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ABSTRACT

Unrestricted information flows are a key security weakness of cur-
rent web design. Cross-site scripting, cross-site request forgery,
and other attacks typically require that information be sent or re-
trieved from arbitrary, often malicious, web servers. In this paper
we propose Same Origin Mutual Approval (SOMA), a new pol-
icy for controlling information flows that prevents common web
vulnerabilities. By requiring site operators to specify approved ex-
ternal domains for sending or receiving information, and by requir-
ing those external domains to also approve interactions, we prevent
page content from being retrieved frommalicious servers and sensi-
tive information from being communicated to an attacker. SOMA
is compatible with current web applications and is incrementally
deployable, providing immediate benefits for clients and servers
that implement it. SOMA has an overhead of one additional HTTP
request per domain accessed and can be implemented with minimal
effort by application and web browser developers. To evaluate our
proposal, we have developed a Firefox SOMA add-on.

Categories and Subject Descriptors

C.2 [General]: Security and protection; H.3 [Online Information
Services]: Web-based services

General Terms

Security, Experimentation

Keywords

web security, JavaScript, same origin policy, cross-site scripting
(XSS), cross-site request forgery (XSRF)

1. INTRODUCTION
Current web pages are more than collections of static informa-

tion: they are a synthesis of code and data often provided by multi-
ple sources that are assembled and run in the browser. Users gener-
ally trust the web sites they visit; however, external content may be
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untrusted, untrustworthy, or even malicious. Such malicious inclu-
sions can initiate drive-by downloads [26], misuse a user’s creden-
tials [13], or even cause distributed denial-of-service attacks [21].
One common thread in these scenarios is that the browser must

communicate with web servers that normally wouldn’t be contacted.
Those servers may be controlled by an attacker, may be victims,
or may be unwitting participants; whatever the case, information
should not be flowing between the user’s browser and these sites.
In this paper, we propose a policy for constraining communica-

tions and inclusions in web pages. This policy, which we call Same
Origin Mutual Approval (SOMA), requires the browser to check
that both the site operator of the page and the third party content
provider approve of the inclusion before any communication is al-
lowed (including adding anything to a page). This “tightening”
of same origin policy prevents attackers from loading malicious
content from arbitrary web sites and restricts their ability to com-
municate sensitive information. While attacks such as cross-site
scripting are still possible, with SOMA they must be mounted from
domains trusted by the originating domain. Because attackers have
much less control over this small subset than they do over other ar-
bitrary hosts on the Internet, SOMA can prevent the exploitation of
a wide range of vulnerabilities in web applications.
In addition to being effective, SOMA is also a practical proposal.

To participate in SOMA, browsers have to make minimal code
changes and web sites must create small, simple policy files. Sites
and browsers participating in SOMA can see benefits immediately,
while non-participating sites and browsers continue to function as
normal. These characteristics facilitate incremental deployment,
something that is essential for any change to Internet infrastructure.
We have implemented SOMA as an add-on for Mozilla Firefox

2 and 3, which can be run in any regular installation of the Firefox
browser. In testing with this browser and simulated SOMA policy
files for over 500 main pages on different sites, we have found no
compatibility issues with current web sites. The policy files for
these sites have been, with only a few exceptions, extremely easy
to create and cause no compatibility issues. Simulated attacks are
also appropriately blocked. To retrieve policy files, SOMA requires
an extra web request per new domain visited. As we explain in
Section 5, such overhead is minimal in practise. For these reasons,
we argue that SOMA is a practical, easy to adopt, and effective
proposal for improving the security of the modern web.
The remainder of this paper proceeds as follows. Section 2 gives

background on current web security rules and attacks on modern
web pages. Section 3 details the proposed Same Origin Mutual Ap-
proval design, which we then evaluate in Section 4. Our prototype
and the results of testing in the browser are described in Section 5.
We discuss some alternative browser security proposals and other
related work in Section 6. Section 7 concludes.



Content Permissions

Type Fetch Read Modify Execute

Images YES SO SO NO
HTML YES SO SO NO
JavaScript YES SO YES YES
Styles YES SO YES NO
Audio/Video YES Plugin Dependant NO

Table 1: Current JavaScript access to other content (permis-

sions denoted SO are dictated by the Same Origin Policy)

2. BACKGROUND ANDMOTIVATION
Web browsers are programs that regularly engage in extensive

cross-domain communication. In the course of a user viewing a
web page, they will retrieve images from one server, advertisements
from another, and post a user’s responses to a third. In this way the
browser serves as a dynamic, cross-domain communications nexus.
While such promiscuity may be permissible when combining static
data, to maintain security, restrictions must be placed upon exe-
cutable content.
JavaScript has two main security features that limit the potential

damage of malicious scripts: the sandbox and the same origin pol-
icy. Assuming there are no bugs in the implementation, the sand-
box prevents JavaScript code from affecting the underlying system
or other web browser instances (including other tabs). Each page
is contained within its own sandbox instance. The same origin pol-
icy [31] helps to define what can be manipulated within this sand-
box and how sandboxed code can communicate with the outside
world. The same origin policy is designed to prevent documents or
scripts loaded from one “origin” from getting, or setting properties
of, content loaded from a different origin (with a special case in-
volving subdomains). The origin is defined as the protocol, port,
and host from which the content originated. While scripts from
different origins are not allowed to access each other’s source, the
functions in one script can be called from another script in the same
page even if the two scripts are from different domains. JavaScript
code has different access restrictions depending on the type of con-
tent being loaded. For example, it can fetch (make a request for)
HTML, but it can only read and modify the information it gets as a
result if the HTML falls within the same origin. These restrictions
are summarized in Table 1.
Any script included onto a page inherits the origin of that page.

