring that nothing
bad happens that can be attributed to their area of
responsibility. A big worry for any product’s security
architect is, “What is the likelihood that our product
can and will be exploited in a way that makes it to the

cover of the New York Times?” Sometimes product
designers and architects believe that if they design the
system so that the hard security choices are the
responsibility of a user or customer, their company can
say to any related breaches a customer might suffer, “I
didn’t do it”.

Difficult-to-use security controls in one place in the
system encourage poor security decisions in other parts
of the system. Bill Cheswick [8] points out that most
systems overuse the setuid to root function which gives
a program the privileges of an administrator. I agree
with Greenwald [22] that the cause is designing a
service that does not require that function is difficult.
The system’s protections are not easy for the majority
of developers to use appropriately (and developers are
people too). Initial usability testing of an early
enterprise web conferencing system showed that users
were immediately confused by the browser’s ActiveX
trust dialogs. They could not get to the desired
functionality because they did not understand they
could take the more sophisticated approach that today’s
users do to such dialogs (click OK [61]). The most
effective workaround available was for the product to
explain to the user the infrastructure security model
that they found confusing. The initialization screen of
the product explains the user’s choices when faced
with a security decisions and the results of those
choices. Similarly, in early deployments of multilevel
systems, users regularly declassified documents to the
lowest level possible. Providing reasonable and usable
use cases of security functionality needs to become
accepted before system interactions like these will
diminish.

Figure 1: IBM Sametime® initialization
screen

An area that signals the strong possibility of “user

error” is any security procedure that includes a step that
is too vague to be precisely documented, even as an
example. For example, users are often sent “out of
band” to resolve a security or trust question.
Brustoloni‘s work [Brustoloni] shows one way to
approach that challenge; ensure that out of band
contact information is available in band. Assuming a
secured collaboration infrastructure, contact
information can be extended to computer based
methods of real time communication, including IM or
VoIP.

Another architectural area that attracts “user errors”
is error cases. Every error message a user sees should
be understandable and actionable, but often they are
not, particularly in the security area. Consumer
operating system error messages will tell users how to
increase their paging file size, showing that useful error
messages for complex system problems are possible.
Messages telling the operating system user how to
contact their system administrator are not useful to
consumers, but are to users in an enterprise with
accessible system administrators. Many security errors
and warnings leave users wondering what the problem
means and what they should do. Such warnings are
really only a defense against blame, not an
enhancement to security.

The various warnings about SSL server certificates
are a case in point. Xia and Brustoloni’s [55] work
attempts to make every error message both
understandable and actionable. In general, the SSL
dialogs he suggests are oriented towards https and the
public web. SSL can be used for other protocols (IIOP,
SIP) and for enterprise intranet activities. In addition,
there are error cases that SSL can encounter that are
not covered by this work. If the server certificate is not
trusted or the DN does not match the host address, then
the potential vulnerability is explicable to the user. But
what does it mean if the validity dates of the certificate
have not arrived yet? Why should the user care about
that? More work like Brustoloni’s on handling security
error cases is needed.

2.1.3. Marketing Usable Security.
Sell when you can: you are not for all markets.
 As You Like It, Act 3, scene v

Usable security is obviously a desirable quality in

commercial software. Enterprise customers explicitly
request software that can be deployed securely with a
low Total Cost of Ownership (TCO), which equates
directly to the usability of the security. This market
pull should increase the technology transfer of user-

centered security into products, or increase the rate of
innovation in usable security in product development.
The market does not seem to have done so, beyond a
small number of companies, including those
specializing in security products that are able to create
market value from emphasizing usable security [5].

When it comes to allocating resources in product
development, everything is a cost/benefit tradeoff. For
most software products, little attention is paid to usable
security until a substantial exploit can be attributed to
the lack of usable security, or potentially solved by
more of it. For example, most mail is not signed using
S/MIME, and could have a forged sender. The
difficulties with deploying and understanding most
S/MIME implementations and the vulnerability that
left did not draw much attention until the use of spam
(including ad-spam, scam-spam, and attack-spam)
became a substantial problem with email reliance. As
we have seen, recognition of exploits is how most users
engage with security. Thus exploits increase the ability
to justify the resource allocation to usable security
when the tradeoff of resources did not seem justified
before the widely recognized breaches. In this model,
economic roadblocks can be overcome by concrete and
visible exploits, stronger explicit customer demand, or
decreasing the cost of user-centered security. Let us
look at each of these economic drivers in turn.

Practically anyone who has ever worked on the
security of a shipping product knows how security
vulnerabilities are dealt with by her organization.
Organizations that explicitly track them will also triage
them, dedicating resources to fixing the worst
vulnerabilities first. The list of vulnerabilities comes
from internal developers and users, internal (or
internally contracted) testers, ethical hackers and
advisories, and external sources (customers, advisory
organizations, ethical hackers, not-so-ethical hackers).
The not-so-ethical hackers stand out from a process
point of view because they do not work with the
organization to identify and triage the vulnerability.
They exploit it, advertise it or sell it for personal
reasons.

Once a vulnerability has been exploited or
advertised, the resources devoted to fixing it increase.
Resources are also dedicated to responding to the
exploit. If an organization does not have an internal
process for triaging and fixing vulnerabilities, the
overall quality of the security in the code base is likely
to increase. If they do have such a process, it is likely
that the exploit causes resources to be pulled away
from vulnerabilities that by objective measures are
worse. In either case, resources are pulled away from
other security-related activities. From a systemic point
of view, exploiting or advertising vulnerabilities is not
the most effective way to increase the security quality
of our products. A transparent security quality

process is [30]. That process should include HCI as
well as assurance aspects.

