
Tools, Data, and Flow Attributes for
Understanding Network Traffic without

Payload

Timothy Furlong

Supervisor: Prof. Paul Van Oorschot

c©2007 Timothy Furlong

April 20, 2007

Abstract

The classification of network traffic based on the application that generated it is a rel-

atively new field; it appears to be feasible, but the available tools and data are not yet

adequate to pursue it effectively. There has also been some attention paid in the last few

years to doing this without payload information, i.e. basedonly on packet header informa-

tion, due to challenges such as encryption and privacy issues. This thesis describes a new

software tool for computing flow attributes, values derivedfrom network traffic that can be

used for classifying it, focused on flow attributes that can be computed in the absence of

payload information. It is flexible and powerful, and can compute a wide range of mea-

surements on network traffic. We also perform a qualitative evaluation of the capabilities

of the tool and study the behaviour of some flow attributes.

Contents

Acknowledgements ix

Glossary and concept index xi

1 Introduction and overview 1
1.1 Motivation . 2
1.2 Structure . 5
1.3 Summary of contributions .7

2 Background 9
2.1 Machine learning and statistical data analysis 9

2.1.1 Classification . 10
2.1.2 Logistic regression . 12

2.2 Networking and network traffic .. . 15
2.3 Networked applications .. 18
2.4 Network traffic classification 21

2.4.1 Summary . 31

3 Flow attributes 35
3.1 Networked application behaviour 35
3.2 Network flows . 39
3.3 Flow attributes . 40

3.3.1 Notation . 42
3.3.2 Timing attributes . 49
3.3.3 Packet lengths . 51
3.3.4 Data volume . 53
3.3.5 Packet proportion heuristic attributes 57

4 The ANTARES tool 67
4.1 Comparison of ANTARES and NetMate 70
4.2 Requirements . 72

4.2.1 Use case . 73
4.2.2 Functional requirements . 75
4.2.3 Nonfunctional requirements .79

4.3 Architecture . 80

iii

4.3.1 Data structure . 81
4.3.2 Flow attributes . 84
4.3.3 Flow engine . 89

4.4 Implementing flow attributes .. . 92

5 Evaluating flow attributes 99
5.1 Experimental design . 102

5.1.1 Applications . 102
5.1.2 Flow attributes . 103
5.1.3 Data sets and samples . 106
5.1.4 Training classifiers . 109

5.2 Results . 114
5.2.1 Comparison with Roughan et al. 115
5.2.2 Parameter selection . 118
5.2.3 Distinguishing behaviours .123

6 Conclusions and future work 127
6.1 Conclusions . 127
6.2 Future work . 129

7 References 135

A Data preparation 141
A.1 Technologies . 141
A.2 Conversion and processing tools .. . 143
A.3 Converting NLANR data to tcpdump format 144
A.4 Preparing data sets . 148

B Error tables 151
B.1 POP3 . 153
B.2 FTP-data . 157
B.3 FTP-ctrl . 161
B.4 Telnet . 165
B.5 SMTP . 169
B.6 HTTP . 173

iv

List of Figures

3.1 Mean payload length and data volume of sample non-homogeneous Telnet
flow . 38

4.1 UML Use Case diagram depicting the tasks involved in the analysis process 74
4.2 ANTARES data structure class diagram 81
4.3 ANTARES flow attributes class diagram 85
4.4 An example of ANTARES attributes .89
4.5 ANTARES flow engine class diagram . 91
4.6 An example of an ANTARES session-based data structure 92
4.7 Pseudocode forsp beta(λmax len = 20;F) 93
4.8 Actual code forsp beta(λmax len = 20;F) 93
4.9 UML Activity diagram depicting control flow ofprofile streams thesis 94

5.1 Sampled flows from NLANR traces by mean packet length and duration . . 116
5.2 Aggregate flows from Roughan et al. [RSSD04] by mean packet length and

duration (Figure 2 from [RSSD04]) . 117
5.3 Aggregate flows from NLANR traces by mean packet length and duration . 117
5.4 Mean and minimum error rates for large packet heuristicsby parameter set . 121
5.5 Mean and minimum error rates for small packet heuristicsby parameter set 122
5.6 Distribution by application ofmeannonemptypayload len f wd 125
5.7 Distribution by application off lag syn. 126

v

List of Tables

2.1 Classification results .11
2.2 Table of measurement classes used in surveyed approaches 32

3.1 Summary of flow attributes .42

4.1 Per-flow attributes computed byprofile streams thesis 96
4.2 Per-half-flow attributes computed byprofile streams thesis 97

5.1 Parameter sets for small packet heuristics 104
5.2 Parameter sets for large packet heuristics 104
5.3 Summary of NLANR data sets used . 107
5.4 Classification tasks . 120

A.1 Summary of NLANR data sets used . 145
A.2 Technical details of NLANR datasets for conversion 145

B.1 POP3 — per-flow metrics . 153
B.2 POP3 — per-half-flow metrics . 154
B.3 POP3 — small packet heuristics .155
B.4 POP3 — large packet heuristics .156
B.5 FTP-data — per-flow metrics . 157
B.6 FTP-data — per-half-flow metrics .. 158
B.7 FTP-data — small packet heuristics 159
B.8 FTP-data — large packet heuristics 160
B.9 FTP-ctrl — per-flow metrics . 161
B.10 FTP-ctrl — per-half-flow metrics 162
B.11 FTP-ctrl — small packet heuristics 163
B.12 FTP-ctrl — large packet heuristics 164
B.13 Telnet — per-flow metrics . 165
B.14 Telnet — per-half-flow metrics .. . 166
B.15 Telnet — small packet heuristics 167
B.16 Telnet — large packet heuristics 168
B.17 SMTP — per-flow metrics . 169
B.18 SMTP — per-half-flow metrics .170
B.19 SMTP — small packet heuristics .. 171
B.20 SMTP — large packet heuristics .. 172
B.21 HTTP — per-flow metrics . 173

vi

B.22 HTTP — per-half-flow metrics .174
B.23 HTTP — small packet heuristics .. 175
B.24 HTTP — large packet heuristics .. 176

vii

viii

Acknowledgements

I would first like to thank my supervisor, Prof. Paul Van Oorschot, for his support and

guidance in this process.

I’d also like to thank those who influenced my thinking in thisprocess: Prof. Anil

Somayaji for the idea to focus on the representation and features as a critical component,

Prof. Shirley Mills for support on the statistical side of things, Prof. Tony White for

the suggestion of using queueing theory and generative models for application behaviours,

Mike Collins for e-mail discussions on the philosophy of network traffic and an advance

copy of his ESORICS paper, Prof. Fabian Monrose for an advance copy of his JMLR paper,

and the rest of the Carleton Computer Security Lab, for feedback in the early stages of the

work.

Also, I offer my respects to the authors of the many tools I used: CAIDA for the Coral-

Reef suite, used to convert many of the esoteric data formats,Christian Kreibich for lib-

netdude, used to demultiplex flows, Evan Hughes for libqcap,used to preprocess trace files

and reassemble IP packets, Shawn Ostermann for TCPtrace, used to profile TCP connec-

tions, and the TCPdump team for libpcap and tcpdump, the majorlibrary used for handling

network trace files and the invaluable Swiss Army Knife of network traces; research would

ix

be far more difficult without those who have built and shared these tools, and I’ll consider

myself fortunate if my contribution proves to be even a tenthas useful as the least of these.

Last but certainly not least, I want to thank my fianceé, Alka, for her moral support and

for not sulking (too much) over time spent working on the thesis instead of with her.

x

Glossary and concept index

This glossary contains expansions of abbreviations and definitions of technical terms used

in this thesis. It also functions as a concept index; where appropriate, the page number

of the definition of the abbreviation or term within the body of the thesis is provided in

parentheses, where one can find more discussion of the term and its context in this work.

Also, for convenience, the reference citation of the document defining a protocol is given

in the glossary entry for the protocol. Note that commonly-abbreviated terms are described

under the heading of the abbreviation, rather than having anentry for the abbreviation and

a separate one for the expansion. Terms or phrases used in glossary definitions which are

themselves defined elsewhere in the glossary are noted by ‘q.v.’ (Latin quod vide, “which

see”).

ACK The ‘acknowledgement’ flag in a TCP packet header; also, a TCP packet with the

ACK flag set to 1.

ADU Application Data Unit, defined by Hernández-Campos et al. [HCNSJ05] as a unit of

data corresponding to a request-response pair in a network flow, where the request

is an uninterrupted stream of data from a client and a response is an uninterrupted

stream of data from a server in response to a request. (p. 26)

xi

aggregate see packet aggregate.

application behaviour Activities of a networked application that produce observable pat-

terns in network traffic. Examples of application behaviours are file transfer (e.g.

FTP, HTTP file download), chat (e.g. MSN Messenger, AIM, ICQ, Unix ‘talk’), and

interactive command shell activity (e.g. telnet, SSH). (p.36)

behavioural distortion An effect on a network flow that changes the values of flow at-

tributes; specifically an effect not directly related to theapplication itself. For exam-

ple, we consider fragmentation at the Ethernet maximum transmission unit limit of

1500 bytes to be a distortion, as it is an artefact of the transmission process unrelated

to the application-layer requirements. (p. 38)

bidirectional inter-packet delay The length of time between two packets in a half-flow

(q.v.). See also inter-packet delay, unidirectional inter-packet delay. (p. 47)

bulk data transfer Data transfer that attempts to send the data as quickly as thenetwork

will allow. (p. 36)

client One party in a “client-server” architecture, the one which creates the connection in

order to make use of the server’s service. (p. 17)

client-server architecture A programming paradigm for networked applications whereby

one part of the application takes the role of a “server” (q.v.) which provides a service,

and the other part takes the role of a “client” that uses the service. (p. 17)

command shell A process that serves as an interface between a user terminaland the op-

erating system. (p. 19)

xii

command-shell interactive behaviour Network activity produced by a human on one

node interacting with a command shell on another node. (p. 37)

cross-validation A technique from machine learning using multiple trials to estimate the

real error rate of a classifier. In each trial, the classifier is trained and tested on

disjoint sets of data, which helps avoid overfitting. (p. 12)

distortion see behavioural distortion.

explanatory variable A variable in a regression problem, also known as an independent

variable or experimental variable, that explains changes in the response variable, and

that is manipulated in an experiment. (p. 13)

feature In machine learning, some variable or value computed from a sample used to

classify that sample. (p. 10)

feature vector An array or list of variable values associated with a data sample; used in

classification. (p. 10)

flow see network flow.

flow attribute A measurement based on observations about a network flow, or derived

from other such measurements. (p. 41)

forward direction One direction of a bidirectional flow defined to be “forward”;in this

thesis, the direction from the client to the server. For non-client-server applications,

an alternate criteria will need to be defined. (p. 40)

FTP File Transfer Protocol, defined in RFC959 [PR85]. (p. 19)

xiii

half-flow A unidirectional flow that is one side of a bidirectional network flow; e.g. a

bidirectional HTTP flow between 10.0.0.1:35535 and 10.0.0.2:80 is made up of two

half-flows, one from 10.0.0.1:35535 to 10.0.0.2:80, and thereverse half-flow from

10.0.0.2:80 to 10.0.0.1:35535. Note that a half-flow is semantically considered to be

a network flow (q.v.) itself; the term “half-flow” is merely used to distinguish the

unidirectional flows from the bidirectional flow. (p. 17)

header Information prepended to a data packet by a lower level protocol, to be consumed

by the corresponding protocol instance on the remote node. For instance, an instance

of the IP given a packet by TCP to be sent will prepend an IP header that will be read

by IP instances on every node between source and destinationin order to determine

the next hop in the route.

host see network node.

HTTP HyperText Transfer Protocol, a protocol for the structuredexchange of arbitrary

data over a network connection that underlies the operationof the World Wide Web.

Version 1.0 is defined in RFC1945 [BLFF96] and version 1.1 is defined in RFC2616

[FGM+99]. (p. 20)

IETF Internet Engineering Task Force, not-for-profit body dedicated to “making the Inter-

net work better”; their mission statement is documented in RFC3935 [Alv04]. (p. 19)

Internet As “an internet” or, more commonly, “an internetwork”, a network of (often

heterogeneous) networks; as “the Internet”, a particular global internetwork known

as the Internet.

xiv

IP Internet Protocol; a network-layer protocol for routing packets over a network, defined

in RFC0791 [Pos81a].

ITU-T International Telecommunications Union - Telecommunication Standardization

Sector.

inter-packet delay The length of time between two packets in a packet aggregate;specif-

ically, the unidirectional or bidirectional inter-packetdelay (q.v.). (p. 47)

keystroke The byte or bytes resulting from a user pressing a key on theirkeyboard, par-

ticularly such bytes being sent across a network.

linear regression A statistical technique that attempts to use a straight lineto describe,

based on a data sample, how a responding variable is affectedby another factor or

factors. (p. 14)

logistic regression A type of linear regression technique commonly used for the analysis

of categorical data. (p. 12)

machine-driven interactive behaviour Interactive network activity between two programs

with little or no human intervention. (p. 37)

MTU Maximum Transmission Unit: The largest packet size that a particular network pro-

tocol will allow. Often used in the context of Ethernet, which has an MTU of 1500.

natural context For a particular packet, the packet aggregate that has been defined to be

particularly meaningful. In this thesis, unless otherwisenoted, the natural context of

a packet is the half-flow (q.v.) in which it is contained. (p. 45)

xv

network address A data value used to identify a network node (q.v.) at the network layer,

e.g. an Internet Protocol (IP) (q.v.) address. In this work,we deal mostly with IPv4

addresses.

network flow A packet aggregate (q.v.) generated by a single networked application; used

in this thesis to mean an aggregation of packets using a single transport layer protocol

(e.g. TCP or UDP) between two endpoints (host/port pairs). Flows can be unidirec-

tional or bidirectional; a unidirectional flow contains packets from one host/port pair

to the other, a bidirectional flow also contains packets in the reverse direction. (p. 17)

network host see network node.

network jitter Variations in the time taken for a packet to travel through a network from a

certain source node to a certain destination node, usually due to changing congestion

conditions in the network. (p. 17)

network latency The amount of time taken for a packet to travel through a network from

a certain source node to a certain destination node. (p. 17)

network layer The layer of a layered protocol model responsible for routing a packet

through an internetwork (q.v.). (p. 15)

network node Also “node”, “network host”, “host”. A computing device with network

connectivity; in this thesis, a network node will typicallyrefer to a personal computer

or a server. (p. 15)

network sessionAn episode of network activity generated by a networked application

xvi

performing some task, and using the network to communicate with a single remote

process. (p. 17)

network trace a recording of network data, e.g. as captured by an Ethernet card in promis-

cuous mode sniffing a local network.

network traffic Activity on a network, or packets sent across a network. (p. 16)

networked application A computer program or set of computer programs that communi-

cate using a network to accomplish some goal. (p. 18)

NLANR National Laboratory for Applied Network Research (p. 141)

node see network node.

octet 8-bit group of data; equivalent to byte in most contexts. Often used in networking

discussions as opposed to byte to avoid ambiguity with othersizes of bytes.

packet A sequence of data communicated over a network, e.g. a TCP packet or an Ethernet

frame. Can be nested (e.g. an Ethernet frame carrying an IPv4 packet carrying a TCP

packet) or fragmented (e.g. a TCP segment split up across multiple IPv4 packets).

‘Packet’ is used somewhat ambiguously both as a generic termas above, and more

specifically to refer to data units from layer 3 and 4 protocols such as IP and TCP.

(p. 16)

packet aggregateA sequence of packets, such as a network flow (q.v.). (p. 39)

payload The part of a packet which “belongs” to a higher-layer protocol than the protocol

being discussed. For example, when discussing an IP packet that is part of a TCP

xvii

connection, the payload is the data after the IP header, and contains the TCP header

and application data. (p. 16)

peer-to-peer A type of network application architecture where many nodesin the network

communicate with each other, rather than with a central server. Peer-to-peer archi-

tectures are considered only peripherally in this thesis. (p. 24)

POP3 Post Office Protocol, version 3 is a protocol designed to allow an end user to retrieve

their e-mail from an e-mail server; it is defined in RFC1939 [MR96]. (p. 20)

port Integer value used to demultiplex incoming packets (q.v.) to the correct process on a

host (q.v.). E.g. TCP port, UDP port. (p. 16)

POS Packet over SONET/SDH (q.v.), a physical layer protocol often used to transmit

packets such as Ethernet frames over a fiber optic link.

regression A statistical technique for estimating, based on a data sample, the relationship

between a dependent (or responding) variable and another factor or factors. See also

linear regression, logistic regression. (p. 13)

response variableThe variable in a regression, also known as the dependent variable,

that is not controlled and is believed to be responding to changes in the explanatory

variable(s). (p. 13)

reverse direction The direction in a bidirectional flow opposite the primary, or forward,

direction. (p. 40)

RFC Request For Comments: one of a series of documents concerning the workings of

xviii

the Internet, submitted to the IETF (q.v.) and made public for review and discussion.

(p. 19)

sensor A network node (q.v.) that collects network traffic (q.v.) for analysis, often dedi-

cated to this task.

server one party in a client-server architecture, the one which provides a service to be

consumed by clients. (p. 17)

sessionsee network session.

shell see command shell.

SMTP Simple Mail Transfer Protocol, a protocol for forwarding e-mail between e-mail

servers, defined by RFC821 [Pos82]. (p. 20)

streaming media Streaming media applications are those which read some sortof media,

usually audio or audio/video, remotely and display it as it is received, rather than

where the user downloads the entire media file and displays itlocally. Also stream-

ing audio, streaming video. Streaming media is considered only peripherally in this

thesis. (p. 24)

SONET/SDH Synchronous Optical NETwork / Synchronous Digital Hierarchy: a stan-

dard for transmitting data over a fiber optic link; defined by ANSI standard T1.105

and ITU-T standards G.707 and G.783.

TCP Transmission Control Protocol; a transport-layer protocolfor reliable connections

over an Internet Protocol (q.v.) network, defined in RFC793 [Pos81b].

xix

Telnet Protocol providing an interface between terminal devices and terminal processes,

defined in RFC854 [PR83]. (p. 19)

trace see network trace.

traffic see network traffic.

transport layer The layer of a layered protocol model responsible for communication be-

tween processes on communicating hosts. (p. 15)

UDP User Datagram Protocol; a transport-layer protocol for connectionless data transfer

over an Internet Protocol (q.v.) network, defined in RFC768 [Pos80].

unidirectional inter-packet delay The time between two packets in a network flow (q.v.).

See also inter-packet delay, bidirectional inter-packet delay. (p. 47)

xx

Chapter 1

Introduction and overview

It is often useful to be able to identify the nature of a networked application by analyzing

the network traffic that it generates. Some examples are enforcing network policy, de-

tecting malicious activity, and improving quality-of-service. Recent work has shown the

possibility of performing such classification without using the application-layer payload of

the network traffic, but much more work can be done in making these approaches more

practical. We have developed tools for measuring network traffic and dealing with network

data in order to support this research.

Network traffic classification is useful in several contexts. As one example, some orga-

nizations disallow peer-to-peer file sharing; in order to enforce such a policy, the network

administrators need some way to detect it, even though it maybe disguised as web surf-

ing or other traffic. Similarly, if a remote attacker is usingthe network to communicate

with compromised hosts on the network, the administrators need some way to find that

activity. Another example is enforcing quality-of-service; in a case where several distinct

applications use the same port and protocol (for example, web surfing, streaming video,

1

chat, and peer-to-peer file sharing, all over HTTP on port 80), it is useful to be able to dis-

tinguish between them in order to ensure that no one application consumes all the available

bandwidth.

We are particularly interested in classifying network traffic without inspecting the app-

lication-layer payload data. Such data can be hidden by encryption or unavailable due

to privacy and policy reasons; for research purposes in particular, it is difficult to obtain

samples of network traffic that include the application-layer payload. There are, however,

publically available data sets containing packet headers from a variety of contexts; such

varied data would seem to be important for developing and testing general approaches.

Another disadvantage to using approaches based on application-layer data is that there are

often a variety of applications used for any given purpose, which can differ widely in the

format of their payload data. We expect that measurements based on information such

as packet lengths and inter-packet delays will better show general patterns of behaviour

among applications serving the same basic purpose.

In this chapter, we explain the motivation behind our work, outline the structure of this

thesis, and summarize our contributions to the field of network traffic classification.

1.1 Motivation

The approaches to network traffic classification in the literature generally attempt to de-

termine from the network traffic what application generatedthat traffic. This work is mo-

tivated by a desire to see a shift towards the use of application behaviours, patterns in

network traffic caused by particular uses of the network, as an intermediate step for classi-

2

fication. Our work focuses on developing tools in support of ashift to a behaviour-based

traffic classification; here, we explain the reasoning behind this shift, the path that we think

it should take, and why we have focused on tools to support it.

We see two reasons for studying application behaviours rather than applications: many

groups of applications exhibit similar behaviours to one another, and some applications

exhibit multiple distinct behaviours, even within a singleflow. Both result in difficulties in

classification; it is difficult to distinguish between two applications that behave similarly

to one another, and it is difficult to characterize an application that behaves inconsistently.

Herńandez-Campos et al. [HCNSJ05] identified a need to study “the impact of common

uses of [applications]” rather than specific applications,based on the observation of differ-

ent applications using the network in similar manners (e.g.HTTP, FTP, and peer-to-peer

file sharing all being used for unidirectional file transfer). Many applications are too com-

plex to be easily expressed in terms of the network traffic that they generate (e.g. Telnet

exhibiting distinct phases of command-shell interactive traffic and bulk data transfer); this

is suggested by Nguyen and Armitage’s [NA06] work on classifying game traffic using

sub-flows (fragments of network flows) as well as by our own observations.

The concept of application behaviours could be used as an intermediate step between

network traffic and applications. Application behaviours are basic types of activity such

as bulk data transfer and command-shell interactive activity; they are more meaningful

and identifiable at the level of network traffic than applications, which can be expressed

in terms of these behaviours. For example, an application could be modelled as a state

machine where each state is a behaviour that that application can produce.

Ultimately, we wish to be able to describe the activity of a networked application in

3

terms of application behaviours. For example, consider Telnet, which is an application

that allows a user to interact with a command shell on a remoteserver. In the simple case

mentioned earlier, a Telnet session may consist of a user sending short commands and re-

ceiving short replies, with occasional commands that result large bursts of data being sent

back to the user; we could model this as a finite state machine with two states, correspond-

ing to application behaviours: command-shell interactiveactivity and bulk data transfer.

These application behaviours would be expressed in terms ofmeaningful flow attributes

that would allow them to be identified directly from network traffic; for example, bulk data

transfer can be defined in terms of data sent per unit time and mean packet length, while

command-shell interactive behaviour can be expressed in terms of the proportion of packets

having a certain length and certain timing characteristics.

In this thesis, we focus on building tools for the analysis ofnetwork traffic to identify

and quantify application behaviours, in support of a shift to behaviour-based network traffic

classification. Our particular focus is on flow attributes, which are measurements of net-

work traffic that can be used to study and describe application behaviours. We focused on

the tools to build flow attributes, rather than on building a complete set of flow attributes, as

the latter goal was too ambitious with the existing tools, and because we expect new flow

attributes will need to be created to cope with applicationsattempting to evade the existing

ones.

Our original motivation for this work was in discriminatingbetween normal web surfing

activity and malicious software masquerading as such. In that scenario, it must be assumed

that an attacker will attempt to evade network traffic characterization. We do not directly

address evasion here, leaving it for future work. However, evasion does motivate this work

4

in that we expect such a detection effort to become an arms race, and so we have built a

tool that allows the rapid development of new flow attributes, to allow defenders to more

quickly adapt to the attackers’ changes. This indirectly supports the use of a variety of flow

attributes as a countermeasure to evasion; efforts to mimica small number of attributes will

often disturb others (e.g. padding packets to give a certainmean packet length will increase

the data rate and total amount of data sent). We do not, however, address evasion in any

formal manner.

1.2 Structure

The structure of this thesis is as follows. First, in Chapter 2(“Background”), we present

some information on a variety of topics that we will use in this work, including machine

learning, networking and networked applications, networktraffic classification, and the

existing tools for handling network traffic.

A detailed exploration of the representation of network traffic and a description of the

tool we have developed is presented in Chapter 3 (“Flow attributes”). The chapter starts

with a description of networked application behaviours in section 3.1. In section 3.3.1, we

describe a notation for defining flow attributes, and then in section 3.3, we use our notation

to define a number of flow attributes from the literature.

Chapter 4 (“The ANTARES tool”) describes the Advanced NetworkTraffic Analysis

Research and Exploration Suite (ANTARES), which is a tool designed to allow researchers

to easily define a wide range of flow attributes. It is a component library that aggregates

and processes network traffic, and provides mechanisms for auser to define the attributes

5

that they wish to be computed on that traffic. It allows attributes to be defined in terms

of other attributes, and will be used to implement an interpreter for a high-level language,

based on our notation, for defining flow attributes.

We perform a qualitative evaluation of ANTARES and of the flow attributes we have

defined in Chapter 5 (“Evaluating flow attributes”). The overall conclusions of the thesis

and our analysis of the future work enabled by it are given in Chapter 6 (“Conclusions and

future work”).

We have also included appendices with additional information that we believe will be of

use to other researchers. Appendix A (“Data conversion”) describes a large set of data avail-

able from the National Laboratory of Applied Network Research (NLANR, now subsumed

by the Collaborative Association for Internet Data Analysis, or CAIDA), and documents

the process necessary to convert the data to a more widely usable format. In that process,

we used tools that we have developed and included in our toolkit; these tools serve a variety

of purposes, such as breaking down network capture files by application or into timeslices,

and extracting network flows as samples. We have found these to be quite useful in our

investigations, and hope that other researchers can benefitfrom the effort that we have put

into them. Appendix B (“Error tables”) includes detailed tables of error rates for classifiers

that we used in our evaluation of flow attributes; it helps illustrate the behaviour of the flow

attributes and applications that we studied.

6

1.3 Summary of contributions

This thesis focuses on building the tools to support future research in network traffic clas-

sification without the use of application-layer payload data. Our main contributions are a

notation for expressing flow attributes, and ANTARES, a software tool designed to facil-

itate the computation and evaluation of flow attributes. We have developed a number of

other tools for manipulating network traffic and bundled them together with ANTARES

into a toolkit;1 we have also made available a data set consisting of flow attribute values

computed from publically available packet header traces, converted to a widely usable for-

mat. We consider these additional tools and data to be a minorcontribution.

We define a notation for precisely expressing flow attributesand use it to define a se-

lection of flow attributes from the literature. This notation is designed to allow the unam-

biguous definition of flow attributes using a small set of basic operations, so that they can

then be computed by a tool such as ANTARES.

We also present ANTARES, a C++ object library for computing flowattributes. AN-

TARES is designed to be flexible and extensible, and its primary goal is to support the rapid

development of new flow attributes for experimentation. We perform a qualitative evalua-

tion of the tool by using it to compute flow attributes on publically available network data

from a variety of networks, and find that it meets its requirements, though more rigorous

testing should be performed as future work. This tool is similar in purpose to NetMate

[ZS06]; the primary advantage of our tool over the latter is that ours allows a researcher

to combine flow attributes to create other attributes, in order to facilitate the process of

1For clarity, we will refer to our main tool for processing network traffic as the ANTARES tool or simply
ANTARES, and to the larger toolkit as the ANTARES toolkit.

7

developing and experimenting with such attributes.

We have made available a collection of data processing toolsfor use in network traffic

experiments, as well as a data set consisting of flow attribute values computed on publi-

cally available packet header traces using ANTARES. The tools facilitate the process of

selecting samples from network data, by providing routinesfor dividing data traces into

timeslices and by transport-layer port, among other tasks.The data set consists of 8400

packet header traces from connections of different applications in different network con-

texts, along with a variety of flow attribute values computedfrom these traces. The data

is in comma-separated value (CSV) format, which is usable by most mathematical and

statistical software packages.

8

Chapter 2

Background

In this chapter we present some background to establish the context of this work. We con-

sider some statistical techniques that we will use in evaluating candidate flow attributes,

and discuss networking and network traffic in general, in order to better situate our discus-

sion. We then present a survey of prior research into classifying network traffic, and discuss

the issues with them, particularly in their data sets and testing methodology, that motivated

many of the decisions in this work.

2.1 Machine learning and statistical data analysis

We draw upon techniques from the fields of machine learning and statistical data analysis

in our exploration of behavioural flow attributes, and so we present here some background

on these techniques. Specifically, we examine classification and logistic regression. Clas-

sification, in this context, is a machine learning techniquefor developing systems to dis-

criminate between classes of data points. Logistic regression is a statistical technique used

9

for inferring a quantitative relationship between an experimental variable and an outcome.

In this work, these techniques are central to our analysis ofbehavioural flow attributes.

We use pairwise classifiers to discriminate between different application behaviours based

on a flow attribute; the classifiers use logistic regression to infer the relationship between

the flow attribute and the application behaviours in question, which will be used as the basis

of classification.

2.1.1 Classification

Classification, or supervised machine learning, is the discipline concerned with the auto-

matic or semi-automatic generation of algorithms that assign labels to data points based on

previously observed data. Given a set of sample data where each sample is labelled, a clas-

sification algorithm will generate a classifier, which is a function, or set of rules, or similar

construct, that it can use to predict for a previously unseensample what label that sample

should be given. Research in network traffic classification uses machine learning-based

classification techniques, and we generate classifiers in this work to gauge the discrimina-

tive power of flow attributes, so we explain here some relevant concepts from the field of

classification. This discussion draws from Frank and Witten[WF99].

A common model of classification involves predicting a classlabel from afeature vec-

tor, which is a one-dimensional array or list of variable valuescomputed from a data sam-

ple. The experimenter decides on a set of variables, orfeaturesthat are to be used to train

the classifier, and for each data sample, the value of those variables are computed and en-

tered into such a feature vector. These feature vectors are fed into a classification algorithm,

10

Actual class
Classification Class C Not C

Class C True positive False positive
Not C False negative True negative

Table 2.1: Classification results

which produces a classifier that can be used to predict the label that it expects to be asso-

ciated with a feature vector. Ideally, a classifier will be able to assign the correct label to

vectors that were not part of its training set.

A classifier can be tested for accuracy by having it test a set of samples with known

classes, and comparing its output labels with the actual known labels. The testing should

preferably be done on a set of samples that is distinct from those used to train the classifier

in order to preventoverfitting, the phenomenon where the classifier learns the test data too

well and is unable to work on the general problem.

There are two common measurements of the performance of a classifier, accuracy and

recall. Given a target class C,accuracyis a measure of how often the classifier is correct

when it labels a sample as being of class C, andrecall measures the proportion of the

samples that were actually in class C were identified as such by the classifier.

A classifier’s performance can also be evaluated in terms of true and false positives

and negatives. Table 2.1 shows these concepts graphically;a positive is a sample that

the classifier identifies as belonging to class C, and a negative is one that the classifier

identifies as not in class C. A false positive is a sample that does not belong in class C that

the classifier identifies as being in class C, and a false negative is one that does belong in

class C that the classifier does not label as being in class C.

The accuracy and recall of a classifier can perhaps most easily be explained in the terms

11

of table 2.1. Accuracy is equal to the number of true positives divided by the sum of the

true and false positives. Recall is measured as the number of true positives divided by the

sum of the true positives and false negatives.

Cross-validationis a technique used to evaluate the performance of a classification al-

gorithm. A classification algorithm will learn how to classify the training data it is given,

so simply testing it on the same training data will give an optimistic estimate of its perfor-

mance on data it has not previously seen. To compensate for this, k-fold cross-validation

is used, where k is a parameter. In k-fold cross-validation,the experimenter divides their

data intok roughly equal parts. They then train and test a classifierk times; each time, one

of the k parts is not used for the training, but is used to test the classifier trained on the

otherk−1 parts. This gives a more accurate estimate of how well the classifier will do on

previously unseen data.

We have briefly presented here some key concepts from the fieldof classification, pri-

marily as background to many of the other works in traffic classification which make use

of these techniques. Our own classifiers are fairly simple; we use only one feature at a

time, and we use logistic regression (described in section 2.1.2) to find the threshold that

separates the target class from the alternate class.

2.1.2 Logistic regression

Logistic regression is a statistical technique that is often used to analyze categorical data

and find the relationship between a variable of interest and the odds of the data point be-

longing to a particular category. This technique is used in this thesis to generate classifiers,

12

and so we describe it here, though not in great detail. This discussion draws on Neter,

Wasserman, and Kutner [NWK85].

Regression attempts to determine the quantitative relationship between a response (or

dependent) variable and one or more explanatory (or independent) variables. In an exper-

iment, the independent variables are manipulated by the experimenter to produce changes

in the dependent variable; in an observational study, the experimenter studies the values

of the response variable in cases with different values of the explanatory variables. A re-

gression task normally involves choosing a response function (such as a straight line in

linear regression), and estimating the parameters of that function such that it describes the

relationship.

As an example, suppose we wanted to explain the observationsof a response variable

Y as a linear function of an explanatory variablex, with some error. We could express this

as:

Yi = mxi +b+ εi i = 1, ...,n

This simply means that each observationYi is on a line described bymxi + b, except for

being off by some error termεi; if this model is valid, we expect the error terms to be

normally distributed, with a mean of 0. More generally, we replace the line by a function

f (x); in the above example,m andb are parameters of the function. This would be as

follows:

Yi = f (xi)+ εi i = 1, ...,n

13

An estimation method is used to iteratively attempt to find values for the parameters of

f (x) such that the error terms are minimized. A popular estimation method is least squares,

where the function to be minimized is:

Q =
n

∑
i=1

[Yi − f (x)]2

In linear regression, where the response function is a straight line, the parameters are

the slope of the line and the y-intercept (m andb in the previous examples). In logistic

regression, the response function is what is called the log-odds or logit of the probability.

That is, rather than try to fit a function representing the probability of a sample belonging

to a target class, we try to fit a function representing the logarithm of the odds, which is

the ratio of the probability of a sample belonging to the target class over the probability

of the sample not belonging to the target class. More formally, if the probability of a data

samplei being a member of the target class is given byπi, then the logitπ′
i is given by

π′
i = log(πi

(1−πi)
).

Logistic regression is often appropriate for regression oncategorical or indicator de-

pendent variables, those where the value is either 0 or 1 depending on e.g. whether the

sample belongs to a particular class. This is because the logit response function has a num-

ber of properties that are desirable for regression on categorical variables, particularly that

the probability predicted by a logit function will be in the interval (0,1), and thus will not

predict probabilities less than 0 or greater than 1, which isa potential problem with simple

linear models.

This thesis uses logistic regression to generate classifiers, so we have given here an

14

overview of how the technique works. In our case, the dependent variable will be a class,

specifically a class of network traffic, and the independent variable will be one of the flow

attributes that we wish to evaluate. Given samples of two classes of network traffic, the

regression problem is to fit the log-odds line to best describe, for that flow attribute, what

the probability will be that a sample with a given value for the flow attribute will be of the

target class vice the alternate class.

