
A Control Point for
Reducing Root Abuse of File-System Privileges

Glenn Wurster
School of Computer Science

Carleton University, Ottawa, Canada
gwurster@scs.carleton.ca

Paul C. van Oorschot
School of Computer Science

Carleton University, Ottawa, Canada
paulv@scs.carleton.ca

ABSTRACT
We address the problem of restricting root’s ability to change
arbitrary files on disk, in order to prevent abuse on most
current desktop operating systems. The approach first in-
volves recognizing and separating out the ability to config-
ure a system from the ability to use the system to perform
tasks. The permission to modify configuration of the system
is then further subdivided in order to restrict applications
from modifying the file-system objects of other applications.
We explore the division of root’s current ability to change
arbitrary files on disk and discuss a prototype that proves
out the viability of the approach for designated system-wide
file-system objects. Our architecture exposes a control point
available for use to enforce policies that prevent one appli-
cation from modifying another’s file-system objects. In ad-
dition, we review in detail the permissions given to current
installers, and alternative approaches for secure software in-
stallation.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management—
Access Methods; D.4.6 [Operating Systems]: Security and
Protection—Invasive Software, Access Controls; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and En-
hancement

General Terms
Design, Security

Keywords
file-system protection, system configuration, install

1. INTRODUCTION AND OVERVIEW
Major commodity operating systems have a root or su-

peruser account which has total control over the machine,
including the file-system. Processes running under the root

c©ACM, 2010. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of 17th ACM Conference
on Computer and Communications Security.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

account can perform arbitrary actions on the file-system,
including creating, modifying, and deleting any file-system
object (including files, directories, and links). This open en-
vironment has lead to many problems, both stability and
malware related. On most current desktops, malware uses
the ability to change arbitrary files on disk in order to hide
itself.

While the principle of least privilege dictates that the priv-
ileges assigned to a process should be no more than the priv-
ileges required to perform the designed task, the standard
exercising of root privilege in order to install applications
does not follow the principle. While some progress has been
made by encouraging users and daemons not to run as root,
the same cannot be said for installers – perhaps the most
common use of root privilege in the current computing envi-
ronment is for system reconfiguration (i.e., installing, unin-
stalling, or upgrading software). In this paper, we pursue
reducing the file-system privileges of root in order to better
protect a system against abuse.

The actions performed by any user (including root) on a
system can be partitioned into two classes. The first involves
actions related to performing day-to-day operations on the
system (e.g., writing a paper, browsing, reading email, or
playing a game). Such actions typically do not have a lasting
impact on the state of the system (modulo data file creation
and deletion). The second class involves actions related to
changing system configuration. We define the configuration
state of a system as the set of programs installed, as well as
the global configuration related to each program. In order
to survive reboot, both the programs installed and all global
configuration state must be saved into the file-system, and
hence we focus on those configuration operations having a
direct visible effect on disk.

The common protection long used in practice is to limit
write access to application file-system objects (e.g., files in-
cluding binaries, directories, symbolic links, and other ob-
jects that are part of the file-system) to root [14]. This
protection mechanism fails to prevent abuse by any appli-
cation running as root, including during install, upgrade,
uninstall, or run-time. In today’s computing environments,
it is only realistic to treat any two applications on a sys-
tem as mutually untrustworthy. Given this updated threat
model, we further subdivide configuration in order to en-
capsulate applications – by this we mean that while it may
be possible for one application to read the binary, data, and
configuration files belonging to another application, it is not
possible to modify another’s files on disk. In contrast, cur-
rent desktop approaches for software installation do not pre-



vent an application from modifying or deleting file-system
objects related to or created by an unrelated application, a
problem previously identified in the literature [56, 51]. Our
restriction and division of root file-system permissions ad-
dresses this problem, without requiring any radical change
in file-system layout (e.g., applications can still install their
binaries in a common location such as /bin). As a direct
result, applications are better protected from malware and
other applications, even those running with root privileges.

In our design, which expands on preliminary ideas out-
lined in a workshop paper [66], the ability to modify ar-
bitrary objects (beyond simply files) on the file-system is
removed from root and reassigned to a process running with
a new configuration privilege. This process in turn can be
used to prevent one application from modifying the file-
system objects related to another. In creating a distinct
configuration permission, the configuration tasks currently
performed under root privilege are separated from the ev-
eryday tasks. Daemons, applications, or installers running
as root no longer automatically inherit configuration priv-
ilege. While we focus primarily on installers in this paper
(since they perform the vast majority of system configura-
tion changes), the protection mechanism remains in force
past install time, restricting system modifications while ap-
plications (including Trojans) are running.

Our implemented prototype system, using Debian 5.0 as
the base environment, consists of a modified Linux kernel
which restricts updates to designated file-system objects (but
not, for example, user-specific file-system objects), a mod-
ified Debian package manager, and a user-space daemon
(called configd) which is responsible for protecting an ap-
plication’s file-system objects from being modified by other
applications. A control point made available in configd al-
lows each configuration related file-system modification re-
quest to be examined, and either authorized or denied. As
we explain in detail later, the prototype successfully pre-
vented installation of current rootkit malware while having
an imperceptible overhead to the end-user. While our dis-
cussion and prototype focus on Linux, we believe the ap-
proach can be adapted to Windows, Mac OS X, BSD, and
other operating systems. Indeed, configd implemented on
Windows could also protect the Windows registry (since it
is stored on disk).

In Section 2, we give background which motivates our
work. Section 3 discusses several currently-deployed alter-
native approaches for encapsulating an application’s file-
system objects on disk. Section 4 discusses design con-
straints and introduces the two levels which together protect
system configuration and applications. Section 5 discusses
our proof of concept prototype. Section 6 discusses related
work. We conclude in Section 7.

2. BACKGROUND ON INSTALLERS
Our approach of limiting abuse of root privilege as it re-

lates to configuration changes of designated file-system ob-
jects is most relevant to the case of software installs, up-
grades, and uninstalls. For context and to highlight the
problem, we review existing approaches to installing soft-
ware on a desktop.

2.1 Application installers
The most common approach to installing applications on

commodity desktops and servers is through the use of an ap-

plication installer. The installer is a binary or script, often
written by the same company or individual that developed
the application. Its purpose, when run, is to place the vari-
ous file-system objects associated with the application in the
correct location and configure any system parameters (e.g.,
in some cases to ensure the program gets run during boot).
Application installers are typically given complete control
over the system during install, with users encouraged to run
them with full permissions as shown in Figure 1. Whenever
an application installer is run on a typical system, the en-
tire system is opened up for modification by the installer. If
the installer is malicious, or can be compromised [7], the en-
tire system can become easily compromised. This approach
does not prevent one application’s installer from modifying
the file-system objects of another application.

Figure 1: A Windows 7 prompt to run an installer
with administrator privileges.

Application install scripts, like those executed through the
make install command on many open source projects, are
a slight variation of the application installer. When told
to install to a user’s home directory, they do not require
administrator privileges. They still require administrator
privileges, however, when attempting to install to a loca-
tion controlled by the administrator. Using make install

does not prevent modification of file-system objects belong-
ing to other applications installed by the same user. While
Windows encourages following the principle of each applica-
tion installing into its own directory on the file-system, the
practice of running application installers as root leaves the
principle unenforced.

2.2 Application packages
Package managers are typically provided by an operating

system (OS) or OS developer to ease development of an ap-
plication installer for the platform. Instead of writing an
application installer from scratch, the application developer
creates a package using the package manager APIs and fol-
lowing the rules set by those who developed the package
manager. Typically, the package consists of data used by
the package manager, as well as files to be installed and
scripts to run as part of the install. Common install opera-
tions are taken care of by the package manager. While the
development of package managers has resulted in installers
transitioning from being executables to packages (e.g., var-
ious Linux packages [10], Microsoft Installer packages [36],



and Apple application packages [50]), most of these package
managers still allow for executing arbitrary binary code or
scripts contained in the package being installed, resulting in
the same level of risk to the system as if an executable was
run to perform the install. If root permission is requested
by the package (or required by the package manager, as is
the case with Linux packages), and the end-user enters an
appropriate password when prompted (as users are now well
trained to do so upon request), these scripts are run as root.
The use of application packages does not prevent an appli-
cation from modifying arbitrary file-system objects. One
example of a malicious Debian package was a screensaver
posted on http://gnome-look.org. The package, when in-
stalled, would also download and install a bot onto the local
machine [55, 57].

