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Abstract— Self-hashing has been proposed as a tech-

nique for verifying software integrity. Appealing aspects

of this approach to software tamper resistance include the

promise of being able to verify the integrity of software

independent of the external support environment, as well

as the ability to integrate code protection mechanisms au-

tomatically. In this paper, we show that the rich functional-

ity of most modern general-purpose processors (including

UltraSparc, x86, PowerPC, AMD64, Alpha, and ARM)

facilitate an automated, generic attack which defeats such

self-hashing. We present a general description of the attack

strategy and multiple attack implementations that exploit

different processor features. Each of these implementations

is generic in that it can defeat self-hashing employed by

any user-space program on a single platform. Together,

these implementations defeat self-hashing on most modern

general-purpose processors. The generality and efficiency

of our attack suggests that self-hashing is not a viable

strategy for high-security tamper resistance on modern

computer systems.

Index Terms— tamper resistance, self-hashing, check-

summing, operating system kernels, processor design, ap-

plication security, software protection

I. INTRODUCTION

S
OFTWARE vendors, developers, administrators, and

users require mechanisms to ensure that their appli-

cations are not modified by unauthorized parties. Most

commonly, this need is satisfied through the use of tech-

nologies that compute hashes (checksums) of program

code. For example, cryptographically-secure hashes are

used in signed code systems such as Microsoft’s Win-

dows Update [1] to ensure the integrity and authenticity

of downloaded programs and patches. Hashes are also

used to periodically check on-disk code integrity in

systems such as Tripwire [2].

While these mechanisms are useful for protecting

against third-party attackers and some kinds of malicious

software, they are of little use to developers who wish

to protect their applications from modifications by users,

administrators, or malicious software. To prevent circum-

vention of copy protection (e.g. Digital Rights Man-
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agement (DRM) enforcement code), or other security

mechanisms, developers need to make their programs

resistant to modification (i.e. software tamper resistant).

There are a number of approaches which have been

proposed to prevent software tampering (see Section

IV-B, V). Without the additional support from other

resources, however, we are limited to mechanisms that

can be implemented within the program itself.

One popular tamper-resistance strategy is to have a

program hash itself, so that the binary can detect modi-

fications and respond. Self-hashing is a key part of Auc-

smith’s original proposal for tamper resistant software

[3]; it is also the foundation of the work by Chang and

Atallah [4]1 and Horne et al. [5]. Because the latter two

proposals involve little runtime overhead and are easy to

add to existing programs, they appear to be promising

tools for protecting software integrity; unfortunately, as

we show in this paper, the work described in these and

other similar papers is based on a simple, yet flawed

assumption that hashed code is identical to executed

code. While this assumption is true under normal cir-

cumstances, it can be violated through operating system

level manipulation of processor memory management

hardware – and thus, the assumption can be invalidated

by attackers.

Our Contributions. We present several such imple-

mentations of an attack in this paper as our main

result, and abstract the requirements (which are met by

essentially all modern general-purpose processors) that

allow our attack. We extend earlier results [6], showing

that our attack can be implemented on all mainstream

processors, not just the UltraSparc and x86. Our attack

works through the separation of code and data accesses.

This separation is either performed through a special

translation look-aside buffer (TLB) load mechanism

(e.g. Sections III-A and III-B) or by manipulation of

processor-level segments (see Section III-C).

Our attack has the fundamental advantage to the

attacker that it requires no reverse engineering of the

1Although Chang and Atallah document that their guards can do

more than checksumming, their paper focuses exclusively on the

checksumming approach.



2 IEEE TRANS. ON DEPENDABLE AND SECURE COMPUTING, APRIL-JUNE 2005

self-hashing code; indeed, the hashing code can simply

be ignored. The implication of our attack is that self-

hashing cannot be trusted to provide reliable integrity

protection on untrusted operating systems when running

on most modern general-purpose processors, in hostile

host environments [7]. In some cases our attack can be

implemented multiple ways on a specific architecture.

Even if processor design changed sufficiently to guard

against one variation of the attack, other variations

remain.

The remainder of this paper is organized as follows.

Section II briefly reviews self-hashing software tamper

resistance mechanisms. Section III summarizes the facil-

ities in modern general-purpose processors which allow

for our attack and details our implementation and results.

We discuss an UltraSparc implementation in section III-

A which leads into a generic implementation discussed

in Section III-B. We then briefly discuss additional

implementations based on x86 segments (Section III-

C), microcode (Section III-D) and performance counters

(Section III-E). Section IV discusses noteworthy fea-

tures and implications of our attack. Section V briefly

discusses related work. Section VI provides concluding

remarks.

II. SELF-HASHING TAMPER RESISTANCE

Software tamper resistance is the art of crafting a

program such that it cannot be easily modified by a

potentially malicious attacker without the attack being

detected [3]. In some respects, it is similar to fault-

tolerant computing, in that potentially dangerous changes

in program state are detected at runtime. Rather than

attempting to detect hardware flaws or software errors,

software tamper resistance attempts to detect changes in

program execution caused by a malicious adversary.