This means that if a page from http://example.com includes
a script from advertiser.com, this script is considered to have
the origin http://example.com. This allows the script to
modify the web page from example.com. It is important to note
that many scripts, including scripts dealing with embedding adver-
tisements, require this ability. The script cannot subsequently read
or modify content originating from advertiser.com directly;
it can only read and modify content from example.com, or con-
tent which has inherited that origin.
While the sandbox and same origin policy protect the host and

prevent many types of network communication, opportunities for
recursive script inclusion, unrestricted outbound communication,
cross-site request forgery, and cross-site scripting allow consider-
able scope for security vulnerabilities. We explore each of these
issues below.

2.1 Recursive script inclusion
The same origin policy states that scripts can read or modify

any part of a page with a matching origin. This includes allow-
ing scripts to add additional script tags to the document. These new

scripts are then loaded into the page, and also gain read and modify
access to any content coming from the origin.
A page creator could choose to include content only from sources

they deem trustworthy, but this does not mean that all content in-
cluded will be directly from those sources. Any script loaded from
a “trustworthy” domain can subsequently load content from any
domain. Unfortunately, trust is not transitive, even if JavaScript
treats it that way. Besides the risk of an intentionally malicious
script loading additional, dangerous code, there is also the risk of
a “trustworthy” domain inadvertently loading malicious content.
Even well-known, legitimate advertising services have been tricked
into distributing malicious code [32, 28].

2.2 Unrestricted outbound communication
While the same origin policy restricts how content from another

domain can be used, it does not stop any content from other do-
mains from being requested and loaded into the origin page. These
requests for content can be abused to send information out to any
arbitrary domain.
One common JavaScript attack involves cookie-stealing.1 A script

reads cookie information from the user’s browser and uses it as part
of the URL of a request. An innocuous request, such as an extra
image, may actually be used to send data to attacker.com:

var image = new Image();

image.src= ’http://attacker.com/log.php?cookie=’

+ encodeURIComponent(document.cookie);

Such cookie information could then be used by the remote server
to gain access to the user’s session, or to get other information about
the user. Any information that can be read from the document could
be sent out in a similar manner, including credit card information,
personal emails, or username and password pairs. Even if a user
does not hit “submit” on a form, any information they enter can be
read by JavaScript and potentially retransmitted.

2.3 Cross-site request forgery (XSRF/CSRF)
The information theft techniques described in the previous sec-

tion can be used to launch a cross-site request forgery (XSRF or
CSRF) attack [3]. Some URLs, when requested, cause an action to
be performed on the web server: a message is posted, a friend is
added, a vote is cast. Providing easy links for these actions is very
useful for the web developer who may want to include them in a
menu or elsewhere on the page. What happens, however, if one of
these links is used as the URL for an image? Even though nothing
has been clicked, that action will still be performed on behalf of
the logged-in user because the URL is requested when the browser
attempts to get the supposed image. Cross-site request forgery oc-
curs when the user visits a web page which accesses a URL that
performs an action (using that user’s privileges) on another web
page (even if the user never sees the URL being loaded).

2.4 Cross-site scripting (XSS)
While no precise definition of cross-site scripting seems to be

universally accepted, the core concept behind cross-site scripting
(XSS) is that of a security exploit in which an attacker inserts code
onto a page returned by an unsuspecting web server [5, 6]. This
code may be stored or reflected, it may contain JavaScript or just
HTML, and it may use third party sites as sources or rely only
upon the resources of the targeted server. With such ambiguity,
it is possible to have a cross-site scripting attack which neither
uses scripting nor is cross-site. Typically, however, XSS attacks

1While this attack can now be mitigated by httpOnly [23], other
information (including form data) can still be stolen this way.



Content Permissions

Type Fetch Read Modify Execute

Images SOMA SO SO NO
HTML SOMA SO SO NO
JavaScript SOMA SO YES YES
Styles SOMA SO YES NO
Audio/Video SOMA Plugin Dependant NO

Table 2: JavaScript access to other content with SOMA (per-

missions denoted SO are dictated by the long-standing same

origin policy)

involve JavaScript code engaging in cross-domain communication
with malicious web servers.
Code injection for cross-site scripting usually occurs because

user-supplied data is not sufficiently sanitized before being stored
and/or displayed to other users. Although the existence of such vul-
nerabilities is not a flaw in the same origin policy, per se, the same
origin policy does allow the injected code access to content of the
originating site. Specifically, it can then steal information associ-
ated with that domain or perform actions on behalf of the user.
Some existing proposals to address cross-site scripting and other

JavaScript security issues are described in greater detail in Sec-
tions 6. Here we note that no current proposal targets the cross-
domain communication involved in most JavaScript exploits.

3. SOMA DESIGN
The Same Origin Mutual Approval (SOMA) policy tightens the

same origin policy so that it can better handle exploits as discussed
in Section 2, including cross-site scripting and cross-site request
forgery. SOMA requires that both the origin web site and the site
providing included content approve of the request before the browser
allows any external content to be fetched for a page. Adding these
extra checks gives site operators much more control over what gets
included into or from their sites. These changes are shown in Table
2. While the differences (relative to Table 1) are all in the Fetch
column, a “fetch” can also be used to leak (send out) information
such as cookies, as discussed earlier.
A key idea behind SOMA is that security policy should be de-

cided by site operators, who have a vested interest in doing it cor-
rectly and the knowledge necessary to create secure policies, rather
than end users. Having said that, we cannot expect site operators
to create complex policies—their time and resources are limited.
Thus SOMA works at a level of granularity that is both easy to
understand and specify, that of DNS domains and URLs.