2.3 Apple bundles and packages
With Mac OS X, Apple introduced a new method for in-

stalling commodity applications other than application pack-
ages: application bundles. This results in two approaches on
Mac OS X for installing software.

Application bundles. Application bundles are similar
to packages as discussed above with two key differences. The
first is that all file-system objects in the bundle will be in-
stalled into the same sub-directory by the OS (akin to the
approach used on Android described in Section 3.2). The
second is that scripts are not run by the OS during install.
Typically, application bundles are installed through a drag-
and-drop style copy operation. Commonly distributed as
disk images, application bundles greatly increase the secu-
rity of the system against malicious application installers.
Unfortunately, Apple still supports a second approach for
installing applications and relies on the software developer
to choose between them. The malicious developer is unlikely
to distribute his software as a bundle when distributing a
package (see below) is possible. Legitimate applications are
distributed as both bundles (e.g., Mozilla Firefox) and pack-
ages (e.g., Adobe Flash).

While application bundles remove the ability for many ap-
plications to obtain root privileges, they do not mitigate the
entire threat. Any application which obtains root privileges
(maliciously or otherwise), even if installed as a bundle, can
still modify any file on the system.

Application packages. For more complex applications,
additional actions (other than simply copying the files into
the application directory) may need to be performed by the
installer during the install process. For these applications,
Apple provides an application package framework as dis-
cussed in Section 2.2.

The status quo across multiple operating systems is to
“restrict” installers by requiring the user authorize an in-
stallation by entering an administrator password before the
installer can run. Once the installer is given “blind” full per-
mission to the system, the user must trust that the installer
does not abuse its privilege (since it is difficult to tell what
the installer actually does with its root privilege – thus we
call it blind trust).

3. APPROACHES FOR ENCAPSULATING
APPLICATIONS

In this section, we discuss several approaches for encap-
sulating applications, using the definition of encapsulation

from page . While we choose to implement the GoboLinux
approach in configd (as discussed later in this paper), the
alternative approaches discussed in this section are equally
viable. We summarize the three approaches in Table 1. Note
that although Table 1 indicates that for GoboLinux, applica-
tion upgrades are not supported, the use of the GoboLinux
approach in configd is done in such a way that application
upgrades are supported.

3.1 GoboLinux
In GoboLinux [38, 39], each application is installed into

its own directory (similar to Android). The actual install
of a program is done through calling three scripts. Pre-

pareProgram is responsible for creating the base directory
where the program will be installed. CompileProgram takes
a compressed archive of the program source, configures it
with the appropriate flags so it will be installed into the
directory prepared for it by PrepareProgram, compiles the
program, and installs it. SymlinkProgram creates symbolic
links to the various program binaries, libraries, and settings.
For backwards compatibility, the common Unix directories
(e.g., /usr/bin, /sbin, and /lib) are also linked to /Sys-

tem/Links, which is in turn populated with symbolic links
for each of the applications that have been installed. To
prevent an application from escaping its assigned applica-
tion directory, the make install command is run under a
special user ID [37]. This user is only allowed to modify files
under two directories: the one in which the application is be-
ing installed to, and the one it was compiled from [38, 39].
In restricting an application during both compile and in-
stall, the other applications on the system remain protected
against modification.

For those applications which are not complete programs
in themselves but instead extensions to other applications
which are already on the system (e.g., the PHP module is
often installed as an extension to the web server Apache),
the base application needs to be made aware of the exten-
sion. In GoboLinux, the configuration of each application
is stored in the shared tree /System/Settings/. All files
in this directory are symbolic links that point back to the
settings folder, which is a sub-directory of where the appli-
cation was installed. The base application provides a direc-
tory under /System/Settings where a module can register
itself (through SymlinkProgram). Many distributions other
than GoboLinux have also adopted this as the method of
installing extensions into a base application (although the
exact path to the configuration will change). Another re-
lated example involves services which should be started on
system boot. On Debian based distributions, the accepted
location for a script responsible for starting a service is in
the directory /etc/init.d. GoboLinux places scripts re-
sponsible for starting the various system services in /Sys-

tem/Links/Tasks.
GoboLinux depends heavily on symbolic links being placed

into the above mentioned standard directories for exten-
sions to applications. The base GoboLinux executable Sym-

linkProgram is responsible for updating this directory tree
based on the layout of files in any particular application di-
rectory (GoboLinux does not allow application installers to
directly modify the symbolic links in shared directories).

A limitation of GoboLinux is that it does not cleanly sup-
port upgrades (or security patches) to an application. Each
upgrade is treated as an install of a new version of the ap-

http://gnome-look.org


Attribute GoboLinux Android Apple App Store
Application Upgrades Not Supported Supported Supported
Allows Install Scripts Yes No No
Application Deployment Unrestricted Unrestricted Restricted

Table 1: Characteristics of current systems which encapsulate applications on disk.

plication, resulting in each version being installed into its
own directory on disk. The job of sorting out which ver-
sion of an application should be used by default on a system
is left to SymlinkProgram (the PATH environment variable
is set to point to /System/Links/Executables, a directory
maintained by SymlinkProgram). The sharing of configu-
ration files between different versions of an application is
left up to the individual application. Indeed, each version
of an application has its own copy of the configuration files
stored in a Settings sub-directory of the application direc-
tory, alongside the various sub-directories for each version
of the application which is installed.

3.2 Android
On the Android platform [1, 20], each application package

is assigned its own directory and unique user id. While An-
droid uses the Linux kernel as its base, being a single user
platform, Android remapped the traditional user accounts
to restrict communication between applications. The An-
droid application installer ensures that each application is
restricted to making file-system modifications in the direc-
tory it was installed into. Unlike the file-system hierarchy
standard [43] as used on Linux, there are no shared direc-
tories for storing binaries, libraries, configuration files, and
other elements. Android benefits greatly from the ability to
mandate a file-system layout which restricts each application
to single sub-directory on the file-system.

The Android platform only allows a new version of an
application to be installed over top of the old if all public
keys in the new version are also contained in the old version
already installed (new keys cannot currently be introduced
during an upgrade). During the install of an application, the
application itself is not given a chance to run any installer
scripts as administrator – greatly restricting the damage a
particular application can do to files belonging to other ap-
plications. The platform does a good job of preventing one
application from modifying another’s files.

With additional work, the Android approach can be adapted
to the standard Linux file-system hierarchy [43]. Instead
of storing all files related to an application in a single di-
rectory, a database could be maintained which maps each
individual file to the application it is associated with (the
Debian package manager already keeps such information),
as well as a list of public keys which are used to verify the
next version of the package. The Android approach does
not support scripts being run as part of the installation pro-
cess (similar to Apple bundles not supporting scripts; see
Section 2.3). Combining the Android approach with Gob-
oLinux, however, allows the execution of installation scripts
which can modify the configuration of the application being
installed while still preventing other applications from being
modified.

3.3 Apple application bundles
While the general application bundle is discussed in Sec-

tion 2.3, a number of restrictions were made by Apple for

bundled applications targeting iPhones (up to those released
in January 2010) [3]. The biggest change is that each ap-
plication installed onto the iPhone is limited to making file-
system modifications only in the directory it was installed
into. This includes limiting an application to reading and
writing data files to an application specific area of the file-
system (similar to Android).

In contrast to Android, Apple application bundles tar-
geted to the iPhone are not signed with the key of the soft-
ware developer. Instead, each application must be signed
by Apple before it can be run on an iPhone (we ignore “jail-
broken”iPhones in our discussion). Before signing an iPhone
application bundle, Apple examines the application to en-
sure it meets their criteria [2]. For application bundles de-
signed for Mac OS X, Apple has no such restriction that
the bundle be verified and signed by Apple before it can be
installed.

4. DESIGN FOR CONTROLLING ROOT
PRIVILEGES ON FILE SYSTEMS

Our main objective is to reduce root privilege so that pro-
grams, such as installers, cannot take advantage of overly
coarse access controls to abuse the privileges they have been
given. The design of our approach is subject to several self-
imposed constraints. We believe that, to be viable, any al-
ternate approach for restricting file-system privileges on the
desktop at a per-application level would need to fulfil the
following considerations.