More precisely, the standard threat model for software

tamper resistance is the hostile host model [7]. In this

model, the challenge is to protect an application running

in a malicious environment. The user, other running

programs, the underlying operating system, and the

hardware itself may all be untrustworthy. Because the

attacker controls program execution, he may change a

targeted application’s code or data in arbitrary ways.

Software tamper resistance mechanisms are designed to

detect such modifications at runtime so that appropriate

countermeasures may be invoked (e.g. the application

may corrupt ongoing computations or simply halt).

Note that this model is in contrast with the hostile

client model which assumes a trusted host and untrusted

applications. The hostile client problem appears to be an

easier problem to solve; numerous solutions have been

developed and deployed, e.g. sandboxing (see [7] for

further discussion).

There are many proposed methods for protecting soft-

ware against tampering (e.g. see [8], [9]). While self-

hashing tamper resistance is the focus of our discussion,

other approaches exist which are not susceptible to

hardware-assisted circumvention (see Section V). The

common trend with most of these approaches, however,

is that they rely on either additional hardware or trusted

third parties. In contrast, self-checking tamper resistance

mechanisms are distinguished in their ability to run on

unmodified commodity hardware without requiring third

parties.

A naive approach to self-hashing tamper resistance is

to have a single hashing routine embedded into an appli-

cation, and periodically invoked to compute a hash value

over the application code. The hash value is compared to

a known good value. This approach is trivially defeated

by an adversary in a hostile host environment, e.g. by

disabling the self-hashing routine, patching around it, or

modifying it to always return the “right” answer.

One of the earliest serious proposals for self-checking

tamper resistance was made by Aucsmith [3]. He pro-

posed a method based on runtime decryption and re-

encryption of program code within an integrity verifi-

cation kernel (IVK). The IVK is designed to serve as

a small trusted code base that is embedded within a

large application. To prevent it from being disabled,

the IVK will typically incorporate code for a few key

application operations. This IVK, then, protects the

integrity of the rest of the application by periodically

verifying digital signatures of application code. Because

such a digital signature verification involves computing

a cryptographic hash of application code and checking

its consistency with a known good value (the one incor-

porated into the digital signature), Aucsmith’s proposal

is a form of self-hashing software tamper resistance.

As the IVK executes many computationally expensive

operations on executable code (symmetric encryptions,

cryptographic hashes, and public key operations), it is

expensive to run (and difficult to implement correctly);

however, for it to properly protect an application, it must

be frequently invoked. Thus the IVK can significantly

impair application performance.

To overcome these limitations, other researchers have

proposed alternate, lighter weight self-checking methods

based on fast non-cryptographic hashes, or checksums.

Since a single checksum is relatively easy for an attacker

to disable, these proposals rely on networks of inter-

connected checksums, all of which must be disabled

to defeat tamper resistance. For example, Horne et al.

[5] use testers which compute a checksum of a specific



VAN OORSCHOT et al.: HARDWARE-ASSISTED CIRCUMVENTION OF SELF-HASHING SOFTWARE TAMPER RESISTANCE 3

Code Segment

Checksum

Checksum

Checksum

Checksum

Checksum

Checksum

Fig. 1. Distribution of checksum blocks within a code segment [5]

section of code (see also [4], [10]). A tester reads

the area of memory occupied by code and read-only

data, building up a checksum result based on the data

read. A subsequent section of the code may operate

on the checksum result, affecting program stability or

correctness in a negative way if a checksum result is

not the same as a known good value pre-computed at

compile time. The sections of code which perform the

checksumming operations may be hidden using code

obfuscation techniques to prevent static analysis. To

make it more difficult for an attacker to locate the

checksumming code, the effects of a bad checksum result

on the program should be subtle (e.g. it should cause

mysterious failures much later in execution).

Figure 1 gives a simplified view of a typical distri-

bution of checksumming code within an application. In

practise, there may be hundreds of checksum blocks

hidden within the main application code. Each allows

verification of the integrity of a predetermined section

of the code segment. The read-only data segment may

also be similarly checked. The checksumming code is

inserted at compile time and integrated with regular

execution code. The application is also made to rely on

the correct checksum result for each block in order to

work properly.

There are several aspects of such checksumming

which a potential attacker must keep in mind:

• Because of the overlapping network of testers, al-

most every checksumming block must be disabled

at the same time in order for a tampering attack to

be successful.

• The resulting value from a checksum block must

remain the same as the original value determined

during compilation (or all uses of the checksum

value must be determined and adjusted accordingly)

if the results of a checksum are used during standard

program execution as in [5].

• The checksum values are only computed for static

(i.e. runtime invariant) sections of the program.

• Checksumming code is obfuscated, hard to find, and

the use of checksum results is also hidden.