3.1 Threat Model
We assume that site administrators have the ability to create and

control top-level URLs (static files or scripts) and that web browsers
will follow the instructions specified at these locations precisely.
In contrast, we do assume that the attacker controls arbitrary web
servers and some of the content on legitimate servers (but not their
policy files or their server software). Our goal is to prevent a web
browser from communicating with a malicious web server when a
legitimate web site is accessed, even if the content on that site or its
partners has been compromised.
These assumptions mean that we do not address situations where

an attacker compromises a web server to change policy files, com-
promises a web browser to circumvent policy checks, or performs
intruder-in-the-middle attacks to intercept and modify communi-
cations. Further, we do not address the problem of users visiting
malicious web sites directly, say as part of a phishing attack. While

these are all important types of attacks, by focusing on the prob-
lem of unapproved communication we can create a simple, practi-
cal solution that addresses the security concerns described in Sec-
tion 2. Mechanisms to address these other threats largely comple-
ment rather than overlap with the protections of SOMA (see Sec-
tion 6).

3.2 Manifest files
The first part of SOMA we discuss is the manifest file, which

contains a list of domains from which the origin domain wishes
to allow included content. This idea is similar to the manifests
provided in Tahoma [7]. This manifest file is always stored in the
root directory and will have the name soma-manifest.
For example, the manifest file for maps.google.com would

be found at http://maps.google.com/soma-manifest
and might appear similar to Figure 1. If this file was set, the browser
would enforce that only content from those locations could be em-
bedded in a page coming from maps.google.com. Note that
each location definition includes protocol, domain and optionally
port (the default one for the protocol is used if none is specified),
so that origins are defined the same way as in the current same ori-
gin policy.

http://maps.l.google.com

http://www.google.com

http://mt0.google.com

http://mt1.google.com

http://mt2.google.com

http://mt3.google.com

Figure 1: Sample manifest for maps.google.com

If the origin A has a manifest that contains B, we denote this
using AAB. This symbol is a visual way to indicate that A is
the origin (the outer cup) and B is a content provider web site for
that origin (the inner circle). Similarly, if A’s manifest does not
include C, we write ACC. If ACC then the browser will not
allow anything in the pages from A to contact the domain C, thus
code, images, iframes, or any other content will not be loaded from
C. Trust is not transitive (i.e. AAB and BAC does not imply
AAC).
By convention, it is not necessary to include the origin domain

itself in the manifest file as inclusions from the origin are assumed
to be allowed.

3.3 Approval files
The approval files provide the other side of the mutual approval

by allowing domains to indicate sites which are allowed to include
content from them. A SOMA approval file is similar in function
to Adobe Flash’s crossdomain.xml [1] but differs in that it is
not a single static file containing information about all approved
domains. Instead, it is a script that provides a YES/NO response
given a domain as input.
We use a script to prevent easy disclosure of the list of approved

domains, since such a list could be used by an attacker (e.g. to
determine which sites could be used in a XSRF attack or to deter-
mine business relationships). Attackers may still generate such a
list by constantly querying soma-approval, but if they knew a
list of domains to guess, they could just as easily visit those do-
mains and see if they included any content from the target content
provider. In addition, the smaller size of the approval responses
containing simple YES/NO answers may provide a modest perfor-
mance increase on the client side relative to the cost of loading



<?php

$site_policy = array(

’A.com’ => ’YES’,

’C.net’ => ’YES’);

if (isset($site_policy[$_GET[’d’]])) {

print $site_policy[$_GET[’d’]];

} else {

print ’NO’;

}

?>

Figure 2: Simple soma-approval script written in PHP

a complete list of approved sites (especially for highly connected
sites such as ad servers).
To indicate that A.com is allowed to load content from B.org,

B.org needs to provide a script in the web server root directory
with the filename soma-approval which returns YES when in-
voked through http://B.org/soma-approval?d=A.com.
Negative responses are indicated in a similar manner with the text
of NO. If a negative response is received, then the browser refuses
to load any content from B.org into a page from A.com. If no file
with the name soma-approval exists, then we assume a default
permissive behaviour, described in greater detail in Section 3.6.
To reject all approval requests, soma-approval need only be

a static file containing the string NO. Similarly, a static
soma-approval with the word YES suffices to approve all re-
quests.
An alternative proposal that avoids the need for a script involves

allowing soma-approval to be a directory containing files for
the allowed domains. Unfortunately, in order to handle our default
permissive behaviour, we would now require two requests: one to
see if the soma-approval directory exists and another to see if the
domain-specific file exists. Since most of the overhead of SOMA
lies in the network requests (as shown in Section 5), we believe the
better choice is to require a script.2

A sample soma-approval script, written in PHP, is shown in
Figure 2. This script uses an array to store policy information at the
top of the file then outputs the policy as requested, defaulting to NO
if no policy has been defined. In this example, A.com and C.net are
the only approved domains.
The symbols used for denoting approval are similar to those used

for denoting inclusion in the manifest. If B approves of content
from its site being included into a page with origin A we show this
usingBBA. Again, sinceB is the content provider it is connected
to the small inner circle, and the origin A is connected to the outer
cup. If B does not approve of another domain C, this is denoted
BDC. If BDC then the browser will refuse to allow the page
from C to contact B in any way. No scripts, images, iframes or
other content from B will be loaded for the web page at C. Similar
to manifests, trust is not transitive (i.e.ABB and BBC does not
imply ABC).
It is important to note that BBA is not the same as, nor does it

necessarily imply, that AAB. It is possible for one party to allow
the inclusion and the other to refuse. Content is only loaded if both
parties agree (i.e. (AAC) ∧ (CBA)).