1. Compatibility with current file-system layouts.
In designing a Linux-based prototype of the proposal, our
goal was to avoid requiring redesign of the current file-system
hierarchy [43] in favour of a solution compatible with the cur-
rent file-system layout. Applications are protected against
modification while retaining the current file-system layout –
installing files to directories shared with other applications.
In contrast, GoboLinux [39] and Apple (in Mac OS X) did
redesign the file-system hierarchy. Their motivations were
apparently to impose cleanliness in restricting each applica-
tion to its own directory. While the separation of each ap-
plication into its own directory may simplify the challenge of
restricting configuration changes on a per-application basis,
a backwards compatibility layer is still required to support
applications not designed for the new layout.

2. Minimal impact on day-to-day operations. Most
of the time, a computer is used to perform day-to-day tasks
(run applications) with a constant configuration of the ap-
plications and operating system. Occasionally, its configura-
tion is modified in order to expand/modify the tasks it can
perform (e.g., applications are installed, updated, removed,
or reconfigured). Our proposal (and indeed any alternate
configd approach) should impose no noticeable impact on
such day-to-day operations, with no changes to regular user
work flow.

3. Backwards compatibility for current installers.
We introduce new restrictions on an application’s ability to
modify file-system objects. These restrictions will typically



influence the install, upgrade, and removal of applications.
It is unrealistic to assume that all application packages will
be modified in parallel during deployment of such a solution.
Backwards compatibility is therefore critical for incremen-
tal deployability. Our prototype did not change the Debian
package structure at all, maintaining backwards compatibil-
ity with versions of dpkg not designed to work with configd.

4. Usability. Our focus in this paper is on providing a
solution which can be used by non-expert users, and to avoid
forcing upon users choices which they are ill-equipped to re-
spond to correctly. Our solution achieves this goal, allowing
an applications’ file-system objects to be protected against
modification during install, upgrade, uninstall, and at run-
time, without presenting the user with complex choices. While
our prototype solution did leave enabled the option of query-
ing the user about file-system operations, this feature can be
disabled without impacting the ability to install software (as
discussed in Section 5.5).

4.1 A control point for division of
root privileges

To build a system designed to reduce root abuse of file-
system privileges, we first separate configuration related ac-
tivities (those configuration actions affecting the applica-
tions installed or their global configuration as stored on
disk). We then further subdivide the configuration privilege
to remove the ability of an application installer to modify
any file-system object other than those which are part of the
application being installed (or upgraded/removed).

Our prototype design consists of two main elements: a
kernel extension and a user-space daemon. The user-space
daemon is responsible for the bulk of the work, namely, en-
suring that one application cannot modify files related to
a different application. The kernel is responsible for deny-
ing (or forwarding) requests to modify protected file-system
objects, by which we mean files (including binaries), direc-
tories, symbolic links, and other objects that are part of
the file-system. Protected file-system objects (which we call
c-locked file-system objects, short for configuration locked)
are designated (marked) as such by the user-space daemon
(an alternate method of protecting file-system objects is by
using a union file-system to redirect writes [63]). Any ap-
plication file-system object marked as part of the system
configuration (and hence to be protected against modifica-
tion by other applications) must be so designated. Only a
process holding a newly introduced configuration permission
is allowed to modify the system configuration on disk (and
hence c-locked file-system objects).

The exact distribution of duties within our design has the
kernel responsible for:

1. Restricting to programs running with configuration per-
mission the ability to delete, move, and write to c-
locked file-system objects. By design, “root” is not al-
lowed to make arbitrary changes to c-locked file-system
objects (including the kernel image) – changes are lim-
ited to processes running with configuration privilege.

2. Restricting the ability to obtain configuration permis-
sion. In our prototype, this is done by allowing only a
single process, the configuration daemon (configd) to
have configuration permission.

3. Restricting the ability to control the process running
with configuration permission (e.g., by not allowing
configd to be killed or modified by a debugger).

In restricting configuration permission to a single daemon,
we introduce a chokepoint within which we can further sub-
divide file-system access by application. (While it is possi-
ble to use the kernel as the chokepoint, our preliminary ex-
ploration in this direction suggested that implementing the
functionality required to further subdivide root on a per-
application basis directly in the kernel introduces function-
ality into the kernel which is already available in user-space.)
We perform the actual subdivision in the above-mentioned
configuration daemon configd. It performs the following
operations:

1. Respond to requests for configuration changes from
processes running on the system. In our prototype, re-
quests were at the granularity of package installs and
uninstalls, but our design could be easily modified to
handle other granularities.

2. Designate file-system objects as c-locked. It marks a
setting in a data structure associated with the object
to denote this designation. In our prototype, each
file installed when upgrading or installing a package
is marked as c-locked.

3. Perform authorized changes to the configuration of the
system.

We now discuss the threat model, and how the two ele-
ments work together to restrict the ability for an application
to modify file-system objects belonging to another applica-
tion.

4.2 Threat model
We assume that applications cannot obtain kernel level

control of the system,1 although on most current systems,
any application running with root access can modify the run-
ning kernel. This assumption therefore relies on the proper
functioning of a subset of mechanisms designed to protect
kernel data and code against compromise by applications
running with root access, as proposed in the considerable
independent literature [4, 41, 60, 30, 19, 42, 29, 61, 44, 11,
16]). For the prototype implementation, disabling access to
/dev/kmem was sufficient to simulate restricting kernel level
control of the system.

We assume that the user of a computer system can be
trusted to not be malicious. The proposal, therefore, does
not protect against physical attacks, such as rebooting into a
kernel that does not enforce the proposed protection mecha-
nism. Our work avoids declaring the user as the enemy and
preventing them from modifying their own system as they
wish [58, 31]. We favour using persuasive approaches to en-
courage users to protect their system against malware while
not taking control completely out of their hands.

We assume malware can run arbitrary code in userspace
(including installing new code while not modifying any c-
locked file-system object), but cannot gain configuration
permission (i.e., the permission delegated to configd, which
is required to modify c-locked file-system objects). We stop
malware from modifying permanent (i.e., on disk) system-
wide configuration beyond those files packaged with it. While
we leave open the exact set of c-locked file-system objects, we
view the set to include shared libraries, executables, system

1We define the kernel (and hence kernel level control) to
include only those aspects running with elevated CPU priv-
ileges (ring 0 privileges on x86); this definition does not in-
clude core system libraries installed alongside the OS but
run in user-space.



configuration files, start-up scripts, and other file-system ob-
jects which do not change as a result of day-to-day system
use. In effect, the system configuration on disk includes the
set of applications installed as well as each application’s files
which are required at run time. We do not attempt to pre-
vent malware from running on the system. The system is
also not designed to support c-locking of user-specific appli-
cation configuration files. If all system-wide configuration
files and applications are c-locked, malware is restricted to
modifying user-specific data files (e.g., embedding a macro in
word processing documents) and user-specific configuration
settings (e.g., if rlogin is enabled on the system, malware
may still be able to propagate by modifying individual user’s
.rhosts files). The new restrictions on modifying system-
wide configuration prevent many attacks currently used by
malware authors, including modifying /sbin/init (e.g., by
the mood-nt kernel based rootkit), modifying core system
libraries and executables (e.g., by the ARK rootkit), and
modifying configuration files (e.g., the hosts file, as done by
malware). All file-system objects used during boot prior
to a user logging in (e.g., virus checkers) can be protected
by configd. Furthermore, applications’ file-system objects
cannot be arbitrarily modified by malware. While we do
not restrict the running of arbitrary malicious code, we do
restrict the ability to have code automatically run at the
appropriate time (e.g., during system boot).

4.3 Linux kernel protection of c-locked file-
system objects

How a kernel handles file-system objects can directly af-
fect the security of c-locking. In the Linux kernel, the key
file-system data structures directly related to the protection
of file-system objects by configd are the directory entry (or
dentry) and inode [47]. The inode data structure contains
most of the information related to the file data and meta
data (e.g., the traditional Unix file-system permissions read,
write, and execute) and pointers to the actual blocks on disk
which hold the file contents. The dentry contains informa-
tion related to the specific instance of a file in a particular
directory, including the name of the file (as it appears in
that directory) and a pointer to the inode. For the purposes
of c-locking, the dentry inherits the c-locked status of the
inode. If the inode is marked as c-locked, then the direc-
tory entry can be deleted or moved only by configd. File
operations on an inode which is not c-locked are restricted
through current access-control restrictions (including tradi-
tional Unix file permissions). Figure 2 demonstrates the
relationship between inodes and dentries.

