
I SOM OD: A Module System for
Isolating Untrusted Software

Extensions
Philip W. L. Fong

pwlfong@cs.uregina.ca

Department of Computer Science

University of Regina

Regina, Saskatchewan, Canada S4S 0A2

Overview

1. Motivation: Name Visibility Management

2. The ISOMOD Architecture and Policy Language

3. Sample Applications

4. On-going Work

ISOMOD: Carleton 2006 – p.1/34

Name Visibility Management

ISOMOD: Carleton 2006 – p.2/34

Secure Cooperation of Mutually Suspicious Code

The Challenge of Secure Cooperation
Protecting mutually suspicious code units from one
another while they are executing in the same run-time
environment.

[Schroeder 1972, Rees 1996]

ISOMOD: Carleton 2006 – p.3/34

Dynamically Extensible Systems
Dynamically-loaded software extensions

Process
Code Producer

Process
Code Consumer

Resource

ISOMOD: Carleton 2006 – p.4/34

Dynamically Extensible Systems
Dynamically-loaded software extensions

Program
Fragment

P

Code Consumer
Process

Code Producer
Process

Resource

ISOMOD: Carleton 2006 – p.5/34

Dynamically Extensible Systems
Dynamically-loaded software extensions

Process
Code Producer

Process

Program
Fragment

P

Code Consumer

Resource

▽ISOMOD: Carleton 2006 – p.6/34

Dynamically Extensible Systems
Dynamically-loaded software extensions

Process
Code Producer

Process

Program
Fragment

P

Code Consumer

Resource

Examples
Mobile code platforms

Scriptable applications

Systems with plug-in architecture

▽ISOMOD: Carleton 2006 – p.6/34

Dynamically Extensible Systems
Dynamically-loaded software extensions

Process
Code Producer

Process

Program
Fragment

P

Code Consumer

Resource

Examples
Mobile code platforms

Scriptable applications

Systems with plug-in architecture

Challenge: Secure Cooperation!

ISOMOD: Carleton 2006 – p.6/34

Language-Based Security
Encode untrusted extensions in safe language

Run untrusted code in secure run-time environment

Protection mechanisms based on programming
language technologies:

type systems

program rewriting

execution monitoring

Examples
Java Virtual Machine (JVM)

Common Language Runtime (CLR)

ISOMOD: Carleton 2006 – p.7/34

Language-based Access Control

1. Low-level: Encapsulation via visibility control
e.g., public, protected, private

2. High-level: Execution monitoring via interposition
e.g., stack inspection, inlined reference monitors

ISOMOD: Carleton 2006 – p.8/34

Direct Interposition
Execution monitoring via interposition:

System Call Denial

Monitor

Accepted System CallReference

Access Control Policy

System Call Request

Stack inspection [Wallach et al 2000]
Guard code examines call chain leading to the request

to avoid Confused Deputy [Hardy 1988]

Problems:
lack of declarative semantics
brittle in the face of evolving system configurations
• guard code hard-coded into system

ISOMOD: Carleton 2006 – p.9/34

Inlined Reference Monitors
Inlined Reference Monitors [Erlingsson & Schneider 2000]

Guard code is weaved into untrusted code by a trusted binary
rewriter.

Rewriter

Secured
Code

Untrusted
Code

Security
Policy

Binary

Pros:
Policy maintained separately from system code
Good for evolving system configurations

Cons:
Non-trivial run-time overhead
[Wallach et al 2000, Erlingsson & Schneider 2000]

ISOMOD: Carleton 2006 – p.10/34

Question

Don’t always need full-fledged execution monitoring
tracking of execution history is not always needed

Confused Deputy is not always the major concern

Can execution monitoring be complemented by a
protection mechanism with the following properties?

lightweight

declarative characterization

copes with evolving system configuration gracefully

ISOMOD: Carleton 2006 – p.11/34

Name Visibility Management
Intuition If the name of a service isn’t visible then it can’t be

accessed.

⇒ Run untrusted code in a name space that enforces name
visibility policy

Name Visibility Policy

what names are visible

to whom they are visible

to what extent they are visible

Goal To investigate the degree to which name visibility management
can serve the purpose of access control when full-fledged
execution monitoring is not necessary.