3.4 Content inclusions
Figure 3 illustrates inclusions currently allowed within the same

origin policy. The web page itself indicates the content it needs, be

2It is possible to simulate the script functionality using files and
URL rewriting on the web server, but the configuration required is
complex due to the need to handle absent files as NO responses.

it images, text or JavaScript code. The web browser retrieves this
content and builds the page using it. It is important to note that it is
the web page (running in the web browser) and not the web server
that indicates the content, as scripts that are executed on the page
may request additional content.

Web Server A
Web Server B

Web Browser

Web Page

Web Server C

Web Server D

Figure 3: Inclusions allowed by the same origin policy

The additional constraints added by SOMA are illustrated in Fig-
ure 4. Rather than allowing all inclusions as requested by the web
page, the modified browser checks first to see if both the page’s
web server and the external content’s web server approve of each
other. In Figure 4, web server A is the source of the web page to
be displayed. A has a manifest that indicates that it approves of
including content from both B and C (AAB and AAC). When
the browser is asked to include content from B in the page fromA,
it makes a request to B to determine if BBA (B approves of A
incorporating its content). In the example, B approves and its con-
tent is included on the page (since (AAB) ∧ (BBA)). Also in
the example, C’s content is not included because CDA (C returns
NO in response to a request for soma-approval). D’s content is
not included because ACD (D is not listed in A’s manifest). C

returning CDA prevents pages from A accessing content from C

in any way (including embedding content or performing cross-site
request attacks). ACD prevents web pages from A interacting
with D in any way. Users following hyperlinks to other web sites
are not affected by SOMA.
In the example, A’s web pages are trying to use content without

C’s approval,3 or A’s web pages may be attempting a cross-site
request forgery against C. In either case, the browser does not
allow the communication.
In the case of content inclusions fromD, the page is trying to in-

clude content but the manifest for A does not include D. The con-
tent from D is thus not loaded and not included (the web browser
never checks to see if D would have granted approval or not). In
this fashion SOMA prevents information from being sent to or re-
ceived from an unapproved server.

3.5 Process of approval
The process the browser goes through when fetching content is

described in Figure 5. First, the web browser gets the page from
server A. In parallel, the browser retrieves the manifest file from

3Such inclusions may be considered stealing, either of the content
itself or of the bandwidth needed to load the content.



Web Server A

Web Server C

Web Browser

Web Page

Web Server D

Web Server B

Manifest:
AAB,
AAC

BBA

CDA
CDA

DBA

ACD

Figure 4: Inclusions allowed within the SOMA policy

server A using the same protocol (i.e. if the page is served over
HTTPS, then the manifest will be retrieved over HTTPS). In this
example, the web page requires content from web server C, so
the browser first checks to see if C is in A’s manifest. If ACC,
then the content is not loaded. This must be done first and sepa-
rately to prevent unauthorized outbound communication. IfAAC,
then the browser verifies C’s reciprocal approval by checking the
soma-approval details on C (again using the same protocol
as the pending content request). If CDA then the browser again
refuses to load the content. If CBA then the browser gets any
necessary content from C and inserts it into the web page. In order
to protect against DNS rebinding attacks [15], the browser sends
the approval request (step 5) and subsequent content request (step
7) to the same server IP address.
If the request for soma-approval times out, the browser might

either retry, or alternately assume a NO response, the latter possibly
mitigating some denial of service attacks.

3.6 Compatibility with existing sites
In order to avoid breaking current web pages, SOMA defaults

to a permissive mode if the manifest or approval files do not ex-
ist. These defaults reflect current web page behaviour where all
inclusions are allowed.
1. If the soma-manifest file does not exist on the origin, all
inclusions are considered to be permitted by the origin site.

2. If the content provider has no soma-approval file, then
any site is allowed to include content from this provider. In
other words, the default soma-approval is YES if no file
exists.

Note that these checks are independent, i.e., the lack of a
soma-manifest does not prevent the loading of a
soma-approval file and vice-versa.

4. DESIGN EVALUATION

4.1 Security Benefits
SOMA constrains JavaScript’s ability to communicate by limit-

ing it to mutually approved domains. Since many attacks rely upon
JavaScript’s ability to communicate with arbitrary domains, this
curtails many types of exploitive activity in web browsers. Whereas
currently any web server can be used to host malicious JavaScript

Originating

Web Server

A

Web Browser

B

Remote 

Web Server

C

1. Request page

3. Return page

2. Request manifest
(/soma-manifest)

4. Return manifest
(assume AAC is in
the manifest)

5. Check
/soma-approval

(does CBA?)

6. Return YES or NO
(YES⇒ CBA,
NO⇒ CDA)

7. Request content

8. Return content

If A wants to include
content from C

If CBA

Figure 5: The mutual approval procedure

or to receive stolen information, the list of potential attackers is nar-
rowed significantly, either to insiders at the web site in question, or
to one of its approved partners. As we explain below, this change
provides substantial additional protection in practise.
One key factor making SOMA a feasible defence is that the costs

of implementation and operation are borne by those parties who
stand the most to benefit and who are most suited to bear its costs.
It also helps those who wish more control over what sites embed
their content.

4.1.1 Recursive Script Inclusion

Script inclusion is only allowed from mutually approved do-
mains. This rule applies even if a script is included recursively
– the origin still needs to allow the inclusion and the script source
must approve of the origin. The use of the manifest to constrain all
inclusions means that attackers will no longer be able to store at-
tack code on external domains unless they are mutually approved.
Many current attacks rely on the ability to store code externally
[27], therefore SOMA will force attackers to use new attack strate-
gies. While restricting recursive script inclusion can potentially
break promiscuous third-party scripts, we see this promiscuity as
being inherently dangerous and worth limiting (see Section 2.1).