Symbolic Links. Symbolic links are directory entries in
Linux pointing to an inode containing a path string. When
opening a symbolic link, the kernel retrieves the path name
from the symbolic link inode. It then follows the retrieved
path name to obtain another dentry and inode (which is
either yet another symbolic link or some other element such
as a file or directory). The proposed system supports either
c-locking the symbolic link, the object it points to, or both.

Hard Links. A hard link is a directory entry in Linux
pointing to the same inode as another directory entry. As
with regular files, because the inode itself contains the c-
lock flag, any hard link pointing to the inode inherits the
c-locked attribute associated with the inode. An attacker
does not gain modification privilege by creating a hard link
to a file-system object protected by c-locking. The ability to

Figure 2: File-system data-structure layout includ-
ing new c-lock flag.

create a hard link to a c-locked file is restricted, being either
allowed or denied by configd.

Directories. A directory is an inode which instead of
pointing to file data, points to a list of dentries. While pre-
vious approaches [9, 67] focused on protecting files more
than directories, there are cases in which a directory should
be protected. As an example, during start-up the Debian
/etc/rcS.d directory is accessed and every file (or file pointed
to by a symbolic link) in this directory is run. Any malware
installed into this directory would be started automatically
during system boot. The proposed system can protect di-
rectories since they can be c-locked in the same manner as
files and symbolic links.

4.4 configd
The prototype configd is designed to subdivide root file-

system permissions on a per-application basis. In our frame-
work, configd, or its equivalent, becomes a chokepoint which
applications must use in order to modify c-locked file-system
objects (and hence the configuration of the system). To en-
force that configd is the only way that c-locked file-system
objects can be modified, the kernel grants the new config-
uration permission to configd alone. By delegating this
privilege to configd, the kernel need not know about every
application on the system or what file belongs to which ap-
plication; it need only recognize that a specific file is c-locked
and leave the handling of this file to configd.
configd must be started early during the boot process

(configd itself restricts changes to the boot process). Once
configd has started, other programs are prevented by the
OS kernel from obtaining configuration permission. The de-
sign of configd takes advantage of the temporal nature of
software installs. At the time of installation of application
software, it is assumed that the operating system and con-

figd are already installed and running. This assumption is
reasonable if configd is made part of the OS or core system.

4.4.1 Example configd rule set
While the core configd approach can use any number of

different protection mechanisms for separating files on a per-
application basis, we chose to depend on Debian packages
(and indeed, the package manager – dpkg) in our solution.
During the package install process, we allow the following
actions to be performed.



1. If A is a c-locked file-system object whose contents
under a cryptographic hash have the same value as
A.dpkg-new, then A.dpkg-new can replace A (i.e., if A
and A.dpkg-new contain the same data). We do not
mandate any specific cryptographic hash algorithm,
other than to stipulate that, at minimum, it must have
second pre-image resistance [33] (our configd proto-
type currently supports SHA-1 and can be easily ex-
panded to support others).

2. If A is a c-locked file containing one or more public
keys and A.dpkg-new is another file containing a digi-
tal signature verified by using a public key in A, then
A.dpkg-new is allowed to replace A.

3. If c-locked file A is associated with package PKG and is
not associated with any other package installed on the
system, then when upgrading package PKG, A may be
modified.

4. If c-locked file A is associated with package PKG and
is not associated with any other package installed on
the system, then install scripts associated with package
PKG may modify A.

5. All other operations involving a c-locked file are con-
sidered to be potentially dangerous. They can either
be presented to an expert user for additional oversight,
or simply denied (as discussed in Section 5.5).

Of the above rules, some merit further discussion. Rule
2 adapts concepts used by the Android OS [1], but to the
file (as discussed by Wurster et al. [65]) as opposed to pack-
age level. The rule relies upon the use of public keys and
signatures, but does not rely on a PKI.

Rule 3 allows the modification of all files associated with
a package when a new version of the package is installed.
The rule requires that configd keep track of packages in-
stalled on the system, as well as which files are associated
with which packages. We discuss the semantics of how our
prototype handled packages in Section 5.3. It is important
to note, however, that a package cannot modify any file on
the system simply by asserting ownership of the file (through
including the file in the list of files the package is associated
with). Any file which is listed as belonging to more than one
package cannot be arbitrarily modified by any package. The
option still exists, however, for a file associated with more
than one package to be updated through rule 2.

Rule 4 restricts, through exclusion, the files that an install
script can modify. The rule is borrowed from GoboLinux [39]
and discussed in more detail in Section 3.1.

Our testing confirmed that the above rule set allows pack-
age installs and upgrades to be automatically allowed, while
providing encapsulation. While the option of querying the
user with remaining operations was left enabled in the pro-
totype, we found in testing that during upgrades, the user
is not queried at all – with the exception of updating global
configuration files (see Section 5.4), rules 1 through 4 ac-
commodated all install operations.

5. PROTOTYPE IMPLEMENTATION AND
EVALUATION

5.1 Kernel extensions
To support c-locked file-system objects, we used the ex-

tended attributes functionality [53] of file-systems such as
ext3 and XFS. This is the same approach used by SELinux

[45]. In so doing, the underlying file-system-specific data
structures do not need to be modified. The extended at-
tributes are tied to the inode. We used the trusted extended
attribute name space because it supported setting extended
attributes on symbolic links. We created our c-locking pro-
tection mechanism as a Linux Security Module [32, 62]. The
kernel implementation was approximately 2200 lines of code,
including the backward compatibility layer. A new device
node (/dev/configd) was used as the interface between the
user-space configd and the modified kernel, allowing com-
munication between the two. The process of opening the
device node initiated c-locking protection in the modified
kernel. The kernel understands and responds to commands
sent by the user-space configd through the new device node,
allowing configd to disable raw disk writes (as discussed in
Section 5.2), and mark files as c-locked (as discussed in Sec-
tion 4.1).

To prevent applications from being able to modify c-locked
file-system objects through modification of the kernel, access
to both /dev/kmem and /dev/mem was restricted (both are
options built into the Linux kernel).

5.2 configd implementation
While the primary purpose of configd is to encapsulate

applications on disk, during the course of prototype develop-
ment several additional features were added. These include:

1. A mounting module which can decide whether a
request to mount a file-system should be performed (it per-
forms the operation, if allowed). To ensure that c-locked
file-system objects remain accessible by applications they
are associated with, we must ensure that a new file-system
cannot be mounted over top of c-locked file-system objects.
configd does this by examining the trusted.configd.nomount
file-system extended attribute. For directories which should
not be mounted over (e.g. /usr), this extended attribute
should be set on the directory inode. The mounting module
also informs the kernel through the configd device node that
requests to write to the underlying raw hard drive sectors
should be denied, since allowing such requests would un-
dermine the security of both c-locking and per-application
restrictions enforced by configd.

2. A modprobe module which handles requests for
the insertion or removal of kernel modules. In order to en-
sure that configd remains the chokepoint for restricting file-
system objects on a per-application basis, root must not
be allowed to install arbitrary code into the running kernel.
While the prototype version of this module currently accepts
all requests, kernel module loading can be easily restricted
based on a number of criteria, including whether the mod-
ule is signed with a recognizable key [29] (such an approach
would not require a complete PKI infrastructure).

5.3 Debian package manager modifications
Because the Debian package manager (dpkg) is respon-

sible for performing most configuration changes on a sys-
tem, we integrated dpkg with configd. While other meth-
ods of restricting configuration changes at a per-application
level may choose to totally replace dpkg, augmenting dpkg

to communicate with configd was suitable for our proto-
type (configd had the final say as to whether all requests
for operations on c-locked files are allowed). The modified
dpkg informed configd about each package which was be-
ing installed or upgraded, and also marked as c-locked each



file installed when upgrading or installing a package, regard-
less of whether the file was previously c-locked. Because it is
considered an error on Debian to have a file belonging to two
unrelated packages [23], Debian’s package approach lends it-
self nicely to a clean separation between applications. Since
packages can contain arbitrary files, any file which should be
c-locked either already is, or can be, distributed in a pack-
age.