More proactively, there are ways to increase the
market demand for usable protection before an exploit
highlights the gap. Persuasion techniques [53] can be
used to make the threats and the risks of lack of usable
security clear. These techniques include social
marketing, which associates positive qualities
(professionalism, loyalty) with the desired behavior
(security-aware purchasing) and negative qualities with
the lack. Another persuasion technique equates safety
with being a less attractive target (through the use of
more obviously secure software). The more extreme
social persuasion techniques equate fear, uncertainty,
and doubt with security oblivious behaviors.

Marketing campaigns can generate positive
consumer awareness and pull for previously obscure
attributes (“Brown eggs are local eggs, and local eggs
are fresh.”). Quantifying security risk [6] through
insurance, certification, or other means enables more
accurate and explicit cost/benefit tradeoffs and can
provide a factual basis to marketing efforts that
emphasize the desirability of usable security. Insurance
can reduce real risk and enhance the feeling of safety
that usable security should provide. Since people
understand security best as protection against risks and
exploits, consumers need to be told explicitly what they
can be protected from. Usable security mechanisms
must be designed to provide those protections.
Checklists are a particularly attractive method for
purchasers to compare products and product coverage
in various areas. The human emphasis on risks
indicates that checklists should be based on or
categorized by exposure types. Existing documents that
could form the basis of such checklists, such as
Common Criteria [cc] and ISO 17799 [28] use
complex and dense language, and do not use threats to
structure their recommendations.

Low cost techniques that yield useful results and
tools that automate the simple tasks are two ways to
make usable security cheaper. In the area of usability,
Jared Spool [48] pioneered low-cost evaluation
methods as a way for many more software projects to
incorporate usability testing appropriately. Tool kits
such as Visual C++ generated consistent user interfaces,
setting a bar on certain types of usability. Usable
security techniques need to be reduced to methods that
are simple enough for most developers to execute
effectively, and turned into checklists and tools. The
checklists should not be philosophy or vision
statements. They must have specific design criteria that
can be actively evaluated against concrete functions
and design elements in a system.

2.2. Technology’s Relationship to User-
Centered Security

Much of the existing literature focuses on challenges
to user-centered security that require breakthroughs in
our approach to the technology. I focus on three. How
can we incorporate models of user behavior into
models of security, so that real user behavior is taken
into account? How do we design systems so that
security related decisions and actions are minimized,
and always made by the person who has the ability to
make them? How do we design systems so that all the
parts that determine the user’s ability to interact with
them securely are actually secured?

2.2.1. Users As Part Of The System.

You’re either part of the solution or part of the
problem.

Eldridge Cleaver

Classic security models [17] situate the end user
outside of the system boundary (with the administrator
inside). They provide mechanisms for very attentive
and obedient users to behave securely. For example,
security critical operations can only be invoked through
a trusted path. While almost any computer user is
likely to know when they must use ctrl-alt-del, whether
or not they know what security the use of that key
sequence provides them is an open question.

Classic security models also acknowledge that
computers systems cannot prevent users from giving
away information they have. They ignore the fact that
computer system interfaces can make mistaken security
breaches more or less likely. Some of the most difficult
and worrying current attacks rely on social engineering,
attacking the human processor, to either extract
something directly from the human (i.e. spam and
phishing) or to use the human to overcome the
technical barriers to the attack proceeding on the
computer processor (i.e. virus propagation). These
attacks are akin Schneier’s “semantic attacks” [46].
Ignoring the user’s active participation in the security
model enables attacks on the user through the computer
system, and makes the interface to the user a weak link.
Computer systems can be used to fool users into giving
away what they do not want to.

Security models can include users’ beliefs and
knowledge in terms of protocol states or secrets,
thought they are often encoded in the user agent, not
the user’s brain. Using existing modeling capabilities, a
user-centered security modeling technique would be to
structure the security of the system and its data so that
what users could easily and mistakenly give away
would not compromise them or the system alone.
Security techniques implementing this generally put of
additional barriers to user actions, including two factor

authentication and two person control. This approach
has its own usability challenges.

Existing work on user models does not map well to
existing security models. Specific human capabilities
such as memory or error behavior have models. There
is extensive literature on human trust and applying it to
computer systems. Targeted models of password
security and usability are based on very specific
aspects of a very limited task [40].

We do not have an appropriate approach to
modeling human security behavior abstractly. In a
sense, security modeling is an abstract concern while
human use is driven by pragmatic details. Such models
may need to abstract the details that matter to humans.
Existing user models are driven by concrete tasks and
interfaces. In that context, the user’s knowledge and
actions can be modeled in a process where the modeler
thinks like the user [5]. Another approach is to drive
the entire security model from the user’s model. [57]
shows an active content security model that is centered
around user actions and intentions. Threat based
models are the class of security models that map most
closely to what we can models about users today. They
can be extended to include the risks of unusable
security.

The vast majority of users do not interact with
computers in isolation. User-centered security models
will need to take into account relationships between
system users, including authorities and communities
of users. In multi-user, distributed, and collaborative
systems, what the user population “knows” can be
leveraged for protective purposes. Human authorities
can set policy. Established relationships within and
between organizations and communities legitimately
form the basis for trust. Conversely, there may be
information that needs to be hidden from other
members of a community of system users. Deception,
plausible deniability, and ambiguous information are
part of the model for applications that are designed to
share very personal information, such as social location
disclosure applications [27]. Early work in multilevel
databases [54] recognized the need for cover stories or
cover information in places where users who should
not see some information would expect some.

2.2.2. Who Makes The Security Decisions.

What, me worry?
Alfred E. Neuman, Mad Magazine

Security problems can come from bugs and flaws in

the design and implementation of the system software,
firmware, or hardware, unanticipated use of the system
for attacks (on either the computer processor or the
human processor), and mismatches between computer
activities and human expectations. In the latter case,
the mismatch may occur when the user is explicitly

given a security decision to make. Making a security
decision correctly is not easy. One of the most
frustrating and difficult things in security, and one of
the most desired, is detecting an intrusion attempt
accurately [32]. Even determining after the fact that a
breach occurred is difficult.