A critical (implicit) assumption of both the hashing

in Aucsmith’s IVK and checksum systems employing

networks is that processors operate such that D(x) =
I(x), where D(x) is the bit-string result of a “data read”

from memory address x, and I(x) is the bit-string result

of an “instruction fetch” of corresponding length from

x. If I(x) were different from D(x), then the hashing

code would potentially end up verifying the integrity

of code that is never executed while executed code is

not checked. In what follows we show that processor

memory management hardware can be manipulated such

that D(x) 6= I(x) for arbitrary areas of code loaded into

a process’s address space, allowing self-hashing mecha-

nisms to be bypassed with minimal runtime overhead.

III. HARDWARE-ASSISTED CIRCUMVENTION OF

SELF-HASHING

In this section, we present an overview of our attack.

We follow the overview with several implementations

which together defeat self-hashing tamper resistance

on the majority of modern general-purpose processors

(including UltraSparc, x86, Alpha, PowerPC, ARM and

AMD64). We first introduce the UltraSparc implemen-

tation (see Section III-A), and use it to motivate our

generic implementation of section III-B. We then present

3 more alternatives, namely the alternate x86 implemen-

tation in Section III-C, a microcode implementation of

Section III-D and a performance counter implementation

of Section III-E. Section III-F introduces the idea of

using our attack to locate hashing code. Our x86 imple-

mentation exploits the presence of segments for an attack

while the other implementations use TLB functionality.

Our attack is based on the following two basic

observations of modern computer system design and

implementation.

Observation 1. There does not exist a 1:1 correspondence

between virtual and physical addresses.

Observation 2. RAM and CPU storage are managed

differently depending upon whether they contain CPU

instructions (code) or program data.

By manipulating virtual to physical address mappings

such that a given virtual address refers to two different

physical addresses, one for code references and one for

data references, we can make D(x) 6= I(x) as required.

To explain how we can achieve this goal in practise, this

section outlines the specific CPU and operating system

features that form the basis of our attack and describes

our attack strategy. We explain (in multiple subsections)

how the attack may be implemented on the majority of

modern general-purpose processors.
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To support multiprogramming and simplify

application-level memory management, modern

processors include hardware dedicated to accelerating

complex operating system-level memory management

implementations. The basic idea behind such systems is

that user programs are written (compiled) not to reside

within the variable size, shared physical RAM address

space of a computer, but rather within a canonical per-

program virtual address space. At runtime, the operating

system instantiates the program using available physical

memory. Virtual address references are translated to

appropriate physical address references by the processor.

In older, simpler systems, programs had to be rewritten

at load time such that code and data references refer to

the physical memory actually allocated to it; on modern

systems, however, special registers and caches allow

virtual addresses to be translated on-the-fly with little

loss in performance. Such address translation hardware

works by dividing the virtual and physical address

spaces into separately managed chunks. The operating

system, then, maintains data structures that specify on a

per-running program (per-process) basis which area of

virtual memory corresponds to which physical memory

area. One consequence of this design is that there is

no longer a 1:1 mapping between virtual and physical

addresses (cf. Observation 1 above): a given piece of

physical RAM may be referenced by two or more virtual

address ranges, and many virtual addresses correspond

to no physical memory at all.

The data structures describing the virtual-to-physical

memory mapping can become rather large; however,

because every memory reference must be translated

using these data structures, translation lookups must be

extremely fast. Fortunately, most programs exhibit high

degrees of locality in their memory reference patterns;

thus, processors only need to maintain a small portion

of the mapping data structure in fast cache memory at

any given time.

System designers have long known, however, that code

and data exhibit different patterns of locality (e.g. a

small code loop may reference a large data structure). To

prevent conflict between these patterns, memory caches

(of both memory contents and of virtual-to-physical

address mappings) are frequently divided between ded-

icated instruction (code) and data areas. Such divided

caches are referred to as being split. See [6] for more

review on hardware design.

Older systems often performed virtual to physical

address mappings using segmentation. In a segmentation-

based system, memory is divided into variable-sized

pieces known as segments. Each segment is defined by

a base address (its starting point in physical memory)

and a bound. Programs are divided into multiple seg-

ments based upon logical function, e.g. one segment for

application code, another for library code, and another

for data. Memory references within a program binary are

in terms of segment offsets; at runtime, these offsets are

resolved into physical memory locations by adding them

to the appropriate segment base address. The operating

system controls the base and bound of each segment; by

changing these values, it can control the location and size

of segments within physical memory without rewriting

the actual program binary. If the operating system (e.g.

serving the purposes of an attacker) can ensure that data

accesses to code-containing segments are redirected to

another segment entirely, then it can make D(x) 6= I(x)
as required.