2.2 Networking and network traffic

This thesis is focused on an exploratory analysis of networktraffic generated by appli-

cations, and so some background on networking and network traffic is appropriate. This

section will review some terms and concepts that will be important for understanding the

remainder of this work. This discussion draws on Peterson and Davie [PD00].

Network traffic is transmitted by anetwork nodeor network host. We use both terms

almost interchangeably, the difference being that we use the term host to place emphasis

on the host itself and its use of the network, whereas the use of the term node emphasizes

its role as part of the network.

The network protocols that we deal with in this thesis are arranged inlayers; a com-

monly used reference model is theOSI stack, a seven-layer model consisting of physical,

data-link, network, transport, session, presentation, and application layers. The layers rele-

vant to this work are thenetwork layer, which takes responsibility for routing a packet over

a network, and thetransport layer, which takes responsibility for managing communication

between software processes on the communicating hosts. We also refer to theapplication

15

layer, which generally refers directly to the application that isusing the network.

In a layered protocol stack, each layer is mostly independent from the others, and the

data sent by a protocol belonging to a given layer on one node is processed by the same

layer on the receiving node. This is often accomplished using a technique known as en-

capsulation. This technique involves each protocol prepending and/or appending its own

information to thepayloadfrom a higher layer. Many such protocols will prepend aheader

to the payload to carry its own information to the corresponding protocol at the remote

node. That remote protocol instance can then remove the header and process the infor-

mation it contains before passing the unmodified (or restored) payload to the appropriate

higher-layer protocol at the remote node.

We use the termnetwork trafficto refer generally to data that is sent across a network,

whether it is being sent, in transit, or being received, or whether it has been captured and

stored in some static format. A unit of such data is apacket; we use this term in a very

general sense, to mean a bundle of data sent across a network.Different layers of the stack

refer to such bundles by different names; in the physical anddata link layers, they are often

called frames. When talking about the network layer,packetis the common term. At higher

layers, various protocols will refer to packets, messages,segments, and datagrams; we will

use the term packet, and explicitly identify what type of packet we are discussing in the

given context.

A common identifier used by protocols such as TCP and UDP is theport number,

or port, an integer used to multiplex and demultiplex network traffic originating from or

destined to a particular node. In common usage, a port acts asa subaddress on a particular

node.

16

The termsnetwork sessionandnetwork flow, as used in this thesis, are closely related;

we use both to refer to data sent across a network in the courseof an application’s operation,

usually data sent to accomplish a single goal and involving asingle remote process. The

main difference is perspective; a network session refers tosuch a transfer of data from the

perspective of the application, whereas a network flow refers more directly to the network

traffic generated by such a network session, being more focused on the perspective of one

intercepting such traffic.

The concepts of network latency and jitter are related to thetime taken by packets to

traverse the network. Supposing we have a node A and a node B, latency describes the time

taken for a packet to reach B after being sent by A. The term latency is generally used to

describe the “normal” amount of time taken. Jitter refers tothe variations in the amount of

time taken. For example, if one were to send a dozen packets from A to B and measure the

time taken by each to be received after being sent, the mean ofthose measurements would

be a measure of the latency, and the standard deviation wouldbe a measure of the jitter.

Another concept used repeatedly in this work is that a session involves a client and a

server. The applications that we consider employ theclient-server architecture, in which

one node, theserver, advertises a service that it provides, and the other node, the client,

connects to the server and uses the service.

The applications we deal with in this work are built on the client-server architecture,

and when discussing traffic generated by these applications, we distinguish between client-

side and server-side traffic. Client-side traffic is traffic sent by the client to the server, and

server-side traffic is traffic sent by the server to the client. The distinction is necessary

because the roles of the client and the server are generally quite different, and thus the

17

traffic generated by them is asymmetric.

For the purposes of our work, we will assume that we know a priori which side of a

network flow is which, but any practical implementation of a traffic classification system

will need to be able to deal with uncertainty in the directionof the traffic.

2.3 Networked applications

Programs and suites of programs that use computer networks (particularly the Internet) in

the course of their primary purpose are referred to here as networked applications. In this

work, we use samples of network traffic data produced by several networked applications;

we describe these applications here and discuss their relevance to this thesis.

One of the most important factors in selecting applicationswas that we wanted to fo-

cus on applications for which we could obtain samples from all of the data sets we used;

this requirement limited the set of applications that we hadto choose from. However,

we have obtained a basic set of applications for testing the tools and techniques that we

have developed. The applications of interest are: the File Transfer Protocol (FTP), which

is subdivided into FTP-control and FTP-data; Telnet; the Simple Mail Transport Protocol

(SMTP); the HyperText Transfer Protocol (HTTP); and the Post Office Protocol version

3 (POP3). Strictly speaking, these are not applications themselves, but protocols that are

implemented by various applications; however, for our purposes, we will assume that the

protocol is designed for a particular purpose, and that the purpose drives the behaviour

more than the implementation does.

In this section, we describe the applications and the known port numbers associated

18

with them. The standards for network interactions, or protocols, of these are defined in

documents called Request For Comments (RFC), published by the Internet Engineering

Task Force (IETF). The IETF develops and organizes documentation such as protocol stan-

dards, best practices documents, and other documents for the purpose of improving the

Internet [Alv04]; the RFC system is a major vehicle to this end.

The File Transfer Protocol (FTP), as its name suggests, is a protocol designed to allow

the transfer of files between nodes on an internetwork. In this context, we are specifically

concerned with FTP as used by standard FTP client and server programs such as the ftpd

server and FTP client normally included in Linux, Unix, and BSD operating systems, used

interactively by a human user rather than an automated process. FTP is defined in RFC959

[PR85]; this discussion draws primarily on that document. AnFTP session consists of

two communications channels, the control channel and the data channel. The two channels

are used for different purposes and are expected to exhibit entirely different behaviours, so

for our work we consider them to be two separate applications, which we will refer to as

FTP-control and FTP-data, respectively. FTP-control is registered as using port TCP/21,

and FTP-data as using port TCP/20 [Aut06].

The Telnet protocol is a protocol designed to provide an interface between terminal

devices and processes such as terminals slaved to a mainframe and the mainframe terminal

process; on the Internet, it is often used for remote access to a command shell,1 which is the

use with which we are concerned. We expect that the major implementation of telnet that

we will be dealing with will be that of the major telnet servers and clients, such as the BSD

1A command shell (or simply shell) is a program which serves asa command-line interface between a
user and the operating system on a computer system

19

server and client, or the telnet client included with Windows operating systems. It is also

used for the control channel of FTP. Telnet is defined in RFC854 [PR83], and is registered

as using port TCP/23 for communication [Aut06]. It is of particular interest in this thesis,

as we expect an attacker who successfully gains unauthorized access to a node would want

to interface with a shell, and telnet is the best widely-available proxy to such shell activity.

The Simple Mail Transfer Protocol (SMTP) is a protocol used to implement the han-

dling of e-mail on an internetwork. SMTP is defined in RFC821 [Pos82]; RFC2821 is

a proposal to replace that standard, currently designated as a “proposed standard” by the

IETF [Kle01]. The latter is a compilation of the original SMTP standard plus several of its

major extensions [Kle01]. SMTP is registered as using port TCP/25 [Aut06].

The HyperText Transfer Protocol (HTTP) is a protocol designed to allow the distri-

bution of content via an internetwork. The content distributed via HTTP is not limited,

but often consists of documents in HyperText Markup Language (HTML) and images.

HTTP version 1.0 is defined in RFC1945 [BLFF96], and version 1.1 is defined in RFC2616

[FGM+99]. Both versions are registered as using port TCP/80 [Aut06].

The Post Office Protocol, version 3, is a protocol designed toallow e-mail clients, used

directly by a human user, to interface with the mailhosts responsible for forwarding mail

across an internetwork (via a protocol such as SMTP, described in section 2.3). POP3 is

defined in RFC1939 [MR96], and registered as using port TCP/25 [Aut06].

20

2.4 Network traffic classification

There is a growing body of research, driven by several distinct motivations, regarding the

classification of network traffic. The major questions addressed by this research are to

identify what a given type of network traffic “looks” like, ingeneral, and how to use that

information to be able to distinguish between different types of traffic. These questions

are relevant in several contexts, such as network security and administration, network pro-

visioning, protocol design, and network simulation. This section provides an overview

of the existing literature in traffic classification, focusing on that which uses non-payload

information to classify traffic.

The existing work in this area shows that measurements of network traffic offer enough

information to classify the traffic by application, though the existing approaches are not

yet accurate enough for practical purposes. We note that some of the researchers discussed

in this section, e.g. Frank [Fra94] and Karagiannis et al. [KPF05], created groupings of

applications that they considered similar, though with no quantitative basis for these groups.

Also, most only considered the subset of information available from the tools they chose to

use.

One segment of somewhat related work not dealt with here is research on classifying

network traffic based on resources consumed, such as Estan and Varghese’s [EV03] work

on distinguishing between “elephants and mice” – i.e. network flows of significant and

insignificant volumes of traffic, respectively. While that iscertainly a form of network

traffic classification, our work is focused on classifying traffic based on the nature of the

flow and the type of activity that generated it, regardless ofwhether it is an elephant or a

21

mouse.

Where error rates are reported, unless otherwise noted, these are combined error rates,

i.e. the number of false positives and false negatives (as described in section 2.1.1) di-

vided by the total number of samples. The results in the literature are presented in various

different forms, so we have rephrased the reported error rates or accuracies in terms of

combined error rates where possible, in an attempt to facilitate comparisons of the different

approaches.

Frank [Fra94] applied feature selection algorithms to the classification of flows from

a small set of classes, attempting to improve the performance by selecting only the most

useful features for the task. He used some basic flow attributes, plus the probability, ac-

cording to Heberlein’s Network Security Monitor [HDL+90], that the flow was malicious.

The classes he used were “login”, “shell”, and “SMTP”, classified by hand, though he did

not explain what constituted a login or shell flow. He found that all three of the algorithms

used performed well to find a good set of features, although the most complex one did

better than the others on the task of distinguishing shell flows, and concluded that in many

cases, simple feature selection algorithms perform decently well. He reports error rates

(computed using test data independent from the training data) of about 3% or less.2

Zhang and Paxson [ZP00] described a number of techniques fordetecting what they

refer to as backdoors, which are unauthorized access mechanisms in a system installed by

an attacker. One detection technique they use for identifying interactive traffic is based

on the proportion of consecutive small (less than 20 bytes ofpayload) packets in the flow.

2The percent signs in the error rates that Frank himself reported are superfluous and should be ignored,
according to Dunigan and Ostrouchov, who report that this was confirmed to them in an e-mail from Frank
[DO01].

22

They report results for their general detection algorithm for interactivity (which uses packet

size and timing information) that correspond to a combined error rate of about 0.77%;

they mention, however, that most of the false positives werein fact e-mail protocols used

interactively. Disregarding those, the combined error rate would instead be about 0.44%.

They note, however, that the data set used to evaluate false positives had many high-volume

applications such as HTTP, NNTP, and the data channel of FTP filtered out; had HTTP in

particular been present, it might also have led to higher numbers of false positives.

Dunigan and Ostrouchov [DO01] found that they could discriminate among eight dif-

ferent applications using flow attributes based on packet sizes, inter-packet delays, and

packet directions. They divided the possible space of theseflow attributes up into bins, and

treated each bin as a separate flow attribute unto itself; forexample, one feature could be

“the count of packets with a length of 60 bytes, a delay since the last packet of between 1

ms and 800 ms, and where both that packet and the previous packet were from the server

to the client”.

They tested their approach, using statistical methods to select three such flow attributes

and using those attributes to estimate probability densityfunctions for each of the applicat-

ions, then classified flows by selecting the function that gave the greatest probability based

on the flow attributes of the flow. The worst error rate they report, based on testing and

training on the same data set, was 6.41%, for e-mail, and the other applications were clas-

sified with error rates of 4.28% or better (most of them betterthan 1%). They also report,

however, that preliminary testing on a second data set containing e-mail flows results in the

classification error rate more than doubling.3

3Dunigan and Ostrouchov reported their results as a confusion matrix, where it was not clear which axis

23

Early et al. [EBR03] developed an anomaly detection approach based on flow attributes.

They used frequencies of various TCP flags and mean packet inter-arrival times computed

across windows of flows to determine, among five common applications, to which the flow

belongs. They used the C5.0 decision tree algorithm [Qui93] to develop their classifier, and

found that it could classify the flows with recall of 82% or better for SMTP, and with recall

of 96% or better for most other applications,4 including no errors for some applications.

Their primary results are based on the 1999 Lincoln Labs/DARPA data set [LHF+00],

which has some known issues [McH00, MC03], which they acknowledge. As a result, they

also used data collected from their own networks, and reportthat their system performed

equally well on that data set.

Roughan et al. [RSSD04] performed a set of experiments aimed atshowing the poten-

tial of discriminating between flows from different applications based on flow attributes;

their motivation was the improvement of quality-of-service schemes. In one of their ex-

periments, they developed classifiers using several classification algorithms to distinguish

between applications in several sets. They chose the average packet size and duration of

the flows as data features to distinguish between Telnet, FTP-data, Domain Name Service

(DNS), and streaming video.5 They also worked with a seven-class version, adding in

HTTP, HTTP Secure (HTTPS), and KaZaA.6 The best error rates they obtained were 5.1%

represented real classes and which represented assigned classes, so we have simply computed these combined
error rates based on the values in that table. It is not clear whether error rate that they reported for the second
data set was based on false negatives or on false positives.

4They report their performance as “accuracy”, but their description indicates that the values are actually
recall values.

5Streaming media , such as video, is a class of network application where the client obtains data from the
server as it renders it, rather than obtaining all of the dataprior to rendering.

6KaZaA is a peer-to-peer file sharing application; peer-to-peer is a decentralized network application
architecture where endpoints communicate directly with one another, with little or no reliance on centralized
server nodes.

24

and 9.4% for these classification problems, respectively, using a 3-Nearest-Neighbour clas-

sification algorithm.7 Rather than using attributes computed over individual flows,how-

ever, they used daily averages computed from the flows seen ina day; some of our observa-

tions suggest that these may have led to optimistic results,though we by no means establish

that.

Borders and Prakash [BP04] developed an anomaly detection system they called “Web-

Tap”, which uses flow attributes to detect anomalous behaviour in HTTP sessions. Their

main focus is on information being smuggled out of a network via HTTP, such as by spy-

ware.8 Their approach operates on HTTP requests and responses, rather than on packets,

and they use attributes such as inter-request delay, request sizes, and outbound data vol-

umes. They found that their approach was successfully able to detect actual unauthorized

software on their network, as well as some hidden channel software that they installed to

test the system.

Wright et al. [WMM04] used Hidden Markov Models9 (HMMs) and k-Nearest Neigh-

bour (kNN) learning algorithms to classify flows and aggregates of flows generated by

different applications, based on packet lengths, inter-packet delays, and packet directions.

Their focus was on classifying traffic with minimal information, such as might be available

from traffic in an encrypted tunnel; they went so far as to alter the packet lengths to simulate

73-Nearest-Neighbour is a common machine learning algorithm which classifies a data point by looking
at the three closest data points for which a class is known [WF99].

8Spyware is malicious software that gathers information from the host computer about the user; often it
is designed to pick up sensitive information such as credit card numbers, social insurance identifiers, or such
things as game activation codes.

9An HMM is a model that represents a finite state machine where only the outputs can be observed, and
the internal states and transitions are unknown [Rab89]; this is appropriate to the task, as network traffic
can be viewed as the output of a hidden finite state machine (orset of such machines) – the application in
question.

25

the effect of a block cipher being used on the data. This is a particularly difficult problem;

most other approaches discussed here assume that at least the packet headers are available.

Their kNN approach to identifying single-protocol aggregates was based on features

similar to those used by Dunigan and Ostrouchov [DO01], in that they were based on rela-

tive proportions of packets falling into bins based on packet lengths and direction, though

they used only four bins. For this task, they found that for some applications they could

get good (often perfect) recall, but for some low-volume applications, the performance was

much poorer, as their features were computed for epochs of constant duration. They used

more fine-grained bins for their HMM-based approaches for identifying individual flows,

and also incorporated timing information in some of them. Although they had trouble with

FTP-data, their full classifier (using packet size, timing,and direction) gave recall values

of 76% or better for other applications.

Herńandez-Campos et al. [HCNSJ05] emphasized the need to focus on application be-

haviours rather than on applications. They performed clustering on flow attributes for flows

from the ABILENE-I data set from the National Laboratory for Applied Network Research

(NLANR), based on some simple and less simple flow attributes.Rather than computing

these attributes on packets, though, they computed them on what they called Application

Data Units (ADUs). These ADUs were, using the client-serverparadigm, request-response

pairs, where packets comprising a request (e.g. an HTTP request) were the first part of the

ADU, and packets comprising a response to that request (e.g.an HTTP response) were

the second part of the ADU. They then computed their attributes on the amount of data in

each part of the ADU, and the delays between ADUs. They also showed that the size of

both parts of the ADU, at least for TCP flows, could be deduced from the sequence and

26

acknowledgement numbers from just one side of the flow.

They found that the clusters qualitatively separated the traffic out into interesting classes,

and they demonstrated a visualization technique using “heat maps” – graphical represen-

tations of attributes values – to analyze the clustering. They report that traffic with ports

associated with peer-to-peer applications separated itself out into two clusters, which they

believe are different modes of operation for the peer-to-peer applications, that traffic with

ports associated with HTTP applications separated out intoanother cluster, and that there

were indications of homogeneity in the other clusters as well.

Karagiannis et al. [KPF05] propose a system they call BLINC, for BLINd Classifica-

tion, that focuses on patterns in communication between nodes to classify each node based

on what application activity that node is engaged in. Rather than examining attributes of the

flows themselves, they develop data structures, which they call graphlets, based on patterns

in the network activity in terms of other hosts contacted, different ports and protocols used,

and relationships between those pieces of information. They then compare the graphlet

generated by a host’s behaviour to a library of graphlets of known application behaviours

in order to determine what application is running on the host. Though this approach does

not use flow attributes, it is nonetheless related, and couldbe a useful alternate approach to

complement a flow attribute based approach.

DeMontigny-LeBoeuf [DL05] described a wide range of flow attributes that can be used

to classify flows by application, and built a hand-tuned classifier from them. She organized

them based on the higher-level qualitative features that they attempt to measure, such as

interactivity, conversationality, and regularity. An advantage of this approach of linking

flow attributes to higher-level features is that her system is able to generate a qualitative

27

description of a sample flow in terms that may be more useful toa human analyst than

the raw flow attributes would be. Her hand-built classifier distinguishes among 9 different

applications. Its worst error rate is 36% (for HTTP), but formost of the applications, its

error rates are around 10% - 20%; note that these error rates,unlike those of many of

the other approaches mentioned here, are for a data set that was not used in building the

classifiers [DL06].

Moore and Zuev [MZ05] used Naı̈ve Bayes classifiers,10 with a Fast Correlation-Based

Filter for feature selection, to classify network traffic into groups of applications (e.g. bulk

data transfer, interactive, database). Their best classifiers obtained combined error rates11

as low as 3.7% (across all application groups) on data from the same timeframe,12 with er-

ror rates of 6.3% on data collected 12 months after the training data was obtained. However,

their approach apparently incorporated the server-side port as a flow attribute; we wish to

ignore that value when classifying traffic. Other attributes that they found useful included

the number of packets with a particular flag in the TCP header set, the initial values for the

TCP window sizes,13 and average TCP payload length.

Collins and Reiter [CR06] used NetFlow data14 to distinguish BitTorrent traffic15 from

that of FTP-data, SMTP, and HTTP. They designed tests to distinguish BitTorrent traffic

based on four measurements: a failed connections heuristic, the bandwidth (data rate) of the

10A Näıve Bayes classifier is a common machine learning algorithm that expresses an outcome, such as
a flow belonging to a particular application, as a probabilistic model of a set of factors, making the naı̈ve
assumption that those factors are independent of one another [WF99].

11What they report as accuracy is effectively the complement ofthe combined error rate; they also report a
“trust” measure, which corresponds to the accuracy as defined in section 2.1.1.

12Their error rate may even be overestimated, as they trained on 1
10 of their data set and tested on the

remainder, inverse to the more common 10-fold cross-validation method described in section 2.1.1.
13The TCP window size is a field in the TCP header used for flow control.
14NetFlow is data collection system and data format designed by Cisco that provides summaries of network

flows by sampling packets, in order to keep up with high-data-rate links [EKMV04].
15BitTorrent is a popular file sharing application [IUKB+04].

28

flow, the histogram of the packet lengths, and the logarithm of the number of packets. They

report that they obtained a 72% true positive rate with no false positives (i.e. a combined

error rate of 28%) by using a voting scheme among these tests.

Another thread of interesting work is by Zander, Nguyen, Williams, and Armitage

[ZNA05b, ZNA05a, ZWA06, NA06] regarding the automated classification of network

traffic using statistical measures of packet lengths and inter-packet delays.

Zander, Nguyen, and Armitage [ZNA05b, ZNA05a] clustered network flows and then

compared the resulting clusters with the applications thatgenerated the flows, based on port

numbers. Specifically, they reported the homogeneity of theclusters – i.e. the percentage of

flows in the cluster belonging to the dominant application for that cluster. Their candidate

flow attributes were the means and variances of inter-packetdelay and packet length, total

data volume in bytes, and duration, where every attribute except duration is computed for

both sides of each flow. They found that, by labelling each cluster according to the domi-

nant application and then using the clusters to classify thedata, they obtained a mean recall

(which they termed accuracy) of 86.5% [ZNA05a]. Note that that is likely overestimated,

as they appear to have trained and tested on the same data.

They also report the influences of the various flow attributesthey used. Some of their

findings were that packet lengths were preferred over inter-arrival delays for the appli-

cations they were attempting to classify, that duration wasnot strongly preferred by their

feature selection algorithm (in contrast to e.g. Roughan et al. [RSSD04]), and that the two

most useful flow attributes were the variances in the packet lengths for each direction of a

flow [ZNA05a].

Zander, Williams, and Armitage [ZWA06] then applied the earlier work in application

29

classification to examining the applications present in historic Internet traces, under the

term “Internet Archaeology”. Specifically, they examined how feasible it would be to iden-

tify peer-to-peer and games traffic in historic traces basedon flow attributes. They found

that the flow attribute values for the applications of interest had not changed significantly

between the different time periods of the data sets they examined, and that different app-

lications, even similar applications, could be distinguished with high accuracy (better than

90%, evaluated using 10-fold cross-validation) using these attributes.16

Zander et al. [ZNA05b, ZNA05a, ZWA06] used a traffic measurement tool developed

by Zander and Schmoll [ZS05, ZS06] called NetMate, which is similar to our own tool;

had we come across it earlier, we likely would have tried to leverage it for building our

own tools. It is an application built in C++ for computing flow attributes on network traf-

fic, which allows attributes to be defined using eXtensible Markup Language (XML), a

machine-parsable text format.

More recently, Nguyen and Armitage [NA06] examine the effect of using sub-flows

for classification, rather than looking at entire flows. Thiswork is particularly interesting

for the purposes of this thesis, as it hits upon the issue of non-homogeneous applications

and hints at the need to deal with application behaviours rather than dealing with appli-

cations holistically. They use a Naı̈ve Bayes classifier to attempt to identify traffic from a

3D networked game based on a sliding window of the most recentpackets. Their findings

strongly suggest that the game traffic was generated differently at different times, and that

a classifier trained on the appropriate sub-flow (e.g. near the start or in the middle of each

16It is not clear, however, how they computed these “accuracy”values, and whether it was the same metric
as reported in the earlier work [ZNA05b, ZNA05a], which is more commonly termed recall; informally, that
seems likely from their phrasing.

30

training flow) would do much better at identifying traffic from a similar stage of the app-

lication. This is of particular interest to us, as it is one ofthe few related works that deal

with variations within an application, let alone within flows of an application.

2.4.1 Summary

There are many indications in the literature that classification of network traffic can be

done with reasonable accuracy without using payload data, though sufficiently high for

practical purposes. Different researchers have used a variety of different flow attributes,

generally using what was available from the tools that they were using. We have built a

tool for computing flow attributes and used it to implement a variety of attributes from

the literature, which should facilitate applying these approaches to a wider set of flow

attributes. Of the approaches presented here, our work is most closely related to that of

DeMontigny-LeBoeuf [DL05] and that of Zander and Schmoll [ZS05]; we will compare

our work to the former here, and the latter is discussed in detail in section 4.1.

In table 2.2, we present an overview of the types of measurements used by the different

approaches. We used a “/” to denote types of measurements where the approach used just

one or two of many possibilities, and an “X” to indicate that the approach used several

measurements of that type. Time is the class of timing-basedattributes, primarily dura-

tion and inter-packet delay, discussed in section 3.3.2.17 Len and LenH are the classes of

measurements based on packet lengths; the Len class are general measurements such as av-

erages, described in section 3.3.3, whereas the LenH measurements are heuristics based on

17We used “X” for approaches that used both duration and inter-packet delay, and “/” for those that used
only one of the two.

31

Approach Time Len LenH Vol Flag
Frank [Fra94] / X

Zhang and Paxson [ZP00] / X
Dunigan and Ostrouchov [DO01] / X

Early et al. [EBR03] X X X
Roughan et al. [RSSD04] / X X

Borders and Prakash [BP04] / X X
Wright et al. [WMM04] / /

Herńandez-Campos et al. [HCNSJ05] X X X
DeMontigny-LeBoeuf [DL05] X X X X

Moore and Zuev [MZ05] X X /
Collins and Reiter [CR06] X X

Zander, Nguyen, and Armitage [ZNA05b] X X X
Zander, Williams, and Armitage [ZWA06] X X X

Nguyen and Armitage [NA06] / X

Table 2.2: Table of measurement classes used in surveyed approaches

packet lengths, described in section 3.3.5. Vol is the classof measurements based on data

and packet volumes, described in section 3.3.4. Flag represents heuristics based on packet

flags, described in section 3.3.5. The classes are quite coarse; even between two approaches

with an “X” in the same column, the actual attributes used often vary considerably.

The flow attributes that we define in section 3.3 are drawn in most part from the ap-

proaches described in this section. We note where the attributes have previously been used

when we define them. We do not concern ourselves in our work with creating new at-

tributes, but more on building the mechanisms by which new attributes may be created.

As did DeMontigny-LeBoeuf [DL05], we conduct a survey of the flow attributes used

in the literature and implement several of them. In contrastto that work, however, we

have made our tool publically available. Also, in designingour tool, we have generalized

several previously described types of flow attributes and designed a notation to facilitate

the expression of flow attributes, which will be used to create a better interface to the tool

32

than is presently available.

In addition, we take a different approach to evaluation thandid DeMontigny-LeBoeuf;

whereas she manually created signatures for different applications and reported the over-

all classification performance for distinguishing among them, we focus on evaluating the

performance of individual flow attributes for discriminating pairs of applications. This ap-

proach gives us more insight into the behaviour of the individual flow attributes, which is

our focus.

33

34

Chapter 3

Flow attributes

The focus of this thesis is on flow attributes, measurements and calculations based on net-

work flows, and on ways to compute and use them. In this chapter, we attempt to more

clearly define and explain the concept of these attributes, and discuss the tool that we have

developed. We first discuss application behaviours, the types of activity that we wish to

measure and characterize, in section 3.1. We discuss how we aggregate packets into flows

in section 3.2, and in section 3.3, we describe the flow attributes of interest, with a notation

for defining them.

3.1 Networked application behaviour

One of the principle motivations behind the development of ANTARES is the desire to

better understand network traffic, in order to improve classification accuracy. Our intuition

is that one of the major tasks that will need to be done to do this is to shift from the

current paradigm of associating network traffic directly with applications, and instead use

35

network traffic to identify application behaviours, and then identify applications from these

behaviours. In this section, we more fully explain our concept of application behaviours,

which influences much of this work.

Other researchers have touched on the concepts around application behaviours. One

key observation in the idea of application behaviours is that applications are not neces-

sarily homogeneous; that is, a single application can exhibit different behaviours when

performing different tasks, even changing behaviour within a single connection. Nguyen

and Armitage [NA06] found that, at least for some applications, the performance of an

application-based classifier depends on the the portion of anetwork flow used to train it

and the portion that it is used to classify. In their example,a classifier trained against the

beginning of a flow of traffic produced by a particular game wasmuch better at identify-

ing traffic from the beginning of another flow than that from the middle of the other flow,

and vice versa. Hernández-Campos et al. [HCNSJ05] described the need to look at uses

of the network rather than applications, though they focused on grouping applications into

behavioural classes rather than fully separating behaviours from applications. Collins and

Reiter [CR06] looked at treating an application as a composite of several different types of

flow, which they called Short Flows, Messages, and File Transfers, based on the length of

the flows.

We use the termapplication behaviourto refer to the activities of a networked applicat-

ion that generate particular types of network traffic. For example,bulk data transferis an

application behaviour in which one network node sends a (relatively) large amount of data

to another network node, where the transfer proceeds as quickly as the network will allow;

common examples of bulk data transfer behaviour are FTP-data (the data transfer channel

36

of the File Transfer Protocol, described in section 2.3) andSimple Mail Transfer Protocol

(SMTP, described in section 2.3) where large attachments are being sent along with e-mail.

Another example of an application behaviour that is interesting in this context iscom-

mand-shell interactive behaviour; we discuss two slightly different types of this: keystroke

interactive behaviour, and command-line interactive behaviour. Both are generated by a

human entering commands at one end of a network connection, and a command shell

responding to those commands at the other end. The difference between the keystroke

and command-line interactive behaviour is that in keystroke interactive behaviour, every

keystroke of the user is transmitted as it occurs, whereas incommand-line interactive be-

haviour, the keystrokes are buffered locally by the user’s host and only sent once a complete

command has been entered, such as when a carriage return is entered by the user.

We also considermachine-driven interactive behaviour, by which we mean automated

interactions between two programs. In this work, we consider SMTP and POP3 as exam-

ples, where both generally perform some automatic negotiations and then transmit some

data.

Figure 3.1 shows an example of a flow that appears to include both of these behaviours.

It shows a non-homogeneous Telnet flow from a server to a client broken into ten second

timeslices, with mean payload length and total number of payload bytes (i.e. not counting

packet headers) computed for each timeslice. For most of thetime plotted, the packets

and data volume are low, apparently conforming to our expectations of command-shell

interactive behaviour. However, near the end of the displayed time, there is a burst of

large packets, probably corresponding to the user running aprogram that produces a large

amount of output. This is not uncommon in the data we have examined, and tends to distort

37

5 10 15

0e
+

00
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

Timesliced server−to−client Telnet flow

Timeslice (10s)

pa
yl

oa
d_

by
te

_c
ou

nt
0

20
0

40
0

60
0

80
0

10
00

m
ea

n_
pa

yl
oa

d_
le

n

mean_payload_len
payload_byte_count

Figure 3.1: Mean payload length and data volume of sample non-homogeneous Telnet flow

flow attributes that are influenced by the entire flow. In this case, we would prefer to express

this flow as exhibiting two distinct behaviours: command-shell interactive for most of it,

and bulk data transfer for the burst of large packets.

In addition to application behaviours, we also expect to have to contend with be-

havioural distortions. These are artefacts of network protocols or network conditions, that

are visible in the same way as application behaviours but notgenerated by the application

itself. A good example of a distortion is the fragmentation of network data by transport

38

layer protocols such as the Transmission Control Protocol (TCP). TCP will take a stream

of data given to it for transmission across a network and break it up into smaller chunks, of-

ten less than 1500 bytes to accommodate Ethernet’s Maximum Transmission Unit (MTU),

often 1460 bytes (which allows 40 bytes for IP and TCP headers). This will lead to se-

quences of consecutive packets carrying 1460 bytes of payload, which is an effect of the

TCP protocol rather than of the underlying application behaviour. However, in this case,

the distortion can be useful, as the proportion of such packets can be used as a proxy for a

large amount of data being transferred at once, such as with bulk data transfer.

We do not make extensive use of the concepts of application behaviours and distortions

in this work; we present them to help explain our interest in studying, rather than classify-

ing, network traffic, and in evaluating flow attributes themselves. Our work does not go far

enough to make any concrete statements about such behaviours, but we hope that the tools

that we have made available will make it far easier to do so.

3.2 Network flows

An important concept in this work is that of aggregations of network traffic, orpacket ag-

gregates. These are sequences of packets, often associated by fields in the packet headers

such as network addresses and ports. The network flow is the packet aggregate used in this

thesis. The flow attributes described in this chapter and summarized in table 3.1 are com-

puted based on a sequence of packets being aggregated together into a logically meaningful

unit. We describe here more precisely our use of this term.

The term network flow, as we use it, is defined as a sequence of packets using the

39

same transport layer protocol, and having the same two endpoints, where an endpoint is

a network layer address paired with a transport layer protocol. A network flow consists

of packets from porta on nodeA to port b on nodeB, and packets from portb on node

B to port a on nodeA. Further, each network flow can be split into twohalf-flows, or

directions; in the previous example, one half-flow would be from porta on nodeA to portb

on nodeB, and the other half-flow would be from portb on nodeB to porta on nodeA. For

convenience, we refer to the half-flow from the client to the server as theforward direction

of the flow, and the other half-flow as thereverse direction.1 This convention will be useful

when discussing attributes computed on half-flows, as the values of the attributes are often

quite different between the two directions of the flow.

We also use a timeout mechanism, where a sequence of this typethat has a gap of more

64 seconds2 with no packets is considered to be separate flows divided by that gap.

3.3 Flow attributes

In this section, we discuss flow attributes, explaining whatthey are and how we intend to

use them, introducing some qualifiers that we use for different types of flow attributes, and

describing a notation. The bulk of this section is descriptions of the different types of flow

attributes that we will use in this thesis. We also describe how these flow attributes, and

other related attributes, have been used in the previous research discussed in section 2.4.

We summarize the flow attributes that we use in this thesis in table 3.1.
1Note that we do not deal with peer-to-peer applications in this work; distinguishing between “forward”

and “reverse” for such traffic would be more difficult. If the behaviour is symmetric, then this is not an issue,
but otherwise the “direction” would have to be assigned by using some other criterion.

2Here we follow the example of DeMontigny-LeBoeuf [DL05]; 64seconds was reported to be the most
effective timeout by claffy et al. [cBP95].

40

A flow attribute is a value that represents a network flow in some way, particularly

a measurement of a network flow or a calculation based on othersuch attributes. For

example, one flow attribute is the payload data rate of a network flow, i.e. the number of

bytes of payload data carried by a network flow per unit time.

Ideally, flow attributes reflect some aspect of the behaviourof the networked applicat-

ion being observed, but they are often affected by peripheral effects. These behavioural

distortions (as described in section 3.1) include such things as the load on the host sending

the traffic or congestion in the network, which can alter the timing characteristics of the

traffic, or more consistent effects such as fragmentation oflarge messages at the TCP layer,

which alters packet length characteristics.

