| SOM oD: A Module System for
Isolating Untrusted Software
Extensions

Philip W. L. Fong
pw f ong@s. ur egi na. ca

Department of Computer Science
University of Regina
Regina, Saskatchewan, Canada S4S 0A2

Overview

1. Motivation: Name Visibility Management
2. The IsoMobD Architecture and Policy Language

3. Sample Applications
4. On-going Work

IsoMobD: Carleton 2006 — p.1/34

Name Visibility Management

1

Secure Cooperation of Mutually Suspicious Code

The Challenge of Secure Cooperation
Protecting mutually suspicious code units from one
another while they are executing in the same run-time
environment.
[Schroeder 1972, Rees 1996]

IsoMobD: Carleton 2006 — p.3/34

Dynamically Extensible Systems L

e Dynamically-loaded software extensions

Code Producer Code Consumer
Process Process

Resource

Dynamically Extensible Systems L

e Dynamically-loaded software extensions

Code Producer
Process

Program
Fragment
P

Code Consumer
Process

~
I~
) x

Resource

IsoMobD: Carleton 2006 — p.5/34

Dynamically Extensible Systems L

e Dynamically-loaded software extensions

Code Producer Code Consumer
Process Process

' Program |

' Fragment

P |

~ = =

LT

Resource

=

Dynamically Extensible Systems L

e Dynamically-loaded software extensions

Code Producer

Process

Ve

-

~

Code Consumer

Process

' Program |
' Fragment

P

~ = =

LT

o Examples

@ Mobile code platforms

@ Scriptable applications

Resource

a Systems with plug-in architecture

VIsoMob: Carleton 2006 — p.6/34

Dynamically Extensible Systems L

e Dynamically-loaded software extensions

Code Producer

Process

S

-

~

Code Consumer

Process

' Program |
' Fragment

P

~ = =

LT

o Examples

@ Mobile code platforms

@ Scriptable applications

Resource

a Systems with plug-in architecture

Lq Challenge: Secure Cooperation!

IsoMobD: Carleton 2006 — p.6/34

Language-Based Security L

e Encode untrusted extensions in safe language
e Run untrusted code In secure run-time environment

e Protection mechanisms based on programming
language technologies:
a type systems
@ program rewriting

@ execution monitoring

o Examples
@ Java Virtual Machine (JVM)

2 Common Language Runtime (CLR)

IsoMobD: Carleton 2006 — p.7/34

Language-based Access Control L

1. Low-level: Encapsulation via visibility control
@ e.g., public, protected, private

2. High-level: Execution monitoring via interposition

@ e.g., stack inspection, inlined reference monitors

IsoMobD: Carleton 2006 — p.8/34

Direct Interposition L

e Execution monitoring via interposition:

System Call Request
Reference | Accepted System Call
Monitor

System Call Denial T

Access Control Policy

a Stack inspection [Wallach et al 2000]

a Guard code examines call chain leading to the request
a to avoid Confused Deputy [Hardy 1988]

a Problems:
e lack of declarative semantics
a brittle in the face of evolving system configurations
e guard code hard-coded into system

=

IsoMobD: Carleton 2006 — p.9/34

Inlined Reference Monitors L

Inlined Reference Monitors [Erlingsson & Schneider 2000]

@ Guard code is weaved into untrusted code by a trusted binary

rewriter.
Untrusted Security Secured
Code Pollcy Code
Bmary
Rewriter
@ Pros:

@ Policy maintained separately from system code
@ Good for evolving system configurations

@ Cons:
@ Non-trivial run-time overhead
L [Wallach et al 2000, Erlingsson & Schneider 2000]

IsoMobD: Carleton 2006 — p.10/34

Question L

e Don’t always need full-fledged execution monitoring
@ tracking of execution history is not always needed
a Confused Deputy is not always the major concern

o Can execution monitoring be complemented by a
protection mechanism with the following properties?
2 lightweight
a declarative characterization

@ copes with evolving system configuration gracefully

IsoMobD: Carleton 2006 — p.11/34

Name Visibility Management L

Intuition If the name of a service isn’t visible then it can’t be
accessed.

= Run untrusted code in a name space that enforces name
visibility policy
Name Visibility Policy
@ what names are visible
@ to whom they are visible
@ to what extent they are visible
Goal To investigate the degree to which name visibility management

can serve the purpose of access control when full-fledged
execution monitoring is not necessary.