Because it is easy for memory to become fragmented

in a segmentation-based system, modern virtual mem-

ory systems instead divide virtual address spaces into

fixed-sized pieces known as pages and the physical

address space into frames such that exactly one page

can fit within each frame. Page tables are then used

to determine which physical frame (if any) holds the

page containing data for a given virtual address. To

accelerate address translation, recently-used mappings

are stored in a fast, content-addressable cache known

as the translation lookaside buffer (TLB). Most modern

general-purpose processors have split TLBs, as clarified

shortly. If the operating system can manipulate the TLB

such that virtual addressees have different instruction

and data mappings, then it can make D(x) 6= I(x) as

required.

To instantiate our attack strategy, we assume an attack

implementation involving the following common steps

(in this paper, the subject of focus is the kernel module

designed to implement the attack).2

1) The attacker makes a copy of the original program

code (e.g. cp program).

2) The attacker modifies the original program code as

desired.

3) The attacker modifies the kernel on the machine,

installing a kernel module or patch designed to

implement our attack.3

4) The attacker runs the modified code under the

modified kernel. During the attack, the attack code

in the kernel will redirect data reads (including

those made by the self-hashing code) to the cor-

2See [11] for a more detailed description of all steps involved in

a successful attack.
3This of course assumes an attacker has, or has gained, very

significant privileges on the host machine. However, this is precisely

the standard threat model for software tamper resistance (see Section

II).
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responding information in the unmodified applica-

tion.

While we have only implemented two versions of

our attack (namely those of Section III-A and III-C)

the others appear equally valid, based on our research.

The breadth of implementations possible for our attack

show that common core memory functionality (and not

a processor specific design feature) allows our attack to

succeed. Two categories of memory which permit our

attack are split TLB’s and segments.

A. Circumvention on the UltraSparc

In this section we focus on the UltraSparc.

On the UltraSparc processor [12], TLB misses (ac-

cesses to a virtual addresses not present in the TLB)

trigger CPU exceptions that allow the operating system

to update the TLB state as necessary. Because the

UltraSparc has a split TLB, and because its software-

controlled TLB load mechanism uses different excep-

tions for instruction TLB and data TLB misses, the

operating system can easily place different page table

entries into each TLB, each pointing to a different frame

of physical memory.

To implement our attack, we modify the operating

system’s TLB load routines such that instruction fetches

are automatically directed to a frame p while reads by the

program code into the code section are directed to frame

p+1 (see Figure 2). A targeted application’s code is then

loaded into memory such that frame p + 1 contains an

unmodified copy of the original code while the modified

code is in frame p. A data read of a code-containing

virtual address thus results in the expected value of the

unmodified (original) program code in frame p + 1,

even though the actual instruction which is executed

from that same virtual address is a (potentially) different

instruction contained in frame p. In this discussion and

for our proof of concept implementation, an offset of

one physical page was chosen for simplicity; other page

offsets may also be used.

We created a proof-of-concept implementation by

modifying a Linux 2.6.8.1 kernel [13] running on an

UltraSparc-based Sun workstation (a SunBlade 150). A

userspace wrapper program was developed to provide the

kernel with the extra information necessary to implement

the attack. The wrapper program tells the kernel which

pages are to have differential processing of data and

instruction reads (which pages are to be split) and

provides the data from the unmodified version of the

program to be run. The wrapper program replaces itself

(using execve) with the modified application binary

when it has finished initialization.

Virtual Address

Instruction Fetch

Data Fetch

Physical Memory

Instruction TLB

Data TLB

Original Program Code

Modified Program Code

Fig. 2. Separation of virtual addresses for instruction and data fetch

The kernel was modified to allocate two adjacent

frames in physical memory for each modified code page,

with frame p holding the modified page and frame p+1
holding the unmodified page. To keep track of which

pages were split in this fashion, an unused bit in each

page table entry was used to store a boolean value named

isSplit.

When a data TLB miss exception is triggered by the

processor, the modified exception handler checks the

isSplit bit associated with the requested page and incre-

ments the corresponding frame number before loading it

into the data TLB. This extra processing requires only

6 additional assembly instructions. Our proof of concept

implementation was tested with a program employing

self-hashing of the code section. We were able to easily

change program flow of the original program without

being detected.

B. A Multi-Platform Circumvention Strategy

Although the previously outlined implementation will

bypass the self-hashing code on any application run-

ning on the UltraSparc, it does not work on most

modern general-purpose processors – for example, the

TLB loading process in systems such as PowerPC [14],

AMD64 [15], x86 [16], and ARM [17] is not software

modifiable and thus the implementation of Section III-

A will not work. We instead need to explore another

implementation of our attack on these CPUs. In this

section, we present an approach which builds on the

UltraSparc implementation, allowing it to work on most

modern processors, including all of those mentioned in

the previous sentence.

While most processors may present different interfaces

to their memory management unit (MMU), all modern

MMUs operate on the same basic principles. Code and

data accesses are split and corresponding TLBs perform

the translation. Since processors do not keep track of
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when a page table entry is modified in main memory, the

TLB entry is manually cleared by the operating system

whenever the corresponding page table entry is modified

in main memory. The clearing of the TLB entry will

cause a reload of the modified page table entry into

the TLB when information on the page is next required

by the processor. A discrepancy develops if the TLB

entry is not cleared when the page table entry changes

in main memory. This common design methodology in

the interaction between the TLB and page table entries

in main memory allows our generic attack on a wide

range of modern general-purpose processors, as we now

describe.