4.1.2 Unrestricted outbound communication

Outbound communication under SOMA is controlled so that (ex-
plicit) information can only flow to and from mutually approved
partners. Thus, attackers who wish to get information from a page
now cannot have the browser send it to any arbitrary web server.
This change blocks many existing cookie-stealing and similar in-



formation theft attacks, forcing attackers to compromise an ap-
proved partner in order to get such information.
While SOMA provides no protection against local covert com-

munications channels, it does protect against most timing attacks
based upon cached content [11], simply because with SOMA the
attacker’s website will in general not be approved by the victim’s
for content inclusion.

4.1.3 Cross-site request forgery

Cross-site request forgery attacks occur when a malicious web
site causes a URL to be loaded from another, victim web site.
SOMA dictates that URLs can only be loaded if a site has been
mutually approved, which means that a site is only vulnerable to
cross-site request forgery from sites on its approval list. Specifi-
cally, the approval files limit the possible attack vectors for a cross-
site request forgery attack, while the manifest file ensures that an
origin site cannot be used in an attack on another arbitrary site.
SOMA thus allows a new approach to protect web applications

from cross-site request forgery. Any page which performs an ac-
tion when loaded could be placed on a subdomain (by the server
operator) which grants approval only to trusted domains, such as
those they control. This change would limit attacks to cases where
the user has been fooled into clicking on a link. It is unlikely that
sites will need to grant external access to action-causing scripts:
even voting sites, which generally want to make it easy for people
to vote from an external domain with just a click, usually use an
intermediate page to prevent vote fraud.
SOMA also leaks less information to sites than the current

Referer HTML header (which is also sometimes used to pre-
vent cross-site request forgery [24]). Because the Referer header
contains the complete URL (and not just the domain), sensitive in-
formation can currently be leaked [20]. Many have already realized
the privacy concerns related to the Referer URL and have im-
plemented measures to block or change this header [41, 34]. These
proposals also prevent current cross-site request forgery detection
attempts; however, they do not conflict with SOMA.

4.1.4 Cross-site scripting

SOMA blocks the “cross” part of cross-site scripting, since in-
formation can no longer be loaded from or sent to external, unap-
proved domains. This change forces attackers to either compromise
the targeted origin host or one of its mutually approved partners, or
to inject their entire attack code into the web page. 4

Even if attack code manages to load, its communication chan-
nels are limited. Many attacks require that information such as
credit card numbers be sent to the attacker for later use; this will
no longer be possible with SOMA. Other attacks require the user
to load dangerous content hosted externally, and these would also
fail.
Thus, while some forms of cross-site scripting attacks remain

viable, they are limited to attacks on the existing page that do not
require communication through the browser to other non-approved
domains. For example, it is not possible to steal cookies if there is
no way to send the cookie information out to the attacker. It is pos-
sible that the site itself could provide the way (for example, cookies
could be emailed out of a compromised webmail client or posted
on a blog). Or, the attacker could instead choose to deface the page,
since this attack requires the script only to modify the page. How-

4Note that since the code needed to mount many attacks is of signif-
icant size (e.g., setting appropriate style attributes as camouflage),
when combined with SOMA, simple length restrictions already in
place on some user content may be sufficient to prevent many at-
tacks.

ever, without the cross-site component, the remaining attacks are
just single site code injection attacks, not cross-site attacks.

4.1.5 Bandwidth stealing

SOMA allows content providers more control over who uses
their content. Thus SOMA offers a new way to prevent “bandwidth
theft” where someone is including images or other content from
a (non-consenting) content provider into their page using a direct
link to the original file. Many techniques require the web server to
verify the HTTP Referer header, which can be problematic (as
discussed in Section 4.1.3). SOMA provides a technique to do the
verification in the browser, not relying on HTTP Referer.
Also known as hotlinking or inline linking, bandwidth theft is

used maliciously by phishing sites, but may also be used uninten-
tionally by people who do not know better [4]. Regardless of the
intent, this can still be damaging. While the content provider is
paying hosting costs associated with serving up that file, it may be
pulled in by, for example, a very popular blog or aggregate site that
would generate a huge number of additional views. At the extreme,
this could result in the content provider exceeding their bandwidth
cap and being charged extra hosting fees or having their site shut
down. SOMA helps prevent this sort of denial of service attack.
Browsers (with SOMA enabled) would enforce access rules set by
the site.

4.2 Incremental Deployment
SOMA is designed to gracefully handle sites which are unaware

of SOMA or have not yet been configured. More specifically, if
the soma-manifest and/or soma-approval files do not exist
(or do not contain SOMA specific identifying strings), the browser
defaults to current permissive behaviour, that is, it assumes that
inclusions are allowed. Thus, a SOMA-enabled browser can run
on current web pages without any difference in behaviour.
If only the origin site has a soma-manifest, then SOMA still

provides partial security coverage, enforcing the policy that is de-
fined in the soma-manifest. If the origin site does not have a
manifest file, but the content provider gives approval information
through soma-approval then the policy defined by the content
provider is enforced by the SOMA-enabled browser.
In order to verify that files returned in response to requests for

soma-manifest and soma-approval are related to SOMA,
we stipulate that the first line of the soma-manifest file must
contain SOMA Manifest and the soma-approval file must
contain only the word YES or NO. This is necessary since many
websites return a generic page even when the request has not been
found, and this must not be confused with intentional responses to
SOMA requests.
The full benefits of SOMA are available when origins and con-

tent providers both provide SOMA-related files, but the design is
such that it is possible for either side to start providing files with-
out needing extensive coordination to ensure that both are provided
at the same time. In other words, incremental deployment is pos-
sible. In addition, even if one site refuses to provide policy files
for whatever reason, others can still obtain lesser security benefits.
Moreover, the support of SOMA at servers need not be synchro-
nized with deployment of SOMA at browsers.
A more security-oriented default policy would be possible, with

SOMA assuming a NO response if the manifest or approval files are
not found by the browser. This could potentially provide additional
security even on sites which do not provide policy, as well as en-
couraging sites which do not have policies to set them. However, it
would break almost all existing web pages, almost surely prevent-
ing the adoption of SOMA. The permissive default was chosen to



reflect current browser behaviour and to make it easier for SOMA
to be deployed.