In this thesis, we focus on flow attributes that can be computed in linear time. Although

we are not particularly concerned with the performance of our implementations of the flow

attributes discussed here,3 we focus on flow attributes that could be implemented in a prac-

tical implementation that deals with network traffic in realtime. Flow attributes with an

inherent complexity of greater than linear time are not goodcandidates for such a future

implementation, and so we do not deal extensively with them.We do expect that such

flow attributes are likely to be useful for the study of network traffic in general, however,

and describe them where appropriate. Table 3.1 lists the different attributes that we have

implemented using our tool and have also used in our evaluation.4

In general, we have selected these attributes because they reflect many of the types of

attributes used in the literature. Some, such asduration, meanpayload len, pkt count, and

3See section 4.2 for a discussion of our requirements for the tool.
4Chapter 4 contains two similar tables, table 4.1 and table 4.2, which also include flow attributes imple-

mented using our toolkit but that are not included in the evaluation.

41

Attribute name Section Description
duration 3.3.2 duration of flow

meandelay 3.3.2 mean delay between packets
meanpkt len 3.3.3 mean packet length

meanpayloadlen 3.3.3 mean payload length
meannonemptypayloadlen 3.3.3 mean payload, not counting empty packets

pkt count 3.3.4 number of packets
nonemptycount 3.3.4 number of packets with payload
pkt byte count 3.3.4 total volume of data sent

payloadbyte count 3.3.4 total volume of payload sent
meanpayloaddatarate 3.3.4 mean payload sent per unit time

dir data 3.3.4 ratio of data sent fwd to rev dir
sp alpha 3.3.5 small packet heuristicα
sp beta 3.3.5 small packet heuristicβ

sp gamma 3.3.5 small packet heuristicγ
sp delta 3.3.5 small packet heuristicδ
lp alpha 3.3.5 large packet heuristicα
lp beta 3.3.5 large packet heuristicβ

lp gamma 3.3.5 large packet heuristicγ
flag X 3.3.5 prop. of packets with flag X

Table 3.1: Summary of flow attributes

pkt bytecountare commonly used in many approaches, and some, such asmeannonempty

payload len andpayloadbytecountare variants of these, chosen to illustrate how such

variants can be expressed using the same mechanisms as the basic attributes. Other at-

tributes, such as the small and large packet heuristics, areless commonly used, but are

useful for identifying certain types of traffic (e.g. small packet heuristics are useful for

identifying command-shell interactive traffic [ZP00]). Many other candidate attributes ex-

ist in the literature; investigation of these has been left for future work.

3.3.1 Notation

Before we describe the flow attributes, we need to define a notation that we will use in

explaining how to calculate them. We mix mathematical and programming-language no-

42

tations as necessary, and apologize in advance to anyone whois offended by such blas-

phemies. For example, we use dot notation to denote properties of a complex object, e.g.

p.len for the length of a packet (p), and subscripts to denote a particular object or sequence

of objects, e.g. we may usepf irst for the first packet of a flow, orPack to denote the sequence

of acknowledgement packets in a flow.

The main reasons for using program-style variable names andconventions is that we ex-

pect them to be familiar and easy to understand for those familiar with either object-oriented

programming languages such as C++ and Java, and to those familiar with Wireshark [Ct06],

a popular application for displaying and parsing network traffic. Also, variable names are

clearer and more memorable than single-character variables, which is important given the

number of flow attributes being discussed.

These conventions also allow us to define our flow attributes in a similar manner to the

way they are defined using ANTARES, hopefully making it easierto relate the discussion

here to the actual implementation.

We will useF to denote a network flow, or more specifically to denote the sequence

of packets that make up the flow. For the half-flows that comprise the two directions of a

bidirectional flow, we will useFhal f for an arbitrary half-flow, andFf wd andFrev for those

in the forward and reverse directions, respectively. For reference, recall from section 3.2

that the “forward” direction is from the client to the server.5

We will usep to denote a packet, andP for a packet aggregate. A packet, as used here,

is any sequence of octets, and can refer to a subsequence of another packet. For example, a

5We do not deal with other types of architectures, such as peer-to-peer, in this thesis; for those, different
criteria will be needed and will depend on the actual architecture.

43

TCP packet is a sequence of octets that is usually contained within an IP packet, which is

a sequence of octets that is often contained within an Ethernet packet, and so forth. These

sequences of octets are generally handled contiguously in memory, whereas sequences of

packets (e.g. a sequence of IP packets) refer to logical sequences.

Note that a network flow is, for all intents and purposes, simply a packet aggregate.

We use a separate notation for a flow to highlight that it is a packet aggregate with special

meaning to a human analyst. Also, some properties, such as the inter-packet delay, are

contextual; the “special status” of the flow (and its constituent half-flows) serves as a basis

for specifying the context of these properties. This is discussed in more detail below, in the

explanation of the “consecutive” filter and natural context.

We will use set notation when discussing packets and packet aggregates; e.g. we will

refer to all the packets in a particular packet aggregateP as beingp ∈ P . Note, though,

that we are dealing with sequences rather than sets, as packets are ordered chronologically

according to their arrival time. Thus, we will talk about packet pk ∈ P being thekth packet

in packet aggregateP, where∀ j<k p j .time< pk.time, wherep.time is the arrival time of

the packet, as discussed in section 3.3.1.

The notationP{ f ilter expression} represents a packet aggregate defined as the packets

resulting from a filter being applied to a packet aggregateP. Thefilter expressionasserts

something about the properties of a packet and can be used to select particular packets from

a packet aggregate. It is a relation concerning packet properties; e.g.transport.payload.len

>= 5 is a filter that selects packets with a transport-layer payload of 5 bytes or more. Note

that the packet is implicit, so the filter is NOT given asp.transport.payload.len>= 5. We

also allow compound filter expressions with “AND” and “OR”, such as(transport.payload.

44

len>= 5) AND(transport.payload.len<= 20) to describe a filter that matches a packet

with a transport-layer payload length between 5 and 20 bytes, inclusive. For example,

F ′ = P{transport.len== 20} defines a packet aggregateP′ consisting of the packets in

the packet aggregateP in which the transport-layer packet is exactly 20 bytes long(such

a 20-byte TCP header with no options and no payload, or a UDP packet with its 8-byte

header followed by 12 bytes of payload).

We define a special filter expression “consecutive”, which allows the selection of natu-

rally consecutive packets from a previously filtered expression. This requires the definition

of a packet’snatural context, which is a packet aggregate that has been selected to be partic-

ularly significant to the analysis being performed. In this thesis, unless otherwise specified,

the natural context of a packet is the half-flow to which it belongs. The “consecutive” filter

matches every packet in an aggregate for which the previous packet in that flow is also the

previous packet in the natural context (or a packet that has no previous packet in either the

current flow or in the natural context). It does not include the first packet in a series of

consecutive packets unless it is also the first packet in bothaggregates; it is intended to be

evaluated inline (i.e. evaluated on packets as they arrive), and thus “looking ahead” at the

next packet is not allowed. Care must be taken when using this expression, as it can be

confusing.

Properties

Properties are loosely defined as some information about a packet. A property has a type

associated with it depending on what it refers to; it can itself be a packet (a TCP packet

encapsulated within an IP packet can be a property of the IP packet), or it can be a numerical

45

value (integer- or real-valued).

The part of a packet that exists at a given layer of the networkstack can be expressed

explicitly as a property; e.g.p.transport refers to the data in a packet that pertains to

the transport layer (so for a TCP packet,p.transport refers to the data from the start of

the TCP header to the end of the application-layer data that iscarried as the payload of

the TCP packet). The layers of interest for this work arenetworkandtransport, though

datalink, session, presentation, andapplicationmay be useful in other contexts. Similarly,

for packets that are known to contain headers from a particular protocol, those parts of the

packet can be addressed directly, e.g.p.tcp for a TCP packet, which would be equivalent

to p.transport for that packet.

The propertiesheaderand payload refer to the data in the header and the payload

section of a given packet, respectively.6 It is worth noting that, e.g. for IP and TCP,

p.network.payload= p.transport.

Thelenproperty will denote the total length of a packet, sop.header.lenandp.payload.

len will refer to the header and payload length of the transport-layer section of the packet,

respectively; for the protocols we consider,p.len= p.header.len+ p.payload.len.7 Note

that in the flow attributes we discuss, we will more commonly specify the layer as well, e.g.

p.transport.payload.len for the length of the payload of the transport-layer sectionof the

packet, which for TCP will commonly be the length of the application-layer data carried in

the packet (as the session and presentation layers are not commonly used).

We will use time to refer to the arrival time of a packet, andtime delta to refer to

6This could easily be extended to protocols with footers by defining a f ooterproperty, but we do not deal
with such protocols in this work.

7The obvious cases where this would not be true are for protocols which have a ‘trailer’ – data following
the payload.

46

inter-packet delay, the amount of time that has passed since the previous packetin its

natural context. For our purposes, the arrival time of a packet at a network monitor is the

time that the monitor finished receiving the last byte of thatpacket. We will deal with

two types of inter-packet delay: theunidirectional inter-packet delay, where the natural

context is the half-flow (i.e.time delta is the length of time since the last packet in the

same direction), and thebidirectional inter-packet delay, where the natural context is the

flow (i.e. time delta is the length of time since the last packet in either direction). Unless

otherwise noted,time deltaand inter-packet delay refer to the unidirectional inter-packet

delay.

Specific protocol headers contain fields that can be named as aproperty; these will be

defined where appropriate. As an example to make this a bit clearer, consider the TCP

flags octet. A TCP header contains an octet, each bit of which has some significance; we

could refer to that octet asp.tcp. f lags. Furthermore, we could define properties for each

bit, for examplep.tcp. f lags.ack for the ‘Acknowledgement’ (ACK) flag. This would be a

property with the value of 1 for a packet where the ACK flag is set, and 0 for one where

it is not set. This notation is used extensively by WireShark[Ct06], and should be quite

familiar to users of that tool.

Functions

A function is a notation that indicates a computation that isto be performed on its argu-

ments. Functions will be used here mostly to express computations across the packets of

a packet aggregate. We describe here the functions that willbe used in this work when

specifying flow attributes.

47

pkt count(P) denotes the number of packets in a packet aggregateP. In this thesis,

the aggregates we deal with are at the transport layer and theapplications are all carried

over TCP, so more specificallypkt count(P) will refer to the number of TCP packets in the

aggregate. If TCP packets are fragmented across network-layer packets (e.g. IP fragmen-

tation), only the reassembled transport-layer packets areconsidered.

It should be noted that since only reassembled packets are counted, approaches using

such flow attributes can potentially be evaded by fragmentation. Evasion by fragmenta-

tion is a known issue in the context of intrusion detection, as discussed by Handley et al.

[HPK01], though the implications in this context are slightly different. Handley et al. were

concerned mostly about an attacker fragmenting traffic in such a way as to have a sensor

misread the content of the session, such as by sending fragments with overlapping pay-

loads that would be reassembled differently by the sensor and by the node under attack.

In the context of network traffic classification without payload, an attack would involve

the attacker fragmenting traffic in order to cause a sensor tomiscompute some flow at-

tributes, e.g. by carefully orchestrating the arrival times of the packets. We expect that

the techniques discussed in the former work would not be generally effective against these

flow attributes, but we also expect that similar techniques can (and, if this work progresses

well enough, will) be devised that are effective. We do not address that issue here, instead

relegating it to our “Future work” discussion in section 6.2.

sum(property,P) indicates the sum of some numeric property of the packets of apacket

aggregateP. For example,sum(transport.payload.len,P) denotes the sum of the lengths

of the transport layer packets ofP.

We will also use normal arithmetic operations on numeric properties and on functions

48

that evaluate to a numeric value. For instance, the mean length of the application-layer

payloads of the packets in a flowF , meanpayload lencan be expressed as in equation 3.1.

meanpayload len(F) =
sum(transport.payload.len,F)

pkt count(F)
(3.1)

3.3.2 Timing attributes

One prominent feature of network traffic that can be measuredis the arrival time of a packet,

and thus the inter-packet delays (i.e. the length of time from the arrival of one packet to the

arrival of the next). In this section, we discuss flow attributes derived from the arrival times

and inter-packet delays of a network flow.

One issue with many timing attributes are the distortions due to network latency and

jitter. These distortions are sometimes mentioned as a possible explanation for the obser-

vation that machine learning algorithms tend to prefer non-timing-related flow attributes

over timing-related ones, but the impact of such distortions has not yet been studied.

Duration

A simple flow attribute which is commonly used is theduration of a flow, the length of

time it lasts. Thedurationof a flowF consisting ofn packets is computed as:

duration(F) = pn.time− p1.time (3.2)

Some of the approaches we discussed earlier use duration in their classification efforts.

Frank [Fra94] uses the duration of a flow as one of his features, which was selected as useful

49

for all of his classification problems. Roughan et al. [RSSD04]found that the duration of

flows was one of the most useful attributes for distinguishing between the applications that

they studied; we discuss this aspect of their work further insection 5.2.

Inter-packet delay

The inter-packet delay is the length of time between the arrival of one packet and the next.

Some flow attributes can be computed using this measurement;we discuss a few of them

here. Recall from section 3.3.1, there are two types of inter-packet delay: unidirectional

(between packets in the same direction), and bidirectional(between any two packets in a

flow). In this work, we mainly consider unidirectional inter-packet delays, as we expect

that this will reveal more about the activities of the application generating the traffic, and

not be distorted as strongly by network congestion and similar effects.

The most straightforward flow attribute based on inter-packet delay is themean inter-

packet delayof a flowF , meandelay(F). This is expressed as:

meandelay(F) =
duration(F)

pkt count(F)
(3.3)

Early et al. [EBR03] used the mean inter-packet delay in modelling the behaviour of

server flows in order to detect anomalies. They note issues with a single large delay between

packets can drastically change the mean inter-packet delayand make a flow much more

difficult to classify; they term this thewater cooler effect, as a user leaving their terminal

for some time and returning later to the previous activity could easily cause such a delay.

Another flow attribute that could be used is theinter-packet delay variability, a measure

50

of how widely varied the inter-packet delays are within a flow. We do not use it in this work,

however, as we have not found a definition that can be computedin linear time.

Roughan et al. [RSSD04] did use a metric based on the variability of inter-packet delays

to help distinguish between FTP-data and streaming media. The metric they used was

based on the standard deviation of inter-packet delays divided by the mean inter-packet

delay, where the delay was between any two packets in the bidirectional flow (rather than

between two packets in the same direction). They found that this measure, combined with

average packet length, was able to distinguish fairly well between the two types of traffic;

combining their variability metric with duration and mean packet length, they found they

could distinguish quite well among FTP-data, HTTP, and streaming media, with error rates

of 0 for several of the classifiers that they used. As with the other attributes they considered,

they appear to have used daily averages rather than values from individual flows in their

experiment.

3.3.3 Packet lengths

One of the most basic measurements available from network traffic is the length of the

packets that make up a flow. We consider here flow attributes based on packet lengths.

Three flow attributes based on packet length, for a flowF , are themean packet length,

meanpkt len(F), themean payload length, meanpayload len(F), and themean nonempty

payload length, meannonemptypayload len(F). The first is computed as:

meanpkt len(F) =
sum(transport.len,F)

pkt count(F)
(3.4)

51

meanpayload len(F) is the same metric except that it uses the propertytransport.payload.

len in place oftransport.len. The third attribute,meannonemptypayload len, is defined

as:

Pnep= F{transport.payload.len> 0} (3.5)

meannonemptypayload len(F) =
sum(transport.payload.len,Pnep)

pkt count(Pnep)
(3.6)

Pnep is thus the sequence of non-empty packets (packet which contain some application-

layer data), which allows us to ignore empty packets such as TCP ACKs that are not directly

generated by the application and could be considered to be distortions.

The mean packet length and similar flow attributes are used fairly often in traffic clas-

sification approaches. Roughan et al. [RSSD04] considered themean packet length, along

with duration, to be one of the most useful attributes among those they examined. We

discuss their use of this attribute further in section 5.2.

The mean packet size doesn’t give an indication of how regular or irregular the packet

sizes are; for this, measures of the variability of the packet sizes could be used as flow

attributes. However, we are focusing on flow attributes thatcan be computed in linear time,

and we have not found an appropriate way to compute these measures, so we do not use

them in this thesis.

A common measurement of variability is standard deviation,so one possible flow at-

tribute would be thestandard deviation of packet size.

In addition to the flow attributes described above, there area number of heuristics based

at least in part on packet lengths that we will use. These are described in section 3.3.5.

52

Wright et al. [WMM04] used packet lengths as well, in several different ways. They

compute a flow attribute from the packet lengths, they trained a Hidden Markov Model

using packet lengths as an input, with a fuzz factor to simulate the obscuring effect of a

block cipher, where packets are padded out to an integer multiple of the block length.

3.3.4 Data volume

Data volume attributes are concerned with the amount of datain a network flow; this cate-

gory includes attributes based on total data volume of a flow and on data rates. Total data

volume attributes pertain to an entire network flow (up to thepoint at which the flow at-

tribute is being computed), whereas data rate attributes focus on the amount of data being

transferred per unit time. The most intuitive measure of data volumes is the number of

bytes being sent, but we also consider here attributes basedon the number of packets being

sent.

Total data volume

A simple class of flow attributes are total data volume attributes, which measure the overall

amount of activity involved in a network flow. We describe here packet counts and byte

counts, and discuss some of the variations on each theme.

Thepacket countof a network flow is simply the number of packets that make up the

flow, e.g. for a flowF , the packet count ispkt count(F) (defined in section 3.3.1).

Thenonempty packet count, pkt count nonempty(F) of a network flowF is the count

of transport-layer packets that carry application data, i.e. those packetspwherep.transport.

53

payload.len> 0. In our notation, this is expressed as:

pkt count nonempty(F) = pkt count(F{transport.payload.len> 0}) (3.7)

Frank [Fra94] used the forward and reverse packet counts in his feature selection ex-

periment, finding that both were used in most of the selected feature sets, with the reverse

packet count used for all of the classifiers.

Another group of flow attributes that seem promising are bytecounts. The major ques-

tion with byte counts is deciding which bytes to count. We have the option of counting only

the bytes in the payload of the transport-layer packets; this can be useful, as it generally

includes only data actually sent by the application itself.However, it can sometimes be

necessary to consider all of the data from the network-layerup, particularly if there is some

sort of encrypted tunneling mechanism being used that obscures the transport-layer header

and thus prevents the calculation of the payload length of the packet.

We consider thepacket byte countand thepayload byte count; these two flow attributes

will be computed in a similar manner, except that in the former case, the length of the

entire transport-layer packet will be used, and in the latter, the length of only the pay-

load part of the transport-layer packet will be used. The packet byte count of a flowF ,

pkt bytecount(F) and the payload byte count of a flowF , payloadbytecount(F) are

defined by:

pkt bytecount(F) = sum(network.length,F) (3.8)

payloadbytecount(F) = sum(transport.payload.length,F) (3.9)

54

Frank [Fra94] used forward and reverse payload byte counts in his feature selection

experiment, finding that the forward payload bytes was used mostly for classifying SMTP,

and that the reverse payload bytes was rarely used at all. However, this may be due to the

limited set of traffic types he used.

Data rate

Closely related to data volume flow attributes are data rates;i.e. measurements of the

amount of data that an application is sending and receiving per unit time. There are several

distinct flow attributes that can be computed based on data rates. They have been shown to

be useful in traffic classification experiments, and though they can be evaded, such evasion

is likely to significantly affect other flow attributes. Here, we describe the data rate flow

attributes in question and give an analytic evaluation of them.

There are two parameters to be considered in defining data volume attributes: thetime

granularity, and the data of interest. The time granularity is the lengthof each interval over

which the data rate is calculated, e.g. per second or per five seconds. Note, however, that

the data rate will be reported in units of bytes per second, regardless of the time granularity.

The data of interest indicates what data we are measuring, generally at what layer we’re

measuring it. For example, the data rate as calculated at theIP layer will be different from

the data rate calculated in terms of TCP payload (the amount ofdata in payload portions

of TCP packets); in this example, the former would include notonly the extra data in the

IP and TCP headers, but would also count TCP acknowledgement packets, which may be

a distortion in many contexts.

We consider several data-rate-based flow attributes.

55

The mean data rateof a flow F , meandatarate(F), is simply the amount of data of

interest sent in bytes divided by the duration of the flow in seconds, as formalized in equa-

tion 3.10. Note that we use the payload byte count as defined insection 3.3.4, i.e. the

amount of data sent by the application, not including network or transport layer headers;

we could alternately use the packet byte count if the payloadbyte count was not available,

but we do not include that here.

meandatarate(F) =
payloadbytecount(F)

duration(F)
(3.10)

Thedirectionality of datais, for a bidirectional flow, a ratio between the average data

rates of its half-flows; for example, a bidirectional flow with a forward average data rate of

5Kb/s and a reverse average data rate of 20Kb/s would have a directionality of data of 0.25

(in the forward direction). We define it as:

dir data(F) =
payloadbytecount(Ff wd)

payloadbytecount(Frev)
(3.11)

Note that the result is undefined if there is no application data on the reverse side, a case

which has to be handled carefully.

The logarithm of the directionality of data is used by Hernández-Campos et al.

[HCNSJ05] in their work on clustering network flows.

Another interesting set of possibilities for flow attributes based on data rates are those

designed to detect regularity in the data rate, such as thoseused by DeMontigny-LeBoeuf

[DL05] to characterize streaming media. These would give values based on the amount

56

of variability in the data rate, and would probably be well-suited for detecting applications

that attempt to maintain a certain fixed rate of data flow, particularly streaming media app-

lications. However, we do not address them here, as we have not found a way to compute

them in linear time.

3.3.5 Packet proportion heuristic attributes

We encountered a number of heuristic attributes in the literature that were aimed at iden-

tifying particular types of behaviour. In this section, we will discuss general forms of the

most common types of heuristics: those based on small or large packets, and those based

on packet flags.

A number of the heuristics which have been used in the literature are based on comput-

ing the proportion of the packets within a network flow havinga particular characteristic.

Heuristics based on packet flags, Zhang and Paxson’s [ZP00] heuristics for detecting inter-

activity, and many of DeMontigny-LeBoeuf’s [DL05] heuristics fall into this category, as

do the bins of Dunigan and Ostrouchov [DO01]. We present a generalized description of

these types of heuristics and review a number of possible flowattributes based on them.

In general, such a flow attribute will be a calculationh based on two packet count flow

attributesc1 andc2 as described in section 3.3.4, wherec2 ≤ c1; it is computed ash= c2/c1,

so 0.0≤ h≤ 1.0. For example, if we consider any packet with a payload length of 60 or

less to be a small packet, we could compute the proportion of small packets: Letcsmall be

the number of small packets in a given flow, letctotal be the total number of packets in a

flow, then the proportion of small packets in the flowhsmall would behsmall = csmall/ctotal.

57

Small packet heuristics

Some heuristics that have been seen to be effective at detecting command-shell interactive

behaviour aresmall packet heuristics[ZP00]. These are measurements of the proportion of

packets in a flow that meet some criterion for being small, e.g. all packets with 20 bytes or

less of payload.

The most notable examples of small packet heuristics are those used to detect command-

shell interactive activity by Zhang and Paxson [ZP00], and DeMontigny-LeBoeuf’s [DL05]

adaptation of them. The approach taken by Dunigan and Ostrouchov [DO01] is also related;

they effectively attempt to develop a deterministic methodfor creating such heuristics.

Zhang and Paxson combined two metrics, which they calledα andΓ, to detect back-

doors. Both are ratios computed based on the occurrences of consecutive small packets,

where a consecutive small packet is a packet that is below some length threshold, which

we will call λmax len (20 bytes, in their work) and that follows another packet that is also

a small packet. They do not specify whether that is consecutive in the same direction, so

we assume that it considers the previous packet in either direction. For our heuristics, we

incorporate an optimization from DeMontigny-LeBoeuf’s work, which is to not consider

packets with no transport-layer payload (e.g. TCP ACK packets) as being small packets.

DeMontigny-LeBoeuf also definedβ andδ heuristics to complement the above two.

The α heuristic indicates how many of the delays between consecutive small packets

are between 10ms and 2s (though they mention that the upper bound could just as well be

100s or more). We will useλmin delay andλmax delay to refer to the lower and upper bounds

on the inter-packet delay, respectively. The intuition behind using the inter-packet delay is

58

to exclude consecutive small packets resulting from machine-driven activity (which, they

reason, would be sent with very short inter-packet delays).We express belowα for a flow

F assp alpha(λmax len,λmin delay,λmaxdelay;F) using our notation.8 We first define some

subsequences ofF , the sequence of nonempty packetsPnep, the sequence of small packets

Psp, the sequence of consecutive small packetsPsp, and the sequence of consecutive small

packets with certain delays,P′
csp.

Pnep= F{transport.payload.len> 0} (3.12)

Psp = Pnep{transport.payload.len≤ λmax len} (3.13)

Pcsp= Psp{consecutive} (3.14)

P′
csp= Pcsp{time delta≥ λmin delayANDtimedelta≤ λmax delay}) (3.15)

sp alpha(λmax len,λmin delay,λmaxdelay;F) =
pkt count(P′

cs)

pkt count(Pcs)
(3.16)

This heuristic indicates how much of the consecutive small packet activity appears, by

timing, to be interactive human-driven activity; if the result is undefined due to there not

being any consecutive small packets, we simply use a value of0 to indicate that there is no

apparent human-driven activity based on such packets.

It is important to recall from section 3.3.1 that the property pk.time deltais the time de-

lay of packetpk since the previous packet in its natural context, the original half-flowFf wd

or Frev, not since the previous packet in the packet aggregatePcsp. Similarly, recall from

section 3.3.1 that the filter expression “consecutive” is a special term that only matches a

packet if the previous packet to be tested against that term was consecutive to that packet in

8Note that if there are no consecutive small packets inF , this value is undefined.

59

its context (again, in the original half-flowFf wd or Frev, not inPsp). When computing one

of these small packet heuristics, we will consider the natural context of a packet to be the

bidirectional flow if the heuristic is computed on an aggregate with packets in both direc-

tions (this will usually be the bidirectional flow itself), or the half-flow if it is computed on

an aggregate with packets in only one direction (this will usually be the half-flow itself).

Theβ heuristic is simply the proportion of small packets among the non-empty packets

in the flow, defined, withPnep andPsp computed as above, as:

sp beta(λmax len;F) =
pkt count(Psp)

pkt count(Pnep)
(3.17)

This is the simplest of these heuristics, merely aimed at representing the overall proportion

of small packets. Note that it can be undefined if there are no non-empty packets in the

flow; however, if all the packets in the flow are empty, we can state that this heuristic does

not show any evidence of interactivity, and use a value of 0.

The γ heuristic9 is the proportion of consecutive small packets; we use DeMontigny-

LeBoeuf’s version, which uses the proportion of consecutivesmall packets among non-

empty packets, rather than among all packets. It is defined as:

sp gamma(λmax len,λmin delay,λmaxdelay;F) =
pkt count(Pcsp)

pkt count(Pnep)
(3.18)

As with theβ heuristic, we take a lack of nonempty packets to be a lack of evidence for

interactivity and use the value 0 to replace an undefined value.

9Zhang and Paxson used a capital gamma (Γ), whereas DeMontigny-LeBoeuf used a lowercase gamma
(γ). We also use the lowercase gamma for consistency with the other Greek letters.

60

Theδ heuristic is a slight modification of theβ heuristic; it uses the proportion of small

packets among small and empty packets. The rationale is to distinguish applications that

send mostly small non-empty packets (such as interactive applications) from those that

send many empty packets as well as small packets (such as somemachine-driven applicat-

ions). It is defined, usingPep= F{transport.payload.len== 0} andPsp defined as for the

sp alphaheuristic, as follows:

sp delta(λmax len,λmin delay,λmaxdelay;F) =
count(Psp)

count(Pep)+count(Psp)
(3.19)

If there are neither empty nor small packets in the flow, we once more consider that to be a

lack of evidence of interactivity, and use the value 0 instead of an undefined value.

Note that these metrics are based on thetransport.payload.len property, which re-

quires that the transport-layer header be accessible. Similar metrics could be defined based

on network.len, for example, with suitably higher values for theλmax len threshold,10 for

situations in which the transport-layer header is not available.

When we use small packet heuristics in this thesis, we computethem on the half-flows

Ff wd and Frev rather than on the full bidirectional flow. We are looking forinteractive

activity from at least one side of the communication, so we wish to look at each side in

isolation. As an example to clarify, suppose that a bidirectional flow F contains three

packetspk−2, pk−1, andpk, wherepk−2 andpk are in the forward direction andpk−1 is in

the reverse direction, and that thetransport.payload.len for the three packets are 17, 1460,

and 15, respectively. We wish to computesp gammawith λmax len = 20; we will ignore

10e.g. 40 bytes more, 20 for the IP header and 20 for the TCP header, or more if header extensions appear
to be in use

61

the timing constraints for this example. If we wish to compute sp gammafor F , then both

pk−2 and pk would be inPsp, but since they are separated bypk−1, neither is inPcsp, as

they are not consecutive in their natural context of the bidirectional flow, as discussed in

the description ofspal pha. However, if we instead computesp gammafor Ff wd, they are

again both inPsp, and this time the natural context of the packets is the half-flow Ff wd, so

pk−1 is ignored (as it is in the half-flowFrev) and they are consecutive. Thus, at leastpk

(and possiblypk−2, depending on the preceding traffic) would be inPcsp.

Large packet heuristics

Analogous to the small packet heuristic is thelarge packet heuristic. This is a class of

potential flow attributes that are aimed at identifying bulkdata transfer behaviour.

The heuristics presented here are those of DeMontigny-LeBoeuf [DL05]. We define

here her file-transfer heuristicsα, β, andγ in our own notation. These use the concept of

consecutive large packets, which are packets above a certain length threshold that follow

other packets above that threshold. They also look for shortinter-packet delays to indi-

cate machine-driven activity (contrast that with the smallpacket heuristics, which look for

longer delays to exclude such activity). We use the termsλmin len andλmax delay to denote

the minimum length and maximum delay parameters, respectively. DeMontigny-LeBoeuf

used 225 bytes and 50 ms for these parameters, respectively.

The α heuristic computes the proportion of consecutive large packets having short

delays. The intuition behind this is that applications performing bulk data transfer are

often sending data without interaction with the remote host, and thus will tend to send

packets with very short delays between them. We define this heuristic for a flow F as

62

l p alpha(λmin len,λmaxdelay;F), first defining the sequence of large packetsPl p, the se-

quence of consecutive large packetsPclp, and the sequence of consecutive large packets

with short delaysP′
clp:

Pl p = F{transport.payload.len≥ λmin len} (3.20)

Pclp = Pl p{consecutive} (3.21)

P′
clp = Pclp{pk.time delta≤ λmax delay} (3.22)

l p alpha(λmin len,λmax delay;F) =
pkt count(P′

clp)

pkt count(Pclp)
(3.23)

Similarly to thesp alphaheuristic, this takes an undefined value if there are no consecutive

large packets; we consider this to be a lack of evidence of bulk transfer and substitute the

value 0 for an undefined result from this calculation.

Theβ heuristic computes the proportion of large packets in a flow.Using the sequence

of large packetsPl p defined above, and defining the sequence of nonempty packetsPnep,

we express this for a flowF as:

Pnep= Ftransport.payload.len> 0 (3.24)

l p beta(λmin len;F) =
pkt count(Pl p)

pkt count(Pnep)
(3.25)

The γ heuristic used indicates the proportion of consecutive large packets in a flow.

Using the sequence of consecutive large packetsPclp as above, we express this as:

l p gamma(λmin len;F) =
pkt count(Pclp)

pkt count(F)
(3.26)

63

A notable issue with large packet heuristics is fragmentation, particularly at the trans-

port layer. Fragmentation leads to large chunks of data sentby an application being split

into many packets of the same maximum size; while this distortion can be useful as an

indicator of large chunks of data being sent simultaneously, it makes it difficult to analyze

the sizes of the chunks of data actually sent by an application. The approach of Hernández-

Campos et al. [HCNSJ05] to reassembling Application Data Units (ADUs) from transport-

layer packets based on changes in direction is one way to get at the sizes of the data chunks

actually sent by the application; we do not address this issue further in this thesis, but leave

it to future work.

Dunigan and Ostrouchov’s [DO01] approach of binning the space of possible lengths,

timings, and directionalities was intended to provide a deterministic way to discover fea-

tures such as these, without relying on experts to constructheuristics. Their selection of

boundaries for the bins, however, was itself based on studying the traffic. We suggest that

the same goal could be achieved with the heuristics presented here by using data to search

for optimal values for the parameters (λmin len,λmax len, λmin delay, andλmax delay), e.g. using

machine learning or genetic algorithms.

Wright et al. [WMM04] used a technique called vector quantization to define bins,

which could function as the basis for an alternate method to develop small and large packet

heuristics. To oversimplify, this technique uses a clustering algorithm on a particular data

set to discover meaningful regions in the space of packet lengths, inter-packet delays, and

directions. They use it for a different purpose, to quantizea multi-dimensional space of pos-

sible packets down to a smaller, finite number of transitionsfor a Hidden Markov Model,

but it may be applicable to this purpose as well. We have not used either this or the previous

64

approach in this work for establishing the parameters for the various heuristics, but suggest

that future work that is more focused on such flow attributes would want to investigate

them.

Packet flag heuristics

A set of flow attributes that has been used by several approaches [EBR03, TAF01] is based

on analysis of the TCP packet flags of the packets making up the flow. These flags are

used by TCP to signal control information to the TCP implementation at the remote end;

though this doesn’t seem like it would be directly related tothe application itself, it could

potentially reflect the way in which the application is usingTCP.

Such a heuristic would simply be the number of packets with the specified flag, e.g.

ACK or PSH, divided by the total number of packets in the flow.11 As with many such

heuristics, packet flag heuristics can only be used in a traffic classification system if the

system has access to the TCP header.

Early et al. [EBR03] included heuristics based on packet flags in modelling server flows

for intrusion detection; though they do not comment on theirusefulness, example rules that

they provided appeared to use them extensively.

11ACK is the acknowledgement flag, used by TCP to indicate data received from the remote node, and
PSH indicates that the data in the packet should be sent to thereceiving application immediately rather than
being buffered with subsequent data, similar to flushing a buffer [Pos81b].

65

66

Chapter 4

The ANTARES tool

To facilitate the study of flow attributes and application behaviours, we have developed

a tool, the Advanced Network Traffic Analysis Research and Exploration Suite, or AN-

TARES. This tool is designed to provide powerful mechanisms for implementing the mea-

surement of a wide variety of flow attributes and for handlingnetwork traffic in a flexible

manner. In this section, we describe the design and architecture of the tool and its features,

and we present an overview of how it works, to better explain how flow attributes can be

constructed and computed. We first give an overview of ANTARESand some of the de-

sign decisions we made during its construction, and explainhow it differs from NetMate,

a similar tool built by Zander and Schmoll [ZS05]. We then describe its architecture and

how some of the basic mechanisms work. Finally, we walk through the process of imple-

menting some of the flow attributes listed in table 3.1 with the tool, as a guide to others

who would use it, and discuss the functionality of the program that we used to produce the

flow attribute values used in Chapter 5.