Our generic attack exploits the ability for a TLB entry

to be different from the page table entry in main memory.

This attack works even in the case of a hardware TLB

load (as described in [6]). Regardless of the TLB load

mechanism used, an attacker with kernel-level access

to the page table and associated data structures can

implement this generic attack. As explained later, it can

be deduced whether an instruction or data access causes

a TLB miss. By forcing a TLB miss to generate a corre-

sponding page fault, we can ensure the OS is notified on

every TLB miss. By examining the information related

to page table misses coming from a TLB miss, we can

determine whether the instruction or data TLB will be

filled with the page table entry. Since processors split

the TLB internally, a data TLB will not be affected if

the memory access causing the page fault was due to an

instruction fetch. To determine whether an instruction

or data access caused the page fault, we (i.e. our own

modified attack kernel) need only examine the current

instruction pointer and virtual address which caused the

failure.

Observation 3. If the instruction pointer is the same as

the virtual address causing the fault, then an instruction

access caused the fault, otherwise a data access caused

the fault.

To implement the attack, we always mark page table

entries as not present in the page table (by clearing

the valid flag) for those pages for which we want to

distinguish between instruction and data accesses. When

the processor attempts to do a hardware page table

search, a page fault will be delivered to the OS. If the

OS determines that an instruction access caused the page

fault, then the page table entry is filled with appro-

priate information for the potentially modified program

code, otherwise the page table entry is filled with the

information of the unmodified program code (which is

what should be read on a data access). As soon as

the instruction execution completes, the valid flag on

the page table entry is cleared by the operating system

(i.e. the modified kernel) so that subsequent TLB miss

operations will cause the operating system to be notified.

While resetting the page table entry, the TLB is not

cleared. This allows the program to operate at full speed

as long as the translation entry remains in the TLB. The

instruction completion can be detected with a single step

interrupt. This attack approach is illustrated in Figure 3.4

There is one potential case which requires special

attention in the attack, and that is if the program under

attack branches to an instruction which reads data from

the same page where the instruction is located. In this

case, the instruction will cause both the data and in-

struction TLBs (hereafter: DTLB and ITLB) to be filled

in the process of fulfilling the instruction. To properly

handle this situation, our modified OS must ensure that

each TLB is filled separately. One way is through the

attack kernel executing a different instruction (such as

NOP) from the same page beforehand which does not

modify the DTLB. A NOP instruction will cause only the

ITLB to be loaded. The OS can insert a NOP instruction

anywhere on the page and after execution replace this

NOP with the original instruction at that location. Thus

we slightly modify the attack described above so that in

all cases, a NOP instruction is run on every ITLB miss

to ensure proper separate loading of each TLB.

In summary, for processors which have a split memory

management unit including split TLBs, this generic

attack is possible. The attack is possible on a wide

range of modern general-purpose processors since it

is common to implement a split TLB for performance

reasons. The ability of the processor to do a hardware

TLB reload (also called page table walk) does not affect

the feasibility of this generic attack.

C. Circumvention on the x86

The attack approach outlined in the preamble of

Section III can be implemented on the popular x86

architecture [18] by manipulating two different aspects of

memory management as described below. In this section

we exploit the processor segmentation features of the

x86. This implementation is included for completeness

(since the attack implementation of Section III-B does

work for the x86), showing the range of different possi-

ble implementations.

In addition to supporting memory pages, the x86 can

also manage memory in variable sized chunks known

as segments. Associated with each segment is a base

address, size, permissions, and other meta-data. Together

4A more complex but faster alternate method involves the kernel

directly loading the page table entry into the corresponding TLB; see

[11]
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Processor Hardware
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Return from Interrupt
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Single Step Interrupt
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Operating System Software/Memory
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Else
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End If
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Set Single_Step Flag
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Fig. 3. Implementing a generic attack on processors with hardware TLB load
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Linear Address Page Data Page Offset

Page Table

Translation Algorithm

Physical Address Frame Number Frame Offset

Logical Address Segment Offset

Segment

Translation Algorithm

Segment Number

Fig. 4. Translation from virtual to physical addresses on the x86

this information forms a segment descriptor. To use a

given segment descriptor, its value is loaded into one

of the segment registers. Other than segment descriptor

numbers, the contents of these registers are inaccessible

to all software. In order to update a segment register,

the corresponding segment descriptor must be modified

in kernel memory and then reloaded into the segment

register.

