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Abstract

In this thesis, we revisit outdated definitions of Surface Web and Deep Web and pro-

vide new definitions and apply them to Internet search engines. We argue that the

scope of the term “Web” is too narrow when referring to information on the Internet.

We offer, and define, new terms to better describe the state of the Internet: Surface

Internet, Shallow Internet, and Deep Internet. We use these terms to describe: Re-

sponding Internet-Connected Entity (RICE), Search Engine for Responding Internet-

Connected Entities (SERICE), Web search engines, and Internet search engines. We

explain how popular Internet-wide scanning services — Shodan and Censys — are

SERICEs that index RICEs. In empirical work, we analyze scans from Shodan and

Censys and determine they use few resources and provide an up-to-date view of the

Internet.
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Chapter 1

Introduction

The Internet contains an enormous amount of information, distributed across a vast

number of devices, made accessible through many services running on those devices.

In the early 90s, as the popularity of the Internet grew, so did the demand for a

method for finding relevant, high-quality resources on the Internet. The invention of

Web search engines fulfilled this requirement, and revolutionized how we find infor-

mation. Search engines automatically collect information from the vast expanses of

the Web, store the content they find and provide users with an interface to query

these databases. Due to the size of the Web and the number of incoming queries,

search engines must be able to gather information rapidly and keep their databases

up-to-date. Search engines must handle a massive number of synchronous queries

from users and produce relevant, quality results. Conventional search engines are

capable of returning billions of relevant and high-quality results in a fraction of a

second. However, conventional search engines are limited because they only search

the Surface Web, a small subset of the Internet.

1.1 Search Engine (The Meaning of the Term)

The term search engine has been widely adopted as a software system that allows

users to perform searches for Web content. Search engines crawl and index a massive

database of publicly available websites. A user submits a query to the search engine,

the search engine processes the semantics of the query, then returns a list of hopefully

relevant links to the user.

Through this thesis, we expand the term search engine to include all services avail-

able on the Internet and not just websites. By services we mean a software program

running on a computer that can communicate with a client software program (web-

sites, file storage, web cameras, ssh servers, remote desktop hosts, etc.). This thesis

1
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argues that the rise of Internet-wide scanning and Internet-wide scanning services has

changed how we should think of search engines.

1.2 Motivation

The motivation of this thesis is to provide a taxonomy and classification for compo-

nents of Internet-wide scanning that we feel are inadequately classified; and explore

how they apply to popular Internet-wide scanning services. In our opinion the previ-

ous classifications of the “Surface Web” and “Deep Web” are both imprecise and out-

dated. We believe that our definitions provide a more useful taxonomy of the current

landscape. Further more, we provide methodologies of how to evaluate Internet-wide

scanning services and apply them to Shodan and Censys in our empirical analysis.

1.3 Contributions

The following are the contributions of this thesis:

1. We expand the definition of a search engine to include services that can crawl

and index resources other than websites.

2. We define the following terms IP Address Crawler, Responding Internet-Connected

Entity (RICE) and Search Engine for Responding Internet-Connected Enti-

ties (SERICE).

3. We explore implementation issues and possible solutions related to Internet-

wide scanning.

4. We carry out seven experiments to compare how Shodan and Censys conduct

Internet-wide scanning.

In our work, we focus on Shodan and Censys as they are the two most popular

search engines that conduct Internet-wide scanning. This thesis advances research

in the area by classifying components of Internet-wide scanning and conducting an

empirical scanning analysis of Shodan and Censys to determine how much resources

are consumed and how fresh the results are.
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1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 presents our definition of what a search

engine is, provides a definition for a Responding Internet-Connected Entity (RICE)

and Search Engine for Responding Internet-Connected Entities (SERICE), shows how

these terms apply to Shodan and Censys and lists use cases of Shodan and Censys.

Chapter 3 covers the results of our empirical scanning analysis of Shodan and Censys.

Chapter 4 is the conclusion of the thesis, discussion of our results and mentions a few

open problems in Internet-wide scanning.

1.5 Preliminary Background Definitions

We provide well known definitions of commonly used terms below for the convenience

of the reader. Additional terms related to the Transmission Control Protocol (TCP)

can be found in Appendix A.1.

Internet Protocol

The Internet protocol (IP) is the principal communications protocol used in the In-

ternet [60]. The IP defines how blocks of data, called datagrams, are transferred from

sources to destinations. Each host is identified by a fixed length address know as an

IP address. Two widely used versions of the IP are: IPv4 and IPv6.

Internet Protocol Version 4 (IPv4) IPv4 uses a 32-bit long address which

provides a space of 232 possible values [60]. This address space is too small to give

each host on the Internet a unique IP address. This issue is known as IPv4 address

exhaustion.

Internet Protocol Version 6 (IPv6) IPv6 uses a 128-bit long address which

provides a space of 2128 possible values [32]. IPv6 is intended to solve the issue of

IPv4 address exhaustion.

Network Nodes A network node, or node, is any addressable device (physical

or virtual) connected to a network.
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Host A host, or network host, is a client or server (edge node) connected to

a network. Hosts are assigned at least one network address. Hosts do not include

network devices such as routers and switches. In our work, we categorize routers and

switches as intermediate nodes. By these definitions, all hosts are nodes, but not all

nodes are hosts.

Network Address A network address is a unique identifier for the connection

point of a host or node on a network. Examples of network addresses include phone

numbers, IP addresses and MAC addresses. This thesis only requires background on

IP addresses.

Scanner A scanner is a host that attempts to collect data about one or more

targets. Scanners generate an IP address, determine if a target exists at that IP ad-

dress, enumerate the services hosted on the target, and collect application or protocol

specific information about services running on a target.

Target A target is a host that a scanner collects data from. Targets can be

physical machines or virtual machines. A target can be hidden behind a proxy or

NAT that uses port forwarding to expose one or more of the target’s services.

Port Scanning Port scanning is when a scanner attempts to determine if a

target is running a service on a given port (either TCP or UDP). This thesis focuses

on TCP scanning so we will only consider TCP port scanning. We consider any TCP

stream that did not contain any packets during the ESTABLISHED TCP state to

be a TCP port scan. This includes TCP streams that did not complete the TCP

handshake. TCP Port scans are typically TCP streams comprised of a small number

of packets with an empty data section. A few examples of TCP streams that would

be considered TCP port scans can be found in Figure 1.1.

Port scanning allows the scanner to determine which ports the target device will

accept network traffic on. Processes running on the device bind a port and listen for

incoming connections. Processes representing standardized services typically bind to
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Scanner

(a) Scanned Closed Port

Target

SYN

RST

Scanner

(b) TCP SYN Scan

Target

SYN

SYN/ACK

RST

Scanner

(c) TCP Connect Scan

Target

SYN

SYN/ACK

ACK

FIN

ACK

FIN

ACK

Figure 1.1: Examples of TCP Port Scans. (a) Attempted scan with closed port. (b)
TCP SYN scan with open port. (c) TCP Connect Scan with open port.

a default port. For example HTTP services typically bind port 80, SSH services typi-

cally bind port 22 and HTTPS services typically bind port 443. However the Internet

Assigned Number Authority (IANA) notes that traffic flowing to or from a registered

port does not guarantee that the traffic corresponds to the assigned process [29].

Therefore the scanner must take into account the possibility that any application

could bind to any available port. IANA classifies ports [0-1023] as System Ports,

ports [1024-49151] as Users Ports and ports [49152-65535] as Dynamic or Private

Ports [29]. Default System Ports are assigned and controlled by the IANA [64]. On

some operating systems, the process must be running as a privileged user in order to



6

bind ports [0-1023]. This may increase the confidence a scanner would have that an

open port between 0 and 1023 is running the well known service associated with that

port.

Several methods of port scanning include TCP NULL Scans, UDP Scans, TCP

SYN Scans and TCP Connect Scans. (See Figure 1.1.)

TCP NULL Scan TCP NULL scan has all control bit fields and the sequence

number set to zero [27]. A scanner sends such a packet to the target device on the

target port. If the port is closed, the device will respond with a RST. If the port

is open, the device typically will not respond. The advantage of this form of TCP

scanning is it may avoid being blocked by some firewalls. However, this scan does

not allow for further querying of the device without creating a new TCP connection

because the packet sent by a TCP NULL scan does not follow the TCP specification

and will be discarded by the receiving host.

UDP Scan UDP scan is possible but is outside the scope of this thesis.

TCP SYN Scan TCP SYN scan is a fast method to determine if a port is

open. The scanning machine creates a TCP packet with the SYN control bit set.

The destination port set to the port number the scanner wishes to scan. The packet

is sent to the target device and the scanner waits for a response. If the scanner receives

a SYN/ACK from the server, the port is open and the scanner sends a reset to the

server without completing the TCP 3 way handshake (Figure A.2). If no response

is received, the scanner assumes the port is closed. This method does not guarantee

the process bound to the port is the well known process. An example of TCP SYN

scan can be found in Figure 1.1 (b).

TCP Connect Scanning TCP connect scanning relies on the underlying op-

erating system to create a TCP session. A full TCP handshake is negotiated with the

target device. Similar to the TCP SYN Scan, a TCP packet with the SYN control

bit set is sent to the target device. If the target device responds with a TCP packet

where the SYN and ACK control bits are set then the port is open. If no response
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is received, or the target responds with a RST, then the scanner assumes the port is

closed. Unlike the SYN scan, the scanner now sends another TCP packet with the

ACK control bit set. Now that the TCP session is established the scanner can send

network traffic to the process on the target device. An example of TCP Connect Scan

can be found in Figure 1.1 (c).

Types of Port Scanning Types of port scanning are: vertical, horizontal and

box scanning. A vertical scan is when a single IP address is scanned for multiple

ports. A horizontal scan is when multiple IP addresses are scanned for a single port.

Box scanning is a combination of both.

Banner Grab A banner grab is a technique used to collect a banner from a

service, typically used after a port scan has identified that a service exists. A banner

is information about a service, such as: version numbers of the service, keys or cer-

tificates used during setup of secure communication channels, the title of a webpage

hosted by the service, the content of a webpage hosted by the service, the name of

the software running the service, etc. The information obtained by a banner grab is

typically parsed into what we will later call a property (Section 2.1.1 Page 9). An

example of a banner returned from a banner grab (an HTTP HEAD request in this

case) can be found in Figure 1.2.

HTTP/1.0 200 OK

Content-Type: text/html; charset=ISO-8859-1

Date: Sun, 12 Nov 2020 10:24:32 GMT

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Expires: Sun, 13 Nov 2020 10:24:32 GMT

Cache-Control: private

Figure 1.2: Example of a banner from an HTTP HEAD request.

Internet-wide Scanning Internet-wide scanning (IWS) is when port scanning

or banner grabs are attempted against as many hosts as possible on the Internet [36].
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IWS of the entire IPv4 address space can be completed in as little as 45 minutes from

user space on a single machine with a 1 Gbps connection [37]. At the time of writing,

it is infeasible to conduct an IWS of all IPv6 addresses due to the 128-bit address

space of IPv6 [59].

World Wide Web and HTTP Hyper Text Transfer Protocol (HTTP) [17] is

an application-level protocol that allows the fetching of resources. It allows for the

dissemination of images, files, CSS, JavasScript, Web APIs and HTML documents.

HTTP has a secure extension known as HTTP secure (HTTPS ), traffic sent over

HTTPS is encrypted HTTP traffic.

The World Wide Web (Web / WWW) is an information system where Web re-

sources, identified by Uniform Resource Locators (URLs), are made accessible via the

Internet over the HTTP or HTTPS [44]. HTTP and HTTPS are the fundamental

protocols in the WWW.



Chapter 2

Characterizing Search Engines

In this chapter, we first define three terms: Surface, Shallow, and Deep Internet. Then

we revisit what a search engine is. We expand the definition of a search engine to

include searching Surface and Deep Internet. Then we provide a description of what

a Search Engine for Responding Internet-Connected Entities is, and how it relates

to search engines. Finally, we provide two concrete examples of Search Engine for

Responding Internet-Connected Entities — Shodan and Censys — and examine use

cases for these two search engine services.

2.1 The Surface and Deep Internet

2.1.1 Surface Web, Deep Web, Dark Web and Darknets

The Surface Web has been described as the portion of the Web that a conventional

search engine can index [26,40,67,74]. Deep Web is the rest of the Web that cannot be

indexed. We believe that these definitions require revisiting for several reasons: there

is no fixed definition of what a “conventional search engine” is and what a search

engine can index changes dynamically. This does not allow for a precise definition

of Deep Web. We propose new definitions below to replace these, defining Surface

Internet in Section 2.1.2 and Deep Internet in Section 2.1.3.

The Dark Web is a subset of the Deep Web that has been intentionally hidden and

cannot be accessed with a standard Web browser. The Dark Web comprises of the

set of all Darknets. A Darknet is a network run on top of the Internet that requires

special software, configurations or authorizations to access. Darknets often use a

unique or customized communication protocol. Three popular Dark Web platforms

are: Tor, Invisible Internet Project (I2P) and Freenet. We will use these definitions

for Dark Web and Darknet for the remainder of the thesis.

9
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In this section we introduce the terms Shallow Internet, Surface Internet and

Deep Internet. We emphasize that we purposely chose the term “Internet” instead

of “Web”, because we will be applying these terms to services other than the Web.

Our goal is to provide concrete definitions for these terms that do not rely on what a

search engine can find. Figure 2.1 (Page 15) shows the relationship between Shallow,

Surface and Deep Internet. First, we define three terms to help us describe the Sur-

face, Shallow, and Deep Internet : property, resource and Uniform Resource Locator.

(Note: rather than proposing new definitions of resource and URL, we are simply pro-

viding standard definitions as a convenience to make our discussion self-contained.)

In this section a “user” means any entity that wishes to obtain a resource (can be a

human or a robot).

Property

In this thesis, we define a property as name-value pair. The name must be a string

(surrounded by quotes). The value can be: itself a property, string (surrounded

by quotes), integral type, floating point, character, byte or an array of any of the

previous. Our recursive definition allows for a property to be the value of a property

(for example, consider the property : {“HTTP” : {“version” : 1.1}}). We write

properties in the format {name : value}. We write arrays, where v is a value, in

a comma separated format: [v0, v1, . . . , vn]. Properties are typically created (or

extracted) by parsing a banner. We define three distinct types of property below:

location properties, encryption properties, and attribute properties.

Example of properties :

� {“IP address” : 123.123.0.111}

� {“page name” : “Welcome to my site”}

� {“search results” : [{“service” : “HTTP”}, {“port”: 8080}]}

� {“ssl.cert.header” : [{“version” : 3}, {“serial number” : 123456}]}

Location Properties We define location properties to be properties that con-

tain information about how to connect to a target service. This includes IP addresses,



11

URLs, domain names for SNI (described in Section 4.2 on Page 70) and transport

level context such as TCP or UDP port numbers. Some examples of a location are:

a website located at URL “www.mysite.com:1234” and an SSH server reached with

“username@123.123.123.111”.