ANTARES is written in C++, which seemed to be the best compromise of design and

67

performance. Java was considered, but we rejected it due to concerns that networking re-

searchers would not be willing to use a Java tool, out of fear of poor performance. We

also wished to use an object-oriented architecture as it seemed appropriate to the prob-

lem; the structures involved seemed to map naturally onto class hierarchies (TCP and UDP

packets are transport-layer packets, transport- and network-layer packets are packets; dif-

ferent types of flows and sequences of packets are all aggregates, etc.), and encapsulating

functionality with data was useful when designing flow attribute objects.

The architecture of our tool allows arbitrary code to be included in the computation of

a flow attribute, using a “listener” paradigm. Flow attributes are notified when a packet is

added to an aggregation, and they then perform computationson the added packet. These

attribute objects can be arbitrarily complex, and they can be stateful; thus, arbitrarily com-

plex flow attributes can be computed, so long as they only require information from the

stream of packets that they see. Care must be taken to manage resources, of course, as

there are currently no safeguards to avoid having the code ofan attribute consume arbitrary

amounts of resources. Once these flow attributes are set up and the data processed, the

program using the tool can request values from a flow attribute using a descriptive string,

the meaning of which is interpreted by the code of the flow attribute. This mechanism is

described in more detail in section 4.4.

ANTARES is not yet as user-friendly as it is intended to be; thecreation of new flow

attributes currently requires that the user write C++ code toaccess functions implemented

in a library. This is generally just a matter of creating instances of classes that do the work

and providing them with appropriate parameters, however; examples of this process are

given in section 4.4. Efforts have been made to simplify the process of creating new flow

68

attributes and to make it easier for less experienced C++ programmers to avoid some of the

common pitfalls. Our goal, however, is to make it possible todefine a wide range of flow

attributes using a configuration file rather than requiring users to modify the source code.

Although the notation used in this thesis coincides with theprogramming constructs used

by the tool, the process of translating from the former to thelatter is not yet as easy as we

would like; as future work, a parser should be created to do this translation, such that flow

attributes expressed using our notation could be compiled directly to modules for the tool.1

ANTARES was written as a research tool intended to help with the understanding of

network traffic and application behaviours, and not as a production traffic monitoring sys-

tem, so performance has not been a primary consideration. The performance is adequate

for the samples we have been dealing with (consisting of 5 minutes of a single flow), but

has suffered with the addition of more complex flow attributes, particularly time-based at-

tributes that require a large number of signals being passedbetween components. Prior to

the introduction of these time-based attributes, the performance had been reasonable even

on large (about 1Gb) network traces; with some tuning, that should be possible again.

Our impression after using ANTARES to implement many of the flow attributes de-

scribed in section 3.3 is that it does make it straightforward for a programmer who un-

derstands the tool to implement a wide variety of such attributes. The major drawback at

this point is the internal mechanisms of the data structure that handles network traffic are

more complex than we would like, partially because it was designed with several different

purposes in mind, such as being used for interactive traffic analysis, which added complex-

1More accurately, the parser would take as input flow attributes expressed using a variant of our notation
adapted to be expressed in plain text.

69

ity; however, this complexity is fairly well hidden from a programmer mainly interested in

creating flow attributes. The interface for defining the attributes is somewhat inelegant at

the moment as well; it was designed to be driven by a parser reading a configuration file

that defines the flow attributes. This will be discussed in more detail in section 4.4.

ANTARES is available as a SourceForge project [Fur06],2 licensed under the GNU

Public License [Pro06a].

4.1 Comparison of ANTARES and NetMate

Zander and Schmoll [ZS05] built NetMate, a tool for computing the values of flow at-

tributes; it is somewhat unfortunate that we did not discover this tool earlier, as it appears

that it would have been useful as a basis for ANTARES. However,there are fundamental

differences between the approaches taken by each of these tools; as a result, ANTARES

offers more flexibility and expressive power than NetMate, and the interface is aimed at

programmers familiar with an object-oriented programmingstyle. As NetMate appears to

be the tool most similar to ANTARES, we present here a discussion of these differences

and the relative merits of ANTARES.

The basic difference between NetMate and ANTARES is the way inwhich each han-

dles flows and flow attributes. NetMate is an application for computing independent flow

attributes; each attribute or set of attributes is developed as a module that can be plugged

into the application and that performs its calculations directly on packets passed to it by the

application. In ANTARES, on the other hand, flows are expressed as aggregates of pack-

2SourceForge is a publically accessible Internet site devoted to collaborative open source software devel-
opment.

70

ets, and flow attributes are attached to these aggregates as listeners; these flow attributes

are given names and can be referenced by other flow attributes.

The approach taken by ANTARES permits greater flexibility andpower in defining

flow attributes than that of NetMate. One advantage is that itbecomes easier to adapt a

set of flow attributes to a different definition of a flow when only a few of the attributes

are directly examining packets, and the other attributes are using the results of those lower-

level attributes; in that case, only those lower-level attributes need to be changed. Another

is that if a researcher wishes to introduce a new flow attribute that compares two sepa-

rate attributes, those existing attributes need not be merged into a single module first, the

new attribute needs to simply reference the existing attributes. Furthermore, ANTARES

allows attributes attached to different but related aggregates to interact; for example, if a

researcher wished to define an attribute for a bidirectionalflow that used values of attributes

attached to its component single-directional flows (e.g. the forward and reverse directions

of a TCP session), they could attach a new attribute to the bidirectional flow and reference

the attributes attached to the single-directional attribute, rather than having to re-implement

those values in the bidirectional flow.

ANTARES was designed to emphasize an object-oriented approach to creating flow

attributes and dealing with network flows. Flows and flow attributes are treated as first-class

objects within ANTARES, which allows flow attributes to be expressed in a manner that we

expect to be more intuitive to some researchers than the procedural paradigm of NetMate.

Also, the components of ANTARES are loosely coupled and generally self-contained. For

example, the mechanisms by which packets are processed, reassembled, and sorted into

aggregates can be altered or replaced independently of the other components; it is thus

71

straightforward to change the definition of a flow being used by a particular application

built using ANTARES.

We deliberately emphasized power over performance when designing ANTARES. The

performance requirements that we have set for it are not stringent; for a set of flow at-

tributes of a similar size and complexity of those listed in tables 4.1 and 4.2 and running

on a commodity computing platform, it must be able to processa 100kB sample within 5

seconds for debugging purposes, and it must be able to process an appreciable data set of

2GB overnight (i.e. within 12 hours).

As discussed, the primary distinction between ANTARES and NetMate is that AN-

TARES sacrifices efficiency of implementation for flexibilityand power of expression. Be-

cause of this trade-off, we consider our tool to be more appropriate for defining experimen-

tal flow attributes in order to evaluate their potential, andNetMate to be more appropriate

for implementing proven flow attributes in a production setting.

4.2 Requirements

We present in this section an analysis of the requirements ofthe ANTARES toolkit; these

inform the design of the library and will be referenced as motivating the various design

decisions in section 4.3, which describes its architecture. We first document the use case of

interest, that is, the context in which we expect the libraryto be used, and for what purpose

we expect it to be used in that context. We then describe the requirements for the toolkit

derived from that use case; the functional requirements, which describe the concrete tasks

that the toolkit is to perform, and the nonfunctional requirements, which are qualitative

72

goals guiding the design of the toolkit.

4.2.1 Use case

The main tasks for which ANTARES was developed are those wherea researcher defines

flow attributes that they wish to study, and that where they compute the values of those

flow attributes on sample network flows. These fit within the researcher’s broader task

of attempting to find meaningful flow attributes for distinguishing between two or more

different types of network traffic. We describe here in more detail the overall analysis

process and the role played by these tasks.

Figure 4.1 depicts the analysis tasks in the analysis process and indicates where AN-

TARES fits into it, using a Unified Modeling Language (UML) use case diagram.3 Prior

to the use of ANTARES, the researcher would first have defined the types of traffic among

which they wish to distinguish (UC-1), and obtained samples of those types of traffic (UC-

2) in the network context or contexts of interest, for exampleby using a network capture

tool such as tcpdump [Dev06a]. They would then analyze the traffic samples (UC-3),

possibly by using an analysis tool such as Wireshark [Ct06], and label them with the cor-

responding traffic types (UC-4).

Having established a data set consisting of labelled samples of traffic, they would then

turn those into labelled feature vectors. They would first have to decide on a set of flow

attributes to be used as the elements of the feature vectors and define them (UC-A1), and

then compute the values of those attributes for their labelled samples (UC-A2). These two

3UML is a modelling language for software design and architecture defined at the Object Management
Group [Obj07].

73

 e.g. Feature

selection and

 machine learning

����������

 Analysis process

 e.g. R

 ANTARES

 e.g. Wireshark

 e.g. tcpdump

UC-6: Find discriminating criteria

UC-5: Attribute-based analysis

UC-A2: Compute flow attributes

UC-A1: Define flow attributes

UC-4: Label samples

UC-3: Traffic-based analysis

UC-2: Obtain and prepare samples

UC-1: Define traffic types

Figure 4.1: UML Use Case diagram depicting the tasks involvedin the analysis process

tasks are the use cases for which ANTARES is intended to be used, and the remainder of

the design process will focus on them.

The researcher would then use these feature vectors to determine how to discriminate

between the types of traffic. They might analyze the vectors using data modelling and sta-

tistical tools, such as R [Dev05], to develop a qualitative understanding of the data (UC-5).

The researcher would then use quantitative tools, such as feature selection algorithms and

machine learning algorithms described in section 2.1.1, tofind a mechanism for distin-

guishing among the different types of traffic (UC-6).

74

Although this process has been presented as a linear sequence, it would not necessarily

proceed that way in reality. For example, a researcher who finds that their feature vectors do

not adequately distinguish the types of traffic may well define and compute additional flow

attributes; similarly, one who finds that their samples are not sufficiently representative may

obtain additional samples and repeat the process on those. The analysis steps in particular

(UC-3 andUC-5) would likely be performed repeatedly at different stages of the process to

inform choices of parameters and algorithms used in other tasks, and to judge the success

of those other stages.

The two main tasks for which ANTARES is designed are the specification of flow

attributes (UC-A1) and the computation of attributes so specified (UC-A2). The other

use cases presented here are beyond the scope of this tool, although we intend for some

components of the library to be capable of being reused for some of them, in particular for

presenting the computed flow attributes for analysis (UC-5). The remainder of this section

will document the requirements for these tasks. These requirements will be referenced

later, in our discussion of the architecture of the tool, to explain the rationale behind the

design decisions that were made during its development.

4.2.2 Functional requirements

We list here the functional requirements motivating the design of ANTARES. These re-

quirements proceed from the use casesUC-A1 andUC-A2, defining flow attributes to be

computed and actually computing the values of those flow attributes, respectively. We also

include some future functional requirements; these are notintended to be met by the cur-

75

rent implementation of ANTARES, but they influence the designdecisions taken, as it is

expected that these will eventually need to be met by the tooland its components.

UC-A1: Define flow attributes

These requirements follow from the use caseUC-A1, in which the researcher specifies

the flow attributes to be computed. At this point in time, thisis accomplished by writing a

program that does this by instantiating objects of the appropriate classes via the ANTARES

Application Programmer Interface (API), but the requirements are written to allow this to

later be done by writing a configuration file in a special-purpose grammar and invoking a

parser (which would be part of ANTARES) to read that file.

FR-A1-1 The user must be able to specify attributes to be computed.

FR-A1-2 The user must be able to specify attributes in terms of other attributes within the

same flow or subflows thereof.

FR-A1-3 ANTARES must provide a mechanism for identifying and referencing packet

properties.

FR-A1-4 ANTARES must provide the user the ability to define several basic types of

attributes with minimal effort (e.g. invoking a constructor). These are:

FR-A1-4.1 An attribute that counts packets.

FR-A1-4.2 An attribute that keeps a running sum of a specified (numerical) property

of packets (e.g. length).

76

FR-A1-4.3 An attribute that performs an arithmetic operation (addition, subtraction,

multiplication, or division) on two values; each of these values can be either the

value of another attribute or a constant.

FR-A1-4.4 An attribute that stores values of packet properties or of other attributes

as specified by the user.

FR-A1-5 Attributes can have sub-attributes (attributes subordinate to the containing at-

tribute), which should be accessible by anything that can access the attributes itself.

FR-A1-6 Any attribute must be able to have a filter specified for it; packets not matching

that filter must not affect the value of the attribute or its sub-attributes.

FR-A1-7 ANTARES must provide a way to specify that a packet filter is to be applied to

a packet sequence.

UC-A2: Compute flow attributes

These requirements are based on the use caseUC-A2, in which the researcher computes the

flow attributes that they have specified in use caseUC-A1 on samples of network traffic.

FR-A2-1 ANTARES must accept as input data files containing recorded packets, and or-

ganize those packets into aggregates according to the commonly used 5-tuple model

of a network flow (protocol, network-layer addresses, transport-layer ports).

FR-A2-2 ANTARES must compute the values of the specified attributes onthe network

traffic input to it.

77

FR-A2-2.1 ANTARES must be able to compute the values of the basic attributes

described in FR-A1-4.

FR-A2-2.2 ANTARES must be able to make available the value of a flow attribute

to another flow attribute that references it (e.g. for the attribute described in

FR-A1-4.3).

FR-A2-3 ANTARES must enforce an update order among attributes, so that an attribute

that is referenced by another attribute is updated before its value is used by the latter

attribute.

FR-A2-4 ANTARES must track the history of a packet; that is, for a giventype of packet,

ANTARES must be able to access the ancestors (lower-layer packets from which the

current packet was computed) and the descendants (higher-layer packets including

data from the current packet) of that packet. For example, for a TCP packet that was

fragmented across multiple IP packets, ANTARES must be able to access all of the

IP packets that were reassembled to produce that TCP packet.

Future requirements

The design of ANTARES is also influenced by an intention for thelibrary to eventually

support an interactive traffic analysis tool, along the lines of Wireshark [Ct06], but focused

on displaying non-payload information as opposed to parsing and displaying the payload

data (e.g. a tool appropriate to use caseUC-5). The functional requirements in this section

are not intended to be implemented in the current iteration of ANTARES, but they do

motivate several decisions in the library’s design, and so we include them here.

78

FR-F-1 ANTARES will provide the ability to seek to an arbitrary pointin time within a

trace, where which the values of its attributes will be consistent with having pro-

cessed packets from the trace up to but not past that point.

FR-F-2 ANTARES will be able to model arbitrary subsequences on existing packet se-

quences.

FR-F-3 ANTARES will be able to model hierarchical aggregations of network traffic be-

yond the 5-tuple model (e.g. aggregates based on source address for investigating

peer-to-peer filesharing).

4.2.3 Nonfunctional requirements

We list here the nonfunctional requirements guiding the design of ANTARES, which detail

the qualitative goals of the design process. These requirements are broken down into sub-

requirements where necessary.

NFR-1 (Usability) ANTARES must allow a researcher to implement flow attributes in

significantly less time than it would take them to do so using other tools, such as

libpcap [Dev06a], Netdude [Kre06], or NetMate [ZS06].

NFR-2 (Extensibility) ANTARES must be designed in a way to allow its functionality to

be easily extended.

NFR-3 (Reusability) The individual modules in ANTARES must be designed in a generic

enough way that they can be used in other related applications, such as in a graphical

analysis application such as Wireshark [Ct06].

79

NFR-4 (Performance) Performance is not a primary driver of the design of ANTARES,

but steps must be taken to ensure that it is not unusably slow.For a set of flow

attributes such as that listed in tables 4.1 and 4.2, using commodity hardware (e.g.

a commodity PC with a 2GHz CPU and 1GB of RAM) a small sample used for

debugging purposes (100kB) should be processed within a few seconds, while a

larger data set (2Gb) should be processed within 12 hours (e.g. overnight). The

target audience is the research community, so runtime is considered secondary to

ease of describing new flow attributes.

NFR-5 (Scalability) ANTARES should be able to cope with handling large data files; e.g.

files larger than available memory or greater than the 2Gb limit of signed 32-bit file

offsets.

4.3 Architecture

We give here an overview of how ANTARES is arranged, and how thevarious compo-

nents interact with each other, in order to provide context for our explanations of how flow

attributes are computed, and to discuss many of the design decisions taken during the de-

velopment. The tool is implemented as a library focused around a data structure, which

represents hierarchical aggregates of the network traffic being processed. Flow engines

populate the data structure, and flow attributes are attached to the aggregates to compute

whatever information is required by the researcher. We describe these various components,

and describe in some detail how the flow attributes interact with each other and with the

data structure discussion of the capabilities of ANTARES.

80

0..*1

-trace

-streamKey

RealPacketDataMembers GhostPacketDataMembers

1

-members

Aggregate

Decomposition TraceIterator

IPv4Packet

Trace

Packet

1

0..*-trace

TCPPacket

StreamKey

0..1 -parent

IPv4Key

PacketDataMembers

0..*

-traces

Figure 4.2: ANTARES data structure class diagram

4.3.1 Data structure

The classes that implement ANTARES’ data structure are designed to be as generic as

possible, to make them more flexible and extensible (NFR-2), and so that they could be

more easily applied to models of network traffic beyond the 5-tuple flow model used in

this work (FR-F-3). The data structure consists mainly of packet aggregates and packets.

These classes are depicted in figure 4.2; in this section, we describe how the data structure

works and explain some of the decisions made in its design in terms of the requirements.

Packet aggregates are handled using theAggregate class and its subclasses,Decompo-

sition andTrace. Aggregate represents a generic aggregate, whereasDecomposition

specifically models an aggregate of other aggregates, andTrace models an aggregate of

packets.Decompositions can thus contain either otherDecompositions orTraces; such

81

a generic treatment is intended to be more reusable (NFR-3), and to allow support of new

models of network traffic other than those based on the common5-tuple (FR-F-3).

Aggregates containStreamKeys, which indicate how subaggregates of a givenAggre-

gate are distinguished from one another.4 For bidirectional 5-tuple flows, theStreamKey

is anIPv4Key, which stores the values of the 5-tuple for that flow. The half-flows be-

longing to that bidirectional flow would also be keyed using aIPv4Key, but for those it

would be configured to care about the direction of the flow, whereas theIPv4Key for the

bidirectional flow would not.

An Aggregate can have aparent, which is anotherAggregate that contains it. The

simplest example of this is that the half-flows of a bidirectional 5-tuple flow areTraces

that have as a parent theDecomposition representing the bidirectional flow.

ThePacket class is the base class for the hierarchy that represents packets; packets of

particular protocols such as IPv4 and TCP are represented by the appropriate subclasses

(e.g.IPv4Packet andTCPPacket in figure 4.2). New types of packets can be defined by

creating new subclasses ofPacket.

Descendent relationships among packets are tracked by thePacket objects (FR-A2-

4); a givenPacket object has references to its ancestors (those lower-layer packets that

carry data contained in the packet in question) and its descendents (higher-layer packets

for which the packet in question carries data). For example,a TCP packet that was carried

in its entirety in a single IPv4 packet would have the latter as its only ancestor; however, a

TCP packet that was fragmented across several IPv4 packets would have all of those as its

4We use the term “stream” as a more generic form of “flow” that could indicate other types of aggregates
as necessary.

82

ancestors.

Properties of packets are accessed via thegetAttrib() method defined inPacket; the

name of the desired property is specified as a dot-separated string. Packet subclasses re-

turn the appropriate values for these properties in thegetAttribLocal() method;getAt-

trib() implements a searching function that fans out from the packet to check its ancestors

and descendents if it is not found in the packet object. For example, the length of the pay-

load portion of the transport-layer packet would be specified as the stringtransport.payload

.len. The task of finding the value of the property is thus pushed into thePacket class and

its subclasses, so that objects usingPacket objects, such as attributes, need only specify

what information they need, without needing to knowhow to obtain it. This means that all

of the logic required to implement a new type of packet can be contained within a new sub-

class ofPacket, which is intended to make the design more easily extensible(NFR-3). In

addition, the idiom of dot-separated properties is expected to be more familiar to the target

audience (and thus more usable, perNFR-1), as it mimics the syntax of display filters in

Wireshark [Ct06], a popular tool for network traffic analysis.

The ANTARES data structures also implement a mechanism, which we call packet

ghosting, to create overlays on aggregates (FR-F-2) without duplicating entire packets

(NFR-4); that is, one can create anAggregate that is composed of packets from another

Aggregate. A ghost packet is an instance ofPacket where the actual data is contained in

an instance ofRealPacketDataMembers that is contained in a different instance ofPacket

(the original packet that was ghosted). This is accomplished by having aGhostPacket-

DataMembers in the ghost packet that points back to the original; a ghost packet is thus

analogous to a reference in C++. In order for this to be transparent to the subclasses and

83

thus make it easier to extendPacket (NFR-2), Packet objects cannot directly access the

data corresponding to the packet, and must instead use methods such asgetPacketData(),

which returns all of the packet data, andgetData(), which returns a specified substring of

the data.

Packet objects in ANTARES are not intended to be free-floating; instead, it is expected

that they will be added to anAggregate as soon as they are created. This is because that any

long-lived reference to a packet should be made through aTraceIterator object, which

acts as a pointer to thePacket and represents it in the context of theAggregate containing

it. So long as these references are made throughTraceIterator objects,Aggregate

objects can write any or all of their packets to a file and be able to read them back in

when those packets are accessed, which supports ANTARES’ ability to seek within a file

(FR-F-1) and will allow it to deal with large files by swapping out unusedPacket objects

(NFR-5).

4.3.2 Flow attributes

Flow attributes in ANTARES are attached toAggregates in the data structure asPack-

etListeners; they are notified when a packet is added to theAggregate to which they

are attached, and update their state appropriately. Figure4.3 depicts the classes involved

in implementing these flow attributes; this section will explain these classes and how they

interact.

Classes that are to be added as listeners to anAggregate must derive from thePack-

etListener interface.Aggregates themselves arePacketListeners; this is so that an

84

0..*
��	
��
��

�
��
������
�

�
��
�

��	����

�
��
�

���������

������� !�"

PacketListener

FilteredPacketListener
!$��%�&���

'�()&�# !$��%�&���*+()+��,# !$��%�&���

'! & ���������� ��� -���������

.�(+�-���������

!$��/��0��.�(+�-���������' ()&�,.�(+�-���������

����1(���!���������'�(���������# !$��*+������������

�22��2 ��

�����3�	45�

Figure 4.3: ANTARES flow attributes class diagram

Aggregate, such as aDecomposition, that contains otherAggregates can be added as a

listener to its childAggregates. Attributes attached to thatAggregate are then updated

when packets are added to those childAggregates (FR-A1-2).

In order to restrict the packets that a particular attributeconsiders (FR-A1-6), AN-

TARES allows filters to be placed on the listener, using the abstractFilteredPacketLis-

tener class. These filters, as discussed in section 3.3.1, use a filter expression to determine

which packets are passed to the attribute. Filters can be simple or compound (which are

implemented bySimplePacketFilter andCompoundPacketFilter, respectively). Sim-

ple packet filters filter based on a single criterion, whereascompound packet filters are

85

logical combinations (e.g. using AND, OR, or NOT) of other packet filters, either simple

or compound.

An attribute can refer to the values of other attributes attached to the same aggregate,

or to its subaggregates, such as the half-flows belonging to abidirectional flow (FR-A1-

2). This is accomplished by using dot-separated strings, as with packet properties. For

a bidirectional flow, the stringsf wd and rev refer to the forward and reverse half-flows,

respectively; thepkt count attribute of the forward half-flow can thus be requested from

the bidirectional flow asf wd.pkt count.

Similarly, one can refer to a subattribute of an attribute using a dot-separated string,

which is useful for obtaining simple values from a complex attribute. For example, one ba-

sic type of attribute is theMemoryAttribute, which remembers a certain number of values

from packets or from other attributes. TheMemoryAttribute has a subattribute calledsum,

which is the sum of the values it contains (if they are of an appropriate type, such as an in-

teger). Supposing that a flow contains aMemoryAttribute calledpayloadbytecount 5s

that retains the payload lengths (transport.payload.len) of all packets in that flow seen in

the past 5 seconds, the amount of data transferred as part of that flow in the past 5 seconds

could be obtained aspayloadbytecount 5s.sum.

Attributes are implemented as subclasses of theAttribute base class; they are further

subdivided intoScalarAttributes (attributes which evaluate to a single scalar value),

andArrayAttributes (attributes which revolve around an array of values). Thereare

five main attribute classes used by ANTARES:ArithmeticAttribute, SumAttribute,

PacketCountAttribute, andMemoryAttribute. Most of the flow attributes in table 3.1

were implemented using only these classes, plus aDurationAttribute class which com-

86

putes the duration of a flow or half-flow.5 These five classes provide enough functionality

to define a wide variety of flow attributes.

TheArithmeticAttribute class allows other attributes to be combined in arithmetic

operations, perFR-A1-4.3; it was used frequently in implementing the attributes usedin

this thesis (those listed in tables 4.1 and 4.2). It currently supports the addition, subtraction,

multiplication, and division of other attribute values andconstants. One simple attribute

implemented as anArithmeticAttribute is themeanpkt len from section 3.3.3; this

is just anArithmeticAttribute that takes the byte count attributepkt bytecount and

divides it by the packet count attributepkt count.

A SumAttribute computes the sum of some property of the packets, perFR-A1-4.2;

the most obvious application is for attributes such as byte counts. Thepkt bytecountand

payloadbytecountattributes from section 3.3.4 could be implemented asSumAttributes

onnetwork.lenandtransport.payload.len, respectively.

A PacketCountAttribute is simply an attribute that counts the number of packets that

it sees, perFR-A1-4.1. The most common such attribute is thepkt count, which is just a

PacketCountAttribute attached to a flow or half-flow with no filter. Packet proportion

heuristics, such as those defined in section 3.3.5, are generally implemented with the help

of such attributes. For example, the attributepkt count(Pnep) used in computing some of

the small packet heuristics in section 3.3.5 is computed as aPacketCountAttribute with

a filter of transport.payload.len> 0, as depicted in figure 4.4 in section 4.3.

MemoryAttributes retain some information about the past state of an aggregate, per

5The DurationAttribute could even have been implemented as anArithmeticAttribute with an
associatedMemoryAttribute, but was implemented separately for simplicity.

87

FR-A1-4.4. There are two different subclasses ofMemoryAttribute available for differ-

ent purposes:PacketDrivenMemoryAttributes andSampledMemoryAttributes. The

former records an observation each time a packet is received(either from the packet itself

or from some other attribute), whereas the latter records (or samples) an observation at a

certain time interval. Both subclasses retain a configurablewindow of observations, either

a fixed number or for a fixed period of time, or for the entire duration of the flow. Obvi-

ously, however, the resource requirements of an application using such attributes will be

influenced by the memory sizes.

The maximum datarate attributes from section 3.3.4 were implemented usingMemory-

Attributes. For example, a 5s datarate attribute using a 1s sliding window was im-

plemented with aPacketDrivenMemoryAttribute that retained a 5s window of packet

lengths, with aSampledMemoryAttribute sampling the sum of the lengths in that win-

dow every 1s. AMemoryAttribute features the subattributessum, which calculates the

sum of the observations, andmax, which calculates the largest observation.

Using these building blocks, a researcher can define a wide range of flow attributes.

In cases where these building blocks are not sufficient, theycan code their own attributes;

those custom attributes could then be used in other computations, retained in memories,

etc., just as the attributes described here can. This generality is intended to allow AN-

TARES to be extended to flow attributes far beyond those that have been designed to date,

as our understanding of network traffic matures.

Figure 4.4 shows an example of a flow and its half flows with someattached flow

attributes, for illustration. Consider thesp beta attribute on the lower right side of the

figure; recall from section 3.3.5 that thesp betaattribute is the proportion of small packets

88

Figure 4.4: An example of ANTARES attributes

among non-empty packets, for some definition of “small packet”. For the reverse half-

flow, thesp betaattribute is attached to the half-flow; it uses the values ofpkt count(Pnep)

(the number of non-empty packets) andpkt count(Psp) (the number of small packets),

each of which is shown with their appropriate filters in dashed boxes. On the left side

of the figure, thedir data attribute attached to the bidirectional flow is dependant onthe

payload byte counts of the half-flows, as it computes its value based on those values. It

would use the notationsf wd.payloadbytecount andrev.payloadbytecount to refer to

thepayloadbytecountattribute in each of the forward and reverse half-flows, respectively.

In actual use, each flow and half-flow would have the same sets of attributes, but only some

are shown in the diagram, for simplicity.

4.3.3 Flow engine

The flow engine being used determines the actual shape taken by the data structure. AN-

TARES’ primary flow engine is session-based; that is, it divides the traffic into half-flows

89

according to the transport-layer protocol (the “next protocol” value in the IP header), source

IP address, destination IP address, source port, and destination port; it also pairs those half-

flows into bidirectional flows while retaining the distinctions between the two sides of the

flow. Figure 4.5 depicts the classes involved in implementing the flow engine; the primary

flow engine described above is theIPv4Sessionizer.

The session-based flow engine hastemplate aggregatesthat contain theAttribute

objects that are to be computed for the flows; in the case ofIPv4Sessionizer, these are

theflowTemplate, aDecomposition containing theAttributes to be computed on the

bidirectional flow, and thehalfflowTemplate, aTrace containing theAttributes to be

computed on each single-directional half-flow. When the flow engine is to create a new

aggregate, it copies the template (using theclone() method of theAggregate subclass)

along with all of its flow attributes, so that they will computed by the new aggregate. For

example, when theIPv4Sessionizer creates a new flow, itclone()s flowTemplate

for the bidirectional flow andclone()s halfflowTemplate for the appropriate single-

directional half-flow (and thenclone()shalfflowTemplate a second time when the first

packet in the opposite direction is processed). This templating mechanism allows the set of

attributes to be defined by the application, independently of the flow engine, while allowing

newAggregates to be created dynamically.

ANTARES uses the libqcap [Hug07] library to access packets. Libqcap is a library

based on libpcap [Dev06a]; it reassembles fragmented IP packets, maintaining relation-

ships between the original fragments and the reassembled packets (as perFR-A2-4). That

library is wrapped with theQcapAdaptor class, which uses libqcap to read a network trace,

process the data link layer and reassemble fragmented IPv4 packets, and add those pack-

90

6789:;<=>:?

PacketListener

@;A9A>AB@=;C:;

D9;:=E:FGH9IH9@=;C:;

FilteredPacketListener

J

K
LMN

O@PQD:CC7A87R:;

STT;:T=9:

U:>AEIAC797A8

V;=>:

D9;:=EW:X

O@PQW:X

Y>=ISF=I9A;

J

Z
[[
\

K
]̂_̀MaMb_

JJ

Kcd̀ed̀

J

K
fg]hh]cijMke]g̀M

JK
h]cijMke]g̀M

Z
[[
JKegbMà

Figure 4.5: ANTARES flow engine class diagram

ets to an IPv4Trace. TheIPv4Sessionizer listens to that IPv4Trace and outputs to a

Decomposition (theoutput data member inherited fromStreamedOutputParser), cre-

ating flows as described above, keyed withIPv4Keys. An example of a data structure built

by theIPv4Sessionizer flow engine is shown in Figure 4.6. The object representing the

entire network trace is made up of bidirectional flows, each of which is made up of two

half-flows.

ANTARES is designed to be flexible in the way that flow engines are used (FR-F-3,

91

Figure 4.6: An example of an ANTARES session-based data structure

NFR-2). The flow engine described here deals with both the network and transport layers,

but that is not required by the library. An alternate configuration would have an IPv4 flow

engine process incoming IPv4 packets intoDecompositions by thenext protocolfield,

and have separate TCP and UDP flow engines attached as listeners to theprotocol= 6 and

protocol= 17 Decompositions, respectively (either by creating thoseDecompositions

ahead of time, or by having a lookup table for the IPv4 flow engine to create the appropriate

transport-layer flow engine, etc.). Similar techniques canbe used to implement other types

of aggregations, such as by node-pair or by source or destination node.

4.4 Implementing flow attributes

This section describes a program implemented using the ANTARES tool to compute the

flow attributes described in Chapter 3. This serves not only todocument the capabilities

of the program, which is included with the ANTARES tool, but also illustrates how AN-

TARES is used in practice. We first present an example of implementing an attribute using

ANTARES, and then give an overview of the functionality of theprofile_streams_the-

92

nonempty_count = pkt_count(F{transport.len > 0})
sp_count_1 = pkt_count(F{(transport.len <= 20) AND (transport.len > 0)})
sp_beta_1 = (sp_count_1 / nonempty_count)

Figure 4.7: Pseudocode forsp beta(λmax len = 20;F)

PacketFilter *nonemptyPacketFilter = new SimplePacketFilter(
PacketAttribute("transport.len"),
ConcretePacketAttributeValue<int>(0),
SimplePacketFilter::GREATER);

templ.addAttrib("nonempty_count",
PacketCountAttribute(*nonemptyPacketFilter));

PacketFilter *sp_filter_1 = new CompoundPacketFilter(
SimplePacketFilter(

PacketAttribute("transport.len"),
ConcretePacketAttributeValue<int>(20),
SimplePacketFilter::LESS_OR_EQUAL),

*nonemptyPacketFilter,
CompoundPacketFilter::AND);

templ.addAttrib("sp_count_1", PacketCountAttribute(*sp_filter_1));
templ.addAttrib("sp_beta_1",

ArithmeticAttribute<int,int,double>(
"sp_count_1", "nonempty_count",
ArithmeticAttribute<int,int,double>::OP_DIVIDE), 1);

Figure 4.8: Actual code forsp beta(λmax len = 20;F)

sis program, which computes the values of the flow attributes discussed in Chapter 3.

As a concrete example of a flow attribute implemented with ANTARES, we consider

sp beta(λmax len = 20;F) (referred to assp_beta_1 in the code, as it corresponds to pa-

rameter set 1 in our experiment), as shown in figure 4.4 in section 4.3.6 We present this

attribute and those on which it depends, first in pseudocode as it will be written once we

have developed a parser for flow attributes in figure 4.7, thenas the actual code in figure 4.8.

Figure 4.9 outlines the control flow of theprofile_streams_thesis program that we

6Note that the code shown does not distinguish between a flow and a half-flow; that is done based on
where the code is placed. The above actual code was from a function that sets up the template aggregate for
half-flows.