A logical address consists of a segment register spec-

ifier and offset. To derive a linear address, a segment

register’s segment base (named by the segment specifier)

is added to the segment offset. An illustration of the

complete translation mechanism for the x86 architecture

is shown in Figure 4. Code reads are always relative

to the code segment (CS) register, while normally, if

no segment register is specified data reads use the data

segment (DS) register. Through segment overrides a data

read can use any segment register including CS. After

obtaining a linear address, normal page table translation

is done as shown in Figure 4 and Figure 5.

Unlike pages on the x86, segments can be set to

only allow instruction reads (execute-only). Data reads

and writes to an execute-only segment will generate an

exception. This execute-only permission can be used to

detect when an application attempts to read memory

relative to CS. As soon as the exception is delivered to

an OS modified for our attack, the OS can automatically

change the memory map (similar to as in Section III-A

but see Figure 6) to make it appear as if the unmodified

data was present at that memory page.

Most operating systems for x86, however, now im-

plement a flat memory model. This means that the

base value for the CS and DS registers are equal; an

application need not use the CS register to read its

code. A flat memory model will ensure that both linear

addresses are the same, resulting in the same physical

address (as denoted by the dash-dot-dot line in Figure

5).

Linear Address Map

Code’

CS Base

DS Base

Code

Data

Stack

Fig. 6. Splitting the flat memory model to allow a tamper resistance

attack

On the surface, it appears that our attack, based on

this first aspect – the execute-only feature – would be

thwarted by the flat memory model. However, although

modern operating systems present a flat memory model

to the application, an OS modified to contain attack code

need not obey the flat memory model. It may “appear” to

present a flat memory model, even though segmentation

is being used (see Figure 6).

To implement the attack, store two copies of the pro-

gram in the logical address space. Let Code contain the

original unmodified program code while Code′ contains

the modified program code. Then set the CS segment

to point to the start of Code′ and set all other segment

descriptors, including the DS, to point to the beginning of

Code (see Figure 6). Also, set the CS segment to execute-

only. If the application attempts to perform an ordinary

data read of its code, it will access the unmodified

version at Code. If the application instead uses a CS

override to access data relative to CS, it will cause an

exception because CS is execute only. The modified

kernel can then take steps (e.g. temporarily replacing

the page table entry for Code′ with that for Code5) to

ensure that the read is directed to Code. Code′ is thus

not accessible via data reads by the application.

While it may appear as if the entire usable linear

address space is halved by the requirement to store code,

data, and stack, only a second copy of the code must

be mapped into the targeted application’s address space.

All that is required, then, is sufficient consecutive linear

memory to address the second copy of the code.

Although we have not fully implemented all compo-

nents of our attack on the x86, the PaX project [19]

already successfully uses similar segment manipulations

in their x86 NOEXEC implementation (SEGMEXEC).

Their Linux kernel modification is designed to provide

5Our test implementation’s modified kernel replaced the page table

entry for Code′ with that for Code. It then used the single step

interrupt and restored the page table entry after the instruction had

executed.
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get from CS:0x1000

get from DS:0x1000

Physical Memory

Segment Start

Segment Start

CS Information:

DS Information:

Page Table Translation
Linear Address

Linear Address

Virtual Address

Virtual Address

Physical Address

Using CS Segment Override

Without CS Segment Override

Fig. 5. Translation of a get using segment overrides

no-execute permission on x86 processors which do not

support the no-execute page table flag. By combining

our implementation of execute-only code segments with

PaX, all major features required for attack are present.

In summary, this specific implementation provides an

additional alternative for defeating currently known self-

integrity hashing mechanisms on x86 processors.

D. Microcode

Some processors (e.g. the x86 [16] and Alpha [20])

support the software loading of microcode into the

processor at boot. In this section, we discuss an alternate

form of attack using the microcode related functionality

of a processor.

Microcode is designed to alter the functioning of

the processor. Different processors support microcode

in varying forms. It is unknown to us to what extent a

specific processor can be controlled through microcode.

With information from a processor manufacturer, it may

be possible to implement our attack directly on the

processor using microcode without ever calling out to

additional operating system functionality during the at-

tack. This would make the attack even harder to detect,

as microcode is not accessible even by the operating

system. Microcode documentation, however, is not com-

monly available to the general public, and hence it may

be more difficult to obtain the information required to

implement a successful attack using microcode. There

is, however, a variation of microcode which exists on

the Alpha processor (and possibly also on others) and is

well-documented.

The Alpha processor has the ability to execute PAL-

code (Privileged Architecture Library) [20]. PALcode is

similar to microcode except that it is stored in main

memory and modifiable by the operating system. PAL-

code is used to implement many of the functions which

would be hard to implement in hardware. These features

include memory management control. By modifying the

PALcode which is run by the processor on a TLB miss,

we can directly influence the state of both the data and

instruction TLB. PALcode uses the same instruction set

as the rest of the applications on the system, but is

given complete control of the machine state. Further-

more, implementation-specific hardware functionality is

enabled for use by PALcode. This results in a possible

attack which is similar to the UltraSparc (see Section III-

A). Replacing the PALcode for the TLB miss scenario

thus appears to offer yet another alternative variation of

our attack using microcode on the Alpha processor.