In our prototype, the Debian package manager and sur-
rounding infrastructure was responsible for preventing one
application from assuming the name of another (and hence
being able to modify the files associated with the second
package). Such an approach depends on the security of the
packaging system in Debian, which although reasonably se-
cure against intrusion, is not perfect [10]. To reduce the de-
pendence on Debian to keep packages from replacing other
un-related packages in the archive, an approach similar to
that used in Android could be deployed. In Android, a form
of digital signature not tied to an identity is used as a way
of restricting replacement of packages (see Section 3.2). A
package is typically signed with a private key held by the
developer. Any new version of that package is allowed to
replace the installed one if it is signed with a private key
verifiable with the corresponding public key contained in
the currently installed package. In this way, application up-
dates are restricted to those software authors holding the
private signing key. Unless two applications are written by
the same developer, and assuming that private keys are not
generally shared between developers, the two applications
are unlikely to have any identical keys and hence will not
be able to modify each other. In adapting the approach
to Debian packages, we can eliminate the risks associated
with relying on the Debian packaging team to properly keep
packages distinct [10].

5.4 Allowing scripts during package install and
uninstall

In Section 4.4.1, rule 4 states that if c-locked file A is as-
sociated with package PKG and is not associated with any
other package installed on the system, then install scripts
associated with package PKG may modify A. In order to
enforce that an install script contained in a package may
only modify files on the system associated with that pack-
age (and no other package), we implemented an ability to
run install scripts within configd. The approach closely
parallels the approach used by GoboLinux for installing ap-
plications (see Section 3.1). The following procedure was
followed for running both install and uninstall scripts:

1. An unused user ID (UID) is allocated by configd.
While configd examined /etc/passwd in our proto-
type, different methods may be required when using
alternate approaches for user account control.

2. For each file associated with package PKG (and not
associated with any other package installed on the sys-
tem), the owner of the file is recorded by configd and
then changed to UID.

3. The script is run as user UID by configd. In running
the script as a user who only has permission to modify
files associated with the package, other applications
on the system are protected by the standard access
controls on the system.

4. For each file associated with the package PKG, the
UID is changed back to the value stored in step 2,
unless the user owning the file has been changed by
the script.

5. The UID allocated in step 1 is freed.

The approach allows an (un)install script associated with
package PKG to modify any file associated with the same
package, but does not allow the install script to modify any
file associated with any other package installed on the sys-
tem. It achieves the design goal of restricting file-system
modifications such that one application can not modify the
file-system objects associated with another application in-
stalled on the system. Indeed, simply implementing the ap-
proach into dpkg without fully implementing configd has
benefits over the current approach of allowing unrestricted
access to the file-system by install scripts.

While we did not encounter any scripts which were af-
fected by the change from running as root to running as an
unprivileged UID, if such a scenario did pose problems, the
use of a fake root would allow configd to better emulate the
permissions an install script has without configd running.
fakeroot is a program commonly used in the Linux environ-
ment to make an application believe it has root privileges.
The operations performed while running under fakeroot are
recorded with the goal of being able to save and replay them
later. This approach is most often used when creating a dis-
tribution package from a source archive, but can also be used
by configd. It is also the approach used in related work to
record the actions performed by an installer [56, 51].

5.5 Handling of operations not automatically
allowed

While the prototype left enabled the option of querying
the user for operations not allowed by other rules discussed
in Section 4.4.1, we believe that this rule can be disabled
when deploying configd to non-expert user systems, causing
configd to reject of any file-system operation not allowed
by the other rules. During testing, we were not queried by
configd at all about modifications to the file-system dur-
ing package install and upgrade. The user continues to be
queried by configd about configuration file changes per-
formed manually by root. To prevent malware from inter-
fering with questions configd poses to the user, we extended
the kernel, preventing other applications from running while
the user is being queried.

Because root no longer has permission to modify arbitrary
files on disk, any configuration changes performed directly
by the root user will be potentially be disallowed by configd

or a related per-application encapsulation mechanism (con-
figuration changes performed during install by the related
install script are easily allowed; see Section 3). In the proto-
type system, configuration changes performed by the phys-
ical user acting as root ended up being approved, since the
person modifying the application configuration and the per-
son approving the change when queried by configd are one
and the same. Because any updates to configuration require
an individual acting as root to perform them, we believe the
extra step of the same individual verifying the change before
it is propagated to disk to be minor (e.g., the user updates
the configuration file and then authorizes that the update
be written to disk when prompted by configd). Indeed, we
can avoid querying the user about configuration changes if



the implementation of configd exports a user interface for
performing changes (e.g., by providing a text editor). Such
an ability does not detract from the security of the system
because applications still do not gain the ability to write to
file-system objects belonging to other applications.

5.6 Performance evaluation
To test the performance of our kernel modifications on

file-system intensive day-to-day operations, we performed
a complete compile of the Linux 2.6.31.5 kernel. We un-
packed, configured (make allmodconfig), compiled, and re-
moved the directory tree containing the compiled kernel. We
chose a kernel unzip, compile, and removal because of the
number of required disk operations, heavily exercising the
file-system as well as our prototype c-locking Linux security
module. We ran the test on two different 2.6.28.7 Linux
kernels. The first test was with c-locking support not com-
piled in, and averaged 158 minutes and 52 seconds over three
runs. The second timing was performed with c-locking en-
abled and configd running, and averaged 166 minutes and
34 seconds over three runs. Both tests were run on the same
Pentium 4 2.8GHz with 1Gb of RAM. Over the three test
runs, the average increased run time for the compile with
c-locking enforcement enabled was 4.8%. For day to day op-
erations which do not involve heavy file-system activity, we
expect the overhead of configd to be well under 4.8%. We
also expect alternate implementations of configd function-
ality would produce comparable results.

5.7 Verification that application encapsulation
is enforced

Malware frequently modifies file-system objects not di-
rectly associated with the malware itself (e.g., replacing ls).
This provides an appropriate test case for the proposed re-
striction of configuration changes on a per-application basis
during install. Under the new root file-system restrictions,
the test is to verify that applications (malicious or other)
running with root privileges cannot modify other applica-
tions file-system objects.

To test how well the mechanism presented in this paper
protect a system when exposed to malware, we became root
on a system with configd running and kernel protections en-
abled. We then attempted to run six different Linux rootkit
installers.2 Linux rootkits can be grouped into two cate-
gories: those that use some method to gain access to ker-
nel memory, installing themselves in the running kernel and
then operating at kernel level, hiding their actions from even
root processes; and rootkits that replace core system bina-
ries that are often used by the root user in examining a
system. Using the six representative rootkits, we confirmed
that the installer failed to gain access to the kernel because of
disabled write access to /dev/kmem (which would otherwise
undermine configd), and that configd works as expected
(i.e., file-system changes possible by malware are restricted
to prevent other applications from being modified). That
the rootkits failed to gain access to the kernel was verified
by examining errors returned by the rootkit installer when
attempting the install. The integrity of other applications
file-system objects was verified through comparing crypto-
graphic hashes using Tripwire [26].

2All Linux rootkits tested were from http://
packetstormsecurity.org/UNIX/penetration/rootkits/

We selected six representative Linux rootkits, two that
modify the kernel and four that replace system binaries.
Both kernel-based rootkits (suckit2 and mood-nt) failed
to install because of disabled write access to /dev/kmem in
the prototype’s modified kernel. The mood-nt kernel based
rootkit which we tested also attempted to replace /bin/init.
The attempt was denied by the prototype3 because /bin/init
is part of a different application on the system. The four bi-
nary replacement rootkits (ARK 1.0.1, cb-r00tkit, dica,
and Linux Rootkit 5) all resulted in file-system operations
which were denied because they attempted to either replace
or delete core system binaries (e.g., ls, netstat, top, and
ps). The core system binaries installed belong to applica-
tions other than the rootkits and hence changes to them by
the rootkit installer were disallowed by our prototype.

5.8 Evaluating installation and upgrade of non-
malicious software

We performed several tests to verify that the prototype
system is capable of supporting the install of new packages,
as well as the upgrade and re-install of already-installed
packages. To test how well configd can be deployed on
a pre-existing system, we introduced configd into a Debian
desktop installation. We first installed an unmodified De-
bian Lenny (v5.0) distribution, including the KDE graphi-
cal desktop environment, onto a desktop. We then installed
the configd daemon and modified kernel, which enforces c-
locked file-system restrictions. At this point, any package
updates on the system (including installs, re-installs, and
upgrades) would result in the associated files being marked
c-locked, and hence protected by configd. We then pro-
ceeded to re-install all packages that were already present
on the system. In performing a re-install, all files associ-
ated with a package became marked as c-locked and hence
protected by the combination of configd and the modified
kernel.

