Tools, Data, and Flow Attributes for
Understanding Network Traffic without
Payload

Timothy Furlong
Supervisor: Prof. Paul Van Oorschot

(©2007 Timothy Furlong

April 20, 2007

Abstract

The classification of network traffic based on the applicatitat generated it is a rel-
atively new field; it appears to be feasible, but the avadabbls and data are not yet
adequate to pursue it effectively. There has also been stsmian paid in the last few
years to doing this without payload information, i.e. basely on packet header informa-
tion, due to challenges such as encryption and privacy ssstieis thesis describes a new
software tool for computing flow attributes, values derifei network traffic that can be
used for classifying it, focused on flow attributes that carcbmputed in the absence of
payload information. It is flexible and powerful, and can @uie a wide range of mea-
surements on network traffic. We also perform a qualitatuadueation of the capabilities

of the tool and study the behaviour of some flow attributes.

Contents

Acknowledgements

Glossary and concept index

1

Introduction and overview

1.1 Motivation.
1.2 Structure
1.3 Summary of contributions

Background
2.1 Machine learning and statistical data analysis

2.1.1 Classification
2.1.2 Logisticregression
2.2 Networking and network traffic
2.3 Networked applications
2.4 Network traffic classification
241 Summary e e

Flow attributes

3.1 Networked application behaviour

3.2 Networkflows.

3.3 Flowattributes
3.3.1 Notation
3.3.2 Timing attributes
3.3.3 Packetlengths
3.34 Datavolume,

3.3.5 Packet proportion heuristic attributes

The ANTARES tool

4.1 Comparison of ANTARES and NetMate
4.2 Requirements e
421 Usecase
4.2.2 Functional requirements
4.2.3 Nonfunctional requirements
4.3 Architecture

4.3.1 Datastructure e e e e e e e 81

43.2 Flowattributes 84
433 Flowengine. 89
4.4 Implementing flow attributes o oL 92
Evaluating flow attributes 99
5.1 Experimentaldesign 021
5.1.1 Applications 102
5.1.2 Flowattributes 103
5.1.3 Datasetsandsamples, 106
5.1.4 Training classifiers 910
5.2 Results. 114
5.2.1 Comparison with Roughanetal. 115
5.2.2 Parameterselection 811
5.2.3 Distinguishing behaviours 123
Conclusions and future work 127
6.1 Conclusions 127
6.2 Futurework 129
References 135
Data preparation 141
A.1l Technologies e 141
A.2 Conversion and processingtools 143
A.3 Converting NLANR data to tcpdump format 144
A4 Preparingdatasets 48 1
Error tables 151
B.1 POP3 . . . e 153
B.2 FTP-data 157
B.3 FTP-ctrl 161
B.4 Telnet e 165
B.5 SMTP e 169
B.6 HTTP 173

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

5.3
5.4
5.5
5.6
5.7

Mean payload length and data volume of sample non-honeages Telnet

flow e 38
UML Use Case diagram depicting the tasks involved in tladyais process 74
ANTARES data structure class diagram 81
ANTARES flow attributes class diagram 85
An example of ANTARES attributes 89
ANTARES flow engine class diagram 19
An example of an ANTARES session-based data structure 92
Pseudocode fapbetagAmaxien=20;F) 93
Actual code fospbetaAmaxien=20;F) 93
UML Activity diagram depicting control flow gfr of i | e_streams_thesis 94

Sampled flows from NLANR traces by mean packet length amdtdn . . 116
Aggregate flows from Roughan et al. [RSSD04] by mean paehkgtth and
duration (Figure 2 from [RSSDO0O4]) 711
Aggregate flows from NLANR traces by mean packet lengthcamation . 117
Mean and minimum error rates for large packet heuristigsarameter set . 121
Mean and minimum error rates for small packet heurifiycgarameter set 122
Distribution by application aneannonemptypayloadlen fwd. 125
Distribution by application oflagsyn. 126

List of Tables

2.1 Classificationresults 11
2.2 Table of measurement classes used in surveyed appsoache 32
3.1 Summary of flow attributes oL 42
4.1 Per-flow attributes computed pyofil e streans_thesis 96
4.2 Per-half-flow attributes computed pyofil e streams thesis 97
5.1 Parameter sets for small packet heuristics 104
5.2 Parameter sets for large packet heuristics 104
5.3 Summary of NLANR datasetsused 07 1
5.4 Classificationtasks oo 201
A.1 Summary of NLANR datasetsused 451
A.2 Technical details of NLANR datasets for conversion.145
B.1 POP3—per-flowmetrics. 153
B.2 POP3—per-half-flowmetrics 541
B.3 POP3—small packet heuristics 155
B.4 POP3 —large packet heuristics 156
B.5 FTP-data—perflowmetrics 571
B.6 FTP-data — per-half-flowmetrics 158
B.7 FTP-data— small packet heuristics 159
B.8 FTP-data— large packet heuristics 160
B.9 FTP-ctrl —per-flowmetrics 611
B.10 FTP-ctrl — per-half-flowmetrics 162
B.11 FTP-ctrl — small packet heuristics 163
B.12 FTP-ctrl — large packet heuristics 164
B.13 Telnet—per-flowmetrics 651
B.14 Telnet — per-half-flowmetrics 166
B.15 Telnet — small packet heuristics 167
B.16 Telnet— large packet heuristics 168
B.17 SMTP —per-flowmetrics 169
B.18 SMTP — per-half-flowmetrics 170
B.19 SMTP — small packet heuristics 171
B.20 SMTP — large packet heuristics 172
B.21 HTTP —per-flowmetrics 173

B.22 HTTP — per-half-flow metrics . .

B.23 HTTP — small packet heuristics
B.24 HTTP — large packet heuristics

Vii

viii

Acknowledgements

| would first like to thank my supervisor, Prof. Paul Van Odrst; for his support and

guidance in this process.

I'd also like to thank those who influenced my thinking in tipiocess: Prof. Anil
Somayaji for the idea to focus on the representation andrests a critical component,
Prof. Shirley Mills for support on the statistical side ofrtys, Prof. Tony White for
the suggestion of using queueing theory and generative Iswtmteapplication behaviours,
Mike Collins for e-mail discussions on the philosophy of netikvtraffic and an advance
copy of his ESORICS paper, Prof. Fabian Monrose for an advasmeaf his JMLR paper,
and the rest of the Carleton Computer Security Lab, for feddlmathe early stages of the

work.

Also, | offer my respects to the authors of the many tools HussAIDA for the Coral-
Reef suite, used to convert many of the esoteric data forrGdusstian Kreibich for lib-
netdude, used to demultiplex flows, Evan Hughes for libquapd to preprocess trace files
and reassemble IP packets, Shawn Ostermann for TCPtracktougeofile TCP connec-
tions, and the TCPdump team for libpcap and tcpdump, the rhilajary used for handling
network trace files and the invaluable Swiss Army Knife ofwak traces; research would

iX

be far more difficult without those who have built and shakegse tools, and I'll consider
myself fortunate if my contribution proves to be even a teaghuseful as the least of these.
Last but certainly not least, | want to thank my fiaacalka, for her moral support and

for not sulking (too much) over time spent working on the thasstead of with her.

Glossary and concept index

This glossary contains expansions of abbreviations anditiefis of technical terms used
in this thesis. It also functions as a concept index; whemr@piate, the page number
of the definition of the abbreviation or term within the bodytlee thesis is provided in
parentheses, where one can find more discussion of the taftsazontext in this work.
Also, for convenience, the reference citation of the doaundefining a protocol is given
in the glossary entry for the protocol. Note that commorbpaviated terms are described
under the heading of the abbreviation, rather than havingnéy for the abbreviation and
a separate one for the expansion. Terms or phrases usedssagialefinitions which are
themselves defined elsewhere in the glossary are noted\by(lcatin quod vide “which

see”).

ACK The ‘acknowledgement’ flag in a TCP packet header; also, a TCRepavith the

ACK flag setto 1.

ADU Application Data Unit, defined by Heamdez-Campos et al. [HCNSJO05] as a unit of
data corresponding to a request-response pair in a netvaakithere the request
is an uninterrupted stream of data from a client and a regp@nan uninterrupted
stream of data from a server in response to a request. (p. 26)

Xi

aggregate see packet aggregate.

application behaviour Activities of a networked application that produce obsblegpat-
terns in network traffic. Examples of application behavsoare file transfer (e.qg.
FTP, HTTP file download), chat (e.g. MSN Messenger, AlM, IC@jUtalk’), and

interactive command shell activity (e.g. telnet, SSH).3%).

behavioural distortion An effect on a network flow that changes the values of flow at-
tributes; specifically an effect not directly related to épgplication itself. For exam-
ple, we consider fragmentation at the Ethernet maximunstrégsion unit limit of
1500 bytes to be a distortion, as it is an artefact of the trésson process unrelated

to the application-layer requirements. (p. 38)

bidirectional inter-packet delay The length of time between two packets in a half-flow

(g.v.). See also inter-packet delay, unidirectional hptacket delay. (p. 47)

bulk data transfer Data transfer that attempts to send the data as quickly asetiaerk

will allow. (p. 36)

client One party in a “client-server” architecture, the one whiokates the connection in

order to make use of the server’s service. (p. 17)

client-server architecture A programming paradigm for networked applications whereby
one part of the application takes the role of a “server” jgmhich provides a service,

and the other part takes the role of a “client” that uses thas® (p. 17)

command shell A process that serves as an interface between a user teamnichéthe op-
erating system. (p. 19)

Xii

command-shell interactive behaviour Network activity produced by a human on one

node interacting with a command shell on another node. (p. 37

cross-validation A technique from machine learning using multiple trials stiraate the
real error rate of a classifier. In each trial, the classifsetrained and tested on

disjoint sets of data, which helps avoid overfitting. (p. 12)

distortion see behavioural distortion.

explanatory variable A variable in a regression problem, also known as an indegr@nd
variable or experimental variable, that explains changdise response variable, and

that is manipulated in an experiment. (p. 13)

feature In machine learning, some variable or value computed fromarapée used to

classify that sample. (p. 10)

feature vector An array or list of variable values associated with a datagajused in

classification. (p. 10)

flow see network flow.

flow attribute A measurement based on observations about a network flonerored

from other such measurements. (p. 41)

forward direction One direction of a bidirectional flow defined to be “forwardhi; this
thesis, the direction from the client to the server. For ob@rt-server applications,

an alternate criteria will need to be defined. (p. 40)

FTP File Transfer Protocol, defined in RFC959 [PR85]. (p. 19)

Xiii

half-flow A unidirectional flow that is one side of a bidirectional netW flow; e.g. a
bidirectional HTTP flow between 10.0.0.1:35535 and 10280 is made up of two
half-flows, one from 10.0.0.1:35535 to 10.0.0.2:80, andréwerse half-flow from
10.0.0.2:80 t0 10.0.0.1:35535. Note that a half-flow is germally considered to be
a network flow (g.v.) itself; the term “half-flow” is merely ed to distinguish the

unidirectional flows from the bidirectional flow. (p. 17)

header Information prepended to a data packet by a lower level pmiteo be consumed
by the corresponding protocol instance on the remote naalanbtance, an instance
of the IP given a packet by TCP to be sent will prepend an IP hebhdewill be read
by IP instances on every node between source and destimatiwder to determine

the next hop in the route.

host see network node.

HTTP HyperText Transfer Protocol, a protocol for the structueedhange of arbitrary
data over a network connection that underlies the operafitime World Wide Web.
Version 1.0 is defined in RFC1945 [BLFF96] and version 1.1 is éefin RFC2616

[FGM*99]. (p. 20)

IETF Internet Engineering Task Force, not-for-profit body dathd to “making the Inter-

net work better”; their mission statement is documented i@8I35 [AlvO4]. (p. 19)

Internet As “an internet” or, more commonly, “an internetwork”, a wetk of (often
heterogeneous) networks; as “the Internet”, a particulavaj internetwork known
as the Internet.

Xiv

IP Internet Protocol; a network-layer protocol for routingcgets over a network, defined

in RFC0791 [Pos81a].

ITU-T International Telecommunications Union - TelecommunazaBStandardization

Sector.

inter-packet delay The length of time between two packets in a packet aggregjpéeif-

ically, the unidirectional or bidirectional inter-paclalay (q.v.). (p. 47)

keystroke The byte or bytes resulting from a user pressing a key on Kasgiooard, par-

ticularly such bytes being sent across a network.

linear regression A statistical technique that attempts to use a straight tindescribe,
based on a data sample, how a responding variable is affegtadother factor or

factors. (p. 14)

logistic regression A type of linear regression technique commonly used for tredyasis

of categorical data. (p. 12)

machine-driven interactive behaviour Interactive network activity between two programs

with little or no human intervention. (p. 37)

MTU Maximum Transmission Unit: The largest packet size thatraquéar network pro-

tocol will allow. Often used in the context of Ethernet, wihitas an MTU of 1500.

natural context For a particular packet, the packet aggregate that has lefeed to be
particularly meaningful. In this thesis, unless otherwiséed, the natural context of
a packet is the half-flow (g.v.) in which it is contained. (p)4

XV

network address A data value used to identify a network node (g.v.) at the ndtlayer,

e.g. an Internet Protocol (IP) (g.v.) address. In this werk,deal mostly with IPv4

addresses.

network flow A packet aggregate (q.v.) generated by a single networkglicapon; used
in this thesis to mean an aggregation of packets using aesiragisport layer protocol
(e.g. TCP or UDP) between two endpoints (host/port pairggwElcan be unidirec-
tional or bidirectional; a unidirectional flow contains jpats from one host/port pair

to the other, a bidirectional flow also contains packetsé@réverse direction. (p. 17)

network host see network node.

network jitter Variations in the time taken for a packet to travel througleavork from a
certain source node to a certain destination node, usuadiyalchanging congestion

conditions in the network. (p. 17)

network latency The amount of time taken for a packet to travel through a neétfrom

a certain source node to a certain destination node. (p. 17)

network layer The layer of a layered protocol model responsible for rautnpacket

through an internetwork (g.v.). (p. 15)

network node Also “node”, “network host”, “host”. A computing device vintnetwork
connectivity; in this thesis, a network node will typicatifer to a personal computer

or aserver. (p. 15)

network sessionAn episode of network activity generated by a networked iappbn

XVi

performing some task, and using the network to communic#teavsingle remote

process. (p. 17)

network trace arecording of network data, e.g. as captured by an Etheangirc promis-

cuous mode sniffing a local network.

network traffic Activity on a network, or packets sent across a network. ¢p. 1

networked application A computer program or set of computer programs that communi-

cate using a network to accomplish some goal. (p. 18)

NLANR National Laboratory for Applied Network Research (p. 141)

node see network node.

octet 8-bit group of data; equivalent to byte in most contexts.e@ftised in networking

discussions as opposed to byte to avoid ambiguity with atizess of bytes.

packet A sequence of data communicated over a network, e.g. a TCRi{packn Ethernet
frame. Can be nested (e.g. an Ethernet frame carrying an dképcarrying a TCP
packet) or fragmented (e.g. a TCP segment split up acrosspieulPv4 packets).
‘Packet’ is used somewhat ambiguously both as a genericasrabove, and more

specifically to refer to data units from layer 3 and 4 proteaich as IP and TCP.

(p- 16)

packet aggregate A sequence of packets, such as a network flow (g.v.). (p. 39)

payload The part of a packet which “belongs” to a higher-layer protaban the protocol
being discussed. For example, when discussing an IP padakeistpart of a TCP

XVii

connection, the payload is the data after the IP header, @mdias the TCP header

and application data. (p. 16)

peer-to-peer A type of network application architecture where many nadéke network
communicate with each other, rather than with a centralese®eer-to-peer archi-

tectures are considered only peripherally in this thepis24)

POP3 Post Office Protocol, version 3 is a protocol designed taadlo end user to retrieve

their e-mail from an e-mail server; it is defined in RFC1939 [MRYp. 20)

port Integer value used to demultiplex incoming packets (qovthé correct process on a

host (g.v.). E.g. TCP port, UDP port. (p. 16)

POS Packet over SONET/SDH (q.v.), a physical layer protocoémfuised to transmit

packets such as Ethernet frames over a fiber optic link.

regression A statistical technique for estimating, based on a data kgrtipe relationship
between a dependent (or responding) variable and anottter far factors. See also

linear regression, logistic regression. (p. 13)

response variable The variable in a regression, also known as the dependeiatbiar
that is not controlled and is believed to be responding tmgha in the explanatory

variable(s). (p. 13)

reverse direction The direction in a bidirectional flow opposite the primary,forward,

direction. (p. 40)

RFC Request For Comments: one of a series of documents concehangarkings of

XViii

the Internet, submitted to the IETF (g.v.) and made publicdgiew and discussion.

(p. 19)

sensor A network node (g.v.) that collects network traffic (g.v.y fmnalysis, often dedi-

cated to this task.

server one party in a client-server architecture, the one whiclvigdes a service to be

consumed by clients. (p. 17)

sessionsee network session.

shell see command shell.

SMTP Simple Mail Transfer Protocol, a protocol for forwardingreil between e-mail

servers, defined by RFC821 [Pos82]. (p. 20)

streaming media Streaming media applications are those which read somefsortdia,
usually audio or audio/video, remotely and display it asitéceived, rather than
where the user downloads the entire media file and displdgsatly. Also stream-
ing audio, streaming video. Streaming media is considendderipherally in this

thesis. (p. 24)

SONET/SDH Synchronous Optical NETwork / Synchronous Digital Hielgrca stan-
dard for transmitting data over a fiber optic link; defined Y $ standard T1.105

and ITU-T standards G.707 and G.783.

TCP Transmission Control Protocol; a transport-layer protdoolreliable connections
over an Internet Protocol (g.v.) network, defined in RFC793fb].

XiX

Telnet Protocol providing an interface between terminal deviaas i@rminal processes,

defined in RFC854 [PR83]. (p. 19)

trace see network trace.

traffic see network traffic.

transport layer The layer of a layered protocol model responsible for compation be-

tween processes on communicating hosts. (p. 15)

UDP User Datagram Protocol; a transport-layer protocol fomamtionless data transfer

over an Internet Protocol (g.v.) network, defined in RFC76&g0.

unidirectional inter-packet delay The time between two packets in a network flow (q.v.).

See also inter-packet delay, bidirectional inter-packday (p. 47)

XX

Chapter 1

Introduction and overview

It is often useful to be able to identify the nature of a netwar application by analyzing
the network traffic that it generates. Some examples are@nfpnetwork policy, de-
tecting malicious activity, and improving quality-of-sere. Recent work has shown the
possibility of performing such classification without ugitihe application-layer payload of
the network traffic, but much more work can be done in makirggéhapproaches more
practical. We have developed tools for measuring netwaifkdrand dealing with network
data in order to support this research.

Network traffic classification is useful in several contexXs one example, some orga-
nizations disallow peer-to-peer file sharing; in order téoere such a policy, the network
administrators need some way to detect it, even though it leagisguised as web surf-
ing or other traffic. Similarly, if a remote attacker is usitige network to communicate
with compromised hosts on the network, the administrateednrsome way to find that
activity. Another example is enforcing quality-of-semjdn a case where several distinct
applications use the same port and protocol (for examplé, suefing, streaming video,

1

chat, and peer-to-peer file sharing, all over HTTP on port 8% useful to be able to dis-
tinguish between them in order to ensure that no one apjgicabnsumes all the available
bandwidth.

We are particularly interested in classifying networkficafvithout inspecting the app-
lication-layer payload data. Such data can be hidden byyption or unavailable due
to privacy and policy reasons; for research purposes incpéat, it is difficult to obtain
samples of network traffic that include the applicationelagayload. There are, however,
publically available data sets containing packet headers & variety of contexts; such
varied data would seem to be important for developing anthgegeneral approaches.
Another disadvantage to using approaches based on appiidayer data is that there are
often a variety of applications used for any given purpodackvcan differ widely in the
format of their payload data. We expect that measuremerssdoan information such
as packet lengths and inter-packet delays will better shemel patterns of behaviour
among applications serving the same basic purpose.

In this chapter, we explain the motivation behind our worktliae the structure of this

thesis, and summarize our contributions to the field of ndtwmaffic classification.

1.1 Motivation

The approaches to network traffic classification in the ditiere generally attempt to de-
termine from the network traffic what application generateat traffic. This work is mo-

tivated by a desire to see a shift towards the use of appicdiehaviours, patterns in
network traffic caused by particular uses of the network nasi@rmediate step for classi-

2

fication. Our work focuses on developing tools in support shidt to a behaviour-based
traffic classification; here, we explain the reasoning betkiis shift, the path that we think
it should take, and why we have focused on tools to support it.

We see two reasons for studying application behaviourgraltan applications: many
groups of applications exhibit similar behaviours to onethar, and some applications
exhibit multiple distinct behaviours, even within a sinfav. Both result in difficulties in
classification; it is difficult to distinguish between twopdigations that behave similarly
to one another, and it is difficult to characterize an apgibbicethat behaves inconsistently.
Hermandez-Campos et al. [HCNSJO05] identified a need to study “th@dénof common
uses of [applications]” rather than specific applicatidressed on the observation of differ-
ent applications using the network in similar manners (B-GTP, FTP, and peer-to-peer
file sharing all being used for unidirectional file transfdvlany applications are too com-
plex to be easily expressed in terms of the network traffi¢ tingy generate (e.g. Telnet
exhibiting distinct phases of command-shell interactredfic and bulk data transfer); this
is suggested by Nguyen and Armitage’s [NAO6] work on clagsg game traffic using
sub-flows (fragments of network flows) as well as by our owreotstions.

The concept of application behaviours could be used as amietiate step between
network traffic and applications. Application behaviours hasic types of activity such
as bulk data transfer and command-shell interactive >ithhey are more meaningful
and identifiable at the level of network traffic than appilieas, which can be expressed
in terms of these behaviours. For example, an applicatiadcdoe modelled as a state
machine where each state is a behaviour that that applicedio produce.

Ultimately, we wish to be able to describe the activity of awarked application in

3

terms of application behaviours. For example, considenéffelwhich is an application
that allows a user to interact with a command shell on a resenteer. In the simple case
mentioned earlier, a Telnet session may consist of a usdirggahort commands and re-
ceiving short replies, with occasional commands that téarde bursts of data being sent
back to the user; we could model this as a finite state machithetwo states, correspond-
ing to application behaviours: command-shell interactiegvity and bulk data transfer.
These application behaviours would be expressed in termseahingful flow attributes
that would allow them to be identified directly from networéffic; for example, bulk data
transfer can be defined in terms of data sent per unit time aa&hrpacket length, while
command-shell interactive behaviour can be expressedirstef the proportion of packets
having a certain length and certain timing characteristics

In this thesis, we focus on building tools for the analysismefwork traffic to identify
and quantify application behaviours, in support of a shifi¢haviour-based network traffic
classification. Our particular focus is on flow attribute$iiehh are measurements of net-
work traffic that can be used to study and describe applicdtéhaviours. We focused on
the tools to build flow attributes, rather than on buildinganplete set of flow attributes, as
the latter goal was too ambitious with the existing tools] Because we expect new flow
attributes will need to be created to cope with applicatamsmpting to evade the existing
ones.

Our original motivation for this work was in discriminatibgtween normal web surfing
activity and malicious software masquerading as such.dnhgtenario, it must be assumed
that an attacker will attempt to evade network traffic chimazation. We do not directly
address evasion here, leaving it for future work. Howewas®n does motivate this work

4

in that we expect such a detection effort to become an arnes eaxxl so we have built a
tool that allows the rapid development of new flow attributesallow defenders to more
quickly adapt to the attackers’ changes. This indirectlypguts the use of a variety of flow
attributes as a countermeasure to evasion; efforts to narmsisall number of attributes will

often disturb others (e.g. padding packets to give a cemaian packet length will increase
the data rate and total amount of data sent). We do not, honasdress evasion in any

formal manner.

1.2 Structure

The structure of this thesis is as follows. First, in ChaptéBackground”), we present
some information on a variety of topics that we will use irstiiork, including machine
learning, networking and networked applications, netwaffic classification, and the
existing tools for handling network traffic.

A detailed exploration of the representation of networlfitand a description of the
tool we have developed is presented in Chapter 3 (“Flow ate#d). The chapter starts
with a description of networked application behavioursant®n 3.1. In section 3.3.1, we
describe a notation for defining flow attributes, and thereitisn 3.3, we use our notation
to define a number of flow attributes from the literature.

Chapter 4 (“The ANTARES tool”) describes the Advanced Netwbriffic Analysis
Research and Exploration Suite (ANTARES), which is a toolgiesil to allow researchers
to easily define a wide range of flow attributes. It is a compotibrary that aggregates
and processes network traffic, and provides mechanismsifserato define the attributes

5

that they wish to be computed on that traffic. It allows atttds to be defined in terms
of other attributes, and will be used to implement an intetgnrfor a high-level language,
based on our notation, for defining flow attributes.

We perform a qualitative evaluation of ANTARES and of the flaivibutes we have
defined in Chapter 5 (“Evaluating flow attributes”). The oWetanclusions of the thesis
and our analysis of the future work enabled by it are given iapér 6 (“Conclusions and
future work”).

We have also included appendices with additional inforometinat we believe will be of
use to other researchers. Appendix A (“Data conversiorsgdies a large set of data avail-
able from the National Laboratory of Applied Network ReségidLANR, now subsumed
by the Collaborative Association for Internet Data Analysis CAIDA), and documents
the process necessary to convert the data to a more widdheusamat. In that process,
we used tools that we have developed and included in ouritptiikse tools serve a variety
of purposes, such as breaking down network capture files jpycapion or into timeslices,
and extracting network flows as samples. We have found tleebe tjuite useful in our
investigations, and hope that other researchers can b&oefithe effort that we have put
into them. Appendix B (“Error tables”) includes detailetlzs of error rates for classifiers
that we used in our evaluation of flow attributes; it helpgstrate the behaviour of the flow

attributes and applications that we studied.

1.3 Summary of contributions

This thesis focuses on building the tools to support futesearch in network traffic clas-
sification without the use of application-layer payloadadaur main contributions are a
notation for expressing flow attributes, and ANTARES, a saftwtool designed to facil-
itate the computation and evaluation of flow attributes. \&eehdeveloped a number of
other tools for manipulating network traffic and bundledntheagether with ANTARES
into a toolkit! we have also made available a data set consisting of flovbatigrivalues
computed from publically available packet header tracesyerted to a widely usable for-
mat. We consider these additional tools and data to be a roordribution.

We define a notation for precisely expressing flow attribated use it to define a se-
lection of flow attributes from the literature. This notatiis designed to allow the unam-
biguous definition of flow attributes using a small set of bagierations, so that they can
then be computed by a tool such as ANTARES.

We also present ANTARES, a C++ object library for computing fevibutes. AN-
TARES is designed to be flexible and extensible, and its pyirgaal is to support the rapid
development of new flow attributes for experimentation. \WWeigrm a qualitative evalua-
tion of the tool by using it to compute flow attributes on puahlly available network data
from a variety of networks, and find that it meets its requieaits, though more rigorous
testing should be performed as future work. This tool is lsimin purpose to NetMate
[2S06]; the primary advantage of our tool over the lattethisttours allows a researcher

to combine flow attributes to create other attributes, ireotd facilitate the process of

LFor clarity, we will refer to our main tool for processing weik traffic as the ANTARES tool or simply
ANTARES, and to the larger toolkit as the ANTARES toolkit.

7

developing and experimenting with such attributes.

We have made available a collection of data processing foblsse in network traffic
experiments, as well as a data set consisting of flow at&rikatues computed on publi-
cally available packet header traces using ANTARES. Thesttaddilitate the process of
selecting samples from network data, by providing routifeesdividing data traces into
timeslices and by transport-layer port, among other taSkee data set consists of 8400
packet header traces from connections of different appbies. in different network con-
texts, along with a variety of flow attribute values computexin these traces. The data
is in comma-separated value (CSV) format, which is usable bgtrmathematical and

statistical software packages.

Chapter 2

Background

In this chapter we present some background to establistotiitext of this work. We con-

sider some statistical techniques that we will use in evadgacandidate flow attributes,
and discuss networking and network traffic in general, ireotd better situate our discus-
sion. We then present a survey of prior research into clasgihetwork traffic, and discuss
the issues with them, particularly in their data sets antihigsnethodology, that motivated

many of the decisions in this work.

2.1 Machine learning and statistical data analysis

We draw upon techniques from the fields of machine learnimbstatistical data analysis
in our exploration of behavioural flow attributes, and so wespnt here some background
on these techniques. Specifically, we examine classificatil logistic regression. Clas-
sification, in this context, is a machine learning technitpredeveloping systems to dis-
criminate between classes of data points. Logistic regress a statistical technique used

9

for inferring a quantitative relationship between an expental variable and an outcome.

In this work, these techniques are central to our analydiebévioural flow attributes.
We use pairwise classifiers to discriminate between diffea@plication behaviours based
on a flow attribute; the classifiers use logistic regressiinfer the relationship between
the flow attribute and the application behaviours in questichich will be used as the basis

of classification.