E. Performance Monitoring

Depending on the processor, performance counters

may have the ability to deliver an interrupt to the oper-

ating system when a specific counter wraps (overflows).

Performance counters also (conveniently for an attacker)

have the ability to track both DTLB and ITLB misses. If

these can be tracked independently, then we expect we

can arrange that the DTLB and ITLB will be loaded with

different data, even though they both examine the same

page table entry. For this attack, we use the same method

of splitting pages as for the UltraSparc attack in Section

III-A. By catching every DTLB or ITLB miss through

performance counters, the operating system is able to

prepare the page table entry for loading into the specific

TLB – hence allowing an implementation of our attack.
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See [11] for a more complete discussion. Although

not implemented, we see no reason why this variation

based on performance counters would fail based on our

research.

F. Locating the Hashing code

It is interesting to note that attempts to obscure the

location of reads into the code segment alone do not

protect against our attack. Since our attack (in its various

implementations) uses the processor directly to locate

and vector reads of code to different areas, approaches

that attempt to hide the accessing of code through

stealthy address computations provide little additional

protection. This includes techniques such as those pro-

posed by Linn et al. [21]. Indeed, we see no reason

why our attack could not be modified slightly to record

the location of instructions which cause a read into the

code segment (although there would be an additional

performance hit).

IV. FURTHER DISCUSSION

We now make some further observations regarding the

attack and its implications.

A. Noteworthy Features of the Attack

We first discuss several features which make the attack

(and its variations) of Section III particularly noteworthy.

Difficulty of Detecting the Attack Code. The attack

operates at a different privilege level than the applica-

tion process being attacked. This separation of privilege

levels results in the application program being unable

to access the memory or processor functionality being

used in the attack. Further, because the page tables of

a process cannot be accessed by the process itself, a

targeted application has no obvious indication that self-

hashing is being bypassed. Furthermore, kernel code is

also not available to userspace processes, and so this

code cannot be inspected by applications to determine

the presence of circumvention code.

While a specific implementation of the attack may be

detectable by an application because of subtle changes in

kernel or filesystem behaviour, attempting to detect every

possible implementation leads to a classical arms race in

terms of detection and anti-detection techniques. Because

attackers are able to update their attack tools much more

rapidly than defenders can update their application-level

defences, such arms races favour the attacker.

Feasibility where Emulator-based Attack Would

Fail. Since emulators can easily distinguish between

instruction and data reads, emulators can also be used

to defeat most forms of self-hashing software tamper

resistance. Such emulation, however, typically imposes

significant runtime overhead. Chang et al. [4] document

the performance impacts of tamper-proofing and come

to the conclusion that their protection methods only

result in a “slight increase” in execution time. Their

self-hashing tamper resistance methods, therefore, are

appropriate even for many speed-sensitive applications

(see [22]) – as is our attack.

While emulation attacks on speed sensitive applica-

tions are not feasible, our attack uses the CPU memory

management hardware itself to redirect code and data

reads. Because our attack is in effect “hardware accel-

erated,” it is a viable strategy even on speed-sensitive

applications. With the UltraSparc attack implementation,

the only increased delay is when the initial data access

to a page occurs and the appropriate frame number is

loaded into the data TLB. In our test implementation,

the calculation of the appropriate frame number only re-

quired 6 additional assembly instructions (which are only

executed during a TLB miss, not on every instruction

execution). It was determined that our attack imposes

an overhead of less than 0.1%. Other implementations

of our attack may have additional overhead, but we

expect this overhead to still be substantially less than

an emulator.

Program Independent Attack Code. The attack is

not program dependant. The same kernel level routines

can be used to attack all programs implementing self-

hashing tamper resistance, i.e. the attack code only needs

to be written once for the entire class of self-hashing

defences.

B. Attack Implications

The attack strategy outlined is devastating to the gen-

eral approach of self-hashing software tamper resistance,

including even the advanced and cleverly engineered

tamper-resistance methods recently proposed by Chang

et al. [4] and Horne et al. [5], and also including the

original tamper resistance proposal by Aucsmith [3]. Be-

cause of the wide variety of implementations available,

the attack is also essentially platform independent. It

can be implemented on most modern general-purpose

processors, including CPU architectures used by most

servers, workstations, desktop, and laptop computers.

One operating-system specific attack tool can be used

to defeat any implementation of self-hashing tamper re-

sistance. We now discuss whether these methods can be

modified so as to make them resistant to the attack, and

whether there are other self-checking tamper resistance

mechanisms that can be easily added to existing applica-
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tions, have minimal runtime performance overhead, and

are secure.

It is not sufficient to simply intermingle instructions

and runtime data to prevent against our attack strategy (as

proposed by [4]), because such changes do not prevent

the processor from determining when a given virtual

address is being used as code or as data. Furthermore,

attempts to disguise reads into the code segment (as

discussed in [21]) are unsuccessful against our attack.