Using this base system, where all package files are marked
as c-locked, configd is running, and kernel protections are
enabled, we then proceeded to do further testing of the
prototype using our desktop install. To test how well the
configd prototype accommodates package upgrades, we in-
stalled all security updates made available for our desktop
install between the days of November 12, 2009 and May
6, 2010 (a total of ∼ 100 packages). We were not queried
by configd at all about modifications to the file-system, did
not see any errors displayed during the upgrade process, and
none of the packages appeared to be broken by the upgrades
(i.e., the system still ran as expected). To test how well the
prototype configd accommodates re-installs, we reinstalled
all packages on the desktop system (a total of 897 packages).
Again, during the process we were not queried about changes
to the system configuration, we did not see any errors dis-
played during the process, and the system appeared to be
fully functional after the reinstall (i.e., we could still log into
KDE, browse the web, read e-mail, and watch videos).

As a final test, we installed several (new) desktop ap-
plications (each consisting of multiple packages), including
Inkscape (http://www.inkscape.org/), Pidgin (http://www.

3In our prototype, the denial was performed by the proto-
type user, but would be performed automatically if the user-
interface is disabled. The rootkit install was not able to put
up a fake configd prompt because of protections discussed
in Section 5.5.

http://packetstormsecurity.org/UNIX/penetration/rootkits/
http://packetstormsecurity.org/UNIX/penetration/rootkits/
http://www.inkscape.org/
http://www.pidgin.im/
http://www.pidgin.im/
http://www.pidgin.im/
http://www.pidgin.im/
http://www.pidgin.im/
http://www.pidgin.im/


pidgin.im/), and Digikam (http://www.digikam.org/). The
new files installed during each application install were marked
as c-locked, there were no errors displayed by the package
installer, and each application ran correctly after install.

6. RELATED WORK
Here we discuss selected related work, beyond that dis-

cussed in Section 2 and Section 3.

6.1 Secure software installation
Venkatakrishnan et al. [56] proposed RPMShield, a sys-

tem where actions which will be performed during install of
a package are presented to the administrator for verification
and then all install actions are logged. RPMShield concen-
trates on install time, not preventing already-installed ap-
plications from modifying the system if they are run as root.
While configd focuses on encapsulating an application’s file-
system objects, RPMShield focuses on allowing the system
administrator to examine and approve the actions which will
be performed during install.

Kato et al. [24] proposed SoftwarePot, an approach where
each application is encapsulated in its own sandbox, with
mediated access to the file-system and network. Shared
files are accessed by mapping sandbox-specific file-names to
global file-system objects. The mapping between sandbox-
specific files and global file-system objects requires addi-
tional information not currently distributed with an appli-
cation package. SoftwarePot encountered a 21% overhead,
while configd encountered a 4.8% overhead.

Sun et al. [51] proposed grouping applications into two
categories, those which are trusted, and those which are
not. All untrusted applications are installed inside a com-
mon sandbox, while trusted applications are not. The ap-
proach relies on malicious applications always being classi-
fied as untrusted. It does not prevent trusted applications
from modifying file-system objects related to other trusted
applications (and indeed, untrusted applications can modify
file-system objects related to other untrusted applications).
configd, in contrast, does not distinguish between trusted
and untrusted applications, treating all applications equal
and restricting the modifications which can be performed
on file-system objects.

6.2 Rootkit resistant disks
Butler et al. [9] proposed a method where regions of disk

were marked as requiring a specific USB key to be inserted
before they could be updated. The approach works at the
block level, underneath the file-system. Blocks on disk be-
come marked as associated with a USB key when they are
updated while the key is installed. In their approach, the
user is involved in differentiating between when a system
should be used to perform day-to-day operations and when
the system is being configured. This separation, however,
does not carry over into isolating day-to-day and config-
uration operations. Because the protection mechanism is
implemented underneath the operating system at the block
level, applications used for performing day-to-day operations
continue to run (and even inherit configuration permission)
when the user inserts a USB key indicating they want to
change the configuration of the system. The Butler et al.
approach of attempting to restrict configuration operations
closely parallels the first step in our limiting the potential
for abuse in root file-system privilege – the separation of

configuration from normal day-to-day activities performed
on a system.

The approach taken by Butler et al. attempts to further
minimize the potential for abuse through the use of multiple
USB keys, but does not reach an application level granular-
ity. Indeed, they suggest using different tokens for different
roles (e.g., one token associated with all binaries and another
associated with all configuration files) [9].

6.3 Other related work
The splitting of root privilege is a common technique for

limiting abuse in areas other than file-system control. Tech-
niques such as capabilities [27, 21] and fine-grained access
control [32] also split up root, but focus mainly on installed
applications, not the installers themselves. configd focuses
on environments for non-experts, where there is little uptake
of fine-grained access control due to its complexity and skill
requirement.

Solaris differentiates between operations and configura-
tion administrators [8], similar to the differentiation between
configuration and day-to-day use. While configd shares this
characteristic, it goes one step further by encapsulating each
application.

On the iPhone platform, each application must be signed
by Apple before being loaded onto the device. This approach
assumes Apple will be able to properly vet all applications
before allowing them to be loaded onto the device. Apple
also has a mechanism for disabling malicious applications
which happen to slip through [25]. The approach has scal-
ability drawbacks in that it relies on a central authority to
certify all software for the platform.

Declarative configuration [18, 15] attempts to fully spec-
ify system configuration using purely functional methods,
with the result that system configuration becomes deter-
ministic and reproducible. A complete system is built using
a specification which documents every software component
version and its configuration. Such an approach requires a
purely functional package management system [17], hence
it is not backwards compatible with current mainstream in-
stall methods. While using declarative configuration pre-
vents modifications to the configuration of a running system,
it is not specifically concerned with the effect that including
a malicious piece of software in the specification will have
on system state (in contrast to configd).

In recent years, virtual machines (VMs) have started to
become much more popular in server environments, to al-
low a single machine to run multiple instances of an oper-
ating system [5]. As part of the popularization of virtual
environments, the opportunity to introduce additional seg-
regation between applications has arisen. Each VM instance
runs its own instance of an operating system and is assigned
its own file-system and display. A typical setup involving
virtual machines still groups many related applications to-
gether in a single VM. In this paper, we focus on a method
for dividing up root file-system privilege to prevent abuse by
applications running on the same instance of the operating
system, regardless of whether or not that OS happens to be
running in a virtual machine. While the practice of an or-
dinary user installing applications into their home directory
avoids root entirely, the application’s file-system objects are
not protected against modification by other applications the
user installs (or indeed, any application the user happens to
run).

http://www.pidgin.im/
http://www.digikam.org/


Ioannidis et al. [22] introduced the concept of sub-operating
systems, marking each file with a label indicating where it
came from. These labels restrict what data files an appli-
cation is allowed to access at a finer granularity than the
user. Sub-OS does not explicitly tackle limiting the abuse
of root file-system privilege during the process of installing,
upgrading, and removing an application. Polaris [48] like-
wise focuses on application data, restricting what user files
an application can access based on user interaction with the
window manager.

Much of the recent practical work related to MAC has
been through fine-grained access control systems, such as
SELinux [32]. SELinux permissions granted to an applica-
tion are restricted based on the labels assigned to both that
application and the resources it wishes to use. SELinux sys-
tems have the potential to split up root file-system privilege,
parallelling the approach used herein. We are not aware,
however, of any commodity or widely deployed fine-grained
access control system built to accommodate the continual
updating and reconfiguring which goes on in modern com-
puter systems. In Linux, the default SELinux security pol-
icy has dpkg being granted write access to almost every file
on the system [12]. Other systems, such as AppArmor [6],
appear to work best when new applications are not being
installed or upgraded. configd tracks the c-locking flag and
which package a file-system object belongs to. While using
SELinux to track and enforce permissions associated with
these attributes may be possible, such an approach was not
the focus of our work.

While projects such as DTE-enhanced UNIX [59] and
XENIX [52] restrict the privileges of root (including root’s
ability to configure the system), it seems most installs on
these systems still happen with full privileges (admin_d priv-
ilege in DTE, TSP in XENIX), having full access to all file-
system objects on disk. For systems using the OpenBSD
schg [28] and ext2 immutable [54] flags, any application can
be given the ability to change an immutable file – the user
can simply be asked to run an application after acquiring
sufficient configuration privileges. SVFS [67] protects files
on disk but is susceptible to the same problem of inadequate
control over installation applications.