2.1.1 Classification

Classification, or supervised machine learning, is the plis& concerned with the auto-
matic or semi-automatic generation of algorithms thatgaskibels to data points based on
previously observed data. Given a set of sample data wheheseanple is labelled, a clas-
sification algorithm will generate a classifier, which is adtion, or set of rules, or similar
construct, that it can use to predict for a previously unszanple what label that sample
should be given. Research in network traffic classificatioesusachine learning-based
classification techniques, and we generate classifiersamibrk to gauge the discrimina-
tive power of flow attributes, so we explain here some releeancepts from the field of

classification. This discussion draws from Frank and WiRt@#&99].

A common model of classification involves predicting a clade®l from afeature vec-
tor, which is a one-dimensional array or list of variable valoesiputed from a data sam-
ple. The experimenter decides on a set of variableiaiuresthat are to be used to train
the classifier, and for each data sample, the value of thassbles are computed and en-
tered into such a feature vector. These feature vectorediatb a classification algorithm,

10

Actual class
Classification Class C Not C
Class C True positive | False positive
Not C False negative True negative

Table 2.1: Classification results

which produces a classifier that can be used to predict tied that it expects to be asso-
ciated with a feature vector. Ideally, a classifier will béeato assign the correct label to

vectors that were not part of its training set.

A classifier can be tested for accuracy by having it test a ssaimples with known
classes, and comparing its output labels with the actuaivkriabels. The testing should
preferably be done on a set of samples that is distinct frasdused to train the classifier
in order to prevenoverfitting the phenomenon where the classifier learns the test data too

well and is unable to work on the general problem.

There are two common measurements of the performance o$sifeda accuracy and
recall. Given a target class @c¢curacyis a measure of how often the classifier is correct
when it labels a sample as being of class C, eswhll measures the proportion of the

samples that were actually in class C were identified as sytheaclassifier.

A classifier's performance can also be evaluated in termsuef and false positives
and negatives. Table 2.1 shows these concepts graphieajpgsitive is a sample that
the classifier identifies as belonging to class C, and a negatione that the classifier
identifies as not in class C. A false positive is a sample thas et belong in class C that
the classifier identifies as being in class C, and a false negatione that does belong in

class C that the classifier does not label as being in class C.

The accuracy and recall of a classifier can perhaps mosy éaséxplained in the terms

11

of table 2.1. Accuracy is equal to the number of true posstidwided by the sum of the
true and false positives. Recall is measured as the numbareopositives divided by the

sum of the true positives and false negatives.

Cross-validations a technique used to evaluate the performance of a cladfical-
gorithm. A classification algorithm will learn how to clasthe training data it is given,
so simply testing it on the same training data will give anrofdtic estimate of its perfor-
mance on data it has not previously seen. To compensateisoktfold cross-validation
is used, where k is a parameter. In k-fold cross-validatibe,experimenter divides their
data intok roughly equal parts. They then train and test a clasdifienes; each time, one
of the k parts is not used for the training, but is used to test thesiflas trained on the
otherk — 1 parts. This gives a more accurate estimate of how well t&sidler will do on

previously unseen data.

We have briefly presented here some key concepts from theofieldssification, pri-
marily as background to many of the other works in traffic sifésation which make use
of these techniques. Our own classifiers are fairly simple;use only one feature at a
time, and we use logistic regression (described in sectibri2Pto find the threshold that

separates the target class from the alternate class.

2.1.2 Logistic regression

Logistic regression is a statistical technique that isrofised to analyze categorical data
and find the relationship between a variable of interest hadtds of the data point be-
longing to a particular category. This technique is usetimthesis to generate classifiers,

12

and so we describe it here, though not in great detail. Thsudision draws on Neter,

Wasserman, and Kutner [NWK85].

Regression attempts to determine the quantitative reltiprbetween a response (or
dependent) variable and one or more explanatory (or inadkgehvariables. In an exper-
iment, the independent variables are manipulated by therempnter to produce changes
in the dependent variable; in an observational study, tiperxenter studies the values
of the response variable in cases with different values @fettplanatory variables. A re-
gression task normally involves choosing a response fom@8uch as a straight line in
linear regression), and estimating the parameters of timatibn such that it describes the

relationship.

As an example, suppose we wanted to explain the observaifansesponse variable
Y as a linear function of an explanatory variakjevith some error. We could express this

as.

Yy=mx+b+sgi=1..n

This simply means that each observatins on a line described bgnx + b, except for
being off by some error terra; if this model is valid, we expect the error terms to be
normally distributed, with a mean of 0. More generally, wplage the line by a function
f(x); in the above examplen andb are parameters of the function. This would be as

follows:

Yi=f(x)+e&i=1,..n

13

An estimation method is used to iteratively attempt to finldiea for the parameters of
f(x) such that the error terms are minimized. A popular estimatiethod is least squares,

where the function to be minimized is:
A 2
Q=Y [Y—f(x)]
2,

In linear regression, where the response function is agstrdine, the parameters are
the slope of the line and the y-intercept &ndb in the previous examples). In logistic
regression, the response function is what is called theotis or logit of the probability.
That is, rather than try to fit a function representing thebptwlity of a sample belonging
to a target class, we try to fit a function representing theuibigm of the odds, which is
the ratio of the probability of a sample belonging to the ¢argjass over the probability
of the sample not belonging to the target class. More foyndlthe probability of a data

samplei being a member of the target class is giventhythen the logitrt is given by

T'1{ = |Og((1iﬁm))-

Logistic regression is often appropriate for regressiorcategorical or indicator de-
pendent variables, those where the value is either O or 1ndiémg on e.g. whether the
sample belongs to a particular class. This is because titedsgonse function has a num-
ber of properties that are desirable for regression on oatz] variables, particularly that
the probability predicted by a logit function will be in thetérval (0,1), and thus will not
predict probabilities less than O or greater than 1, whichpstential problem with simple

linear models.

This thesis uses logistic regression to generate classierwe have given here an

14

overview of how the technique works. In our case, the depandeiable will be a class,
specifically a class of network traffic, and the independantble will be one of the flow
attributes that we wish to evaluate. Given samples of twesdsa of network traffic, the
regression problem is to fit the log-odds line to best deecifitr that flow attribute, what
the probability will be that a sample with a given value foe fltow attribute will be of the

target class vice the alternate class.

2.2 Networking and network traffic

This thesis is focused on an exploratory analysis of netviiakic generated by appli-
cations, and so some background on networking and netwaiffictrs appropriate. This
section will review some terms and concepts that will be irtgod for understanding the
remainder of this work. This discussion draws on Petersadravie [PDO0O].

Network traffic is transmitted by aetwork nodeor network host We use both terms
almost interchangeably, the difference being that we usddim host to place emphasis
on the host itself and its use of the network, whereas the Usederm node emphasizes
its role as part of the network.

The network protocols that we deal with in this thesis araraged inlayers a com-
monly used reference model is tRESI stack a seven-layer model consisting of physical,
data-link, network, transport, session, presentatiod agplication layers. The layers rele-
vant to this work are thaetwork layer which takes responsibility for routing a packet over
a network, and the#ansport layer which takes responsibility for managing communication
between software processes on the communicating hostsls@/ester to theapplication

15

layer, which generally refers directly to the application thatissng the network.

In a layered protocol stack, each layer is mostly indepenfilem the others, and the
data sent by a protocol belonging to a given layer on one ngeocessed by the same
layer on the receiving node. This is often accomplishedguaitechnique known as en-
capsulation. This technique involves each protocol prépgnand/or appending its own
information to thepayloadfrom a higher layer. Many such protocols will prepenigeader
to the payload to carry its own information to the correspogdgrotocol at the remote
node. That remote protocol instance can then remove theehead process the infor-
mation it contains before passing the unmodified (or redgpayload to the appropriate
higher-layer protocol at the remote node.

We use the termetwork trafficto refer generally to data that is sent across a network,
whether it is being sent, in transit, or being received, oethbr it has been captured and
stored in some static format. A unit of such data igagket we use this term in a very
general sense, to mean a bundle of data sent across a neBifbekent layers of the stack
refer to such bundles by different names; in the physicaldatd link layers, they are often
called frames. When talking about the network lapackets the common term. At higher
layers, various protocols will refer to packets, messagggnents, and datagrams; we will
use the term packet, and explicitly identify what type of ktove are discussing in the
given context.

A common identifier used by protocols such as TCP and UDP igptre numbey
or port, an integer used to multiplex and demultiplex netwtoaffic originating from or
destined to a particular node. In common usage, a port actsalsaddress on a particular
node.

16

The termaetwork sessioandnetwork flow as used in this thesis, are closely related;
we use both to refer to data sent across a network in the cotiaseapplication’s operation,
usually data sent to accomplish a single goal and involvisggle remote process. The
main difference is perspective; a network session refessith a transfer of data from the
perspective of the application, whereas a network flow sai@ore directly to the network
traffic generated by such a network session, being more éocois the perspective of one
intercepting such traffic.

The concepts of network latency and jitter are related taithe taken by packets to
traverse the network. Supposing we have a node A and a nodeB¢yadescribes the time
taken for a packet to reach B after being sent by A. The teranttis generally used to
describe the “normal” amount of time taken. Jitter referthtovariations in the amount of
time taken. For example, if one were to send a dozen packetsArto B and measure the
time taken by each to be received after being sent, the methios¢ measurements would
be a measure of the latency, and the standard deviation Wewddneasure of the jitter.

Another concept used repeatedly in this work is that a sessimlves a client and a
server. The applications that we consider employdient-server architecturein which
one node, theerver advertises a service that it provides, and the other nbaslient,
connects to the server and uses the service.

The applications we deal with in this work are built on thesptiserver architecture,
and when discussing traffic generated by these applicatindistinguish between client-
side and server-side traffic. Client-side traffic is traffiotdgy the client to the server, and
server-side traffic is traffic sent by the server to the cliefibe distinction is necessary
because the roles of the client and the server are geneuatly different, and thus the

17

traffic generated by them is asymmetric.
For the purposes of our work, we will assume that we know aripwbich side of a
network flow is which, but any practical implementation ofraffic classification system

will need to be able to deal with uncertainty in the directadrthe traffic.

2.3 Networked applications

Programs and suites of programs that use computer netwzakscUlarly the Internet) in
the course of their primary purpose are referred to here @gniked applications. In this
work, we use samples of network traffic data produced by séwetworked applications;
we describe these applications here and discuss theiaralewo this thesis.

One of the most important factors in selecting applicativas that we wanted to fo-
cus on applications for which we could obtain samples fronofalhe data sets we used;
this requirement limited the set of applications that we @adhoose from. However,
we have obtained a basic set of applications for testingdbks tand techniques that we
have developed. The applications of interest are: the Faasfer Protocol (FTP), which
is subdivided into FTP-control and FTP-data; Telnet; thef@e Mail Transport Protocol
(SMTP); the HyperText Transfer Protocol (HTTP); and thetRoaffice Protocol version
3 (POP3). Strictly speaking, these are not applicationsitiedves, but protocols that are
implemented by various applications; however, for our psgs, we will assume that the
protocol is designed for a particular purpose, and that tivpgse drives the behaviour
more than the implementation does.

In this section, we describe the applications and the knownh umbers associated

18

with them. The standards for network interactions, or proks, of these are defined in
documents called Request For Comments (RFC), published by tieéh Engineering
Task Force (IETF). The IETF develops and organizes docuatientsuch as protocol stan-
dards, best practices documents, and other documentsequttpose of improving the

Internet [Alv04]; the RFC system is a major vehicle to this.end

The File Transfer Protocol (FTP), as its name suggests, istaqgol designed to allow
the transfer of files between nodes on an internetwork. Bidbntext, we are specifically
concerned with FTP as used by standard FTP client and senvgrams such as the ftpd
server and FTP client normally included in Linux, Unix, andB&perating systems, used
interactively by a human user rather than an automated gs0€d P is defined in RFC959
[PR85]; this discussion draws primarily on that document. FArP session consists of
two communications channels, the control channel and tteeatteannel. The two channels
are used for different purposes and are expected to exhitiely different behaviours, so
for our work we consider them to be two separate applicatigch we will refer to as
FTP-control and FTP-data, respectively. FTP-control ggstered as using port TCP/21,

and FTP-data as using port TCP/20 [Aut06].

The Telnet protocol is a protocol designed to provide anriate between terminal
devices and processes such as terminals slaved to a magrdradhthe mainframe terminal
process; on the Internet, it is often used for remote acoessdmmand sheliwhich is the
use with which we are concerned. We expect that the majoreim@htation of telnet that

we will be dealing with will be that of the major telnet sers@nd clients, such as the BSD

1A command shell (or simply shell) is a program which servea asmmand-line interface between a
user and the operating system on a computer system

19

server and client, or the telnet client included with Windawperating systems. It is also
used for the control channel of FTP. Telnet is defined in RFC8%], and is registered
as using port TCP/23 for communication [Aut06]. It is of pautar interest in this thesis,
as we expect an attacker who successfully gains unautkbasess to a node would want
to interface with a shell, and telnet is the best widely-iadde proxy to such shell activity.

The Simple Mail Transfer Protocol (SMTP) is a protocol usedhtplement the han-
dling of e-mail on an internetwork. SMTP is defined in RFC8219%2]; RFC2821 is
a proposal to replace that standard, currently designaed‘proposed standard” by the
IETF [KleO1]. The latter is a compilation of the original S Ttandard plus several of its
major extensions [Kle01]. SMTP is registered as using p&®/R5 [Aut06].

The HyperText Transfer Protocol (HTTP) is a protocol des@yto allow the distri-
bution of content via an internetwork. The content distidolvia HTTP is not limited,
but often consists of documents in HyperText Markup LanguédTML) and images.
HTTP version 1.0 is defined in RFC1945 [BLFF96], and versiond.defined in RFC2616
[FGM™99]. Both versions are registered as using port TCP/80 [Aut06]

The Post Office Protocol, version 3, is a protocol designeditov e-mail clients, used
directly by a human user, to interface with the mailhostpoesible for forwarding mail
across an internetwork (via a protocol such as SMTP, desttiiito section 2.3). POP3 is

defined in RFC1939 [MR96], and registered as using port TCP/2B@u

20

2.4 Network traffic classification

There is a growing body of research, driven by several distimotivations, regarding the
classification of network traffic. The major questions addegl by this research are to
identify what a given type of network traffic “looks” like, igeneral, and how to use that
information to be able to distinguish between differentetyf traffic. These questions
are relevant in several contexts, such as network secunttyadministration, network pro-
visioning, protocol design, and network simulation. Thést®on provides an overview
of the existing literature in traffic classification, focagion that which uses non-payload

information to classify traffic.

The existing work in this area shows that measurements wfanktraffic offer enough
information to classify the traffic by application, thoudtetexisting approaches are not
yet accurate enough for practical purposes. We note that sdthe researchers discussed
in this section, e.g. Frank [Fra94] and Karagiannis et aPFR5], created groupings of
applications that they considered similar, though with nargitative basis for these groups.
Also, most only considered the subset of information atéglérom the tools they chose to

use.

One segment of somewhat related work not dealt with heresiesareh on classifying
network traffic based on resources consumed, such as Estavaeghese’s [EV03] work
on distinguishing between “elephants and mice” — i.e. nétwimws of significant and
insignificant volumes of traffic, respectively. While thatdertainly a form of network
traffic classification, our work is focused on classifyingffic based on the nature of the
flow and the type of activity that generated it, regardleswloéther it is an elephant or a

21

mouse.

Where error rates are reported, unless otherwise notea #iesombined error rates,
i.e. the number of false positives and false negatives (asritbed in section 2.1.1) di-
vided by the total number of samples. The results in thedlitee are presented in various
different forms, so we have rephrased the reported erres rat accuracies in terms of
combined error rates where possible, in an attempt to fatglcomparisons of the different
approaches.

Frank [Fra94] applied feature selection algorithms to tassification of flows from
a small set of classes, attempting to improve the performaémycselecting only the most
useful features for the task. He used some basic flow attsbytius the probability, ac-
cording to Heberlein's Network Security Monitor [HD190], that the flow was malicious.
The classes he used were “login”, “shell”, and “SMTP”, cified by hand, though he did
not explain what constituted a login or shell flow. He foundttall three of the algorithms
used performed well to find a good set of features, althoughnbst complex one did
better than the others on the task of distinguishing shellfJ@and concluded that in many
cases, simple feature selection algorithms perform dceml. He reports error rates
(computed using test data independent from the training) @ditabout 3% or less.

Zhang and Paxson [ZPO0O0] described a number of techniquegetecting what they
refer to as backdoors, which are unauthorized access mienfsim a system installed by
an attacker. One detection technique they use for idengfymteractive traffic is based

on the proportion of consecutive small (less than 20 bytgmgfoad) packets in the flow.

2The percent signs in the error rates that Frank himself tegare superfluous and should be ignored,
according to Dunigan and Ostrouchov, who report that this ganfirmed to them in an e-mail from Frank
[DOO01].

22

They report results for their general detection algoritbmiiteractivity (which uses packet
size and timing information) that correspond to a combinedrerate of about 0.77%;
they mention, however, that most of the false positives wefact e-mail protocols used
interactively. Disregarding those, the combined erroe @buld instead be about 0.44%.
They note, however, that the data set used to evaluate fadstevps had many high-volume
applications such as HTTP, NNTP, and the data channel of FERefl out; had HTTP in
particular been present, it might also have led to higherbarmnof false positives.

Dunigan and Ostrouchov [DOO01] found that they could disarate among eight dif-
ferent applications using flow attributes based on packegssiinter-packet delays, and
packet directions. They divided the possible space of theseattributes up into bins, and
treated each bin as a separate flow attribute unto itselexample, one feature could be
“the count of packets with a length of 60 bytes, a delay siheddst packet of between 1
ms and 800 ms, and where both that packet and the previoustpaeke from the server
to the client”.

They tested their approach, using statistical methoddeatsthiree such flow attributes
and using those attributes to estimate probability deffigitgtions for each of the applicat-
ions, then classified flows by selecting the function thaeghae greatest probability based
on the flow attributes of the flow. The worst error rate theyorgpbased on testing and
training on the same data set, was 6.41%, for e-mail, andtttex applications were clas-
sified with error rates of 4.28% or better (most of them betian 1%). They also report,
however, that preliminary testing on a second data set tongee-mail flows results in the

classification error rate more than doublhg.

3Dunigan and Ostrouchov reported their results as a confustrix, where it was not clear which axis

23

Early et al. [EBRO3] developed an anomaly detection approashkdbon flow attributes.
They used frequencies of various TCP flags and mean packetimieal times computed
across windows of flows to determine, among five common agidics, to which the flow
belongs. They used the C5.0 decision tree algorithm [Qu®8gtelop their classifier, and
found that it could classify the flows with recall of 82% or teetfor SMTP, and with recall
of 96% or better for most other applicatioch#cluding no errors for some applications.
Their primary results are based on the 1999 Lincoln Labs/DARRta set [LHF 00],
which has some known issues [McHO0O, MCO03], which they ackedgt. As a result, they
also used data collected from their own networks, and repatttheir system performed

equally well on that data set.

Roughan et al. [RSSDO04] performed a set of experiments aimgubating the poten-
tial of discriminating between flows from different applicas based on flow attributes;
their motivation was the improvement of quality-of-seevischemes. In one of their ex-
periments, they developed classifiers using several Gzgson algorithms to distinguish
between applications in several sets. They chose the av@aket size and duration of
the flows as data features to distinguish between Telnet;dal® Domain Name Service
(DNS), and streaming vided. They also worked with a seven-class version, adding in

HTTP, HTTP Secure (HTTPS), and KaZ&Ahe best error rates they obtained were 5.1%

represented real classes and which represented assigssds;Iso we have simply computed these combined
error rates based on the values in that table. It is not clbatlver error rate that they reported for the second
data set was based on false negatives or on false positives.

4They report their performance as “accuracy”, but their dption indicates that the values are actually
recall values.

5Streaming media , such as video, is a class of network apiplicerhere the client obtains data from the
server as it renders it, rather than obtaining all of the gata to rendering.

6KazaA is a peer-to-peer file sharing application; peergerpis a decentralized network application
architecture where endpoints communicate directly with another, with little or no reliance on centralized
server nodes.

24

and 9.4% for these classification problems, respectivelpgia 3-Nearest-Neighbour clas-
sification algorithn?. Rather than using attributes computed over individual fldvesy-

ever, they used daily averages computed from the flows seeeday; some of our observa-
tions suggest that these may have led to optimistic resbtisgh we by no means establish

that.

Borders and Prakash [BP04] developed an anomaly detectitensyisey called “Web-
Tap”, which uses flow attributes to detect anomalous belkiawioHTTP sessions. Their
main focus is on information being smuggled out of a netwaekWTTP, such as by spy-
ware8 Their approach operates on HTTP requests and respondes, tfzdn on packets,
and they use attributes such as inter-request delay, regjzes, and outbound data vol-
umes. They found that their approach was successfully aldetect actual unauthorized
software on their network, as well as some hidden channeliadé that they installed to

test the system.

Wright et al. [WMMO04] used Hidden Markov Modé&1i$HMMSs) and k-Nearest Neigh-
bour (KkNN) learning algorithms to classify flows and aggtegeof flows generated by
different applications, based on packet lengths, intekeidelays, and packet directions.
Their focus was on classifying traffic with minimal informar, such as might be available

from traffic in an encrypted tunnel; they went so far as tordtte packet lengths to simulate

’3-Nearest-Neighbour is a common machine learning alguritthich classifies a data point by looking
at the three closest data points for which a class is known BKF9

8Spyware is malicious software that gathers informatiomftbe host computer about the user; often it
is designed to pick up sensitive information such as credid aumbers, social insurance identifiers, or such
things as game activation codes.

9An HMM is a model that represents a finite state machine wheketbe outputs can be observed, and
the internal states and transitions are unknown [Rab8%;ishappropriate to the task, as network traffic
can be viewed as the output of a hidden finite state machingetoof such machines) — the application in
guestion.

25

the effect of a block cipher being used on the data. This igtcpéarly difficult problem;
most other approaches discussed here assume that at eepatitet headers are available.

Their KNN approach to identifying single-protocol aggregawas based on features
similar to those used by Dunigan and Ostrouchov [DOO01], & they were based on rela-
tive proportions of packets falling into bins based on patdegths and direction, though
they used only four bins. For this task, they found that fane@pplications they could
get good (often perfect) recall, but for some low-volumelaagions, the performance was
much poorer, as their features were computed for epochsnstaot duration. They used
more fine-grained bins for their HMM-based approaches fentidying individual flows,
and also incorporated timing information in some of thenthAligh they had trouble with
FTP-data, their full classifier (using packet size, timiagd direction) gave recall values
of 76% or better for other applications.

Hermandez-Campos et al. [HCNSJO05] emphasized the need to focygpbicadion be-
haviours rather than on applications. They performed efugg on flow attributes for flows
from the ABILENE-I data set from the National Laboratory fogp@lied Network Research
(NLANR), based on some simple and less simple flow attribuRzgther than computing
these attributes on packets, though, they computed themhahtivey called Application
Data Units (ADUs). These ADUs were, using the client-sepaadigm, request-response
pairs, where packets comprising a request (e.g. an HTTRestqwere the first part of the
ADU, and packets comprising a response to that requestde.§iTTP response) were
the second part of the ADU. They then computed their atteoin the amount of data in
each part of the ADU, and the delays between ADUs. They alewath that the size of
both parts of the ADU, at least for TCP flows, could be deducethfthe sequence and

26

acknowledgement numbers from just one side of the flow.

They found that the clusters qualitatively separated #fédrout into interesting classes,
and they demonstrated a visualization technique usingt ‘in@@s” — graphical represen-
tations of attributes values — to analyze the clusteringeyTiteport that traffic with ports
associated with peer-to-peer applications separatdéiotseinto two clusters, which they
believe are different modes of operation for the peer-terag@plications, that traffic with
ports associated with HTTP applications separated outantther cluster, and that there
were indications of homogeneity in the other clusters as wel

Karagiannis et al. [KPFO5] propose a system they call BLIN€ BbINd Classifica-
tion, that focuses on patterns in communication betweeestmiclassify each node based
on what application activity that node is engaged in. Rathem examining attributes of the
flows themselves, they develop data structures, which thkkg@aphlets, based on patterns
in the network activity in terms of other hosts contactetfedent ports and protocols used,
and relationships between those pieces of information.y Then compare the graphlet
generated by a host’s behaviour to a library of graphletshofdn application behaviours
in order to determine what application is running on the h@siough this approach does
not use flow attributes, it is nonetheless related, and doeilal useful alternate approach to
complement a flow attribute based approach.

DeMontigny-LeBoeuf [DLO5] described a wide range of flowiatites that can be used
to classify flows by application, and built a hand-tuned siféex from them. She organized
them based on the higher-level qualitative features thet gitempt to measure, such as
interactivity, conversationality, and regularity. An amNage of this approach of linking
flow attributes to higher-level features is that her systeralile to generate a qualitative

27

description of a sample flow in terms that may be more usefa bmman analyst than
the raw flow attributes would be. Her hand-built classifiestidguishes among 9 different
applications. Its worst error rate is 36% (for HTTP), but fieost of the applications, its
error rates are around 10% - 20%; note that these error nadike those of many of
the other approaches mentioned here, are for a data setadkatot used in building the
classifiers [DLO6].

Moore and Zuev [MZ05] used Niee Bayes classifier with a Fast Correlation-Based
Filter for feature selection, to classify network traffitargroups of applications (e.g. bulk
data transfer, interactive, database). Their best classifibtained combined error ratés
as low as 3.7% (across all application groups) on data frenséime timeframé& with er-
ror rates of 6.3% on data collected 12 months after the trgidata was obtained. However,
their approach apparently incorporated the server-sidegsaa flow attribute; we wish to
ignore that value when classifying traffic. Other attrilsutieat they found useful included
the number of packets with a particular flag in the TCP headettreeinitial values for the
TCP window sizes? and average TCP payload length.

Collins and Reiter [CR06] used NetFlow d&t4o distinguish BitTorrent traffi® from
that of FTP-data, SMTP, and HTTP. They designed tests tondigsh BitTorrent traffic

based on four measurements: a failed connections heutisibandwidth (data rate) of the

10A Naive Bayes classifier is a common machine learning algoritah éxpresses an outcome, such as
a flow belonging to a particular application, as a probaiiilimmodel of a set of factors, making theiva
assumption that those factors are independent of one arfeir®9].

lwhat they report as accuracy is effectively the complemetit@Eombined error rate; they also report a
“trust” measure, which corresponds to the accuracy as dkfingection 2.1.1.

2Their error rate may even be overestimated, as they traineﬁj of their data set and tested on the
remainder, inverse to the more common 10-fold cross-vitidanethod described in section 2.1.1.

13The TCP window size is a field in the TCP header used for flowroant

14NetFlow is data collection system and data format desiggegigco that provides summaries of network
flows by sampling packets, in order to keep up with high-data-links [EKMV04].

15BitTorrent is a popular file sharing application [IUKBA4].

28

flow, the histogram of the packet lengths, and the logariththenumber of packets. They
report that they obtained a 72% true positive rate with neefgdositives (i.e. a combined
error rate of 28%) by using a voting scheme among these tests.

Another thread of interesting work is by Zander, Nguyen, [¥fhs, and Armitage
[ZNAO5b, ZNAO5a, ZWAO06, NAO6] regarding the automated sléisation of network
traffic using statistical measures of packet lengths ared-jpéicket delays.

Zander, Nguyen, and Armitage [ZNAO5b, ZNAO5a] clusteretivoek flows and then
compared the resulting clusters with the applicationsdbatrated the flows, based on port
numbers. Specifically, they reported the homogeneity olingters —i.e. the percentage of
flows in the cluster belonging to the dominant applicationtfat cluster. Their candidate
flow attributes were the means and variances of inter-pattday and packet length, total
data volume in bytes, and duration, where every attributeixduration is computed for
both sides of each flow. They found that, by labelling eackteluaccording to the domi-
nant application and then using the clusters to classifygléte, they obtained a mean recall
(which they termed accuracy) of 86.5% [ZNAO5a]. Note thatt tils likely overestimated,
as they appear to have trained and tested on the same data.

They also report the influences of the various flow attribtibey used. Some of their
findings were that packet lengths were preferred over mteval delays for the appli-
cations they were attempting to classify, that duration matsstrongly preferred by their
feature selection algorithm (in contrast to e.g. Roughah §R&SDO04]), and that the two
most useful flow attributes were the variances in the paekegths for each direction of a
flow [ZNAO5a].

Zander, Williams, and Armitage [ZWAO06] then applied theleamwork in application

29

classification to examining the applications present inohis Internet traces, under the
term “Internet Archaeology”. Specifically, they examinexhhfeasible it would be to iden-
tify peer-to-peer and games traffic in historic traces basetlow attributes. They found
that the flow attribute values for the applications of ing¢fgad not changed significantly
between the different time periods of the data sets they mxaimand that different app-
lications, even similar applications, could be distingpeid with high accuracy (better than

90%, evaluated using 10-fold cross-validation) usingératributes®

Zander et al. [ZNAO5b, ZNAO5a, ZWAO06] used a traffic measwrantool developed
by Zander and Schmoll [ZS05, ZS06] called NetMate, whichingilar to our own tool;
had we come across it earlier, we likely would have tried t@iage it for building our
own tools. It is an application built in C++ for computing flowtrédbutes on network traf-
fic, which allows attributes to be defined using eXtensiblekdp Language (XML), a

machine-parsable text format.