Some activities have a high likelihood of being a
security problem. Firewalls repel the many casual and
not-so-casual attempts to break into systems on the
Internet, and can catch malicious code trying to contact
the Internet from the host machine. Many incorrect
restrictive security decisions can be recovered from,
with more or less ease. The problem of incorrect denial
of access is dealt with by several approaches. Training
wheels on access control mechanisms teaches the
system the current access patterns before actively
enforcing the policy. More commonly, the person
desiring access notifies the owner/manager (assuming
that person can be identified). Optimistic access control
[38] allows new access and lets the organization
impose penalties after the fact for privileges that were
abused. Recovering from incorrect security decisions
around active content may be the most difficult
challenge. Disabled Java or Javascript in web forms or
collaborative applications can cause business logic to
break in opaque and inscrutable ways. Mail from
someone I have never communicated with before that
was blocked may be scam-spam or may carry a virus,
or might just be a co-worker I have never met who I
now have business with. Security research and
technology makes strides against all of these, but the
recovery process from a wrong decision, either too
restrictive or too permissive, puts a human in the loop.

A range of user roles are responsible for security
decisions. The developer, the administrator, and the
end user all have different views, information,
knowledge, and context. In many cases, none of them
knows whether or not an actual security problem exists.
The lines of communication from one role to the next
are mostly unidirectional. Each role uses whatever
context or information the technology carries to
determine what hints the previous roles might be
sending them. Documentation and education rarely fill
that gap. Developers create software to protect and
detect, with points of variability to allow for differing
configurations, policies, and tradeoffs. The default
values of the configuration options determine their
initial assumptions. Administrators can change those
options, and determine default policy for the end users.
And the end user can (in many cases) override policy
with personal preferences and specific actions.

Most end users will not want to override defaults
and policy, since it represents the received wisdom
from the theoretically more knowledgeable authorities.
Usable security research shows that the majority of
users will neither take the time to configure their

settings properly (even when told directly how to do
so) nor be able to process security interrupts that
disrupt their task at hand [61, 52]. Security problems
involving deep technical detail, which is often the case
with active content attacks, are not something about
which most users can provide an informed response.
The option to alter security settings by the end user is
still important, not only when specific incidents give
additional insight to the end user, but to satisfy power
users, group thought leaders, and evaluators (in the
popular press, for an enterprise, and for specific
criteria). However, it is not effective as the primary
means of defense.

Providing a security model such as code signing is
not enough when the model does not enable usefully
secure default policies or understandable choices for
the user roles. User decisions, when they are imposed
or required, must be structured around a model the user
can understand. If the user is asked to trust a signing
entity (for executing code or for receiving SSL
protected communications, for example), the user has
to have some model of who’s being trusted for what.
The developer must provide that model and the
developer and administrator must provide reasonable
defaults so that active decision making is not a
requirement for daily operation.

Constraints beyond those provided by the “pure”
security mechanisms can be useful in making security
decisions understandable. Within an organization or
enterprise, recovery options are available that do not
apply at the individual or consumer level, through
reliance on administration and service groups. The
Notes PKI ties certificate distribution and trust to the
enterprise context and naming scheme for individuals
and organizations [62]. As in [18], trust follows the
name hierarchy. This structure provides a natural set of
trust defaults, and limits the damage an untrustworthy
authority can do. Physical security is being leveraged
in innovative ways by research in portable devices and
wireless connectivity. Physical gestures to a
trustworthy CA [3] provide a natural and secure way to
specify trust. Users bring their mobile devices into
visual range of a CA, and use the device to point to the
CA to tell it to trust that authority. There are obvious
limits to the scalability of that approach. “Think locally,
act locally” can most easily be accomplished within
small structures. Useful constraints may also be
derivable from the “upper layers” of specific
applications and their use of the infrastructure.

2.2.3. Assurance For The User.
But yet I’ll make assurance double sure

Macbeth, Act IV, scene i

The user’s special knowledge of security comes in

part from their ability to look at the specific interaction

at hand in the context of how it relates to the entire
system they’re working with. This broad and specific
view is in tension with the componentized assurance
view that states that the security surface of the system
must be minimized to ensure that it is accurate and bug
free [2]. Developers or other experts evaluating the
system determine its accuracy and assurance. Intrusion
detection systems have a challenge similar to that of
users, since they can take input from a wide array of
sources across the system. The trustworthiness of the
sources can vary. The logic of determining whether or
not an intrusion has occurred is kept compact,
sophisticated and explicit. User processing will not
necessarily reflect any of those attributes.

Studies on trust indicate that users decide whether to
trust a system based on all the information immediately
available to them [37]. This includes non-security
aspects that might reflect the trustworthiness of humans
associated with a service, such as how professional a
web site design is. Information on past history, like
eBay’s reputation service, can also promote trust.
When considered from a classic assurance perspective,
many of the things people rely on to determine trust
can easily be manipulated orthogonally from how truly
trustworthy a web site is. They are traditional
indicators of social trustworthiness, applied to social
situations where computers are used to mediate.

While users may rely on components not meant to
provide security, the flip side can occur where there are
components in a platform providing useful security
functions (encryption, signing, trust root storage) but
not actually securing the system in any meaningful
fashion. This can happen in standards and other efforts
that begin by specifying the security subsystems that
are needed before determining how the subsystems
secure the overall system. Current examples are
frameworks such as OSGi and Eclipse [23]. Security,
like other qualities such as usability and performance,
is a system-wide concern, requiring system wide
thinking to be effective.