There have been many attempts to detect malicious mod-
ifications to system configuration. Windows file protection
(WFP) [13, 34] maintains a database of specific files which
are protected, along with digital signatures of them. WFP is
designed, however, to protect against a non-malicious end-
user, preventing only accidental system modification. Pen-
nington et al. [40] proposed implementing an intrusion detec-
tion system in the storage device to detect suspicious mod-
ifications. Strunk et al. [49] proposed logging all file modi-
fications for a period of time to assist in the recovery after
malware infection. Tripwire [26] maintains cryptographic
hashes of all files in an attempt to detect modifications. All
these proposals detect modifications after the fact. Appli-
cations such as registry watchers [46] and clean uninstallers
[35] attempt to either detect or revert changes made to a
system by an application installer. These systems similarly
don’t prevent changes in system configuration.

The separation of configuration privileges as proposed in
this paper prevents installers from making unauthorized changes
to system state, leading to a proactive rather than reactive
approach to limiting system configuration changes. Package
managers [10] and the Microsoft installer [36] both limit sys-

tem configuration actions allowed by packages designed for
their system, but do not prevent applications from simply
providing their own installer (or install script), bypassing
the limits enforced by the package manager.

This paper includes work from the first author’s PhD the-
sis [64]. Relative to the preliminary workshop paper [66],
this paper expands the work by evaluating current installers,
introducing the concept of restricting configuration changes
at a per-application granularity, protecting file-system ob-
jects (as opposed to just files), and discussing a working
prototype. The prototype implementation confirms the fea-
sibility of protecting against abuse of root file-system privi-
leges, and is evaluated for both its performance and ability
to defend against several rootkits.

7. SUMMARY
The benefits of preventing one application from modify-

ing another’s file-system objects are well-recognized in the
smart phone environment. On modern desktop computing
platforms which are less tightly controlled, and more generic,
there has been little progress on architectural designs which
support encapsulation of applications throughout frequent
install, upgrade, and uninstall processes. Unix (including
Linux) provides a challenge in that much of its design is
from an era where applications were all installed into com-
mon directories. While Windows does slightly better by
encouraging each application be installed into its own di-
rectory, the way applications are installed leaves the system
open to attack.

In this paper, we present a framework for restricting con-
figuration changes, including kernel extensions and an as-
sociated user-space daemon. The status quo on end-user
operating systems is dangerous – giving every application
complete control during install, upgrade, and removal. We
provide the foundation of a full solution including concept,
architecture, design, and prototype implementation proving
out the design. The design provides a control point to reduce
root abuse of file-system privileges without breaking normal
software operation, and has acceptable performance. Our
prototype has demonstrated that it is possible to separate
out configuration privileges from root-privileged processes,
providing a step forward in tackling the long-standing prob-
lem of over-privileged installation and modification permis-
sions.

Acknowledgement
We thank the anonymous reviewers, our CCS shepherd, Vinod
Ganapathy, and many individuals who provided feedback
on preliminary drafts of this work, including Trent Jaeger.
Their comments have significantly improved the presenta-
tion and clarity of this work. The second author acknowl-
edges NSERC for an NSERC Discovery Grant and his Canada
Research Chair in Internet Authentication and Computer
Security. Partial funding from NSERC ISSNet is also ac-
knowledged.

References
[1] Android developers. Web site (viewed 18 Nov 2009).

http://developer.android.com.
[2] Apple, Inc. iPhone developer program license agree-

ment, Jun 2008.

http://developer.android.com


[3] Apple Inc. iPhone Application Program-
ming Guide, Jan 2010. http://developer.

apple.com/iphone/library/documentation/

iPhone/Conceptual/iPhoneOSProgrammingGuide/

iPhoneAppProgrammingGuide.pdf.
[4] A. Baliga, P. Kamat, and L. Iftode. Lurking in the

shadows: Identifying systemic threats to kernel data.
In Proc. 2007 IEEE Symp. on Security and Privacy.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proc. 19th ACM
Symposium on Operating Systems Principles, 2003.

[6] M. Bauer. Paranoid penguin: an introduction to Novell
AppArmor. In Linux Journal, number 148, page 13.
Aug 2006.

[7] A. Bellissimo, J. Burgess, and K. Fu. Secure soft-
ware updates: Disappointments and new challenges. In
USENIX HotSec 2006.

[8] G. Brunette. Restricting service administration in the
Solaris 10 operating system. Technical Report 819-
2887-10, Sun Microsystems, 2005.

[9] K. R. B. Butler, S. McLaughlin, and P. D. McDaniel.
Rootkit-resistant disks. In Proc. 15th ACM CCS, 2008.

[10] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman. A
look in the mirror: Attacks on package managers. In
Proc. 15th ACM CCS, 2008.

[11] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systemic
integrity checking. In Proc. 16th ACM CCS, 2009.

[12] R. Coker. Re: [dse-dev] refpolicy: domains need access
to the apt’s pty and fifos. Mailing List Posting, Mar
2008. http://www.nsa.gov/research/selinux/list-

archive/0803/25307.shtml.
[13] J. Collake. Hacking Windows file protection. Web Page,

2007. http://www.bitsum.com/aboutwfp.asp.
[14] D. A. Curry. UNIX System Security: A Guide for Users

and System Administrators. Addison-Wesley, 1992.
[15] J. DeTreville. Making system configuration more

declarative. In Proc. USENIX HotOS 2005.
[16] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Gif-

fin. Robust signatures for kernel data structures. In
Proc. 16th ACM CCS, 2009.

[17] E. Dolstra. The Purely Functional Software Develop-
ment Model. PhD thesis, Utrecht University, 2006.

[18] E. Dolstra and A. Hemel. Purely functional system
configuration management. In Proc. USENIX HotOS
2007.

[19] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection.
In Proc. 2003 Network and Distributed Systems Security
Symp. Internet Society.

[20] Google. Android developer guide. Developer Web-
site, 2009. http://developer.android.com/guide/

publishing/app-signing.html.
[21] S. E. Hallyn and A. G. Morgan. Linux capabilities:

Making them work. In Proc. Ottawa Linux Symposium,
Jul 2008.

[22] S. Ioannidis, S. M. Bellovin, and J. M. Smith. Sub-
operating systems: a new approach to application se-
curity. In Proc. 10th Workshop on ACM SIGOPS, 2002.

[23] I. Jackson and C. Schwarz. Debian Policy Manual,
1998. http://www.debian.org/doc/debian-policy/.

[24] K. Kato and Y. Oyama. Softwarepot: An encapsulated
transferable file system for secure software circulation.

In Proc. of Int. Symp. on Software Security, volume
LNCS 2609/2003, 2003.

[25] A. Kim. Apple’s ability to deactivate mali-
cious app store apps. Web site, 2008. http:

//www.macrumors.com/2008/08/06/apples-ability-

to-deactivate-malicious-app-store-apps/.
[26] G. H. Kim and E. H. Spafford. The design and imple-

mentation of Tripwire: A file system integrity checker.
In Proc. 2nd ACM CCS, 1994.

[27] A. Kjeldaas. Linux capability faq v0.1. Mailing
List Posting, Aug 1998. http://lkml.indiana.edu/

hypermail/linux/kernel/9808.1/0178.html.
[28] Y. Korff, P. Hope, and B. Potter. Mastering FreeBSD

and OpenBSD Security, chapter 2.1.2. O’Reilly, 2005.
[29] G. Kroah-Hartman. Signed kernel modules. Linux

Journal, 117:48–53, 2004.
[30] C. Kruegel, W. Robertson, and G. Vigna. Detecting

kernel-level rootkits through binary analysis. In Proc.
20th Annual Computer Security Applications Confer-
ence (ACSAC’04). IEEE Computer Society, 2004.

[31] Q. Liu, R. Safavi-Naini, and N. P. Sheppard. Digital
rights management for content distribution. In Proc.
Australasian Information Security Workshop Confer-
ence on ACSW Frontiers, volume 21, 2003.

[32] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the Linux operating system. In
Proc. FREENIX ’01, 2001.

[33] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[34] Microsoft. Description of the Windows file protection
feature. Web Page, 2007. http://support.microsoft.
com/kb/222193.