Encryption Properties We define encryption properties to be properties that

contain information about the encryption being used, if any, to decrypt traffic received

from the service and encrypt traffic sent to the service. This includes all information

about which encryption algorithm is being used, certificate serial numbers, signature

algorithms, public keys, version numbers, etc. Not all Internet-connected devices

have encryption properties. An example of the “Certificate” encryption property of

an HTTPS website can be found below.

{"Certificate": [

{"Data":

[{"Version": 3},

{"Serial Number":

"b1:ac:d2:f1:2a:34:3b:6f:c9:98:55:25:3d:dd:fa:03:07:f1"}]},

{"Signature Algorithm": "sha256WithRSAEncryption"},

{"Issuer": ["C=US", "O=Let’s Encrypt", "CN=Let’s Encrypt Authority X3"]},

{"Validity" : [

{"Not Before": "Nov 14 13:56:53 2020 GMT"},

{"Not After" : "Jan 26 13:46:23 2021 GMT"}]},

{"Subject": "CN=abc.mysite.ca"},

{"Subject Public Key Info": [

{"Public Key Algorithm": "rsaEncryption"}

{"Public-Key": "(2048 bit)"}]}

}

Attribute Properties We define attribute properties to be properties that con-

tain information about a device or services running on the device that are not location

properties or encryption properties. Examples of attribute properties are an HTTP

server running “Apache httpd”
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Resource

As defined by RFC3986 [16], a resource is a general term to refer to an electronic

document, an image, a source of information, a service or a collection of other re-

sources. A resource can be represented as a collection of properties. For example,

a webpage is a resource and can be represented by the property {“html.body” :

“<html><body>Hello World!</body></html>”}.

Uniform Resource Locator (URL)

As defined by RFC3986 [16], a URL identifies a resource and contains the information

required to locate the resource on the Internet.

Some examples of URLs:

https://www.mysite.com

ftp://ftp.mysite.com

https://admin:hunter2@admin.mysite.com/secret.php

https://mysite.com/index.php?userId=1234&SessionKey=A15D2F1

A URL consists of the following components [16]:

URI = scheme ":" hier-part [ "?" query ] [ "#" fragment ]

hier-part = "//" authority path-abempty

/ path-absolute

/ path-rootless

/ path-empty

2.1.2 Surface Internet

We define the Surface Internet as the portion of the Internet from which resources can

be retrieved, without restrictions, with a URL, and including two aspects: properties

and resources.
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Shallow Internet

We define the Shallow Internet as all resources available on the Surface Internet. The

Shallow Internet is a subset of the Surface Internet because it excludes properties.

We partition the Shallow Internet into three distinct categories: Default Resources,

Discoverable Resources and Obscure Resources.

Default Resource

We define a Default Resource to be a resource that can be retrieved with a URL

that contains an empty path. As an example, we consider both of the following to be

Default Resources : the default homepage of a website and the banner of an SSH server

(the banner can be configured to display before a user logs in). Both are presented

to a user who need know no more than the IP address or URL when they attempt to

visit. Not all services have a Default Resource.

Discoverable Resource

We define a Discoverable Resource to be a resource that can be retrieved with a URL

that does not have an empty path. As an example, consider a website that, on the

homepage, has a link to an about page and contacts page. The about and contacts

pages are Discoverable Resources. A user would browse to the homepage, see the

links, and be able to click on them to access the resources.

Obscure Resource

We define an Obscure Resource to be a resource that is difficult for a user to find

naturally (no link provided on the website), however access to the resource is not

otherwise restricted. For example, consider a webpage with a difficult to guess URL

such as any of the following examples:

� A hard to guess URL: “www.mysite.com/aXJvbm1hbg.html”

� A GET request: “www.mysite.com/tool.php?id=098116119” (This assumes a

different value for the id variable causes a different resource to be served.)
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� URL containing username and password: ssh://admin:hunter2@mysite.com

2.1.3 Deep Internet

The Deep Internet is the portion of the Internet from which resources cannot be

retrieved with a URL alone but also require extra information. (We will explain “extra

information” in what follows.) We breakdown the Deep Internet into four categories:

Secluded Resources, Obstructed Resources, Protected Resources and Darknets.

Secluded Resource

We define a Secluded Resource to be a resource that is not retrievable with only a

URL because it requires extra information that cannot be passed in a URL. The

extra information must not be a password. An example of a Secluded Resource is a

website form that asks a user to input which country they are from. The value of the

country is passed in a POST request and the site responds with the page associated

with that country. Obscure resources and Secluded Resources are similar, however

obscure resources are reachable with only a URL while Secluded Resources are not.

Obstructed Resource

We define an Obstructed Resource to be a resource where access is restricted, by the

service hosting the resource, based on attributes of the user. The hosting service can

accomplish this by explicitly blocking a user with a blacklist or implicitly blocking

a user because they are not on a whitelist. For example, consider a service that

blocks users based on: IP address, country they appear to be from (IP address based

geographical location), the operating system or software the user is using (HTTP(S)

identifies this with a “user agent” field in the request), etc.

Protected Resource

We define a Protected Resource to be a resource that requires a password, a session

key or other means of proving a user’s authorization to access. Examples of this are: a

website that requires a user to login to an account, an SSH service that requires a user
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to identify a pre-registered public key (that provides some degree of authorization)

and prove they have the corresponding private key, or an FTP server that requires

the user to login.

Darknets

Darknets (defined in Section 2.1.1) are outside the scope of this thesis, but Darknets

could be broken down further within our model. Tor is an anonymity network which

also features a darknet [9].

Surface

Shallow

Default

Discoverable

Obscure

Deep

Secluded

Obstructed

Protected

Location IP

GET /

tool.php?id=10

POST

HTTPS SSH ICMP

Blacklist / Whitelist

Password
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Blacklist / Whitelist Blacklist / Whitelist
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Figure 2.1: Relationship between the Shallow, Surface, Deep and Dark Internet. The
relationship is illustrated for three protocols: HTTPS, SSH and ICMP. Properties
and resources are listed in order from shallowest to deepest. In our model the Deep
Internet does not contain properties. The lower a property or resource is on the chart
the harder it is to find from an Internet-wide scanning perspective.

2.1.4 Relationship Between the Shallow, Surface, Deep and Dark

Internet

This subsection serves as a walk-through for Figure 2.1. The rows of the figure contain

labels of the properties and subclassifications of Surface Internet and Deep Internet
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that we defined in this section. The columns have three services: HTTPS, SSH and

ICMP. The intersection of a row and a column contains one or more labels that

represent either a property(black background) or a resource(yellow background) and

shows which level it belongs to. These properties and resources are not an exhaustive

list of all possible properties or resources that fall under our classification. They serve

as examples to help the reader understand our classifications.

2.2 What is a Search Engine?

From a review of the literature [23, 30, 34, 58, 68], we suggest that the key features

that define a search engine are: Crawling, Indexing, Ranking and Querying. Our

classification will be discussed further in this section after additional definitions. We

list a few services historically labeled as search engines in Table 2.1. We note that all

conventional search engines support crawling, indexing, ranking and querying. We

also point out that the majority of the search engines in this table target the Web.

We will introduce our own definitions for crawling, indexing, ranking and querying.

In this section, we argue that search engines are not just for the Web.

Many people associate the term search engine exclusively with popular services

such as Google and Bing search engines. In this thesis, we distinguish between a

“search engine” and a “Web search engine”. We propose that a Web search engine is

a search engine but a search engine is not always a Web search engine. We classify

Google and Bing as Web search engines as they primarily search the Web. (By Web

we mean HTTP and HTTPS services running on port 80 and 443 respectively.)

Search Engine Results Page

Search Engine Results Page (SERP) is the webpage that is sent to a user after they

have submitted a query to a search engine. Examples of two SERPs for the query

“CNN” on Google and Bing Web search engines can be found in Figure 2.2.
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(a) Bing SERP (b) Google SERP

Figure 2.2: Example of a Bing SERP (a) and Google SERP (b) for the query “CNN”
(images taken July 27th 2020). The small font text content is not intended for reading.

2.2.1 Search Engines

In this subsection we provide definitions for crawling, indexing, ranking, querying and

search engine, based on a review of the literature [23,30,34,58,68].
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Crawling and Crawlers

A crawler is a generic term for software that systematically discovers the location

of new online resources, collects information from online resources, and revisit previ-

ously known locations to check if the resources have been updated. We explain the

systematic methods for Web crawlers and Internet crawlers in Section 2.3 (Page 19).

One systematic method a crawler may implement is enumeration. Enumeration is the

complete listing of elements of a search space, in some fixed (i.e., specific) ordering.

This is effective when an enumeration of the address space is possible in a reasonable

amount of time. For example the enumeration of all IPv4 addresses is possible in

under 45 minutes [37]. At the time of writing this thesis, the search space of IPv6 is

too large for enumeration to be practical. Our definition allows for crawlers that use

methods other than enumeration to be considered crawlers.

Indexing

Indexing is the process of analyzing and organising resources in order to allow for

efficient and fast retrieval when a query is submitted to the database. Indexing

dramatically speeds up the process of locating a resource in a database and retrieving

it. It is common for Web search engines to index a webpage based on content that

is more likely to be relevant to a user’s query such as the title of the page, headings,

bold words and meta tags.

Ranking

Ranking is the algorithm by which a search engine orders the results on its SERP,

from most relevant to least.

Querying

Querying allows a user to use a text-based query to search for relevant, quality results.

The user’s query may be a natural language statement (eg. “What is the weather

like today?”) or follow a fixed structure (eg. “weather.get(date.today)”).
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Search Engine

A search engine is software which, given a user’s query, attempts to retrieve the

location of relevant resources and resource meta-data from its database and return

them to the user. Queries to a search engine do not uniquely identify a single resource.

Instead, the search engine returns multiple resources and displays them in an order

based on the ranking. The goal of a search engine is to allow users to find the URL

of a resource and a summary of the information that is relevant to the user’s query.

Some search engines support boolean operations such as AND, OR and NOT to allow

users to create queries that will return the most relevant resources to them. By our

definition, a search engine must support crawling, indexing, ranking and querying.

Query results are displayed on a search engine results page (SERP).

2.3 Taxonomy for Search Engines

In this section we define the terms Web Search Engine, Web Crawling and Responding

Internet-Connected Entity. A visual relationship of these terms can be found in

Figure 2.3.
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Figure 2.3: Relationship Between a SERICE and a Web Search Engine
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Archie 1990 FTP X
Veronica 1991 Gopher X X
Jughead 1991 Gopher X X
W3Catalog 1993 Web X X
WWW Wanderer 1993 Web X X X
AliWeb 1993 Web X X
Jump Station 1993 Web X X X X
Web Crawler 1994 Web X X X X
Lycos 1994 Web X X X
Infoseek 1994 Web X X X X
AltaVisa 1995 Web X X X X
Inktomi 1996 Web X X X X
Dogpile 1996 Meta X X
HotBot 1996 Web X X X X
Ask Jeeves 1996 Web X X X X
Northern Light 1996 Web X X X X
Google 1998 Web X X X X
Teoma 2000 Web X X X X
Vivisimo 2000 Web X X X X
Exalead 2000 Web X X X X
Yahoo! Search 2004 Web X X X X
MSN Search 2005 Web X X X X
Good Search 2005 Web X X X X
Bing 2009 Web X X X X

Table 2.1: List of search engines released between 1990 and 2009. Compiled from [68].

Web Search Engine We define Web search engine to be a search engine that

is primarily used to find resources on the Web using Web crawling (defined below).

The majority of existing search engines primarily target the Web. For this reason,

we explicitly call them Web search engines. We note that many Web search engines

support non-Web searches such as maps, airlines, images, videos or finances; however,

the main functionality is to search for resources on the Web. Two examples of popular

Web search engines are: Google and Bing. The distinguishing feature of a Web search
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engine is that it uses a Web crawler.

Web Crawling We define Web crawling as the process of collecting online re-

source from the Web. An entity that performs Web crawling is a Web crawler (some-

times known as Web spider, Web robot, Web wanderer or automatic indexer). Web

crawlers find webpages that are uniquely identified by a URL. Hyperlinks from one

webpage to another are a directed connection between the webpage containing the

link to the webpage the link refers to. Web crawlers start with one or more seed

URLs [23], download the webpage the URL points to, parses the HTML to find links

on the page, then follow the new links to new pages and resources. Websites may

use the “Standard for Robots Exclusion” [47] by including a “robots.txt” file to the

root directory of the website. The robots.txt document specifies the rules that Web

crawlers are requested to follow when accessing their website. Resources gathered

from Web crawlers are indexed in order to be useful to the Web search engine.

2.3.1 Responding Internet-Connected Entity (RICE)

We define a Responding Internet-Connected Entity (RICE ) to be any host that is

reachable by a public IP address and will respond to at least one packet sent to

it. By our definition, if a host is TCP port scanned on a closed port and responds

with a RST response, then it is a RICE. There is no requirement for a RICE to

use TCP or UDP. For example, a host that responds to an ICMP echo request is a

RICE. Intermediate network nodes such as routers, cable modems or other networking

devices, can be RICEs. However, a layer two switch that is not addressable by IP

address is not a RICE. A RICE is uniquely identifiable (thus there is a one-to-many

mapping between a RICE, defined by an IP address, and services or devices) by its

public IP address. If the public IP address is reassigned to a new host, the RICE now

refers to that new host. It is important to note that several devices may be reachable

through network address translation (NAT) or a proxy. Since all of these devices are

addressable via the same public IP address (even though they have separate ports),

they would be considered one RICE as a single device running these services would

appear identical from the perspective of a SERICE. This is shown in Figure 2.4.
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Figure 2.4: Demonstrates the difference between how a NAT is actually configured,
and how it would appear as a RICE from a scanning perspective. Green and blue
rectangles represent devices. Green rectangles are devices with public IP Addresses.
Blue rectangles are devices with private IP addresses. Yellow rectangles indicate a
service visible to a port scan.

2.3.2 IP Address Crawler

We define an IP Address Crawler (IPAC) to be a type of crawler (defined in Sec-

tion 2.2.1) that conducts Internet-wide scanning (Section 1.5 Page 7). An IPAC

generates a candidate IPv4 address (typically by enumeration like ZMap [37]) or

IPv6 (this is an open problem in IWS due to the enormous search space of IPv6) or

both.

By our definition, IPACs focus on collecting properties from the Surface Internet.

IPACs index RICEs based on the responses received from the IPACs scans. This

is commonly TCP and UDP port scanning, but can also be ICMP packets or any

other protocol that would respond. IPAC port scanning has two main phases: port

scanning and banner grabbing. While it is possible to conduct scanning on link layer

protocols, we do not consider this to be Internet-wide scanning and therefore such

scanning is not covered by this thesis.
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We intentionally use the term “crawler” to describe an IPAC to allow for this

definition to fit future addressing schemes. We considered using the term “IP Address

Enumerator” but the in-progress migration to IPv6 addressing will make enumeration

infeasible.