4.3 Deployment Costs
The browser, the origin sites, and content inclusion provider sites

all bear the costs in deploying SOMA. Note that unlike some so-
lutions which rely heavily upon user knowledge (e.g., the NoScript
add-on for Mozilla Firefox [22]), SOMA requires no additional ef-
fort on the part of the user browsing the web site. Instead, policies
are set by server operators, who are expected have more informa-
tion about what constitutes good policy for their sites.

4.3.1 Deployment in the browser

The SOMA policy is enforced by the web browser, so changes
are required in the browser. We have created a prototype add-on for
Mozilla Firefox 2 and 3 as discussed in greater detail in Section 5.

4.3.2 Deployment on origin sites

Each origin site which wishes to benefit from the protections of
SOMA needs to provide a soma-manifest file. This is a text file
containing a list of content-providing sites from which the origin
wishes to include content. As mentioned earlier, content providers
are specified by domain name, protocol and (optionally) port.
This list can be determined by looking at pages on the site and

compiling a list of content providers. This could be automated us-
ing a web crawler, or done by an admin who is willing to set pol-
icy. (It is possible that sites will wish to set more restrictive policy
than the site’s current behaviour.) We examined the main page on
popular sites to determine the approximate complexity of manifests
required. These results are detailed in Section 5.5.2.

4.3.3 Deployment on content provider sites

Content providers wishing to take advantage of SOMA need to
provide either a file or script which can handle requests to
soma-approval. The time needed to create this policy script
depends heavily upon the needs of the site in question, and may
range from a simple yes-to-all or no-to-all to more complex poli-
cies based upon client relationships. Fortunately, simple policies
are likely to be desired by smaller sites (which are unlikely to have
the resources to create complex policies), and complex policies are
likely to be required only by sites who have more expertise.
Many sites will not wish to be external content providers and

their needs will be easily served by a soma-approval file that
just contains NO. Such a configuration will be common on smaller
sites such as personal blogs. It will also be common on high-
security sites such as banks, who want to be especially careful to
avoid XSRF and having their images used by phishing sites. Phish-
ing sites will have to copy over images as opposed to linking to the
original image.
Other sites may wish to be content providers to everyone. Sites

such as Flickr and YouTube that wish to allow all users to include
content will probably want to have a simple YES policy. This is
achieved by creating a soma-approval file that contains the
word YES, or not hosting a soma-approval file (as the default
is YES).
The sites requiring the most configuration are those who want to

allow some content inclusions rather than all or none. For example,
advertisers might want to provide code to sites displaying their ads.
The domains that need to be approved can be determined using the
list of domains already associated with each clients profile. This
database could then be queried to generate the approval list. Or a
company with several web applications might want to keep them on
separate domains but still allow interaction between them. Again,

the necessary inclusions will be known in advance and necessary
policy could be created by a system administrator or web developer.
For an evaluation of the performance impact of SOMA, see Sec-

tion 5.5.3.

4.4 Limitations Summary
SOMA is designed to improve the same origin policy by impos-

ing further constraints upon external inclusions and thus external
communications. It does not prevent attacks that do not require ex-
ternal communications such as code and content injection. SOMA
can restrict outside communication frequently seen in current at-
tack code [27].
SOMA does not stop attacks to or from mutually approved part-

ners. In order to avoid these attacks, it would be necessary to im-
pose finer-grained control or additional separation between com-
ponents. This sort of protection can be provided by the mashup
solutions described in Section 6, albeit at the cost of extensive and
often complex web site modifications.
SOMA cannot stop attacks on the origin where the entire at-

tack code is injected, if no outside communication is needed for
the attack. This could be web page defacement, same-site request
forgery, or sandbox-breaking attacks intended for the user’s ma-
chine. Some complex attacks might be stopped by size restrictions
on uploaded content. More subtle attacks might need to be caught
by heuristics used to detect cross-site scripting. Some of these so-
lutions are described in Section 6.
SOMA cannot stop attacks from malicious servers not includ-

ing content from remote domains. These would include phishing
attacks where the legitimate server is not involved.

5. PROTOTYPE

5.1 Description
In order to test SOMA, we created an add-on for Mozilla Firefox

2.0, licensed under the GNU GPL version 2 or later.5 It can be
installed in an unmodified installation of Mozilla Firefox the same
way as any other add-on: the user clicks an installation link and is
prompted to confirm the install. If they click the install button, the
add-on is installed and begins to function after a browser restart.
The SOMA add-on provides a component that does the neces-

sary verification of the soma-manifest and soma-approval
files before content is loaded.
Since it was not possible to insert test policy files onto sites over

which we had no control, we used a proxy server to simulate the
presence of manifest and approval files on popular sites.