More recently, Nguyen and Armitage [NAO6] examine the dffefcusing sub-flows
for classification, rather than looking at entire flows. Thisrk is particularly interesting
for the purposes of this thesis, as it hits upon the issue nfhwnogeneous applications
and hints at the need to deal with application behavioutserahan dealing with appli-
cations holistically. They use a Ne Bayes classifier to attempt to identify traffic from a
3D networked game based on a sliding window of the most rquackets. Their findings
strongly suggest that the game traffic was generated ditfigrat different times, and that

a classifier trained on the appropriate sub-flow (e.g. neastért or in the middle of each

11t is not clear, however, how they computed these “accuraaities, and whether it was the same metric
as reported in the earlier work [ZNAO5b, ZNAO5a], which istmaommonly termed recall; informally, that
seems likely from their phrasing.

30

training flow) would do much better at identifying traffic froa similar stage of the app-
lication. This is of particular interest to us, as it is onetlué few related works that deal

with variations within an application, let alone within flewf an application.

2.4.1 Summary

There are many indications in the literature that classiboaof network traffic can be
done with reasonable accuracy without using payload datagh sufficiently high for
practical purposes. Different researchers have used atyanri different flow attributes,
generally using what was available from the tools that theyeausing. We have built a
tool for computing flow attributes and used it to implementaaiety of attributes from
the literature, which should facilitate applying these rapghes to a wider set of flow
attributes. Of the approaches presented here, our work $ ohasely related to that of
DeMontigny-LeBoeuf [DLO5] and that of Zander and Schmoll (B we will compare
our work to the former here, and the latter is discussed iaildatsection 4.1.

In table 2.2, we present an overview of the types of measurenused by the different
approaches. We used a “/” to denote types of measurements wigeapproach used just
one or two of many possibilities, and an “X” to indicate thlaé tapproach used several
measurements of that type. Time is the class of timing-baseitbutes, primarily dura-
tion and inter-packet delay, discussed in section 3-3.2en and LenH are the classes of
measurements based on packet lengths; the Len class aralgeaasurements such as av-

erages, described in section 3.3.3, whereas the LenH nezasnots are heuristics based on

'\We used “X” for approaches that used both duration and ipaeket delay, and “/” for those that used
only one of the two.

31

Approach Time | Len | LenH | Vol | Flag
Frank [Fra94]
Zhang and Paxson [ZP00]
Dunigan and Ostrouchov [DOO01]
Early et al. [EBRO3]
Roughan et al. [RSSD04]
Borders and Prakash [BP04]
Wright et al. [WMMO04]
Hermandez-Campos et al. [HCNSJO05]
DeMontigny-LeBoeuf [DLO5]

Moore and Zuev [MZ05]

Collins and Reiter [CRO06]
Zander, Nguyen, and Armitage [ZNAO5b
Zander, Williams, and Armitage [ZWAO0§]

Nguyen and Armitage [NAOG]

x| X

—_

—| X| X
X| X[X| —| X| X

X X[XXX | X X [X]| X| X
X

Table 2.2: Table of measurement classes used in surveyeokaes

packet lengths, described in section 3.3.5. Vol is the ad&sseasurements based on data
and packet volumes, described in section 3.3.4. Flag repte$euristics based on packet
flags, described in section 3.3.5. The classes are quitsesaaren between two approaches

with an “X” in the same column, the actual attributes usedroftary considerably.

The flow attributes that we define in section 3.3 are drawn istrpart from the ap-
proaches described in this section. We note where thew@ttshave previously been used
when we define them. We do not concern ourselves in our worlk griéating new at-

tributes, but more on building the mechanisms by which neéxbates may be created.

As did DeMontigny-LeBoeuf [DLO5], we conduct a survey of thexflattributes used
in the literature and implement several of them. In conttaghat work, however, we
have made our tool publically available. Also, in designing tool, we have generalized
several previously described types of flow attributes argigied a notation to facilitate
the expression of flow attributes, which will be used to azembetter interface to the tool

32

than is presently available.

In addition, we take a different approach to evaluation tti@rDeMontigny-LeBoeuf;
whereas she manually created signatures for differenicgtioins and reported the over-
all classification performance for distinguishing amongnthh we focus on evaluating the
performance of individual flow attributes for discriminagipairs of applications. This ap-
proach gives us more insight into the behaviour of the imligl flow attributes, which is

our focus.

33

34

Chapter 3

Flow attributes

The focus of this thesis is on flow attributes, measuremerdscalculations based on net-
work flows, and on ways to compute and use them. In this chapteattempt to more
clearly define and explain the concept of these attributess descuss the tool that we have
developed. We first discuss application behaviours, thestygd activity that we wish to
measure and characterize, in section 3.1. We discuss howgvegate packets into flows
in section 3.2, and in section 3.3, we describe the flow ategof interest, with a notation

for defining them.

3.1 Networked application behaviour

One of the principle motivations behind the development BITARES is the desire to
better understand network traffic, in order to improve dfeesgion accuracy. Our intuition
is that one of the major tasks that will need to be done to de ithito shift from the
current paradigm of associating network traffic directlyhnapplications, and instead use

35

network traffic to identify application behaviours, andrthéentify applications from these
behaviours. In this section, we more fully explain our cquiagf application behaviours,
which influences much of this work.

Other researchers have touched on the concepts aroundamplibehaviours. One
key observation in the idea of application behaviours i #pplications are not neces-
sarily homogeneous; that is, a single application can éxHifferent behaviours when
performing different tasks, even changing behaviour withisingle connection. Nguyen
and Armitage [NAO6] found that, at least for some applicasiothe performance of an
application-based classifier depends on the the portionn&taork flow used to train it
and the portion that it is used to classify. In their examplelassifier trained against the
beginning of a flow of traffic produced by a particular game wagh better at identify-
ing traffic from the beginning of another flow than that frone thiddle of the other flow,
and vice versa. Heamdez-Campos et al. [HCNSJO05] described the need to look at use
of the network rather than applications, though they fodusegrouping applications into
behavioural classes rather than fully separating behesvimom applications. Collins and
Reiter [CR06] looked at treating an application as a compos$ieeral different types of
flow, which they called Short Flows, Messages, and File Tearsbased on the length of
the flows.

We use the termapplication behaviouto refer to the activities of a networked applicat-
ion that generate particular types of network traffic. Faraple,bulk data transfeis an
application behaviour in which one network node sends atfvely) large amount of data
to another network node, where the transfer proceeds aklyjais the network will allow;
common examples of bulk data transfer behaviour are FT®{tla¢ data transfer channel

36

of the File Transfer Protocol, described in section 2.3) @&mdple Mail Transfer Protocol
(SMTP, described in section 2.3) where large attachmeatse&ing sent along with e-mail.

Another example of an application behaviour that is intgmgsn this context iscom-
mand-shell interactive behaviguwve discuss two slightly different types of this: keystroke
interactive behaviour, and command-line interactive beha. Both are generated by a
human entering commands at one end of a network connectimhaaommand shell
responding to those commands at the other end. The differeaetween the keystroke
and command-line interactive behaviour is that in keysrwkteractive behaviour, every
keystroke of the user is transmitted as it occurs, whereasnmmand-line interactive be-
haviour, the keystrokes are buffered locally by the usex& hnd only sent once a complete
command has been entered, such as when a carriage retuterisdeloy the user.

We also considemachine-driven interactive behaviguoy which we mean automated
interactions between two programs. In this work, we cons8MTP and POP3 as exam-
ples, where both generally perform some automatic negmtstand then transmit some
data.

Figure 3.1 shows an example of a flow that appears to incluttedidhese behaviours.
It shows a non-homogeneous Telnet flow from a server to atdheken into ten second
timeslices, with mean payload length and total number ofqaal/bytes (i.e. not counting
packet headers) computed for each timeslice. For most ofirtie plotted, the packets
and data volume are low, apparently conforming to our exgieets of command-shell
interactive behaviour. However, near the end of the digdayme, there is a burst of
large packets, probably corresponding to the user runnprggram that produces a large
amount of output. This is not uncommon in the data we have seanand tends to distort

37

Timesliced server—to—client Telnet flow

O mean_payload_len
O payload_byte count

1000
le+05
|

mean_payload_len
600 800
6e+04 8e+04
L L

400
payload_byte count

4e+04
|

200
2e+04
|

~
o \
O /O_ ~ /O\ ~N /O—O/O_Q

o
\ O/O,o\/\ o
o . o © o

0
0e+00
|

5 10 15
Timeslice (10s)

Figure 3.1: Mean payload length and data volume of sampleneomogeneous Telnet flow

flow attributes that are influenced by the entire flow. In tlaises we would prefer to express
this flow as exhibiting two distinct behaviours: commaneismteractive for most of it,

and bulk data transfer for the burst of large packets.

In addition to application behaviours, we also expect toehtos contend with be-
havioural distortions. These are artefacts of networkquais or network conditions, that
are visible in the same way as application behaviours bugj@oérated by the application
itself. A good example of a distortion is the fragmentatidmetwork data by transport

38

layer protocols such as the Transmission Control Protoc8@P)T TCP will take a stream
of data given to it for transmission across a network andkiiteg into smaller chunks, of-
ten less than 1500 bytes to accommodate Ethernet’s Maxinransiission Unit (MTU),
often 1460 bytes (which allows 40 bytes for IP and TCP headdrkjs will lead to se-
guences of consecutive packets carrying 1460 bytes of @dylehich is an effect of the
TCP protocol rather than of the underlying application behav However, in this case,
the distortion can be useful, as the proportion of such paaan be used as a proxy for a
large amount of data being transferred at once, such as ulitrdata transfer.

We do not make extensive use of the concepts of applicatibavieurs and distortions
in this work; we present them to help explain our interestudging, rather than classify-
ing, network traffic, and in evaluating flow attributes thetres. Our work does not go far
enough to make any concrete statements about such belrg\batwe hope that the tools

that we have made available will make it far easier to do so.

3.2 Network flows

An important concept in this work is that of aggregations etiwork traffic, orpacket ag-
gregates These are sequences of packets, often associated by figlus packet headers
such as network addresses and ports. The network flow is thketaggregate used in this
thesis. The flow attributes described in this chapter andwsamzed in table 3.1 are com-
puted based on a sequence of packets being aggregatecetagédta logically meaningful
unit. We describe here more precisely our use of this term.

The term network flow, as we use it, is defined as a sequenceciEfzausing the

39

same transport layer protocol, and having the same two emdpevhere an endpoint is
a network layer address paired with a transport layer pobto& network flow consists
of packets from portt on nodeA to portb on nodeB, and packets from poki on node
B to porta on nodeA. Further, each network flow can be split into twelf-flows or
directions; in the previous example, one half-flow would toerf porta on nodeA to portb
on nodeB, and the other half-flow would be from pdron nodeB to porta on nodeA. For
convenience, we refer to the half-flow from the client to thever as théorward direction
of the flow, and the other half-flow as theverse directiort This convention will be useful
when discussing attributes computed on half-flows, as theesaf the attributes are often
quite different between the two directions of the flow.

We also use a timeout mechanism, where a sequence of thishgtdeas a gap of more

64 secondswith no packets is considered to be separate flows dividetdtygap.

3.3 Flow attributes

In this section, we discuss flow attributes, explaining whay are and how we intend to
use them, introducing some qualifiers that we use for diffetygpes of flow attributes, and
describing a notation. The bulk of this section is desavipgiof the different types of flow
attributes that we will use in this thesis. We also describe these flow attributes, and
other related attributes, have been used in the previoesuras discussed in section 2.4.

We summarize the flow attributes that we use in this thesighlet3.1.

INote that we do not deal with peer-to-peer applications iswork; distinguishing between “forward”
and “reverse” for such traffic would be more difficult. If theHaviour is symmetric, then this is not an issue,
but otherwise the “direction” would have to be assigned biggisome other criterion.

2Here we follow the example of DeMontigny-LeBoeuf [DLO5]; 64conds was reported to be the most
effective timeout by claffy et al. [cBP95].

40

A flow attributeis a value that represents a network flow in some way, paatilyul
a measurement of a network flow or a calculation based on etiner attributes. For
example, one flow attribute is the payload data rate of a nmit#low, i.e. the number of

bytes of payload data carried by a network flow per unit time.

Ideally, flow attributes reflect some aspect of the behavadiine networked applicat-
ion being observed, but they are often affected by peripledfects. These behavioural
distortions (as described in section 3.1) include suchgthas the load on the host sending
the traffic or congestion in the network, which can alter ih@rtg characteristics of the
traffic, or more consistent effects such as fragmentatidargé messages at the TCP layer,
which alters packet length characteristics.

In this thesis, we focus on flow attributes that can be contputénear time. Although
we are not particularly concerned with the performance ofrmplementations of the flow
attributes discussed heteye focus on flow attributes that could be implemented in a-prac
tical implementation that deals with network traffic in réiahe. Flow attributes with an
inherent complexity of greater than linear time are not goaddidates for such a future
implementation, and so we do not deal extensively with théie do expect that such
flow attributes are likely to be useful for the study of netwitnaffic in general, however,
and describe them where appropriate. Table 3.1 lists thereift attributes that we have

implemented using our tool and have also used in our evahiti

In general, we have selected these attributes becausegtegt many of the types of

attributes used in the literature. Some, suctiasition meanpayloadlen, pkt count and

3See section 4.2 for a discussion of our requirements forible t
4Chapter 4 contains two similar tables, table 4.1 and tal@ewhich also include flow attributes imple-
mented using our toolkit but that are not included in the @atdn.

41

Attribute name Section Description
duration 3.3.2 duration of flow
meandelay 3.3.2 mean delay between packets
meanpkt_len 3.33 mean packet length
meanpayloadlen 3.3.3 mean payload length
meannonemptypayloadlen | 3.3.3 | mean payload, not counting empty packets
pkt_count 3.34 number of packets
nonemptycount 3.34 number of packets with payload
pkt_byte count 3.34 total volume of data sent
payloadbyte count 3.34 total volume of payload sent
meanpayloaddatarate 3.34 mean payload sent per unit time
dir_data 3.34 ratio of data sent fwd to rev dir
sp.alpha 3.35 small packet heuristia
sp.beta 3.35 small packet heuristif
sp.gamma 3.35 small packet heuristig
sp.delta 3.3.5 small packet heuristid
Ip_alpha 3.35 large packet heuristia
Ip_beta 3.3.5 large packet heuristi@
Ip_.gamma 3.35 large packet heuristig
flag_X 3.3.5 prop. of packets with flag X

Table 3.1: Summary of flow attributes

pkt_byte countare commonly used in many approaches, and some, simcbamonempty
_payloadlen and payload byte countare variants of these, chosen to illustrate how such
variants can be expressed using the same mechanisms assibatt@butes. Other at-
tributes, such as the small and large packet heuristicsleasecommonly used, but are
useful for identifying certain types of traffic (e.g. smalgket heuristics are useful for
identifying command-shell interactive traffic [ZP00]). Maother candidate attributes ex-

ist in the literature; investigation of these has been t&ffditure work.

3.3.1 Notation

Before we describe the flow attributes, we need to define aiaptdtat we will use in
explaining how to calculate them. We mix mathematical araypamming-language no-

42

tations as necessary, and apologize in advance to anyonesvdfiended by such blas-

phemies. For example, we use dot notation to denote prepestia complex object, e.g.

p.lenfor the length of a packepj, and subscripts to denote a particular object or sequence

of objects, e.g. we may ugmirst for the first packet of a flow, d?,cx to denote the sequence

of acknowledgement packets in a flow.

The main reasons for using program-style variable names@meentions is that we ex-
pect them to be familiar and easy to understand for thosdifamwith either object-oriented
programming languages such as C++ and Java, and to thosmfamiih Wireshark [Ct06],
a popular application for displaying and parsing netwodffic. Also, variable names are
clearer and more memorable than single-character vasiablgch is important given the

number of flow attributes being discussed.

These conventions also allow us to define our flow attributesdimilar manner to the
way they are defined using ANTARES, hopefully making it eateaelate the discussion

here to the actual implementation.

We will useF to denote a network flow, or more specifically to denote thaisege
of packets that make up the flow. For the half-flows that cosaptine two directions of a
bidirectional flow, we will uséq,4 ¢ for an arbitrary half-flow, andFs,,q andFey for those
in the forward and reverse directions, respectively. Fteremce, recall from section 3.2

that the “forward” direction is from the client to the server

We will use p to denote a packet, atlfor a packet aggregate. A packet, as used here,

is any sequence of octets, and can refer to a subsequencetibéapacket. For example, a

SWe do not deal with other types of architectures, such astpegeer, in this thesis; for those, different
criteria will be needed and will depend on the actual archites.

43

TCP packet is a sequence of octets that is usually contairtbchvain IP packet, which is
a sequence of octets that is often contained within an Eth@acket, and so forth. These
sequences of octets are generally handled contiguouslgmary, whereas sequences of
packets (e.g. a sequence of IP packets) refer to logicaksegs.

Note that a network flow is, for all intents and purposes, $mappacket aggregate.
We use a separate notation for a flow to highlight that it isekptaggregate with special
meaning to a human analyst. Also, some properties, sucheastitr-packet delay, are
contextual; the “special status” of the flow (and its constiit half-flows) serves as a basis
for specifying the context of these properties. This isulésed in more detail below, in the
explanation of the “consecutive” filter and natural context

We will use set notation when discussing packets and pacigegates; e.g. we will
refer to all the packets in a particular packet aggre@a#s beingp € P . Note, though,
that we are dealing with sequences rather than sets, astpackerdered chronologically
according to their arrival time. Thus, we will talk about gatpy € P being thekth packet
in packet aggregate, whereV pj.time < py.timg, wherep.timeis the arrival time of
the packet, as discussed in section 3.3.1.

The notatiorP{ filter expressiof represents a packet aggregate defined as the packets
resulting from a filter being applied to a packet aggredratd hefilter expressiorasserts
something about the properties of a packet and can be uselktd garticular packets from
a packet aggregate. Itis a relation concerning packet piepee.gtransport payloadlen
>=>5 s afilter that selects packets with a transport-layerqeyof 5 bytes or more. Note
that the packet is implicit, so the filter is NOT given@sransport payloadlen >=5. We
also allow compound filter expressions with “AND” and “OR” céLas(trans port payload

44

len >=5) AND (transport payloadlen <= 20) to describe a filter that matches a packet
with a transport-layer payload length between 5 and 20 bytetusive. For example,
F’' = P{transportlen == 20} defines a packet aggreg@econsisting of the packets in
the packet aggregatein which the transport-layer packet is exactly 20 bytes I@wrh

a 20-byte TCP header with no options and no payload, or a UDRepadgth its 8-byte
header followed by 12 bytes of payload).

We define a special filter expression “consecutive”, whitbves the selection of natu-
rally consecutive packets from a previously filtered expigs This requires the definition
of a packet'snatural contextwhich is a packet aggregate that has been selected to e part
ularly significant to the analysis being performed. In thisdis, unless otherwise specified,
the natural context of a packet is the half-flow to which itdmgs. The “consecutive” filter
matches every packet in an aggregate for which the previacisgp in that flow is also the
previous packet in the natural context (or a packet that bggevious packet in either the
current flow or in the natural context). It does not include fiist packet in a series of
consecutive packets unless it is also the first packet in &dggnegates; it is intended to be
evaluated inline (i.e. evaluated on packets as they armre) thus “looking ahead” at the
next packet is not allowed. Care must be taken when using fipiesgsion, as it can be

confusing.

Properties

Properties are loosely defined as some information aboutkepaA property has a type
associated with it depending on what it refers to; it canlfiise a packet (a TCP packet
encapsulated within an IP packet can be a property of thedkgpg or it can be a numerical

45

value (integer- or real-valued).

The part of a packet that exists at a given layer of the netwtakk can be expressed
explicitly as a property; e.gp.transport refers to the data in a packet that pertains to
the transport layer (so for a TCP packptiransportrefers to the data from the start of
the TCP header to the end of the application-layer data thedrised as the payload of
the TCP packet). The layers of interest for this work aeeworkandtransport, though
datalink sessionpresentationandapplicationmay be useful in other contexts. Similarly,
for packets that are known to contain headers from a paatiqubtocol, those parts of the
packet can be addressed directly, eagicp for a TCP packet, which would be equivalent
to p.transportfor that packet.

The propertietheaderand payload refer to the data in the header and the payload
section of a given packet, respectivelylt is worth noting that, e.g. for IP and TCP,
p.network payload= p.transport

Thelenproperty will denote the total length of a packetsbeadedlenandp. payload
lenwill refer to the header and payload length of the transfayrér section of the packet,
respectively; for the protocols we considprien = p.headelden+ p.payloadlen.” Note
that in the flow attributes we discuss, we will more commonmplgafy the layer as well, e.g.
p.transport payloadlenfor the length of the payload of the transport-layer sectibthe
packet, which for TCP will commonly be the length of the apgiion-layer data carried in
the packet (as the session and presentation layers aremotaay used).

We will usetime to refer to the arrival time of a packet, atidhe deltato refer to

This could easily be extended to protocols with footers Hinitey a f ooter property, but we do not deal
with such protocols in this work.

"The obvious cases where this would not be true are for pristedaich have a ‘trailer’ — data following
the payload.

46

inter-packet delaythe amount of time that has passed since the previous pachist
natural context. For our purposes, the arrival time of a paaka network monitor is the
time that the monitor finished receiving the last byte of thatket. We will deal with
two types of inter-packet delay: thenidirectional inter-packet delaywhere the natural
context is the half-flow (i.etime deltais the length of time since the last packet in the
same direction), and thadirectional inter-packet delgywhere the natural context is the
flow (i.e.timedeltais the length of time since the last packet in either diregtidJnless
otherwise notediime deltaand inter-packet delay refer to the unidirectional intacket
delay.

Specific protocol headers contain fields that can be namegasparty; these will be
defined where appropriate. As an example to make this a l@terleconsider the TCP
flags octet. A TCP header contains an octet, each bit of whistsbme significance; we
could refer to that octet gatcp.flags Furthermore, we could define properties for each
bit, for examplep.tcp. flagsackfor the ‘Acknowledgement’ (ACK) flag. This would be a
property with the value of 1 for a packet where the ACK flag is aatl O for one where
it is not set. This notation is used extensively by WireSHat06], and should be quite

familiar to users of that tool.

Functions

A function is a notation that indicates a computation thabige performed on its argu-
ments. Functions will be used here mostly to express cortipotaacross the packets of
a packet aggregate. We describe here the functions thabevillsed in this work when
specifying flow attributes.

47

pkt count(P) denotes the number of packets in a packet aggrdgate this thesis,
the aggregates we deal with are at the transport layer andpiblecations are all carried
over TCP, so more specificalfykt count(P) will refer to the number of TCP packets in the
aggregate. If TCP packets are fragmented across netwoek{@ckets (e.g. IP fragmen-
tation), only the reassembled transport-layer packets@isidered.

It should be noted that since only reassembled packets arges) approaches using
such flow attributes can potentially be evaded by fragmemtatEvasion by fragmenta-
tion is a known issue in the context of intrusion detectiandescussed by Handley et al.
[HPKO1], though the implications in this context are sligtdifferent. Handley et al. were
concerned mostly about an attacker fragmenting traffic chsuway as to have a sensor
misread the content of the session, such as by sending fragméh overlapping pay-
loads that would be reassembled differently by the senstbhbgrthe node under attack.
In the context of network traffic classification without pagtl, an attack would involve
the attacker fragmenting traffic in order to cause a sensanisgcompute some flow at-
tributes, e.g. by carefully orchestrating the arrival tsvad the packets. We expect that
the techniques discussed in the former work would not bergéneffective against these
flow attributes, but we also expect that similar techniquaes(and, if this work progresses
well enough, will) be devised that are effective. We do natrads that issue here, instead
relegating it to our “Future work” discussion in section.6.2

sun{property P) indicates the sum of some numeric property of the packetpatket
aggregatd®. For examplesumn(transport payloadlen, P) denotes the sum of the lengths
of the transport layer packets Bf

We will also use normal arithmetic operations on numerigprtes and on functions

48

that evaluate to a numeric value. For instance, the meartheighe application-layer
payloads of the packets in a fldw meanpayloadlencan be expressed as in equation 3.1.
__sunftransport payloadlen,F)

meanpayloadlen(F) = okt countF) (3.1)

3.3.2 Timing attributes

One prominent feature of network traffic that can be meagsithe@ arrival time of a packet,
and thus the inter-packet delays (i.e. the length of timmftioe arrival of one packet to the
arrival of the next). In this section, we discuss flow atttédsuderived from the arrival times
and inter-packet delays of a network flow.

One issue with many timing attributes are the distortions tgtunetwork latency and
jitter. These distortions are sometimes mentioned as dlpesxplanation for the obser-
vation that machine learning algorithms tend to prefer tigRg-related flow attributes

over timing-related ones, but the impact of such distogibas not yet been studied.

Duration

A simple flow attribute which is commonly used is tharation of a flow, the length of

time it lasts. Thadurationof a flow F consisting ofn packets is computed as:

duration(F) = pn.time— py.time (3.2)

Some of the approaches we discussed earlier use duratibeiirctassification efforts.
Frank [Fra94] uses the duration of a flow as one of his featuriesh was selected as useful

49

for all of his classification problems. Roughan et al. [RSSO0dhd that the duration of
flows was one of the most useful attributes for distinguighiatween the applications that

they studied; we discuss this aspect of their work furtheseiction 5.2.

Inter-packet delay

The inter-packet delay is the length of time between thearaf one packet and the next.
Some flow attributes can be computed using this measuremverdjscuss a few of them

here. Recall from section 3.3.1, there are two types of ipéaket delay: unidirectional

(between packets in the same direction), and bidirectifiretiveen any two packets in a
flow). In this work, we mainly consider unidirectional infeacket delays, as we expect
that this will reveal more about the activities of the apation generating the traffic, and
not be distorted as strongly by network congestion and ameiffects.

The most straightforward flow attribute based on inter-padelay is thenean inter-

packet delayf a flow F, meandelay(F). This is expressed as:

duration(F)

(3.3)

Early et al. [EBRO3] used the mean inter-packet delay in modgthe behaviour of
server flows in order to detect anomalies. They note issubsagingle large delay between
packets can drastically change the mean inter-packet @eldymake a flow much more
difficult to classify; they term this thevater cooler effegtas a user leaving their terminal
for some time and returning later to the previous activityldaasily cause such a delay.

Another flow attribute that could be used is theer-packet delay variabilitya measure

50

of how widely varied the inter-packet delays are within a fl&ve do not use it in this work,

however, as we have not found a definition that can be compuiiegear time.

Roughan et al. [RSSDO04] did use a metric based on the vanadbilibter-packet delays
to help distinguish between FTP-data and streaming medree rietric they used was
based on the standard deviation of inter-packet delayslelivby the mean inter-packet
delay, where the delay was between any two packets in theebtdinal flow (rather than
between two packets in the same direction). They found Hisiteasure, combined with
average packet length, was able to distinguish fairly wetideen the two types of traffic;
combining their variability metric with duration and meaacget length, they found they
could distinguish quite well among FTP-data, HTTP, andesti@g media, with error rates
of O for several of the classifiers that they used. As with theoattributes they considered,
they appear to have used daily averages rather than valmsifidividual flows in their

experiment.

3.3.3 Packet lengths

One of the most basic measurements available from netwaffictis the length of the

packets that make up a flow. We consider here flow attributesdan packet lengths.

Three flow attributes based on packet length, for a fiquare themean packet length
meanpkt_len(F), themean payload lengtmean payloadlen(F), and thenean nonempty

payload lengthmeannonemptypayloadlen(F). The first is computed as:

__sumtransportlen F)
meanpkt_len(F) = okt count(F) (3.4)

51

meanpayloadlen(F) is the same metric except that it uses the propeatys port payload
lenin place oftransportlen. The third attributeneannonemptypayloadlen, is defined

as:

Pnep= F{transport payloadlen> 0} (3.5)

meannonemptypayloadlen(F) = sun'(tran;ftoégziﬁs ad)len’ Prep) (3.6)
-~ nep

Pnepis thus the sequence of non-empty packets (packet whiclaicosdme application-
layer data), which allows us to ignore empty packets suctC&ACTKSs that are not directly
generated by the application and could be considered tosbertions.

The mean packet length and similar flow attributes are usdyg @dten in traffic clas-
sification approaches. Roughan et al. [RSSDO04] considerem¢ia® packet length, along
with duration, to be one of the most useful attributes amdmgée they examined. We
discuss their use of this attribute further in section 5.2.

The mean packet size doesn’t give an indication of how regularegular the packet
sizes are; for this, measures of the variability of the paskaes could be used as flow
attributes. However, we are focusing on flow attributes thatbe computed in linear time,
and we have not found an appropriate way to compute theseunesaso we do not use
them in this thesis.

A common measurement of variability is standard deviatsmene possible flow at-
tribute would be thestandard deviation of packet size

In addition to the flow attributes described above, ther@amember of heuristics based
at least in part on packet lengths that we will use. Theseeseribed in section 3.3.5.