The two main differences between a Web crawler and an IPAC are: a Web crawler

only targets HTTP and HTTPS services while an IPAC targets many services, and

a Web crawler attempts to index resources while an IPAC focuses on indexing prop-

erties.

2.3.3 Search Engine for Responding Internet-Connected Entities

We define a Search Engine for Responding Internet-Connected Entities (SERICE)

to be a search engine that uses an IPAC to crawl the IP address space discovering

RICEs and then indexing properties (SERICEs focus on properties) and resources

found. SERICE primarily targets Default Resources and Discoverable Resources on

the Surface Internet. Figure 2.5 shows the differences between the depth of Internet

that SERICEs and Web search engines target. Two popular SERICEs are Shodan

and Censys, they are the main focus of the remainder of this thesis; numerous other

SERICEs exists, e.g., Zoomeye [13].

In 2008, Madhavan et al. [54] describe a system for surfacing (taking Deep Web

resources and indexing it) Deep Web content. They focused on automatically filling in

HTML forms and submitting the data to the server. They note that when an HTML

form is submitted, the values of the form get submitted as one of two methods: GET

or POST. When the form is submitted as a GET request the parameters are appended

to the URL.

The example they give is:

http://jobs.com/find?src=hp&kw=chef&st=Any&sort=salary&s=go

By our definition, this is an example of Google search engine indexing an Obscure

Resource because the URL contains fields that are difficult to guess.

When the form is submitted as a POST request, the resulting URL does not

uniquely identify the returned resources and hence cannot be indexed. The au-

thors [54] have shown they are able to discover(by our definition) Secluded Resources
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but they are unable to index them because the search engine identifies web pages

based on their URLs (they note that URLs from GET requests are unique while

URLs from POST requests are not).

In Section 3.2.7 (Page 61), we show results in our empirical study that suggests

that Shodan (by our definitions a SERICE) is indexing Default Resources as well as

Discoverable Resources.
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Figure 2.5: Levels of Surface and Deep Internet each search engine is able to discover.

2.4 Shodan

Shodan, which by our definition is a SERICE, was created in 2009 by John Math-

erly, to provide a “complete snapshot” of the Internet [10]. It accomplishes this by

conducting Internet-wide scans, searching for, what we have defined to be, RICEs.

Shodan attempts to identify any services the RICE is running and collects properties

and resources from these services. Examples of properties Shodan collects are: the IP

address, port numbers, headers and banners. Shodan accepts search queries through

two main interfaces: Shodan’s Web interface and Shodan’s API (a non-interactive in-

terface). Shodan is available at https://www.shodan.io and the API documentation

https://www.shodan.io
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is available at https://developer.shodan.io/, as of December 2020.

2.4.1 Shodan Web Interface

Searching Using Shodan

Shodan’s website’s index page contains a search bar that allows a user to browse

data via a Web search interface. The user enters a query and Shodan responds with

a SERP. The SERP contains a list of IP addresses that correspond to RICEs that

matched the user’s query. The SERP provides information about the RICEs such as:

location, Internet service provider, last time it was scanned by Shodan and global

statistics (most popular countries (including a heat map), services, organizations,

operating systems and products). Any IP address, on the SERP, can be clicked on

and the user will be taken to a detailed page about that RICE. The page includes

information such as country, organization, Internet service provider, last time the

entry was updated, list of all open ports, a list of services running on the open ports,

a list of Web technologies the device is running and a list of vulnerabilities that may

affect the device.

Shodan Maps

Shodan Maps [55] is another Web search interface but, instead of returning a list of

properties of a RICE, returns a visual representation of where each RICE is, physically

on a map. This feature allows a user to use the same queries and syntax as the main

search bar on the Shodan homepage. Figure 2.6 shows an example of a Shodan query.

The query string is “city:ottawa country:CA SSH”, meaning that the user is seeking

information about SSH servers located in Ottawa, Canada. In Figure 2.6, each red

dot represents one or more RICEs. Shodan Maps is able to display up to 1000 RICEs

at a time [55]. We can see Shodan returned a total of 8,854 RICEs for our query,

of these, 8,280 were running SSH. This is possible because our query has the string

“SSH” which means, any banner containing the string “SSH” would match our query.

For example, a RICE running an HTTP service where the index.html page contained

the string “SSH” but has no SSH service running could match this query. We can

see the most popular services that matched our query, in order, are: SSH, port 2222

https://developer.shodan.io/
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(SSH alternate port), HTTPS (some of these RICEs are running SSH on port 443),

port 4118 (WatchGuard SSH) and port 830 (OpenSSH). The “Top Organizations”

are the organizations that own the netblock (a range of consecutive IP addresses) the

RICE belongs to.

The Shodan API allows users to programmatically submit queries to Shodan.

Everything that can be accomplished on the Shodan Website is possible using the

API [55].

Figure 2.6: Shodan’s Map SERP of the SSH RICEs located in Ottawa, Canada.
Accessed Nov 29, 2020. As noted inline, one red dot may represent many RICEs.

2.5 Censys

Censys, which by our definition is a SERICE, is a platform designed to help infor-

mation security practitioners discover, monitor and analyze devices on the Internet.

Censys was founded by security researchers David Corcoran, David Adrian, Zakir Du-

rumeric and J.Alex Halderman [2]. Originally, the Censys team’s goal was to provide

researchers with a tool to allow measurement to determine whether Internet security

was improving. In order to track security vulnerabilities on RICEs, they created the

“ZMap Project” [12] (not to be confused with the ZMap network scanner, which is

a part of the ZMap Project). ZMap Project is a collection of open source tools that

enable large-scale studies of services on the Internet [37]. They developed Censys

using tools from the ZMap Project.
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2.5.1 Censys IP Address Crawler (IPAC)

Censys’ IPAC is comprised of two pieces of software from the ZMap Project: ZMap

and ZGrab.

ZMap is an open source, modular network scanner specifically designed to per-

form Internet-wide scans [37]. It is capable of scanning the entire IPv4 address space,

for a single port, in under 45 minutes on a gigabit Ethernet connection. ZMap scans

IPv4 addresses according to a random permutation of the IPv4 address space to re-

duce the likelihood of overloading a destination network, which means more consistent

results [37]. ZMap is used to determine if a port is open on a target. The next step

is to collect properties from the services running on the identified ports; to do this,

they use ZGrab.

ZGrab is a stateful application-layer scanner [12]. This is Censys’ banner grab-

bing tool. It is responsible for taking the output from ZMap and conducting banner

grabs on the open ports. We explain banner grabs in Section 1.5 on Page 7.

2.5.2 Censys Web Interface

Censys Web interface allows a user to browse data by submitting search queries

on their site. Users must first select one of three datasets to search: IPv4 hosts,

websites or certificates [3]. Similar to Shodan’s Web interface, the user enters a query

and Censys responds with a SERP. The SERP contains a list of IP addresses that

correspond to RICEs that matched the user’s query. Each IP address is listed next

to a summary of some of the data collected about the corresponding RICE such

as: autonomous system name, location, protocols, homepage title, global statistics

or names on certificates. Similar to Shodan, Censys also provides a map SERP

displaying the location of RICEs. Censys provides an API that accepts any query

programically that can be performed through Censys’ Web interface. The following

query searches for RICEs running an HTTP service on port 80, where the title field

contains the word admin.

80.http.get.title: admin
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2.6 Original Motivations for Shodan and Censys

While the motivations for these SERICEs are not a technical observation, they help

us understand why these tools exist and provides insights about intended use cases.

2.6.1 Motivation for Shodan

In an interview with The Daily Swig [62] John Matherly states “The goal was to

offer a Netcraft on steroids: provide real-time market intelligence about everything

that’s on the Internet.” Matherly said Shodan was not originally designed for security

but instead for market intelligence [62]. When Shodan originally launched, Matherly

advertised it as “Shodan, the search engine for hackers”.

2.6.2 Motivation for Censys

Censys’ creators, Durumeric et al. [35], state that Internet-wide scanning is a labor-

intensive process and that answering simple questions about the state of the Internet

can take weeks of effort. They comment on how researchers wishing to conduct

Internet-wide scanning must consult with legal and networking resources before they

can scan. Since many researchers and institutions lack access to these resources they

created Censys to democratize Internet-wide scanning by providing an approximate

real-time view of the Internet as an online, publicly available, service. The creators

make it clear that Censys does not perform login attempts, attempt to exploit or

access non-public resources.

2.7 Shodan and Censys Use Cases and Related Work

In this section, we first review two background terms and then cover use cases of

Shodan and Censys.

2.7.1 Background

Cryptojacking Cryptojacking is the unauthorized use of cryptomining software

to mine cryptocurrency [24]. An example of a cryptojacking attack is compromising
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a website and injecting JavaScript code into a site that causes a victim’s browser to

mine cryptocurrency while browsing the site.

Remote Access Tool A remote access tool (RAT) is software used to remotely

access and control a computer. RATs have both legitimate and malicious use cases.

A systems admin could use a RAT to access a computer for configuration or to install

new software. Cyber criminals can use RATs to control and monitor a victim’s

computer.

2.7.2 Shodan and Censys Use Cases

We distinguish the following categories for Shodan and Censys usage:

� Discovering RICEs infected with known malware

� Identifying vulnerable RICEs

� Measuring TLS certificates (i.e., collecting related current and historical meta-

data)

� Analyzing content filtering (resources are restricted by a third-party) on the

Internet

We have grouped papers, from the literature, into these categories, and discuss

them in the subsections immediately below. For the purposes of this section, we

consider the use of ZMap to be a use of Censys. Since we defined the term RICE after

these papers where written, we will use the term the authors used to describe entities

connected to the Internet.

2.7.3 Discovering RICEs Infected with Known Malware

Shodan

In 2018, Rezaeirad et al. [65] reported on attackers and victims of two popular

remote access tools: njRat and DarkComet. They note that Shodan supports

active probing and banner identification for both. They found that the RATs

were used primarily by operators located in the same country as the victims.
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Censys

In 2017, Antonakakis et al. [15] provided a retrospective analysis of the Mirai

botnet’s growth over seven months. They used Censys to analyze how the

Mirai botnet emerged, determine what classes of devices were infected, which

manufacturers made the devices, and analyze how variants of Mirai evolved.

Shodan and Censys

In 2017, Farinholt et al. [39] studied the use of a popular RAT, “DarkComet”.

When an infected host establishes a TCP connection with a DarkComet con-

troller, the controller sends a banner that identifies itself. Farinholt et al. use

this to determine if a host is a DarkComet controller. They utilized ZMap to

scan TCP port 1604 (DarkComets default controller port) twice per day to iden-

tify IPv4 addresses that are potentially hosting a DarkComet controller. They

also parsed Shodan’s daily response logs looking for the DarkComet banner on

port 1604. They compiled the results from ZMap and Shodan to create a list of

suspected DarkComet controllers. Every 30 minutes, they attempted a banner

grab on each suspected DarkComet controller. In total they identified 9877

total DarkComet controllers, ZMap identified 56% of the devices and Shodan’s

logs identified 8% of the devices.

In 2019, Bijmans et al. [18] report on a new attack vector for cryptojacking

(defined in Section 2.7.1 on Page 28). A firmware vulnerability in MikroTik

routers allows cyber criminals to embed cryptomining code in any outgoing Web

connection. They used both Shodan and Censys to discover infected routers.

Using Censys they searched for TCP port 80 and 8080 (HTTP and HTTP

alternative ports), and determined if the device was infected by checking if the

HTTP header contained cryptomining code. Censys found a total of 1,452,550

unique IP addresses of infected routers (approximately 70% of all deployed

MikroTik routers). Given the results from the Censys search, they queried the

compromised IP addresses with Shodan’s API to search historical records to

determine the timestamp of when Shodan first encountered the infected routers.
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2.7.4 Identifying Vulnerable RICEs

Shodan

In 2017, Böhme et al. [21] used Shodan to identify 250k devices vulnerable to

Heartbleed (as of April 2016).

In 2019, Wang et al. [73] were able to identify vulnerable Internet of Things

devices without having access to the device’s hardware or firmware. They iden-

tified Internet of Things companion apps, downloaded them, and fed them into

their “App Analysis Engine”. The App Analysis Engine is able to identify

possible vulnerabilities on a device that the app was designed to control. Us-

ing Shodan, they discovered 58,456 devices that are potentially vulnerable to at

least one of: CVE-2017-8221, CVE-2017-8222, CVE-2017-8223, CVE-2017-8224

or CVE-2017-8225.

In 2019, Mirsky et al. [57] showed how an attacker can use deep learning to

add or remove evidence of medical conditions from a 3D medical scans. They

focused on injecting and removing evidence of lung cancer from CT scans (they

chose lung cancer because it is common and has the highest mortality rate).

In order to modify the file containing the 3D medical scans, the attacker must

have access to it. One attack vector they explore is remote infiltration through

the Internet. They use Shodan to identify 1,849 medical image servers and

842 medical picture archiving systems that are addressable to anyone who has

access to the Internet. They believe the security of health-care systems lags

behind modern security standards. They also note that even if there are no

exploitable vulnerabilities on these devices, simply knowing they exist presents

opportunities for social engineering attacks and physical access attacks.

Censys

In 2015, Adrian et al. [14] used a modified ZMap to identify devices vulnerable

to the Logjam flaw in export grade Diffie-Hellman. They found that 8.4% of

the Alexa Top 1M domains were potentially vulnerable to the flaw.
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In 2015, Springall et al. [69] presented a comprehensive analysis on how FTP

is abused. Using Censys, they identified 13.8M IPv4 addresses hosting FTP

servers. 1.1M (8%) of these servers permit anonymous (no credentials required)

login. They created an FTP enumerator and collected over 600M files and di-

rectories — including password databases, private keys, personal photographs

and financial information (they infer this from file names and extensions) —

from the anonymous FTP servers. Out of the 1.1M anonymous FTP servers,

more than 20K allowed an anonymous user to write data. They found sev-

eral malicious campaigns using the anonymous write permissions to distribute

malware and launch DDoS attacks.

In 2016, Li et al. [53] used Censys to identify 46K industrial control systems or

ICSs (defined in Section 3.4 on Page 64) that were publicly accessible. They

see this as an issue as the ICSs were never designed to be publicly accessible

on the Internet. The ICSs lack basic security features such as encryption and

authentication and therefore are inherently vulnerable.

In 2017, Krombholz et al. [49] published a paper exploring why it has been so

hard to deploy TLS correctly and to study the usability of deploying HTTPS.

They used Censys to show that 20,890,000 websites were using Apache.

In 2019, Kotzias et al. [48] used Censys’ data to retrieve raw protocol banners

from HTTP(S), POP(S), IMAP(S), SMTP, SSH and FTP scans. They parsed

the banners for application names and versions then searched the National Vul-

nerable Database for exploits that potentially affect those applications with that

version.