ISOMOD: Carleton 2006 – p.12/34

I SOM OD

A module system for Java that manages the visibility
of names in run-time name spaces

ISOMOD name visibility policies are:
1. enforced at class loading time

⇒ no run-time overhead

2. declarative and separately maintained
⇒ disentangled from core system code

3. expressive
⇒ captures a rich family of access control policies

ISOMOD: Carleton 2006 – p.13/34

The ISOM OD Architecture and
Policy Language

ISOMOD: Carleton 2006 – p.14/34

Delegation-Style Class Loading in Java

Import

Name Space

Child
Name Space

Parent

class loader = run-time name space

name space partitioning

names from a parent name space are implicitly
imported into its child name spaces

ISOMOD: Carleton 2006 – p.15/34

Dynamically Extensible Systems

Import

Name Space

Untrusted
Extensions

Trusted
App Core

Child
Name Space

Parent

core application services are exposed to untrusted
extensions via implicit import of names

ISOMOD: Carleton 2006 – p.16/34

Enter I SOM OD

IsoMod

Name Space

Untrusted
Extensions

Trusted
App Core

Child
Name Space

Import

Parent

ISOMOD is a custom class loader . . .

configured with user-defined name visibility policy

enforces visibility restrictions on:
1. imported names
2. locally defined names

ISOMOD: Carleton 2006 – p.17/34

Now You See It. . . Now You Don’t

Visibility control can be exercised to:
1. control which locally defined class may “see” a

name, and
2. present an alternative, restricted view of the entity

to which a name is bound.

ISOMOD: Carleton 2006 – p.18/34

I SOM OD Policy

Scan classfile at load time to identify accesses

access = 〈subject , right , object〉

e.g., 〈method A.m, invoke, method B.n〉

A class is loaded into a name space only if its accesses are
granted by the policy of the name space.

An ISOMOD policy is a list of policy clauses:

O (grant |deny) {r1, . . . , rk} [to S] [(when |unless) c]

O and S may be universally quantified variables.

Condition c specifies a static relation between O and S.

ISOMOD: Carleton 2006 – p.19/34

Sample Applications

ISOMOD: Carleton 2006 – p.20/34

Sample Applications

1. Selective Hiding of System Services

2. Systematic Control of Reference Acquisition

3. Discretionary Capability Confinement

ISOMOD: Carleton 2006 – p.21/34

Selective Hiding of System Services (1)

Simulating the getClassLoader permission of the
Java 2 platform:

class ClassLoader

method getParent

deny { invoke }
method getSystemClassLoader

deny { invoke }
class Class

method getClassLoader

deny { invoke }
method forName(String,boolean,Classloader)

deny { invoke }

ISOMOD: Carleton 2006 – p.22/34

Selective Hiding of System Services (2)

Most BasicPermissions defined in Java 2 can be
simulated by ISOMOD.

Finer-grained than BasicPermission:
Example: What if we want to . . .

disallow the use of the Reflection API to invoke methods,
access fields, and create class instances, but
permit the use of the Reflection API to examine class
interface

ISOMOD: Carleton 2006 – p.23/34

Systematic Control of Reference Acquisition (1)

Rethinking the getClassLoader permission . . .
What if the Java API is changed in the next release?

What if a platform extension library is installed?

What if an evolving application core exposes more ways to
leak ClassLoader references?

⇒ exhaustive code audit to avoid leaking ClassLoader
references.

▽ISOMOD: Carleton 2006 – p.24/34

Systematic Control of Reference Acquisition (1)

Rethinking the getClassLoader permission . . .
What if the Java API is changed in the next release?

What if a platform extension library is installed?

What if an evolving application core exposes more ways to
leak ClassLoader references?

⇒ exhaustive code audit to avoid leaking ClassLoader
references.

Bad!

ISOMOD: Carleton 2006 – p.24/34

Systematic Control of Reference Acquisition (2)

class C

deny { new, cast, catch }
when subclass(C, ClassLoader)

field F

deny { get, put }
when subclass(field-type(F), ClassLoader)

method M

deny { invoke }
when subclass(return-type(M), ClassLoader)

method M

deny { invoke }
when exists A in argument-types(M) :

subclass(A, ClassLoader)

ISOMOD: Carleton 2006 – p.25/34

Discretionary Capability Confinement (1)
Discretionary Capability Confinement (DCC) is a
static type system for modeling capabilities in the
JVM bytecode language. [Pending submission]

Under mild conditions, DCC enforces classical
confinement properties:

No Theft
No Leakage

The two properties have been formally verified in the
framework of Featherweight JVM . [Under review]

DCC type rules can be completely encoded in a
ISOMOD policy.