93

lmnopnpnqrsopnt

uvupuosuwnxopotpmylpymnt

rmzlnttvn{prol|np

oxxrol|nppz}sz~

lmnopn}sz~

vzpu}�sutpnvnmt�tnttuzvt�

yrxopnoppmu�ypn�osynt

�npvn{p}sz~

vzpu}�sutpnvnmt�ur�moln�

�lor�xorpzm
�ppmu�ypnt

�npoppmu�ypn�osynt

rmz}usn
�
tpmnoqt
�
p�ntut

�opotpmylpymnt��nlzqrztupuzv��moln��sz~nv�uvn

lmnopn}sz~nv�uvnovx�lor�xorpzm

zyprypoppmu�ypn�osynt

}sz~xzntvzpn{utp

qzmn}sz~t

vzqzmn}sz~t

qzmnrol|npt

}sz~n{utpt

vzqzmnrol|npt

Figure 4.9: UML Activity diagram depicting control flow ofprofile streams thesis

used to compute the values used for our evaluation in Chapter 5, and illustrates the interac-

tions between the different components of ANTARES. It first creates and initializes various

data structures and processing objects; of note areipTrace, which is theTrace into which

theQcapAdaptor deposits non-fragmented and reassembled IPv4 packets, andsessions,

which is aDecomposition into which theIPv4Sessionizer flow engine organizes pack-

ets into (session-based) flows. It also creates two templates: flowTemplate, containing the

attributes to be computed for the bidirectional flows, andhalfflowTemplate, containing

the attributes to be computed for the single-directional flows (the actual attributes are listed

94

below).

Once the initialization is done, the program goes into the main processing loop, where

theQcapAdaptor reads packets, reassembles them, createsIPv4Packet objects, and de-

posits them intoipTrace, which notifies its listener, theIPv4Sessionizer; that in turn

adds the packet to the appropriate trace insessions, creating it first (from copies of

flowTemplate andhalfflowTemplate) if necessary. TheTrace representing the half-

flow to which the packet is added notifies its listeners, whichare its attributes and also the

Decomposition representing the flow containing that half-flow; the latter notifies its own

attributes. After all the updating is done, control returnsto QcapAdaptor, which continues

this loop until all of the packets have been read. The main program then regains control and

iterates through the flows insessions, fetching and outputting the values of the attributes.

Table 4.1 lists the per-flow attributes computed byprofile_streams_thesis, and ta-

ble 4.2 lists the per-half-flow attributes that it computes.For the most part, these are the

same as those listed in table 3.1. The notable exceptions arethe max datarate attributes,

which indicate the maximum per-second datarate over varying time windows. The param-

eter sets mentioned in the descriptions of the small and large packet heuristics in table 4.2

refer to those defined later, in table 5.1 and 5.2 in section 5.1.2; there are three param-

eter sets for the small packet heuristics, and six for the large packet heuristics, and they

are represented by digits from 1–3 and 1–6 in the names of the attributes computed by

profile_streams_thesis.

95

Name Description
pkt count number of packets
duration duration in seconds
nonemptycount count of nonempty packets
pkt byte count sum of packet lengths
payloadbyte count sum of payload lengths
meandelay mean inter-packet delay
meanpkt len mean packet length
meanpayloadlen mean length of nonempty packets
meannonemptypayloadlen mean length of nonempty packet payloads
dir data directionality of data
meanpkt datarate mean datarate (packet length)
meanpayloaddatarate mean datarate (payload length)
1s dataratewindow.max max datarate over 1s window
5s dataratewindow.max max datarate over 5s window
30sdataratewindow.max max datarate over 30s window
flag urg proportion of pkts w/ TCP URG flag
flag ack proportion of pkts w/ TCP ACK flag
flag psh proportion of pkts w/ TCP PSH flag
flag rst proportion of pkts w/ TCP RST flag
flag syn proportion of pkts w/ TCP SYN flag
flag fin proportion of pkts w/ TCP FIN flag

Table 4.1: Per-flow attributes computed byprofile streams thesis

96

Name Description
pkt count number of packets
pkt byte count sum of packet lengths
payloadbyte count sum of payload lengths
nonemptycount count of nonempty packets
meandelay mean inter-packet delay
meanpkt len mean packet length
meanpayloadlen mean length of nonempty packets
meannonemptypayloadlen mean length of nonempty packet payloads
1s dataratewindow.max max datarate over 1s window
5s dataratewindow.max max datarate over 5s window
30sdataratewindow.max max datarate over 30s window
sp alphax small packet heuristicα, parameter set x
sp betax small packet heuristicα, parameter set x
sp gammax small packet heuristicα, parameter set x
sp deltax small packet heuristicα, parameter set x
lp alphax large packet heuristicα, parameter set x
lp betax large packet heuristicα, parameter set x
lp gammax large packet heuristicα, parameter set x
flag urg proportion of pkts w/ TCP URG flag
flag ack proportion of pkts w/ TCP ACK flag
flag psh proportion of pkts w/ TCP PSH flag
flag rst proportion of pkts w/ TCP RST flag
flag syn proportion of pkts w/ TCP SYN flag
flag fin proportion of pkts w/ TCP FIN flag

Table 4.2: Per-half-flow attributes computed byprofile streams thesis

97

98

Chapter 5

Evaluating flow attributes

Given a set of potential behavioural flow attributes, we wished to evaluate how useful

they are at discriminating between different types of network traffic and to demonstrate

some uses of the Advanced Network Traffic Analysis Research and Exploration Suite (AN-

TARES), the tool that we have developed. We describe in this chapter an experiment where

we investigate the ability of some flow attributes to distinguish between a small set of com-

mon applications; it is by no means an exhaustive survey of flow attributes and networked

applications. There were three main results from our experimentation. We found that our

data was similar to that of Roughan et al. [RSSD04], but that their results were probably

optimistic, due to the fact that they used values that were averaged over a day rather than

using individual flows. We looked at parameter values for small and large packet heuris-

tics, and found that several were useful for distinguishingbetween applications. Finally,

we found that the error rates of the classifiers correspondedto our expectations; two app-

lications that we expected to exhibit similar behaviour to one another were more difficult

to distinguish from one another than from other applications. We discuss in this chapter in

99

more detail the design of the experiment and then present ourresults.

We chose several common applications for which there are historical network traces

available and that we felt exemplified three different application behaviours, and we used

several of the discussed flow attributes to build classifiersfor discriminating between pairs

of these applications. The error rates of the resulting classifiers gave us a combined measure

of the discriminating power of the flow attribute and the similarity of the two applications.

This combined measure was clarified, at least qualitatively, by comparing the relative per-

formance of different classifiers on the same task. That is, if all of the flow attributes studied

had produced poor classifiers for distinguishing between a particular pair of applications,

we had some basis to suspect that it was because that pair of applications is fundamentally

similar, although this suspicion would by no means be conclusive.1 We found that the error

rates followed our expectations; applications that we considered to be similar were more

difficult to distinguish from each other than from those we expected to be dissimilar.

For the experiment, we constructed a composite data set using various data sets from

the National Laboratory of Applied Network Research (NLANR).We chose the samples

to cover a variety of different traffic, in an effort to capture the “normal” behaviour of

each application, independent of a particular network environment, and to avoid skew from

particular hosts performing abnormal activities (e.g. running Telnet sessions over ports as-

sociated with FTP). The data that we used is already out-of-date, the most recent samples

being more than two years old; we leave it to future work to investigate how the character-

istics of network traffic change over time. The composite data set is discussed in detail in

1We can obviously only consider similarity in terms of the attributes with which we have used to study
the attributes; it will always be possible that there may be another flow attribute, not considered, for which
the two applications are totally dissimilar. However, we hold that this is true in general for any expression of
similarity: it is only valid in a certain context.

100

section 5.1.3; it is publically available alongside our toolkit [Fur06].

It may seem odd (even hypocritical) that, having proclaimedthat the way of the future is

to focus on application behaviours rather than applications, we ourselves use the application

as a label for our data. The distinction is that we are not building classifiers for the sake of

building classifiers, we are building them as a technique to evaluate flow attributes and to

illustrate the concept of application behaviours. The applications we use are exemplars of

particular types of behaviour; FTP-data and HTTP are exemplars of bulk data transfer, FTP-

control and Telnet are exemplars of command-shell interactive behaviour, and POP3 and

SMTP are exemplars of machine-driven interactive behaviour. We accept that the data will

be noisy, even potentially with some number of flows that weregenerated by a completely

different application than we suppose, though we have takensteps to minimize the noise in

preparing the data.

In this section, we present a qualitative evaluation of ANTARES by using it for several

analysis tasks. We evaluate the values in the context of pastwork, analyze the effects of

different parameters for flow attributes, and identify potential application behaviours using

common applications as exemplars. In the course of this experimentation, we implemented

a range of flow attributes using our tool; we found this task was straightforward, which

reflects well on the capabilities of the ANTARES tool. This does not take the place of a

rigorous evaluation of the toolkit, however; such an evaluation has been left as future work.

101

5.1 Experimental design

The goals of this experiment are to demonstrate the ANTARES tool and the flow attributes

that we use in several contexts: evaluating past work, investigating parameter values for

flow attributes, and exploring application behaviours. We describe here in detail the ex-

periment; we specify how the applications, flow attributes,and samples were selected, and

then describe how the results were obtained and interpreted.

5.1.1 Applications

In this experiment, we used traffic from six common applications: FTP-data, FTP-control,

Telnet, SMTP, HTTP, and POP3. We have made the uncomfortable, though convenient,

assumption that we can use the IANA-registered port number as a proxy for application in

the historical data, expecting that the few cases in which that is not valid are outweighed

by the majority in which the applications are using the defined port. Accordingly, we

constructed our data set in such a way as to minimize the number of such stray sessions, as

described in section 5.1.3.

Since one of our goals was to examine how the values of the flow attributes listed in

table 3.1 vary between data sets, the main criterion for selecting applications was that they

all be present in a large enough number of the available data sets. The six applications

chosen were all present in sufficient quantities in eight data sets (described in detail in

section 5.1.3), which comprise university Internet uplinks, research backbone networks,

and a public ISP peering exchange point. These data sets alsoinclude multiple samples

from the same sites in different years, so that we can examinethe changes in the flow

102

attributes over time in the same environment.

We also wanted to choose applications that we expected to exhibit different application

behaviours. HTTP and Telnet were chosen to represent bulk data transfer and command-

shell interactive activity, respectively; these were the two behaviours we were most inter-

ested in from the perspective of distinguishing between websurfing and interactive back-

doors. FTP-data was chosen as the most straightforward example of bulk data transfer to

complement HTTP. FTP-control was chosen as an alternate type of interactive behaviour to

complement Telnet, though we do not expect it to differ significantly from the latter. SMTP

and POP3 were considered to be good examples of machine-driven interactive behaviour,

although with SMTP, data is pushed from the client to the server, and with POP3, it is

pulled by the client.

Some other applications that would have been nice to include, such as peer-to-peer

filesharing, streaming media, and online games, were rejected for this experiment simply

because they were not sufficiently prevalent in enough data sets, which was a criterion we

chose to attempt to get sample sets that represented a variety of network contexts. Although

some such traffic could be found in most of the data sets, different applications were seen

in different datasets, adding an additional complication that we felt was best left for future

work.

5.1.2 Flow attributes

Table 3.1 lists the flow attributes, defined in Chapter 3, that are used in this experiment. We

describe here in more detail some of the particular attributes chosen, and the parameters

103

Parameter set λmax len (bytes) λmin delay (ms) λmax delay (ms)
1 20 10 2000
2 60 25 3000
3 200 250 30000

Table 5.1: Parameter sets for small packet heuristics

Parameter set λmin len (bytes) λmax delay (ms)
1 225 50
2 1000 50
3 1460 50
4 225 250
5 1000 250
6 1460 250

Table 5.2: Parameter sets for large packet heuristics

used for those that require them.

We arbitrarily chose to try three different maximum datarate attributes, computed on

time granularities of 1s, 5s, and 30s. These values were approximated, as the tool is not yet

capable of computing these values over all possible time intervals. The approximation was

done by sampling the datarate using a sliding window of sizet at fractional intervals oft5;2

for example, to approximate a maximum datarate computed over a time window of size 5s,

we took the maximum of the datarates computed over the time windows[0,5), [1,6), [2,7),

and so on.

For thedir dataflow attribute, we need to account for the fact that the value could be

undefined if the denominator (that is, the payload byte countof the reverse side) is 0. We

take the simple approach of adding one to each the numerator and the denominator prior

to computing the value of the attribute; this seemed to be a reasonable approach to avoid

disturbing the values excessively while avoiding the problem of undefined values.

The parameter values used for the small and large packet heuristics are given in ta-

2The choice to use 5 as the fraction was also arbitrary.

104

bles 5.1 and 5.2, respectively. For small packet heuristics, we used three parameter sets

taken from the works of Zhang and Paxson [ZP00] and DeMontigny-LeBoeuf [DL05]:

parameter set 1 was the parameters from the former, parameter set 2 was the keystroke-

interactive metrics from the latter, and parameter set 3 wasthe command-line interactive

metrics from the latter.3 For the large packet heuristics, we simply used all combinations

of three minimum packet lengthsλmin len and two maximum delaysλmax delay. The param-

etersλmin len = 225 andλmax delay = 50 were taken from DeMontigny-LeBoeuf’s work;

λmin len = 1460 was chosen to only consider those packets which carry the typical maxi-

mum amount of data for an application using TCP over the Internet,4

For both the small and large packet heuristics, it is possible to encounter undefined

values. For the small packet heuristics, these can occur if aflow contains no nonempty

packets, no small or empty packets, or no consecutive small packets, where the definition

of small depends on the parameters of the heuristic in question. For large packet heuristics,

they can occur if there are no nonempty packets or no consecutive large packets. These

cases are discussed in more detail in section 3.3.5, and by the arguments given there, the

most reasonable way to deal with undefined values for those attributes is to consider them

to be equal to 0.

Flag proportion attributes were computed for the URG, ACK, RST,PSH, SYN, and FIN

flags; the name of the attribute was created accordingly (e.g. f lag pshfor the proportion

of packets with the PSH flag). We could have also extended thisto include combinations

3Note that DeMontigny-LeBoeuf’s attributes were designed to identify SSH as well as Telnet data, so our
experiment, which does not include SSH, is not really a fair evaluation of these parameters.

4The maximum total packet size for a route over the Internet that contains an Ethernet link is 1500 bytes;
an IP header with no extensions is 20 bytes [Pos81a], as is a TCP header with no options [Pos81b], which
leaves 1460 bytes for the TCP payload.

105

of flags, e.g.f lag pshack for all packets with both the PSH and ACK flags set. However,

the single-flag heuristics were considered to be sufficient at this time.

5.1.3 Data sets and samples

In order to evaluate flow attributes, it is first necessary to have network traffic on which to

compute the attributes. The data used for this experiment was taken from historical network

traces from various sources, obtained from the National Laboratory for Applied Network

Research (NLANR) [NLA06].5 This section describes the data sets selected and how we

selected samples from them; a more thorough discussion of our preparation of the sample

data is presented in Appendix A.

For this experiment, we used data from eight of the NLANR datasets: ABILENE-II,

ABILENE-III, ABILENE-V, Auckland-IV, Auckland-VI, Leipzig-I, Leipzig-II, and NZIX-

II, as described below. Table 5.3 gives an overview of the data sets used in chronological

order. Note that the volume of data in the table indicates thesum of the sizes of the network

traces from which we obtained samples, which is often less than the full dataset.

The data was from a variety of different network environments, though it is predom-

inantly from research-affiliated institutions, due to the fact that such institutions were

NLANR’s primary partners. The ABILENE and NZIX data sets are from network back-

bone links. The ABILENE data sets are from the Abilene research backbone administered

by the Internet2 consortium; the ones used were captured at various times between August

5NLANR was supported by funding from the National Science Foundation (cooperative agreement nos.
ANI-0129677 (2002) and ANI-9807479 (1998)), but has (as of July 2006) been discontinued; its data, hard-
ware, and website are being maintained by the Cooperative Association for Internet Data Analysis (CAIDA)
at the University of California’s San Diego Supercomputer Center.

106

Data set timeframe Source
NZIX-II Summer 2000 New Zealand ISP peering exchange point

Auckland-IV Winter 2001 University of Auckland Internet uplink
Auckland-VI Spring 2001 University of Auckland Internet uplink
ABILENE-II Autumn 2002 ABILENE research backbone

Leipzig-I Autumn 2002 University of Leipzig Internet uplink
Leipzig-II Winter 2003 University of Leipzig Internet uplink

ABILENE-III Summer 2004 ABILENE research backbone
ABILENE-V August 2004 ABILENE research backbone

Table 5.3: Summary of NLANR data sets used

2002 and August 2004. The NZIX data set is from the New ZealandInternet eXchange,

a peering point for both public ISPs and research institutions at the University of Waikato

in New Zealand, in July of 2000. The Auckland and Leipzig datasets are from the Inter-

net uplinks of two universities. The Auckland data sets werecaptured at the University

of Auckland in New Zealand, and the Leipzig data sets were captured at the University

of Leipzig in Germany. The Auckland data sets used in this work were captured between

February and May of 2001, and the Leipzig data sets are from November 2002 and Febru-

ary of 2003.

They are also from several different points in time, as can beseen from table 5.3. Even

the most recent data is already more than two years old as of this experiment; however, as

we are interested in studying the flow attributes, we felt it was more reasonable to begin

with a wide selection of older traffic than to use a narrow selection of more recent traffic, as

we were unable to locate such a rich publically available collection of recent traffic as was

available from NLANR. We do expect that it will be necessary toestablish that observations

made on older data are still valid on current traffic.

Some of the approaches discussed in section 2.4 have also used some of these same data

107

sets. Roughan et al. [RSSD04] used the Auckland-IV data set in their work. Herńandez-

Campos et al. [HCNSJ05] performed clustering on the ABILENE-I data set, which is from

the same facility as the ABILENE traces we used, though a different link (they used data

from the Indianapolis to Cleveland link). Zander et al. [ZNA05b, ZNA05a] used three of

the same data sets we did: Auckland-VI, NZIX-II and Leipzig-II.

We downloaded in excess of 70 gigabytes of compressed network traffic from the

NLANR archive; there was far more data available in the data sets we selected, let alone

in other available data sets. We then extracted samples fromthe available data for anal-

ysis, using the methodology described in Appendix A and summarized here. We hope

that our documentation of this data, along with the data manipulation tools available with

ANTARES, will allow other researchers to easily duplicate this sample selection process,

either to obtain an independent sample set or to generate a sample set including traffic from

applications other than the ones that we have chosen.

Randomly selected samples from each NLANR data set of interest were downloaded

and converted to tcpdump [Dev06a] format, and flows of the selected applications were

extracted. One of the data sets used consisted of five-minutesamples of traces; for consis-

tency, all of the traces were divided into five-minute timeslices prior to sampling. Packets

belonging to the target applications were extracted based on TCP ports.

Having obtained trace files of the selected applications from our data sets, we then

selected samples from them, where each sample is a network flow (or possibly a partial

network flow), as defined in section 3.2. The samples were selected such that, for a given

data set, there could be at most two samples involving the same pair of network nodes; this

was to ensure that the sample set was diverse, and not strongly influenced by any particular

108

use of a given application.

We balanced our sample set by data set, time-of-day, and application. For each data set,

we selected 100 samples per application, per time-of-day period (work hours or off-work

hours).6 The exception to that was the ABILENE-III and ABILENE-V data sets, each of

which contained little or no traffic from one of the time periods; for those, we took 100

samples per application from ABILENE-III traces for off-work hours, and 100 samples

per application from ABILENE-V for work hours. Overall, we obtained 1400 samples per

application: 100 samples from each of two types of time periods from each of seven data

sets (seven, not eight, due to ABILENE-III and ABILENE-V not counting for one or the

other time period). These were chosen to encompass different network environments at

different times from 2000 through 2004, in order to minimizethe influence of misleading

uses of ports or unusual uses of the applications.

5.1.4 Training classifiers

Once we had selected a set of applications of interest, selected a set of flow attributes of

interest, and acquired an appropriate set of sample traffic,we then evaluated the power of

the flow attributes (specified in table 3.1) to discriminate between the applications in the

samples. We did this by computing the flow attributes for the sample traffic and training

a classifier on each flow attribute for discriminating between each pair of applications. In

this section, we will explain in more detail how these classifiers were trained.

Values for the selected flow attributes were computed using the Advanced Network

6We considered any traffic occurring between 8 AM and 4 PM (local time of the monitored network link)
on a non-holiday weekday to be during work hours, and all other traffic to be during off-work hours.

109

Traffic Analysis Research and Exploration Suite (ANTARES) [Fur06], a tool developed

for this research and designed to facilitate the computation of experimental flow attributes.

ANTARES is described in more detail in Chapter 4. ANTARES scans through a network

trace and aggregates packets into network flows, which are described in section 3.2. Values

for the flow attributes are computed by code attached to the aggregations and stored, then

retrieved when the network trace has been fully parsed. After these attributes were com-

puted, we used R [Dev05], a popular open-source statisticalpackage, to train the classifiers

described here. Specifically we used theglm function for general linear models with the

binomial(logit) family of link functions, which used the least squares method to train

a linear regression model using a logistic link function, described in section 2.1.2 and also

explained below.

For each pair of applications, we trained one classifier for every flow attribute. The

following discussion describes how we trained a single classifier to distinguish between

two applications,A and B, using a flow attributeX; we designated applicationA to be

the target class and the other to be the background class for the purposes of training the

classifier. The designation of the target class is arbitrary; it does not affect the outcomes.

The classes were represented by a categorical (binary) variableY, which had a value of

1 for the target class and 0 for the background class. For eachapplication, we had 1400

samples, so for each classifier, we used 2800 samples. Each sample was represented by

two values; for samplei, Xi was the value of the flow attributeX for that sample, andYi was

1 for the samples from applicationA and 0 for those from applicationB.

Before training the classifiers, however, we applied a transformation to some of the

flow attribute values for the purposes of improving the effectiveness of the regression. The

110

least squares method that we used does not perform well when some of the data points

have large numerical values, as it assigns more influence to those data points than those

with smaller values. Thus, for flow attributes that can have values exceeding 1.0, we took

the logarithm of the value before fitting the model, similar to Wright et al. [WMM04] and

Paxson [Pax94]. Unlike those approaches, we did not wish to simply disregard zero values,

so to avoid taking the logarithm of zero (which would give negative infinity), we first found

the smallest non-zero value among the sample flow attribute values, and increased all of

the sample flow attribute values by half that amount. These new values were used as the

value ofXi for those flow attributes that we needed to transform.

The addition of one-half of the smallest non-zero value prior to taking the logarithm

is based on a common practice in statistics of adding one to each (count) value prior to

performing a log transform [Bar47]; we have simply adapted itto work better with our

values, many of which range from zero to one. Adding one to a value that is between

zero and one would destroy the proportional relationship among values at the low end of

the scale; e.g. the difference between 0.01 and 0.02 is 100%,but that between 1.01 and

1.02 is less than 1%. An alternative would be to use a very small constantε; however,

using a value proportional to the smallest non-zero value means that the log-transformed

values of the zero values and the smallest non-zero values are also proportional, which

avoids large clumps of distant outliers in the transformed data. For example, if a flow

attribute had values clustered at 0, 0.25, 0.5, 0.75, and 1, our technique results in clusters

of transformed values of -3, -2, -1, -0.5, and 0, whereas using a constant value of about 2∗

10−16 (__DBL_EPSILON__, the smallest double value for the GNU implementation of C++

[GNU07]) would give transformed values of -52, -2, -1, -0.5,and 0. A more appropriate

111

constant could be found for this case, of course, but the resulting constant might not be

appropriate in other cases.

For each such classifier, we used a logistic regression modelto find a threshold onX

that best divided the samples from the two applications; we thus had to produce logit values

to use as the responding variable of the model. As discussed in section 2.1.2, logistic

regression is a form of linear regression in which the response variable is the log-odds

ratio, or logit, of an observation belonging to the target class. That is, if samplek with

an explanatory variable ofXk belongs to the target class with probabilityπk, the response

variable used for the regression is the logitπ′
i = log(πi

(1−πi)
). Due to the implementation of

this model in R, each sample was treated separately, so each probability π was either 1 or

0 (i.e.πi = Yi).7 The logit values were produced by taking the valuesYi from the samples,

scaling them to the range 0.25–0.75 (this scaling was built into R’s logistic regression

logic), and computing the logit from these probabilities asdescribed above.

With the logit values computed, the R software fit a regression line to the data. That is,

it used the iterative weighted least squares method8 to compute parametersλ1 andλ0 such

that the lineπ′ = λ1X +λ0 fit the data as closely as possible.

We then used the regression line to find the value of the flow attribute that corresponded

to a probability of 0.5 (equal to a logit value of 0) of a samplebelonging to the target class.

The probability of 0.5 was chosen because there were an equalnumber of samples in each

class for each model, so 0.5 is the probability of a given sample being in the target class in

7A more effective method would have been to bin the samples into intervals over the range of the explana-
tory variable and use the proportion of samples of the targetclass in each binj asπ j , with the midpoint of the
bin as the explanatory variableXj ; however, as we are interested in the performance of the classifiers relative
to each other rather than in absolute terms, we leave this forfuture work.

8The iterative weighted least squares method, from Dobson [Dob90], is a variant of the least squares
method described in section 2.1.2, which minimizes the distance between the regression line and the samples.

112

the absence of any other information.

The value of the flow attribute corresponding to a probability of 0.5 (with the above log

transformation of the attribute value reversed) then becomes the thresholdxt for a classifi-

cation rule, and the sign of the regression coefficientλ1 indicates whether the target class

generally has values greater than or less than the threshold. If λ1 < 0, the classification rule

is that a sample with a flow attribute valuexs such thatxs ≤ xt is classified as belonging

to the target class; ifλ1 ≥ 0, a sample withxs ≥ xt is classified as belonging to the target

class. In the degenerate case whereλ1 = 0, the classifier would not be useful.

With the classification algorithm defined, we estimated the error rate of the classifiers

based on the model using 10-fold cross-validation, as described in section 2.1.1. The selec-

tion of samples was stratified to ensure that the classes stayed balanced; i.e. each partition

of the sample data had equal numbers of samples from target class and the non-target class.

This experiment allows us to “try out” some flow attributes that we expect to be in-

teresting, to see how useful they are for discriminating among a small set of common

applications. We do not claim that this is exhaustive or conclusive in any way; the goal of

the experiment was primarily as a test case for ANTARES and ourdata, and secondarily to

provide a preliminary evaluation of these flow attributes. We also do not expect excellent

error performance, as we are only using a single flow attribute at a time; if we wished to

train high-accuracy classifier, we could use multiple attributes at a time, but doing it this

way allows us to study the attributes themselves. Also, we train our classifiers on pairs

of applications, rather than trying to distinguish one application from all the others; this

is because we do not wish to assume a priori either that each application is in fact distinct

from all the others, or to assign them into classes before classifying them.

113

5.2 Results

This section describes our analysis of the data generated bythe above procedure. Our

primary goal was to demonstrate ANTARES and the flow attributes described in table 3.1,

and our secondary goals were to get a general sense of how useful the various attributes are

for distinguishing between a small set of application and toexplore whether it would be

feasible to establish application behaviours using the NLANR data sets.

Implementing the flow attributes using ANTARES was a straightforward task, though

this is at least partially due to the fact that it was developed with many of these attributes in

mind. The graphs displayed in this section were produced using the R statistical package

[Dev05] to process data produced by ANTARES.

The data that our procedure created is a three-dimensional matrix of classifier error

rates, where two of the axes are applications and the third isflow attributes, so that each cell

is the error rate of a classifier trained to distinguish between a particular pair of applications

using a particular flow attribute. We have included this datain Appendix B as a set of tables.

We present in this section three results from our experimentation. First, we compared

the data produced by ANTARES to previous results by Roughan et al. [RSSD04], and

found that our data behaved similarly to theirs, but also that their method of averaging

flows probably yielded optimistic results. We then used the error rates that we produced to

evaluate potential parameters for large and small packet heuristics, and found that in gen-

eral, a given heuristic could be used for different tasks, but that the most effective parameter

values could be quite different for each task. Specifically,the small packet heuristics were

useful for distinguishing command-shell interactive behaviour from other types of traffic

114

with one set of parameters, and for distinguishing command-shell and machine-driven in-

teractive behaviour from bulk data transfer with another set of parameters. Finally, we

looked at the error rates and identified that they correspondto our expectations of applicat-

ion behaviours; the two applications that we expect to exhibit bulk data transfer behaviour

were far easier to distinguish from other applications thanfrom each other, and likewise

for Telnet and FTP-control, those that we expect to exhibit command-shell interactive be-

haviour, and for SMTP and POP3, those we expected to exhibit machine-driven interactive

behaviour.

5.2.1 Comparison with Roughan et al.

Among the flow attributes, we consider first the two found mostuseful by Roughan et al.

[RSSD04], described in section 2.4: duration and mean packetlength. We found that our

data was qualitatively very different from theirs until we applied a transformation to our

data that mimicked their methodology of using daily aggregates; with that transformation,

our data much more closely resembled theirs. We conclude that their use of daily aggre-

gates may mean that the results of their classification experiment are not applicable for

classifying individual flows, though it may be a useful technique in studying the behaviour

of the applications themselves.

We examine the data computed by ANTARES in figure 5.1; for each application we

randomly selected 70 flows and, for those, plotted mean packet length against duration.9

We then compared this data to the corresponding figure from Roughan et al.’s [RSSD04]

9We chose to use 70 flows for comparison with Roughan et al.’s [RSSD04] work, which used 70 data
points per application.

115

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Subsampled mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Subsampled mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Subsampled mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Subsampled mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Subsampled mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Subsampled mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

POP3
FTP−data
FTP−ctrl
Telnet
SMTP
HTTP

Figure 5.1: Sampled flows from NLANR traces by mean packet length and duration

work, reproduced here as figure 5.2, which shows mean packet length vs. duration for

aggregated daily flows for 70 days.10 The applications used are not the same, but FTP-

data, HTTP, and Telnet (ftp-data, www, and telnet in figure 5.2) are common to both. Note

that there is significant discrepancy between the two figures.

We explain that discrepancy by plotting points based on averaging our own data, to

approximate the aggregate flows used by Roughan et al. [RSSD04]; the results of this

transformation are shown in figure 5.3. By averaging the data,we mean that each data

point in that figure is computed by selecting 20 sample flows (without replacement) and

taking the mean of the durations and the mean of the mean packet lengths of those sample

flows as the duration and mean packet length of the averaged data point. We felt that this

10Each data point in the figure from Roughan et al. is based on averaging out all of the flows for a given
application over an entire day.

116

Figure 5.2: Aggregate flows from Roughan et al. [RSSD04] by meanpacket length and
duration (Figure 2 from [RSSD04])

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Aggregate mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Aggregate mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Aggregate mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Aggregate mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Aggregate mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0
10

00

Aggregate mean packet length vs duration

duration

m
ea

n_
pk

t_
le

n

POP3
FTP−data
FTP−ctrl
Telnet
SMTP
HTTP

Figure 5.3: Aggregate flows from NLANR traces by mean packet length and duration

117

was an appropriate way to simulate their data points, each ofwhich was the mean value

over all flows seen in a single day. For our figure, the durations, particularly of the telnet

sessions, were much shorter, partially because of our 5-minute timeslicing discussed in

section 5.1.3. Our mean packet lengths are also somewhat lower, but the general clusters

for the three applications we have in common with theirs (FTP-data, Telnet, and HTTP) are

in similar places in figure 5.3 as in figure 5.2.

Referring back to the individual flows in figure 5.1, we can see that the attributes of the

flows are more variable than those of the averaged data points, suggesting that classifying

aggregate flows may be less difficult than classifying individual flows. However, since we

are focused on evaluating flow attributes rather than on classifying applications, our quanti-

tative results have no bearing on their results. We simply suggest that the performance of a

classifier based on averaged data points such as those used byRoughan et al. [RSSD04] and

those in figure 5.3 is not reflective of the performance of thatclassifier for distinguishing

between individual flows. However, it appears that the averaging may be useful in studying

and defining application behaviours, as it minimizes the effects of outliers and appears to

focus on the “normal” behaviour of traffic for the application; we leave this possibility to

be explored as future work.

5.2.2 Parameter selection

We express the small and large packet heuristics, defined in section 3.3.5, in terms of pa-

rameters; we describe here an evaluation of the effectiveness of different values of these

parameters for distinguishing between the applications that we studied. We did not attempt

118

to optimize them for a particular task, such as distinguishing between bulk data transfer

and command-shell interactive behaviour; such an optimization would be done more ef-

fectively by using a feature selection algorithm11 to choose the best parameter set, as we

wanted to see if different parameter sets were appropriate for different classification tasks,

rather than simply finding the best parameter set for one particular task. We found that

the small packet heuristics were able to distinguish between bulk data transfer and other

traffic with varying degrees of success with any of the parameter sets we used, and that they

were able to distinguish between command-shell interactive behaviour and machine-driven

interactive behaviour with certain parameters, while large packet heuristics were best at

distinguishing bulk data traffic from other types for the parameters we used.

In the case of small packet heuristics, the parameters are the maximum size of a packet

to be considered “small” (λmax len), and the minimum and maximum inter-packet delay

(λmin delay andλmax delay, respectively) of packets of interest (to focus only on packets that

have timings consistent with human keystroke or command-line entry). For large packet

heuristics, the parameters are the minimum length of a “large” packet (λmin length), and the

maximum inter-packet delay between packets (λmax delay, to focus on packets with timings

consistent with a host streaming data quickly over a network).

We performed an evaluation of several parameter sets for small and large packet heuris-

tics, listed in tables 5.1 and 5.2, on classification tasks aslisted in table 5.4, and found

that certain parameters consistently gave better results than the rest for large packet heuris-

tics, whereas the most effective parameters for the small packet heuristics depended on the

11A feature selection algorithm takes a set of candidate features for a labelled data set and determines the
subset of those that is most effective for classifying the data, using a given machine learning algorithm.

119

1 POP3 vs. FTP-data 9 FTP-data vs. HTTP
2 POP3 vs. FTP-control 10 FTP-control vs. Telnet
3 POP3 vs. Telnet 11 FTP-control vs. SMTP
4 POP3 vs. SMTP 12 FTP-control vs. HTTP
5 POP3 vs. HTTP 13 Telnet vs. SMTP
6 FTP-data vs. FTP-control 14 Telnet vs. HTTP
7 FTP-data vs. Telnet 15 SMTP vs. HTTP
8 FTP-data vs. SMTP

Table 5.4: Classification tasks

context. We used a fairly small set of parameters for each type of heuristic, and our appli-

cation set was also limited,12 so we do not consider these results definitive by any means.

However, they do provide some insight into the ways in which the applications differ.

For large packet heuristics, parameter sets 1 (λmin len = 225, λmax delay = 50) and 4

(λmin len = 225,λmax delay= 250) proved to be the most useful; in general, the minimum

packet size was far more important than the maximum delay. Also, we noted that the large

packet heuristics seemed to be more useful when used on the reverse direction half-flows

(from server to client). The exception to this was HTTP, for which l p betaon the forward

direction half-flows was fairly useful (perhaps because HTTP requests are significantly

larger than client-side requests for the other applications we considered). Figure 5.4 shows

the error rates of all six parameter sets, as listed in table 5.2 in section 5.1.2, used for

various classification tasks as listed in table 5.4; there are two lines per parameter set, the

lower line being the minimum error rate obtained by large packet heuristics with those

parameters, and the higher line being the mean error rate of those heuristics.13 The lines

for parameter sets with the same value forλmin len (1 and 4, 2 and 5, 3 and 6) generally

12In particular, a more thorough examination should also include at least streaming media and peer-to-peer
filesharing, as we expect those to have packet lengths between those of the interactive and mail applications
and less than the bulk data transfer applications that we consider here.