In 2019, Kumar et al. [50] used Censys to identify vulnerable home routers.

In 2020, Leurent et al. [52] report the first practical implementation of the SHA-

1 collision attack and they used Censys to show 17% of devices use SHA-1 for

signatures and 9% of devices use HMAC-SHA-1.
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2.7.5 Analyzing TLS Certificates

Censys

In 2016, Kumar et al. [51] used Censys to analyze how well certificate authorities

construct certificates. They conclude that 0.02% of certificates have errors.

Int 2016, Springall et al. [70] used Censys to identify devices using Diffie-

Hellman and Elliptic Curve Diffie-Hellman with reused private values, TLS

session resumption and TLS session tickets.

In 2016, VanderSloot et al. [71] combined data from Censys and CT logs. They

examined all domains in .com, .net and .org. They find that combining Censys

with CT logs finds the majority of certificates.

In 2017, Kim et al. [45] used Censys to identify 122 code signing certificates

used for TLS by searching for keywords that explicitly indicate code signing

usage.

2.7.6 Analyzing Content Filters on the Internet

Shodan

In 2013, Daleket al. [31] presented a methodology for identifying installations

of URL filtering products in Internet service providers around the world. They

searched Shodan for commonly appearing keywords and headers for URL filter-

ing products: “Blue Coat”, “McAfee SmartFilter”, “Netsweeper” and “Web-

sense”.

Censys

In 2020, Raman et al. [63] downloaded the Censys HTTP and HTTPS measure-

ment data on September 12, 2019. They found content filters in 154 countries

probed by Censys. They note that Censys was not designed to measure censor-

ship and Censys does not request content that is commonly censored when it

is conducting Internet-wide scanning. The authors are unclear on exactly what
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they mean by this, we assume that because Censys indexes very few Shallow

Web resources that it may not be detected by some filtering systems.

2.8 Conclusion

In this chapter, first we provided a new definition for the Surface, Shallow and Deep

Internet that do not depend on how much of the Internet a conventional search engine

can index. We partitioned our definitions into distinct categories with the intent that

future protocols (such as HTTPS2 or a new protocol that has not been created at

the time of writing this thesis) may be classified based on our definitions. It is our

expectation that these definitions allow us to use the terms Surface and Deep Internet

without the meaning of these terms constantly changing.

We proposed a new definition of a search engine to include the Surface Inter-

net, Shallow Internet and Deep Internet. Our definitions are based on how some

authors [26, 40, 67, 74] define the Surface Web and Deep Web. We chose to not use

the word “Web” in our definitions to emphasize that our definitions apply to more

protocols than HTTP and HTTPS.

We introduce the term SERICE and clearly distinguish a SERICE from a Web

search engine and give two examples Shodan and Censys. We provided examples of

how Shodan and Censys are being used by researchers to discover malware, measure

the Internet, analyze certificates, analyze content filters. SERICEs primarily target

properties while Web search engines primarily target resources. There is a possibility

of future SERICEs supporting resource searching, we discuss this further in the future

work section of this thesis (Section 4.3 Page 72) by introducing the concept of an

Internet search engine.

The main takeaway of this chapter is SERICEs are search engines that crawl the

Surface Internet and a small amount of the Shallow Internet across many protocols.

Web search engines are search engines that crawl the Shallow Internet but only on

HTTP and HTTPS. We propose a definition for the concept of a search engine that

crawls across the Surface Internet and Shallow Internet for many protocols. We would

classify such a search engine as an “Internet search engine”.
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Empirical Scanning Analysis of Shodan and Censys

In our empirical scanning analysis we wish to determine how much resources are con-

sumed by Shodan and Censys, how fresh the results obtained from Shodan and Censys

are, and how does the operation of Shodan and Censys differ from the perspective of

the network edge. To do this we ask and answer the following seven questions:

Q1 How fast do Shodan and Censys update after a Responding Internet-Connected

Entity (RICE) changes a service’s banner? (Section 3.2.1 on Page 40)

Q2 How much traffic can a RICE expect to receive from Shodan and Censys?

(Section 3.2.2 on Page 44)

Q3 Which services do Shodan and Censys most frequently scan? (Section 3.2.3 on

Page 48)

Q4 How many unique IP addresses do Shodan and Censys use for scanning? (Sec-

tion 3.2.4 on Page 52)

Q5 Do Shodan’s and Censys’ scanners located geographically near to a RICE scan

it more frequently than further away scanners? (Section 3.2.5 on Page 54)

Q6 What are the scanning patterns of Shodan and Censys? (Section 3.2.6 on

Page 57)

Q7 What level of the Surface and Deep Internet do Shodan and Censys index?

(Section 3.2.7 on Page 61)

We provide a methodology for each question and discuss our results.

35



36

3.1 Methodology

In order to answer these questions, we designed an experiment where we setup five

RICEs (using virtual machines) around the world and analyzed traffic received from

Shodan and Censys.

3.1.1 Setting Up Our Virtual Machines

We provisioned five virtual machines (VM) located in San Jose, Tokyo, Montreal,

Paris and Sao Paulo. More details of these VMs can be found in Table 3.2. We used

Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instances to host our

VMs. Each EC2 instance is running Amazon Linux 2 Amazon Machine Images (AMI)

running Linux kernel 4.14 64bit(x86) operating system. Each instance was launched

on February 19th, 2020 with firewall rules set to block all traffic except SSH from

our lab computer. Each VM was assigned a static public IP address that remained

constant for the duration of our experiment. We then configured a service for HTTP,

HTTPS, SSH, SMTP and FTP on the VMs as described in Subsection 3.1.2. As of

March 10th, 2020, we allowed traffic from any address to reach the VMs. On March

10th, 2020, each VM was configured with the same firewall rule set which can be found

in Table 3.1. Figure 3.1 shows a graphical representation of the locations of our VMs

and Censys’ scanning location. We point out that all of Censys’ scans come from a

single location: Ann Arbor, Michigan, USA. Shodan scans from multiple locations,

described in Subsection 3.2.5.

Table 3.1: Virtual Machine Firewall Rules

Direction Transport Layer Port Range Source IP Address

Inbound Any TCP Any Any
Outbound Any Any Any
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Table 3.2: Location and IP Address of Virtual Machines

City AWS Region Private IP Address Public IP Address

San Jose US West (N. California) 172.31.6.99 54.219.179.30
Tokyo Asia Pacific 172.31.39.155 52.197.29.146
Montreal Canada (Central) 172.31.26.149 35.183.157.209
Paris Europe 172.31.26.176 15.188.183.150
Sao Paulo South America 172.31.13.62 18.229.178.20

Figure 3.1: World map showing our VMs (stars) and the geographic location that all
Censys TCP Sessions came from (triangle).

3.1.2 Configuring Software on Our Virtual Machines

Once each VM was running and the firewalls configured we installed five services to

receive port scans on SSH, HTTP, HTTPS, FTP and SMTP. Table 3.3 shows which

software we used for each service.

Each VM is running “tcpdump” to collect all network traffic as packet captures

(pcaps). We analyze these pcaps to determine when Shodan and Censys have scanned

our VMs. The following command was used to collect packets on the VMs.

tcpdump -i any -G 86400 -K -n -w %B%d.pcap
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Table 3.3: Services Running on Our Virtual Machine

Service Software Port

FTP vsftpd 21
SSH Open SSH 22
SMTP postfix 25
HTTP Apache 80
HTTPS Apache 443

The purpose of these flags is:

� “-i any” - Capture packets from all interfaces.

� “-G 86400” - Number of seconds to wait before starting a new dump file. 86400

seconds is 24 hours.

� “-K” - Don’t verify TCP checksums. This will allow us to record packets that

have invalid checksums.

� “-n” - Don’t convert host addresses or port numbers to names.

� “-w %B%d.pcap” - Write output to pcap file. File name %B%d.pcap uses Linux

date(1) formatting to create file names with the current months full name and

day such as: “March12.pcap”.

We note that during the setup of Tokyo, Montreal, Paris and Sao Paulo, we had

a misconfiguration with the SMTP service. Instead of allowing traffic from any IP

address, we accidentally configured SMTP to only accept traffic from localhost. This

is reflected in our results, and caused many SMTP fields to be left blank as we were

only able to collect SMTP data on the San Jose VM. The script we used to configure

the VMs can be found in Appendix A.3.

3.1.3 Identifying Foreign IP Addresses

We need to be able to determine which traffic is from Shodan and Censys. We do this

by looking at the sender’s IP address, and identify if the traffic came from Shodan,

Censys or neither.
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Identifying Shodan Traffic on November 29th, 2020, we ran a DNS history

search for the domain “*.shodan.io” using the DNS history search tool provided by

SecurityTrails [7]. SeucrityTrails API allowed us to find the first time it became aware

of a domain (first seen) and when it became aware of the domain changing (last seen).

Any packet with source IP addresses belonging to one of Shodan’s subdomains is

assumed to be from Shodan if the timestamp on the first packet in the TCP session

was after the first seen date and before the last seen date. Appendix A.2 contains a

complete list of DNS history of all Shodan subdomains as of November 29th, 2020.

For readability, the first seen and last seen values have been converted from unix

timestamps to dates.

Identifying Censys Traffic During our experiment, Censys was scanning the

Internet from the “198.108.66.0/23” subnet [2]. This allows us to easily identify

Censys traffic, and we assume that all packets whose source IP address matches the

subnet “198.108.66.0/23” are from Censys.

3.1.4 Classifying Traffic

We filtered all traffic into three categories: traffic from Shodan, traffic from Censys

and other. We used the Python library “pcap-splitter” [6] to parse all of the traffic

from Shodan and Censys into TCP sessions, then classified each TCP session as one

of the following categories:

SYN: A TCP session containing a single packet with SYN flag set.

SYN RST: First packet must only have SYN flag set and second packet must

have RST flag set.

SYN RST EX: First packet must have SYN flag set and second packet must

have RST flag set.

SYN SYN/ACK ACK: First packet must only have SYN flag set, second

packet must only have SYN and ACK flags set, final packet must have RST flag

set.
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Banner Grab: Any TCP session that reaches the TCP ESTABLISHED state,

contains at least one packet with an ACK value >1 and ends with a TCP

teardown or RST.

Dangling TCP Handshake: Any TCP session that does not contain a packet

with an ACK value >1 and contains no packets with RST or FIN flag set.

Dangling TCP Session: Any TCP session that contains a packet with an

ACK value >1 and contains no packets with the RST or FIN flag set.

We combine these classifications into three sets for the remainder of the experi-

ment: Closed Port Scan, Open Port Scan and Banner Grab.

Closed Port Scans = SYN RST ∪ SYN RST EX

Open Port Scans = SYN SYN/ACK ACK ∪Dangling TCP Handshake

Banner Grabs = Banner Grab ∪Dangling TCP Session

3.2 Results

3.2.1 Q1: How Fast do Shodan and Censys Update After a

RICE Changes a Service’s Banner?

Methodology

Each day, during our experiment (March 10, 2020 to April 26, 2020), we generated a

unique 64 character string for each VM. We refer to this as a key for the remainder

of this thesis. Each day, at approximately 10pm EST, we updated the HTTP service

to serve content with a unique key for that day, for that VM. We use the key to

calculate three time instances that we call: the Key Change Instance, the Key Grab

Instance and the Key Visible Instance. We define these terms below. When querying

Shodan and Censys, we searched for the IP addresses of our VMs. It is possible that

device-search can make Shodan and Censys pay more attention to our devices. This

is out of the scope of this thesis.



41

Key Change Instance (Tkc) Each day a new unique key was generated and

written to the index.html page on each server. We recorded the unique key and times-

tamp each time we updated the page. The Key Change Instance is the timestamp of

when we wrote the new unique key to the index.html file.

Figure 3.2: Time Differences Visualisation
* See inline description for notes on resolution accuracy.

∆Tr

∆Tg

∆Tu

Tkc Tkg Tkv*

∆Tg = Tkg − Tkc (3.1)

∆Tu = Tkv − Tkg (3.2)

∆Tr = Tkv − Tkc (3.3)

Key Grab Instance (Tkg) By parsing the pcaps from each server, we are able

to find the HTTP GET response packet containing the unique key sent to a SERICE.

The Key Grab Instance is the timestamp of the packet, containing the unique key,

that responds to the banner grab.

Key Visible Instance (Tkv) Each day we used the Shodan’s and Censys’ API

to download results for each VM. The Key Visible Instance is the timestamp of our

request to the SERICE. The API was only queried once every 24 hours. This means

the resolution of the “Key Visible Instance” can only serve as an upper bound showing

the latest possible time the key could have been made visible.

Time Differences We used the above three time instances to calculate three

time durations that we call: Grab Span (∆Tg), Update Span (∆Tu) and Refresh Span
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(∆Tr).

Figure 3.2 is a visual representation of the time instances and differences. Since

Tkv is an upper bound, it will affect ∆Tu and ∆Tr.

We note that these time differences could be applied to Web search engines, where

the Change Instance is the time a website is updated, Grab Instance is the time a

website is crawled and the Visible Instance is when the SERP reflects the updates.

Results

Figure 3.3 shows a CDF of the amount of time it took Shodan and Censys to banner

grab a newly generated key. Figure 3.4 shows a CDF of the amount of time it took

Shodan and Censys to make a key visible through their API after banner grabbing

that key. Figure 3.5 shows a CDF of the amount of time it took Shodan and Censys

to make a key visible through their API after that key was generated.

Grab Span

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hours

A
ct

u
al

F
re

q
u
en

cy

Shodan
Censys

Figure 3.3: A CDF of the number of hours each Shodan and Censys took to banner
grab a new key.
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Update Span
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Figure 3.4: A CDF of the amount of time each SERICE took to make a key visible
through their API since banner grabbing the key.
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Figure 3.5: A CDF of the amount of time each SERICE took to make a key visible
through their API since a new key was generated.

Discussion

Both SERICEs are very fast at refreshing. Shodan and Censys updated every key

they found within 24 hours of finding it in a banner grab. If a key was not found
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within 21 hours of generating it, then the key was never found by either SERICE. If a

key was present in the API but we never saw Shodan or Censys banner grab the key,

then this would mean the key must have been banner grabbed from an IP address

that we did not identify as Shodan or Censys. All of the keys that were found with

both Shodan’s and Censys’ API had corresponding banner grabs in our pcaps.

3.2.2 Q2: How Much Traffic Can a RICE Expect to Receive from

Shodan and Censys?

Methodology

For both SERICEs, we looked at how many: SYN scans (Figure 3.6), banner grabs

(Figure 3.7), average SYN scan session duration (Figure 3.8), average banner grab

session duration (Figure 3.9), standard deviation of hours between the start of each

SYN scan (Figure 3.10), and standard deviation of hours between the start of each

banner grab (Figure 3.11).