ISOMOD: Carleton 2006 – p.26/34

Discretionary Capability Confinement (2)
Intuition: A statically typed reference specifies a
pair:

〈handle, access rights〉

⇒ Capability!

Trust and capabilities :

subsumed−by

Domains B

C

trusts

A
capability−of

Confinement

Write “C ⊲ B” to denote “C trusts B.”

ISOMOD: Carleton 2006 – p.27/34

Discretionary Capability Confinement (3)
(DCC1). Unless B ⊲ A, A shall not invoke a static method declared in B.

(DCC2). The sole means by which a domain acquires a capability is through argument
passing.

(DCC3). If A.m invokes B.n, and C is the type of a formal parameter of n, then
C ⊲ B ∨ A ⊲⊳ B ∨ (B ⊲ m ∧ C ⊲ m).

(DCC4). A method m may invoke another method n only if n ⊲ m.

(DCC5). If A <: B then B ⊲ A.

(DCC6). Suppose B.n is overridden by B′.n′.

1. n′ ⊲ n.

2. If the method return type is C, then C ⊲ B ∨ B ⊲⊳ B′.

3. If C is the type of a formal parameter, then C ⊲ B′ ∨ B ⊲⊳ B′.

(DCC7). Suppose neither A ⊲ B nor B ⊲ A. If A′ <: A and B′ <: B, then neither
A′ ⊲ B′ nor B′ ⊲ A′.

ISOMOD: Carleton 2006 – p.28/34

Discretionary Capability Confinement (4)

(DCC3). If A.m invokes B.n, and C is the type of a formal
parameter of n, then C ⊲ B ∨A ⊲⊳ B ∨ (B ⊲ m ∧C ⊲ m).

class B

method n

deny { invoke } to A.m

when for C in argument-types(n) :
trusts(C, B) or
(trusts(A, B) and trusts(B, A)) or
(trusts(B, m) and trusts(C, m))

ISOMOD: Carleton 2006 – p.29/34

On-going Work

ISOMOD: Carleton 2006 – p.30/34

Implementation Experience
Master’s student: Simon Orr

Pure Java implementation of ISOMOD class loader
To be open-sourced
Extensive built-in predicates, functions and
access rights
User-defined predicates/functions
XML encoding of ISOMOD policies
Over 200 Java classes
Encouraging performance figures

ISOMOD: Carleton 2006 – p.31/34

Enforcing Communication Integrity

Master’s student: Jason Zhang
Ensuring untrusted software extensions conform
to the architectural constraints of the application
core.
Architectural constraints under consideration:
1. Encapsulation policies [Schärli et al 2004]
2. Module systems
3. Software architectures: components, ports and connectors
4. Layers, facade, etc

Idea: compiling a high-level architectural
description language into ISOMOD policies.

ISOMOD: Carleton 2006 – p.32/34

Summary

ISOMOD

Discretionary Capability Confinement

Featherweight JVM

Communication Integrity via ISOMOD

ISOMOD: Carleton 2006 – p.33/34

Thank You

ISOMOD: Carleton 2006 – p.34/34

	Overview
	Name Visibility Management
	{
ormalsize Secure Cooperation of Mutually Suspicious Code}
	Dynamically Extensible Systems
	Dynamically Extensible Systems
	Dynamically Extensible Systems
	Language-Based Security
	Language-based Access Control
	Direct Interposition
	Inlined Reference Monitors
	Question
	Name Visibility Management
		extsc {IsoMod}
	The 	extsc {IsoMod} Architecture and Policy Language
	{large Delegation-Style Class Loading in Java}
	Dynamically Extensible Systems
	Enter 	extsc {IsoMod}
	{large Now You See Itldots Now You Don't}
		extsc {IsoMod} Policy
	Sample Applications
	Sample Applications
	{large Selective Hiding of System Services (1)}
	{large Selective Hiding of System Services (2)}
	{
ormalsize Systematic Control of Reference Acquisition (1)}
	{
ormalsize Systematic Control of Reference Acquisition (2)}
	{large Discretionary Capability Confinement (1)}
	{large Discretionary Capability Confinement (2)}
	{large Discretionary Capability Confinement (3)}
	{large Discretionary Capability Confinement (4)}
	On-going Work
	Implementation Experience
	{large Enforcing Communication Integrity}
	Summary
	Thank You