How can we integrate human assurance with classic
security assurance? Making all user visible aspects part
of the security kernel increases the complexity of the
part of the system that should be given the most
rigorous attention. That approach does accurately apply
security assurance techniques to the interfaces upon
which security relevant decisions will be made.
Firefox’s approach [41] to simplifying the security
surface for users and minimizing false end user alerts is
to rely on rapid, timely updates to the code base in
response to future attacks (much as virus protection
does today). We need more work on security assurance
for the end user, including mechanisms that can take
hints based on data not part of the core security
processing functions.

2.3. Implementation and Deployment Are The
Golden Spike

Much of the information in the current literature
focuses on how user-centered security is or can be
achieved using specific designs or technologies. There
are not yet tools or best practices that allow a larger
body of practitioners or researchers to incorporate user
centered security into their system. There are no
criteria or checklists for evaluating how usably secure a
system or approach is likely to be.

HCI made great strides as a discipline through the
promotion of guidelines, tool kits, and processes for
incorporating usability into products at a reasonable
cost by anyone willing to take the time to learn to use
them. Security assurance has not made similar
advances in consumability. Security assurance comes
from use of algorithms and techniques that have been
shown to provide security in practice, have proven to
be secure (in the formal sense), or that are backed by
process and assurances that demonstrate their strength.

How can we integrate the lessons from practice into
our research thinking so that we achieve usable
security in practice? And how can we specify and
implement reusable security components that support a
user-centered security model in the system they’re
integrated into?

2.3.1. Integrating research and practice.

In theory, there is no difference between theory
and practice. In practice, there is.

Yogi Berra

The establishment of best practices relies on some
history of feedback loops between research,
development, deployment, and use. There is some
communication built into the system from research to
development. In commercial software companies, it is
often called “technology transfer.” Development feeds
naturally into deployment, which feeds naturally into
use.

Communication up this chain is rarer. As [34] points
out, the security weaknesses of text passwords were
revealed only by their use in practice. Those
weaknesses are so well established that they have been
communicated back to research, sparking solid work
on looking for suitable alternatives. Changing practice
could also have changed the degree of usable security
provided by passwords. Generated passwords were a
reasonable solution 20 years ago when only
professionals needed them and they only had one
password, and it was only used at a computer in an
office with a lock on the door. Now users deal with
many passwords with many different but overlapping
strength and management policies, rendering almost all
forms of deployed passwords unusably insecure. Users

cannot create and recall many difficult passwords for a
multitude of systems. They will reuse them and write
them down, both of which can be exposures.

[5] recommends that products know their audience,
and that responsible parties interact directly with
customers and users. This is classic business advice;
there is no substitute for understanding the customer
and their goals and business. It provides feedback from
deployment and use to development. Many HCI
techniques provide feedback from use to other stages.
User advocates can provide related information. If a
technical writer cannot explain how to use a security
mechanism in a practical and safe fashion, it’s a safe
bet that users won’t know how to do so.

Tradeoffs that are critical in practice must inform
research if research is to successfully transfer to
practice and products. Some of these tradeoffs are
surprisingly mundane. For example, in product
development, screen space is often at a premium, with
many important pieces of information vying for a place
in the sun. CoPilot [16] takes a substantial amount of
primary screen real estate to get its point across; more
than would be likely to be allotted to security in a
general purpose email product. This squeeze is not
encountered in special purpose dialogs [62]. To
advance usable security, research needs to actively
seek development, deployment, and use experience,
and development needs to actively seek deployment
and use experience.

2.3.2. Components Contributing To Usable Security.
With these kinds of proposals, the devil is in the

details.
John B. Larson

Reuse of security component allows concentration

on the assurance of the algorithms and the code. It
supports centralization of security concerns, which
makes it possible to simplify security mechanisms,
potentially increasing both assurance and
understandability [60]. Standards provide another form
of reuse, in algorithms, mechanisms, and APIs. They
make security usable by developers; they can use the
security mechanisms developed by others instead of
inventing them. Abstraction of the security specific
functions allows mechanisms such as authentication
credentials to change over time when the infrastructure
changes, without disrupting the rest of the system.

Both reuse and abstraction pose a challenge to
usable security. Security is often most obvious to the
user when things go wrong, when an error or alert is
raised by a security mechanism. Very directed users
will even ignore alerts, until they are unable to
accomplish their task, because of either the security
problem or its solution. Exceptions or errors from
security components are often either very low level or

abstracted. Low level error messages are likely to
require more detailed knowledge to understand than
most users possess. Abstracted error messages remove
the security situation from the specific context the user
is in, stripping them of useful clues.

The security use of protocols can also change when
their use changes [36]. Repurposing a security
mechanism, such as a protocol, can change the security
properties because of the changed context and threats.
For example, we considered in some detail the usability
of using SSL as provided by JSSE to protect rich client
protocols such as IIOP, HTTP, and SIP used to access
backend servers. In the browser, the URL defines the
desired target, and the protocol action (get or submit)
maps directly to a user action. When a form is
submitted by a button press, users can get confused
about what protections are available. There have been
several reports of web forms which were themselves
SSL protected mistakenly submitting data in an
unprotected URL.

The connection between user action and protocol
activity is even more opaque in a rich client. The client
programs actions may be any one of a number of
housekeeping operations, including initial access of
data for a particular application, synchronization of
data between local and remote stores, or getting server
updates of code or metadata. If there is a problem with
some SSL server’s certificate, the user will want to
know what server the network layer was connecting to,
for what purpose, and with what data. That data is not
readily available to callbacks that process exceptions
and errors.

[55] encapsulated several likely browser-based
scenarios in his recommendations on enhancing the
usability of the SSL security dialogs. They develop the
general principle of some sessions being more sensitive
than others, and allowing the user to trust the certificate
for just a session. This approach can apply to rich client
use as well, though the definition of a session is
dependant on the structure of the calling application.
They stop short of addressing the question of how
sensible the security model is. For example, just what
threat should the user consider if the certificate’s
validity time period has not yet begun?