Results

Calculating the standard deviation of time between SYN scans (Figure 3.10) and

banner grabs (Figure 3.11) requires at least two data points. Figures 3.6 and 3.7

represent a single scan or banner grab which has a single timestamp representing the

time the scan or banner grab was received. Figures 3.10 and 3.11 show the standard

deviation of the time between scans or banner grabs. This means, in order to have

a data point for a given VM and protocol, there must be a corresponding value >2

in Figures 3.6 and 3.7. This is why in Figures 3.10 and 3.11 some entries are missing

that were present in Figures 3.6 and 3.7.
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Figure 3.6: The number of SYN scans for each service on each VM.

Figure 3.7: The number of banner grabs for each service on each VM.
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Figure 3.8: Average SYN scan session duration in milliseconds for each service on
each VM.

Figure 3.9: Average banner grab session duration in milliseconds for each service on
each VM.



47

Figure 3.10: The standard deviation (σ) of the number of hours between the start of
each SYN scan.

Figure 3.11: The standard deviation (σ) of the number of hours between the start of
each banner grab.
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Discussion

We see Shodan did SYN scans and banner grabs primarily from HTTP and HTTPs

services. We speculate this could be due to us updating the key on the website. It

is possible that the SERICEs noticed the frequent changes on HTTP and conducted

more banner grabs. Censys has a heavy focus on HTTP SYN scans and banner

grabs. We speculate this could be due to Censys’ focus on TLS certificates. Censys

also performed the same number of HTTP SYN scans as banner grabs. Shodan

performed the same number of FTP SYN scans as banner grabs. It is unclear why

this is the case. Both SERICEs perform most banner grabs in under three seconds

and SYN scans in a fraction of a second. We believe that these session durations and

the resources Shodan and Censys consume from a scanned RICE would be commonly

acceptable, from the RICE’s point of view, in practice, but this ultimately depends

on the application and the RICE’s available resources.

3.2.3 Q3: Which Services do Shodan and Censys Most Frequently Scan?

Methodology

We examined the five most common ports that received a closed port scan and open

port scan. Using the IANA [4] and search results from Shodan and Censys we show

possible services Shodan and Censys could be attempting to index with the closed

port scans.

Results

Table 3.4 shows the top five open and closed port scans conducted by both SERICEs

over the duration of the experiment. We note that many of the closed port scans

are not well known ports. In Table 3.5 and Table 3.6 we list the most commonly

scanned closed ports next to the IANA registry entry for the port and what Shodan

and Censys return, if that port is searched through their Web interface (accessed

Nov 30, 2020). Shodan can return multiple results for a single port, in this case we

reported the service with the most results.
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SERICE VM
TCP Port(P) Count(C)

Most Common � Least Common
P C P C P C P C P C

Top Five Closed Port Scans

Shodan

San Jose 444 12 1177 11 81 10 5555 9 1604 9
Tokyo 1177 17 7443 14 53 14 81 14 5800 13
Montreal 1177 13 81 11 4782 11 82 10 1723 10
Paris 81 19 444 16 2086 15 102 14 2222 14
Sao Paulo 3460 12 82 11 6666 11 53 10 51235 10

Censys

San Jose 5900 14 9200 13 83 13 2082 12 4567 12
Tokyo 9200 19 5902 18 8088 18 8080 17 5901 17
Montreal 9200 13 2082 12 8081 11 8088 11 16993 11
Paris 9200 19 5902 19 8090 18 83 18 5900 18
Sao Paulo 9200 13 2083 13 8081 13 88 12 8090 12

Top Five Open Port Scans

Shodan

San Jose 80 25 443 14 22 4 25 3 111 2
Tokyo 80 27 443 24 22 6 21 4 111 4
Montreal 80 24 443 16 111 6 21 4 22 4
Paris 443 32 80 30 22 6 111 4 21 2
Sao Paulo 80 37 443 9 21 6 111 4 22 2

Censys

San Jose 443 52 21 14 22 11 80 8 25 7
Tokyo 443 61 22 29 21 23 80 9
Montreal 443 48 21 10 22 9 80 8
Paris 443 67 21 21 22 14 80 13
Sao Paulo 443 47 22 23 21 10 80 8

Table 3.4: The top five most common attempted and open port scans received by our
VMs from each SERICE.
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Port IANA Registry Shodan Search Result

53 DNS -
81 - HTTP
82 xfer XtremeRAT
102 iso-tsap multiple
444 Simple Network Paging Protocol SonicWALL Firewall HTTP Config
1177 DKMessenger Protocol FileZilla Server
1604 icabrowser OpenSSH
1723 pptp OpenSSH
2086 GNUnet HTTP
2222 EtherNet-IP-1 HTTP
3460 EDM Manger Unreal ircd
4782 - OpenSSH
5555 Dual Stack MIPv6 NAT Traversal OpenSSH
5800 - RealVNC
6666 - OpenSSH
7443 Oracle Application Server HTTPS SonicWALL Firewall
51235 - rippled

Table 3.5: List of ports Shodan scanned that were not part of our experiment and
which services are associated with each port. IANA and Shodan accessed November
29, 2020.
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Port IANA Registry Censys Search Result

81 - -
83 MIT ML Device -
88 Kerberos -

2082 HTTP -
2083 HTTP -
4567 TRAM
5900 Remote Frame Buffer VNC
5901 - VNC
5902 - VNC
8080 http-alt HTTP
8081 sunproxyadmin -
8088 radan-http -
8090 opsmessaging -
9200 wap-wsp Elasticsearch
16993 Intel(R) AMT SOAP/HTTPS HTTPS

Table 3.6: List of ports Censys scanned that were not part of our experiment and
which services are associated with each port. IANA and Censys accessed November
29, 2020.



52

Discussion

We believe that the number of closed port scans indicated that Shodan and Censys

have a high interest in discovering services on those ports. Several of Shodan’s closed

port scans are displayed on their website as HTTP or SSH services. This suggests

Shodan may be sending requests to ports for multiple services, storing any banner

returned, and determining what the service running on that port is by processing the

banner. Censys, however, has very few of the closed ports returning results through

the search interface. This suggests Censys could be looking to support these services

in the future, or the Censys infrastructure may be being used for private research.

This could include work that will be made public, but is currently in progress. Censys

heavily scans port 443 and scans the most popular port on all five VMs almost twice

as much as Shodan. We believe this could be due to Censys focus on HTTPS.

3.2.4 Q4: How Many Unique IP Addresses do Shodan and Censys Use

for Scanning?

Methodology

We are interested in the number of IP addresses each SERICE uses to conduct scan-

ning. The number of IP addresses used may indicate the number of scanners Shodan

and Censys use. These numbers are calculated by taking every TCP session from

Shodan and Censys and counting the number of unique IP address-port pairs. The

total for all five services is calculated by counting the number of unique IP addresses

from each SERICE.

Results

Table 3.7 shows the number of unique IP addresses used by Shodan and Table 3.8

shows the number of unique IP addresses used by Censys. The All Five Services

column shows the total number of unique IP addresses seen from each SERICE by

that VM. It is not a sum of the other columns. Similarly, the All VMs row represents

the total number of unique IP addresses seen for a given protocol.
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VM HTTP HTTPS SSH SMTP FTP All Five Services

San Jose 3 3 4 3 1 10
Tokyo 3 6 4 3 3 14
Montreal 5 3 3 3 4 9
Paris 4 7 4 4 2 12
Sao Paulo 5 1 2 5 5 13

All VMs 11 10 10 11 12 16

Table 3.7: Total number of unique IP addresses, used by Shodan, that sent traffic to
our VMs.

VM HTTP HTTPS SSH SMTP FTP All Five Services

San Jose 13 51 14 12 13 73
Tokyo 9 46 17 7 14 71
Montreal 12 51 14 7 11 72
Paris 15 52 15 7 11 75
Sao Paulo 13 49 20 7 12 77

All VMs 35 146 51 38 39 186

Table 3.8: Total number of unique IP addresses, used by Censys, that sent traffic to
our VMs.

Discussion

Shodan’s API queries return a “crawler” field which contains a 40 character hexadec-

imal string. We took all IP addresses from Shodan and calculated their SHA1 hash.

Each hash appears in the “crawler” field in at least one result in Shodan’s API query.

This suggests that a single IP address may correlate to a single scanner. In total, our

VMs observed 16 unique Shodan IPs. This is consistent with the 16 unique crawler

IDs in the API query results.

We observed 11.6 times more IP addresses used by Censys, however, Censys only

scans from a single location. We note the very high number of IP addresses dedicated

to HTTPS scanning. This reflects Censys’ focus on HTTPS indexing.
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3.2.5 Q5: Do Shodan’s and Censys’ Scanners Located Geographically

Near to a RICE Scan it More Frequently than Further Away

Scanners?

Methodology

In order to determine if a SERICE would use scanners located closer to a RICE we

needed to compare two values. The average distance (ADv) of the RICE from each

scanner and the observed distance (ODv) from each scanner. We define those values

as follows:

S is the set of Shodan scanners, Kv is the set of TCP sessions involving VM v,

F (k) is the scanner that initiated TCP session k, and distance(x,y) is the big circle

geographic distance between points x and y.

ADv =
∑
s∈S

distance(s, v)

|S|
(3.4)

ODv =
∑
k∈Kv

distance(F (k), v)

|Kv|
(3.5)

All geographic data was obtained by querying WhoisXMLAPI [11] accessed Septem-

ber 12, 2020. World maps were generated using the Python library Cartopy 0.18.0 [1].

Results

Table 3.9 shows the average distance (ADvm) and the observed distance (ODvm) from

all scanners to each VM. Figure 3.12 shows which country the scanner was located in

that sent how many closed port scans, open port scans and banner grabs. Figure 3.13

shows the number of TCP sessions used by scanners based on their geographic loca-

tion.
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VM ADvm (km) ODvm (km) ADvm

ODvm

San Jose 4210 3645 1.15
Tokyo 9108 9950 0.9154
Montreal 4547 2009 2.2633
Paris 5304 5880 0.902
Sao Paulo 9769 8725 1.1197

Table 3.9: The average distance from all Shodan scanners to each VM (average dis-
tance (ADvm)) and the average distance between the endpoints of each TCP Session
(observed distance (ODvm)).
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Figure 3.12: Number of TCP Sessions from a Shodan scanner by country the scanner
is located in.
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Figure 3.13: World map showing the geographic location of Shodan and Censys
scanners. Area of circle is proportional to the number of TCP Sessions that location
had with our VMs.
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Discussion

We noticed the Montreal VM is getting a disproportional amount of traffic from

Shodan scanners located close to the machine. We can see scanners in the US are

responsible for the majority of the TCP sessions. The UK is only responsible for

closed port scans. This suggests that Shodan is only scanning ports from the UK

that were not part of our experiment.

Unlike Censys, Shodan’s scanners are found in several countries. Wan et al. [72]

found that a single origin scan will miss 4% of HTTP(S) and 16% of SSH traffic. They

found that scanning from two origins reduces this to 1.7% of HTTP traffic missed and

three origins further reduces the miss rate to 1%. Since Shodan scans from several

origins it follows that Shodan’s coverage is better than Censys’.

3.2.6 Q6: What are the Scanning Patterns of Shodan and Censys?

Methodology

We compare the number of TCP Sessions received from Shodan and Censys scanners

to the number of distinct ports used by those scanners. We uniquely identified each

scanner by its IP Address. We took the set of all TCP Sessions from each scanner

and counted the number of unique VMs visited. For example if a scanner sent 1000

HTTP port scans, 1 HTTPS scan, 10 SSH scans, and 1 SSH banner grab the total

number of distinct ports is 3.

Results

Figures 3.14 and 3.15 show the number of scanners that connect to how many distinct

ports on our VMs. Figures 3.16 and 3.17 show the number of distinct ports used for

open port scans and banner grabs. Figure 3.18 shows the percent of scanners that

connected to how many of our VMs.
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Figure 3.14: Number of scanners that connect to how many distinct ports on our
VMs.
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Figure 3.15: Number of scanners that connect to how many distinct ports on our
VMs.
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Figure 3.16: Number of distinct ports used for open port scans
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Figure 3.18: Percent of scanners that contacted a distinct number of VMs during our
experiment.
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Discussion

Figure 3.14 shows that Censys has many scanners that are responsible for scanning

the same number of ports. 71% of Censys scanners are responsible for less than 20

ports and only 0.7% scan a single port. Figure 3.15 shows that Shodan has only two

scanners that scan the same number of ports. We observed all but two of Shodan’s

scanners scanning over 100 ports. We observed the majority of Censys’ scanners

scanning between 8 and 14 ports. This implies that Censys’ scanners are very similar

to each other while Shodan’s scanners vary widely.

Figures 3.16 and 3.17 imply that both Shodan and Censys port scan very few

ports across a large number of scanners but once they conduct banner grabs across

multiple ports with very few scanners. We speculate this is due to horizontal scans

being used during port scans to reduce the risk of the scan being blocked. Once the

RICEs have been identified with the port scan a banner grab is issued only to IP

addresses found durring the horizontal scan.

Figure 3.18 shows approximately 75% of Censys scanners contacted all five of our

VMs. Shodan’s only had 40% contact all of our VMs, 30% of Shodan’s scanners only

contacted a single VM.

Further analysis of Shodan and Censys scanning patterns may lead to identifying

unique patterns that would allow us to distinguish Shodan and Censys traffic that

originated from an IP address that was not found by our methods. Some variables

that we believe may be useful to use for distinguishing traffic are: time of day, ports

scanned, number of ports scanned by a unique IP address, and if multiple RICEs are

analyzed we could examine the number of RICEs that were scanned near the same

time (Internet-wide IPv4 port scanning can be accomplished in under 45 minutes).

3.2.7 Q7: What Level of the Surface and Deep Internet do Shodan and

Censys Index?

Methodology

We examine the HTTP GET requests from Shodan and Censys to see what resources

are being requested from our HTTP service. We combined HTTP GET requests from
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all VMs, as we are only interested in which level of the Surface and Deep Internet

Shodan and Censys are scanning.

Results

Censys only used one user agent, “Mozilla/5.0 zgrab/0.x”, for 46 requests and always

requests the path “/”. Shodan used several user agents (Table 3.10) and requested

multiple paths (Table 3.11).

Shodan User Agents Count

No User Agent 58
Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36 20
python-requests/2.23.0 2
python-requests/2.10.0 9
python-requests/2.11.1 1
python-requests/2.19.1 5
python-requests/2.22.0 2

Table 3.10: Shodan user agents when requesting a resource from the HTTP service.

Shodan Paths Count

/ 20
/robots.txt 20
/sitemap.xml 19
/.well-known/security.txt 19
/favicon.ico 19

Table 3.11: Shodan HTTP resources requested.

Discussion

Shodan uses five versions of pythons requests library to conduct HTTP banner grabs.

The longest user agent claims to be a Windows machine running Google chrome.