52

Wright et al. [WMMO04] used packet lengths as well, in severffiedent ways. They
compute a flow attribute from the packet lengths, they tichiaeHidden Markov Model
using packet lengths as an input, with a fuzz factor to siteutlae obscuring effect of a

block cipher, where packets are padded out to an integeipieudtf the block length.

3.3.4 Data volume

Data volume attributes are concerned with the amount ofidaganetwork flow; this cate-
gory includes attributes based on total data volume of a flogvan data rates. Total data
volume attributes pertain to an entire network flow (up to poent at which the flow at-
tribute is being computed), whereas data rate attributassfon the amount of data being
transferred per unit time. The most intuitive measure oadatiumes is the number of
bytes being sent, but we also consider here attributes lmaste number of packets being

sent.

Total data volume

A simple class of flow attributes are total data volume attels, which measure the overall
amount of activity involved in a network flow. We describe éa@acket counts and byte
counts, and discuss some of the variations on each theme.
The packet counbf a network flow is simply the number of packets that make & th
flow, e.g. for a flowF, the packet count ipkt_ count(F) (defined in section 3.3.1).
Thenonempty packet counpkt countnonemptyf) of a network flowF is the count
of transport-layer packets that carry application dagathose packefswherep.transport

53

payloadlen > 0. In our notation, this is expressed as:

pkt_countnonemptyF) = pkt_count(F {transport payloadlen> 0}) (3.7)

Frank [Fra94] used the forward and reverse packet countsifeature selection ex-
periment, finding that both were used in most of the selecatlife sets, with the reverse

packet count used for all of the classifiers.

Another group of flow attributes that seem promising are bygtents. The major ques-
tion with byte counts is deciding which bytes to count. Weehtine option of counting only
the bytes in the payload of the transport-layer packets;dhn be useful, as it generally
includes only data actually sent by the application itsélbwever, it can sometimes be
necessary to consider all of the data from the network-lapeparticularly if there is some
sort of encrypted tunneling mechanism being used that ebsc¢he transport-layer header

and thus prevents the calculation of the payload lengtheopttket.

We consider th@acket byte courand thepayload byte counthese two flow attributes
will be computed in a similar manner, except that in the farmwese, the length of the
entire transport-layer packet will be used, and in the lattee length of only the pay-
load part of the transport-layer packet will be used. Thekphbyte count of a flow,
pkt byte countF) and the payload byte count of a flow, payloadbytecountF) are
defined by:

pkt_byte countF) = sun{networklength F) (3.8)

payloadbyte countF) = suntransport payloadlength F) (3.9)

54

Frank [Fra94] used forward and reverse payload byte counkssi feature selection
experiment, finding that the forward payload bytes was usestignfor classifying SMTP,
and that the reverse payload bytes was rarely used at alletdwthis may be due to the

limited set of traffic types he used.

Data rate

Closely related to data volume flow attributes are data ratesmeasurements of the
amount of data that an application is sending and receivengipit time. There are several
distinct flow attributes that can be computed based on dtda.r&hey have been shown to
be useful in traffic classification experiments, and thoumgdy tan be evaded, such evasion
is likely to significantly affect other flow attributes. Hense describe the data rate flow
attributes in question and give an analytic evaluation efith

There are two parameters to be considered in defining dataneoattributes: théme
granularity, and the data of interest. The time granularity is the leongtach interval over
which the data rate is calculated, e.g. per second or perdivansis. Note, however, that
the data rate will be reported in units of bytes per secomghress of the time granularity.
The data of interest indicates what data we are measurimggrgiy at what layer we're
measuring it. For example, the data rate as calculated #Ptlager will be different from
the data rate calculated in terms of TCP payload (the amouddtaf in payload portions
of TCP packets); in this example, the former would includeordy the extra data in the
IP and TCP headers, but would also count TCP acknowledgemeketsawhich may be
a distortion in many contexts.

We consider several data-rate-based flow attributes.

55

The mean data ratef a flow F, meandataratgF), is simply the amount of data of
interest sent in bytes divided by the duration of the flow icos®ls, as formalized in equa-
tion 3.10. Note that we use the payload byte count as definsgdtion 3.3.4, i.e. the
amount of data sent by the application, not including nekwmortransport layer headers;
we could alternately use the packet byte count if the paylyde count was not available,

but we do not include that here.

meandataratgF) = paylo dalizzitoe;((:lg ;ml(F) (3.10)

Thedirectionality of datais, for a bidirectional flow, a ratio between the average data
rates of its half-flows; for example, a bidirectional flow lwd forward average data rate of
5Kb/s and a reverse average data rate of 20Kb/s would havedaidnality of data of 0.25

(in the forward direction). We define it as:

_ payloadbyte count(Fq)
= A1
dir_data(F) payload byte count(Frey) (3.11)

Note that the result is undefined if there is no applicatiota @ the reverse side, a case

which has to be handled carefully.

The logarithm of the directionality of data is used by Hardez-Campos et al.

[HCNSJO05] in their work on clustering network flows.

Another interesting set of possibilities for flow attribsiteased on data rates are those
designed to detect regularity in the data rate, such as tsesstby DeMontigny-LeBoeuf
[DLO5] to characterize streaming media. These would giveesbased on the amount

56

of variability in the data rate, and would probably be welited for detecting applications
that attempt to maintain a certain fixed rate of data flow,ipalerly streaming media app-
lications. However, we do not address them here, as we haveunad a way to compute

them in linear time.

3.3.5 Packet proportion heuristic attributes

We encountered a number of heuristic attributes in thedlitee that were aimed at iden-
tifying particular types of behaviour. In this section, wélwiscuss general forms of the
most common types of heuristics: those based on small o [aagkets, and those based

on packet flags.

A number of the heuristics which have been used in the liteeare based on comput-
ing the proportion of the packets within a network flow havangarticular characteristic.
Heuristics based on packet flags, Zhang and Paxson’s [ZR@@istics for detecting inter-
activity, and many of DeMontigny-LeBoeuf’s [DLO5] heurissi fall into this category, as
do the bins of Dunigan and Ostrouchov [DOO01]. We present &rgdined description of

these types of heuristics and review a number of possibledttnbutes based on them.

In general, such a flow attribute will be a calculativbased on two packet count flow
attributesc; andcp as described in section 3.3.4, whege< cy; itis computed ab = ¢, /cy,
so0 00 < h < 1.0. For example, if we consider any packet with a payload kegtc0 or
less to be a small packet, we could compute the proportiomaflgpackets: Letsmna be
the number of small packets in a given flow, ¢e}4 be the total number of packets in a
flow, then the proportion of small packets in the flowha would behgmal = Csmail/ Crotal-

57

Small packet heuristics

Some heuristics that have been seen to be effective at metecimmand-shell interactive
behaviour aremall packet heuristigZ P00]. These are measurements of the proportion of
packets in a flow that meet some criterion for being small,algackets with 20 bytes or

less of payload.

The most notable examples of small packet heuristics asetheed to detect command-
shell interactive activity by Zhang and Paxson [ZP00], aed/ldntigny-LeBoeuf’s [DLO5]
adaptation of them. The approach taken by Dunigan and QG$tomjDOO01] is also related;

they effectively attempt to develop a deterministic metfmdcreating such heuristics.

Zhang and Paxson combined two metrics, which they call@shdl", to detect back-
doors. Both are ratios computed based on the occurrencesisé@ative small packets,
where a consecutive small packet is a packet that is belove $ength threshold, which
we will call Amaxien (20 bytes, in their work) and that follows another packet thalso
a small packet. They do not specify whether that is consexirithe same direction, so
we assume that it considers the previous packet in eithecttbhn. For our heuristics, we
incorporate an optimization from DeMontigny-LeBoeuf’s Wwowhich is to not consider
packets with no transport-layer payload (e.g. TCP ACK pagketdeing small packets.

DeMontigny-LeBoeuf also defindglandd heuristics to complement the above two.

Thea heuristic indicates how many of the delays between consecsinall packets
are between 10ms and 2s (though they mention that the uppadlsmuld just as well be
100s or more). We will usBmin delay @NdAmaxdelayto refer to the lower and upper bounds
on the inter-packet delay, respectively. The intuitionibdhusing the inter-packet delay is

58

to exclude consecutive small packets resulting from maedniven activity (which, they
reason, would be sent with very short inter-packet delay) express below for a flow

F assp.al phaAmaxien, Amin delay; Amaxdelay; F) using our notatioff. We first define some
subsequences 6, the sequence of nonempty packBisy, the sequence of small packets
Psp, the sequence of consecutive small packegsand the sequence of consecutive small

packets with certain delayBgg,

Pnep= F{transport payloadlen> 0} (3.12)
Psp= Pnep{transport payloadlen < Amaxien} (3.13)
Pesp= Psp{consecutivg (3.14)
Pésp= Pespftime.delta> Amin delayAND timedelta< Amaxdelay}) (3.15)

pkt_count(P.,)

- pkt_count(P.s) (3.16)

sp.al phaAmaxien, Amin delay; Amaxdelay: F)

This heuristic indicates how much of the consecutive smadlkpt activity appears, by
timing, to be interactive human-driven activity; if the ulisis undefined due to there not
being any consecutive small packets, we simply use a valQamindicate that there is no
apparent human-driven activity based on such packets.

Itis important to recall from section 3.3.1 that the propgait.time deltais the time de-
lay of packetpy since the previous packet in its natural context, the oaignalf-flow Fsy,q
or Frey, Not since the previous packet in the packet aggreate Similarly, recall from
section 3.3.1 that the filter expression “consecutive” ipecsgal term that only matches a

packet if the previous packet to be tested against that terecansecutive to that packet in

8Note that if there are no consecutive small packef,ithis value is undefined.

59

its context (again, in the original half-flo#yg or Frey, Not in Psp). When computing one
of these small packet heuristics, we will consider the radtcontext of a packet to be the
bidirectional flow if the heuristic is computed on an aggtegaith packets in both direc-
tions (this will usually be the bidirectional flow itself)r the half-flow if it is computed on

an aggregate with packets in only one direction (this willally be the half-flow itself).

The heuristic is simply the proportion of small packets amorggribn-empty packets

in the flow, defined, withP\ep andPsp computed as above, as:

pkt_count(Psp)

spbetaAmaxien; F) = pkt_count(Phep)

(3.17)

This is the simplest of these heuristics, merely aimed atsgmting the overall proportion
of small packets. Note that it can be undefined if there areameampty packets in the
flow; however, if all the packets in the flow are empty, we caesthat this heuristic does

not show any evidence of interactivity, and use a value of 0.

They heuristi® is the proportion of consecutive small packets; we use Delgoy
LeBoeuf’s version, which uses the proportion of consecusiveall packets among non-
empty packets, rather than among all packets. Itis defined as

_ pkt_count(Pesp)
~ pkt.count(Phep)

Sp.gammaAmaxen, Amin delay: Amaxdelay: F) (3.18)

As with the[3 heuristic, we take a lack of nonempty packets to be a lack iofleece for

interactivity and use the value 0 to replace an undefinecevalu

9Zhang and Paxson used a capital gamMa\Whereas DeMontigny-LeBoeuf used a lowercase gamma
(y). We also use the lowercase gamma for consistency with tex Greek letters.

60

Thed heuristic is a slight modification of tH&heuristic; it uses the proportion of small
packets among small and empty packets. The rationale istimgliish applications that
send mostly small non-empty packets (such as interactipéications) from those that
send many empty packets as well as small packets (such assachéne-driven applicat-
ions). Itis defined, usinBep = F {transport payloadlen== 0} andPsp defined as for the

sp.alphaheuristic, as follows:

count(Psp)

= 3.19
count(Pep) + count(Psp) (3.19)

sp.deltaAmaxlen, Amin delay: Amaxdelay: F)

If there are neither empty nor small packets in the flow, weeanore consider that to be a
lack of evidence of interactivity, and use the value O indtefaan undefined value.

Note that these metrics are based on titasport payloadlen property, which re-
quires that the transport-layer header be accessiblela@imetrics could be defined based
on networklen, for example, with suitably higher values for thgayjen threshold® for
situations in which the transport-layer header is not atddl.

When we use small packet heuristics in this thesis, we contpata on the half-flows
Frwg and Fey rather than on the full bidirectional flow. We are looking foteractive
activity from at least one side of the communication, so wshwid look at each side in
isolation. As an example to clarify, suppose that a bidioset flow F contains three
packetspy_», pk_1, andpk, wherepx_» and pk are in the forward direction angk_; is in
the reverse direction, and that tttansport payloadlenfor the three packets are 17, 1460,

and 15, respectively. We wish to compuitp gammawith Apaxien = 20; we will ignore

1%e.g. 40 bytes more, 20 for the IP header and 20 for the TCP heaxdweore if header extensions appear
to be in use

61

the timing constraints for this example. If we wish to congp gammafor F, then both
Pk—2 and p would be inPsp, but since they are separated py 1, neither is inPsp, as
they are not consecutive in their natural context of therbiional flow, as discussed in
the description ospyl pha. However, if we instead compusgp. gammafor Fsyg, they are
again both inPsp, and this time the natural context of the packets is the fit@f-Fy,q, SO
Pk_1 is ignored (as it is in the half-floWse,) and they are consecutive. Thus, at legst

(and possiblypk_2, depending on the preceding traffic) would bePigy,

Large packet heuristics

Analogous to the small packet heuristic is thege packet heuristic This is a class of
potential flow attributes that are aimed at identifying bdéta transfer behaviour.

The heuristics presented here are those of DeMontigny-LeB@4.05]. We define
here her file-transfer heuristics 3, andy in our own notation. These use the concept of
consecutive large packets, which are packets above arcéetajth threshold that follow
other packets above that threshold. They also look for shtet-packet delays to indi-
cate machine-driven activity (contrast that with the srpaltket heuristics, which look for
longer delays to exclude such activity). We use the teXmgien andAmaxdelay to denote
the minimum length and maximum delay parameters, resgigtiDeMontigny-LeBoeuf
used 225 bytes and 50 ms for these parameters, respectively.

The a heuristic computes the proportion of consecutive largek@schaving short
delays. The intuition behind this is that applications perfing bulk data transfer are
often sending data without interaction with the remote hastd thus will tend to send
packets with very short delays between them. We define thisidte for a flowF as

62

I p_al phaAminlen, Amaxdelay: F), first defining the sequence of large packgts the se-
quence of consecutive large packetg,, and the sequence of consecutive large packets

with short delays

Rp = F{transport payloadlen > Amin en} (3.20)
Peip = Rp{consecutive (3.21)
I:)(/:Ip = Peip{ pr-timedelta< Amaxdelay} (3.22)

pktcount(Py,)

- pkt_.count(Pep) (3-23)

| p_al pha(Amin en, Amaxdelay: F)

Similarly to thesp al phaheuristic, this takes an undefined value if there are no cutise
large packets; we consider this to be a lack of evidence & tbahsfer and substitute the

value 0 for an undefined result from this calculation.

The 3 heuristic computes the proportion of large packets in a fldsing the sequence
of large packet$}, defined above, and defining the sequence of nonempty pakgts

we express this for a flow as:

Phep= Ftransport payloadlen> 0 (3.24)

_ pktcountRp)
~ pkt.count{Phep)

|p_betaAminien; F) (3.25)

They heuristic used indicates the proportion of consecutivgelgrackets in a flow.

Using the sequence of consecutive large padkgtsas above, we express this as:

pkt_count(Pgp)
pkt_count(F)

63

A notable issue with large packet heuristics is fragmeoatparticularly at the trans-
port layer. Fragmentation leads to large chunks of datalsean application being split
into many packets of the same maximum size; while this distorcan be useful as an
indicator of large chunks of data being sent simultanegutshyakes it difficult to analyze
the sizes of the chunks of data actually sent by an applicalibe approach of Heamdez-
Campos et al. [HCNSJO05] to reassembling Application DatadJADUs) from transport-
layer packets based on changes in direction is one way td tiet aizes of the data chunks
actually sent by the application; we do not address thieifstiher in this thesis, but leave
it to future work.

Dunigan and Ostrouchov’s [DO01] approach of binning thecepa possible lengths,
timings, and directionalities was intended to provide aduatnistic way to discover fea-
tures such as these, without relying on experts to constreigtistics. Their selection of
boundaries for the bins, however, was itself based on stgdyie traffic. We suggest that
the same goal could be achieved with the heuristics predéete by using data to search
for optimal values for the parametedsin 1en, Amaxien, Amin delay, @aN0Amaxdelay), €.9- Using
machine learning or genetic algorithms.

Wright et al. [WMMO04] used a technique called vector quantmato define bins,
which could function as the basis for an alternate metho@teldp small and large packet
heuristics. To oversimplify, this technique uses a clustealgorithm on a particular data
set to discover meaningful regions in the space of packethesninter-packet delays, and
directions. They use it for a different purpose, to quardireulti-dimensional space of pos-
sible packets down to a smaller, finite number of transitionsa Hidden Markov Model,
but it may be applicable to this purpose as well. We have rexd egher this or the previous

64

approach in this work for establishing the parameters fevtirious heuristics, but suggest
that future work that is more focused on such flow attributesilel want to investigate

them.

Packet flag heuristics

A set of flow attributes that has been used by several appesdEiBR03, TAF01] is based
on analysis of the TCP packet flags of the packets making up die fThese flags are
used by TCP to signal control information to the TCP implemioraat the remote end;
though this doesn’t seem like it would be directly relatedh® application itself, it could
potentially reflect the way in which the application is usigP.

Such a heuristic would simply be the number of packets wighgpecified flag, e.g.
ACK or PSH, divided by the total number of packets in the fldwAs with many such
heuristics, packet flag heuristics can only be used in adreféissification system if the
system has access to the TCP header.

Early et al. [EBRO3] included heuristics based on packet flagsddelling server flows
for intrusion detection; though they do not comment on theé&fulness, example rules that

they provided appeared to use them extensively.

HIACK is the acknowledgement flag, used by TCP to indicate dateived from the remote node, and
PSH indicates that the data in the packet should be sent tetké&/ing application immediately rather than
being buffered with subsequent data, similar to flushingféeb{Pos81b].

65

66

Chapter 4

The ANTARES tool

To facilitate the study of flow attributes and applicatioh&eours, we have developed
a tool, the Advanced Network Traffic Analysis Research andid&apon Suite, or AN-
TARES. This tool is designed to provide powerful mechanisonsmplementing the mea-
surement of a wide variety of flow attributes and for handivegwork traffic in a flexible
manner. In this section, we describe the design and artiiteof the tool and its features,
and we present an overview of how it works, to better explaw Aow attributes can be
constructed and computed. We first give an overview of ANTARIES some of the de-
sign decisions we made during its construction, and explaw it differs from NetMate,
a similar tool built by Zander and Schmoll [ZS05]. We thenatéx its architecture and
how some of the basic mechanisms work. Finally, we walk thhotlne process of imple-
menting some of the flow attributes listed in table 3.1 witl thol, as a guide to others
who would use it, and discuss the functionality of the pragthat we used to produce the
flow attribute values used in Chapter 5.

ANTARES is written in C++, which seemed to be the best comprerafdesign and

67

performance. Java was considered, but we rejected it duentweens that networking re-
searchers would not be willing to use a Java tool, out of fégyoor performance. We

also wished to use an object-oriented architecture as mhedeppropriate to the prob-
lem; the structures involved seemed to map naturally otesdhierarchies (TCP and UDP
packets are transport-layer packets, transport- and mietager packets are packets; dif-
ferent types of flows and sequences of packets are all aggsegdc.), and encapsulating
functionality with data was useful when designing flow atite objects.

The architecture of our tool allows arbitrary code to beundeld in the computation of
a flow attribute, using a “listener” paradigm. Flow attriesitare notified when a packet is
added to an aggregation, and they then perform computatiotise added packet. These
attribute objects can be arbitrarily complex, and they casthateful; thus, arbitrarily com-
plex flow attributes can be computed, so long as they onlyiregaformation from the
stream of packets that they see. Care must be taken to marsmeaes, of course, as
there are currently no safeguards to avoid having the coda aftribute consume arbitrary
amounts of resources. Once these flow attributes are setdiphardata processed, the
program using the tool can request values from a flow attilising a descriptive string,
the meaning of which is interpreted by the code of the flowikatte. This mechanism is
described in more detail in section 4.4.

ANTARES is not yet as user-friendly as it is intended to be;dreation of new flow
attributes currently requires that the user write C++ codactaess functions implemented
in a library. This is generally just a matter of creating arstes of classes that do the work
and providing them with appropriate parameters, howevamples of this process are
given in section 4.4. Efforts have been made to simplify tfecess of creating new flow

68

attributes and to make it easier for less experienced C++t@nogers to avoid some of the
common pitfalls. Our goal, however, is to make it possibldefine a wide range of flow
attributes using a configuration file rather than requirisgra to modify the source code.
Although the notation used in this thesis coincides withghegramming constructs used
by the tool, the process of translating from the former tolditeer is not yet as easy as we
would like; as future work, a parser should be created to gotthnslation, such that flow

attributes expressed using our notation could be compitedtty to modules for the tod.

ANTARES was written as a research tool intended to help wighuhderstanding of
network traffic and application behaviours, and not as aysbaon traffic monitoring sys-
tem, so performance has not been a primary consideratioa.p&formance is adequate
for the samples we have been dealing with (consisting of futagof a single flow), but
has suffered with the addition of more complex flow attrilsutgarticularly time-based at-
tributes that require a large number of signals being passedeen components. Prior to
the introduction of these time-based attributes, the perdmce had been reasonable even

on large (about 1Gb) network traces; with some tuning, thatisl be possible again.

Our impression after using ANTARES to implement many of thevflitributes de-
scribed in section 3.3 is that it does make it straightfodvar a programmer who un-
derstands the tool to implement a wide variety of such atteib. The major drawback at
this point is the internal mechanisms of the data structusé hlandles network traffic are
more complex than we would like, partially because it wasgies with several different

purposes in mind, such as being used for interactive traiéyais, which added complex-

IMore accurately, the parser would take as input flow atté®@xpressed using a variant of our notation
adapted to be expressed in plain text.

69

ity; however, this complexity is fairly well hidden from aggrammer mainly interested in
creating flow attributes. The interface for defining theilatties is somewhat inelegant at
the moment as well; it was designed to be driven by a parsdinga configuration file
that defines the flow attributes. This will be discussed inevd®tail in section 4.4.
ANTARES is available as a SourceForge project [FurdBgensed under the GNU

Public License [Pro06a].

4.1 Comparison of ANTARES and NetMate

Zander and Schmoll [ZS05] built NetMate, a tool for compgtihe values of flow at-
tributes; it is somewhat unfortunate that we did not discalis tool earlier, as it appears
that it would have been useful as a basis for ANTARES. Howelere are fundamental
differences between the approaches taken by each of thalse &3 a result, ANTARES
offers more flexibility and expressive power than NetMate] ¢he interface is aimed at
programmers familiar with an object-oriented programnshge. As NetMate appears to
be the tool most similar to ANTARES, we present here a disonssf these differences
and the relative merits of ANTARES.

The basic difference between NetMate and ANTARES is the wayhich each han-
dles flows and flow attributes. NetMate is an application famputing independent flow
attributes; each attribute or set of attributes is develgmea module that can be plugged
into the application and that performs its calculationsclily on packets passed to it by the

application. In ANTARES, on the other hand, flows are exprsseaggregates of pack-

2SourceForge is a publically accessible Internet site @evtut collaborative open source software devel-
opment.

70

ets, and flow attributes are attached to these aggregatedeasets; these flow attributes
are given names and can be referenced by other flow attributes

The approach taken by ANTARES permits greater flexibility gosver in defining
flow attributes than that of NetMate. One advantage is thaé@omes easier to adapt a
set of flow attributes to a different definition of a flow whenya few of the attributes
are directly examining packets, and the other attributesising the results of those lower-
level attributes; in that case, only those lower-levelladties need to be changed. Another
is that if a researcher wishes to introduce a new flow attilthait compares two sepa-
rate attributes, those existing attributes need not be @dargo a single module first, the
new attribute needs to simply reference the existing ate Furthermore, ANTARES
allows attributes attached to different but related agagegyto interact; for example, if a
researcher wished to define an attribute for a bidirectifboalthat used values of attributes
attached to its component single-directional flows (e.g.fthward and reverse directions
of a TCP session), they could attach a new attribute to thedgitional flow and reference
the attributes attached to the single-directional attefrather than having to re-implement
those values in the bidirectional flow.

ANTARES was designed to emphasize an object-oriented aplprimacreating flow
attributes and dealing with network flows. Flows and flowilatties are treated as first-class
objects within ANTARES, which allows flow attributes to be exgsed in a manner that we
expect to be more intuitive to some researchers than theguooal paradigm of NetMate.
Also, the components of ANTARES are loosely coupled and gdlyeself-contained. For
example, the mechanisms by which packets are processadenebled, and sorted into
aggregates can be altered or replaced independently oftllee components; it is thus

71

straightforward to change the definition of a flow being usgdlparticular application
built using ANTARES.

We deliberately emphasized power over performance wheagrdeg ANTARES. The
performance requirements that we have set for it are notgent; for a set of flow at-
tributes of a similar size and complexity of those listedahlés 4.1 and 4.2 and running
on a commodity computing platform, it must be able to pro@e$80kB sample within 5
seconds for debugging purposes, and it must be able to [gracesppreciable data set of
2GB overnight (i.e. within 12 hours).

As discussed, the primary distinction between ANTARES antMdéée is that AN-
TARES sacrifices efficiency of implementation for flexibilaypd power of expression. Be-
cause of this trade-off, we consider our tool to be more gmpate for defining experimen-
tal flow attributes in order to evaluate their potential, &tetMate to be more appropriate

for implementing proven flow attributes in a production iseft

4.2 Requirements

We present in this section an analysis of the requirementtseoANTARES toolkit; these
inform the design of the library and will be referenced asivating the various design
decisions in section 4.3, which describes its architectiefirst document the use case of
interest, that is, the context in which we expect the libtarlge used, and for what purpose
we expect it to be used in that context. We then describe tngrements for the toolkit
derived from that use case; the functional requirementg;twihescribe the concrete tasks
that the toolkit is to perform, and the nonfunctional regments, which are qualitative

72

goals guiding the design of the toolkit.

4.2.1 Use case

The main tasks for which ANTARES was developed are those wdeesearcher defines
flow attributes that they wish to study, and that where thaymate the values of those
flow attributes on sample network flows. These fit within theesecher’'s broader task
of attempting to find meaningful flow attributes for distingfuing between two or more
different types of network traffic. We describe here in moetad the overall analysis
process and the role played by these tasks.

Figure 4.1 depicts the analysis tasks in the analysis pscaed indicates where AN-
TARES fits into it, using a Unified Modeling Language (UML) usese diagram. Prior
to the use of ANTARES, the researcher would first have definedytes of traffic among
which they wish to distinguisnC-1), and obtained samples of those types of traffi€{

2) in the network context or contexts of interest, for exampteusing a network capture
tool such as tcpdump [Dev06a]. They would then analyze th#idrsamples (C-3),
possibly by using an analysis tool such as Wireshark [CtQ&],label them with the cor-
responding traffic typedC-4).

Having established a data set consisting of labelled samplgaffic, they would then
turn those into labelled feature vectors. They would firstehe decide on a set of flow
attributes to be used as the elements of the feature vectdrdedine themWC-Al), and

then compute the values of those attributes for their ladedbmplesyYC-A2). These two

3UML is a modelling language for software design and architecdefined at the Object Management
Group [Obj07].

73

AN
Analysis process

/ - T N
*%(}JC-2: Obtain and prepare samples/) ~|— eg.tcpdump
(UC-3: Traffic-based analysis .~ —— 1~ — e.g. Wireshark

/UC-4: Label samples>

\ — -
(UC-AT1: Define flow attributes » | |
Researcher -— TS j
([JC—AZ: Compute flow attributes =

e.g.R

\‘ P ———— e.g. Feature
\“‘;%(UC-G: Find discriminating criteria »— | — Selection and
machine learning

Figure 4.1: UML Use Case diagram depicting the tasks invoinede analysis process

tasks are the use cases for which ANTARES is intended to be aaddhe remainder of

the design process will focus on them.

The researcher would then use these feature vectors tordeéehow to discriminate
between the types of traffic. They might analyze the vectsirsgudata modelling and sta-
tistical tools, such as R [Dev05], to develop a qualitatimderstanding of the dat&C-5).
The researcher would then use quantitative tools, suche&sréeselection algorithms and
machine learning algorithms described in section 2.1.%in a mechanism for distin-
guishing among the different types of traffidC-6).

74

Although this process has been presented as a linear seqjutemould not necessarily
proceed that way in reality. For example, a researcher wids fimat their feature vectors do
not adequately distinguish the types of traffic may well defind compute additional flow
attributes; similarly, one who finds that their samples artesafficiently representative may
obtain additional samples and repeat the process on thbgearfalysis steps in particular
(UC-3 andUC-5) would likely be performed repeatedly at different stagithe process to
inform choices of parameters and algorithms used in otls#staand to judge the success

of those other stages.

The two main tasks for which ANTARES is designed are the spatiin of flow
attributes UC-A1) and the computation of attributes so specifietC{A2). The other
use cases presented here are beyond the scope of this thoyghl we intend for some
components of the library to be capable of being reused imesof them, in particular for
presenting the computed flow attributes for analysi€{5). The remainder of this section
will document the requirements for these tasks. These memeints will be referenced
later, in our discussion of the architecture of the tool, Xplain the rationale behind the

design decisions that were made during its development.