Rich clients can provide additional tools that when
used will eliminate the occurrences of some security
errors. These include tools to notify administrators
when certificates are going to expire and to easily
update trust roots across the client base.

In general, no error message or exception should be
specified or implemented in a security component
unless it is linked with an action the user can take when
they receive it, or an action that an administrator or
user can be told to take to ensure the error does not
occur. Security modules that can be reused need to

consider what information will be needed to process
these errors or alerts, should they reach the user.

3. Effective User-Centered Security Today

Despite the many substantial challenges, there is a
solid body of work on user-centered security that we
can use today. Most of the work addresses
technology’s relationship to user-centered security, but
some address the human and social aspects, and some
covers implementation and use. References to existing
work may be found in the bibliography of this essay,
and on the HCISEC reference list [24]. There is now a
symposium dedicated to usable security and privacy
[47], a newly published book security and usability
[25], and an email community on the topic [26].

The two best tools we have mastered so far are
applying certain HCI techniques to security
mechanisms, and distilling and applying some
principles of usably secured systems established by
work so far. Each of these is discussed in more detail
below.

There are many other areas that can yield results that
are less well explored. Much work in the area of
useable security gives process advice, or shows how
experts in the area can apply usable security to a
specific problem or domain. In the former case, the
process advice is almost always to security people, and
is often some variation of “Think about the user” [49]
or “Use established CHI methods and principles” [44,
40, 56, 34]. Specific problem or domain advice is
mostly in the area of authentication and passwords.

3.1. Human Computer Interface Techniques
and User-Centered Security

Expert evaluations of both usability and security
can enhance those attributes. Both disciplines have
tools and processes to provide input from experts, and
both support a small industry of consultants (for
example, Nielsen Norman Group, @stake). Expert
reviews of the usability of security have mixed success
[62]. UI experts can help with the usability of every
day concepts (such as passwords) and visual design.
They may not be able to give deep advice on the
usability of security aspects that are only invoked when
a problem or error occurs, or which surface existing
security mechanisms in their current complexity.
Individuals with expertise in both security and usability
can provide richer advice, but are far scarcer. Because
they don’t yet have processes or checklists these
evaluations can be very inconsistent, and cannot be
done on even a simple scale by others.

There are other mismatches with applying existing
usability techniques to security. Many usability

techniques center on the user’s goal or task [4, 45]. For
the vast majority of users impacted by security, it’s an
attribute of their tools, not their goal. Many security
goals can only be stated anti-goals; someone guesses
your password, business critical information is leaked.
As I have additionally pointed out, the interactions with
security mostly come from error conditions, not normal
processing (authentication being an important
exception).

Security literature and experience is rife with
examples of security that did not provide the promised
protection in the face of real users. Both security and
usability have a tradition of testing mechanisms either
in laboratory setups or actual use. Security is tested
through red teaming or ethical hacking of deployed
systems. Usability testing can be either lab testing with
a structured set of tasks, or in situ testing through
contextual analysis or logs [45, 4].

Examples of user testing of security functionality are
still modest in number in the literature [59, 51, 1, 53,
27, 16], although there are some very early examples of
applying usability techniques to security messages [23].
Some of the existing studies are lab-based studies,
emulating attacks in that context. Others are detailed
interviews with people about their use of security and
privacy technology (for example, passwords, location
finders). A recent phishing attack study attempting to
show how successful modest social engineering could
be as an attack approach garnered some heated
complaints, even though it had been cleared by the
university’s board beforehand [33].

The body of experience testing the usability of
security both in the lab and in context will define the
techniques and tools we need and can use. It will also
generate a body of best practice we can begin to
systematize in checklists and expert evaluations.
Taking that best practice and making it visible to users
and purchasers will apply pressure to raise the level of
usable security in systems and products.

3.2. Principles of Usably Secured Systems

[43] used their experience with security and Multics
to formulate eight principles of secure systems. One of
these was “psychological acceptability”, which is
usable security. Today we have enough experience to
turn the existing body of knowledge into a small set of
principles for systems that can be made usably secure.

Whitten [52] lays out two design techniques for
usable security: safe staging and metaphor tailoring.
Safe staging is “a user interface design that allows the
user freedom to decide when to progress to the next
stage, and encourages progression by establishing a
context in which it is a conceptually attractive path of
least resistance.” The intuition is that users should not
be forced to make security decisions when they’re

trying to get something else done and don’t have
enough information to make them yet anyway. Many
active content and trust dialogs do not provide safe
stages. Some of the more usable dialogs for setting
security policy information for access control and
active content allow the user to use large granularity
defaults, and to proceed to configurable or fine grained
security settings as needed.

Metaphor tailoring starts with a conceptual model
specification of the security related functionality,
enumerates the risks of usability failures in that
model, and uses those risks to explicitly drive visual
metaphors. A more general restatement of the core of
the principle is “Incorporate risks of usability failures
into the security model”. This principle can be applied
even to security relevant parts of a system when the
actual context of use is undetermined, such as security
standards. Use case scenarios may be required before
usability failures can be described.

Additional principles can be derived from the work
on presenting and visualizing security, from metaphor
tailoring through work on visualization [12, 13, 14] and
explanation and enforcement [55]. I will call these
integrated security and transparent security.
Integrated security aligns security with user actions and
tasks so that the most common tasks and repetitive
actions are secure by default. Inability to design,
implement, and deploy integrated security is an
indication that a task or action is not securable. A task
or action that is not securable needs to be redesigned so
that it is securable. Producing integrated security can
lead to an iterative process between the task’s
functionality and security aspects, until the integration
is occurs.