Perhaps they are simulating a browser environment to attempt to bypass security

features that require a browser to have javascript enabled. The user agent field is

trivial to spoof, we can only conclude that Shodan’s user agents may be inconsistent.
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Both Shodan and Censys request the resource located at path “/”. This a Default

Resource of HTTP and means both index the Default Internet. Shodan also attempts

to find resources at four other paths, all are well-known paths that are common

across many websites. By our definition this means Shodan indexes the Discoverable

Internet.

3.3 Limitations

Misconfiguration of Virtual Machines

The Tokyo, Montreal, Paris and Sao Paulo VMs had misconfigured SMTP services

that were configured to listen to connections from IP address “127.0.0.1” instead of

the intended IP address “0.0.0.0”. This prevented the SMTP service from responding

to external requests. This misconfiguration is reflected in our results as we are unable

to collect SMTP traffic on 4 of our VMs.

All Virtual Machines Hosted by AWS

It is possible that the known AWS subnet of IP addresses may cause our VMs to

receive more port scans than they would if assigned random IP addresses. This is

due to Amazon providing a full list of IP ranges that it uses for hosting. This would

allow scanners who are specifically targeting Amazon instances to quickly enumerate

all of the IP addresses. As of Nov 28th, 2020, a full list of the ranges can be found

at https://ip-ranges.amazonaws.com/ip-ranges.json.

Diurnal Effects

A diurnal effect, in the context of this thesis, means any change in a result based

on time of day. For example, would an Internet-wide scan at 10am return the same

results as an Internet-wide scan at 10pm? Any deviation would be considered a

diurnal effect. As shown by Durumeric, diurnal effects can affect results of Internet

scans [37]. In this thesis we did not consider or correct for diurnal effects.

https://ip-ranges.amazonaws.com/ip-ranges.json
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HTTP is the Only Service with a Key

The scope of this thesis is to collect preliminary results. Censys limits API to 250

queries per month. Each service requires 1 scan per day per VM for a total of 5 scans

per day. This means we would need 525 scans to use a unique key to identify when

each service was scanned to remain within the free tier of usage. For this reason, we

only use a unique key on HTTP.

Blocked Incoming Non-TCP Traffic

We blocked all inbound non-TCP traffic, as it is out of the scope of this thesis. It

may be interesting in future work to examine what ICMP traffic or UDP port scans

SERICEs are using.

Shodan and Censys Limitations

We acknowledge that it is possible for Shodan to use port scans from IP addresses

other than listed in our SecurityTrials [7] query. Similarly, Censys sometimes will

make follow-up connections from other machines at dynamic IP addresses [2]. We

did not account for these scenarios which means it is possible for some results to be

missing.

3.4 Related Work

First we cover two terms used in the related work: industrial control system and

programmable logic controller.

Industrial Control System

An industrial control system (ICS) is a general term used for coordinated collections of

devices that are used to operate industrial processes. ICSs compose the infrastructure

required to control motors, pumps, relays, cooling systems, furnaces and many other

systems. It is imperative that these devices do not fail as they are responsible for

monitoring and controlling critical systems in an industrial environment.
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Programmable Logic Controller

Programmable logic controllers (PLC ) are a type of ICS, designed to continuously

monitor the state of of an industrial system. They can be configured to control

systems and to raise alarms during system failure.

3.4.1 Identifying SERICEs on the Internet

Chen at al. [25] deployed six honeypots and collected three months of network traf-

fic. They identified Shodan traffic by applying machine learning techniques to the

scanning patterns and found 16 scanners similar to Shodan that are not Shodan. We

searched for subdomains that matched *.shodan.io to identify Shodan scanners.

Durumeric et al. [56] identify patterns in scanning behaviour and uncover large

horizontal scan operations on the Internet. They focus on all scanners that are scan-

ning the Internet, which services are most commonly targeted and discuss the impact

of new scanners. It is important to note that some of the scanners they observed

will likely be SERICEs. We focus on how two specific SERICEs scan the Internet:

Shodan and Censys. They found that a large portion of scanning is targeting services

commonly associated with vulnerabilities.

Richter et al. [66] tracked scanning activity of traffic captured at the firewalls of

89k hosts of a major Content Distribution Network.

Heo et al. [43] study network scanning trends from a 31-day-long connection logs

they obtained from two firewalls of a campus network. They analyzed over 21 billion

combined TCP and UDP connections to determine the characteristics of network

scans targeting the campus. A major difference between their study and our study is

we only target scans from Shodan and Censys while they are targeting all scanners.

They created a methodology for determining if a remote host is a scanner. Once

a host has been classified as a scanner they further classify the type of scanning

as horizontal, vertical, combined or unclassified. Of the 21 billion connections they

identified 2.65 billion scan probes from a total of 3.78 million scanners. Like us, they

uniquely identified scanners by their IP addresses. They note that this means they

cannot account for IP address spoofing. Heo et al. define a “Responsible Scanner” to

be a scanner with an IP address that satisfies at least one of the following conditions:



66

� The scanner responds to a HTTP GET request containing information that

explicitly informs how to be excluded from scanning and states the intention of

scanning.

� The subdomain contains the word “scan”.

� The second-level label of the domain indicates scanning related or search engine.

� The associated autonomous system indicates scanning intention.

Both Shodan and Censys meet their definition of a responsible scanner. Of the 3.78

million scanners identified only 20 scanners, using a total of 690 unique IP addresses,

can be classified as responsible scanners.

3.4.2 Studies that Evaluate or Measure the Functionality of SERICEs

In 2014, Bodenheim et al. [20] investigated the functionality of Shodan. They de-

ployed four Internet connected Allen-Bradley ControlLogix PLCs with static IP ad-

dress directly accessible via the Internet. All four were deployed in the same subnet.

Each PLC exposed two services: HTTP (port 80) and common industrial protocol

(port 44818). Shodan does not index port 44818, only port 80. Two PLCs were

left with the default configuration. One PLC had its banner obfuscated to the string

“KCC02013 $h09mo]” and one PLC had its banner changed to explicitly say it was an

Allen-Bradly ControlLogix PLC. All four PLCs received at least one port scan from

Shodan in less than 4 days. The HTTP banners were grabbed from all four PLCs

within 14 days. Using keywords only, they searched Shodan for the PLCs. Each PLC

was found, through Shodan’s API, within 19 days of the initial deployment.

One of the major differences between Doenheim et al. and our work is they did

not search for their PLCs by IP address. One of the queries they used (“port:80”)

required them to download and parse 170,467,439 results. Our method only required

us to download a single result per VM. However, it is possible that our VMs were

indexed much faster because Shodan may give the IP address we provided a higher

priority for scanning.
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3.4.3 Tools for Processing the Output of SERICEs

Genge et al. [41] developed ShoVAT, a tool which processes the output of Shodan

queries and compares it with the National Vulnerability Database [5] to detect vul-

nerable devices on the Internet. They managed to find 3922 known vulnerabilities

across 1501 services [41].

Ercolani et al. [38] used the data Shodan collects about RICEs to create visual

models used to attempt to identify which device(s) the RICE is comprised of. Both

of these works are similar to ours because they examined how a SERICE represents a

RICE. However, our work is only focused on how the data for the RICE was collected

and when it was made available to users.

3.5 Conclusion

In this chapter, we answered seven questions. In doing so, we found many similarities

and differences between how Shodan’s and Censys’ scanners operate.

Similarities

We observed both Shodan and Censys detecting changes made to our HTTP services

in under 25 hours. This is a very short time to detect a change, if the refresh span

of all services is this short, then we would conclude that both Shodan and Censys

provide an up-to-date snapshot of the Internet. Since we only tested HTTP, for

a short duration of 47 days, we cannot state that this conclusion applies to other

services. We observed very short session durations for both Shodan and Censys when

conducting port scans and banner grabs. Both Shodan and Censys appear to use

horizontal scanning when conducting port scans and both use a small number of

scanners to follow up with banner grabs.

Differences

Censys has a large amount of its scans and banner grabs focusing on HTTPS. Shodan

attempts to find HTTP(S) and SSH services running on non-standard ports. We

observed 16 scanners from Shodan and 186 scanners from Censys. Censys uses many
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more IP addresses than Shodan however Shodan uses more geographic locations to

conduct scanning from. It may be an interesting question as to which of these methods

provides a better snapshot of the Internet.

Discussion

We provided seven methodologies for analyzing a SERICE’s scanning patterns and

applied them to Shodan and Censys. The scope of our study was limited by the 47

day experiment duration. We used Amazon’s predictable IP ranges, did not account

for diurnal effects, only analyzed updates on a single service, only analyzed TCP

traffic, did not account for scanners that used IP addresses that would bypass our

method for identifying Shodan and Censys IP addresses, and our queries to Shodan

and Censys have a resolution of one day. We believe our methodologies will provide a

more accurate method for analyzing Shodan and Censys if the above limitations are

addressed. Over the duration of our experiment, Shodan initiated 8541 TCP sessions

(7979 closed port scans, 300 SYN scans and 262 banner grabs) and Censys initiated

19755 TCP sessions (18843 closed port scans, 492 SYN scans and 420 banner grabs).
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Conclusion

In this chapter we return to our claimed contributions, to confirm that they have

been met then, we discuss future work, including open problems with Internet-wide

scanning (IWS).

4.1 Contributions

In this thesis, we revisit what in our view, are outdated definitions, of the Surface

Web and Deep Web and provide our new definitions of the Surface Internet, Shallow

Internet and Deep Internet. We believe these definitions are a useful contribution

because they do not depend on what a search engine is able to index. The meaning

of our terms do not change over time.

We argue that Web search engines primarily target the Shallow Internet, and

index resources from HTTP and HTTPS services. We introduce the terms Respond-

ing Internet-Connected Entity (RICE) and Search Engine for Responding Internet-

Connected Entities (SERICE) and argue that SERICEs primarily target the Surface

Internet, indexing RICEs that serve many protocols. We argue that, by our defini-

tions, Shodan and Censys are SERICEs and we summarised how Shodan and Censys

are being used in research. We believe our definitions are useful contributions because

they allow us to succinctly describe what search engines like Shodan and Censys (by

our definition SERICEs) return on their SERPs when a user enters a query.

In our empirical work, we provide seven methodologies for analyzing SERICEs

and applied our methodologies to Shodan and Censys. Our methodologies describe

how to: identify scans from Shodan and Censys, determine how quickly a change in

a RICE is detected by a SERICE, measure how much traffic a RICE receives from

a SERICE, determine which services a SERICE scans most frequently, determine

how many IP addresses a SERICE conducts IWS from, calculate if a RICE is being

69
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disproportionally scanned by a SERICE’s scanners located physically close to them,

analyze scanning patterns of a SERICE, and determining which level of the Surface

and Deep Internet a SERICE indexes. We believe our methodologies for analyzing

SERICEs are useful because Shodan and Censys are commonly used by researchers

to: discover RICEs infected with known malware, identify vulnerable RICEs, measure

TLS certificates, and analyze content filtering on the Internet. We found that Shodan

and Censys conduct most banner grabs in under three seconds and SYN scans in a

fraction of a second suggesting that Shodan and Censys provide an up-to-date view

of the Internet. Our empirical analysis provides evidence that Shodan and Censys

update their search interfaces within 24 hours of conducting a banner grab. Shodan’s

scanners appear to be scattered geographically around the world while Censys’ scan-

ners are all in Michigan, USA. Censys focuses on HTTP/HTTPS more than Shodan

and dedicates many scanning resources to these services. The time of day Shodan

scans is slightly more consistent than Censys. Our methodologies can be applied by

researchers who wish to have confidence that the results of a query to a SERICE are

accurate.

4.2 Open Problems With Internet-wide Scanning

4.2.1 Server Name Indication Problem

Transport Layer Security (TLS ) version 1.2 is defined by RFC5246 [33]. TLS is used

to provide privacy and data integrity between two communicating hosts. HTTPS

traffic is encrypted using TLS. We are interested in the TLS extension Sever Name

Indication (SNI ), which is defined in RFC3546 [19]. During the handshake of TLS,

prior to a secure connection being established, an HTTPS client (e.g. Web browser)

uses SNI to provide the hostname they wish to connect to [19]. This allows for

multiple websites to be hosted by a server using one IP address and one port.

IPACs (Section 2.3.2 on Page 22) have no way of knowing the hostname for an

IP address they generated. This means an HTTPS server, that requires a user to

know the hostname, is inaccessible to an IPAC and therefore cannot be indexed by a

SERICE [71]. HTTP services do not have this problem as HTTP does not use TLS.
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The SNI problem does not affect Web crawlers. Web crawlers discover new re-

sources by following URLs found on previously indexed resources. URLs may contain

the hostname, when this is the case, Web crawlers are able to provide the hostname

during the TLS handshake.

We believe the SNI problem could be resolved, at least in part, if IPAC-based

scanners (such as SERICEs) conducted Web crawling (in addition to IP address

crawling) to discover resources. When the Web crawler finds a URL, it can retrieve

the IP address associated with the domain of the URL via DNS. This allows the

SERICE to search its database for the newly found IP address, if the IP address

matches a previously discovered RICE, the SERICE can add any new information

gathered to the index for that RICE.

4.2.2 IPv6 Internet-wide Scanning

It is infeasible to conduct an IWS (Section 1.5 on Page 7) of all IPv6 addresses due

to the 128-bit address space of IPv6 [59], because of this, we need a way to generate

IPv6 addresses that are in use. However, it is still possible to discover RICEs with the

appropriate heuristics. RFC7707 [42] explores several techniques that can be used for

generating IPv6 addresses that may identifying a live host. We believe mass adoption

of IPv6 could be an issue for IWS as it will be much more difficult to find addresses

that identify live hosts.

4.2.3 Network Address Translation with IPv6

Network Address Translation (NAT) is used to reduce the number of public IP ad-

dresses a private network uses. Devices behind a NAT are not directly addressable

from the public Internet. NAT and IPv6 are designed as solutions for IPv4 address

exhaustion (Section 1.5 on Page 3). As more private networks migrate to IPv6, they

may assign each device on their network a public IPv6 address instead of using NAT.

If that device is vulnerable, then cyber criminals who are conducting IWS will be able

to identify the device and potentially compromise it. We believe this could potentially

result in the creation of a botnet similar to the Mirai botnet [15].
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4.2.4 Dark Web Scanning

This thesis focuses on the Surface and Deep Internet, and we briefly touch on Darknets

(Section 2.1.1 Page 9). We believe it is useful to separate the word “Web” from our

terms and believe this could also be applied to the Dark Web to create a definition

for a Dark Internet. We leave the definition of the Dark Internet for future work.

The Tor project [9] is a free and open-source browser that allows a user to browse

the Tor Darknet. The Tor Darknet is comprised of Tor hidden services [8] which are

only reachable through the Tor network using an onion address. An onion address

is similar to a URL, except it is used to locate hidden services on the Tor Darknet.

The goal of hidden services is to make both the user and the server anonymous.