4.2.2 Functional requirements

We list here the functional requirements motivating theigle®f ANTARES. These re-

quirements proceed from the use cas€sAl andUC-A2, defining flow attributes to be
computed and actually computing the values of those flowbats, respectively. We also
include some future functional requirements; these arementded to be met by the cur-

75

rent implementation of ANTARES, but they influence the degigoisions taken, as it is

expected that these will eventually need to be met by theaiodlits components.

UC-A1: Define flow attributes

These requirements follow from the use c&#e-Al, in which the researcher specifies
the flow attributes to be computed. At this point in time, iaccomplished by writing a
program that does this by instantiating objects of the gmate classes viathe ANTARES
Application Programmer Interface (API), but the requiretseare written to allow this to
later be done by writing a configuration file in a special-sg grammar and invoking a

parser (which would be part of ANTARES) to read that file.

FR-A1-1 The user must be able to specify attributes to be computed.

FR-A1-2 The user must be able to specify attributes in terms of otitelpates within the

same flow or subflows thereof.

FR-A1-3 ANTARES must provide a mechanism for identifying and refereg packet

properties.

FR-A1-4 ANTARES must provide the user the ability to define severaidoges of

attributes with minimal effort (e.g. invoking a construgtol hese are:

FR-A1-4.1 An attribute that counts packets.

FR-A1-4.2 An attribute that keeps a running sum of a specified (numi¢pcaperty
of packets (e.g. length).

76

FR-A1-4.3 An attribute that performs an arithmetic operation (additsubtraction,
multiplication, or division) on two values; each of theséues can be either the

value of another attribute or a constant.

FR-A1-4.4 An attribute that stores values of packet properties or loéoattributes

as specified by the user.

FR-A1-5 Attributes can have sub-attributes (attributes subotdita the containing at-

tribute), which should be accessible by anything that caessthe attributes itself.

FR-A1-6 Any attribute must be able to have a filter specified for it;keds not matching

that filter must not affect the value of the attribute or itb-sttributes.

FR-A1-7 ANTARES must provide a way to specify that a packet filter isecapplied to

a packet sequence.

UC-A2: Compute flow attributes

These requirements are based on the useld@sA2, in which the researcher computes the

flow attributes that they have specified in use da€eAl on samples of network traffic.

FR-A2-1 ANTARES must accept as input data files containing recorde#lgia, and or-
ganize those packets into aggregates according to the colyromsed 5-tuple model

of a network flow (protocol, network-layer addresses, fpanislayer ports).

FR-A2-2 ANTARES must compute the values of the specified attributethemetwork
traffic input to it.

77

FR-A2-2.1 ANTARES must be able to compute the values of the basic atésbu

described in FR-A1-4.

FR-A2-2.2 ANTARES must be able to make available the value of a flow aiteib
to another flow attribute that references it (e.g. for thekatte described in

FR-A1-4.3).

FR-A2-3 ANTARES must enforce an update order among attributes, $athattribute
that is referenced by another attribute is updated befenaitie is used by the latter

attribute.

FR-A2-4 ANTARES must track the history of a packet; that is, for a gitygre of packet,
ANTARES must be able to access the ancestors (lower-lay&egmafrom which the
current packet was computed) and the descendants (hayariackets including
data from the current packet) of that packet. For exampteg ToCP packet that was
fragmented across multiple IP packets, ANTARES must be abdetess all of the

IP packets that were reassembled to produce that TCP packet.

Future requirements

The design of ANTARES is also influenced by an intention for ltbeary to eventually
support an interactive traffic analysis tool, along thedinéWireshark [Ct06], but focused
on displaying non-payload information as opposed to pgramd displaying the payload
data (e.g. a tool appropriate to use cbi§a5). The functional requirements in this section
are not intended to be implemented in the current iteratiobANTARES, but they do
motivate several decisions in the library’s design, and sanglude them here.

78

FR-F-1 ANTARES will provide the ability to seek to an arbitrary pointtime within a
trace, where which the values of its attributes will be cstesit with having pro-

cessed packets from the trace up to but not past that point.

FR-F-2 ANTARES will be able to model arbitrary subsequences on iexjgpacket se-

quences.

FR-F-3 ANTARES will be able to model hierarchical aggregations afvwek traffic be-
yond the 5-tuple model (e.g. aggregates based on sourcesadidr investigating

peer-to-peer filesharing).

4.2.3 Nonfunctional requirements

We list here the nonfunctional requirements guiding thegiesf ANTARES, which detail
the qualitative goals of the design process. These reqaimsrare broken down into sub-

requirements where necessary.

NFR-1 (Usability) ANTARES must allow a researcher to implement flow attributes i
significantly less time than it would take them to do so usitlieptools, such as

libpcap [Dev06a], Netdude [Kre06], or NetMate [ZS06].

NFR-2 (Extensibility) ANTARES must be designed in a way to allow its functionality to

be easily extended.

NFR-3 (Reusability) The individual modules in ANTARES must be designed in a generi
enough way that they can be used in other related applicatsuch as in a graphical
analysis application such as Wireshark [Ct06].

79

NFR-4 (Performance) Performance is not a primary driver of the design of ANTARES,
but steps must be taken to ensure that it is not unusably skw.a set of flow
attributes such as that listed in tables 4.1 and 4.2, usingroadity hardware (e.g.

a commodity PC with a 2GHz CPU and 1GB of RAM) a small sample used f
debugging purposes (100kB) should be processed within a éeansls, while a
larger data set (2Gb) should be processed within 12 houwys @@/ernight). The
target audience is the research community, so runtime isidered secondary to

ease of describing new flow attributes.

NFR-5 (Scalability) ANTARES should be able to cope with handling large data filag; e
files larger than available memory or greater than the 2Gl bfrsigned 32-bit file

offsets.

4.3 Architecture

We give here an overview of how ANTARES is arranged, and how#reus compo-
nents interact with each other, in order to provide contexbtir explanations of how flow
attributes are computed, and to discuss many of the desmgsiaes taken during the de-
velopment. The tool is implemented as a library focused rmstcu data structure, which
represents hierarchical aggregates of the network trafficgoprocessed. Flow engines
populate the data structure, and flow attributes are atthtthéhe aggregates to compute
whatever information is required by the researcher. Werdesthese various components,
and describe in some detail how the flow attributes interattt ach other and with the
data structure discussion of the capabilities of ANTARES.

80

0..1|-parent
1
Aggregate StreamKey
-streamKey
/N
0.* 1 0.*
Decomposition Trace —> Tracelterator IPv4Key
-traces -trace
-trace 0.*
1
Packet PacketDataMembers
-members
///)\/ ;
e
e
/////
IPv4Packet TCPPacket RealPacketDataMembers GhostPacketDataMembers

Figure 4.2: ANTARES data structure class diagram

4.3.1 Data structure

The classes that implement ANTARES’ data structure are dedigo be as generic as
possible, to make them more flexible and extensiblER-2), and so that they could be
more easily applied to models of network traffic beyond theife flow model used in
this work (FR-F-3). The data structure consists mainly of packet aggregaigpackets.
These classes are depicted in figure 4.2; in this section gserithe how the data structure
works and explain some of the decisions made in its desigering of the requirements.
Packet aggregates are handled using®ue egat e class and its subclass®&sconpo-

sition andTrace. Aggregat e represents a generic aggregate, wheBeasnposi ti on
specifically models an aggregate of other aggregatesTieak models an aggregate of
packetsDeconposi ti ons can thus contain either othgeconposi ti ons orTraces; such

81

a generic treatment is intended to be more reusatifdr(3), and to allow support of new

models of network traffic other than those based on the conbrtaple FR-F-3).

Aggr egat es containSt r eanKeys, which indicate how subaggregates of a gikggr e-
gat e are distinguished from one anotieEor bidirectional 5-tuple flows, thét r eanKey
is anl Pv4Key, which stores the values of the 5-tuple for that flow. The-flalii's be-
longing to that bidirectional flow would also be keyed usinpPa4Key, but for those it
would be configured to care about the direction of the flow, nele thd Pv4Key for the

bidirectional flow would not.

An Aggr egat e can have aar ent, which is anotheAggr egat e that contains it. The
simplest example of this is that the half-flows of a bidirentl 5-tuple flow ardraces

that have as a parent tBeconposi ti on representing the bidirectional flow.

ThePacket class is the base class for the hierarchy that represeritetgsapackets of
particular protocols such as IPv4 and TCP are representeldebgppropriate subclasses
(e.g.l Pv4Packet andTCPPacket in figure 4.2). New types of packets can be defined by

creating new subclassesRcket .

Descendent relationships among packets are tracked Battket objects FR-A2-
4); a givenPacket object has references to its ancestors (those lower-lea@teps that
carry data contained in the packet in question) and its delerds (higher-layer packets
for which the packet in question carries data). For exangleCP packet that was carried
in its entirety in a single IPv4 packet would have the latteita only ancestor; however, a

TCP packet that was fragmented across several IPv4 packatd have all of those as its

4We use the term “stream” as a more generic form of “flow” thatldondicate other types of aggregates
as necessary.

82

ancestors.

Properties of packets are accessed vigighét t ri b() method defined iRacket ; the
name of the desired property is specified as a dot-separaiegl. $acket subclasses re-
turn the appropriate values for these properties irggtét t ri bLocal () method;get At -
trib() implements a searching function that fans out from the paoleheck its ancestors
and descendents if it is not found in the packet object. Famgte, the length of the pay-
load portion of the transport-layer packet would be spatdethe stringransport payload
en. The task of finding the value of the property is thus pushealtimePacket class and
its subclasses, so that objects usiHagket objects, such as attributes, need only specify
whatinformation they need, without needing to knbmwto obtain it. This means that all
of the logic required to implement a new type of packet candmtained within a new sub-
class ofPacket , which is intended to make the design more easily exten@Nfi®R-3). In
addition, the idiom of dot-separated properties is expetide more familiar to the target
audience (and thus more usable, pER-1), as it mimics the syntax of display filters in
Wireshark [Ct06], a popular tool for network traffic analysis

The ANTARES data structures also implement a mechanism,hahie call packet
ghosting to create overlays on aggregatédfR{F-2) without duplicating entire packets
(NFR-4); that is, one can create &ggr egat e that is composed of packets from another
Aggr egat e. A ghost packet is an instanceldcket where the actual data is contained in
an instance oReal Packet Dat aMenber s that is contained in a different instanceRat ket
(the original packet that was ghosted). This is accomptighehaving aGhost Packet -

Dat aMember s in the ghost packet that points back to the original; a ghasket is thus
analogous to a reference in C++. In order for this to be traespdo the subclasses and

83

thus make it easier to extefdcket (NFR-2), Packet objects cannot directly access the
data corresponding to the packet, and must instead use dsethoh aget Packet Dat a(),
which returns all of the packet data, aget Dat a() , which returns a specified substring of

the data.

Packet objects in ANTARES are not intended to be free-floating; iadtet is expected
that they will be added to akggr egat e as soon as they are created. This is because that any
long-lived reference to a packet should be made througtaeel t er at or object, which
acts as a pointer to ttiacket and represents it in the context of thggr egat e containing
it. So long as these references are made thrdugleel t er at or objects,Aggr egat e
objects can write any or all of their packets to a file and be @ablread them back in
when those packets are accessed, which supports ANTARHESY abiseek within a file
(FR-F-1) and will allow it to deal with large files by swapping out ued®acket objects

(NFR-5).

4.3.2 Flow attributes

Flow attributes in ANTARES are attached Aggr egat es in the data structure @&sack-

et Li st ener s; they are notified when a packet is added toAtgr egat e to which they
are attached, and update their state appropriately. Fy@rdepicts the classes involved
in implementing these flow attributes; this section will kxp these classes and how they

interact.
Classes that are to be added as listeners tiggnegat e must derive from th@ack-
et Li st ener interface. Aggr egat es themselves aracket Li st ener s; this is so that an

84

J 0..1| -parent

()
\/
\/

dinterfacen | |
PacketListener | () * __| Aggregate
] listeners
ZA
\
0..1
PacketFilter ? FilteredPacketListener
-Tilter
N NI .
Y \ -left/right A
s Tl..z\\ /rie T
SimplePacketFilter | CompoundPacketFilter Attribute

ScalarAttribute ArrayAttribute

ArithmeticAttribute | SumAttribute | PacketCountAttribute || MemoryAttribute

PacketDrivenMemoryAttribute | SampledMemoryAttribute

Figure 4.3: ANTARES flow attributes class diagram

Aggr egat e, such as &econposi ti on, that contains othekggr egat es can be added as a
listener to its childAggr egat es. Attributes attached to thaggr egat e are then updated

when packets are added to those clAddr egat es (FR-A1-2).

In order to restrict the packets that a particular attribzdesiders FR-A1-6), AN-
TARES allows filters to be placed on the listener, using thérabidi | t er edPacket Li s-
t ener class. These filters, as discussed in section 3.3.1, useraefifpression to determine
which packets are passed to the attribute. Filters can bglesior compound (which are
implemented bysi npl ePacket Fi | t er andConpoundPacket Fi | t er, respectively). Sim-
ple packet filters filter based on a single criterion, where@spound packet filters are

85

logical combinations (e.g. using AND, OR, or NOT) of other letdfilters, either simple
or compound.

An attribute can refer to the values of other attributeschttd to the same aggregate,
or to its subaggregates, such as the half-flows belongingbidieectional flow FR-A1-
2). This is accomplished by using dot-separated strings, itis packet properties. For
a bidirectional flow, the stringéwd andrev refer to the forward and reverse half-flows,
respectively; thepkt count attribute of the forward half-flow can thus be requested from
the bidirectional flow agwd. pkt_count

Similarly, one can refer to a subattribute of an attributegis dot-separated string,
which is useful for obtaining simple values from a complexilatite. For example, one ba-
sic type of attribute is thBenor yAt t ri but e, which remembers a certain number of values
from packets or from other attributes. Theror yAt t ri but e has a subattribute calledim
which is the sum of the values it contains (if they are of arrappate type, such as an in-
teger). Supposing that a flow containstaror yAt t ri but e called payload byte count 5s
that retains the payload lengthisansport payloadlen) of all packets in that flow seen in
the past 5 seconds, the amount of data transferred as ph#tdfdw in the past 5 seconds
could be obtained asayloadbyte count 5s.sum

Attributes are implemented as subclasses ofithe i but e base class; they are further
subdivided intoScal ar At t ri but es (attributes which evaluate to a single scalar value),
andArrayAttributes (attributes which revolve around an array of values). Tleee
five main attribute classes used by ANTARESi t hmeti cAttribute, SumAttri bute,
Packet Count Att ri but e, andMenor yAttri but e. Most of the flow attributes in table 3.1
were implemented using only these classes, plg ati onAttri but e class which com-

86

putes the duration of a flow or half-flowThese five classes provide enough functionality

to define a wide variety of flow attributes.

TheArithmeticAttribut e class allows other attributes to be combined in arithmetic
operations, peFR-A1-4.3; it was used frequently in implementing the attributes used
this thesis (those listed in tables 4.1 and 4.2). It curyesupports the addition, subtraction,
multiplication, and division of other attribute values atwhstants. One simple attribute
implemented as aArithneti cAttribute is themeanpkt_len from section 3.3.3; this
is just anArithneticAttribute that takes the byte count attribupkt byte count and

divides it by the packet count attribupt_count

A SumAt t ri but e computes the sum of some property of the packetsFpeA1-4.2,
the most obvious application is for attributes such as bgtents. Thepkt byte countand
payloadbyte countattributes from section 3.3.4 could be implemente8uag\t t ri but es

on networklenandtransport payloadlen, respectively.

A Packet Count At t ri but e is simply an attribute that counts the number of packets that
it sees, peFR-A1-4.1 The most common such attribute is thkt_count, which is just a
Packet Count Att ri but e attached to a flow or half-flow with no filter. Packet propantio
heuristics, such as those defined in section 3.3.5, are @gnenplemented with the help
of such attributes. For example, the attribptd_countPhep) used in computing some of
the small packet heuristics in section 3.3.5 is computedPas ket Count At t ri but e with

a filter oftransport payloadlen > 0, as depicted in figure 4.4 in section 4.3.

Memor yAt t ri but es retain some information about the past state of an aggrepet

SThe DurationAttribute could even have been implemented asAaint hneti cAttribute with an
associatedlenor yAt t ri but e, but was implemented separately for simplicity.

87

FR-A1-4.4. There are two different subclasses\efor yAtt ri but e available for differ-
ent purposesPacket Dri venMenor yAt t ri but es andSanpl edMenor yAttri butes. The
former records an observation each time a packet is recédiibr from the packet itself
or from some other attribute), whereas the latter recordsgmples) an observation at a
certain time interval. Both subclasses retain a configunabidow of observations, either
a fixed number or for a fixed period of time, or for the entireadian of the flow. Obvi-
ously, however, the resource requirements of an applicatsing such attributes will be
influenced by the memory sizes.

The maximum datarate attributes from section 3.3.4 weréemented usindyenor y-
Attributes. For example, a 5s datarate attribute using a 1s slidinglominwas im-
plemented with &acket Dri venMenor yAttri but e that retained a 5s window of packet
lengths, with aSanmpl edMenor yAtt ri but e sampling the sum of the lengths in that win-
dow every 1s. AvenoryAttri but e features the subattributesim which calculates the
sum of the observations, antax which calculates the largest observation.

Using these building blocks, a researcher can define a witgeraf flow attributes.
In cases where these building blocks are not sufficient, taeycode their own attributes;
those custom attributes could then be used in other compusatretained in memories,
etc., just as the attributes described here can. This gégpasaintended to allow AN-
TARES to be extended to flow attributes far beyond those that haen designed to date,
as our understanding of network traffic matures.

Figure 4.4 shows an example of a flow and its half flows with satteched flow
attributes, for illustration. Consider thep betaattribute on the lower right side of the
figure; recall from section 3.3.5 that tee_betaattribute is the proportion of small packets

88

192.168.1.101:tcp/32768
dir_data(F) 3 *
192.168.1.100:tcp/80
\ pkt_count(F)

192.168.1.101:tcp/32768 192.168.1.101:tcp/32768
ittt

192.168.1.100:tcp/80 192.168.1.100:tcp/80
Ly f I transport.payload.len <= 20 |

ayload byte count(Fad)/ = = = =/l — = — <
payloacbyre-) pkt_count (Psp)

payload_byte_count (F,)
pkt_count (Ppnep sp_beta (Fe,)

Figure 4.4: An example of ANTARES attributes

among non-empty packets, for some definition of “small pckEor the reverse half-
flow, thesp betaattribute is attached to the half-flow; it uses the valuegkifcountPhep)
(the number of non-empty packets) aplit.count(Psp) (the number of small packets),
each of which is shown with their appropriate filters in dasbexes. On the left side
of the figure, thedir_data attribute attached to the bidirectional flow is dependanthen
payload byte counts of the half-flows, as it computes itsevddased on those values. It
would use the notationswd. payloadbyte count andrev. payload byte countto refer to
the payload byte countattribute in each of the forward and reverse half-flows, eetpely.

In actual use, each flow and half-flow would have the same $atsribbutes, but only some

are shown in the diagram, for simplicity.

4.3.3 Flow engine

The flow engine being used determines the actual shape tgke lolata structure. AN-
TARES’ primary flow engine is session-based,; that is, it digithe traffic into half-flows

89

according to the transport-layer protocol (the “next pcotdvalue in the IP header), source
IP address, destination IP address, source port, and destimort; it also pairs those half-

flows into bidirectional flows while retaining the distinatis between the two sides of the
flow. Figure 4.5 depicts the classes involved in implemeantire flow engine; the primary

flow engine described above is thev4Sessi oni zer .

The session-based flow engine hamplate aggregatethat contain theAttri but e
objects that are to be computed for the flows; in the caséofSessi oni zer, these are
thef| owTenpl at e, aDeconposi ti on containing theAt t ri but es to be computed on the
bidirectional flow, and théal f f | owTenpl at e, aTrace containing theit t ri but es to be
computed on each single-directional half-flow. When the flogiee is to create a new
aggregate, it copies the template (usingthene() method of theAggr egat e subclass)
along with all of its flow attributes, so that they will compdtby the new aggregate. For
example, when théPv4Sessi oni zer creates a new flow, itl one()s fl owTenpl ate
for the bidirectional flow anal one() s hal f f| owTenpl at e for the appropriate single-
directional half-flow (and theaol one() shal f f | owTenpl at e a second time when the first
packet in the opposite direction is processed). This tetimglanechanism allows the set of
attributes to be defined by the application, independeffitiyeoflow engine, while allowing
newAggr egat es to be created dynamically.

ANTARES uses the libgcap [HugO07] library to access packetbqdap is a library
based on libpcap [Dev06a]; it reassembles fragmented IRepgcmaintaining relation-
ships between the original fragments and the reassembté@isaas peFR-A2-4). That
library is wrapped with th€capAdapt or class, which uses libgcap to read a network trace,
process the data link layer and reassemble fragmented I&skets, and add those pack-

90

\ 0.1 -parent

1 : I interfacen
StreamKey 4—key > Aggregate 1 " PacketListener
-listeners 0.*
T A
|
\
IPv4Key FilteredPacketListener

|

ProtocolParser

QcapAdaptor 1
1 1
Decomposition — StreamedQutputParser
-output
1| -flowTemplate T

1 IPv4Sessionizer

Trace

-halfflowTemplate

Figure 4.5: ANTARES flow engine class diagram

ets to an IPv4r ace. Thel Pv4Sessi oni zer listens to that IPv4race and outputs to a
Deconposi ti on (theout put data member inherited froSt r eanedQut put Par ser), cre-
ating flows as described above, keyed WiHv4Keys. An example of a data structure built
by thel Pv4Sessi oni zer flow engine is shown in Figure 4.6. The object representieg th
entire network trace is made up of bidirectional flows, eatctinich is made up of two

half-flows.

ANTARES is designed to be flexible in the way that flow engineswsed FR-F-3,

91

All packets

192.168.1.101:tcp/32768 192.168.1.102:tcp/45454

$ ' Flows
192.168.1.100:tcp/80 192.168.1.100:tcp/25
4 <4 4

192.168.1.101:tcp/32768 192.168.1.101:tcp/32768 192.168.1.102:tcp/45454 192.168.1.102:tcp/45454

’ t | t

192.168.1.100:tcp/80 192.168.1.100:tcp/80 192.168.1.100:tcp/25 192.168.1.100:tcp/25

Half-flows

Figure 4.6: An example of an ANTARES session-based datatstreic

NFR-2). The flow engine described here deals with both the netwadki@nsport layers,
but that is not required by the library. An alternate confegion would have an IPv4 flow
engine process incoming IPv4 packets iDezonposi tions by thenext protocolfield,
and have separate TCP and UDP flow engines attached as Isstetleeprotocol= 6 and
protocol = 17 Deconposi ti ons, respectively (either by creating thd3econposi tions
ahead of time, or by having a lookup table for the IPv4 flow eedo create the appropriate
transport-layer flow engine, etc.). Similar techniquesloamnised to implement other types

of aggregations, such as by node-pair or by source or déstinaode.

4.4 Implementing flow attributes

This section describes a program implemented using the ARH®A tool to compute the
flow attributes described in Chapter 3. This serves not oniyoimument the capabilities
of the program, which is included with the ANTARES tool, bus@lllustrates how AN-

TARES is used in practice. We first present an example of implegimg an attribute using
ANTARES, and then give an overview of the functionality of thefi | e_streanms_t he-

92

nonenpty_count = pkt _count (F{transport.len > 0})
sp_count _1 = pkt _count(F{(transport.len <= 20) AND (transport.len > 0)})
sp_beta_1 = (sp_count_1 / nonenpty_count)

Figure 4.7: Pseudocode fep.betaAmaxien = 20;F)

Packet Fi | ter *nonenptyPacketFilter =
Packet Attribute("transport.len"),
Concr et ePacket Attri but eVal ue<i nt >(0),
Si npl ePacket Fi | ter:: GREATER);

tenpl.addAttrib("nonenpty count",
Packet Count Attribute(*nonenptyPacketFilter));

PacketFilter *sp filter_1 = new ConpoundPacket Filter(

Si mpl ePacket Fi l ter(
Packet Attribute("transport.len"),
Concret ePacket At tri but eVal ue<i nt >(20),
Si npl ePacket Filter:: LESS OR EQUAL),
*nonenpt yPacket Fi | ter,
ConpoundPacket Filter:: AND);
tenpl . addAttrib("sp_count 1", PacketCountAttribute(*sp filter 1));
tenpl.addAttrib("sp_beta 1",
ArithmeticAttribute<int,int,doubl e>(
"sp_count 1", "nonenpty_count",
ArithmeticAttribute<int,int,double>:0P DIVIDE), 1);

new Si npl ePacket Filter(

Figure 4.8: Actual code fosp.beta Amaxien = 20;F)

si s program, which computes the values of the flow attributesudised in Chapter 3.

As a concrete example of a flow attribute implemented with ARES, we consider
spbetaAmaxien = 20;F) (referred to asp_beta_1 in the code, as it corresponds to pa-
rameter set 1 in our experiment), as shown in figure 4.4 iriedt3® We present this
attribute and those on which it depends, first in pseudocedeveill be written once we

have developed a parser for flow attributes in figure 4.7, #isadhe actual code in figure 4.8.

Figure 4.9 outlines the control flow of tipeof i | e_st reans_t hesi s program that we

SNote that the code shown does not distinguish between a flowaamalf-flow; that is done based on
where the code is placed. The above actual code was from tdarbat sets up the template aggregate for
half-flows.

93

profile_streams_thesis

s N no more packets no more flows
‘ﬂ} initialize data structures | P > @
\ NS
s v N more flows / F\
| create templates | % \
~ - e N N
\/ | get next flow | | output attribute values |
_ J \ J

| create flow engine and QcapAdaptor | /N

_
N

L get attribute values |
more packets —
\E

e ™\ I N
[\process next packet/\ | update attribute values |
\ J
/[\
QcapAdaptor Attributes
e . . . N A
 notify listeners (sessions) <- | add packet to flow |
AN J . /\ e
o . flow exists
| notify listeners (ipTrace) | > >
N J/
flow does not exist /
Ve N Y
| create flow |
~
Data structures (Decomposition/Trace) Flow engine

Figure 4.9: UML Activity diagram depicting control flow @f of i | e_streans_t hesi s

used to compute the values used for our evaluation in Chapterdhllustrates the interac-
tions between the different components of ANTARES. It firglates and initializes various
data structures and processing objects; of note@reace, which is thelr ace into which
the QcapAdapt or deposits non-fragmented and reassembled IPv4 packetsgasidons,
which is aDeconposi ti on into which thel Pv4Sessi oni zer flow engine organizes pack-
ets into (session-based) flows. It also creates two tengpldtewTenpl at e, containing the
attributes to be computed for the bidirectional flows, &adf f | owTenpl at e, containing
the attributes to be computed for the single-directiona¥dl¢the actual attributes are listed

94

below).

Once the initialization is done, the program goes into thearpeocessing loop, where
the QcapAdapt or reads packets, reassembles them, crd@e4éPacket objects, and de-
posits them inta pTr ace, which notifies its listener, thePv4Sessi oni zer ; that in turn
adds the packet to the appropriate traceséssi ons, creating it first (from copies of
fl owTenpl at e andhal f f | owTenpl at e) if necessary. Th@r ace representing the half-
flow to which the packet is added notifies its listeners, wiaighits attributes and also the
Deconposi ti on representing the flow containing that half-flow; the lattetifiies its own
attributes. After all the updating is done, control retuim&capAdapt or , which continues
this loop until all of the packets have been read. The maignara then regains control and
iterates through the flows sessi ons, fetching and outputting the values of the attributes.

Table 4.1 lists the per-flow attributes computedobyf i | e_streans_t hesi s, and ta-
ble 4.2 lists the per-half-flow attributes that it computésr the most part, these are the
same as those listed in table 3.1. The notable exceptionha@anmax datarate attributes,
which indicate the maximum per-second datarate over vgtyine windows. The param-
eter sets mentioned in the descriptions of the small ane lpagket heuristics in table 4.2
refer to those defined later, in table 5.1 and 5.2 in secti@é5there are three param-
eter sets for the small packet heuristics, and six for thgelgracket heuristics, and they
are represented by digits from 1-3 and 1-6 in the names oftthbuées computed by

profile_streams_thesis.