Transparent security provides information about
security state and context in a form that is useful and
understandable to the user, in a non-obtrusive fashion.
For example, in contexts such as email, where social
engineering attacks such as scam-spam and phishing
are a concern, proactive display of the reliability of the
sender information (digital signature, all mail headers
indicating a full transmission path behind the enterprise
firewalls) is warranted, as long as it is well designed to
fit within the context of all the other per mail message
information displayed to the user. Conversely,
immediate indicators that the current web page was
delivered encrypted via SSL are likely to be of
secondary importance. The security the user needs to
know about for their next action is whether any
submission of data from that web page will be
encrypted.

Transparent security might be easiest to achieve in
the subcategory of protection mechanisms that provide
privacy. The desired privacy protections on personal
information are by definition determined by the user
themselves. The user can understand the risk of

exposure and misuse of the information, since the risk
is directly to and about them.

Transparent security can do more than explain
security. It can highlight anomalies that indicate
problems making them more obvious or
understandable to non-technical users. It can reassure
the user and promote trust in the vigilance of the
software. Going one step further, Bill Cheswick
suggests software that lets out a groan whenever a
preventable problem is detected can train the user to
use security more effectively [8]. Persuasion literature
[37] teaches that if a task is important or particularly
engaging, users will apply intense analytical processing.
Otherwise they will apply simple heuristics. Even
though security researchers and developers all believe
security to be both important and engaging, since it is
almost never the user’s primary task, users do not. An
open research question is how effectively play and
humor can be used to bring the user’s level of
engagement in line with the importance of any
additional actions required to ensure security.

As an aside, an unexplored area of research is how
visible security can be used to dissuade attackers. By
analogy, “Neighborhood Watch” signs and very visible
(sometimes fake) cameras are used as deterrents to
vandalism and robbery of physical goods.

A principle implicit in many approaches is reliance
on trustworthy authority. Implementing usable
security in the first place relies on architects, designers,
and developers to provide it. Giving administrators the
ability to configure security policy for users and
resources in their domain puts the responsibility on
them to make the right choices (or accept the defaults
from developers). These knowledgeable and
responsible people can be relied on. Approaches that
integrate visualization of community information [13]
or security decisions based on evaluation of the
activities of other users [19] presume that information
about how a community or group or organization is
making security decisions can reliably inform similar
personal decisions. As the authority being relied on
becomes more diffused, trust and security decisions
may be susceptible to “flash crowds” [35]. If instead it
provides a damping effect, community information
may be the best weapon we develop to resist social
engineering, since it uses one social process to
counteract the abuse of others.

4. Conclusion

As the CRA conference found, the challenge of
usable security is grand. We need work at the social,
technical and production levels to meet the challenge.
We have some HCI techniques and some usable
security principles to take us to the next level. Expert
evaluation and user testing are producing effective

usable security today. Principles such as safe staging,
enumerating usability failure risks, integrated security,
transparent security and reliance on trustworthy
authorities can also form the basis of improved systems.

There are many open research problems. How do we
build security mechanisms that are usable, with no
additional education or explanation? How do we set the
tone for explanations of security breaches so that
blaming a user is not an option? How do we extend
HCI techniques to security error cases? How can we
encourage marketing pull of usable security? What low
impact processes can be used soon to raise the bar on
the lower end of usable security? How do we model
users as part of the system security? How can
constraints simplify the decisions thrust upon users?
How do we get feedback from development,
deployment and use into the research process rapidly?
How do we design reusable security components and
specifications that participate in usable security?

It’s an area where many types of people are needed
for us to make progress. We need researchers and
developers attracted to issues that are both system wide
and pragmatic, practitioners who can synthesize
multiple disciplines, and innovative thinkers and doers
of all sorts.

Acknowledgements

This essay profited from review by Steve Greenwald
and Serge Egelman. Charlie Payne volunteered his
time to help with IEEE guidelines. While this would
not have been possible without support from IBM and
Doug Wilson, all opinions expressed are those of the
author.

Bibliography

[1] Anne Adams and Martina Angela Sasse, “Users Are Not
The Enemy”, Communications of the AM, vol. 42, issue 12,
December 1999, pp 40 – 46.
[2] J. P. Anderson, Computer Security Technology Planning
Study, ESD-TR-73-51, Bedford, MA, USAF Electronics
Systems Division, October 1972.
[3] Dirk Balfanz, Glenn Durfee, and D. K. Smetters, “Making
the Impossible Easy: Usable PKI”, Security and Usability:
Designing Secure Systems that People Can Use, Lorrie Faith
Cranor and Simson Garfinkle, ed., O’Reilly, August 2005.
[4] H. Beyer and K. Holtzblatt, Contextual Design: Defining
Customer Centered Systems, Morgan Kaufmann Publishers,
1998.
[5] Jordy Berson, “ZoneAlarm: Creating Usable Security
Products for Consumers”, Security and Usability: Designing
Secure Systems that People Can Use, Lorrie Faith Cranor and
Simson Garfinkle, ed., O’Reilly, August 2005.
[6] Bob Blakley, Ellen McDermott, and Dan Geer,
“Information Security is Information Risk Management”,