5.2 Performance
The primary overhead in running SOMA is due to the additional

latency introduced by having to request a soma-manifest or
soma-approval from each domain referenced on a web page.
While these responses can be cached (like other web requests), the
initial load time for a page is increased by the time required to com-
plete these requests. Because the manifest can be loaded in parallel
with the origin page, we do not believe manifest load times will af-
fect total page load times. Because soma-approval files must
be retrieved before contacting other servers, however, overhead in
requesting them will increase page load times.
Because sites do not currently implement SOMA, we estimate

SOMA’s overhead using observed web request times. First, we de-
termined the average HTTP request round-trip time for each of 40

5See http://ccsl.carleton.ca/software/soma



representative web sites6 on a per-domain basis using PageStats [9].
We used this per-domain average as a proxy for the time to retrieve
a soma-approval from a given domain. Then, to calculate page
load times using SOMA, we increase the time to request all content
from each accessed domain by the soma-approval request es-
timate for that domain. The time of the last response from any
domain then serves as our final page load time.
After running our test 30 times on 40 different web pages, we

found that the average additional network latency overhead due
to SOMA increased page load time from 2.9 to 3.3 seconds (or
13.28%) on non-cached page loads. On cached page loads, our
overhead is negligible (since soma-approval is cached). We
note that this increase in latency is due to network latency and not
CPU usage. If we assume that 58% of page loads are revisits [37],
the average network latency overhead of SOMA drops to 5.58%.
Because soma-approval responses are extremely small (see

Section 5.5.3), they should be faster to retrieve than the average
round-trip time estimate used in our experiments. Thus, these val-
ues should be seen as a worst-case scenario; in practice, we expect
SOMA’s overhead to be significantly less.

5.3 Compatibility with Existing Web pages
To test compatibility with existing web pages, the global top

45 sites as ranked by Alexa [2] were visited in the browser with
and without the SOMA add-on. No SOMA compatibility issues
were detected. In addition, one author ran the SOMA add-on for
2 weeks while doing regular browsing, and no SOMA incompati-
bilities were observed. These results were expected, as SOMA was
designed for compatibility and incremental deployment.

5.4 Attacks
In order to verify that SOMA actively blocks information leak-

age, cross-site request forgery, cross-site scripting, and content steal-
ing, we created examples of these attacks. We specifically tested
the following attacks with the SOMA add-on:
1. A GET request for an image on another web site (testing both
GET based XSRF as well as content stealing).

2. A POST request to a page on another web site done through
JavaScript (testing POST based XSRF).

3. An iframe inclusion from another web site (testing iframe
injection based XSS).

4. Sending either a cookie or personal information to another
web site (testing information leakage).

5. A script inclusion from another web site (testing XSS injec-
tion).

All attacks were hosted at domain A and used domain B as the
other domain involved. All attacks were successful without SOMA.
With SOMA we found that these attacks were all prevented by ei-
ther a manifest at domain A not listing B or a soma-approval
at domain B which returned NO for domain A.

5.5 Deployment Costs

5.5.1 Browser: SOMA Add-on

The SOMA add-on, when prepared into the standard XPI pack-
age format used by Mozilla Firefox, is 16kB. Uncompressed, the
entire add-on is 18kB. The component which does the actual SOMA
mutual approval process is 12kB; the rest is installation files and
chrome so that the browser provides a visual indication that the
add-on is loaded.

6Our representative sample included banks, news sites, web e-mail,
e-commerce, social networking, and less popular sites.

5.5.2 Origin sites: Manifest files

To determine approximate sizes for manifests, we used the PageS-
tats add-on [9] to load the home page for the global top 500 sites as
reported by Alexa [2] and examined the resulting log, which con-
tains information about each request that was made. On average,
each site requested content from 5.45 domains other than the one
being loaded, with a standard deviation of 5.3. The maximum num-
ber of content providers was 32 and the minimum was 0 (for sites
that only load from their own domain).
Of course, a site’s home page may not be representative of its

entire contents. So, as a further test we traversed large sections of
a major news site (www.cbc.ca) and determined that the number
of domains needed in the manifest was approximately 45; this value
was close to the 33 needed for that particular site’s home page.
Given the remarkable diversity of the Internet, there probably

exist sites today that would require extremely large manifest files.
This cursory survey, however, gives evidence that manifests for
common sites would be relatively small.

5.5.3 Content provider sites: Approval files

Approvals result in tiny amounts of data being transferred: either
a YES or NO response (around 4 bytes of data) plus any necessary
headers.
Using data from the top 500 Alexa sites [2], we examined 3244

cases in which a content provider served data to an origin site.
The average request size was 10459 bytes. Because many content
providers are serving up large video, however, the standard devia-
tion was fairly large: 118197 bytes. The median of 2528 bytes is
much lower than the average. However, even this smaller median
dwarfs the 4 bytes required for a soma-approval response. As
such, we feel it safe to say that the additional network load on con-
tent providers due to SOMA is negligible compared to the data they
are already providing to a given origin site.

6. RELATED WORK
Web-based execution environments have all been built with the

understanding that unfettered remote code execution is extremely
dangerous. SSL and TLS can protect communication privacy, in-
tegrity, and authenticity, while code signing [30, 35] can prevent the
execution of unauthorized code; neither, however, protect against
the execution of malicious code within the browser. Java [8] was
the first web execution environment to employ an execution sand-
box [39] and the same origin policy for restricting network commu-
nication. Subsequent systems for executing code within a browser,
including JavaScript, have largely followed the model as originally
embodied in Java applets.
While there has been considerable work on mitigating the fail-

ures of language-based sandboxing [18] and on sandboxing other,
less trusted code such as browser plugins and helper applications
[12], only recently have researchers begun addressing the limita-
tions of sandboxing and same origin policy with respect to JavaScript
applications.
Many researchers have attempted to detect and block malicious

JavaScript. Some have proposed to instrument JavaScript automat-
ically to detect known vulnerabilities [29], while others have pro-
posed to filter JavaScript to prevent XSS [19] and XSRF [17] at-
tacks. Another approach has been to perform dynamic taint track-
ing (combined with static analysis) to detect the information flows
associated with XSS attacks [38]. Instead of attempting to de-
tect dangerous JavaScript code behaviour before it can compromise
user data, SOMA prevents unauthorized cross-domain information
flows using site-specific policies.