Several Dark Web search engines exist as Tor hidden services. We list some, as

well as their onion address, available on the Tor network as of Nov 30, 2020:

1) Kilos available at: dnmugu4755642434.onion

2) Ahmia available at: msydqstlz2kzerdg.onion

3) HayStak available at: haystakvxad7wbk5.onion

4) Torch available at: xmh57jrknzkhv6y3ls3ubitzfqnkrwxhopf5aygthi7d6rplyvk3noyd.onion

5) Onion Land available at: 3bbaaaccczcbdddz.onion

4.3 Future Work

We propose a definition for the concept of a search engine that we call the Internet

Search Engine (ISE ). The ISE would be capable of indexing resources and RICEs,

on the Surface Internet and the Shallow Internet, for many protocols. Similar to how

Google’s PageRank [23] ranks a webpage based on the number of URLs referencing

that webpage, an ISE could determine the rank of a resource or RICE based on the

URLs discovered from many protocols. For example an SSH banner could have a

URL to an HTTPS website, or an FTP server may have a README file with a URL

to a website. An ISE would be able to answer queries such as: a query for a “3D

model of a car” and the ISE could respond with a SERP (Section 2.2 on Page 16)
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listing URLs of FTP servers that contain files of 3D models of cars (the SERP could

have previews of the models next to the URLs), or a query for the title of a videogame

where the ISE could respond with a list of IP addresses hosting public servers running

that game. Crawling URLs from all services will find more URLs than just crawling

HTTP and HTTPS. Since there are more URLs from more sources, we believe the

ranking algorithm would be able to rank resources better, which may mean the ISE

would be able to return higher quality and more relevant resources than a standard

Web search engine.

We were unable to find a search engine (that meets our definition of a SERICE)

for the Dark Web. However, an online article [28] claims a service named “Ichidan”

was a “Shodan for the Dark Web”, but is no longer online. We believe it would be

possible to create a SERICE that indexes the Dark Web. This is useful because it

would allow researchers to quickly answer security-related questions about the Dark

Web, without having to spend time and resources designing scanning software for the

Dark Web.



Appendix A

A.1 Transmission Control Protocol

Here we review a few well known data networking terms and concepts, as a conve-

nience to readers unfamiliar with networking. These are in addition to the terms at

the end of Chapter 1.

Transmission control protocol (TCP) is a transport layer protocol that is used

for reliable transmission of packets [61]. TCP handles many issues in packet-based

messaging including corrupted packets, duplicated packets, packet loss and packets

received out of order.

TCP Header

Figure A.1 shows the TCP header [61].

Figure A.1: The TCP header [61]

Source Port is the port number from which the packet originated. (The corre-

sponding source IP address is given in the IP header.)

74
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Destination Port is the port number where the packet is heading. (The cor-

responding destination IP address is given in the IP header.)

Sequence Number is the initial sequence number for a conversation, if the SYN

control bit is set. Otherwise, it is the offset to the first octet of the data segment plus

the previous sequence number.

Acknowledgement Number represents the next Sequence Number the sender

is expecting to receive, if the ACK control bit is set. If the ACK control bit is

not set, the acknowledgement number is ignored. Once a TCP connection is in the

ESTABLISHED state, the ACK control bit must always be set.

Data Offset the offset to the Data Section of the TCP header.

Reserved for future use. Should always be set to 0.

Control Bits

URG: Urgent Pointer - This is beyond our scope and will not be explained.

ACK: Acknowledgement - Used to communicate that data was received.

PSH: Push Function - Indicates that the receiving host should immediately

send this packet to the application without buffering.

RST: Reset Connection - Aborts the connection.

SYN: Synchronize - Sets the sequence number for the connection.

FIN: Finish - Indicates the final packet from sender.

Checksum is used for error-checking of the TCP header.

Options specify several settings. Some options include: window scale, maxi-

mum segment size and timestamps. The IANA has defined 254 options [22].
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Data is the application layer data.

TCP Port

A TCP port is a logical representation of a communication endpoint [64]. Ports are

identified by a 16-bit integer which can represent values between 0 and 65535. In the

TCP, port 0 cannot be used as it is reserved.

TCP Socket

A TCP socket is a logical communication endpoint defined by an IP address and a

TCP port number [46]. Each socket can be used for both input and output and an

application associates the input and output of network traffic with a socket. This

association is known as “binding” [46].

UDP Ports and UDP Socket

UDP ports and UDP sockets exist but are outside the scope of this thesis.

TCP Connection

A TCP connection is uniquely identified by a pair of sockets, one for each end-

point [61]. A TCP connection may have many states (defined in [61]). In this thesis,

we are only interested in ESTABLISHED state. A TCP connection is in the ES-

TABLISHED state when a TCP handshake (see below) has been completed. A TCP

connection remains in the ESTABLISHED state until either a FIN or a RST is sent

or received.

TCP Handshake

A TCP handshake consists of a client sending a SYN, which is responded to by

the server with a SYN/ACK, causing the server’s TCP connection state to become

ESTABLISHED. The client then responds to the server with an ACK and the client’s

TCP connection state is now ESTABLISHED. Figure A.2 is a timing diagram showing

the TCP handshake between a Client and Server.
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Figure A.2: TCP Handshake Timing Diagram

Client Server

SYN

SYN/ACK

ACK

TCP Stream

A TCP stream is a series of packets observed on a single node in a network where each

packet shares the same TCP connection. A TCP stream does not necessarily contain

all packets sent from each endpoint. Some packets may follow routes excluding the

observed node, packets may have been dropped or packets may have been modified

on route.

A.2 Shodan Domains

For the work in Sections 3.1.3 (Page 38) we used SecurityTrails [7] “subdomain”

tool (through their API) using the query “shodan.io” to generate a list of Shodan

subdomains. For each subdomain, we used SecurityTrails “history” tool (through

their API) to query for the historical data associated with that subdomain. All

data was accessed Nov 29th, 2020. Table A.1 contains a complete list of all Shodan

subdomains returned by SecurityTrails. The First Seen and Last Seen columns have

been converted from a Unix timestamp to a date. The First Seen column is the

timestamp of when SecurityTrails became aware of the domain name being associated

with the IP address, and the Last Seen column is when SecurityTrails became aware

the domain was no longer registered to that IP address. Table A.1 spans multiple

pages from Page 78 to Page 84. This data is used during our empirical study to

identify IP addresses used by Shodan scanners (Section 3.1.2 on Page 37).
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Subdomain IP First Seen Last Seen

beta.shodan.io 172.67.75.154 2020-06-03 2020-11-27
beta.shodan.io 104.26.9.142 2020-06-03 2020-11-27
beta.shodan.io 104.26.8.142 2020-06-03 2020-11-27
beta.shodan.io 104.26.9.142 2020-01-24 2020-06-03
beta.shodan.io 104.26.8.142 2020-01-24 2020-06-03
beta.shodan.io 104.27.75.9 2020-01-20 2020-01-24
beta.shodan.io 104.27.74.9 2020-01-20 2020-01-24
account.shodan.io 172.67.75.154 2020-06-02 2020-11-27
account.shodan.io 104.26.9.142 2020-06-02 2020-11-27
account.shodan.io 104.26.8.142 2020-06-02 2020-11-27
account.shodan.io 104.26.9.142 2020-01-25 2020-06-02
account.shodan.io 104.26.8.142 2020-01-25 2020-06-02
account.shodan.io 104.27.75.9 2019-05-25 2020-01-25
account.shodan.io 104.27.74.9 2019-05-25 2020-01-25
account.shodan.io 104.25.90.97 2017-07-16 2019-05-25
account.shodan.io 104.25.89.97 2017-07-16 2019-05-25
developer.shodan.io 172.67.75.154 2020-06-03 2020-11-27
developer.shodan.io 104.26.9.142 2020-06-03 2020-11-27
developer.shodan.io 104.26.8.142 2020-06-03 2020-11-27
developer.shodan.io 104.26.9.142 2020-01-24 2020-06-03
developer.shodan.io 104.26.8.142 2020-01-24 2020-06-03
developer.shodan.io 104.27.75.9 2019-05-30 2020-01-24
developer.shodan.io 104.27.74.9 2019-05-30 2020-01-24
developer.shodan.io 216.117.2.180 2018-04-05 2019-05-30
honeyscore.shodan.io 216.117.2.180 2019-08-26 2020-11-27
help.shodan.io 172.67.75.154 2020-06-02 2020-11-27
help.shodan.io 104.26.9.142 2020-06-02 2020-11-27
help.shodan.io 104.26.8.142 2020-06-02 2020-11-27
help.shodan.io 104.26.9.142 2020-01-25 2020-06-02
help.shodan.io 104.26.8.142 2020-01-25 2020-06-02
help.shodan.io 104.27.75.9 2019-05-27 2020-01-25
help.shodan.io 104.27.74.9 2019-05-27 2020-01-25
help.shodan.io 216.117.2.180 2018-12-16 2019-05-27
api.shodan.io 172.67.75.154 2020-08-06 2020-11-27
api.shodan.io 104.26.9.142 2020-08-06 2020-11-27

Table A.1: List of subdomains registered for shodan.io. This table ends on Page 84.
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Subdomain IP First Seen Last Seen

api.shodan.io 104.26.8.142 2020-08-06 2020-11-27
api.shodan.io 216.117.2.180 2018-04-05 2020-08-06
webcambrowser.shodan.io 216.117.2.180 2019-04-24 2020-11-27
shiptracker.shodan.io 45.55.163.215 2018-09-06 2020-11-27
images.shodan.io 172.67.75.154 2020-06-02 2020-11-27
images.shodan.io 104.26.9.142 2020-06-02 2020-11-27
images.shodan.io 104.26.8.142 2020-06-02 2020-11-27
images.shodan.io 104.26.9.142 2020-01-25 2020-06-02
images.shodan.io 104.26.8.142 2020-01-25 2020-06-02
images.shodan.io 104.27.75.9 2019-05-26 2020-01-25
images.shodan.io 104.27.74.9 2019-05-26 2020-01-25
images.shodan.io 104.25.90.97 2017-07-16 2019-05-26
images.shodan.io 104.25.89.97 2017-07-16 2019-05-26
malware-hunter.shodan.io 172.67.75.154 2020-10-24 2020-11-27
malware-hunter.shodan.io 104.26.9.142 2020-10-24 2020-11-27
malware-hunter.shodan.io 104.26.8.142 2020-10-24 2020-11-27
malware-hunter.shodan.io 216.117.2.180 2018-09-06 2020-10-24
ics-radar.shodan.io 216.117.2.180 2018-09-06 2020-11-27
icsmap.shodan.io 216.117.2.180 2018-09-06 2020-11-27
monitor.shodan.io 172.67.75.154 2020-06-03 2020-11-27
monitor.shodan.io 104.26.9.142 2020-06-03 2020-11-27
monitor.shodan.io 104.26.8.142 2020-06-03 2020-11-27
monitor.shodan.io 104.26.9.142 2020-01-25 2020-06-03
monitor.shodan.io 104.26.8.142 2020-01-25 2020-06-03
monitor.shodan.io 104.27.75.9 2019-07-20 2020-01-25
monitor.shodan.io 104.27.74.9 2019-07-20 2020-01-25
exploits.shodan.io 172.67.75.154 2020-06-03 2020-11-27
exploits.shodan.io 104.26.9.142 2020-06-03 2020-11-27
exploits.shodan.io 104.26.8.142 2020-06-03 2020-11-27
exploits.shodan.io 104.26.9.142 2020-01-25 2020-06-03
exploits.shodan.io 104.26.8.142 2020-01-25 2020-06-03
exploits.shodan.io 104.27.75.9 2019-05-26 2020-01-25
exploits.shodan.io 104.27.74.9 2019-05-26 2020-01-25
exploits.shodan.io 104.25.90.97 2018-06-15 2019-05-26
exploits.shodan.io 104.25.89.97 2018-06-15 2019-05-26
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Subdomain IP First Seen Last Seen

exploits.shodan.io 216.117.2.180 2018-04-05 2018-06-15
careers.shodan.io 216.117.2.180 2018-11-13 2020-11-27
dev.shodan.io 216.117.2.180 2019-07-28 2020-11-27
dojo.census.shodan.io 80.82.77.139 2018-09-05 2020-11-27
malware-hunter.census.shodan.io 66.240.205.34 2018-09-05 2020-11-27
nninja.census.shodan.io 216.117.2.180 2020-01-29 2020-11-27
census4.shodan.io 198.20.99.130 2018-04-05 2020-11-27
mqttmon.shodan.io 216.117.2.180 2020-05-30 2020-11-27
mqttmon.shodan.io 104.156.250.217 2018-10-27 2020-05-30
ncensus8.shodan.io 216.117.2.180 2020-01-29 2020-11-27
ncensus7.shodan.io 216.117.2.180 2020-01-28 2020-11-27
npirate.census.shodan.io 216.117.2.180 2020-01-29 2020-11-27
census9.shodan.io 71.6.167.142 2018-04-05 2020-11-27
tesla.census.shodan.io 71.6.147.254 2019-05-31 2020-11-27
imap.shodan.io 217.70.178.4 2018-03-11 2020-11-27
imap.shodan.io 217.70.184.9 2017-07-16 2018-03-11
maltego.shodan.io 216.117.2.180 2018-10-27 2020-11-27
refrigerator.census.shodan.io 71.6.146.130 2018-09-06 2020-11-27
2fwww.shodan.io 216.117.2.180 2019-11-26 2020-11-27
ns2.shodan.io 138.68.199.36 2017-07-16 2020-11-27
einstein.census.shodan.io 71.6.199.23 2019-06-07 2020-11-27
nwww.shodan.io 216.117.2.180 2019-07-23 2020-11-28
census1.shodan.io 198.20.69.74 2018-04-05 2020-11-28
wire.shodan.io 172.67.75.154 2020-06-02 2020-11-28
wire.shodan.io 104.26.9.142 2020-06-02 2020-11-28
wire.shodan.io 104.26.8.142 2020-06-02 2020-11-28
wire.shodan.io 104.26.9.142 2020-01-25 2020-06-02
wire.shodan.io 104.26.8.142 2020-01-25 2020-06-02
wire.shodan.io 104.27.75.9 2019-05-26 2020-01-25
wire.shodan.io 104.27.74.9 2019-05-26 2020-01-25
wire.shodan.io 104.25.90.97 2018-11-22 2019-05-26
wire.shodan.io 104.25.89.97 2018-11-22 2019-05-26
m247.ro.shodan.io 216.117.2.180 2020-02-27 2020-11-28
goldfish.census.shodan.io 216.117.2.180 2018-09-05 2020-11-28
nrefrigerator.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
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Subdomain IP First Seen Last Seen