For a self-checking tamper resistance mechanism to be

resistant to our attack strategy, it must either not rely on

treating code as data, whether for hashing or other pur-

poses, or it must make the task of correlating code and

data references prohibitively expensive. Thus, integrity

checks that examine intermediate computation results

appear to be immune to our attack strategy (e.g. [23]);

further, systems that dynamically change the relative

locations of all code and data are resistant to our attack.

Unfortunately, these alternatives are typically difficult to

add to existing applications or impose significant runtime

performance overhead, making them unsuitable for many

situations where self-hashing is feasible.

There are many other alternatives to self-hashing as

a defence against tampering, if one is willing to change

the requirements and have applications depend on some

type of trusted third party. For example, we could assume

that an application has access to some type of trusted

platform, whether in the form of an external hardware

“dongle” [24], a trusted remote server [25], or a trusted

operating system [26], [27]. Alternately, an application

could rely on a custom operating system extension (e.g. a

kernel module) to verify the integrity of its code. How-

ever implementation complexity, platform dependence,

stability, and security concerns that arise when changing

the underlying operating system minimize the appeal of

kernel-level modifications.

To summarize, we do not know of any alternatives

to self-hashing in the self-checking tamper resistance

space that combine the ease of implementation, platform

independence, and runtime efficiency of self-hashing

that are also invulnerable to our processor-based in-

struction/data separation attack. Nonetheless, advances

in static and runtime analysis might possibly enable the

development of alternative systems that verify the state of

a program binary by intermingling and checking runtime

intermediate values. These checks might be inserted

into an application at compile time, and be designed

to impose little runtime overhead. We believe that our

work provides significant motivation for the research and

development of such methods.

V. RELATED WORK

Various alternate tamper resistance proposals attempt

to address the malicious host problem by the introduction

of secure hardware [28]–[30]. Storing programs in mem-

ory which is execute-only [31] has also been proposed,

preventing the application from being visible in its

binary form to an attacker. Secure hardware, however,

is not widely deployed and therefore not widely viewed

as a suitable mass-market solution. Other research has

involved the use of external trusted third parties [22],

[23], [32]. However, not all computers are continuously

connected to the network, which among other drawbacks

makes this solution unappealing in general. Research is

ongoing into techniques for remote authentication (e.g.

see [25], [33], [34], also [35]). SWATT [36] has been

proposed as a method for external software to verify

the integrity of software on an embedded device. Other

recent research [37] proposes a method, built using a

trusted platform module [38], to verify client integrity

properties in order to support client policy enforcement

before allowing clients (remote) access to enterprise

services.

Systems like Tripwire [2] attempt to protect the in-

tegrity of a host from malicious intruders by detecting

modified system files (see also [39]). In particular, in-

tegrity verification at the level of Tripwire assumes that

the operator is trusted to read and act on the verification

results appropriately. Other recent proposals include a

co-processor based kernel runtime integrity monitor [40],

but these are not designed to protect against the hostile

host problem in the case of a hostile end user.

While there are techniques for self-checking software

tamper resistance that do not rely on hashing (e.g. result

checking and on-the-fly executable generation [3], [8]),

self-hashing mechanisms are notable for being efficient

in CPU time and easy to add to arbitrary programs.

Software tamper resistance often employs software

obfuscation in an attempt to make intelligent software

tampering impossible (see [41], [42] and recent surveys

[8], [9]). We view obfuscation and tamper resistance

as distinct approaches with different end goals. Obfus-

cation, which is typically most effective against static

analysis, primarily attempts to thwart reverse engineering

and extraction of intelligence regarding program design

details; as a secondary effect, often this thwarts intelli-

gent software modification. Tamper resistance attempts

to make the program unmodifiable. In an obfuscated

program, code modifications are generally not directly

detected.

Other related work is discussed in Section II and

Section IV-B.
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VI. CONCLUDING REMARKS

We have shown that the use of self-hashing for tamper

resistance is vulnerable to a practical attack on modern

general-purpose processors, including the x86, AMD64,

PowerPC, UltraSparc, Alpha, and ARM processors with

memory management units. Memory management func-

tionality within a processor plays an important role in

determining how vulnerable current implementations are

to our attack. If a processor does not distinguish between

code and data reads, then our attack will fail (the MIPS

processor [43] is one example of such a processor).

Because of the performance and general security ben-

efits of code/data separation at a processor level, it is

highly unlikely that future processors will eliminate this

distinction. It is possible for processors to be modified

such that our attack is prevented. It is unlikely, however,

that all affected processors will be modified to prevent

our attack.

As noted earlier, other forms of tamper resistance

exist which are not susceptible to our attack, but these

typically have their own disadvantages (see Section IV-

B). We encourage further research into other forms of

self-checking tamper resistance, such as new security

paradigms possible through work similar to that pre-

sented by Chen et al. [23].
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