New Security Paradigms Workshop, ACM Press, Cloudcroft,
New Mexico, 2001, pp. 97 – 104.
[7] Benjamin Brunk, “A User-Centric Privacy Space
Framework”, Security and Usability: Designing Secure
Systems that People Can Use, Lorrie Faith Cranor and
Simson Garfinkle, ed., O’Reilly, August 2005.
[8] Bill Cheswick, “My Dad’s Computer, Microsoft, and the
Future of Internet Security”,
http://cups.cs.cmu.edu/soups/2005/program.html#ches
[9] Common Criteria for Information Technology Security
Evaluation, version 2.2, January 2004,
http://www.commoncriteriaportal.org/public/expert/index.ph
p?menu=2
[10] CRA Confernence on Grand Research Challenges in
Information Security & Assurance,
http://www.cra.org/Activities/grand.challenges/security/home
.html
[11] Lorrie Faith Cranor, Privacy Policies and Privacy
Preferences, Security and Usability: Designing Secure
Systems that People Can Use, Lorrie Faith Cranor and
Simson Garfinkle, ed., O’Reilly, August 2005.
[12] Rogerio de Paula, Xianghua Ding, Paul Dourish, Kari
Nies, Ben Pillet, David Redmiles, Jie Ren, Jennifer Rode,
Roberto Silva Filho, Two Experiences Designing for
Effective Security, Proceedings of the 2005 Symposium On
Usable Privacy and Security, Pittsburgh, Pennsylvania, pp.
25 – 34.
[13] Paul DiGioia, Paul Dourish, “Social Navigation as a
Model for Usable Security”, Proceedings of the 2005
Symposium On Usable Privacy and Security, Pittsburgh,
Pennsylvania, pp. 101 – 108.
[14] Paul Dourish and David Redmiles, “An Approach to
Usable Security Based on Event Monitoring and
Visualization”, Proceedings of the 2002 workshop on New
Security Paradigms, Virginia Beach, Virginia, pp. 75 – 81.
[15] Scott Flinn and Steve Stoyles, “Omnivore: Risk
Management Through Bidirectional Transparency”,
Proceedings of the 2004 Workshop on New Security
Paradigms, pp 97 – 105.
[16] Simson L. Garfinkel and Robert C. Miller, “Johnny 2: A
User Test of Key Continuity Management with S/MIME and
Outlook Express”, Proceedings of the 2005 Symposium On
Usable Privacy and Security, Pittsburgh, Pennsylvania, pp.
13 – 24.
[17] Morrie Gasser, Building a Secure Computer System,
Van Nostrand Reinhold, New York, NY, USA, 1988.
[18] Virgil D. Gligor, Shyh-Wei Luan, and Joseph N. Pato,
On Inter-Realm Authentication in Large Distributed Systems,
Proceedings of the 1992 IEEE Symposium on Security and
Privacy, page 2.
[19] Jeremy Goecks and Elizabeth D. Mynatt, Social
Approaches to End-User Privacy Management, Security and
Usability: Designing Secure Systems that People Can Use,
Lorrie Faith Cranor and Simson Garfinkle, ed., O’Reilly,
August 2005.
[20] Nathaniel Good, Rachna Dhamija, Jens Grossklags,
David Thaw, Steven Aronowitz, Deirdre Mulligan, and
Joseph Konstan, “Stopping Spyware at the Gate: a User
Study of Privacy, Notice and Spyware”, Proceedings of the
2005 Symposium On Usable Privacy and Security, Pittsburgh,
Pennsylvania, pp 43 – 52.
[21] Steven J. Greenwald, personal communication.

[22] Steven J. Greenwald and Richard E. Newman, The
Distributed Compartment Model for Resource Management
and Access Control, University of Florida Computer and
Information Sciences Department technical report, October
1994.
[23] O. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault, and
T. Watson, “The Eclipse 3.0 platform: Adopting OSGi
technology”, IBM Systems Journal, v. 44, # 2, page 289,
2005.
[23] Clare-Marie Karat, Iterative Usability Testing of a
Security Application Computer Systems: Approaches to User
Interface Design, Proceedings of the Human Factors Society
33rd Annual Meeting, 1989, v. 1, pp. 273 – 277.
[24] HCISec Bibliography,
http://www.gaudior.net/alma/biblio.html.
[25] Security and Usability: Designing Secure Systems that
People Can Use, Lorrie Faith Cranor and Simson Garfinkle,
ed., O’Reilly, August 2005.
[26] hcisec – Computer Security and Usability,
http://groups.yahoo.com/group/hcisec/.
[27] Giovanni Iachello, Ian Smith, Sunny Consolvo, Mike
Chen, and Gregory D. Abowd, “Developing Privacy
Guidelines for Social Location Disclosure Applications and
Services”, Proceedings of the 2005 Symposium On Usable
Privacy and Security, Pittsburgh, Pennsylvania, pp. 65 – 76.
[28] Information technology – Security techniques – Code of
practice for information security management,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDet
ail?CSNUMBER=39612&ICS1=35&ICS2=40&ICS3=
[29] Nancy Leveson and Clark S. Turner, “An Investigation
of the Therac-25 Accidents”, IEEE Computer, Vol. 26, No. 7,
July 1993, pp. 18 – 41.
[30] Steven B. Lipner, “Practical Assurance: Evolution of a
Security Development Lifecycle”, Proceedings of 20th
Annual Computer Security Applications Conference, Tucson,
Arizona, December 2004.
[31] Lock Box and Easy Savings Bank with Key
Combination,
http://www.babyscholars.com/loboxwikeyan.html
[32] John McHugh, “Intrusion and Intrusion Detection”, IJIS,
2001, v. 1, pp 14 – 35.
[33] Robert Miller, Simson Garfinkel, Filippo Menczer,
Robert Kraut, “When User Studies Attack: Evaluating
Security By Intentionally Attacking Users”, 2005
Symposium On Usable Privacy and Security, Pittsburgh,
Pennsylvania.
[34] Fabian Monrose and Michael K. Reiter, Graphical
Passwords, Security and Usability: Designing Secure
Systems that People Can Use, Lorrie Faith Cranor and
Simson Garfinkle, ed., O’Reilly, August 2005.
[35] Hilarie Orman and Richard Schroeppel, “Positive
Feedback and the Madness of Crowds”, Proceedings of the
1996 Workshop on New Security Paradigms, Lake
Arrowhead, California, United Stages, pp. 134 – 138.
[36] Susan Pancho, “Paradigm Shifts in Protocol Analysis”,
Proceedings of the 1999 Workshop on New Security
Paradigms, pp 70 – 79.
[37] Andrew S. Patrick, Pamela Briggs, and Stephen Marsh,
“Designing Systems That People Will Trust”, Security and
Usability: Designing Secure Systems that People Can Use,
Lorrie Faith Cranor and Simson Garfinkle, ed., O’Reilly,
August 2005.