census.shodan.io 216.117.2.180 2018-04-05 2020-11-28
2000.shodan.io 172.67.75.154 2020-10-25 2020-11-28
2000.shodan.io 104.26.9.142 2020-10-25 2020-11-28
2000.shodan.io 104.26.8.142 2020-10-25 2020-11-28
2000.shodan.io 216.117.2.180 2019-04-01 2020-10-25
ndojo.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
nflower.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
ncensus12.shodan.io 216.117.2.180 2020-01-29 2020-11-28
census7.shodan.io 71.6.135.131 2018-04-05 2020-11-28
flower.census.shodan.io 94.102.49.190 2018-09-05 2020-11-28
snippets.shodan.io 172.67.75.154 2020-06-03 2020-11-28
snippets.shodan.io 104.26.9.142 2020-06-03 2020-11-28
snippets.shodan.io 104.26.8.142 2020-06-03 2020-11-28
snippets.shodan.io 104.26.9.142 2020-01-25 2020-06-03
snippets.shodan.io 104.26.8.142 2020-01-25 2020-06-03
snippets.shodan.io 104.27.75.9 2019-05-26 2020-01-25
snippets.shodan.io 104.27.74.9 2019-05-26 2020-01-25
snippets.shodan.io 104.25.90.97 2018-11-22 2019-05-26
snippets.shodan.io 104.25.89.97 2018-11-22 2019-05-26
ntesla.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
nhouse.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
cli.shodan.io 216.117.2.180 2018-10-27 2020-11-28
ninja.census.shodan.io 71.6.158.166 2018-09-05 2020-11-28
stream.shodan.io 45.77.97.111 2017-11-06 2020-11-28
stream.shodan.io 45.63.11.4 2017-11-06 2020-11-28
stream.shodan.io 209.222.10.250 2017-11-06 2020-11-28
stream.shodan.io 104.25.90.97 2017-08-20 2017-11-06
stream.shodan.io 104.25.89.97 2017-08-20 2017-11-06
stream.shodan.io 45.55.206.46 2017-07-16 2017-08-20
stream.shodan.io 162.243.186.86 2017-07-16 2017-08-20
stream.shodan.io 104.236.97.94 2017-07-16 2017-08-20
stream.shodan.io 104.236.227.23 2017-07-16 2017-08-20
stream.shodan.io 104.236.216.229 2017-07-16 2017-08-20
stream.shodan.io 104.236.209.12 2017-07-16 2017-08-20
nborder.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
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mason.census.shodan.io 89.248.167.131 2018-09-05 2020-11-28
wine.census.shodan.io 185.142.236.35 2020-07-28 2020-11-28
wine.census.shodan.io 216.117.2.180 2019-03-30 2020-07-28
webmail.shodan.io 216.117.2.180 2019-04-08 2020-11-28
webmail.shodan.io 217.70.178.6 2018-02-27 2019-04-08
webmail.shodan.io 217.70.182.5 2017-09-19 2018-02-27
webmail.shodan.io 192.168.23.1 2017-09-18 2017-09-19
webmail.shodan.io 217.70.182.5 2017-07-16 2017-09-18
census6.shodan.io 66.240.236.119 2018-07-31 2020-11-28
census6.shodan.io 37.1.211.129 2018-07-30 2018-07-31
census6.shodan.io 66.240.236.119 2018-04-05 2018-07-30
rancher.packet.dev.shodan.io 216.117.2.180 2019-01-03 2020-11-28
atlantic.census.shodan.io 188.138.9.50 2020-02-28 2020-11-28
burger.census.shodan.io 66.240.219.146 2018-09-05 2020-11-28
heimdal.metrics.shodan.io 45.63.21.128 2018-10-27 2020-11-28
census10.shodan.io 82.221.105.6 2018-04-05 2020-11-28
2fmonitor.shodan.io 216.117.2.180 2019-07-20 2020-11-28
inspire.census.shodan.io 216.117.2.180 2018-09-05 2020-11-28
ncensus9.shodan.io 216.117.2.180 2020-01-28 2020-11-28
census3.shodan.io 198.20.70.114 2018-04-05 2020-11-28
rancher.dev.shodan.io 159.89.178.191 2019-01-02 2020-11-28
board.census.shodan.io 71.6.147.198 2018-09-06 2020-11-28
www.shodan.io 172.67.75.154 2020-06-03 2020-11-28
www.shodan.io 104.26.9.142 2020-06-03 2020-11-28
www.shodan.io 104.26.8.142 2020-06-03 2020-11-28
www.shodan.io 104.26.9.142 2020-01-25 2020-06-03
www.shodan.io 104.26.8.142 2020-01-25 2020-06-03
www.shodan.io 104.27.75.9 2019-10-25 2020-01-25
www.shodan.io 104.27.74.9 2019-10-25 2020-01-25
www.shodan.io 104.25.90.97 2017-05-26 2019-10-25
www.shodan.io 104.25.89.97 2017-05-26 2019-10-25
ncensus6.shodan.io 216.117.2.180 2020-01-29 2020-11-28
census2.shodan.io 198.20.69.98 2018-04-05 2020-11-28
direct.shodan.io 216.117.2.180 2018-04-05 2020-11-28
ninspire.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
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9.shodan.io 216.117.2.180 2020-02-27 2020-11-28
status.shodan.io 172.67.75.154 2020-06-03 2020-11-28
status.shodan.io 104.26.9.142 2020-06-03 2020-11-28
status.shodan.io 104.26.8.142 2020-06-03 2020-11-28
status.shodan.io 104.26.9.142 2020-01-24 2020-06-03
status.shodan.io 104.26.8.142 2020-01-24 2020-06-03
status.shodan.io 104.27.75.9 2019-05-26 2020-01-24
status.shodan.io 104.27.74.9 2019-05-26 2020-01-24
status.shodan.io 104.25.90.97 2017-07-16 2019-05-26
status.shodan.io 104.25.89.97 2017-07-16 2019-05-26
hat.census.shodan.io 185.142.236.34 2019-12-05 2020-11-28
hat.census.shodan.io 216.117.2.180 2019-03-30 2019-12-05
cloud.census.shodan.io 94.102.49.193 2018-09-05 2020-11-28
house.census.shodan.io 89.248.172.16 2018-09-05 2020-11-28
sea.support.internal.shodan.io 142.93.28.101 2019-05-15 2020-11-28
nburger.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
smtp.shodan.io 217.70.178.3 2018-03-11 2020-11-28
smtp.shodan.io 217.70.184.8 2017-07-16 2018-03-11
battery.census.shodan.io 93.174.95.106 2018-09-05 2020-11-28
ncensus10.shodan.io 216.117.2.180 2020-01-29 2020-11-28
nsky.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
ncensus11.shodan.io 216.117.2.180 2020-01-29 2020-11-28
vita.census.shodan.io 216.117.2.180 2019-03-12 2020-11-28
census12.shodan.io 71.6.165.200 2018-04-05 2020-11-28
pop.shodan.io 217.70.178.4 2018-03-11 2020-11-28
pop.shodan.io 217.70.184.9 2017-07-16 2018-03-11
nmalware-hunter.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
nhat.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
ics-apac-2017.shodan.io 216.117.2.180 2019-12-01 2020-11-28
turtle.census.shodan.io 216.117.2.180 2018-09-05 2020-11-28
ncensus3.shodan.io 216.117.2.180 2020-01-29 2020-11-28
pacific.census.shodan.io 85.25.103.50 2018-09-05 2020-11-28
nmason.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
neinstein.census.shodan.io 216.117.2.180 2020-01-29 2020-11-28
blog.shodan.io 172.67.75.154 2020-06-03 2020-11-28
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blog.shodan.io 104.26.9.142 2020-06-03 2020-11-28
blog.shodan.io 104.26.8.142 2020-06-03 2020-11-28
blog.shodan.io 104.26.9.142 2020-01-24 2020-06-03
blog.shodan.io 104.26.8.142 2020-01-24 2020-06-03
blog.shodan.io 104.27.75.9 2019-05-25 2020-01-24
blog.shodan.io 104.27.74.9 2019-05-25 2020-01-24
blog.shodan.io 104.25.90.97 2018-10-20 2019-05-25
blog.shodan.io 104.25.89.97 2018-10-20 2019-05-25
blog.shodan.io 104.236.198.48 2017-07-16 2018-10-20
dlink-report.shodan.io 216.117.2.180 2018-09-06 2020-11-28
enterprise.shodan.io 172.67.75.154 2020-06-02 2020-11-28
enterprise.shodan.io 104.26.9.142 2020-06-02 2020-11-28
enterprise.shodan.io 104.26.8.142 2020-06-02 2020-11-28
enterprise.shodan.io 104.26.9.142 2020-01-25 2020-06-02
enterprise.shodan.io 104.26.8.142 2020-01-25 2020-06-02
enterprise.shodan.io 104.27.75.9 2019-05-26 2020-01-25
enterprise.shodan.io 104.27.74.9 2019-05-26 2020-01-25
enterprise.shodan.io 104.25.90.97 2018-10-27 2019-05-26
enterprise.shodan.io 104.25.89.97 2018-10-27 2019-05-26
static.shodan.io 172.67.75.154 2020-06-02 2020-11-28
static.shodan.io 104.26.9.142 2020-06-02 2020-11-28
static.shodan.io 104.26.8.142 2020-06-02 2020-11-28
static.shodan.io 104.26.9.142 2020-01-25 2020-06-02
static.shodan.io 104.26.8.142 2020-01-25 2020-06-02
static.shodan.io 104.27.75.9 2019-05-26 2020-01-25
static.shodan.io 104.27.74.9 2019-05-26 2020-01-25
static.shodan.io 104.25.90.97 2019-02-15 2019-05-26
static.shodan.io 104.25.89.97 2019-02-15 2019-05-26
static.shodan.io 37.1.211.129 2018-07-24 2019-02-15
static.shodan.io 104.25.90.97 2017-07-16 2018-07-24
static.shodan.io 104.25.89.97 2017-07-16 2018-07-24
ns1.shodan.io 162.243.164.140 2017-07-16 2020-11-28
nwine.census.shodan.io 216.117.2.180 2020-01-30 2020-11-28
nblog.shodan.io 216.117.2.180 2019-07-24 2020-11-28
maptiles.shodan.io 172.67.75.154 2020-06-03 2020-11-28
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A.3 Virtual Machine Setup Script

The below script was used to configure our VMs during our empirical study in Sec-

tion 3.1.1 on Page 36.

1 #!/ bin / bash

2 ssh ec2−user@<IP> − i key . pem

3 yum update

4 yum upgrade

5 yum i n s t a l l tcpdump httpd vs f tpd p o s t f i x

6 vim / e tc / httpd / conf / httpd . conf

7 #add L i s t e n 443 under L i s t e n 80

8 vim / e tc / p o s t f i x /main . c f

9 #Uncomment i n t e r f a c e s = ALL

10 service httpd s t a r t

11 service httpd s t a r t

12 service vs f tpd s t a r t

13 service p o s t f i x s t a r t

14 tcpdump − i any −G 86400 −K −n −w %B%d . pcap &
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[21] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. Directed Greybox Fuzzing. In ACM SIGSAC Conference on Computer
and Communications Security, pages 2329–2344, 2017.

[22] S. Bradner and V. Paxson. Iana Allocation Guidelines for Values in the Internet
Protocol and Related Headers. BCP 37, RFC Editor, March 2000.

[23] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual
Web Search Engine. 1998.

[24] D. Carlin, J. Burgess, P. O’Kane, and S. Sezer. You Could Be Mine(d): The
Rise of Cryptojacking. IEEE Security & Privacy, 18(2):16–22, 2020.

[25] Yongle Chen, Xiaowei Lian, Dan Yu, Shichao Lv, Shaochen Hao, and Yao Ma.
Exploring Shodan From the Perspective of Industrial Control Systems. 8:75359–
75369, 2020.

[26] Michael Chertoff. A Public Policy Perspective of the Dark Web. Journal of
Cyber Policy, 2(1):26–38, 2017.

[27] Roger Christopher. Port Scanning Techniques and the Defense Against
Them, 2001. Available at https://www.sans.org/reading-room/whitepapers/
auditing/paper/70. Accessed July 2020.

[28] Catalin Cimpanu. Ichidan. Available at https://www.bleepingcomputer.com/
news/security/ichidan-is-a-shodan-like-search-engine-for-the-

dark-web/, Accessed Nov 2020.

[29] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. Internet
Assigned Numbers Authority (IANA) Procedures for the Management of the
Service Name and Transport Protocol Port Number Registry. BCP 165, RFC
Editor, August 2011.

http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
https://www.sans.org/reading-room/whitepapers/auditing/paper/70
https://www.sans.org/reading-room/whitepapers/auditing/paper/70
https://www.bleepingcomputer.com/news/security/ichidan-is-a-shodan-like-search-engine-for-the-dark-web/
https://www.bleepingcomputer.com/news/security/ichidan-is-a-shodan-like-search-engine-for-the-dark-web/
https://www.bleepingcomputer.com/news/security/ichidan-is-a-shodan-like-search-engine-for-the-dark-web/


88

[30] W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines - Infor-
mation Retrieval in Practice. 2009.

[31] Jakub Dalek, Bennett Haselton, Helmi Noman, Adam Senft, Masashi Crete-
Nishihata, Phillipa Gill, and Ronald J Deibert. A Method for Identifying and
Confirming the Use of URL Filtering Products for Censorship. In Internet Mea-
surement Conference, pages 23–30, 2013.

[32] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
STD 86, RFC Editor, July 2017.

[33] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, RFC Editor, August 2008. http://www.rfc-editor.org/rfc/
rfc5246.txt.

[34] Cristian Duda, Gianni Frey, Donald Kossmann, and Chong Zhou. Ajaxsearch:
Crawling, Indexing and Searching Web 2.0 Applications. Proceedings of the
VLDB Endowment, 1(2):1440–1443, 2008.

[35] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J Alex Hal-
derman. A Search Engine Backed by Internet-wide Scanning. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
2015.

[36] Zakir Durumeric, Michael Bailey, and J Alex Halderman. An Internet-wide
View of Internet-wide Scanning. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 65–78, 2014.

[37] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. ZMap: Fast Internet-
wide Scanning and its Security Applications. In Presented as Part of the 22nd
USENIX Security Symposium (USENIX Security 13), pages 605–620, 2013.

[38] Vincent J Ercolani, Mark W Patton, and Hsinchun Chen. Shodan Visualized. In
Conference on Intelligence and Security Informatics (ISI), pages 193–195. IEEE,
2016.

[39] Brown Farinholt, Mohammad Rezaeirad, Paul Pearce, Hitesh Dharmdasani,
Haikuo Yin, Stevens Le Blond, Damon McCoy, and Kirill Levchenko. To Catch
a Ratter: Monitoring the Behavior of Amateur Darkcomet Rat Operators in the
Wild. In IEEE Symposium on Security and Privacy (SP), pages 770–787, 2017.

[40] Kristin M Finklea. Dark Web, 2015. https://a51.nl/sites/default/files/
pdf/R44101%20(1).pdf, Accessed Nov 2020.
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