95

Name Description

pkt_count number of packets

duration duration in seconds
nonemptycount count of nonempty packets
pkt_byte count sum of packet lengths
payloadbyte count sum of payload lengths
meandelay mean inter-packet delay

meanpkt len mean packet length
meanpayloadlen mean length of nonempty packets
meannonemptypayloadlen | mean length of nonempty packet payloa
dir_data directionality of data

meanpkt_datarate

mean datarate (packet length)

meanpayloaddatarate

mean datarate (payload length)

1s dataratewindow.max

max datarate over 1s window

5s dataratewindow.max

max datarate over 5s window

1ds

30s dataratewindow.max max datarate over 30s window

flag urg proportion of pkts w/ TCP URG flag
flag.ack proportion of pkts w/ TCP ACK flag
flag_psh proportion of pkts w/ TCP PSH flag
flag rst proportion of pkts w/ TCP RST flag
flag.syn proportion of pkts w/ TCP SYN flag
flag fin proportion of pkts w/ TCP FIN flag

Table 4.1: Per-flow attributes computedfnofi | e_streams_t hesi s

96

Name Description

pkt_count number of packets
pkt_byte count sum of packet lengths
payloadbyte count sum of payload lengths
nonemptycount count of nonempty packets
meandelay mean inter-packet delay
meanpkt_len mean packet length

meanpayloadlen

mean length of nonempty packets

meannonemptypayloadlen

mean length of nonempty packet payloa

1s dataratewindow.max

max datarate over 1s window

5s dataratewindow.max

max datarate over 5s window

1ds

30s dataratewindow.max max datarate over 30s window
sp.alphax small packet heuristia, parameter set x
sp.betax small packet heuristia, parameter set x
sp.gammax small packet heuristia, parameter set x
sp.deltax small packet heuristia, parameter set x
Ip_alphax large packet heuristia, parameter set x
Ip_betax large packet heuristia, parameter set x
Ip_gammax large packet heuristia, parameter set x
flag.urg proportion of pkts w/ TCP URG flag
flag ack proportion of pkts w/ TCP ACK flag
flag psh proportion of pkts w/ TCP PSH flag
flag rst proportion of pkts w/ TCP RST flag
flag_syn proportion of pkts w/ TCP SYN flag
flag fin proportion of pkts w/ TCP FIN flag

Table 4.2: Per-half-flow attributes computedfyyof i | e _streans_t hesi s

97

98

Chapter 5

Evaluating flow attributes

Given a set of potential behavioural flow attributes, we wiho evaluate how useful
they are at discriminating between different types of nekweaffic and to demonstrate
some uses of the Advanced Network Traffic Analysis ReseardfEaploration Suite (AN-
TAREYS), the tool that we have developed. We describe in ttapten an experiment where
we investigate the ability of some flow attributes to distirslp between a small set of com-
mon applications; it is by no means an exhaustive survey of dlitributes and networked
applications. There were three main results from our erpantation. We found that our
data was similar to that of Roughan et al. [RSSDO04], but that tksults were probably
optimistic, due to the fact that they used values that weeeamed over a day rather than
using individual flows. We looked at parameter values forlsarad large packet heuris-
tics, and found that several were useful for distinguistbegiveen applications. Finally,
we found that the error rates of the classifiers correspotmedr expectations; two app-
lications that we expected to exhibit similar behaviour i@ @nother were more difficult
to distinguish from one another than from other applicatioie discuss in this chapter in

99

more detail the design of the experiment and then presentsults.

We chose several common applications for which there aterldal network traces
available and that we felt exemplified three different aggiion behaviours, and we used
several of the discussed flow attributes to build classif@rsgiscriminating between pairs
of these applications. The error rates of the resultingsdiass gave us a combined measure
of the discriminating power of the flow attribute and the $amty of the two applications.
This combined measure was clarified, at least qualitatimsiycomparing the relative per-
formance of different classifiers on the same task. Thdtadl,af the flow attributes studied
had produced poor classifiers for distinguishing betweeartiqular pair of applications,
we had some basis to suspect that it was because that paplafadions is fundamentally
similar, although this suspicion would by no means be caiotd We found that the error
rates followed our expectations; applications that we clmned to be similar were more
difficult to distinguish from each other than from those weeoted to be dissimilar.

For the experiment, we constructed a composite data sej uanous data sets from
the National Laboratory of Applied Network Research (NLANRJe chose the samples
to cover a variety of different traffic, in an effort to capguthe “normal” behaviour of
each application, independent of a particular networkrermnent, and to avoid skew from
particular hosts performing abnormal activities (e.gning Telnet sessions over ports as-
sociated with FTP). The data that we used is already outtd;dhe most recent samples
being more than two years old; we leave it to future work t@stigate how the character-

istics of network traffic change over time. The compositedat is discussed in detail in

lWe can obviously only consider similarity in terms of theristites with which we have used to study
the attributes; it will always be possible that there may betlaer flow attribute, not considered, for which
the two applications are totally dissimilar. However, wédhibiat this is true in general for any expression of
similarity: it is only valid in a certain context.

100

section 5.1.3; it is publically available alongside ourlkitdFur06].

It may seem odd (even hypocritical) that, having proclaitmed the way of the future is
to focus on application behaviours rather than applicatiare ourselves use the application
as a label for our data. The distinction is that we are nodingl classifiers for the sake of
building classifiers, we are building them as a techniquevéduate flow attributes and to
illustrate the concept of application behaviours. The i@pfibns we use are exemplars of
particular types of behaviour; FTP-data and HTTP are exarspff bulk data transfer, FTP-
control and Telnet are exemplars of command-shell inteatiehaviour, and POP3 and
SMTP are exemplars of machine-driven interactive behawvie accept that the data will
be noisy, even potentially with some number of flows that vgeneerated by a completely
different application than we suppose, though we have tateps to minimize the noise in

preparing the data.

In this section, we present a qualitative evaluation of ARREESS by using it for several
analysis tasks. We evaluate the values in the context ofvparst, analyze the effects of
different parameters for flow attributes, and identify i application behaviours using
common applications as exemplars. In the course of thisrarpatation, we implemented
a range of flow attributes using our tool; we found this tasls waaightforward, which
reflects well on the capabilities of the ANTARES tool. This somt take the place of a
rigorous evaluation of the toolkit, however; such an eviiddurehas been left as future work.

101

5.1 Experimental design

The goals of this experiment are to demonstrate the ANTARBEatad the flow attributes
that we use in several contexts: evaluating past work, tigegsng parameter values for
flow attributes, and exploring application behaviours. V@satibe here in detail the ex-
periment; we specify how the applications, flow attributes] samples were selected, and

then describe how the results were obtained and interpreted

5.1.1 Applications

In this experiment, we used traffic from six common applmasi FTP-data, FTP-control,
Telnet, SMTP, HTTP, and POP3. We have made the uncomfoyttitdagh convenient,
assumption that we can use the IANA-registered port numbar@oxy for application in
the historical data, expecting that the few cases in whiahignot valid are outweighed
by the majority in which the applications are using the defipert. Accordingly, we
constructed our data set in such a way as to minimize the nuofilsech stray sessions, as
described in section 5.1.3.

Since one of our goals was to examine how the values of the flobwes listed in
table 3.1 vary between data sets, the main criterion focgsetpapplications was that they
all be present in a large enough number of the available ddta §he six applications
chosen were all present in sufficient quantities in eigha dats (described in detail in
section 5.1.3), which comprise university Internet uptiinkesearch backbone networks,
and a public ISP peering exchange point. These data setinalade multiple samples
from the same sites in different years, so that we can exathmehanges in the flow

102

attributes over time in the same environment.

We also wanted to choose applications that we expected tbiedlferent application
behaviours. HTTP and Telnet were chosen to represent btéktdansfer and command-
shell interactive activity, respectively; these were the behaviours we were most inter-
ested in from the perspective of distinguishing between swefing and interactive back-
doors. FTP-data was chosen as the most straightforwardpearhbulk data transfer to
complement HTTP. FTP-control was chosen as an alternageotyipteractive behaviour to
complement Telnet, though we do not expect it to differ digantly from the latter. SMTP
and POP3 were considered to be good examples of machirendniteractive behaviour,
although with SMTP, data is pushed from the client to the exerand with POP3, it is

pulled by the client.

Some other applications that would have been nice to in¢cladeh as peer-to-peer
filesharing, streaming media, and online games, were egdor this experiment simply
because they were not sufficiently prevalent in enough adta which was a criterion we
chose to attempt to get sample sets that represented anafnettwork contexts. Although
some such traffic could be found in most of the data sets,rdifteapplications were seen
in different datasets, adding an additional complicatlmat tve felt was best left for future

work.

5.1.2 Flow attributes

Table 3.1 lists the flow attributes, defined in Chapter 3, thaiaed in this experiment. We
describe here in more detail some of the particular ateehosen, and the parameters

103

Parameter set Amaxien (DYt€S) | Amindelay (MS) | Amaxdelay (MS)
1 20 10 2000
2 60 25 3000
3 200 250 30000

Table 5.1: Parameter sets for small packet heuristics

Parameter set Amin jen (DYt€S) | Amaxdelay (MS)
1 225 50
2 1000 50
3 1460 50
4 225 250
5 1000 250
6 1460 250

Table 5.2: Parameter sets for large packet heuristics

used for those that require them.

We arbitrarily chose to try three different maximum datarattributes, computed on
time granularities of 1s, 5s, and 30s. These values wer@gippaited, as the tool is not yet
capable of computing these values over all possible tinezvats. The approximation was
done by sampling the datarate using a sliding window of tsadractional intervals og;2
for example, to approximate a maximum datarate computedaotre window of size 5s,
we took the maximum of the datarates computed over the timdaws[0,5), [1,6), [2,7),
and so on.

For thedir_dataflow attribute, we need to account for the fact that the vatuddbe
undefined if the denominator (that is, the payload byte cofithe reverse side) is 0. We
take the simple approach of adding one to each the numenadiotha denominator prior
to computing the value of the attribute; this seemed to beasomable approach to avoid
disturbing the values excessively while avoiding the peabbf undefined values.

The parameter values used for the small and large packeistiesirare given in ta-

2The choice to use 5 as the fraction was also arbitrary.

104

bles 5.1 and 5.2, respectively. For small packet heuristiesused three parameter sets
taken from the works of Zhang and Paxson [ZP0O0O] and DeMowlgrBoeuf [DLO5]:
parameter set 1 was the parameters from the former, panas&tt& was the keystroke-
interactive metrics from the latter, and parameter set 3tvasommand-line interactive
metrics from the lattet. For the large packet heuristics, we simply used all comhznat
of three minimum packet lengtig,in jen and two maximum delaysmaxdelay- The param-
etersAminien = 225 andAmaxdelay = 50 were taken from DeMontigny-LeBoeuf’s work;
Aminlen = 1460 was chosen to only consider those packets which cagriyfical maxi-

mum amount of data for an application using TCP over the letérn

For both the small and large packet heuristics, it is possiblencounter undefined
values. For the small packet heuristics, these can occufléiacontains no nonempty
packets, no small or empty packets, or no consecutive sraekgts, where the definition
of small depends on the parameters of the heuristic in quedtor large packet heuristics,
they can occur if there are no nonempty packets or no corigedatge packets. These
cases are discussed in more detail in section 3.3.5, andebgrgfuments given there, the
most reasonable way to deal with undefined values for thasbuaes is to consider them
to be equal to O.

Flag proportion attributes were computed for the URG, ACK, RESH, SYN, and FIN
flags; the name of the attribute was created accordingly {éag_pshfor the proportion

of packets with the PSH flag). We could have also extendeddhisclude combinations

3Note that DeMontigny-LeBoeuf’s attributes were desigreeidientify SSH as well as Telnet data, so our
experiment, which does not include SSH, is not really a featgation of these parameters.

4The maximum total packet size for a route over the Interragt¢bntains an Ethernet link is 1500 bytes;
an IP header with no extensions is 20 bytes [Pos81a], as isPaliE@der with no options [Pos81b], which
leaves 1460 bytes for the TCP payload.

105

of flags, e.g.flag_pshackfor all packets with both the PSH and ACK flags set. However,

the single-flag heuristics were considered to be sufficietitigtime.

5.1.3 Data sets and samples

In order to evaluate flow attributes, it is first necessaryaeenetwork traffic on which to
compute the attributes. The data used for this experimesitakan from historical network
traces from various sources, obtained from the Nationabtatbry for Applied Network
Research (NLANR) [NLAO6P This section describes the data sets selected and how we
selected samples from them; a more thorough discussionrgireparation of the sample

data is presented in Appendix A.

For this experiment, we used data from eight of the NLANR d&tis: ABILENE-II,
ABILENE-IIIl, ABILENE-V, Auckland-1V, Auckland-VI, Leipzig-, Leipzig-Il, and NZIX-

Il, as described below. Table 5.3 gives an overview of tha dats used in chronological
order. Note that the volume of data in the table indicatestime of the sizes of the network
traces from which we obtained samples, which is often leas the full dataset.

The data was from a variety of different network environmsetitough it is predom-
inantly from research-affiliated institutions, due to tlaetfthat such institutions were
NLANR'’s primary partners. The ABILENE and NZIX data sets arenfr network back-
bone links. The ABILENE data sets are from the Abilene resebexkbone administered

by the Internet2 consortium; the ones used were capturedtiausg times between August

SNLANR was supported by funding from the National Sciencerfetation (cooperative agreement nos.
ANI-0129677 (2002) and ANI-9807479 (1998)), but has (asuby 2006) been discontinued; its data, hard-
ware, and website are being maintained by the Cooperatigediation for Internet Data Analysis (CAIDA)
at the University of California’s San Diego Supercomputenter.

106

Data set timeframe Source

NZIX-1I Summer 2000 New Zealand ISP peering exchange pag
Auckland-1V | Winter 2001 | University of Auckland Internet uplink
Auckland-VI | Spring 2001 | University of Auckland Internet uplink

nt

ABILENE-II | Autumn 2002 ABILENE research backbone
Leipzig-| Autumn 2002| University of Leipzig Internet uplink
Leipzig-lI Winter 2003 University of Leipzig Internet uplink

ABILENE-III | Summer 2004 ABILENE research backbone

ABILENE-V | August 2004 ABILENE research backbone

Table 5.3: Summary of NLANR data sets used

2002 and August 2004. The NZIX data set is from the New Zealateinet eXchange,
a peering point for both public ISPs and research institsti@t the University of Waikato
in New Zealand, in July of 2000. The Auckland and Leipzig d=ts are from the Inter-
net uplinks of two universities. The Auckland data sets weaptured at the University
of Auckland in New Zealand, and the Leipzig data sets werdéuca@ at the University
of Leipzig in Germany. The Auckland data sets used in thiskwagre captured between
February and May of 2001, and the Leipzig data sets are fromeiber 2002 and Febru-

ary of 2003.

They are also from several different points in time, as casdas from table 5.3. Even
the most recent data is already more than two years old assaéxperiment; however, as
we are interested in studying the flow attributes, we feltaswnore reasonable to begin
with a wide selection of older traffic than to use a narrows@a of more recent traffic, as
we were unable to locate such a rich publically availabléectibn of recent traffic as was
available from NLANR. We do expect that it will be necessargstablish that observations

made on older data are still valid on current traffic.

Some of the approaches discussed in section 2.4 have atbearse of these same data

107

sets. Roughan et al. [RSSD04] used the Auckland-IV data séeinwork. Herandez-
Campos et al. [HCNSJO05] performed clustering on the ABILENBthdset, which is from
the same facility as the ABILENE traces we used, though areiffielink (they used data
from the Indianapolis to Cleveland link). Zander et al. [ZNoA) ZNAO5a] used three of
the same data sets we did: Auckland-VI, NZIX-1l and Leip#ig-

We downloaded in excess of 70 gigabytes of compressed retinadfic from the
NLANR archive; there was far more data available in the data we selected, let alone
in other available data sets. We then extracted samplestiieravailable data for anal-
ysis, using the methodology described in Appendix A and sanmead here. We hope
that our documentation of this data, along with the data padation tools available with
ANTARES, will allow other researchers to easily duplicatis ttample selection process,
either to obtain an independent sample set or to generate@esaet including traffic from
applications other than the ones that we have chosen.

Randomly selected samples from each NLANR data set of inter@® downloaded
and converted to tcpdump [Dev06a] format, and flows of thectetl applications were
extracted. One of the data sets used consisted of five-nmsant@les of traces; for consis-
tency, all of the traces were divided into five-minute tineesd prior to sampling. Packets
belonging to the target applications were extracted baséd3® ports.

Having obtained trace files of the selected applicationsfour data sets, we then
selected samples from them, where each sample is a netwarkdtopossibly a partial
network flow), as defined in section 3.2. The samples weretselesuch that, for a given
data set, there could be at most two samples involving the gein of network nodes; this
was to ensure that the sample set was diverse, and not stiafigenced by any particular

108

use of a given application.

We balanced our sample set by data set, time-of-day, anctapph. For each data set,
we selected 100 samples per application, per time-of-daggéwork hours or off-work
hours)® The exception to that was the ABILENE-III and ABILENE-V datasseeach of
which contained little or no traffic from one of the time pel$p for those, we took 100
samples per application from ABILENE-III traces for off-vkohours, and 100 samples
per application from ABILENE-V for work hours. Overall, we @ined 1400 samples per
application: 100 samples from each of two types of time mkrivom each of seven data
sets (seven, not eight, due to ABILENE-III and ABILENE-V notucting for one or the
other time period). These were chosen to encompass diffestwork environments at
different times from 2000 through 2004, in order to minimike influence of misleading

uses of ports or unusual uses of the applications.

5.1.4 Training classifiers

Once we had selected a set of applications of interest,tedlecset of flow attributes of
interest, and acquired an appropriate set of sample traféchen evaluated the power of
the flow attributes (specified in table 3.1) to discriminaggween the applications in the
samples. We did this by computing the flow attributes for taegle traffic and training

a classifier on each flow attribute for discriminating betaveach pair of applications. In

this section, we will explain in more detail how these clisss were trained.

Values for the selected flow attributes were computed udiegAtdvanced Network

5We considered any traffic occurring between 8 AM and 4 PM (ltoe of the monitored network link)
on a non-holiday weekday to be during work hours, and allrattadfic to be during off-work hours.

109

Traffic Analysis Research and Exploration Suite (ANTARES)r{I&], a tool developed
for this research and designed to facilitate the computatfexperimental flow attributes.
ANTARES is described in more detail in Chapter 4. ANTARES scansugh a network
trace and aggregates packets into network flows, which a&ited in section 3.2. Values
for the flow attributes are computed by code attached to thesggtions and stored, then
retrieved when the network trace has been fully parsed.r Alfiese attributes were com-
puted, we used R [Dev05], a popular open-source statigtazlage, to train the classifiers
described here. Specifically we used thenfunction for general linear models with the
bi nom al (1 ogit) family of link functions, which used the least squares mdttwtrain

a linear regression model using a logistic link functiorsatéed in section 2.1.2 and also
explained below.

For each pair of applications, we trained one classifier f@reflow attribute. The
following discussion describes how we trained a singlesili@s to distinguish between
two applications A and B, using a flow attributeX; we designated applicatioA to be
the target class and the other to be the background claskdgurposes of training the
classifier. The designation of the target class is arbitriaijoes not affect the outcomes.
The classes were represented by a categorical (binangbkai, which had a value of
1 for the target class and O for the background class. For aaglcation, we had 1400
samples, so for each classifier, we used 2800 samples. Eaxgtesaas represented by
two values; for samplg X; was the value of the flow attribudefor that sample, and was
1 for the samples from applicatigvand O for those from applicatidB

Before training the classifiers, however, we applied a t@nsétion to some of the
flow attribute values for the purposes of improving the dff@ness of the regression. The

110

least squares method that we used does not perform well wirae ef the data points
have large numerical values, as it assigns more influendeosetdata points than those
with smaller values. Thus, for flow attributes that can haaleies exceeding 1.0, we took
the logarithm of the value before fitting the model, similaw¥right et al. [WMMO04] and
Paxson [Pax94]. Unlike those approaches, we did not wisimtplg disregard zero values,
so to avoid taking the logarithm of zero (which would give ategg infinity), we first found
the smallest non-zero value among the sample flow attribaitees, and increased all of
the sample flow attribute values by half that amount. Thesevadues were used as the
value ofX; for those flow attributes that we needed to transform.

The addition of one-half of the smallest non-zero value rpraotaking the logarithm
is based on a common practice in statistics of adding onedb @aunt) value prior to
performing a log transform [Bar47]; we have simply adaptetb itvork better with our
values, many of which range from zero to one. Adding one tolaevthat is between
zero and one would destroy the proportional relationshipragrvalues at the low end of
the scale; e.g. the difference between 0.01 and 0.02 is 180%4hat between 1.01 and
1.02 is less than 1%. An alternative would be to use a verylstoaktante; however,
using a value proportional to the smallest non-zero valuans¢hat the log-transformed
values of the zero values and the smallest non-zero valgealso proportional, which
avoids large clumps of distant outliers in the transformathd For example, if a flow
attribute had values clustered at 0, 0.25, 0.5, 0.75, andrltechnique results in clusters
of transformed values of -3, -2, -1, -0.5, and 0, whereasgusioonstant value of about2
1016 (__DBL_EPSI LON__, the smallest double value for the GNU implementation of C++
[GNUO7]) would give transformed values of -52, -2, -1, -0ahd 0. A more appropriate

111

constant could be found for this case, of course, but thdtiegiconstant might not be
appropriate in other cases.

For each such classifier, we used a logistic regression ntodigld a threshold oiX
that best divided the samples from the two applications;hwie had to produce logit values
to use as the responding variable of the model. As discusssédtion 2.1.2, logistic
regression is a form of linear regression in which the resporariable is the log-odds
ratio, or logit, of an observation belonging to the targetssl That is, if samplk with
an explanatory variable ofx belongs to the target class with probability, the response

variable used for the regression is the lagit= Iog((li“m). Due to the implementation of

this model in R, each sample was treated separately, so ealshljility Tt was either 1 or
0 (i.e.1s =Y,).” The logit values were produced by taking the vaMesom the samples,
scaling them to the range 0.25-0.75 (this scaling was huiitt R’s logistic regression
logic), and computing the logit from these probabilitieslascribed above.

With the logit values computed, the R software fit a regresbie to the data. That is,
it used the iterative weighted least squares méttodompute parametelg andAg such
that the liner’ = A1 X + A fit the data as closely as possible.

We then used the regression line to find the value of the flavbate that corresponded
to a probability of 0.5 (equal to a logit value of 0) of a samipédonging to the target class.
The probability of 0.5 was chosen because there were an eqodier of samples in each

class for each model, so 0.5 is the probability of a given darg@ing in the target class in

’A more effective method would have been to bin the sampleditérvals over the range of the explana-
tory variable and use the proportion of samples of the targes in each bir asTt;, with the midpoint of the
bin as the explanatory variablg; however, as we are interested in the performance of theifitas relative
to each other rather than in absolute terms, we leave thfstiore work.

8The iterative weighted least squares method, from Dobsab9D], is a variant of the least squares
method described in section 2.1.2, which minimizes thedist between the regression line and the samples.

112

the absence of any other information.

The value of the flow attribute corresponding to a probabdit0.5 (with the above log
transformation of the attribute value reversed) then besotine thresholg; for a classifi-
cation rule, and the sign of the regression coefficignindicates whether the target class
generally has values greater than or less than the thredhald< 0, the classification rule
is that a sample with a flow attribute valdg such thatxs < x; is classified as belonging
to the target class; k1 > 0, a sample withxs > X is classified as belonging to the target
class. In the degenerate case where- 0, the classifier would not be useful.

With the classification algorithm defined, we estimated thereate of the classifiers
based on the model using 10-fold cross-validation, as thestim section 2.1.1. The selec-
tion of samples was stratified to ensure that the classeedtelanced; i.e. each partition
of the sample data had equal numbers of samples from taegst @hd the non-target class.

This experiment allows us to “try out” some flow attributesttlive expect to be in-
teresting, to see how useful they are for discriminating @gna small set of common
applications. We do not claim that this is exhaustive or agige in any way; the goal of
the experiment was primarily as a test case for ANTARES andlata, and secondarily to
provide a preliminary evaluation of these flow attributese &lso do not expect excellent
error performance, as we are only using a single flow ateilagita time; if we wished to
train high-accuracy classifier, we could use multiple bttieés at a time, but doing it this
way allows us to study the attributes themselves. Also, am tour classifiers on pairs
of applications, rather than trying to distinguish one agtion from all the others; this
is because we do not wish to assume a priori either that egstcaipon is in fact distinct
from all the others, or to assign them into classes befossifiang them.

113

5.2 Results

This section describes our analysis of the data generatatebgbove procedure. Our
primary goal was to demonstrate ANTARES and the flow attribdtescribed in table 3.1,
and our secondary goals were to get a general sense of how thee¥arious attributes are
for distinguishing between a small set of application anéxplore whether it would be

feasible to establish application behaviours using the NRAdata sets.

Implementing the flow attributes using ANTARES was a strdgitard task, though
this is at least partially due to the fact that it was devetbwéh many of these attributes in
mind. The graphs displayed in this section were producetgusie R statistical package

[Dev05] to process data produced by ANTARES.

The data that our procedure created is a three-dimensioattxnof classifier error
rates, where two of the axes are applications and the thilaysattributes, so that each cell
is the error rate of a classifier trained to distinguish betwa particular pair of applications

using a particular flow attribute. We have included this datgppendix B as a set of tables.

We present in this section three results from our experiatem. First, we compared
the data produced by ANTARES to previous results by Roughah. §R&SD04], and
found that our data behaved similarly to theirs, but alsa thair method of averaging
flows probably yielded optimistic results. We then used thereates that we produced to
evaluate potential parameters for large and small packetdties, and found that in gen-
eral, a given heuristic could be used for different tasksthmt the most effective parameter
values could be quite different for each task. Specificitlg,small packet heuristics were
useful for distinguishing command-shell interactive babar from other types of traffic

114

with one set of parameters, and for distinguishing comnereldl and machine-driven in-
teractive behaviour from bulk data transfer with anothéra$gparameters. Finally, we
looked at the error rates and identified that they correspmodr expectations of applicat-
ion behaviours; the two applications that we expect to ekbildlk data transfer behaviour
were far easier to distinguish from other applications tham each other, and likewise
for Telnet and FTP-control, those that we expect to exhiamhmand-shell interactive be-
haviour, and for SMTP and POP3, those we expected to exhdmhme-driven interactive

behaviour.

5.2.1 Comparison with Roughan et al.

Among the flow attributes, we consider first the two found mastful by Roughan et al.
[RSSDO04], described in section 2.4: duration and mean paekgth. We found that our
data was qualitatively very different from theirs until wepdied a transformation to our
data that mimicked their methodology of using daily aggtegiawith that transformation,
our data much more closely resembled theirs. We concludetbe use of daily aggre-
gates may mean that the results of their classification @xpet are not applicable for
classifying individual flows, though it may be a useful teicju@ in studying the behaviour
of the applications themselves.

We examine the data computed by ANTARES in figure 5.1; for egghiation we
randomly selected 70 flows and, for those, plotted mean padekgth against duratioh.

We then compared this data to the corresponding figure frongRauet al.’'s [RSSD04]

%We chose to use 70 flows for comparison with Roughan et al&S[R04] work, which used 70 data
points per application.

115

Subsampled mean packet length vs duration

o POP3

o FTP-data

§ - o FTP-ctrl

O Telnet
SMTP

o HTTP

0 50 100 150 200 250 300

duration

Figure 5.1: Sampled flows from NLANR traces by mean packejtleand duration

work, reproduced here as figure 5.2, which shows mean paekgth vs. duration for
aggregated daily flows for 70 day®. The applications used are not the same, but FTP-
data, HTTP, and Telnet (ftp-data, www, and telnet in figu®) &re common to both. Note

that there is significant discrepancy between the two figures

We explain that discrepancy by plotting points based onamieg our own data, to
approximate the aggregate flows used by Roughan et al. [RSSB@4fesults of this
transformation are shown in figure 5.3. By averaging the daéamean that each data
point in that figure is computed by selecting 20 sample flowisheut replacement) and
taking the mean of the durations and the mean of the mean fdackghs of those sample

flows as the duration and mean packet length of the averadagdat. We felt that this

10%Each data point in the figure from Roughan et al. is based oragivey out all of the flows for a given
application over an entire day.

116

1000

domain
a00 ftp—data
+ https
200 = kazaa
o realmedia
700 o telnet
= W
2k}
<, 600 /—\ :
E=3
H 500 ~. i
i
= 400 0
[}
(=N
300 .
200 i -
100L Yo & 9% B X o
0|I 1 1 1 1 1 1 1 1
0 200 400 &00 |00 1000 1200 1400 1600

duration (seconds)

Figure 5.2: Aggregate flows from Roughan et al. [RSSD04] by np=auket length and
duration (Figure 2 from [RSSDO04])

Aggregate mean packet length vs duration

1000
|
o

POP3

FTP-data

o FTP-ctrl

O Telnet
SMTP

o HTTP

800
|

mean_pkt_len

400
|

200
|

duration

Figure 5.3: Aggregate flows from NLANR traces by mean packegih and duration

117

was an appropriate way to simulate their data points, eaethath was the mean value
over all flows seen in a single day. For our figure, the duratiparticularly of the telnet
sessions, were much shorter, partially because of our btmitimeslicing discussed in
section 5.1.3. Our mean packet lengths are also somewhat,lbut the general clusters
for the three applications we have in common with theirs (fdaR, Telnet, and HTTP) are

in similar places in figure 5.3 as in figure 5.2.