=

IsoMobD: Carleton 2006 — p.12/34

| SOM OD L

o A module system for Java that manages the visibility
of names Iin run-time name spaces
e IsoMoD name visibility policies are:

1. enforced at class loading time
= No run-time overhead

2. declarative and separately maintained
= disentangled from core system code

3. expressive
= captures a rich family of access control policies

IsoMobD: Carleton 2006 — p.13/34

The IsoM oD Architecture and
Policy Language

Delegation-Style Class Loading in Java L

Child
Name Space

Parent
[Name Space
[Import

a class loader = run-time name space

e nhame space partitioning

e nhames from a parent name space are implicitly
Imported into its child name spaces

=

IsoMobD: Carleton 2006 — p.15/34

Dynamically Extensible Systems L

Child
Name Space

[: Narma Space
| B
Bl

|

Untrusted Trusted
Extensions App Core

a core application services are exposed to untrusted
extensions via implicit import of names

=

IsoMobD: Carleton 2006 — p.16/34

Enter | SOM OD L

Child
Name Space

—— e = e e = = = =

IsoMod

Parent
Name Space

1
Gl

Untrusted Trusted
Extensions App Core

@ |soMob is a custom class loader ...
a configured with user-defined name visibility policy

a enforces visibility restrictions on:
1. imported names
L 2. locally defined names

IsoMobD: Carleton 2006 — p.17/34

Now You See It... Now You Don't L

e Visibility control can be exercised to:

1. control which locally defined class may “see” a
name, and

2. present an alternative, restricted view of the entity
to which a name is bound.

IsoMobD: Carleton 2006 — p.18/34

| SOM oD Policy L

@ Scan classfile at load time to identify accesses

@ access = (subject, right, object)
a e.g., (method A.m,invoke, method B.n)

A class is loaded into a name space only if its accesses are
granted by the policy of the name space.

@ An IsoMobD policy is a list of policy clauses:

O (grant|deny) {ri,...,7.} [to S | | (when]|unless) c]

e (O and S may be universally quantified variables.
a Condition c specifies a static relation between O and S.

IsoMobD: Carleton 2006 — p.19/34

Sample Applications

Sample Applications

1. Selective Hiding of System Services
2. Systematic Control of Reference Acquisition
3. Discretionary Capability Confinement

IsoMobD: Carleton 2006 — p.21/34

Selective Hiding of System Services (1) L

e Simulating the get C assLoader permission of the
Java 2 platform:

class C assLoader
method get Par ent
deny {invoke }
method get Syst enCl assLoader
deny {invoke }
class C ass
method get Cl assLoader
deny { invoke }
method f or Nane(Stri ng, bool ean, C assl oader)
deny { invoke }

IsoMobD: Carleton 2006 — p.22/34

Selective Hiding of System Services (2) L

e Most Basi cPer m ssi ons defined in Java 2 can be
simulated by IsoMobD.

e Finer-grained than Basi cPer m ssi on:

Example: What if we wantto ...
@ disallow the use of the Reflection API to invoke methods,

access fields, and create class instances, but
a permit the use of the Reflection API to examine class
Interface

IsoMobD: Carleton 2006 — p.23/34

1

Systematic Control of Reference Acquisition (1)

o Rethinking the get O assLoader permission ...
e What if the Java API is changed in the next release?
@ What if a platform extension library is installed?
2 What if an evolving application core exposes more ways to
leak Cl assLoader references?

= eXhaustive code audit to avoid leaking C assLoader
references.

VIsoMob: Carleton 2006 — p.24/34

Systematic Control of Reference Acquisition (1)

1

o Rethinking the get O assLoader permission ...

e What if the Java API is changed in the next release?

@ What if a platform extension library is installed?

2 What if an evolving application core exposes more ways to

leak Cl assLoader references?

= eXhaustive code audit to avoid leaking C assLoader

references.

Bad!

IsoMobD: Carleton 2006 — p.24/34

1

Systematic Control of Reference Acquisition (2)

class C
deny { new, cast, catch }
when subclass(C, C assLoader)
field F
deny { get, put}
when subclass(field-type(F’), O assLoader)
method M
deny {invoke }
when subclass(return-type(M), Cl assLoader)
method M
deny { invoke }
when exists A in argument-types(M) :
subclass(A4, C assLoader)

IsoMobD: Carleton 2006 — p.25/34

Discretionary Capability Confinement (1)-I

e Discretionary Capability Confinement (DCC) Isa
static type system for modeling capabilities in the
JVM bytecode language. [Pending submission]

o Under mild conditions, DCC enforces classical
confinement properties:
a No Theft
a No Leakage
The two properties have been formally verified in the
framework of Featherweight JVM . [Under review]

o DCC type rules can be completely encoded in a
ISsoMoD policy.