13All heuristics for a given parameter set are considered in these measurements, i.e.l p alpha, l p beta,
andl p gammaon each of the forward and reverse half-flows.

120

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for large packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

parameter set 1
parameter set 2
parameter set 3
parameter set 4
parameter set 5
parameter set 6

Figure 5.4: Mean and minimum error rates for large packet heuristics by parameter set

overlay each other, illustrating that for each distinctλmin len parameter, both choices for

λmax delay perform equally well on the applications we examined.

The small packet heuristics were more varied, in that none ofthe parameter sets were

better than the others across all of the classification problems; the performance of the pa-

rameter sets depended on the classification task being attempted. Figure 5.5 shows the

performance of the various heuristics using each of the three parameter sets listed in ta-

ble 5.1 in section 5.1.2 on various classification tasks as listed in table 5.4; again the mean

121

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for small packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for small packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for small packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for small packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for small packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

Relative error rates for small packet heuristic parameters

Classification task

m
in

/m
ea

n
er

ro
r

ra
te

parameter set 1
parameter set 2
parameter set 3

Figure 5.5: Mean and minimum error rates for small packet heuristics by parameter set

and minimum error rates for each parameter set across all of the small packet heuristics

are given. Parameter set 1 (λmax len = 20,λmin delay= 10ms,λmax delay= 2s) did better on

classification tasks 2, 3, 4, 10, and 13 (POP3 vs. FTP-control, POP3 vs. Telnet, POP3

vs. SMTP, FTP-control vs. Telnet, and Telnet vs. SMTP) – distinguishing between appli-

cations that generally used many small packets, whereas theother parameter sets (param-

eter set 1 wasλmax len = 60,λmin delay = 25ms,λmaxdelay = 3s, and parameter set 2 was

λmax len = 200,λmin delay= 250ms,λmax delay= 30s) performed similarly to each other, and

122

generally better than parameter set 1 on distinguishing between applications with many

small packets and applications with larger packets. Of the two, parameter set 3 generally

did slightly better. Unsurprisingly, none of the small packet heuristics performed particu-

larly well at classification task 9, distinguishing betweenFTP-data and HTTP.

As we mentioned, we do not consider this an exhaustive evaluation by any means; our

results are only valid for the small set of applications we consider, and a proper evaluation

should use many more candidate parameter values. However, with the proper data set and

values, implementing all of the flow attributes for the candidate parameters with ANTARES

would be straightforward.

5.2.3 Distinguishing behaviours

We also examined the results of the classifiers, which are presented in Appendix B; we

will summarize and illustrate here some of the more interesting observations. We present

the error rates in tabular form in the appendix, with coloursto bring out patterns in them;

we found this to be a useful technique for identifying general trends, and we explain in

the appendix how to interpret the data. For many pairs of applications, there were at least

a few flow attributes that could distinguish them with a combined error rate of 0.10 or

better. In general, we found that the error rates were consistent with our expectations; the

most difficult pairs of applications to distinguish betweenwere those that we considered to

represent the same application behaviour, particularly those representing bulk data transfer

(HTTP and FTP-data) and command-shell interactive behaviour (Telnet and FTP-control).

SMTP and POP3, representing machine-driven interactive behaviour, were not difficult to

123

distinguish from one another, but that was primarily due to the fact that they operate in

different directions, SMTP pushing the data from client to server and POP3 pulling it from

server to client.

Telnet and FTP-control, the applications representing command-shell interactive be-

haviour, are difficult to distinguish. The three flow attributes which gave the best combined

error rates for distinguishing between the two weremeannonempty payload len f wd,

meanpayload len f wd, and f lag syn, which had error rates of 0.140, 0.163, and 0.214,

respectively. The first two attributes are quite similar, sowe disregard the second here. It

is somewhat counterintuitive that the proportion of SYN flags should be useful, but since

there are usually a small number of SYN flags,14 it may be used as a proxy for the length

of the session.15 Figure 5.6 and figure 5.7 show these attributes as box-and-whisker dia-

grams for each application.16 As can be seen from the figures, there is a significant overlap

between the two.17

The best flow attributes to distinguish between FTP-data andHTTP took advantage of

the directionality of the data. For FTP-data, the data is almost exclusively in one direction,

and with HTTP, requests are sent in one direction, and responses in the other. The best

flow attribute was themeannonemptypayload len f wd, as with Telnet and FTP-control,

shown in figure 5.6, with a combined error rate of 0.084. This is probably because there is

14There are normally two SYN packets for a TCP connection, one from each node, not accounting for
resent packets or SYN packets that were not within the 5-minute timeslice

15Though this, of course, does not explain whypkt countgave a worse error rate of 0.266.
16A box-and-whisker diagram, or boxplot, plots data by drawing a line at the median value, a box around

the middle half of the data (from the first quartile to the third quartile), and “whiskers” extending to the
extreme points; outliers not included in the whiskers are indicated with circles. Such diagrams have been
found to be useful for summarizing multiple features of a data sample [Dev95]. Figures 5.6 and 5.7 are
examples of such plots.

17There is also significant overlap among other pairs of applications in these figures, but there were other
flow attributes that could distinguish between those. The significant point here is that these two flow attributes
were the most effective at distinguishing between Telnet and FTP-control.

124

POP3 FTP−data FTP−ctrl Telnet SMTP HTTP

0
50

0
10

00
15

00

Distribution of mean_nonempty_payload_len_fwd by application

Figure 5.6: Distribution by application ofmeannonemptypayload len f wd

very little data in the forward direction of most FTP-data flows; if the direction were not

known in advance, this one attribute would be less powerful.Having said that, using values

from both directions together should still be useful even when the client-to-server direction

is not known.18

SMTP and POP3 were similarly easy to distinguish from one another by virtue of the

18Preliminary experiments suggest that in such a case, the twoclasses are not linearly separable (i.e. cannot
be separated with a single line), with one class “bracketed”by the other – a classification algorithm likek-
nearest-neighbour, which does not require that the data be linearly separable, might be more effective.

125

POP3 FTP−data FTP−ctrl Telnet SMTP HTTP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution of flag_syn by application

Figure 5.7: Distribution by application off lag syn

direction of the data. With SMTP, the bulk of the data is sent from the client to the server,

whereas with POP3, most of the data is sent from the server to the client. This is clearly

visible in figure 5.6. We expect that it would be more difficultto distinguish between the

two applications if they were re-oriented so that the data flow was in the same direction.

126

Chapter 6

Conclusions and future work

In this thesis, we document ANTARES, a tool for computing flow attributes and tools for

converting and preprocessing network data sets, and we perform some basic analysis using

our tool, to demonstrate the range of flow attributes that it can compute and to illustrate the

concepts of flow attributes and application behaviours. We describe here the conclusions

that we have drawn based on this investigation, and describethe numerous avenues that we

see for future work on traffic classification.

6.1 Conclusions

We used our tool to implement a range of flow attributes from the literature, and found that,

although the interface is not particularly user-friendly,a knowledgeable user can easily

build flow attributes using its powerful mechanisms. The performance leaves much to be

desired, but we expect that it can be significantly improved with a moderate amount of

effort. We also found that specifying the flow attributes using the notation presented in this

127

thesis and translating those notations to the syntax of the tool were both straightforward,

and we expect that one could implement a parser to do that, making ANTARES easier to

use than it is now.

We compared our measurements to those of Roughan et al. [RSSD04], and found that

ours were similar to theirs, but only when we averaged our data points to simulate their

use of values based on daily averages. We noted that such a treatment of the data would

seem to make it easier to distinguish between applications,and thus we questioned whether

their classification results were overly optimistic because of this treatment. We note, how-

ever, that such a treatment may be appropriate for studying general patterns of application

behaviour, and should be considered as a potential tool in itself.

We evaluated a small set of parameters for small and large packet heuristics, and found

that while two similar parameter sets were consistently themost useful for the large packet

heuristics, the most useful parameter set for the small packet heuristics depended much

more on the applications to be discriminated. We also noted that for large packet heuristics,

the timing-based criteria we used were not nearly as significant as the packet-length-based

criteria.

We found that it was far easier to distinguish between intuitively dissimilar applications,

such as between HTTP and Telnet, than to distinguish betweenintuitively similar applicat-

ions, such as between HTTP and FTP-data or between Telnet andFTP-control. This is,

of course, in the context of the flow attributes that we used, and it is entirely possible that

there are other, far more effective, flow attributes, for these purposes. We feel there is far

more work to be done in this area, both in searching for more effective flow attributes and

for exploring application behaviours, which is why we have focused on building tools in

128

support of these efforts.

We believe that in order to accurately classify traffic from network applications, those

applications will have to be expressed in terms of application behaviours that can be identi-

fied from network traffic using flow attributes. It is our hope that the notation, the tool, and

the data pre-processing tools we have made available will facilitate an exploration of these

attributes and behaviours that will lead to a far greater understanding of them and to a far

more effective approach to application classification.

6.2 Future work

We see this thesis as supporting the development of behaviour-based network application

classification, but there is still a great deal of work to be done, even just to show that such

an approach is feasible. Here, we will first discuss the work left to be done in the short term

to improve the tools we have developed, and then we will describe the way that we believe

behaviour-based classification can be realized.

For ANTARES, there are still several important improvementsto be made, and rigorous

testing should be done. The interface needs to be finished by creating a parser that can

take our notation for flow attributes and translate it into code to drive the computation

of those attributes in the tool. Its performance must also beaddressed, particularly with

respect to those attributes that use a clock, as the introduction of that mechanism caused a

significant slowdown. Also, it requires more attribute classes to support the development

of other promising attributes from the literature, such as DeMontigny-LeBoeuf’s [DL05]

conversationality heuristics.

129

The notation described in this thesis needs to be developed into a programming lan-

guage by creating a grammar that is appropriate to a text configuration file (as opposed to

the grammar of the notation, which is more appropriate to LATEXmathematical typesetting)

and constructing a domain model to provide its semantics; the domain model will depend

on the flow engine being used. Using the five-tuple flow engine described in this thesis as

a partial example, the top-level concept could be for theflows, which would be an aggre-

gate of the different flows encountered in parsing a trace file. Each flow in that aggregate

would consist of akeycontaining the fields of the five-tuple (protocol, source IPv4 address,

destination IPv4 address),attributescorresponding to the flow attributes, both built-in and

user-defined, andsubflowsrepresenting the two single-directional flows making up thebidi-

rectional flow. The grammar and domain model would then be used to create a parser that

could take a text configuration file containing attribute definitions and use that to create the

templates that define the attributes to be computed.

More rigorous testing of ANTARES should be done to ensure thatthe calculations are

correct; in addition to comprehensive unit testing, systemtesting should be performed by

generating network traffic with known characteristics thatcan be measured by ANTARES.

Existing network traffic generators can probably be leveraged in this process, but these are

likely to require modifications. Many of the flow attributes of network traffic that AN-

TARES considers appear to be outside of the scope of traditional network traffic analysis

and network traffic generation, so we expect that proper testing will require either signif-

icant modifications to existing traffic generation tools, orthe development of new traffic

generation tools.

For behaviour-based network application classification asa whole, there are three main

130

components that will be needed: meaningful flow attributes,models of application be-

haviours in terms of the flow attributes, and models of applications in terms of application

behaviours. Meaningful flow attributes and application behaviours are those which reflect

the purpose for which the network is being used. A particularapplication behaviour should

correspond to a distinct type of activity; examples might include bulk data transfer, in-

teractive command shell activity, streaming media, gaming(i.e. synchronization of virtual

environments), polling of a remote resource (e.g. of an email account), or automated trans-

actions (e.g. sending an e-mail via SMTP). A model of an application in terms of such

behaviours could take the form of a finite state machine, or a more complicated construct.

The most difficult part is likely to be finding the best flow attributes and application

behaviours to use; we expect this to be an iterative process of finding flow attributes that

represent a proposed set of application behaviours, then inspecting the samples that do

not fit that set of behaviours, and revising the set of behaviours appropriately. That process

would seem to require the use of data sets that include the payload data, to better understand

those outliers; however, we suggest that a broader set of data without payload would play a

crucial role in evaluating the generality of these attributes and behaviours, as we expect it

will continue to be difficult for a researcher to obtain data sets with payload from network

environments other than their own.

We also believe that the process of developing flow attributes and application behaviours

should use fragments of flows rather than full flows, as we expect full flows from many

applications to contain multiple behaviours. One interesting topic of research would be

techniques for fragmenting flows; for instance, flows could be fragmented adaptively by

finding change points in various flow attributes.

131

Application behaviours spawned by this process can be used as the basis of models

of applications themselves. A simple approach would be to take flows belonging to a

certain application, break them down into fragments, labelthose fragments using a model

of application behaviours, and use them to infer a model of the application (e.g. “Telnet

consists of proportionx of bulk data transfer, proportiony of interactive command shell

behaviour, and proportionz of inactivity, where 0≤ x≤ 0.2, 0≤ y≤ 0.95, 0≤ z≤ 0.15,

andx+ y+ z = 1”). A more complex approach would be to define each behaviouras a

state in a finite state machine, and to learn the transitions between the states. These models

that could then be used to classify network traffic by application, and the results of such

classifications could be evaluated.1

An alternate approach that has been suggested would be to create generative models,

using queueing theory [Kle75, GH85] for example, to simulate traffic from particular app-

lications, then compare the traffic generated by these models with the traffic observed on

actual networks. This would seem to bypass application behaviours, but what we would

expect to happen is that for a given application, several distinct models (corresponding to

distinct application behaviours) would be required to generate all of the traffic for that app-

lication, and that those models could be reused between applications that exhibit similar

behaviours. We agree that this is certainly a valid approach, and could probably be used in

conjunction with the observational approaches described above.

Further work is required to build a better understanding of the domain of possible flow

attributes. In Chapter 3, we presented flow attributes divided into classes, but this was

1Ideally these would be evaluated using techniques such as 10-fold cross-validation for more accurate
results, and the terms used to report the results, such as accuracy or error rate, would be clearly defined.

132

not a rigorous treatment, it was merely for organizational and conceptual purposes. We

suggest that a more comprehensive treatment with concrete criteria would be useful for

understanding the domain. In addition to the type of information on which an attribute is

based (e.g. time, packet lengths, data volume), another criterion that could be used is the

level of the information (packet-level, flow-level, connection-level, intra-flow, multi-flow)

used by Roughan et al. [RSSD04], or the way in which it is computed (e.g. mean, sum,

minimum/maximum, heuristic).

Evasion is a major issue that will also need to be addressed explicitly. Our intuition

is that a system using a variety of complementary flow attributes will be more difficult to

evade than one that uses only a few flow attributes, but there is much room for work in

determining how to select sets of attributes that complement one another. The example

given earlier was that of packet length and packet count; if an attacker having a certain set

amount of data to send tries to evade detection by sending smaller packets, they will have to

send more packets. Some mechanism for quantifying these relationships will be needed, in

order to use “resistance to evasion” as a criterion in an algorithm that searches for optimal

feature sets of flow attributes.

There is also a great deal of work that could and should be donein visualization using

these flow attributes, which will be vital in support of this work. As we discussed in Chap-

ter 4, the ANTARES tool was designed with the possibility of being used for interactive

traffic analysis, along the lines of Wireshark [Ct06], but focused on flow attributes rather

than on parsing payload. We present classifier error rates intables in Appendix B, colour-

ized for readability, but we feel there is a great deal of roomfor improvement in displaying

such information in a more easily usable format. Hernández-Campos et al. [HCNSJ05], for

133

example, developed techniques for visualizing the resultsof their clustering approaches;

tools based on these and other techniques will likely be veryuseful in this field.

134

Chapter 7

References

[Alv04] H. Alvestrand. A Mission Statement for the IETF. RFC 3935 (Best Current
Practice), October 2004.

[Aut06] Internet Assigned Numbers Authority. Port numbers. Web resource,
November 2006. http://www.iana.org/assignments/port-numbers, last ac-
cessed Nov/2006.

[Bar47] MS Bartlett. The Use of Transformations.Biometrics, 3(1):39–52, 1947.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –
HTTP/1.0. RFC 1945 (Informational), May 1996.

[BP04] Kevin Borders and Atul Prakash. WebTap: Detecting covert web traffic. In
Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS ’04), pages 110–120. ACM Press New York, NY, USA, Octo-
ber 2004.

[cBP95] k. claffy, H. W. Braun, and G. Polyzos. A parameterizable methodology for
internet traffic flow profiling. IEEE Journal on Selected Areas in Communi-
cations, 13(8):1481–1494, October 1995.

[CR06] M. Collins and M. Reiter. Finding peer-to-peer file-sharing using coarse
network behaviours. InProceedings of the 11th European Symposium on
Research in Computer Security, volume 4189/2006, pages 1–17. Springer
Berlin/Heidelberg, September 2006.

[Ct06] G. Coombs and the Wireshark Development Team. Wireshark. Software
package, available online, September 2006. http://www.wireshark.org, last
accessed Sept/2006.

[Dev95] J. L. Devore. Probability and Statistics for Engineering and the Sciences.
Duxbury Press, 4th edition, 1995.

[Dev05] R Development Core Team.R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2005.
ISBN 3-900051-07-0.

135

[Dev06a] TCPdump Development Team. TCPdump. Software package, available on-
line, September 2006. http://www.tcpdump.org, last accessed Sept/2006.

[Dev06b] Wireshark Development Team and User Community. Wireshark
wiki: Ethernet (IEEE 802.3). Web resource, November 2006.
http://wiki.wireshark.org/Ethernet, last accessed Nov/2006.

[DL05] A. DeMontigny-LeBoeuf. Flow attributes for use in traffic characterization.
Technical report CRC-TN-2005-003, Communications Research Center, In-
dustry Canada, December 2005.

[DL06] A. DeMontigny-LeBoeuf. Personal communication, September 2006.

[DO01] T. Dunigan and G. Ostrouchov. Flow characterizationfor intrusion detection.
Technical Report TM-2001/115, Oak Ridge National Laboratory, November
2001.

[Dob90] A.J. Dobson.An Introduction to Generalised Linear Models. Chapman &
Hall, 1990.

[EBR03] J. P. Early, C. E. Brodley, and C. Rosenberg. Behavioral authentication of
server flows. InProceedings of the 19th Annual Computer Security Applicat-
ions Conference (ACSAC), pages 46–55, December 2003.

[EKMV04] C. Estan, K. Keys, D. Moore, and G. Varghese. Buildinga better NetFlow.
In Proceedings of the 2004 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, pages 245–256. ACM
Press New York, NY, USA, 2004.

[EV03] C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice.ACM Transactions
on Computer Systems (TOCS), 21(3):270–313, August 2003.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817.

[fIDAC06] Cooperative Association for Internet Data Analysis (CAIDA).
CoralReef. Software package, available online, November 2006.
http://www.caida.org/tools/measurement/coralreef/, last accessed Nov/2006.

[Fra94] J. Frank. Artificial intelligence and intrusion detection: Current and future di-
rections. InProceedings of the 17th National Computer Security Conference,
October 1994.

[Fur06] T. Furlong. ANTARES project page. Software package,available online,
December 2006. http://antares-net.sourceforge.net/.

136

[GH85] D. Gross and C.M. Harris.Fundamentals of queueing theory. John Wiley &
Sons, Inc. New York, NY, USA, 1985.

[GNU07] GNU. The gnu compiler collection. Software package, available online, 2007.
http://gcc.gnu.org/, last accessed Jan/2007.

[HCNSJ05] F. Herńandez-Campos, A. B. Nobel, F. D. Smith, and K. Jeffay. Understand-
ing patterns of TCP connection usage with statistical clustering. In Proceed-
ings of the 13th International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS), pages 35–44,
September 2005. Atlanta, GA.

[HDL+90] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wol-
ber. A network security monitor. InProceedings of the 1990 IEEE Symposium
on Research in Security and Privacy, pages 296–304, May 1990.

[Hei93] Juha Heinanen. Multiprotocol Encapsulation over ATM Adaptation Layer 5.
RFC 1483 (Proposed Standard), July 1993. Obsoleted by RFC 2684.

[HPK01] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Eva-
sion, traffic normalization, and end-to-end protocol semantics. InProceedings
of the 2001 USENIX Security Symposium, 2001.

[Hug07] E. Hughes. Qcap. Software package, available online, 2007.
http://qcap.sourceforge.net, last accessed Jan/2007.

[IUKB +04] M. Izal, G. Urvoy-Keller, E.W. Biersack, P. Felber, A. Al Hamra, and
L. Garces-Erice. Dissecting BitTorrent: Five Months in a Torrent’s Life-
time. InProceedings of the Passive and Active Measurement workshop (PAM).
Springer, 2004.

[Kle75] L. Kleinrock. Queueing systems. Vol. 1, Theory. Wiley, 1975.

[Kle01] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),
April 2001.

[KPF05] T. Karagiannis, K. Papagiannaki, and M. Faloutsos.BLINC: Multilevel traf-
fic classification in the dark.ACM SIGCOMM Computer Communication
Review, 35(4):229–240, 2005.

[Kre06] C. Kreibich. Netdude. Software package, available online, September 2006.
http://netdude.sourceforge.net, last accessed Sept/2006.

[LHF+00] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Das.The
1999 DARPA off-line intrusion detection evaluation.Computer Networks,
34(4):579–595, 2000.

[MC03] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection.In Proceedings of
Recent Advances in Intrusion Detection (RAID), pages 220–237, 2003.

137

[McH00] J. McHugh. The 1998 Lincoln Laboratory IDS evaluation (a critique). In
Proceedings of Recent Advances in Intrusion Detection, pages 145–161, 2000.

[MR96] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Standard),
May 1996. Updated by RFCs 1957, 2449.

[MZ05] A. W. Moore and D. Zuev. Internet traffic classification using Bayesian analy-
sis techniques. InProceedings of the ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, pages 50–60.
ACM Press New York, NY, USA, 2005.

[NA06] T. T. T. Nguyen and G. Armitage. Training on multiple sub-flows to optimise
the use of machine learning classifiers in real-world IP networks. In Pro-
ceedings of the 31st IEEE Conference on Local Computer Networks (LCN),
November 2006. Tampa, Florida, U.S.A.

[NLA06] NLANR. Main project page. Web resource, November 2006.
http://www.nlanr.net/, last accessed Nov/2006.

[NWK85] J. Neter, W. Wasserman, and M. H. Kutner.Applied Linear Statistical Models.
Richard D. Irwin, Inc., Chicago, 1985.

[Obj07] Object Management Group. Uml resource page. Web resource, 2007.
http://www.uml.org/, last accessed Jan/2007.

[Ost06] S. Ostermann. tcptrace. Software package, available online, November 2006.
http://jarok.cs.ohiou.edu/software/tcptrace/, last accessed Nov/2006.

[Pax94] V. Paxson. Empirically derived analytic models of wide-area TCP connec-
tions. ACM Transactions on Networking, 2(4):316–336, August 1994.

[PD00] L. L. Peterson and B. S. Davie.Computer Networks: A Systems Approach.
Morgan Kaufmann, 2nd edition, 2000.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[Pos81a] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated
by RFC 1349.

[Pos81b] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFC 3168.

[Pos82] J. Postel. Simple Mail Transfer Protocol. RFC 821 (Standard), August 1982.
Obsoleted by RFC 2821.

[PR83] J. Postel and J.K. Reynolds. Telnet Protocol Specification. RFC 854 (Stan-
dard), May 1983.

[PR85] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Octo-
ber 1985. Updated by RFCs 2228, 2640, 2773.

138

[Pro06a] GNU Project. The GNU general public licence. Web resource, November
2006. http://www.gnu.org/copyleft/gpl.html, last accessed Nov/2006.

[Pro06b] The GNU Project. coreutils. Software package, available online, November
2006. http://www.gnu.org/software/coreutils/, last accessed Nov/2006.

[Qui93] J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993. San Mateo, CA.

[Rab89] L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition.Proceedings of the IEEE, 77(2):257–286, February
1989.

[RSSD04] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service map-
ping for QoS: a statistical signature-based approach to IP traffic classification.
In Proceedings of the 4th ACM SIGCOMM Internet Measurement Conference
(IMC), pages 135–148. ACM Press New York, NY, USA, 2004.

[Sim94] W. Simpson. The Point-to-Point Protocol (PPP). RFC 1661 (Standard), July
1994. Updated by RFC 2153.

[TAF01] C. Taylor and J. Alves-Foss. NATE - Network Analysis of Anomalous Traffic
Events, a low-cost approach. InProceedings of the New Security Paradigms
Workshop, 2001.

[WF99] I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

[WMM04] C. Wright, F. Monrose, and G. M. Masson. HMM profiles for network traffic
classification.Proceedings of the ACM workshop on Visualization and Data
Mining for Computer Security, pages 9–15, 2004.

[ZNA05a] S. Zander, T. T. T. Nguyen, and G. Armitage. Automated traffic classification
and application identification using machine learning. InProceedings of the
30th IEEE Conference on Local Computer Networks (LCN), November 2005.
Sydney, Australia.

[ZNA05b] S. Zander, T.T.T. Nguyen, and G. Armitage. Self-learning IP traffic classifi-
cation based on statistical flow characteristics. InProceedings of the Passive
and Active Measurement Workshop (PAM). Springer, 2005.

[ZP00] Y. Zhang and V. Paxson. Detecting backdoors. InProceedings of the 9th

USENIX Security Symposium, 2000.

[ZS05] S. Zander and C. Schmoll. NETMATE – a flexible, extensible, and high-
performance passive software meter. Technical Report TR-2005-1110-Meter-
NetMate, Fraunhofer FOKUS (Institute for Open Communication Systems),
Fraunhofer-Gesellschaft e.V., Germany, 2005.

139

[ZS06] S. Zander and C. Schmoll. NetMate. Software package, available on-
line, November 2006. http://netmate-meter.sourceforge.net/, last accessed
Nov/2006.

[ZWA06] S. Zander, N. Williams, and G. Armitage. Internet archeology: Estimating in-
dividual application trends in incomplete historic traffictraces. Technical Re-
port 060313A, Centre for Advanced Internet Architectures, Swinburne Uni-
versity of Technology, March 2006.

140

Appendix A

Data preparation

The National Laboratory for Applied Network Research (NLANR)1 [NLA06] was a group
funded by the National Science Foundation (NSF) to support and analyze the NSF’s high-
performance networks. One part of NLANR was the Measurementand Network Analysis
team (NLANR/MNA), and one of their functions was to collect and make available traces
of network headers from various networks. Many of the tracesthey have made available are
from sources other than the NSF’s networks, through partnerships with various institutions
around the world. This means that their repository containsa rich variety of traffic from
different sources taken at different times, from 1999 through to 2005, but it also means that
they have traces in many different formats and with various idiosyncrasies. This appendix
documents lessons we learned while using their ‘Special’ data sets, in hopes that future
researchers might benefit from them and to make it easier to reproduce the experiments in
this thesis. In the course of our work, we converted traces from these data sets into the
more widely usable tcpdump format (also known as “pcap” format, after a common file
extension used for such files); we describe in detail in this appendix how this conversion
was performed, for reference by other researchers.

A.1 Technologies

The networks from which the NLANR network traces were collected used two common
physical-layer protocols, Packet over SONET/SDH (PoS) andAsynchronous Transfer Mode
(ATM), which we very briefly describe here. Headers from these protocols appear in the
traffic and have to be dealt with appropriately when converting the data to tcpdump format.

Physical and data link protocols

Several different physical and data link protocols were used by the links from which the
NLANR data sets were captured. We list the protocols and a quick description of each.

1NLANR was supported by funding from the National Science Foundation (cooperative agreement nos.
ANI-0129677 (2002) and ANI-9807479 (1998)), but has (as of July 2006) been discontinued; its data, hard-
ware, and website are being maintained by the Cooperative Association for Internet Data Analysis (CAIDA)
at the University of California’s San Diego Supercomputer Center.

141

PoS One physical layer protocol commonly seen in the data sets was packet over
SONET/SDH (PoS), where SONET/SDH stands for Synchronous Optical NET-
work/Synchronous Digital Hierarchy, a standard enabling the transmission of data
over optical networks. PoS is a protocol for transmitting packets, such as Ethernet
frames, over an optical network.

ATM/AAL5 For the network traces from fiber-optic links in the data setsthat we used,
the lower layers were generally Asynchronous Transfer Modewith ATM Adapta-
tion Layer 5 (ATM/AAL5); the adaptation layer is specified inITU recommendation
I.363, according to RFC1483 [Hei93].

LLC/SNAP Logical Link Control/Sub-Network Access Protocol (LLC/SNAP) was used
as the datalink layer over ATM/AAL5. This is a protocol defined in the Institute of
Electrical and Electronics Engineers’ (IEEE) 802.2 standard, according to RFC1483
[Hei93]. The LLC/SNAP header includes a type field that indicates the type of data
being carried; we are only concerned with frames having a type field of 0x0800,
which indicates an IPv4 packet.

Ethernet Data traces that had PoS as a physical layer protocol sometimes used Ethernet
(more specifically, IEEE 802.3) as a data link layer. Ethernet frames consist of a 14-
byte header that includes the Media Access Control (MAC), or physical, addresses of
the source and destination network transceivers, and a typefield that indicates what
type of data is being carried; we only concern ourselves withframes having a type
field of 0x0800, which indicates an IPv4 packet, as with LLC/SNAP [Dev06b].

Cisco HDLC Some PoS traces used a Cisco protocol called High-level Data Link Control
(HDLC) at the datalink layer rather than Ethernet. This is a fairly simple protocol,
consisting of a 4-byte header and a 4-byte trailer; the header includes a type field
where 0x0800 is again the value used to indicate that the frame carries an IPv4 packet.

PPP Another datalink-layer protocol seen on PoS traces was the Point-to-Point Protocol
(PPP), specified in RFC1661 [Sim94].

DAG file format

All of the NLANR trace files we used in this thesis were originally in a format called
“DAG”, which was developed by Endace for their network capture hardware (we were un-
able to determine what, if anything, the acronym represents). There are apparently several
versions of the DAG format that have been used over time; we refer to some of them as
“legacy” DAG formats, following terminology from CAIDA’s CoralReef. These are older
DAG formats that do not contain header information identifying the protocol layers on the
captured link or the snapshot length (the amount of data captured from each packet seen),
and thus this information must be found (in our case, by reverse-engineering combined
with some trial-and-error) to properly convert the file.

142

A.2 Conversion and processing tools

We used a collection of different tools to massage the trace data into a more easily usable
format; links to the tools used and a brief description of what they are and how we used
them are presented here. Commands shown here and in the remainder of the appendix
use angle brackets to delimit a variable argument (e.g.<sourcefile.gz> indicates a place
where the input filename, having a.gz extension, is to be inserted in the command). We
also describe a number of tools used in the further preparation of the data, particularly
timeslicing and demultiplexing it into sample files containing individual flows.

CoralReef crl to pcap

http://www.caida.org/tools/measurement/coralreef/

The Cooperative Association for Internet Data Analysis (CAIDA) [fIDAC06] devel-
oped a suite of tools for manipulating network traffic calledCoralReef. One tool that we
have found particularly useful in our research is calledcrl_to_pcap; it is a utility for
converting between different network capture file formats.We use it primarily to convert
assorted different DAG file formats2 to tcpdump format.

We used the version ofcrl_to_pcap included in CoralReef version 3.7.5.

TCPTrace

http://jarok.cs.ohiou.edu/software/tcptrace/

Shawn Ostermann’s [Ost06]tcptrace is an application for analyzing captures of TCP
traffic and modelling the interactions of the protocols. We use it to quickly count the
packets in each direction of a TCP flow, though this is a tiny fraction of its functionality.
We also used more of its functionality while conducting analysis of the traffic.

We used version 6.6.1 oftcptrace.

Wireshark utilities

http://www.wireshark.org

Wireshark [Ct06], formerly called Ethereal, is a network traffic display and parsing
GUI application, and includes a number of tools for the manipulation of network traces. Of
particular use in this thesis were theeditcap andmergecap utilities; the former performs
various transformations and divisions of a trace file, whilethe latter merges multiple trace
files into a single one. We usededitcap mainly to subdivide network traces by date,
for creating 5-minute timeslices of network traffic, and we usedmergecap to combine
unidirectional traces into bidirectional traces, as many of the data sets had traffic intercepted
in each direction separately.

We used the version of these utilities included in the sourcedistribution of Ethereal
0.99.0.

2DAG is a format developed by Endace for their network capturehardware

143

ANTARES utilities

http://antares-net.sourceforge.net/

Our ANTARES toolkit [Fur06] includes a number of scripts thatwe used to semi-
automate the processing of data sets. Many of these are discussed in the context of that
processing; in this context, we only wish to specifically mention dag_eth_to_pcap, which
is a utility for taking Ethernet traces in a legacy DAG formatand converting them to tcp-
dump format.

The version of the ANTARES toolkit used for this thesis is available on theantares-
net SourceForge project as version 0.1.

dd and cat

dd andcat are core utilities from the GNU project [Pro06b], probably included in most
Linux and Unix distributions. They are not tools specifically for use with trace files; dd is
a low-level file copy command and cat outputs a file on standardoutput, and both happen
to be useful in dealing with large files. Many of the tools listed here will fail with error if
invoked on files that are too large (> 2Gbon many Linux systems); however, some of them
(crl_to_pcap anddag_eth_to_pcap) are capable of reading from standard input, which
provides a way around the file size limit. Two examples are given here of how to do this.

Converting agzip–compressed legacy DAG “CHDLC over POS” trace (48 bytes of
packet data per record) to pcap withdd and Coralreef’scrl_to_pcap:

dd if=<sourcefile.gz> bs=4K | crl_to_pcap
-C "src dag:- phy=POS,proto=CHDLC,48" -o <outputfile.pcap>

Note that this command is intended to be issued on a single line; we have broken the line
here to fit the margins of the page.

Converting agzip–compressed legacy DAG Ethernet trace (64-byte overall record
length) to pcap withcat anddag_eth_to_pcap:

cat <sourcefile.gz> | dag_eth_to_pcap -z - <outputfile.pcap>

We useddd andcat from the GNU coreutils package, version 5.2.1.

A.3 Converting NLANR data to tcpdump format

Before using the NLANR datasets, we converted them to tcpdumpformat, which required
that we first identify the protocols being used. We document here those findings and the
procedure for converting the data format, as we found that this information was not readily
available, and other researchers wishing to use these data sets will likely need to perform
the same conversions. We also developed a tool for converting the NZIX data set, which we
have made available as part of the ANTARES toolkit; thedagtools package recommended

144

Data set Timeframe Source Volume (Gb)
NZIX-II Summer 2000 New Zealand ISP peering point x

Auckland-IV (ATM) Winter 2001 University of Auckland uplink x
Auckland-VI (Eth) Spring 2001 University of Auckland uplink x

ABILENE-II Autumn 2002 ABILENE research backbone x
Leipzig-I (PPP) Autumn 2002 University of Leipzig uplink x
Leipzig-II (Eth) Winter 2003 University of Leipzig uplink x
ABILENE-III Summer 2004 ABILENE research backbone x
ABILENE-V August 2004 ABILENE research backbone x

Table A.1: Summary of NLANR data sets used

Group Physical layer Datalink layer Snap length
ABILENE PoS Cisco HDLC 48

Auckland-ATM ATM/AAL5 LLC/SNAP 48
Auckland-Eth None Ethernet 54(64)
Leipzig-PPP PoS PPP 48
Leipzig-Eth None Ethernet 48

NZIX None Ethernet 54(64)

Table A.2: Technical details of NLANR datasets for conversion

by NLANR for this purpose does not appear to be publically available anymore, and is
apparently only available from Endace with the purchase of network capture hardware.