Referring back to the individual flows in figure 5.1, we can $e¢ the attributes of the
flows are more variable than those of the averaged data peurdgesting that classifying
aggregate flows may be less difficult than classifying irdinal flows. However, since we
are focused on evaluating flow attributes rather than orsifyasg applications, our quanti-
tative results have no bearing on their results. We simpijgest that the performance of a
classifier based on averaged data points such as those uRedglyan et al. [RSSD04] and
those in figure 5.3 is not reflective of the performance of dtassifier for distinguishing
between individual flows. However, it appears that the ayiagamay be useful in studying
and defining application behaviours, as it minimizes theat#f of outliers and appears to
focus on the “normal”’ behaviour of traffic for the applicatjove leave this possibility to

be explored as future work.

5.2.2 Parameter selection

We express the small and large packet heuristics, defineectios 3.3.5, in terms of pa-
rameters; we describe here an evaluation of the effectbgentdifferent values of these
parameters for distinguishing between the applicatioaswie studied. We did not attempt

118

to optimize them for a particular task, such as distingumiglbetween bulk data transfer
and command-shell interactive behaviour; such an optimizavould be done more ef-
fectively by using a feature selection algorithimo choose the best parameter set, as we
wanted to see if different parameter sets were appropateifferent classification tasks,
rather than simply finding the best parameter set for onacpéat task. We found that
the small packet heuristics were able to distinguish betmek data transfer and other
traffic with varying degrees of success with any of the patansets we used, and that they
were able to distinguish between command-shell interat@haviour and machine-driven
interactive behaviour with certain parameters, while éapgcket heuristics were best at

distinguishing bulk data traffic from other types for thegraeters we used.

In the case of small packet heuristics, the parameters amaximum size of a packet
to be considered “small’Nmnaxien), @and the minimum and maximum inter-packet delay
(Amin delay @NdAmaxdelay respectively) of packets of interest (to focus only on gaskhat
have timings consistent with human keystroke or commamel-intry). For large packet
heuristics, the parameters are the minimum length of aélapgcket fmin jength), and the
maximum inter-packet delay between packatsa delay t0 focus on packets with timings

consistent with a host streaming data quickly over a netjvork

We performed an evaluation of several parameter sets fdl anthlarge packet heuris-
tics, listed in tables 5.1 and 5.2, on classification taskbstsd in table 5.4, and found
that certain parameters consistently gave better re$tsthe rest for large packet heuris-

tics, whereas the most effective parameters for the smelgtdneuristics depended on the

LIA feature selection algorithm takes a set of candidate featior a labelled data set and determines the
subset of those that is most effective for classifying thadasing a given machine learning algorithm.

119

1 POP3vs. FTP-data 9 FTP-datavs. HTTP

2 POP3vs. FTP-control 10 FTP-control vs. Telnet
3 POP3vs. Telnet 11 FTP-control vs. SMTP
4 POP3vs. SMTP 12 FTP-controlvs. HTTP
5 POP3vs. HTTP 13 Telnetvs. SMTP

6 FTP-datavs. FTP-control 14 Telnetvs. HTTP

7 FTP-datavs. Telnet 15 SMTPvs. HTTP

8 FTP-datavs. SMTP

Table 5.4: Classification tasks

context. We used a fairly small set of parameters for each dofeuristic, and our appli-
cation set was also limitetf, so we do not consider these results definitive by any means.
However, they do provide some insight into the ways in whiehapplications differ.

For large packet heuristics, parameter setddin(en = 225, Amaxdelay = 50) and 4
(Aminlen = 225, Amaxdelay = 250) proved to be the most useful; in general, the minimum
packet size was far more important than the maximum delago,Ale noted that the large
packet heuristics seemed to be more useful when used onvirseadirection half-flows
(from server to client). The exception to this was HTTP, fdrieh | p_betaon the forward
direction half-flows was fairly useful (perhaps because RT€quests are significantly
larger than client-side requests for the other applicatisa considered). Figure 5.4 shows
the error rates of all six parameter sets, as listed in taldlerbsection 5.1.2, used for
various classification tasks as listed in table 5.4; theee\@o lines per parameter set, the
lower line being the minimum error rate obtained by largekpadeuristics with those
parameters, and the higher line being the mean error rateosétheuristics® The lines

for parameter sets with the same value Xgfin1en (1 and 4, 2 and 5, 3 and 6) generally

12| particular, a more thorough examination should alsaidelat least streaming media and peer-to-peer
filesharing, as we expect those to have packet lengths betivese of the interactive and mail applications
and less than the bulk data transfer applications that wsidenhere.

B3All heuristics for a given parameter set are considered és¢hmeasurements, i.gp_alpha Ip_beta
andlp_gammaon each of the forward and reverse half-flows.

120

min/mean error rate

The small packet heuristics were more varied, in that nortee@parameter sets were

0.8

0.6

04

0.2

0.0

Relative error rates for large packet heuristic parameters

parameter set 1
O parameter set 2
parameter set 3
O parameter set 4
parameter set 5
parameter set 6

o

QI

@O

o
O\ / O\ / \O/O

2 4 6 8 10 12 14

Classification task

Figure 5.4:. Mean and minimum error rates for large packetisgts by parameter set

overlay each other, illustrating that for each distihgfn en parameter, both choices for

Amaxdelay Perform equally well on the applications we examined.

better than the others across all of the classification probj the performance of the pa-
rameter sets depended on the classification task beingm#dmFigure 5.5 shows the
performance of the various heuristics using each of theetbegameter sets listed in ta-

ble 5.1 in section 5.1.2 on various classification taskssasdiin table 5.4; again the mean

121

Relative error rates for small packet heuristic parameters

(o]
o parameter set 1
O parameter set 2
O parameter set 3
©
S -
&
§ e\\o
e 8
5 < | S8
g © o ~
Q (I
£ /N
£
£ \
N
S \
o=
C)/o = C
o \o
S —
\0/8 8— @ko
o o7
) | €]
o
T T T T T T T
2 4 6 8 10 12 14

Classification task

Figure 5.5: Mean and minimum error rates for small packetibgcs by parameter set

and minimum error rates for each parameter set across dlleo$rall packet heuristics
are given. Parameter set Ay{axien = 20, Amindelay = 10MS Amaxdelay = 29) did better on
classification tasks 2, 3, 4, 10, and 13 (POP3 vs. FTP-corOP3 vs. Telnet, POP3
vs. SMTP, FTP-control vs. Telnet, and Telnet vs. SMTP) —mligtishing between appli-
cations that generally used many small packets, whereastliee parameter sets (param-
eter set 1 walmaxien = 60, Amin delay = 25MS Amaxdelay = 3S, and parameter set 2 was
Amaxien = 200 Amin delay= 250MS Amaxdelay= 30s) performed similarly to each other, and

122

generally better than parameter set 1 on distinguishingdxst applications with many
small packets and applications with larger packets. Ofwte parameter set 3 generally
did slightly better. Unsurprisingly, none of the small paeckeuristics performed particu-

larly well at classification task 9, distinguishing betwédeérP-data and HTTP.

As we mentioned, we do not consider this an exhaustive elatuby any means; our
results are only valid for the small set of applications wasider, and a proper evaluation
should use many more candidate parameter values. Howetletthe proper data set and
values, implementing all of the flow attributes for the calade parameters with ANTARES

would be straightforward.

5.2.3 Distinguishing behaviours

We also examined the results of the classifiers, which argepted in Appendix B; we
will summarize and illustrate here some of the more inteargstbservations. We present
the error rates in tabular form in the appendix, with coldorbring out patterns in them;
we found this to be a useful technique for identifying geh&ends, and we explain in
the appendix how to interpret the data. For many pairs ofiegipdns, there were at least
a few flow attributes that could distinguish them with a coneloi error rate of 0.10 or
better. In general, we found that the error rates were ctamigvith our expectations; the
most difficult pairs of applications to distinguish betweegre those that we considered to
represent the same application behaviour, particuladgehepresenting bulk data transfer
(HTTP and FTP-data) and command-shell interactive bebiayitelnet and FTP-control).
SMTP and POP3, representing machine-driven interactifi@beur, were not difficult to

123

distinguish from one another, but that was primarily dueht® fact that they operate in
different directions, SMTP pushing the data from clientéoser and POP3 pulling it from
server to client.

Telnet and FTP-control, the applications representingmand-shell interactive be-
haviour, are difficult to distinguish. The three flow attriési which gave the best combined
error rates for distinguishing between the two wareannonempty payloadlen fwd,
meanpayloadlen fwd, and flag_syn which had error rates of 0.140, 0.163, and 0.214,
respectively. The first two attributes are quite similarwsodisregard the second here. It
is somewhat counterintuitive that the proportion of SYN $latpould be useful, but since
there are usually a small number of SYN fld§st may be used as a proxy for the length
of the session® Figure 5.6 and figure 5.7 show these attributes as box-arskeardia-
grams for each applicatiof. As can be seen from the figures, there is a significant overlap
between the twad’

The best flow attributes to distinguish between FTP-dataHRoP took advantage of
the directionality of the data. For FTP-data, the data isoalnaxclusively in one direction,
and with HTTP, requests are sent in one direction, and resgsoim the other. The best
flow attribute was theneannonemptypayloadlen_fwd, as with Telnet and FTP-control,

shown in figure 5.6, with a combined error rate of 0.084. Téigrobably because there is

14There are normally two SYN packets for a TCP connection, oo feach node, not accounting for
resent packets or SYN packets that were not within the 5-taitimneslice

15Though this, of course, does not explain wikt_countgave a worse error rate of 0.266.

16A box-and-whisker diagram, or boxplot, plots data by drayariine at the median value, a box around
the middle half of the data (from the first quartile to the dhgquartile), and “whiskers” extending to the
extreme points; outliers not included in the whiskers adiciated with circles. Such diagrams have been
found to be useful for summarizing multiple features of aadsample [Dev95]. Figures 5.6 and 5.7 are
examples of such plots.

There is also significant overlap among other pairs of apptios in these figures, but there were other
flow attributes that could distinguish between those. TgeiBtant point here is that these two flow attributes
were the most effective at distinguishing between TelndtfERP-control.

124

Distribution of mean_nonempty payload_len_fwd by application

1500

—_— _

1000

500
|

—_—

1
1
|
1
[
1
1
|
1
1
1
|
1
1
1
|
1
[
1
1
|
[
1
1
|
1
1
1
|
1
1
1
'
1
1
1
1
|
[
1
1
o - — — |

I I I I I I
POP3 FTP-data FTP-ctrl Telnet SMTP HTTP

Figure 5.6: Distribution by application sheannonem ptypayloadlen_ fwd

very little data in the forward direction of most FTP-datanxy if the direction were not
known in advance, this one attribute would be less powekaling said that, using values
from both directions together should still be useful eveemwthe client-to-server direction

is not known'8

SMTP and POP3 were similarly easy to distinguish from ondterdoy virtue of the

8preliminary experiments suggest that in such a case, thelasees are not linearly separable (i.e. cannot
be separated with a single line), with one class “brackebgdthe other — a classification algorithm like
nearest-neighbour, which does not require that the datadarly separable, might be more effective.

125

Distribution of flag_syn by application

1.0

0.8

0.6

0.4

0.2
|

0.0

POP3 FTP-data FTP-ctrl Telnet SMTP HTTP

Figure 5.7: Distribution by application dfiag_syn

direction of the data. With SMTP, the bulk of the data is senitfthe client to the server,
whereas with POP3, most of the data is sent from the servéetoltent. This is clearly
visible in figure 5.6. We expect that it would be more difficitdistinguish between the

two applications if they were re-oriented so that the data fias in the same direction.

126

Chapter 6

Conclusions and future work

In this thesis, we document ANTARES, a tool for computing flawilautes and tools for

converting and preprocessing network data sets, and werpesome basic analysis using
our tool, to demonstrate the range of flow attributes thadmt compute and to illustrate the
concepts of flow attributes and application behaviours. &&cdbe here the conclusions
that we have drawn based on this investigation, and dedtrdx@umerous avenues that we

see for future work on traffic classification.

6.1 Conclusions

We used our tool to implement a range of flow attributes froeliterature, and found that,
although the interface is not particularly user-friendlyknowledgeable user can easily
build flow attributes using its powerful mechanisms. Thefgrenance leaves much to be
desired, but we expect that it can be significantly improvéith @ moderate amount of
effort. We also found that specifying the flow attributeswgsihe notation presented in this

127

thesis and translating those notations to the syntax ofablevtere both straightforward,
and we expect that one could implement a parser to do thaing&NTARES easier to
use than it is now.

We compared our measurements to those of Roughan et al. [R§SD@4ound that
ours were similar to theirs, but only when we averaged oua gaints to simulate their
use of values based on daily averages. We noted that sucatenénet of the data would
seem to make it easier to distinguish between applicateonsthus we questioned whether
their classification results were overly optimistic be@abthis treatment. We note, how-
ever, that such a treatment may be appropriate for studyngmgl patterns of application
behaviour, and should be considered as a potential todeif.it

We evaluated a small set of parameters for small and lardeepheuristics, and found
that while two similar parameter sets were consistentlynbst useful for the large packet
heuristics, the most useful parameter set for the smallgigduoduristics depended much
more on the applications to be discriminated. We also ndtatfor large packet heuristics,
the timing-based criteria we used were not nearly as sigmifias the packet-length-based
criteria.

We found that it was far easier to distinguish between il dissimilar applications,
such as between HTTP and Telnet, than to distinguish betimédgtively similar applicat-
ions, such as between HTTP and FTP-data or between TelndgtEdontrol. This is,
of course, in the context of the flow attributes that we used,itis entirely possible that
there are other, far more effective, flow attributes, foisthpurposes. We feel there is far
more work to be done in this area, both in searching for mdextfe flow attributes and
for exploring application behaviours, which is why we hawgeused on building tools in

128

support of these efforts.

We believe that in order to accurately classify traffic froetwork applications, those
applications will have to be expressed in terms of applicaltiehaviours that can be identi-
fied from network traffic using flow attributes. It is our hopat the notation, the tool, and
the data pre-processing tools we have made available wilitéde an exploration of these
attributes and behaviours that will lead to a far greateresstdnding of them and to a far

more effective approach to application classification.

6.2 Future work

We see this thesis as supporting the development of behavamed network application
classification, but there is still a great deal of work to beelceven just to show that such
an approach is feasible. Here, we will first discuss the weitikd be done in the short term
to improve the tools we have developed, and then we will desthe way that we believe
behaviour-based classification can be realized.

For ANTARES, there are still several important improveméotse made, and rigorous
testing should be done. The interface needs to be finisheddagirng a parser that can
take our notation for flow attributes and translate it intal€do drive the computation
of those attributes in the tool. Its performance must alsaddressed, particularly with
respect to those attributes that use a clock, as the inttioduaf that mechanism caused a
significant slowdown. Also, it requires more attribute sksto support the development
of other promising attributes from the literature, such a&vntigny-LeBoeuf’s [DL0O5]
conversationality heuristics.

129

The notation described in this thesis needs to be develogedaiprogramming lan-
guage by creating a grammar that is appropriate to a textgrgation file (as opposed to
the grammar of the notation, which is more appropriaté&Tgdmathematical typesetting)
and constructing a domain model to provide its semantiesgdtimain model will depend
on the flow engine being used. Using the five-tuple flow engesxdbed in this thesis as
a partial example, the top-level concept could be forftbes which would be an aggre-
gate of the different flows encountered in parsing a trace Ekch flow in that aggregate
would consist of &eycontaining the fields of the five-tuple (protocol, sourcedRddress,
destination IPv4 addressttributescorresponding to the flow attributes, both built-in and
user-defined, ansubflowsepresenting the two single-directional flows making uptiocke-
rectional flow. The grammar and domain model would then bd tsereate a parser that
could take a text configuration file containing attribute wiéittns and use that to create the
templates that define the attributes to be computed.

More rigorous testing of ANTARES should be done to ensuretti@talculations are
correct; in addition to comprehensive unit testing, systesting should be performed by
generating network traffic with known characteristics et be measured by ANTARES.
Existing network traffic generators can probably be levedag this process, but these are
likely to require modifications. Many of the flow attributes reetwork traffic that AN-
TARES considers appear to be outside of the scope of traditimetwork traffic analysis
and network traffic generation, so we expect that propeingestill require either signif-
icant modifications to existing traffic generation tools tlee development of new traffic
generation tools.

For behaviour-based network application classificatioaa®ole, there are three main

130

components that will be needed: meaningful flow attributesdels of application be-
haviours in terms of the flow attributes, and models of aggilbims in terms of application
behaviours. Meaningful flow attributes and applicationaeburs are those which reflect
the purpose for which the network is being used. A particapglication behaviour should
correspond to a distinct type of activity; examples migldlude bulk data transfer, in-
teractive command shell activity, streaming media, ganfiieg synchronization of virtual
environments), polling of a remote resource (e.g. of an eacabunt), or automated trans-
actions (e.g. sending an e-mail via SMTP). A model of an apfibn in terms of such
behaviours could take the form of a finite state machine, ooeeraomplicated construct.

The most difficult part is likely to be finding the best flow ditrtes and application
behaviours to use; we expect this to be an iterative prodefisding flow attributes that
represent a proposed set of application behaviours, thegeating the samples that do
not fit that set of behaviours, and revising the set of behasiappropriately. That process
would seem to require the use of data sets that include tHeguhglata, to better understand
those outliers; however, we suggest that a broader setafrd#tout payload would play a
crucial role in evaluating the generality of these attrdsuand behaviours, as we expect it
will continue to be difficult for a researcher to obtain datéssvith payload from network
environments other than their own.

We also believe that the process of developing flow attribatel application behaviours
should use fragments of flows rather than full flows, as we expdl flows from many
applications to contain multiple behaviours. One intengstopic of research would be
techniques for fragmenting flows; for instance, flows coudftagmented adaptively by
finding change points in various flow attributes.

131

Application behaviours spawned by this process can be usd¢hkeabasis of models
of applications themselves. A simple approach would be ke foows belonging to a
certain application, break them down into fragments, léihese fragments using a model
of application behaviours, and use them to infer a model efapplication (e.g. “Telnet
consists of proportiox of bulk data transfer, proportioy of interactive command shell
behaviour, and proportionof inactivity, where 0< x < 0.2, 0<y < 0.95, 0< z< 0.15,
andx+y+z=1"). A more complex approach would be to define each behaasua
state in a finite state machine, and to learn the transitiehsd®en the states. These models
that could then be used to classify network traffic by appilice and the results of such

classifications could be evaluat&d.

An alternate approach that has been suggested would beaie generative models,
using queueing theory [Kle75, GH85] for example, to simeikaaffic from particular app-
lications, then compare the traffic generated by these raauéh the traffic observed on
actual networks. This would seem to bypass application\betes, but what we would
expect to happen is that for a given application, severdéihdismodels (corresponding to
distinct application behaviours) would be required to gateeall of the traffic for that app-
lication, and that those models could be reused betweeincapphs that exhibit similar
behaviours. We agree that this is certainly a valid approacti could probably be used in

conjunction with the observational approaches describedea

Further work is required to build a better understandinghefdomain of possible flow

attributes. In Chapter 3, we presented flow attributes ddvidéo classes, but this was

lideally these would be evaluated using techniques such #sld @ross-validation for more accurate
results, and the terms used to report the results, such asaagor error rate, would be clearly defined.

132

not a rigorous treatment, it was merely for organizatiomad aonceptual purposes. We
suggest that a more comprehensive treatment with concriégeia would be useful for
understanding the domain. In addition to the type of infdfamaon which an attribute is
based (e.g. time, packet lengths, data volume), anothterion that could be used is the
level of the information (packet-level, flow-level, contiea-level, intra-flow, multi-flow)
used by Roughan et al. [RSSDO04], or the way in which it is congpeg. mean, sum,
minimum/maximum, heuristic).

Evasion is a major issue that will also need to be addresgalctitly. Our intuition
is that a system using a variety of complementary flow attebwvill be more difficult to
evade than one that uses only a few flow attributes, but tlseneuch room for work in
determining how to select sets of attributes that compléroaa another. The example
given earlier was that of packet length and packet count) dtéacker having a certain set
amount of data to send tries to evade detection by sendindesmpackets, they will have to
send more packets. Some mechanism for quantifying thesgoredhips will be needed, in
order to use “resistance to evasion” as a criterion in anrafgo that searches for optimal
feature sets of flow attributes.

There is also a great deal of work that could and should be olovisualization using
these flow attributes, which will be vital in support of thissk. As we discussed in Chap-
ter 4, the ANTARES tool was designed with the possibility oinigeused for interactive
traffic analysis, along the lines of Wireshark [Ct06], butdsed on flow attributes rather
than on parsing payload. We present classifier error rateblas in Appendix B, colour-
ized for readability, but we feel there is a great deal of rdommprovement in displaying
such information in a more easily usable format. Hertez-Campos et al. [HCNSJO05], for

133

example, developed techniques for visualizing the resiltheir clustering approaches;

tools based on these and other techniques will likely be useful in this field.

134

Chapter 7

References

[Alv04]

[AUtOB]

[Bard7]
[BLFF96]

[BPO4]

[cBP95]

[CRO6]

[Ct06]

[Dev9s]

[Dev05]

H. Alvestrand. A Mission Statement for the IETF. RFG35 (Best Current
Practice), October 2004.

Internet Assigned Numbers Authority. Port numberswWeb resource,
November 2006. http://www.iana.org/assignments/partioers, last ac-
cessed Nov/2006.

MS Bartlett. The Use of TransformatiorBiometrics 3(1):39-52, 1947.

T. Berners-Lee, R. Fielding, and H. Frystyk. Hypett€ransfer Protocol —
HTTP/1.0. RFC 1945 (Informational), May 1996.

Kevin Borders and Atul Prakash. WebTap: Detecting doweb traffic. In
Proceedings of the 11ACM Conference on Computer and Communications
Security (CCS '04)pages 110-120. ACM Press New York, NY, USA, Octo-
ber 2004.

k. claffy, H. W. Braun, and G. Polyzos. A parameterieabethodology for
internet traffic flow profiling. IEEE Journal on Selected Areas in Communi-
cations 13(8):1481-1494, October 1995.

M. Collins and M. Reiter. Finding peer-to-peer file-shgriusing coarse
network behaviours. IiProceedings of the 11 European Symposium on
Research in Computer Securityolume 4189/2006, pages 1-17. Springer
Berlin/Heidelberg, September 2006.

G. Coombs and the Wireshark Development Team. Wirésh&oftware
package, available online, September 2006. http://wwiestiark.org, last
accessed Sept/2006.

J. L. Devore. Probability and Statistics for Engineering and the Science
Duxbury Press, % edition, 1995.

R Development Core TeanR: A language and environment for statistical
computing R Foundation for Statistical Computing, Vienna, Austri@032.
ISBN 3-900051-07-0.

135

[DevO6a] TCPdump Development Team. TCPdump. Software pacleagilable on-
line, September 2006. http://www.tcpdump.org, last aseeSept/2006.

[DevO6b] Wireshark Development Team and User Community. egtiark
wiki: Ethernet (IEEE 802.3). Web resource, November 2006.
http://wiki.wireshark.org/Ethernet, last accessed I9006.

[DLO5] A. DeMontigny-LeBoeuf. Flow attributes for use in tiia characterization.
Technical report CRC-TN-2005-003, Communications Researche€dnt
dustry Canada, December 2005.

[DLO6] A. DeMontigny-LeBoeuf. Personal communication, 8spber 2006.

[DOO01] T. Dunigan and G. Ostrouchov. Flow characterizatmrintrusion detection.
Technical Report TM-2001/115, Oak Ridge National Laboratbigvember
2001.

[Dob90] A.J. Dobson.An Introduction to Generalised Linear Modelhapman &
Hall, 1990.

[EBRO3] J. P. Early, C. E. Brodley, and C. Rosenberg. Behavioraleatitation of
server flows. IrProceedings of the #9Annual Computer Security Applicat-
lons Conference (ACSA(J)ages 46-55, December 2003.

[EKMVO04] C. Estan, K. Keys, D. Moore, and G. Varghese. Buildedpetter NetFlow.
In Proceedings of the 2004 Conference on Applications, Teolyred, Archi-
tectures, and Protocols for Computer Communicatjgrages 245-256. ACM
Press New York, NY, USA, 2004.

[EVO3] C. Estan and G. Varghese. New directions in traffic rmemment and ac-
counting: Focusing on the elephants, ignoring the mik€M Transactions
on Computer Systems (TOC3)(3):270-313, August 2003.

[FGMT99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinté, Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. RBC&2(Draft
Standard), June 1999. Updated by RFC 2817.

[[IDACO6] Cooperative Association for Internet Data Analysi (CAIDA).
CoralReef. Software package, available online, November6.200
http://www.caida.org/tools/measurement/coralreaBt hccessed Nov/2006.

[Fra94] J. Frank. Artificial intelligence and intrusion detion: Current and future di-
rections. InProceedings of the 1'YNational Computer Security Conference
October 1994.

[FurO6] T. Furlong. ANTARES project page. Software packaggilable online,
December 2006. http://antares-net.sourceforge.net/.

136

[GH85]

[GNUO7]

D. Gross and C.M. Harridgrundamentals of queueing theorohn Wiley &
Sons, Inc. New York, NY, USA, 1985.

GNU. The gnu compiler collection. Software packameilable online, 2007.
http://gcc.gnu.org/, last accessed Jan/2007.

[HCNSJO05] F. Herandez-Campos, A. B. Nobel, F. D. Smith, and K. Jeffay. Undedsta

[HDL*90]

[Heio3]

[HPKO1]

[HugO7]

[IUKB *04]

[Kle75]
[KleO1]

[KPFO5]

[Kre06]

[LHF*00]

[MCO3]

ing patterns of TCP connection usage with statistical ciugge In Proceed-
ings of the 18" International Symposium on Modeling, Analysis, and Simula
tion of Computer and Telecommunication Systems (MASCQa&gs 35-44,
September 2005. Atlanta, GA.

L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, Joad, and D. Wol-
ber. A network security monitor. IRroceedings of the 1990 IEEE Symposium
on Research in Security and Privapages 296-304, May 1990.

Juha Heinanen. Multiprotocol Encapsulation ovéiVAAdaptation Layer 5.
RFC 1483 (Proposed Standard), July 1993. Obsoleted by RFC 2684

M. Handley, V. Paxson, and C. Kreibich. Network irdion detection: Eva-
sion, traffic normalization, and end-to-end protocol seticanin Proceedings
of the 2001 USENIX Security Symposj@n01.

E. Hughes. Qcap. Software package, available enli2007.
http://qcap.sourceforge.net, last accessed Jan/2007.

M. lzal, G. Urvoy-Keller, E.W. Biersack, P. Felber, A. Alarhra, and
L. Garces-Erice. Dissecting BitTorrent. Five Months in aréot’s Life-
time. InProceedings of the Passive and Active Measurement workBad)(
Springer, 2004.

L. Kleinrock. Queueing systems. Vol. 1, TheoWiley, 1975.

J. Klensin. Simple Mail Transfer Protocol. RFC 282rdposed Standard),
April 2001.

T. Karagiannis, K. Papagiannaki, and M. Faloutd®isINC: Multilevel traf-
fic classification in the dark. ACM SIGCOMM Computer Communication
Review 35(4):229-240, 2005.

C. Kreibich. Netdude. Software package, availaliikne, September 2006.
http://netdude.sourceforge.net, last accessed Sept/200

R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Dadhe
1999 DARPA off-line intrusion detection evaluatiorComputer Networks
34(4):579-595, 2000.

M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARRA¢oIn
Laboratory evaluation data for network anomaly detectlarRroceedings of
Recent Advances in Intrusion Detection (RAlpgges 220-237, 2003.

137

[McHOO]

[MR96]

[MZ05]

[NAOB]

[NLAO6]

[NWKS5]

[Obj07]

[OStO6]

[Pax94]

[PDOO]

[Pos80]
[Pos81a]

[Pos81Db]

[Pos82]

[PR83]

[PR85]

J. McHugh. The 1998 Lincoln Laboratory IDS evalaati(a critique). In
Proceedings of Recent Advances in Intrusion Detecpages 145-161, 2000.

J. Myers and M. Rose. Post Office Protocol - Version 3. RB891(Standard),
May 1996. Updated by RFCs 1957, 2449.

A. W. Moore and D. Zuev. Internet traffic classificatiasing Bayesian analy-
sis techniques. IRroceedings of the ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systeages 50-60.
ACM Press New York, NY, USA, 2005.

T. T. T. Nguyen and G. Armitage. Training on multiplelsflows to optimise
the use of machine learning classifiers in real-world IP oeka. In Pro-
ceedings of the 31LIEEE Conference on Local Computer Networks (LCN)
November 2006. Tampa, Florida, U.S.A.

NLANR. Main project page. Web resource, November @00
http://www.nlanr.net/, last accessed Nov/2006.

J. Neter, W. Wasserman, and M. H. Kutn&pplied Linear Statistical Models
Richard D. Irwin, Inc., Chicago, 1985.

Object Management Group. Uml resource page. Webures, 2007.
http://www.uml.org/, last accessed Jan/2007.

S. Ostermann. tcptrace. Software package, alaitatine, November 2006.
http://jarok.cs.ohiou.edu/software/tcptrace/, lasessed Nov/2006.

V. Paxson. Empirically derived analytic models afierarea TCP connec-
tions. ACM Transactions on Networking(4):316—-336, August 1994.