=

IsoMobD: Carleton 2006 — p.26/34

Discretionary Capability Confinement (2)-I

e Intuition: A statically typed reference specifies a
pair:
(handle, access rights)
= Capabillity!
a Trust and capabilities

Confinement
Domains

LQ_ Write “C' > B” to denote “C trusts B.”

IsoMobD: Carleton 2006 — p.27/34

Discretionary Capability Confinement (3)-I

(DCC1). Unless B> A, A shall not invoke a static method declared in B.

(DCC2). The sole means by which a domain acquires a capability is through argument
passing.

(DCC3). If A.m invokes B.n, and C'is the type of a formal parameter of n, then
C>rBVAXBYV(BrmACP>mM).

(DCC4). A method m may invoke another method n only if n > m.

(DCCH). If A <: Bthen B> A.

(DCC6). Suppose B.n is overridden by B'.n/.
1. n'>n.
2. If the method return type is C,then C'> BV B <1 B’.
3. If C is the type of a formal parameter, then C > B’ Vv B <1 B’,

(DCCT). Suppose neither A Bnor B> A. If A’ <: Aand B’ <: B, then neither
A’> B nor B'> A’.

=

IsoMobD: Carleton 2006 — p.28/34

Discretionary Capability Confinement (4)-I

(DCC3). If A.m invokes B.n, and C'is the type of a formal
parameter of n, then C> BV A BV (B>mACr>m).

class B
method n
deny {invoke } to A.m
when for C' in argument-types(n) :
trusts(C', B) or
(trusts(A, B) and trusts(B, A)) or
(trusts(B, m) and trusts(C, m))

IsoMobD: Carleton 2006 — p.29/34

On-going Work

Implementation Experience

e Master’s student: Simon Orr
Pure Java implementation of ISOMOD class loader

Q

Q

N R R

To be open-sourced

Extensive built-in predicates, functions and
access rights

User-defined predicates/functions
XML encoding of IsoMobD policies
Over 200 Java classes
Encouraging performance figures

1

IsoMobD: Carleton 2006 — p.31/34

1

Enforcing Communication Integrity

e Master’s student: Jason Zhang

a Ensuring untrusted software extensions conform
to the architectural constraints of the application
core.

a Architectural constraints under consideration:

. Encapsulation policies [Schatrli et al 2004]

1
2. Module systems
3. Software architectures: components, ports and connectors

4. Layers, facade, etc

a Ildea: compiling a high-level architectural
description language into ISOMoD policies.

IsoMobD: Carleton 2006 — p.32/34

Summary L

ISOMOD

Discretionary Capability Confinement
Featherweight JVM

Communication Integrity via ISOMOD

e P P P

IsoMobD: Carleton 2006 — p.33/34

Thank You

	Overview
	Name Visibility Management
	{
ormalsize Secure Cooperation of Mutually Suspicious Code}
	Dynamically Extensible Systems
	Dynamically Extensible Systems
	Dynamically Extensible Systems
	Language-Based Security
	Language-based Access Control
	Direct Interposition
	Inlined Reference Monitors
	Question
	Name Visibility Management
		extsc {IsoMod}
	The 	extsc {IsoMod} Architecture and Policy Language
	{large Delegation-Style Class Loading in Java}
	Dynamically Extensible Systems
	Enter 	extsc {IsoMod}
	{large Now You See Itldots Now You Don't}
		extsc {IsoMod} Policy
	Sample Applications
	Sample Applications
	{large Selective Hiding of System Services (1)}
	{large Selective Hiding of System Services (2)}
	{
ormalsize Systematic Control of Reference Acquisition (1)}
	{
ormalsize Systematic Control of Reference Acquisition (2)}
	{large Discretionary Capability Confinement (1)}
	{large Discretionary Capability Confinement (2)}
	{large Discretionary Capability Confinement (3)}
	{large Discretionary Capability Confinement (4)}
	On-going Work
	Implementation Experience
	{large Enforcing Communication Integrity}
	Summary
	Thank You