[38] Dean Povey, “Optimistic Security: A New Access
Control Paradigm”, Proceedings of the 1999 Workshop on
New Security Paradigms, Caledon Hills, Ontario, Canada, pp.
40 – 45.
[39] J. Reason, Human Error, Cambridge, UK; Cambridge
University Press, 1990.
[40] Karen Renaud, “Evaluating Authentication
Mechanisms”, Security and Usability: Designing Secure
Systems that People Can Use, Lorrie Faith Cranor and
Simson Garfinkle, ed., O’Reilly, August 2005.
[41] Blake Ross, “Firefox and the Worry-free Web”, Security
and Usability: Designing Secure Systems that People Can
Use, Lorrie Faith Cranor and Simson Garfinkle, ed.,
O’Reilly, August 2005.
[42] Anne Saita, “Password protection no match for Easter
egg lovers”,
http://searchsecurity.techtarget.com/originalContent/0,28914
2,sid14_gci960468,00.html
[43] Jerome H. Saltzer and Michael D. Schroeder, “The
Protection of Information in Computer Systems”, Fourth
ACM Symposium on Operating System Principles, October
1973.
[44] M. Angela Sasse and Ivan Flechais, “Usable Security ”,
Security and Usability: Designing Secure Systems that
People Can Use, Lorrie Faith Cranor and Simson Garfinkle,
ed., O’Reilly, August 2005.
[45] Ben Schneiderman, “Designing the User Interface”,
Addison-Wesley Publishing Company, 1997.
[46] Bruce Schneier, Crypto-Gram Newsletter, October 15,
2000, http://www.schneier.com/crypto-gram-0010.html.
[47] Symposium On Usable Privacy and Security,
http://cups.cs.cmu.edu/soups/
[48] Jared M. Spool, Tara Scanlon, and Carolyn Snyder,
“Product Usability: Survival Techniques”, CHI Extended
Abstracts 1997, pp 154 – 155.
[49] Bruce Tognazzini, “Design for Usability”, Security and
Usability: Designing Secure Systems that People Can Use,
Lorrie Faith Cranor and Simson Garfinkle, ed., O’Reilly,
August 2005.
[50] Win Trees, Peter Neumann, Mary Ellen Zurko, and
Mark Ackerman, “Security and the User”, Proceedings of the
1999 Network and Distributed System Security Symposium.
[51] Alma Whitten and J. D. Tygar, “Why Johnny Can’t
Encrypt: A Usability Case Study of PGP 5.0”, Proceedings of
the 8th USENIX Security Symposium”, August 1999.
[52] Alma Whitten and J. D. Tygar, “Safe Security Staging”,
CHI 2003 Workshop on Human-Computer Interaction and
Security Systems, Ft. Lauderdale, Florida.
[53] Dirk Weirich and Martina Angela Sasse, “Pretty Good
Persuasion: A First Step Towards Effective Password
Security in the Real World”, Proceedings of the 2001
Workshop on New Security Paradigms, Cloudcroft, New
Mexico, pp. 137 – 143.
[54] Simon R. Wiseman, “Security Properties of the SWORD
Secure DBMS design”, Database Security, VII: Status and
Prospects, Proceedings of the IFIP WG11.3 Working
Conference on Database Security, Lake Guntersville,
Alabama, USA, September 1993, pp 181 – 196.
[55] Haidong Xia and Jose Carlos Brustoloni, “Hardening
Web Browsers Against Man-In-The-Middle Eavesdropping
Attacks”, The 14th International World Wide Web
Conference, ACM Press, Japan, 2005, pp. 489 – 498.

[56] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair
Grant, “The Memorability and Security of Passwords”,
Security and Usability: Designing Secure Systems that
People Can Use, Lorrie Faith Cranor and Simson Garfinkle,
ed., O’Reilly, August 2005.
[57] Ka-Ping Yee, “Aligning Security and Usability”, IEEE
Security and Privacy, vol. 02, no. 5, pp. 48 – 55, September –
October 2004.
[58] Mary Ellen Zurko and Richard T. Simon, “User-
Centered Security”, Proceedings of the 1996 Workshop on
New Security Paradigms, Lake Arrowhead, California,
United States, pp. 27 – 33.
[59] Mary Ellen Zurko, Rich Simon, and Tom Sanfilippo, “A
User-Centered, Modular Authorization Service Built on an
RBA Foundation”, IEEE Symposium on Security and
Privacy, 1999, pp. 57 – 71.
[60] M. E. Zurko, J. Wray, I. Morrison, M. Shanzer, M.
Crane, P. Booth, E. McDermott, W. Macek, A. Graham, J.
Wade, and T. Sandlin, “Jonah: Experience Implementing
PKIX Reference Freeware”, Proceedings 8th USENIX
Security Symposium”, Washington, DC, August 1999, pp.
185 – 200.
[61] Mary Ellen Zurko, Charlie Kaufman, Katherine
Spanbauer, Chuck Bassett, Did You Ever Have To Make Up
Your Mind? What Notes Users Do When Faced With A
Security Decision, Proceedings of 18th Annual Computer
Security Applications Conference, Las Vegas, Nevada,
December 2002.
[62] Mary Ellen Zurko, “IBM Lotus Notes/Domino:
Embedding Seurity in Collaborative Applications”, Security
and Usability: Designing Secure Systems that People Can
Use, Lorrie Faith Cranor and Simson Garfinkle, ed.,
O’Reilly, August 2005.