In table A.1 we repeat the table of datasets used in our experiments from section 5.1.3;
table A.2 lists them in groups, showing the lower layers of protocols in use and the snap
length (the amount of data captured from each packet). The parameters in the latter table
are needed for the conversion, and will be described in more detail in the section for the
appropriate data set. Note that for the Ethernet traces, a second length is given in parenthe-
ses in the snap length column; when using thedag_eth_to_pcap tool to convert the, the
parenthesized length, which including the DAG header, is used as the record length. The
unparenthesized length in these rows is the actual amount ofpacket data contained in each
record, including the 14-byte Ethernet header.

ABILENE

ABILENE-I http://pma.nlanr.net/Traces/long/ipls1.html

ABILENE-II http://pma.nlanr.net/Traces/long/ipls2.html

ABILENE-III http://pma.nlanr.net/Special/ipls3.html

ABILENE-IV http://pma.nlanr.net/Special/ipls4.html

ABILENE-V http://pma.nlanr.net/Special/ipls5.html

145

The ABILENE data sets were collected at a router at the Indianapolis router node of
the Internet2 ABILENE backbone3; specifically, this work uses traffic from the link from
Indianapolis to Kansas City (IPLS-KSCY).

The traffic from these data sets is packet-over-SONET (POS) at the physical layer,
and Cisco HDLC at the datalink layer. The files are in a legacy Endace DAG format,
which means that they do not contain information about the framing and protocols, so that
information must be supplied to thecrl_to_pcap tool in order to process them correctly.

We used CoralReef’scrl_to_pcap tool to convert these trace files to pcap, using the
following command:

crl_to_pcap -C "src dag:<sourcefile> phy=PoS,proto=CHDLC,48"
-o <outputfile>

Auckland

Auckland-II http://pma.nlanr.net/Traces/long/auck2.html

Auckland-IV http://pma.nlanr.net/Traces/long/auck4.html

Auckland-VI http://pma.nlanr.net/Traces/long/auck6.html

Auckland-VII http://pma.nlanr.net/Traces/long/auck7.html

Auckland-VIII http://pma.nlanr.net/Special/auck8.html

The Auckland data sets were collected at the Internet uplinkof the University of Auck-
land, in New Zealand.

There were two distinct types of traces among the Auckland data sets: ATM, and Eth-
ernet. These are shown in table A.2 as Auckland-ATM and Auckland-Eth, respectively.
Auckland-II, Auckland-IV, and Auckland-VII are ATM, Auckland-VIII is Ethernet, and
Auckland-VI gives both. ATM trace file names end in-0 and -1 while Ethernet trace
file names for Auckland-VI end in-e0 and-e1 (for two different collection points). The
Auckland-VIII traces have no particular extension. The ATMtraces were collected on the
outside of the Internet-facing router, while the Ethernet traces were collected on the inside
of it.

We used the CoralReefcrl_to_pcap tool to convert the Auckland-IV ATM trace files
to tcpdump format, using the following command:

crl_to_pcap -C "src dag:<sourcefile> phy=ATM,proto=ATM_RFC1483,48"
-o <outputfile>

For the Auckland-VI data set, we used the-e1 data files, converting them to pcap using
thedag_eth_to_pcap tool that we developed as part of the ANTARES toolkit; we simply
used the following command:

3Internet2 is a not-for-profit consortium of academic and industrial parties collaborating in developing
advanced networking technologies; ABILENE is a 10 gigabit national fiber backbone network in the United
States built and maintained by Internet2

146

dag_eth_to_pcap -z -l 64 <sourcefile.gz> <outputfile>

The-l 64 argument is not strictly necessary, as the tool defaults to a64 byte record length.
The-z argument indicates that the input file is compressed withgzip, so that one does not
need to explicitly decompress the files before converting them.

Leipzig

Leipzig-I http://pma.nlanr.net/Special/leip1.html

Leipzig-II http://pma.nlanr.net/Special/leip2.html

The Leipzig data sets were collected at the Internet uplink of the University of Leipzig
in Germany. Both Leipzig-I and Leipzig-II include PPP-over-PoS traces, collected on the
outside link of the border router, while Leipzig-II also includes Ethernet traces from the
inside link of the router; these are denoted in table A.2 as Leipzig-PPP and Leipzig-Eth,
respectively. The PPP trace filenames end in-0 and-1, not including the.gz extension,
and the Ethernet traces end in-e.

We used the PPP traces from both, converting them to tcpdump format with the follow-
ing command:

crl_to_pcap -C "src dag:<sourcefile.gz> phy=PoS,proto=PPP,48"
-o <outputfile.pcap>

From Leipzig-II the Ethernet traces are in a more modern DAG file format than those
of Auckland-VI, which include enough information thatcrl_to_pcap does not need to be
manually configured. They can be converted to tcpdump formatas follows:

crl_to_pcap -C "src dag:<sourcefile.gz>" -o <outputfile.pcap>

NZIX

NZIX-II http://pma.nlanr.net/Traces/long/nzix2.html

The NZIX-II dataset is from the New Zealand Internet Exchange, a peering point
for several public Internet Service Providers in New Zealand, hosted at the University of
Waikato.

The trace files for this data set are in a legacy DAG Ethernet format; we used our
dag_eth_to_pcap tool to convert them to tcpdump format as follows:

dag_eth_to_pcap -z -l 64 <sourcefile.gz> <outputfile.pcap>

147

A.4 Preparing data sets

In this section, we present a more detailed description of how we generated a sample data
set from the converted NLANR traces, as outlined in section 5.1.3. Our goal was to come
up with a balanced set of samples that represented the usual behaviour of the applications
being studied, and minimized the effects of anomalous uses.We took five-minute timeslices
of the traces, divided them by data set, time period (work hours vs. non-work hours), and
application (by port), selected samples from each divisionin such a way as to minimize
the influence of any one pair of hosts, and took one hundred samples from each division.
Unless otherwise noted, the tools discussed here are part ofthe ANTARES toolkit, available
in thetools/ directory of the distribution.

One of our data sets consisted of five-minute samples, so we timesliced all of our
datasets into five-minute intervals, for consistency. The traces were timesliced using our
tool timeslice_trace.pl; this tool is a wrapper for theeditcaptool from the WireShark
toolkit, formerly known as Ethereal [Ct06]. For example, to divide a one-hour trace file
that begins at 12:00:00 PM on December 12th, 2003 into five-minute timeslices, we would
use the command:

timeslice_trace.pl <inputfile.pcap> "2003-12-12 12:00:00" 5m 12

where5m 12 indicates twelve five-minute timeslices.
Note that time zones are an issue with the timeslicing; the time has to be given relative to

local time, so if a capture file begins at 12 PM GMT and the tool is being run on a system
in time zone GMT-5, the time given should be “7:00:00” – usually. However, due to a
peculiarity of theeditcap tool, if the date of the capture file falls within daylight savings
time for the local timezone, an additional hour must be subtracted (so in the example, one
would use “6:00:00” in place of “7:00:00”). These issues areunfortunate, but avoiding
them would require modifyingeditcap.4

The partitioning of the traces into five-minute timeslices means that no sample flow
will be longer than five minutes in duration. We consider thisto be an advantage for the
purposes of studying application behaviours, as we feel five-minute timeslices of longer
network flows are more likely to be homogeneous than the full flows would have been;
i.e. for an application that is capable of performing distinct activities, a five-minute flow is
more likely to be generated by a single type of activity than athirty-minute flow would be.
However, the timeslicing is a factor that may have affected our results in unexpected ways.

We then separated the timesliced trace files for each data setby time period; timeslices
falling between 8 AM and 4 PM local time (local to the collection point) were considered
to be duringwork hours, and timeslices outside those times were considered to be during
off-workhours. This was intended to allow us to explore whether therewere differences in
the uses of network applications in different periods of theday.

The tool used to divide the data sets by application wasdecompose_trace.pl; the
default configuration fileetc/portlist.txt will extract the same set of applications used
in this thesis. The tool is a wrapper for thetcpdump tool [Dev06a]. More specifically, the

4We have asked the Wireshark development team to consider allowing an explicit time zone to be speci-
fied, which would allow us to avoid this ugliness.

148

configuration file lists “known” ports; a flow which involves aport in that list is considered
to be an instance of the associated application. If a flow involved two ports that are both on
the list, it is considered to be an instance of the application corresponding to the lower of
the two ports. When using the default portlist, the tool can beexecuted simply as:

decompose_trace.pl <inputfile.pcap>

Dividing the data intocells by data set, time period, and application, we used a tool
on each cell that decomposed the traces into network flows andselected a subset of those
flows as samples. The samples were selected using our toolsample_traffic.pl; this
tool is a wrapper around thedemux module of the libnetdude library, of the Netdude suite
[Kre06]. Specifically, it ensured that no more than two samples involved the same pair
of IP addresses (one pair in each direction, i.e.A → B andB → A). This restriction was
intended to reduce the chance that the samples would be strongly influenced by a small
group of hosts performing some unusual activity involving aport of interest. We used the
command:

sample_traffic.pl -l 10 -t 64 -o <output dir> <inputfile.pcap>

where-l 10 indicated we only wanted samples with at least 10 packets, and -t 64 in-
dicated that we wanted to use a timeout of 64 seconds to close off inactive flows. This
extracted each sample flow to its own file in tcpdump format.

Finally, having divided the data into 84 cells (7 effective data sets, 2 time periods, and 6
applications: 7∗2∗6= 84), we used a simple tool calledselect_samples.pl to randomly
select 100 samples from the potential samples in each cell with the command:

select_samples.pl -n 100 -o <output dir> <input dir list>

Each sample file was then processed with a tool,profile_streams_thesis built with the
ANTARES toolkit; that tool is available in thesrc/testing directory of the toolkit. That
output the flow attribute values of interest, which we formatted in comma-separated value
(CSV) format using theprofile_to_csv.pl tool as:

profile_to_csv.pl -p <server port>
-l "<data set>, <time period>, <application>"
-o <outputfile.csv> <inputfile.profile>

where-p <server port> allowed us to specify which port was the server port (e.g. 23 for
Telnet), so that the forward and reverse directions could belabelled, and the-l switch and
arguments allowed us to label the row with the data set, time period, and application for
later analysis. The CSV files produced in this manner were thenloaded into the R statistical
processing package [Dev05], and classifiers were trained asdetailed in section 5.1.4.

We have explained here in detail the process by which we prepared our data sets for
analysis in hopes that other researchers will benefit from our tools and methods.

149

150

Appendix B

Error tables

In this appendix, we present the error tables for classifierstrained to distinguish between
two classes of network traffic using a single flow attribute. These classifiers were developed
with logistic regression as described in section 5.1.4. Each section of this appendix contains
a set of tables for one application of interest; each table shows the combined error rates of
classifiers trained to distinguish network traffic from the application of interest from those
of one other class of network traffic (the columns) using a single flow attribute (the rows).
The tables are broken up in loose groupings such that each would fit on a page; the first table
in each section contains classifiers trained using flow attributes computed on both directions
of the flow, the second has those using flow attributes computed separately on each half-
flow, and the third and fourth focus on small and large packet heuristics, respectively. The
flow attributes themselves are those listed in table 3.1 and described in section 3.3.

Each cell represents the combined error rate of a classifier trained to distinguish be-
tween two applications using a single flow attribute. We willexplain the tables, using as an
example table B.1. All of the error rates in that table pertainto classifiers trained to distin-
guish POP3 from other applications; the other applicationsare in columns, e.g. the leftmost
column of error rates in the table consists of classifiers trained to distinguish between POP3
and FTP-data. Each row contains error rates of classifiers trained using a particular flow
attribute; for table B.1, the top row of error rates correspond to classifiers trained using
pkt count, the total number of packets. So the top left error rate in table B.1 is the com-
bined error rate of a classifier trained to distinguish between POP3 and FTP-data using the
pkt count, evaluated using 10-fold cross-validation as described insection 2.1.1.1

In an attempt to make the tables somewhat more readable, we have coloured each cell
according to the error rate; the colors range from green (relatively good classifiers) through
yellow (mediocre classifiers) to red (poor classifiers).2 This makes it easier to identify
general trends in the data; a column that is mostly green and yellow indicates a pair of

1Recall from section 2.1.1 that the combined error rate is thetotal number of errors, both false positives
and false negatives, divided by the total number of samples.For the example given, this would be the sum
of the number of POP3 flows classified as FTP-data and the number of FTP-data flows classified as POP3,
divided by the total number of flows of both POP3 and FTP-data.

2The coloring is designed so that an error rate of 0 is green andan error rate of 0.5 (no better than random
chance) or worse is red, and so that there is an even balance ofred and green at an error rate of 0.25, yielding
orange.

151

applications that was generally easy to distinguish, whileone that is mostly red indicates
a pair of applications that was more difficult to distinguish. Rows that are mostly green
indicate a flow attribute that is good at distinguishing a particular application (the one on
which that table focuses) from others; often there will be several adjacent rows, pertaining
to similar flow attributes, that are all mostly green, which indicates a class of flow attributes
that are useful for distinguishing that application from others.

Also interesting are regions of generally good (green) classifiers that have a single col-
umn of poor (red) classifiers; we take this to indicate that the application for that column is
similar to the target application, at least with respect to those flow attributes. An excellent
example of this is table B.7, which shows small packet heuristics for FTP-data; the bulk
of the classifiers are green, except for the HTTP column, which we interpret as meaning
that FTP-data is easy to distinguish by the proportion of small packets (in this case, its lack
thereof), except that HTTP is similar to it in that respect. This is mirrored in table B.23,
which suggests that, at least in terms of proportions of small packets, HTTP and FTP-data
are similar to each other and dissimilar from all the other applications that we considered.

These tables (in full colour), along with the rest of the thesis, will be available on the
SourceForge page for ANTARES [Fur06], the toolkit we have developed.

152

B.1 POP3

FTP-data FTP-ctrl Telnet SMTP HTTP
pkt count 0.2700 0.3614 0.2261 0.4004 0.4929
duration 0.3404 0.2686 0.1464 0.4225 0.4954

nonemptycount 0.2750 0.3171 0.2264 0.4007 0.4264
pkt byte count 0.2221 0.4025 0.2789 0.2568 0.3089

payloadbyte count 0.2157 0.3736 0.2946 0.2261 0.2839
meandelay 0.4339 0.2846 0.2382 0.4650 0.4932

meanpkt len 0.1439 0.5411 0.3821 0.2407 0.2243
meanpayloadlen 0.1475 0.5939 0.3461 0.2218 0.2096

meannonemptypayloadlen 0.1243 0.5446 0.3600 0.2204 0.1054
dir data 0.1593 0.5168 0.5582 0.0904 0.5793

meanpkt datarate 0.2046 0.2932 0.2907 0.3875 0.3189
meanpayloaddatarate 0.1804 0.3400 0.3761 0.3336 0.2796

flag urg 0.5286 0.5200 0.5221 0.5236 0.5121
flag ack 0.3236 0.5296 0.1511 0.4036 0.2843
flag psh 0.1071 0.2604 0.3093 0.4518 0.1279
flag rst 0.4696 0.4189 0.4829 0.4557 0.4425
flag syn 0.3043 0.2932 0.1400 0.2939 0.4025
flag fin 0.2982 0.2732 0.1561 0.2957 0.5154

Table B.1: POP3 — per-flow metrics

153

FTP-data FTP-ctrl Telnet SMTP HTTP
pkt count fwd 0.2986 0.3279 0.2150 0.3607 0.4879

pkt byte count fwd 0.2736 0.2889 0.2061 0.1179 0.1725
payloadbyte count fwd 0.1036 0.1607 0.2686 0.0804 0.0332

nonemptycount fwd 0.1036 0.3129 0.2075 0.2261 0.1286
meandelay fwd 0.4393 0.2846 0.2525 0.4839 0.5275

meanpkt len fwd 0.3707 0.2168 0.3604 0.0700 0.0382
meanpayloadlen fwd 0.1068 0.1896 0.1800 0.0550 0.0229

meannonemptypayloadlen fwd 0.1025 0.1714 0.1314 0.0346 0.0075
flag urg fwd 0.5314 0.5243 0.5179 0.5171 0.5186
flag ack fwd 0.1154 0.4393 0.1407 0.3450 0.2864
flag psh fwd 0.1018 0.4614 0.4836 0.5121 0.1064
flag rst fwd 0.4921 0.4118 0.4814 0.4543 0.4339
flag syn fwd 0.3211 0.2839 0.1314 0.2868 0.4436
flag fin fwd 0.3196 0.2754 0.1568 0.3093 0.5350

pkt count rev 0.2711 0.3736 0.2379 0.4257 0.4929
pkt byte count rev 0.2525 0.4586 0.2868 0.4911 0.3214

payloadbyte count rev 0.2571 0.4532 0.2964 0.5668 0.3039
nonemptycount rev 0.3021 0.3282 0.2364 0.4314 0.5100

meandelay rev 0.4250 0.2861 0.2086 0.4443 0.5375
meanpkt len rev 0.2246 0.5339 0.3654 0.4904 0.2582

meanpayloadlen rev 0.2404 0.5739 0.3400 0.5568 0.2525
meannonemptypayloadlen rev 0.2293 0.5225 0.3546 0.5961 0.1879

flag urg rev 0.5200 0.5286 0.5207 0.5207 0.5200
flag ack rev 0.2600 0.5246 0.5279 0.5164 0.5161
flag psh rev 0.1318 0.2254 0.2500 0.4082 0.1557
flag rst rev 0.5032 0.5186 0.5211 0.5125 0.5243
flag syn rev 0.3007 0.3136 0.1457 0.3314 0.3800
flag fin rev 0.2868 0.2732 0.1582 0.2882 0.3854

Table B.2: POP3 — per-half-flow metrics

154

FTP-data FTP-ctrl Telnet SMTP HTTP
sp alpha1 fwd 0.0389 0.3811 0.4279 0.1418 0.0321
sp alpha2 fwd 0.0693 0.4657 0.4561 0.4307 0.0307
sp alpha3 fwd 0.2339 0.5082 0.5211 0.4711 0.2071
sp beta1 fwd 0.0118 0.1704 0.4339 0.0154 0.0096
sp beta2 fwd 0.0271 0.4139 0.4171 0.0679 0.0050
sp beta3 fwd 0.0336 0.4821 0.4657 0.0732 0.0293

sp gamma1 fwd 0.0371 0.1921 0.3061 0.0414 0.0304
sp gamma2 fwd 0.0529 0.4296 0.3329 0.1764 0.0261
sp gamma3 fwd 0.0589 0.4618 0.3457 0.2061 0.0264
sp delta1 fwd 0.0557 0.3214 0.3950 0.1432 0.0446
sp delta2 fwd 0.0782 0.5236 0.3975 0.4382 0.0404
sp delta3 fwd 0.0493 0.4986 0.4029 0.5100 0.0225
sp alpha1 rev 0.3675 0.4350 0.3129 0.4289 0.3596
sp alpha2 rev 0.1025 0.4211 0.4425 0.4339 0.0725
sp alpha3 rev 0.3039 0.4296 0.3886 0.5350 0.2825
sp beta1 rev 0.1186 0.3943 0.3696 0.3304 0.1121
sp beta2 rev 0.0907 0.4732 0.4046 0.5054 0.0668
sp beta3 rev 0.1096 0.4346 0.4107 0.4157 0.1457

sp gamma1 rev 0.3675 0.4518 0.3161 0.4400 0.3557
sp gamma2 rev 0.1125 0.4643 0.4814 0.5089 0.0700
sp gamma3 rev 0.1082 0.3554 0.4479 0.4664 0.0864
sp delta1 rev 0.3675 0.4489 0.2550 0.4239 0.3529
sp delta2 rev 0.1132 0.3789 0.3354 0.4107 0.0532
sp delta3 rev 0.0596 0.3757 0.4193 0.4471 0.0475

Table B.3: POP3 — small packet heuristics

155

FTP-data FTP-ctrl Telnet SMTP HTTP
lp alpha1 fwd 0.4507 0.5150 0.5200 0.1907 0.4804
lp alpha2 fwd 0.4675 0.5186 0.5264 0.2918 0.5179
lp alpha3 fwd 0.4807 0.5171 0.5189 0.3900 0.5171
lp alpha4 fwd 0.4350 0.5200 0.5050 0.1686 0.4561
lp alpha5 fwd 0.4582 0.5214 0.5196 0.2818 0.5182
lp alpha6 fwd 0.4754 0.5171 0.5293 0.3861 0.5243
lp beta1 fwd 0.4307 0.5082 0.4775 0.0718 0.0404
lp beta2 fwd 0.4518 0.5243 0.5182 0.1532 0.4746
lp beta3 fwd 0.4707 0.5286 0.5207 0.3136 0.5111
lp beta4 fwd 0.4307 0.5232 0.4775 0.0718 0.0404
lp beta5 fwd 0.4518 0.5264 0.5229 0.1532 0.4746
lp beta6 fwd 0.4707 0.5414 0.5139 0.3136 0.5004

lp gamma1 fwd 0.4336 0.5254 0.5011 0.1525 0.4329
lp gamma2 fwd 0.4561 0.5207 0.5218 0.2736 0.5221
lp gamma3 fwd 0.4732 0.5193 0.5132 0.3836 0.5271
lp gamma4 fwd 0.4336 0.5254 0.4921 0.1525 0.4329
lp gamma5 fwd 0.4561 0.5250 0.5136 0.2736 0.5111
lp gamma6 fwd 0.4732 0.5257 0.5261 0.3836 0.5200
lp alpha1 rev 0.2750 0.3968 0.4350 0.3843 0.3221
lp alpha2 rev 0.2764 0.4493 0.4743 0.4421 0.3275
lp alpha3 rev 0.3489 0.4661 0.4714 0.4596 0.3900
lp alpha4 rev 0.2629 0.3932 0.4082 0.3807 0.3193
lp alpha5 rev 0.2668 0.4479 0.4789 0.4407 0.3261
lp alpha6 rev 0.3443 0.4657 0.4718 0.4589 0.3889
lp beta1 rev 0.1939 0.4646 0.4146 0.3725 0.1471
lp beta2 rev 0.2289 0.4504 0.5425 0.4200 0.2771
lp beta3 rev 0.3264 0.4539 0.5004 0.4468 0.3593
lp beta4 rev 0.1939 0.4636 0.4129 0.3725 0.1464
lp beta5 rev 0.2282 0.4507 0.5511 0.4200 0.2768
lp beta6 rev 0.3261 0.4539 0.5004 0.4468 0.3611

lp gamma1 rev 0.2189 0.3943 0.5411 0.3779 0.2779
lp gamma2 rev 0.2436 0.4461 0.4832 0.4382 0.3168
lp gamma3 rev 0.3311 0.4650 0.4711 0.4582 0.3843
lp gamma4 rev 0.2186 0.3943 0.5400 0.3779 0.2786
lp gamma5 rev 0.2432 0.4461 0.4811 0.4382 0.3171
lp gamma6 rev 0.3307 0.4654 0.4693 0.4582 0.3839

Table B.4: POP3 — large packet heuristics

156

B.2 FTP-data

POP3 FTP-ctrl Telnet SMTP HTTP
pkt count 0.2700 0.3239 0.5107 0.2993 0.2864
duration 0.3404 0.4568 0.3296 0.4139 0.3921

nonemptycount 0.2750 0.3468 0.5268 0.3032 0.2904
pkt byte count 0.2221 0.1771 0.3350 0.2654 0.3050

payloadbyte count 0.2157 0.1464 0.3229 0.2654 0.3068
meandelay 0.4339 0.2925 0.2182 0.4296 0.4564

meanpkt len 0.1439 0.0593 0.1318 0.2089 0.3761
meanpayloadlen 0.1475 0.0582 0.1361 0.2129 0.3711

meannonemptypayloadlen 0.1243 0.0482 0.0943 0.1621 0.3914
dir data 0.1593 0.1668 0.2282 0.2475 0.1636

meanpkt datarate 0.2046 0.1111 0.0986 0.3011 0.3796
meanpayloaddatarate 0.1804 0.0950 0.0964 0.2882 0.3711

flag urg 0.5286 0.5200 0.5079 0.5293 0.5279
flag ack 0.3236 0.4457 0.3757 0.4800 0.3043
flag psh 0.1071 0.0964 0.0889 0.1304 0.3864
flag rst 0.4696 0.3850 0.5243 0.4221 0.4054
flag syn 0.3043 0.4646 0.3411 0.3664 0.3168
flag fin 0.2982 0.5357 0.3600 0.3496 0.3561

Table B.5: FTP-data — per-flow metrics

157

POP3 FTP-ctrl Telnet SMTP HTTP
pkt count fwd 0.2986 0.3361 0.5271 0.3221 0.3075

pkt byte count fwd 0.2736 0.3193 0.4771 0.4457 0.3614
payloadbyte count fwd 0.1036 0.1364 0.1850 0.1432 0.1021

nonemptycount fwd 0.1036 0.1550 0.1518 0.1082 0.1764
meandelay fwd 0.4393 0.2989 0.2543 0.4429 0.4732

meanpkt len fwd 0.3707 0.5571 0.4271 0.1493 0.1586
meanpayloadlen fwd 0.1068 0.1182 0.1239 0.1046 0.1054

meannonemptypayloadlen fwd 0.1025 0.1193 0.3068 0.1364 0.0836
flag urg fwd 0.5314 0.5307 0.5250 0.5171 0.5257
flag ack fwd 0.1154 0.1821 0.4168 0.1168 0.1229
flag psh fwd 0.1018 0.1075 0.1200 0.1071 0.2064
flag rst fwd 0.4921 0.3911 0.4968 0.4339 0.4089
flag syn fwd 0.3211 0.5368 0.3321 0.4443 0.3150
flag fin fwd 0.3196 0.5246 0.3496 0.5771 0.3768

pkt count rev 0.2711 0.2893 0.4896 0.2625 0.2850
pkt byte count rev 0.2525 0.1921 0.3739 0.1375 0.3536

payloadbyte count rev 0.2571 0.1968 0.4193 0.1343 0.3954
nonemptycount rev 0.3021 0.3439 0.5175 0.2336 0.3446

meandelay rev 0.4250 0.2700 0.1982 0.4125 0.4693
meanpkt len rev 0.2246 0.1304 0.2439 0.1046 0.4271

meanpayloadlen rev 0.2404 0.1536 0.3318 0.1043 0.5496
meannonemptypayloadlen rev 0.2293 0.1282 0.2836 0.1014 0.5275

flag urg rev 0.5200 0.5264 0.5214 0.5286 0.5250
flag ack rev 0.2600 0.2611 0.2689 0.2632 0.2725
flag psh rev 0.1318 0.1061 0.1179 0.1793 0.4739
flag rst rev 0.5032 0.5164 0.4850 0.5132 0.4989
flag syn rev 0.3007 0.4289 0.3768 0.3250 0.3204
flag fin rev 0.2868 0.4904 0.3889 0.3111 0.3361

Table B.6: FTP-data — per-half-flow metrics

158

POP3 FTP-ctrl Telnet SMTP HTTP
sp alpha1 fwd 0.0389 0.1750 0.1300 0.4093 0.5186
sp alpha2 fwd 0.0693 0.1121 0.1304 0.1254 0.4789
sp alpha3 fwd 0.2339 0.2964 0.2568 0.3068 0.4786
sp beta1 fwd 0.0118 0.0800 0.0621 0.1250 0.5071
sp beta2 fwd 0.0271 0.0543 0.0632 0.1143 0.4814
sp beta3 fwd 0.0336 0.0514 0.0550 0.1125 0.5171

sp gamma1 fwd 0.0371 0.1732 0.1379 0.4043 0.5029
sp gamma2 fwd 0.0529 0.1068 0.1436 0.1661 0.4793
sp gamma3 fwd 0.0589 0.0989 0.1414 0.1361 0.4739
sp delta1 fwd 0.0557 0.1729 0.1468 0.4025 0.5118
sp delta2 fwd 0.0782 0.1086 0.1607 0.1204 0.4793
sp delta3 fwd 0.0493 0.0918 0.1139 0.0639 0.4739
sp alpha1 rev 0.3675 0.4321 0.1704 0.4386 0.5032
sp alpha2 rev 0.1025 0.1243 0.1368 0.1264 0.4796
sp alpha3 rev 0.3039 0.2154 0.1564 0.3004 0.4829
sp beta1 rev 0.1186 0.1543 0.1146 0.3254 0.5129
sp beta2 rev 0.0907 0.0643 0.1218 0.0604 0.4907
sp beta3 rev 0.1096 0.0432 0.1011 0.0443 0.4454

sp gamma1 rev 0.3675 0.4111 0.1636 0.4339 0.4964
sp gamma2 rev 0.1125 0.1043 0.1429 0.0914 0.4775
sp gamma3 rev 0.1082 0.0729 0.1196 0.0904 0.5093
sp delta1 rev 0.3675 0.4164 0.1721 0.4636 0.4857
sp delta2 rev 0.1132 0.1179 0.1471 0.1521 0.4743
sp delta3 rev 0.0596 0.0739 0.0861 0.0743 0.4989

Table B.7: FTP-data — small packet heuristics

159

POP3 FTP-ctrl Telnet SMTP HTTP
lp alpha1 fwd 0.4507 0.4532 0.4571 0.2379 0.4732
lp alpha2 fwd 0.4675 0.4679 0.4686 0.3232 0.4682
lp alpha3 fwd 0.4807 0.4807 0.4814 0.4093 0.4807
lp alpha4 fwd 0.4350 0.4354 0.4411 0.2368 0.4796
lp alpha5 fwd 0.4582 0.4586 0.4593 0.3239 0.4607
lp alpha6 fwd 0.4754 0.4754 0.4761 0.4111 0.4757
lp beta1 fwd 0.4307 0.4325 0.4482 0.2311 0.1257
lp beta2 fwd 0.4518 0.4525 0.4554 0.2868 0.4775
lp beta3 fwd 0.4707 0.4707 0.4721 0.3436 0.4771
lp beta4 fwd 0.4307 0.4325 0.4479 0.2311 0.1257
lp beta5 fwd 0.4518 0.4521 0.4554 0.2807 0.4779
lp beta6 fwd 0.4707 0.4707 0.4721 0.3439 0.4771

lp gamma1 fwd 0.4336 0.4343 0.4404 0.3164 0.4993
lp gamma2 fwd 0.4561 0.4568 0.4582 0.3239 0.4607
lp gamma3 fwd 0.4732 0.4732 0.4743 0.4107 0.4736
lp gamma4 fwd 0.4336 0.4343 0.4404 0.3168 0.4993
lp gamma5 fwd 0.4561 0.4568 0.4579 0.3254 0.4607
lp gamma6 fwd 0.4732 0.4732 0.4739 0.4107 0.4736
lp alpha1 rev 0.2750 0.1546 0.3246 0.1400 0.4800
lp alpha2 rev 0.2764 0.2196 0.2468 0.2061 0.4671
lp alpha3 rev 0.3489 0.3129 0.3189 0.3014 0.4682
lp alpha4 rev 0.2629 0.1464 0.3389 0.1293 0.4568
lp alpha5 rev 0.2668 0.2107 0.2443 0.2007 0.4564
lp alpha6 rev 0.3443 0.3082 0.3143 0.2989 0.4629
lp beta1 rev 0.1939 0.1107 0.1839 0.1011 0.4864
lp beta2 rev 0.2289 0.1779 0.2164 0.1757 0.4339
lp beta3 rev 0.3264 0.2889 0.3100 0.2821 0.4632
lp beta4 rev 0.1939 0.1104 0.1832 0.1011 0.4875
lp beta5 rev 0.2282 0.1786 0.2150 0.1757 0.4339
lp beta6 rev 0.3261 0.2893 0.3096 0.2825 0.4632

lp gamma1 rev 0.2189 0.1300 0.1868 0.1225 0.4193
lp gamma2 rev 0.2436 0.1986 0.2086 0.1961 0.4054
lp gamma3 rev 0.3311 0.3032 0.3032 0.2950 0.4443
lp gamma4 rev 0.2186 0.1300 0.1854 0.1225 0.4193
lp gamma5 rev 0.2432 0.1986 0.2089 0.1961 0.4046
lp gamma6 rev 0.3307 0.3032 0.3032 0.2950 0.4446

Table B.8: FTP-data — large packet heuristics

160

B.3 FTP-ctrl

POP3 FTP-data Telnet SMTP HTTP
pkt count 0.3614 0.3239 0.2657 0.5129 0.3304
duration 0.2686 0.4568 0.3375 0.3439 0.3271

nonemptycount 0.3171 0.3468 0.2775 0.4386 0.2843
pkt byte count 0.4025 0.1771 0.2636 0.2625 0.3000

payloadbyte count 0.3736 0.1464 0.2786 0.2171 0.2579
meandelay 0.2846 0.2925 0.5118 0.3439 0.3436

meanpkt len 0.5411 0.0593 0.3629 0.1357 0.0807
meanpayloadlen 0.5939 0.0582 0.3750 0.1325 0.0746

meannonemptypayloadlen 0.5446 0.0482 0.3721 0.1229 0.0189
dir data 0.5168 0.1668 0.3861 0.1382 0.4771

meanpkt datarate 0.2932 0.1111 0.4843 0.2514 0.1979
meanpayloaddatarate 0.3400 0.0950 0.4689 0.2211 0.1550

flag urg 0.5200 0.5200 0.5204 0.5193 0.5257
flag ack 0.5296 0.4457 0.2350 0.4582 0.3404
flag psh 0.2604 0.0964 0.4643 0.2650 0.1018
flag rst 0.4189 0.3850 0.3961 0.4639 0.4757
flag syn 0.2932 0.4646 0.2139 0.4150 0.2800
flag fin 0.2732 0.5357 0.3050 0.3596 0.3189