Recently several researchers have focused on the problem of web
mashups, which may be created on the client or server. Client-
side mashups are composite JavaScript-based web pages that draw
functionality and content from multiple sources. To make these
mashups work within the confines of same origin policy, remote
content must either be separated into different iframes or all code
must be loaded into the same execution context. The former so-
lution is in general too restrictive while the latter is too permis-
sive; client-side mashup solutions are designed to bridge this gap.
Two pioneering works in this space are Subspace [16] and Mashu-
pOS [14, 40]. SOMA restricts communication between the web
page (browser) and servers while mashup solutions restrict local
communication between elements on the page.
SOMA breaks client-side mashups which use unapproved code.

In order for a mashup to work with SOMA, every web site involved
must explicitly allow participation. While such restrictions may in-
hibit the creation of novel, third party mashup applications, they
also prevent attackers from creating malicious mashups (e.g., com-
binations of a legitimate bank’s login page and a malicious login
box). Given the state of security on the modern web, we believe
such a trade-off is beneficial and, moreover, necessary. SOMA does
not affect server-side mashups.
While the general problem of unauthorized information flow is

a classic problem in computer security [10], little attention has
been paid in the research community to the problems of unautho-
rized cross-domain information flow in web applications beyond
the strictures of same origin policy—this, despite the fact that XSS
and XSRF attacks very heavily rely upon such unauthorized flows.
Of course, the web was originally designed to make it easy to em-
bed content from arbitrary sources. With SOMA, we are simply
advocating that any such inclusions should be approved by both
parties.
While SOMA is a novel proposal, we based the design of

soma-approval and soma-manifest on existing systems.
The soma-approval mechanism was inspired by the
crossdomain.xml [1] mechanism of Flash. External content
may be included in Flash applications only from servers with a
crossdomain.xml file [1] that lists the Flash applications’ orig-
inating server. Because the response logic behind a
soma-approval request can be arbitrarily complex, we have
chosen to specify that it be a server-side script rather than an XML
file that must be parsed by a web browser.
The soma-manifest file was inspired by Tahoma [7], an ex-

perimental VM-based system for securing web applications. Tahoma
allows users to download virtual machine images from arbitrary
servers. To prevent these virtual machines from contacting unau-
thorized servers (e.g., when a virtual machine has been compro-
mised), Tahoma requires every VM image to include a manifest
specifying what remote sites that VM may communicate with.
Note that by themselves Flash’s crossdomain.xml and

Tahoma’s server manifest do not provide the type of protection pro-
vided by SOMA. With Flash, a malicious content provider can al-
ways specify a crossdomain.xml file that would allow a com-
promised Flash program to send sensitive information to the at-
tacker. With Tahoma, a malicious origin server can specify a man-
ifest that would cause a user’s browser to send data to an arbitrary
web site, thus causing a denial-of-service attack or worse. By in-
cluding both mechanisms, we address the limitations of each.
Subsequent to our preliminary report [25], B. Sterne of Mozilla

introduced a related proposal called Site Security Policy (SSP) [36]
which is still in development. Another related proposal by Schuh
[33] involves the browser enforcing firewall-style rulesets provided
by the origin.

7. DISCUSSION AND CONCLUSION
Most JavaScript-based attacks require that compromised web

pages communicate with attacker-controlled web servers. Here we
propose an extension to same origin policy—the same origin mu-
tual approval (SOMA) policy—which restricts cross-domain com-
munication to a web page’s originating server and other servers that
mutually approve of the cross-site communication. By prevent-
ing inappropriate or unauthorized cross-domain communication,
attacks such as cross-site scripting and cross-site request forgery
can be blocked.
The SOMA architecture’s benefits versus other JavaScript de-

fences include: 1) it is incrementally deployable with incremen-
tal benefit; 2) it imposes no configuration or usage burden on end
users; 3) the required changes in browser functionality and server
configuration affect those who have the most reason to be con-
cerned about security, namely the administrators of sensitive web
servers and web browser developers; 4) these changes are easy to
understand, simple to implement technically, and efficient in exe-
cution; and 5) it gives server operators a chance to specify what
sites can interact with their content. While SOMA does not prevent
attackers from injecting JavaScript code, with SOMA such code
cannot leak information to attackers without going through an ap-
proved server.
We believe that SOMA represents a reasonable and practical

compromise between benefits (increased security) and costs (adop-
tion pain). Perhaps more significantly, our proposal of the SOMA
architecture highlights that the ability to create web pages using ar-
bitrary remote resources is a key enabling factor in web security
exploits (including some techniques used in phishing). While other
JavaScript defences will no doubt arise, we believe that among the
contributions of this paper are a focus on the underlying problem,
namely, deficiencies in the JavaScript same origin policy, and the
identification of several important characteristics of a viable solu-
tion.
It is easy to dismiss any proposal requiring changes to web in-

frastructure; however, there is precedence for wide scale changes
to improve security. Indeed, much as open email relays had to be
restricted to mitigate spam, we believe that arbitrary content inclu-
sions must be restricted to mitigate cross-site scripting and cross-
site request forgery attacks. We hope this insight helps clarify the
threats that must be considered when creating next-generation web
technologies and other Internet-based distributed applications.
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