[35] Microsoft. Description of the windows installer cleanup
utility. Technical Report Q290301, Microsoft, 2008.
http://support.microsoft.com/kb/290301.

[36] J. Moskowitz and D. Sanoy. The Definitive Guide
to Windows Installer Technology. Realtimepublish-
ers.com, 2002. http://nexus.realtimepublishers.

com/dgwit.php.
[37] H. Muhammad. Compiling from source. Web Page

(viewed 16 Feb 2010). http://gobo.kundor.org/wiki/
Compiling_From_Source.

[38] H. Muhammad. The Unix tree rethought: an intro-
duction to GoboLinux. Kuro5hin Article, May 2003.
http://gobolinux.org/index.php?page=k5.

[39] H. Muhammad and A. Detsch. Uma nova proposta para
a árvore de diretórios UNIX. In Proceedings of the III
WSL - Workshop em Software Livre, 2002.

[40] A. Pennington, J. Strunk, J. Griffin, C. Soules,
G. Goodson, and G. Ganger. Storage-based intrusion
detection: Watching storage activity for suspicious be-
havior. In Proc. 2003 USENIX Security Symp.

[41] N. L. Petroni Jr., T. Fraser, J. Molina, and W. A. Ar-
baugh. Copilot - a coprocessor-based kernel runtime in-
tegrity monitor. In Proc. 2004 USENIX Security Symp.

[42] N. L. Petroni Jr., T. Fraser, A. Walters, and W. Ar-
baugh. An architecture for specification-based detec-
tion of semantic integrity violations in kernel dynamic
data. In Proc. 2006 USENIX Security Symp.

[43] R. Russell, D. Quinlan, and C. Yeoh. Filesystem Hier-
archy Standard. Filesystem Hierarchy Standard Group,
2.3 edition, 2004. http://www.pathname.com/fhs/.

http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
http://www.nsa.gov/research/selinux/list-archive/0803/25307.shtml
http://www.nsa.gov/research/selinux/list-archive/0803/25307.shtml
http://www.bitsum.com/aboutwfp.asp
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html
http://www.debian.org/doc/debian-policy/
http://www.macrumors.com/2008/08/06/apples-ability-to-deactivate-malicious-app-store-apps/
http://www.macrumors.com/2008/08/06/apples-ability-to-deactivate-malicious-app-store-apps/
http://www.macrumors.com/2008/08/06/apples-ability-to-deactivate-malicious-app-store-apps/
http://lkml.indiana.edu/hypermail/linux/kernel/9808.1/0178.html
http://lkml.indiana.edu/hypermail/linux/kernel/9808.1/0178.html
http://support.microsoft.com/kb/222193
http://support.microsoft.com/kb/222193
http://support.microsoft.com/kb/290301
http://nexus.realtimepublishers.com/dgwit.php
http://nexus.realtimepublishers.com/dgwit.php
http://gobo.kundor.org/wiki/Compiling_From_Source
http://gobo.kundor.org/wiki/Compiling_From_Source
http://gobolinux.org/index.php?page=k5
http://www.pathname.com/fhs/


[44] M. Sharif, W. Lee, and W. Cui. Secure in-VM monitor-
ing using hardware virtualization. In Proc. 16th ACM
CCS, 2009.

[45] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a linux security module. Technical Report
01-043, NAI Labs, 2002.

[46] E. Software. Registry watch. Software Application
(viewed 23 Apr 2009). http://www.easydesksoftware.
com/regwatch.htm.

[47] W. Stallings. Operating Systems: Internals and Design
Principles. Prentice Hall, 4th edition, 2001.

[48] M. Stiegler, A. H. Karp, K.-P. Yee, T. Close, and M. S.
Miller. Polaris: virus-safe computing for Windows XP.
Communications of the ACM, 49(9):83–88, 2006.

[49] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and
G. Ganger. Self-securing storage: Protecting data in
compromised systems. In Proc. 2000 USENIX Symp.
on Operating Systems Design and Implementation.

[50] S. Sudre. Packagemaker how-to. Web site (viewed
29 Oct 2009). http://s.sudre.free.fr/Stuff/

PackageMaker_Howto.html.
[51] W. Sun, R. Sekar, Z. Liang, and V. N. Venkatakrish-

nan. Expanding malware defense by securing software
installations. LNCS, 5137/2008:164–185, 2008.

[52] Trusted XENIX version 3.0 final evaluation report.
Technical Report CSC-EPL-92-001, National Com-
puter Security Center, 1992.

[53] T. Y. Ts’o and S. Tweedie. Planned extensions to the
Linux ext2/ext3 filesystem. In Proc. FREENIX Track:
2002 USENIX Annual Technical Conference.

[54] C. Tyler. Fedora Linux, chapter 8.4. O’Reilly, 2007.
[55] Social engineering (trojan) via gnome-loook.org. Web

Page (viewed 13 Feb 2010). http://ubuntuforums.

org/showthread.php?t=1349801.
[56] V. N. Venkatakrishnan, R. Sekar, T. Kamat, S. Tsipa,

and Z. Liang. An approach for secure software instal-
lation. In Proc. LISA ’02: Eighteenth Systems Admin-

istration Conference, 2002.
[57] K. Vervloesem. Linux malware: an incident and some

solutions. LWN.net Article, Dec 2009. http://lwn.

net/Articles/367024/.
[58] S. Vidyaraman, M. Chandrasekaran, and S. Upad-

hyaya. Position: The user is the enemy. In Proc. 2007
Workshop on New Security Paradigms.

[59] K. M. Walker, D. F. Sterne, M. L. Badger, M. J. Petkac,
D. L. Sherman, and K. A. Oostendorp. Confining root
programs with domain and type enforcement (DTE).
In Proc. 1996 USENIX Security Symp.

[60] Y.-M. Wang, D. Beck, B. Vo, R. Roussev, and C. Ver-
bowski. Detecting stealth software with strider ghost-
buster. In Proc. International Conference on Depend-
able Systems and Networks (DSN-DCCS), 2005.

[61] Z. Wang, X. Jiang, W. Cui, and P. Ning. Counter-
ing kernel rootkits with lightweight hook protection. In
Proc. 16th ACM CCS, 2009.

[62] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah-Hartman. Linux security modules: General
security support for the Linux kernel. In Proc. 2002
USENIX Security Symp.

[63] C. P. Wright and E. Zadok. Unionfs: Bringing filesys-
tems together. Linux Journal, (128):24–29, Dec 2004.

[64] G. Wurster. Security Mechanisms and Policy for
Mandatory Access Control in Computer Systems. PhD
thesis, Carleton University, Apr 2010.

[65] G. Wurster and P. van Oorschot. Self-signed executa-
bles: Restricting replacement of program binaries by
malware. In USENIX HotSec 2007.

[66] G. Wurster and P. C. van Oorschot. System configura-
tion as a privilege. In USENIX HotSec 2009.

[67] X. Zhao, K. Borders, and A. Prakash. Towards protect-
ing sensitive files in a compromised system. In Proc.
Third IEEE International Security in Storage Work-
shop (SISW’05), 2005.

http://www.easydesksoftware.com/regwatch.htm
http://www.easydesksoftware.com/regwatch.htm
http://s.sudre.free.fr/Stuff/PackageMaker_Howto.html
http://s.sudre.free.fr/Stuff/PackageMaker_Howto.html
http://ubuntuforums.org/showthread.php?t=1349801
http://ubuntuforums.org/showthread.php?t=1349801
http://lwn.net/Articles/367024/
http://lwn.net/Articles/367024/

	Introduction and overview
	Background on installers
	Application installers
	Application packages
	Apple bundles and packages

	Approaches for encapsulating applications
	GoboLinux
	Android
	Apple application bundles

	Design for controlling root  privileges on file systems
	A control point for division of root privileges
	Threat model
	Linux kernel protection of c-locked file-system objects
	configd
	Example configd rule set


	Prototype implementation and evaluation
	Kernel extensions
	configd implementation
	Debian package manager modifications
	Allowing scripts during package install and uninstall
	Handling of operations not automatically allowed
	Performance evaluation
	Verification that application encapsulation is enforced
	Evaluating installation and upgrade of non-malicious software

	Related work
	Secure software installation
	Rootkit resistant disks
	Other related work

	Summary
	Acknowledgement
	References