Table B.9: FTP-ctrl — per-flow metrics

161

POP3 FTP-data Telnet SMTP HTTP
pkt count fwd 0.3279 0.3361 0.2636 0.5146 0.3150

pkt byte count fwd 0.2889 0.3193 0.2982 0.1493 0.3850
payloadbyte count fwd 0.1607 0.1364 0.4171 0.1157 0.1486

nonemptycount fwd 0.3129 0.1550 0.2957 0.4739 0.1414
meandelay fwd 0.2846 0.2989 0.5121 0.3421 0.3461

meanpkt len fwd 0.2168 0.5571 0.2525 0.0821 0.0764
meanpayloadlen fwd 0.1896 0.1182 0.1629 0.0832 0.0764

meannonemptypayloadlen fwd 0.1714 0.1193 0.1404 0.0857 0.0100
flag urg fwd 0.5243 0.5307 0.5164 0.5143 0.5146
flag ack fwd 0.4393 0.1821 0.2193 0.4582 0.3364
flag psh fwd 0.4614 0.1075 0.4900 0.4439 0.1046
flag rst fwd 0.4118 0.3911 0.3900 0.4568 0.4721
flag syn fwd 0.2839 0.5368 0.2139 0.4243 0.2686
flag fin fwd 0.2754 0.5246 0.3004 0.3818 0.3443

pkt count rev 0.3736 0.2893 0.2768 0.4486 0.3461
pkt byte count rev 0.4586 0.1921 0.2639 0.3382 0.3079

payloadbyte count rev 0.4532 0.1968 0.2807 0.3882 0.2857
nonemptycount rev 0.3282 0.3439 0.2893 0.2121 0.3329

meandelay rev 0.2861 0.2700 0.4907 0.3471 0.3218
meanpkt len rev 0.5339 0.1304 0.3471 0.3889 0.1536

meanpayloadlen rev 0.5739 0.1536 0.3464 0.3979 0.1479
meannonemptypayloadlen rev 0.5225 0.1282 0.3521 0.5746 0.0629

flag urg rev 0.5286 0.5264 0.5179 0.5271 0.5157
flag ack rev 0.5246 0.2611 0.5218 0.5229 0.5154
flag psh rev 0.2254 0.1061 0.5096 0.1768 0.1368
flag rst rev 0.5186 0.5164 0.5189 0.5057 0.5186
flag syn rev 0.3136 0.4289 0.2200 0.4146 0.2957
flag fin rev 0.2732 0.4904 0.3136 0.3457 0.3100

Table B.10: FTP-ctrl — per-half-flow metrics

162

POP3 FTP-data Telnet SMTP HTTP
sp alpha1 fwd 0.3811 0.1750 0.4479 0.2693 0.1700
sp alpha2 fwd 0.4657 0.1121 0.4896 0.4664 0.0843
sp alpha3 fwd 0.5082 0.2964 0.5054 0.4700 0.2564
sp beta1 fwd 0.1704 0.0800 0.2671 0.1500 0.0671
sp beta2 fwd 0.4139 0.0543 0.5307 0.1743 0.0375
sp beta3 fwd 0.4821 0.0514 0.5086 0.1404 0.0468

sp gamma1 fwd 0.1921 0.1732 0.4000 0.2586 0.1646
sp gamma2 fwd 0.4296 0.1068 0.3846 0.2889 0.0786
sp gamma3 fwd 0.4618 0.0989 0.3793 0.2579 0.0707
sp delta1 fwd 0.3214 0.1729 0.4354 0.2825 0.1632
sp delta2 fwd 0.5236 0.1086 0.4032 0.4382 0.0825
sp delta3 fwd 0.4986 0.0918 0.4421 0.4825 0.0664
sp alpha1 rev 0.4350 0.4321 0.2393 0.5296 0.4243
sp alpha2 rev 0.4211 0.1243 0.5236 0.4839 0.0943
sp alpha3 rev 0.4296 0.2154 0.4768 0.4254 0.1625
sp beta1 rev 0.3943 0.1543 0.2314 0.4164 0.1504
sp beta2 rev 0.4732 0.0643 0.4300 0.4918 0.0421
sp beta3 rev 0.4346 0.0432 0.2818 0.4018 0.0600

sp gamma1 rev 0.4518 0.4111 0.2232 0.5425 0.4011
sp gamma2 rev 0.4643 0.1043 0.5314 0.4639 0.0711
sp gamma3 rev 0.3554 0.0729 0.4275 0.4061 0.0614
sp delta1 rev 0.4489 0.4164 0.2350 0.4732 0.4014
sp delta2 rev 0.3789 0.1179 0.4554 0.3118 0.0743
sp delta3 rev 0.3757 0.0739 0.4793 0.3321 0.0621

Table B.11: FTP-ctrl — small packet heuristics

163

POP3 FTP-data Telnet SMTP HTTP
lp alpha1 fwd 0.5150 0.4532 0.5132 0.1914 0.4807
lp alpha2 fwd 0.5186 0.4679 0.5236 0.2921 0.5211
lp alpha3 fwd 0.5171 0.4807 0.5143 0.3900 0.5229
lp alpha4 fwd 0.5200 0.4354 0.5125 0.1696 0.4564
lp alpha5 fwd 0.5214 0.4586 0.5239 0.2821 0.5250
lp alpha6 fwd 0.5171 0.4754 0.5175 0.3861 0.5279
lp beta1 fwd 0.5082 0.4325 0.4807 0.0736 0.0418
lp beta2 fwd 0.5243 0.4525 0.5296 0.1543 0.4750
lp beta3 fwd 0.5286 0.4707 0.5114 0.3136 0.5125
lp beta4 fwd 0.5232 0.4325 0.4804 0.0736 0.0418
lp beta5 fwd 0.5264 0.4521 0.5204 0.1546 0.4750
lp beta6 fwd 0.5414 0.4707 0.5150 0.3136 0.5236

lp gamma1 fwd 0.5254 0.4343 0.5107 0.1546 0.4336
lp gamma2 fwd 0.5207 0.4568 0.5261 0.2743 0.5196
lp gamma3 fwd 0.5193 0.4732 0.5211 0.3836 0.5171
lp gamma4 fwd 0.5254 0.4343 0.5193 0.1546 0.4336
lp gamma5 fwd 0.5250 0.4568 0.5318 0.2746 0.5086
lp gamma6 fwd 0.5257 0.4732 0.5354 0.3836 0.5171
lp alpha1 rev 0.3968 0.1546 0.3179 0.4886 0.2143
lp alpha2 rev 0.4493 0.2196 0.4750 0.5021 0.2768
lp alpha3 rev 0.4661 0.3129 0.5107 0.5171 0.3557
lp alpha4 rev 0.3932 0.1464 0.2875 0.4875 0.2064
lp alpha5 rev 0.4479 0.2107 0.4686 0.4929 0.2739
lp alpha6 rev 0.4657 0.3082 0.5086 0.5011 0.3546
lp beta1 rev 0.4646 0.1107 0.2950 0.3500 0.0686
lp beta2 rev 0.4504 0.1779 0.3725 0.4668 0.2218
lp beta3 rev 0.4539 0.2889 0.4396 0.5239 0.3193
lp beta4 rev 0.4636 0.1104 0.2946 0.3500 0.0686
lp beta5 rev 0.4507 0.1786 0.3714 0.4668 0.2211
lp beta6 rev 0.4539 0.2893 0.4407 0.4929 0.3193

lp gamma1 rev 0.3943 0.1300 0.2771 0.5004 0.1900
lp gamma2 rev 0.4461 0.1986 0.4371 0.5018 0.2689
lp gamma3 rev 0.4650 0.3032 0.4989 0.4929 0.3518
lp gamma4 rev 0.3943 0.1300 0.2775 0.4818 0.1900
lp gamma5 rev 0.4461 0.1986 0.4382 0.5143 0.2689
lp gamma6 rev 0.4654 0.3032 0.5139 0.4929 0.3518

Table B.12: FTP-ctrl — large packet heuristics

164

B.4 Telnet

POP3 FTP-data FTP-ctrl SMTP HTTP
pkt count 0.2261 0.5107 0.2657 0.2400 0.2382
duration 0.1464 0.3296 0.3375 0.2025 0.2186

nonemptycount 0.2264 0.5268 0.2775 0.2361 0.2307
pkt byte count 0.2789 0.3350 0.2636 0.3821 0.4493

payloadbyte count 0.2946 0.3229 0.2786 0.5457 0.5043
meandelay 0.2382 0.2182 0.5118 0.3061 0.3154

meanpkt len 0.3821 0.1318 0.3629 0.3132 0.2400
meanpayloadlen 0.3461 0.1361 0.3750 0.3071 0.2421

meannonemptypayloadlen 0.3600 0.0943 0.3721 0.2889 0.0950
dir data 0.5582 0.2282 0.3861 0.1764 0.4396

meanpkt datarate 0.2907 0.0986 0.4843 0.2282 0.1704
meanpayloaddatarate 0.3761 0.0964 0.4689 0.2343 0.1657

flag urg 0.5221 0.5079 0.5204 0.5146 0.5250
flag ack 0.1511 0.3757 0.2350 0.1532 0.1643
flag psh 0.3093 0.0889 0.4643 0.3136 0.0900
flag rst 0.4829 0.5243 0.3961 0.4357 0.4143
flag syn 0.1400 0.3411 0.2139 0.1411 0.1589
flag fin 0.1561 0.3600 0.3050 0.1650 0.2125

Table B.13: Telnet — per-flow metrics

165

POP3 FTP-data FTP-ctrl SMTP HTTP
pkt count fwd 0.2150 0.5271 0.2636 0.2482 0.2257

pkt byte count fwd 0.2061 0.4771 0.2982 0.3511 0.3696
payloadbyte count fwd 0.2686 0.1850 0.4171 0.1379 0.1929

nonemptycount fwd 0.2075 0.1518 0.2957 0.2954 0.1282
meandelay fwd 0.2525 0.2543 0.5121 0.3132 0.3225

meanpkt len fwd 0.3604 0.4271 0.2525 0.0968 0.0771
meanpayloadlen fwd 0.1800 0.1239 0.1629 0.1111 0.0743

meannonemptypayloadlen fwd 0.1314 0.3068 0.1404 0.1154 0.0314
flag urg fwd 0.5179 0.5250 0.5164 0.5236 0.5264
flag ack fwd 0.1407 0.4168 0.2193 0.1525 0.1454
flag psh fwd 0.4836 0.1200 0.4900 0.4714 0.1218
flag rst fwd 0.4814 0.4968 0.3900 0.4339 0.4057
flag syn fwd 0.1314 0.3321 0.2139 0.1443 0.1468
flag fin fwd 0.1568 0.3496 0.3004 0.1754 0.2496

pkt count rev 0.2379 0.4896 0.2768 0.2389 0.2525
pkt byte count rev 0.2868 0.3739 0.2639 0.1779 0.4611

payloadbyte count rev 0.2964 0.4193 0.2807 0.1496 0.5104
nonemptycount rev 0.2364 0.5175 0.2893 0.1500 0.2657

meandelay rev 0.2086 0.1982 0.4907 0.3021 0.2729
meanpkt len rev 0.3654 0.2439 0.3471 0.2407 0.3032

meanpayloadlen rev 0.3400 0.3318 0.3464 0.2761 0.3100
meannonemptypayloadlen rev 0.3546 0.2836 0.3521 0.3779 0.1986

flag urg rev 0.5207 0.5214 0.5179 0.5296 0.5186
flag ack rev 0.5279 0.2689 0.5218 0.5164 0.5200
flag psh rev 0.2500 0.1179 0.5096 0.2025 0.1457
flag rst rev 0.5211 0.4850 0.5189 0.5132 0.5168
flag syn rev 0.1457 0.3768 0.2200 0.1375 0.1754
flag fin rev 0.1582 0.3889 0.3136 0.1632 0.2089

Table B.14: Telnet — per-half-flow metrics

166

POP3 FTP-data FTP-ctrl SMTP HTTP
sp alpha1 fwd 0.4279 0.1300 0.4479 0.2211 0.1246
sp alpha2 fwd 0.4561 0.1304 0.4896 0.5161 0.1100
sp alpha3 fwd 0.5211 0.2568 0.5054 0.4689 0.1832
sp beta1 fwd 0.4339 0.0621 0.2671 0.0886 0.0571
sp beta2 fwd 0.4171 0.0632 0.5307 0.1864 0.0446
sp beta3 fwd 0.4657 0.0550 0.5086 0.1500 0.0504

sp gamma1 fwd 0.3061 0.1379 0.4000 0.1754 0.1229
sp gamma2 fwd 0.3329 0.1436 0.3846 0.4068 0.1096
sp gamma3 fwd 0.3457 0.1414 0.3793 0.4175 0.0993
sp delta1 fwd 0.3950 0.1468 0.4354 0.2654 0.1296
sp delta2 fwd 0.3975 0.1607 0.4032 0.5414 0.1154
sp delta3 fwd 0.4029 0.1139 0.4421 0.3996 0.0871
sp alpha1 rev 0.3129 0.1704 0.2393 0.2371 0.1593
sp alpha2 rev 0.4425 0.1368 0.5236 0.5032 0.1082
sp alpha3 rev 0.3886 0.1564 0.4768 0.3864 0.1139
sp beta1 rev 0.3696 0.1146 0.2314 0.2743 0.1075
sp beta2 rev 0.4046 0.1218 0.4300 0.3864 0.0921
sp beta3 rev 0.4107 0.1011 0.2818 0.2764 0.1475

sp gamma1 rev 0.3161 0.1636 0.2232 0.2575 0.1375
sp gamma2 rev 0.4814 0.1429 0.5314 0.4786 0.1000
sp gamma3 rev 0.4479 0.1196 0.4275 0.4811 0.0946
sp delta1 rev 0.2550 0.1721 0.2350 0.2025 0.1389
sp delta2 rev 0.3354 0.1471 0.4554 0.2682 0.0954
sp delta3 rev 0.4193 0.0861 0.4793 0.3868 0.0739

Table B.15: Telnet — small packet heuristics

167

POP3 FTP-data FTP-ctrl SMTP HTTP
lp alpha1 fwd 0.5200 0.4571 0.5132 0.1946 0.4839
lp alpha2 fwd 0.5264 0.4686 0.5236 0.2929 0.5193
lp alpha3 fwd 0.5189 0.4814 0.5143 0.3907 0.5218
lp alpha4 fwd 0.5050 0.4411 0.5125 0.1750 0.4618
lp alpha5 fwd 0.5196 0.4593 0.5239 0.2829 0.5075
lp alpha6 fwd 0.5293 0.4761 0.5175 0.3868 0.5329
lp beta1 fwd 0.4775 0.4482 0.4807 0.0893 0.0493
lp beta2 fwd 0.5182 0.4554 0.5296 0.1571 0.4779
lp beta3 fwd 0.5207 0.4721 0.5114 0.3154 0.5264
lp beta4 fwd 0.4775 0.4479 0.4804 0.0893 0.0493
lp beta5 fwd 0.5229 0.4554 0.5204 0.1571 0.4779
lp beta6 fwd 0.5139 0.4721 0.5150 0.3154 0.5157

lp gamma1 fwd 0.5011 0.4404 0.5107 0.1600 0.4407
lp gamma2 fwd 0.5218 0.4582 0.5261 0.2754 0.5329
lp gamma3 fwd 0.5132 0.4743 0.5211 0.3843 0.5193
lp gamma4 fwd 0.4921 0.4404 0.5193 0.1600 0.4407
lp gamma5 fwd 0.5136 0.4579 0.5318 0.2754 0.5250
lp gamma6 fwd 0.5261 0.4739 0.5354 0.3843 0.5175
lp alpha1 rev 0.4350 0.3246 0.3179 0.3025 0.3711
lp alpha2 rev 0.4743 0.2468 0.4750 0.4682 0.3007
lp alpha3 rev 0.4714 0.3189 0.5107 0.4882 0.3611
lp alpha4 rev 0.4082 0.3389 0.2875 0.2704 0.3932
lp alpha5 rev 0.4789 0.2443 0.4686 0.4614 0.3036
lp alpha6 rev 0.4718 0.3143 0.5086 0.4871 0.3607
lp beta1 rev 0.4146 0.1839 0.2950 0.2007 0.1579
lp beta2 rev 0.5425 0.2164 0.3725 0.3214 0.2696
lp beta3 rev 0.5004 0.3100 0.4396 0.4307 0.3457
lp beta4 rev 0.4129 0.1832 0.2946 0.2007 0.1586
lp beta5 rev 0.5511 0.2150 0.3714 0.3218 0.2696
lp beta6 rev 0.5004 0.3096 0.4407 0.4304 0.3457

lp gamma1 rev 0.5411 0.1868 0.2771 0.2268 0.2529
lp gamma2 rev 0.4832 0.2086 0.4371 0.4264 0.2829
lp gamma3 rev 0.4711 0.3032 0.4989 0.5000 0.3525
lp gamma4 rev 0.5400 0.1854 0.2775 0.2261 0.2525
lp gamma5 rev 0.4811 0.2089 0.4382 0.4264 0.2825
lp gamma6 rev 0.4693 0.3032 0.5139 0.4843 0.3529

Table B.16: Telnet — large packet heuristics

168

B.5 SMTP

POP3 FTP-data FTP-ctrl Telnet HTTP
pkt count 0.4004 0.2993 0.5129 0.2400 0.3125
duration 0.4225 0.4139 0.3439 0.2025 0.4336

nonemptycount 0.4007 0.3032 0.4386 0.2361 0.2339
pkt byte count 0.2568 0.2654 0.2625 0.3821 0.4564

payloadbyte count 0.2261 0.2654 0.2171 0.5457 0.4411
meandelay 0.4650 0.4296 0.3439 0.3061 0.4964

meanpkt len 0.2407 0.2089 0.1357 0.3132 0.3400
meanpayloadlen 0.2218 0.2129 0.1325 0.3071 0.3471

meannonemptypayloadlen 0.2204 0.1621 0.1229 0.2889 0.2389
dir data 0.0904 0.2475 0.1382 0.1764 0.1721

meanpkt datarate 0.3875 0.3011 0.2514 0.2282 0.4261
meanpayloaddatarate 0.3336 0.2882 0.2211 0.2343 0.4196

flag urg 0.5236 0.5293 0.5193 0.5146 0.5250
flag ack 0.4036 0.4800 0.4582 0.1532 0.3021
flag psh 0.4518 0.1304 0.2650 0.3136 0.1568
flag rst 0.4557 0.4221 0.4639 0.4357 0.4861
flag syn 0.2939 0.3664 0.4150 0.1411 0.2471
flag fin 0.2957 0.3496 0.3596 0.1650 0.3164

Table B.17: SMTP — per-flow metrics

169

POP3 FTP-data FTP-ctrl Telnet HTTP
pkt count fwd 0.3607 0.3221 0.5146 0.2482 0.3018

pkt byte count fwd 0.1179 0.4457 0.1493 0.3511 0.2079
payloadbyte count fwd 0.0804 0.1432 0.1157 0.1379 0.1907

nonemptycount fwd 0.2261 0.1082 0.4739 0.2954 0.1004
meandelay fwd 0.4839 0.4429 0.3421 0.3132 0.4814

meanpkt len fwd 0.0700 0.1493 0.0821 0.0968 0.2121
meanpayloadlen fwd 0.0550 0.1046 0.0832 0.1111 0.2189

meannonemptypayloadlen fwd 0.0346 0.1364 0.0857 0.1154 0.4050
flag urg fwd 0.5171 0.5171 0.5143 0.5236 0.5271
flag ack fwd 0.3450 0.1168 0.4582 0.1525 0.2921
flag psh fwd 0.5121 0.1071 0.4439 0.4714 0.1186
flag rst fwd 0.4543 0.4339 0.4568 0.4339 0.4832
flag syn fwd 0.2868 0.4443 0.4243 0.1443 0.2379
flag fin fwd 0.3093 0.5771 0.3818 0.1754 0.3729

pkt count rev 0.4257 0.2625 0.4486 0.2389 0.3239
pkt byte count rev 0.4911 0.1375 0.3382 0.1779 0.2082

payloadbyte count rev 0.5668 0.1343 0.3882 0.1496 0.1579
nonemptycount rev 0.4314 0.2336 0.2121 0.1500 0.3214

meandelay rev 0.4443 0.4125 0.3471 0.3021 0.4450
meanpkt len rev 0.4904 0.1046 0.3889 0.2407 0.0786

meanpayloadlen rev 0.5568 0.1043 0.3979 0.2761 0.0779
meannonemptypayloadlen rev 0.5961 0.1014 0.5746 0.3779 0.0254

flag urg rev 0.5207 0.5286 0.5271 0.5296 0.5164
flag ack rev 0.5164 0.2632 0.5229 0.5164 0.5232
flag psh rev 0.4082 0.1793 0.1768 0.2025 0.2182
flag rst rev 0.5125 0.5132 0.5057 0.5132 0.5111
flag syn rev 0.3314 0.3250 0.4146 0.1375 0.2546
flag fin rev 0.2882 0.3111 0.3457 0.1632 0.2789

Table B.18: SMTP — per-half-flow metrics

170

POP3 FTP-data FTP-ctrl Telnet HTTP
sp alpha1 fwd 0.1418 0.4093 0.2693 0.2211 0.4043
sp alpha2 fwd 0.4307 0.1254 0.4664 0.5161 0.0989
sp alpha3 fwd 0.4711 0.3068 0.4700 0.4689 0.2843
sp beta1 fwd 0.0154 0.1250 0.1500 0.0886 0.0996
sp beta2 fwd 0.0679 0.1143 0.1743 0.1864 0.0746
sp beta3 fwd 0.0732 0.1125 0.1404 0.1500 0.1268

sp gamma1 fwd 0.0414 0.4043 0.2586 0.1754 0.3979
sp gamma2 fwd 0.1764 0.1661 0.2889 0.4068 0.1068
sp gamma3 fwd 0.2061 0.1361 0.2579 0.4175 0.0675
sp delta1 fwd 0.1432 0.4025 0.2825 0.2654 0.3971
sp delta2 fwd 0.4382 0.1204 0.4382 0.5414 0.0836
sp delta3 fwd 0.5100 0.0639 0.4825 0.3996 0.0386
sp alpha1 rev 0.4289 0.4386 0.5296 0.2371 0.4307
sp alpha2 rev 0.4339 0.1264 0.4839 0.5032 0.1039
sp alpha3 rev 0.5350 0.3004 0.4254 0.3864 0.2793
sp beta1 rev 0.3304 0.3254 0.4164 0.2743 0.3246
sp beta2 rev 0.5054 0.0604 0.4918 0.3864 0.0400
sp beta3 rev 0.4157 0.0443 0.4018 0.2764 0.0607

sp gamma1 rev 0.4400 0.4339 0.5425 0.2575 0.4246
sp gamma2 rev 0.5089 0.0914 0.4639 0.4786 0.0725
sp gamma3 rev 0.4664 0.0904 0.4061 0.4811 0.0689
sp delta1 rev 0.4239 0.4636 0.4732 0.2025 0.4261
sp delta2 rev 0.4107 0.1521 0.3118 0.2682 0.0882
sp delta3 rev 0.4471 0.0743 0.3321 0.3868 0.0614

Table B.19: SMTP — small packet heuristics

171

POP3 FTP-data FTP-ctrl Telnet HTTP
lp alpha1 fwd 0.1907 0.2379 0.1914 0.1946 0.2107
lp alpha2 fwd 0.2918 0.3232 0.2921 0.2929 0.2925
lp alpha3 fwd 0.3900 0.4093 0.3900 0.3907 0.3900
lp alpha4 fwd 0.1686 0.2368 0.1696 0.1750 0.2143
lp alpha5 fwd 0.2818 0.3239 0.2821 0.2829 0.2846
lp alpha6 fwd 0.3861 0.4111 0.3861 0.3868 0.3864
lp beta1 fwd 0.0718 0.2311 0.0736 0.0893 0.1496
lp beta2 fwd 0.1532 0.2868 0.1543 0.1571 0.1864
lp beta3 fwd 0.3136 0.3436 0.3136 0.3154 0.3204
lp beta4 fwd 0.0718 0.2311 0.0736 0.0893 0.1496
lp beta5 fwd 0.1532 0.2807 0.1546 0.1571 0.1854
lp beta6 fwd 0.3136 0.3439 0.3136 0.3154 0.3204

lp gamma1 fwd 0.1525 0.3164 0.1546 0.1600 0.2932
lp gamma2 fwd 0.2736 0.3239 0.2743 0.2754 0.2779
lp gamma3 fwd 0.3836 0.4107 0.3836 0.3843 0.3839
lp gamma4 fwd 0.1525 0.3168 0.1546 0.1600 0.2796
lp gamma5 fwd 0.2736 0.3254 0.2746 0.2754 0.2779
lp gamma6 fwd 0.3836 0.4107 0.3836 0.3843 0.3839
lp alpha1 rev 0.3843 0.1400 0.4886 0.3025 0.2011
lp alpha2 rev 0.4421 0.2061 0.5021 0.4682 0.2696
lp alpha3 rev 0.4596 0.3014 0.5171 0.4882 0.3493
lp alpha4 rev 0.3807 0.1293 0.4875 0.2704 0.1932
lp alpha5 rev 0.4407 0.2007 0.4929 0.4614 0.2668
lp alpha6 rev 0.4589 0.2989 0.5011 0.4871 0.3479
lp beta1 rev 0.3725 0.1011 0.3500 0.2007 0.0636
lp beta2 rev 0.4200 0.1757 0.4668 0.3214 0.2125
lp beta3 rev 0.4468 0.2821 0.5239 0.4307 0.3129
lp beta4 rev 0.3725 0.1011 0.3500 0.2007 0.0636
lp beta5 rev 0.4200 0.1757 0.4668 0.3218 0.2125
lp beta6 rev 0.4468 0.2825 0.4929 0.4304 0.3129

lp gamma1 rev 0.3779 0.1225 0.5004 0.2268 0.1804
lp gamma2 rev 0.4382 0.1961 0.5018 0.4264 0.2621
lp gamma3 rev 0.4582 0.2950 0.4929 0.5000 0.3457
lp gamma4 rev 0.3779 0.1225 0.4818 0.2261 0.1804
lp gamma5 rev 0.4382 0.1961 0.5143 0.4264 0.2621
lp gamma6 rev 0.4582 0.2950 0.4929 0.4843 0.3457

Table B.20: SMTP — large packet heuristics

172

B.6 HTTP

POP3 FTP-data FTP-ctrl Telnet SMTP
pkt count 0.4929 0.2864 0.3304 0.2382 0.3125
duration 0.4954 0.3921 0.3271 0.2186 0.4336

nonemptycount 0.4264 0.2904 0.2843 0.2307 0.2339
pkt byte count 0.3089 0.3050 0.3000 0.4493 0.4564

payloadbyte count 0.2839 0.3068 0.2579 0.5043 0.4411
meandelay 0.4932 0.4564 0.3436 0.3154 0.4964

meanpkt len 0.2243 0.3761 0.0807 0.2400 0.3400
meanpayloadlen 0.2096 0.3711 0.0746 0.2421 0.3471

meannonemptypayloadlen 0.1054 0.3914 0.0189 0.0950 0.2389
dir data 0.5793 0.1636 0.4771 0.4396 0.1721

meanpkt datarate 0.3189 0.3796 0.1979 0.1704 0.4261
meanpayloaddatarate 0.2796 0.3711 0.1550 0.1657 0.4196

flag urg 0.5121 0.5279 0.5257 0.5250 0.5250
flag ack 0.2843 0.3043 0.3404 0.1643 0.3021
flag psh 0.1279 0.3864 0.1018 0.0900 0.1568
flag rst 0.4425 0.4054 0.4757 0.4143 0.4861
flag syn 0.4025 0.3168 0.2800 0.1589 0.2471
flag fin 0.5154 0.3561 0.3189 0.2125 0.3164

Table B.21: HTTP — per-flow metrics

173

POP3 FTP-data FTP-ctrl Telnet SMTP
pkt count fwd 0.4879 0.3075 0.3150 0.2257 0.3018

pkt byte count fwd 0.1725 0.3614 0.3850 0.3696 0.2079
payloadbyte count fwd 0.0332 0.1021 0.1486 0.1929 0.1907

nonemptycount fwd 0.1286 0.1764 0.1414 0.1282 0.1004
meandelay fwd 0.5275 0.4732 0.3461 0.3225 0.4814

meanpkt len fwd 0.0382 0.1586 0.0764 0.0771 0.2121
meanpayloadlen fwd 0.0229 0.1054 0.0764 0.0743 0.2189

meannonemptypayloadlen fwd 0.0075 0.0836 0.0100 0.0314 0.4050
flag urg fwd 0.5186 0.5257 0.5146 0.5264 0.5271
flag ack fwd 0.2864 0.1229 0.3364 0.1454 0.2921
flag psh fwd 0.1064 0.2064 0.1046 0.1218 0.1186
flag rst fwd 0.4339 0.4089 0.4721 0.4057 0.4832
flag syn fwd 0.4436 0.3150 0.2686 0.1468 0.2379
flag fin fwd 0.5350 0.3768 0.3443 0.2496 0.3729

pkt count rev 0.4929 0.2850 0.3461 0.2525 0.3239
pkt byte count rev 0.3214 0.3536 0.3079 0.4611 0.2082

payloadbyte count rev 0.3039 0.3954 0.2857 0.5104 0.1579
nonemptycount rev 0.5100 0.3446 0.3329 0.2657 0.3214

meandelay rev 0.5375 0.4693 0.3218 0.2729 0.4450
meanpkt len rev 0.2582 0.4271 0.1536 0.3032 0.0786

meanpayloadlen rev 0.2525 0.5496 0.1479 0.3100 0.0779
meannonemptypayloadlen rev 0.1879 0.5275 0.0629 0.1986 0.0254

flag urg rev 0.5200 0.5250 0.5157 0.5186 0.5164
flag ack rev 0.5161 0.2725 0.5154 0.5200 0.5232
flag psh rev 0.1557 0.4739 0.1368 0.1457 0.2182
flag rst rev 0.5243 0.4989 0.5186 0.5168 0.5111
flag syn rev 0.3800 0.3204 0.2957 0.1754 0.2546
flag fin rev 0.3854 0.3361 0.3100 0.2089 0.2789

Table B.22: HTTP — per-half-flow metrics

174

POP3 FTP-data FTP-ctrl Telnet SMTP
sp alpha1 fwd 0.0321 0.5186 0.1700 0.1246 0.4043
sp alpha2 fwd 0.0307 0.4789 0.0843 0.1100 0.0989
sp alpha3 fwd 0.2071 0.4786 0.2564 0.1832 0.2843
sp beta1 fwd 0.0096 0.5071 0.0671 0.0571 0.0996
sp beta2 fwd 0.0050 0.4814 0.0375 0.0446 0.0746
sp beta3 fwd 0.0293 0.5171 0.0468 0.0504 0.1268

sp gamma1 fwd 0.0304 0.5029 0.1646 0.1229 0.3979
sp gamma2 fwd 0.0261 0.4793 0.0786 0.1096 0.1068
sp gamma3 fwd 0.0264 0.4739 0.0707 0.0993 0.0675
sp delta1 fwd 0.0446 0.5118 0.1632 0.1296 0.3971
sp delta2 fwd 0.0404 0.4793 0.0825 0.1154 0.0836
sp delta3 fwd 0.0225 0.4739 0.0664 0.0871 0.0386
sp alpha1 rev 0.3596 0.5032 0.4243 0.1593 0.4307
sp alpha2 rev 0.0725 0.4796 0.0943 0.1082 0.1039
sp alpha3 rev 0.2825 0.4829 0.1625 0.1139 0.2793
sp beta1 rev 0.1121 0.5129 0.1504 0.1075 0.3246
sp beta2 rev 0.0668 0.4907 0.0421 0.0921 0.0400
sp beta3 rev 0.1457 0.4454 0.0600 0.1475 0.0607

sp gamma1 rev 0.3557 0.4964 0.4011 0.1375 0.4246
sp gamma2 rev 0.0700 0.4775 0.0711 0.1000 0.0725
sp gamma3 rev 0.0864 0.5093 0.0614 0.0946 0.0689
sp delta1 rev 0.3529 0.4857 0.4014 0.1389 0.4261
sp delta2 rev 0.0532 0.4743 0.0743 0.0954 0.0882
sp delta3 rev 0.0475 0.4989 0.0621 0.0739 0.0614

Table B.23: HTTP — small packet heuristics

175

POP3 FTP-data FTP-ctrl Telnet SMTP
lp alpha1 fwd 0.4804 0.4732 0.4807 0.4839 0.2107
lp alpha2 fwd 0.5179 0.4682 0.5211 0.5193 0.2925
lp alpha3 fwd 0.5171 0.4807 0.5229 0.5218 0.3900
lp alpha4 fwd 0.4561 0.4796 0.4564 0.4618 0.2143
lp alpha5 fwd 0.5182 0.4607 0.5250 0.5075 0.2846
lp alpha6 fwd 0.5243 0.4757 0.5279 0.5329 0.3864
lp beta1 fwd 0.0404 0.1257 0.0418 0.0493 0.1496
lp beta2 fwd 0.4746 0.4775 0.4750 0.4779 0.1864
lp beta3 fwd 0.5111 0.4771 0.5125 0.5264 0.3204
lp beta4 fwd 0.0404 0.1257 0.0418 0.0493 0.1496
lp beta5 fwd 0.4746 0.4779 0.4750 0.4779 0.1854
lp beta6 fwd 0.5004 0.4771 0.5236 0.5157 0.3204

lp gamma1 fwd 0.4329 0.4993 0.4336 0.4407 0.2932
lp gamma2 fwd 0.5221 0.4607 0.5196 0.5329 0.2779
lp gamma3 fwd 0.5271 0.4736 0.5171 0.5193 0.3839
lp gamma4 fwd 0.4329 0.4993 0.4336 0.4407 0.2796
lp gamma5 fwd 0.5111 0.4607 0.5086 0.5250 0.2779
lp gamma6 fwd 0.5200 0.4736 0.5171 0.5175 0.3839
lp alpha1 rev 0.3221 0.4800 0.2143 0.3711 0.2011
lp alpha2 rev 0.3275 0.4671 0.2768 0.3007 0.2696
lp alpha3 rev 0.3900 0.4682 0.3557 0.3611 0.3493
lp alpha4 rev 0.3193 0.4568 0.2064 0.3932 0.1932
lp alpha5 rev 0.3261 0.4564 0.2739 0.3036 0.2668
lp alpha6 rev 0.3889 0.4629 0.3546 0.3607 0.3479
lp beta1 rev 0.1471 0.4864 0.0686 0.1579 0.0636
lp beta2 rev 0.2771 0.4339 0.2218 0.2696 0.2125
lp beta3 rev 0.3593 0.4632 0.3193 0.3457 0.3129
lp beta4 rev 0.1464 0.4875 0.0686 0.1586 0.0636
lp beta5 rev 0.2768 0.4339 0.2211 0.2696 0.2125
lp beta6 rev 0.3611 0.4632 0.3193 0.3457 0.3129

lp gamma1 rev 0.2779 0.4193 0.1900 0.2529 0.1804
lp gamma2 rev 0.3168 0.4054 0.2689 0.2829 0.2621
lp gamma3 rev 0.3843 0.4443 0.3518 0.3525 0.3457
lp gamma4 rev 0.2786 0.4193 0.1900 0.2525 0.1804
lp gamma5 rev 0.3171 0.4046 0.2689 0.2825 0.2621
lp gamma6 rev 0.3839 0.4446 0.3518 0.3529 0.3457

Table B.24: HTTP — large packet heuristics

176