L. L. Peterson and B. S. Davi€Computer Networks: A Systems Approach
Morgan Kaufmann, ? edition, 2000.

J. Postel. User Datagram Protocol. RFC 768 (Stajdsudust 1980.

J. Postel. Internet Protocol. RFC 791 (Standaapite®nber 1981. Updated
by RFC 1349.

J. Postel. Transmission Control Protocol. RFC 78nard), September
1981. Updated by RFC 3168.

J. Postel. Simple Mail Transfer Protocol. RFC 82ar{8ard), August 1982.
Obsoleted by RFC 2821.

J. Postel and J.K. Reynolds. Telnet Protocol SpedditatRFC 854 (Stan-
dard), May 1983.

J. Postel and J. Reynolds. File Transfer Protocol. REJStandard), Octo-
ber 1985. Updated by RFCs 2228, 2640, 2773.

138

[ProO6a]

[Pro06b]

[Qui93]

[Rab89]

[RSSD04]

[Sim94]

[TAFO1]

[WF99]

[WMMO4]

[ZNAO5a]

[ZNAO5b]

[ZP0O]

[ZS05]

GNU Project. The GNU general public licence. Wedpuece, November
2006. http://www.gnu.org/copyleft/gpl.html, last aceed Nov/2006.

The GNU Project. coreutils. Software packageilavi online, November
2006. http://www.gnu.org/software/coreutils/, lastegsed Nov/2006.

J. R. Quinlan.C4.5: Programs for Machine LearningMorgan Kaufmann,
1993. San Mateo, CA.

L. R. Rabiner. A tutorial on hidden Markov models an@stld applications
in speech recognition.Proceedings of the IEEE/7(2):257-286, February
1989.

M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.s&@ifaservice map-
ping for QoS: a statistical signature-based approach taffctclassification.

In Proceedings of the'3 ACM SIGCOMM Internet Measurement Conference
(IMC), pages 135-148. ACM Press New York, NY, USA, 2004.

W. Simpson. The Point-to-Point Protocol (PPP). RB611(Standard), July
1994. Updated by RFC 2153.

C. Taylor and J. Alves-Foss. NATE - Network Analysis\momalous Traffic
Events, a low-cost approach. Rroceedings of the New Security Paradigms
Workshop2001.

l. H. Witten and E. FrankData Mining: Practical Machine Learning Tools
and Techniques with Java ImplementatioMorgan Kaufmann, 1999.

C. Wright, F. Monrose, and G. M. Masson. HMM profiles fagtwork traffic
classification.Proceedings of the ACM workshop on Visualization and Data
Mining for Computer Securifypages 9-15, 2004.

S. Zander, T. T. T. Nguyen, and G. Armitage. Autoetrtraffic classification
and application identification using machine learning.Pmceedings of the
30" IEEE Conference on Local Computer Networks (LN)vember 2005.
Sydney, Australia.

S. Zander, T.T.T. Nguyen, and G. Armitage. SebH¥l@ng IP traffic classifi-
cation based on statistical flow characteristicsPtaceedings of the Passive
and Active Measurement Workshop (PABIpringer, 2005.

Y. Zhang and V. Paxson. Detecting backdoors.Ptaceedings of the'®
USENIX Security Symposiy2000.

S. Zander and C. Schmoll. NETMATE - a flexible, extelgsiland high-
performance passive software meter. Technical Report TB-20Q0-Meter-
NetMate, Fraunhofer FOKUS (Institute for Open Communicatystems),
Fraunhofer-Gesellschaft e.V., Germany, 2005.

139

[ZS06] S. Zander and C. Schmoll. NetMate. Software packagailadle on-
line, November 2006. http://netmate-meter.sourceforgé. last accessed

Nov/2006.

[ZWAO6] S. Zander, N. Williams, and G. Armitage. Internetlagology: Estimating in-
dividual application trends in incomplete historic traffiaces. Technical Re-
port 060313A, Centre for Advanced Internet ArchitecturesinBurne Uni-
versity of Technology, March 2006.

140

Appendix A

Data preparation

The National Laboratory for Applied Network Research (NLANIRYLAOG] was a group
funded by the National Science Foundation (NSF) to suppuattamalyze the NSF’s high-
performance networks. One part of NLANR was the MeasuremedtNetwork Analysis
team (NLANR/MNA), and one of their functions was to collectlanake available traces
of network headers from various networks. Many of the trdlceg have made available are
from sources other than the NSF’'s networks, through pastmgs with various institutions
around the world. This means that their repository containgh variety of traffic from
different sources taken at different times, from 1999 tgioto 2005, but it also means that
they have traces in many different formats and with variolissyncrasies. This appendix
documents lessons we learned while using their ‘Specidf dats, in hopes that future
researchers might benefit from them and to make it easieptodece the experiments in
this thesis. In the course of our work, we converted traces fthese data sets into the
more widely usable tcpdump format (also known as “pcap” fatnafter a common file
extension used for such files); we describe in detail in thigeadix how this conversion
was performed, for reference by other researchers.

A.1 Technologies

The networks from which the NLANR network traces were cdéelcused two common

physical-layer protocols, Packet over SONET/SDH (PoS)&syhchronous Transfer Mode
(ATM), which we very briefly describe here. Headers from ehpsotocols appear in the
traffic and have to be dealt with appropriately when conmgrthe data to tcpdump format.

Physical and data link protocols

Several different physical and data link protocols weredusg the links from which the
NLANR data sets were captured. We list the protocols and ekgiescription of each.

INLANR was supported by funding from the National Sciencerfation (cooperative agreement nos.
ANI-0129677 (2002) and ANI-9807479 (1998)), but has (asuty 2006) been discontinued; its data, hard-
ware, and website are being maintained by the Cooperatigediation for Internet Data Analysis (CAIDA)
at the University of California’s San Diego Supercomputenter.

141

PoS One physical layer protocol commonly seen in the data setgpaeket over
SONET/SDH (PoS), where SONET/SDH stands for Synchronots@NET-
work/Synchronous Digital Hierarchy, a standard enablimg transmission of data
over optical networks. PoS is a protocol for transmittingkeds, such as Ethernet
frames, over an optical network.

ATM/AALS For the network traces from fiber-optic links in the data ske#t we used,
the lower layers were generally Asynchronous Transfer Medlke ATM Adapta-
tion Layer 5 (ATM/AALDS); the adaptation layer is specifiedliflJ recommendation
1.363, according to RFC1483 [Hei93].

LLC/SNAP Logical Link Control/Sub-Network Access Protocol (LLC/SNARas used
as the datalink layer over ATM/AALS. This is a protocol define the Institute of
Electrical and Electronics Engineers’ (IEEE) 802.2 staddaccording to RFC1483
[Hei93]. The LLC/SNAP header includes a type field that inthsahe type of data
being carried; we are only concerned with frames having a figild of 0x0800,
which indicates an IPv4 packet.

Ethernet Data traces that had PoS as a physical layer protocol soe®tised Ethernet
(more specifically, IEEE 802.3) as a data link layer. Ethefrzanes consist of a 14-
byte header that includes the Media Access Control (MAC), gsialal, addresses of
the source and destination network transceivers, and aisldethat indicates what
type of data is being carried; we only concern ourselves frétimes having a type
field of 0x0800, which indicates an IPv4 packet, as with LLCAZNDev06b].

Cisco HDLC Some PoS traces used a Cisco protocol called High-level DakaQontrol
(HDLC) at the datalink layer rather than Ethernet. This isidyfaimple protocol,
consisting of a 4-byte header and a 4-byte trailer; the hreiadkides a type field
where 0x0800 is again the value used to indicate that thesfanries an IPv4 packet.

PPP Another datalink-layer protocol seen on PoS traces was oi-Bb-Point Protocol
(PPP), specified in RFC1661 [Sim94].

DAG file format

All of the NLANR trace files we used in this thesis were oridipan a format called
“DAG”, which was developed by Endace for their network captbardware (we were un-
able to determine what, if anything, the acronym repre$eitsere are apparently several
versions of the DAG format that have been used over time; W& te some of them as
“legacy” DAG formats, following terminology from CAIDAs C@alReef. These are older
DAG formats that do not contain header information idemtifythe protocol layers on the
captured link or the snapshot length (the amount of dataucaghfrom each packet seen),
and thus this information must be found (in our case, by sB<engineering combined
with some trial-and-error) to properly convert the file.

142

A.2 Conversion and processing tools

We used a collection of different tools to massage the trate icito a more easily usable
format; links to the tools used and a brief description of ithay are and how we used
them are presented here. Commands shown here and in the demafrthe appendix
use angle brackets to delimit a variable argument &s.gur cef i | e. gz> indicates a place
where the input filename, having gz extension, is to be inserted in the command). We
also describe a number of tools used in the further preperati the data, particularly
timeslicing and demultiplexing it into sample files contagnindividual flows.

CoralReef crl_to_pcap
http://www.caida.org/tools/measurement/coralreef/

The Cooperative Association for Internet Data Analysis (CAJDFIDACO6] devel-
oped a suite of tools for manipulating network traffic calledralReef. One tool that we
have found particularly useful in our research is calletl t o _pcap; it is a utility for
converting between different network capture file formafe use it primarily to convert
assorted different DAG file formaiso tcpdump format.

We used the version @fr | _t o_pcap included in CoralReef version 3.7.5.

TCPTrace
http://jarok.cs.ohiou.edu/software/tcptrace/

Shawn Ostermann’s [OstO6¢pt r ace is an application for analyzing captures of TCP
traffic and modelling the interactions of the protocols. Ve ut to quickly count the
packets in each direction of a TCP flow, though this is a tingtfom of its functionality.
We also used more of its functionality while conducting gee of the traffic.

We used version 6.6.1 otptrace.

Wireshark utilities
http://www.wireshark.org

Wireshark [Ct06], formerly called Ethereal, is a networkiftcadisplay and parsing
GUI application, and includes a number of tools for the malaifion of network traces. Of
particular use in this thesis were tbéi t cap andner gecap utilities; the former performs
various transformations and divisions of a trace file, wthle latter merges multiple trace
files into a single one. We useddli t cap mainly to subdivide network traces by date,
for creating 5-minute timeslices of network traffic, and wsedmner gecap to combine
unidirectional traces into bidirectional traces, as mdrtii@ data sets had traffic intercepted
in each direction separately.

We used the version of these utilities included in the sodlistibution of Ethereal
0.99.0.

2DAG is a format developed by Endace for their network capharelware

143

ANTARES utilities

http://antares-net.sourceforge.net/

Our ANTARES toolkit [Fur06] includes a number of scripts tive¢ used to semi-
automate the processing of data sets. Many of these aresdextin the context of that
processing; in this context, we only wish to specifically tn@mdag_et h_t o_pcap, which
is a utility for taking Ethernet traces in a legacy DAG fornaaid converting them to tcp-
dump format.

The version of the ANTARES toolkit used for this thesis is &aale on theant ar es-
net SourceForge project as version 0.1.

dd and cat

dd andcat are core utilities from the GNU project [Pro06b], probabtgluded in most
Linux and Unix distributions. They are not tools specifigdr use with trace files; dd is
a low-level file copy command and cat outputs a file on standatput, and both happen
to be useful in dealing with large files. Many of the toolsdathere will fail with error if
invoked on files that are too large Gb on many Linux systems); however, some of them
(crl _to_pcap anddag_eth_to_pcap) are capable of reading from standard input, which
provides a way around the file size limit. Two examples aremivere of how to do this.
Converting agzi p—compressed legacy DAG “CHDLC over POS” trace (48 bytes of
packet data per record) to pcap witthand Coralreef'sr| _to_pcap:

dd if=<sourcefile.gz> bs=4K | crl_to_pcap
-C "src dag:- phy=PGCS, prot o=CHDLC, 48" -0 <outputfile.pcap>

Note that this command is intended to be issued on a singlewe have broken the line
here to fit the margins of the page.

Converting agzi p—compressed legacy DAG Ethernet trace (64-byte overatirdec
length) to pcap witltat anddag_eth_t o _pcap:

cat <sourcefile.gz> | dag eth to pcap -z - <outputfile.pcap>

We usedid andcat from the GNU coreutils package, version 5.2.1.

A.3 Converting NLANR data to tcpdump format

Before using the NLANR datasets, we converted them to tcpdionmpat, which required
that we first identify the protocols being used. We documene lthose findings and the
procedure for converting the data format, as we found thainformation was not readily
available, and other researchers wishing to use these elataval likely need to perform
the same conversions. We also developed a tool for congeghteNZIX data set, which we
have made available as part of the ANTARES toolkit;dhet ool s package recommended

144

Data set Timeframe Source Volume (Gb)
NZIX-1I Summer 2000 New Zealand ISP peering point
Auckland-IV (ATM) | Winter 2001 | University of Auckland uplink
Auckland-VI (Eth) | Spring 2001 | University of Auckland uplink

ABILENE-II

Autumn 2002

ABILENE research backbone

Leipzig-I (PPP)

Autumn 2002

University of Leipzig uplink

Leipzig-ll (Eth) Winter 2003 | University of Leipzig uplink
ABILENE-III Summer 2004 ABILENE research backbone
ABILENE-V August 2004 | ABILENE research backbone

XXX X | X | X[X]|X

Table A.1: Summary of NLANR data sets used

Group Physical layen Datalink layer| Snap length
ABILENE PoS Cisco HDLC 48
Auckland-ATM | ATM/AALS LLC/SNAP 48
Auckland-Eth None Ethernet 54(64)
Leipzig-PPP PoS PPP 48
Leipzig-Eth None Ethernet 48
NZIX None Ethernet 54(64)

by NLANR for this purpose does not appear to be publicallyilatse anymore, and is
apparently only available from Endace with the purchasestiark capture hardware.

In table A.1 we repeat the table of datasets used in our expets from section 5.1.3;
table A.2 lists them in groups, showing the lower layers @itpecols in use and the snap
length (the amount of data captured from each packet). Trapers in the latter table
are needed for the conversion, and will be described in metaildn the section for the
appropriate data set. Note that for the Ethernet traceganddength is given in parenthe-
ses in the snap length column; when usingdhg et h_t o_pcap tool to convert the, the
parenthesized length, which including the DAG header, éxluss the record length. The
unparenthesized length in these rows is the actual amouypatabiet data contained in each

Table A.2: Technical details of NLANR datasets for convensi

record, including the 14-byte Ethernet header.

ABILENE
ABILENE-I

ABILENE-II

ABILENE-III

http://pma.nlanr.net/Traces/long/ipls1.html

http://[pma.nlanr.net/Traces/long/ipls2.html

http://pma.nlanr.net/Special/ipls3.html

ABILENE-IV http://pma.nlanr.net/Special/ipls4.html

ABILENE-V http://pma.nlanr.net/Special/ipls5.html

145

The ABILENE data sets were collected at a router at the Inghal&router node of
the Internet2 ABILENE backborgspecifically, this work uses traffic from the link from
Indianapolis to Kansas City (IPLS-KSCY).

The traffic from these data sets is packet-over-SONET (P®@®)eaphysical layer,
and Cisco HDLC at the datalink layer. The files are in a legacgiadée DAG format,
which means that they do not contain information about taming and protocols, so that
information must be supplied to tleel _t o_pcap tool in order to process them correctly.

We used CoralReef’sr| _t o_pcap tool to convert these trace files to pcap, using the
following command:

crl _to_pcap -C "src dag: <sourcefile> phy=PoS, prot 0=CHDLC, 48"
-0 <outputfile>

Auckland
Auckland-Il http://pma.nlanr.net/Traces/long/auck2.html

Auckland-1V http://pma.nlanr.net/Traces/long/auck4.html
Auckland-VI http://pma.nlanr.net/Traces/long/auck6.html
Auckland-VII http://pma.nlanr.net/Traces/long/auck7.html

Auckland-VIII http://pma.nlanr.net/Special/auck8.html

The Auckland data sets were collected at the Internet uplittke University of Auck-
land, in New Zealand.

There were two distinct types of traces among the Aucklarnd skets: ATM, and Eth-
ernet. These are shown in table A.2 as Auckland-ATM and AarailEth, respectively.
Auckland-I11, Auckland-1V, and Auckland-VII are ATM, Auckhd-VIlI is Ethernet, and
Auckland-VI gives both. ATM trace file names end-ifi and-1 while Ethernet trace
file names for Auckland-VI end ine0 and- el (for two different collection points). The
Auckland-VIlI traces have no particular extension. The Alislces were collected on the
outside of the Internet-facing router, while the Ethernatés were collected on the inside
of it.

We used the CoralReef| _to_pcap tool to convert the Auckland-IV ATM trace files
to tcpdump format, using the following command:

crl _to_pcap -C "src dag: <sourcefile> phy=ATM pr ot 0=ATM RFC1483, 48"
-0 <outputfile>

For the Auckland-VI data set, we used tied data files, converting them to pcap using
thedag_et h_to_pcap tool that we developed as part of the ANTARES toolkit; we siynpl
used the following command:

3Internet2 is a not-for-profit consortium of academic andubtdal parties collaborating in developing
advanced networking technologies; ABILENE is a 10 gigahtional fiber backbone network in the United
States built and maintained by Internet2

146

dag_eth to pcap -z -1 64 <sourcefile.gz> <outputfile>

The-| 64 argumentis not strictly necessary, as the tool default$tblayte record length.
The- z argument indicates that the input file is compressed gatlp, so that one does not
need to explicitly decompress the files before convertiegth

Leipzig
Leipzig-l http://pma.nlanr.net/Special/leipl.html

Leipzig-Il http://pma.nlanr.net/Special/leip2.html

The Leipzig data sets were collected at the Internet uplirtk@University of Leipzig
in Germany. Both Leipzig-I and Leipzig-Il include PPP-oWgS traces, collected on the
outside link of the border router, while Leipzig-Il also indes Ethernet traces from the
inside link of the router; these are denoted in table A.2 ap4ig-PPP and Leipzig-Eth,
respectively. The PPP trace filenames endOrand- 1, not including the gz extension,
and the Ethernet traces end-ie.

We used the PPP traces from both, converting them to tcpdarmpat with the follow-
ing command:

crl _to_pcap -C "src dag: <sourcefile.gz> phy=PoS, prot 0=PPP, 48"
-0 <outputfile.pcap>

From Leipzig-1l the Ethernet traces are in a more modern DA&féirmat than those

of Auckland-VI, which include enough information thatl _t o_pcap does not need to be
manually configured. They can be converted to tcpdump foamdbllows:

crl _to _pcap -C "src dag: <sourcefile.gz>" -0 <outputfile.pcap>

NZIX

NZIX-II http://pma.nlanr.net/Traces/long/nzix2.html

The NZIX-1I dataset is from the New Zealand Internet Excleng peering point
for several public Internet Service Providers in New Zed|drosted at the University of
Waikato.

The trace files for this data set are in a legacy DAG Ethernehdt; we used our
dag_eth_to_pcap tool to convert them to tcpdump format as follows:

dag_eth to pcap -z -1 64 <sourcefile.gz> <outputfile.pcap>

147

A.4 Preparing data sets

In this section, we present a more detailed description of \Wwe generated a sample data
set from the converted NLANR traces, as outlined in sectidmi35 Our goal was to come
up with a balanced set of samples that represented the usiiaVibur of the applications
being studied, and minimized the effects of anomalous Wfegook five-minute timeslices
of the traces, divided them by data set, time period (work$i@s. non-work hours), and
application (by port), selected samples from each divigiosuch a way as to minimize
the influence of any one pair of hosts, and took one hundregblsarfrom each division.
Unless otherwise noted, the tools discussed here are ghe BNTARES toolkit, available
in thet ool s/ directory of the distribution.

One of our data sets consisted of five-minute samples, somesliced all of our
datasets into five-minute intervals, for consistency. Theds were timesliced using our
tooltimeslice_trace. pl; this tool is a wrapper for theditcaptool from the WireShark
toolkit, formerly known as Ethereal [Ct06]. For example, teide a one-hour trace file
that begins at 12:00:00 PM on December 12th, 2003 into fiveuteitimeslices, we would
use the command:

timslice trace.pl <inputfile.pcap> "2003-12-12 12:00: 00" 5m 12

wherebm 12 indicates twelve five-minute timeslices.

Note that time zones are an issue with the timeslicing; the tias to be given relative to
local time, so if a capture file begins at 12 PM GMT and the teddeing run on a system
in time zone GMT-5, the time given should be “7:00:00” — upuaHowever, due to a
peculiarity of theedi t cap tool, if the date of the capture file falls within daylight says
time for the local timezone, an additional hour must be sudbéd (so in the example, one
would use “6:00:00” in place of “7:00:00”). These issues andortunate, but avoiding
them would require modifyingdi t cap.*

The patrtitioning of the traces into five-minute timeslicesams that no sample flow
will be longer than five minutes in duration. We consider tioivoe an advantage for the
purposes of studying application behaviours, as we feelireite timeslices of longer
network flows are more likely to be homogeneous than the foWgl would have been;
i.e. for an application that is capable of performing distiactivities, a five-minute flow is
more likely to be generated by a single type of activity thahidy-minute flow would be.
However, the timeslicing is a factor that may have affect@dresults in unexpected ways.

We then separated the timesliced trace files for each daby $ime period; timeslices
falling between 8 AM and 4 PM local time (local to the collectipoint) were considered
to be duringwork hours, and timeslices outside those times were consideried turing
off-workhours. This was intended to allow us to explore whether there differences in
the uses of network applications in different periods ofdhg.

The tool used to divide the data sets by application dexonpose_trace. pl ; the
default configuration filet ¢/ port i st. t xt will extract the same set of applications used
in this thesis. The tool is a wrapper for thepdunp tool [Dev06a]. More specifically, the

“We have asked the Wireshark development team to consideviag) an explicit time zone to be speci-
fied, which would allow us to avoid this ugliness.

148

configuration file lists “known” ports; a flow which involvegart in that list is considered
to be an instance of the associated application. If a flowuagbtwo ports that are both on
the list, it is considered to be an instance of the applicatimresponding to the lower of
the two ports. When using the default portlist, the tool caexecuted simply as:

deconmpose_trace. pl <inputfile.pcap>

Dividing the data intccells by data set, time period, and application, we used a tool
on each cell that decomposed the traces into network flowseledted a subset of those
flows as samples. The samples were selected using ousdapl e_traffic.pl; this
tool is a wrapper around thienux module of the libnetdude library, of the Netdude suite
[Kre06]. Specifically, it ensured that no more than two sasphvolved the same pair
of IP addresses (one pair in each direction,Ae» B andB — A). This restriction was
intended to reduce the chance that the samples would beaghtrimfluenced by a small
group of hosts performing some unusual activity involvingoat of interest. We used the
command:

sanple_traffic.pl -1 10 -t 64 -0 <output dir> <inputfile.pcap>

where-| 10 indicated we only wanted samples with at least 10 packet$; an64 in-
dicated that we wanted to use a timeout of 64 seconds to clbseactive flows. This
extracted each sample flow to its own file in tcpdump format.

Finally, having divided the data into 84 cells (7 effectiaalsets, 2 time periods, and 6
applications: #2+6=84), we used a simple tool called| ect _sanpl es. pl to randomly
select 100 samples from the potential samples in each délitihe command:

sel ect_sanples.pl -n 100 -0 <output dir> <input dir list>

Each sample file was then processed with a fwadf i | e_streans_t hesi s built with the
ANTARES toolkit; that tool is available in ther ¢/ t est i ng directory of the toolkit. That
output the flow attribute values of interest, which we fori@dtin comma-separated value
(CSV) format using therofile_to_csv. pl tool as:

profile_to csv.pl -p <server port>
-l "<data set>, <tine period> <application>"
-0 <outputfile.csv> <inputfile.profile>

where-p <server port > allowed us to specify which port was the server port (e.ga23 f
Telnet), so that the forward and reverse directions couldlibelled, and thel switch and
arguments allowed us to label the row with the data set, tieveo@d, and application for
later analysis. The CSV files produced in this manner wereltated into the R statistical
processing package [Dev05], and classifiers were trainddtaded in section 5.1.4.

We have explained here in detail the process by which we pedpaur data sets for
analysis in hopes that other researchers will benefit fromtamls and methods.

149

150

Appendix B

Error tables

In this appendix, we present the error tables for classifraised to distinguish between
two classes of network traffic using a single flow attributbe3e classifiers were developed
with logistic regression as described in section 5.1.4hiaction of this appendix contains
a set of tables for one application of interest; each tabdevstihe combined error rates of
classifiers trained to distinguish network traffic from thpkcation of interest from those
of one other class of network traffic (the columns) using glsiflow attribute (the rows).
The tables are broken up in loose groupings such that eadi Wioan a page; the first table
in each section contains classifiers trained using flowbaitels computed on both directions
of the flow, the second has those using flow attributes condpagparately on each half-
flow, and the third and fourth focus on small and large packetiktics, respectively. The
flow attributes themselves are those listed in table 3.1 asdribed in section 3.3.

Each cell represents the combined error rate of a classifisred to distinguish be-
tween two applications using a single flow attribute. We e#lplain the tables, using as an
example table B.1. All of the error rates in that table pertaiolassifiers trained to distin-
guish POP3 from other applications; the other applicatasesn columns, e.g. the leftmost
column of error rates in the table consists of classifieraéihto distinguish between POP3
and FTP-data. Each row contains error rates of classifiansei using a particular flow
attribute; for table B.1, the top row of error rates corresptm classifiers trained using
pkt_count, the total number of packets. So the top left error rate itet&@ol is the com-
bined error rate of a classifier trained to distinguish betwi@OP3 and FTP-data using the
pkt_count, evaluated using 10-fold cross-validation as describesation 2.1.2.

In an attempt to make the tables somewhat more readable, weecbboured each cell
according to the error rate; the colors range from greeat{vely good classifiers) through
yellow (mediocre classifiers) to red (poor classifiérsYhis makes it easier to identify
general trends in the data; a column that is mostly green afidwy indicates a pair of

'Recall from section 2.1.1 that the combined error rate isata number of errors, both false positives
and false negatives, divided by the total number of sames.the example given, this would be the sum
of the number of POP3 flows classified as FTP-data and the nuoflf& P-data flows classified as POP3,
divided by the total number of flows of both POP3 and FTP-data.

2The coloring is designed so that an error rate of 0 is greeraararor rate of 0.5 (no better than random
chance) or worse is red, and so that there is an even balaned afd green at an error rate of 0.25, yielding
orange.

151

applications that was generally easy to distinguish, whiile that is mostly red indicates
a pair of applications that was more difficult to distinguidRows that are mostly green
indicate a flow attribute that is good at distinguishing aipalar application (the one on
which that table focuses) from others; often there will beesal adjacent rows, pertaining
to similar flow attributes, that are all mostly green, whioticates a class of flow attributes
that are useful for distinguishing that application frorhers.

Also interesting are regions of generally good (green)siligss that have a single col-
umn of poor (red) classifiers; we take this to indicate thatajpplication for that column is
similar to the target application, at least with respechtuse flow attributes. An excellent
example of this is table B.7, which shows small packet haasigor FTP-data; the bulk
of the classifiers are green, except for the HTTP column, kwvhie interpret as meaning
that FTP-data is easy to distinguish by the proportion ofilspaakets (in this case, its lack
thereof), except that HTTP is similar to it in that respechisTis mirrored in table B.23,
which suggests that, at least in terms of proportions of lspaakets, HTTP and FTP-data
are similar to each other and dissimilar from all the othealiaptions that we considered.

These tables (in full colour), along with the rest of the thewill be available on the
SourceForge page for ANTARES [Fur06], the toolkit we haveetigyed.

152

B.1 POP3

FTP-data| FTP-ctrl | Telnet | SMTP | HTTP
pkt_count 0.2700 | 0.3614 | 0.2261
duration 0.3404 | 0.2686 | 0.1464
nonemptycount 0.2750 | 0.3171 | 0.2264
pkt_byte count 0.2221 | [0:4025 | 0.2789 | 0.2568 | 0.3089
payloadbyte count 0.2157 0.2946 | 0.2261 | 0.2839
meandelay 104339 | 0.2846 | 0.2382
meanpkt_len 0.1439 | [OIB% | [0.3821 | 0.2407 | 0.2243
meanpayloadlen 0.1475 0.3461 | 0.2218 | 0.2096
meannonemptypayloadlen | [0.1243 | |IS%48 | [0.3600 | 0.2204 | (0.1054
dir_data 0.1593 0.0904
meanpkt_datarate 0.2046 | 0.2932 | 0.2907 | [0.3875 | 0.3189
meanpayloaddatarate | 0.1804 | [0.3400 | [0:3761 | 0.3336
flag urg 05286 05200 05221 05236 0.5121
flag ack 0.3236 | JOIB286 | 0.1511 | [0.4036 | 0.2843
flag psh 0.1071 | 0.2604 | 0.3093 | [0/4518
flag rst 04696 0.4180 [0.4829 | (0.4557 0.4425
flag syn 0.3043 | 0.2932 | 0.1400 | 0.2939
flag fin 0.2982 | 0.2732 | 0.1561 | 0.2957

Table B.1: POP3 — per-flow metrics

153

FTP-data FTP-ctrl| Telnet | SMTP | HTTP
pkt_countfwd 0.2986 | 0.3279 | 0.2150 | 0.3607 | |OMBHE
pkt byte countfwd 0.2736 | 0.2889 | 0.2061 | 0.1179 | 0.1725
payloadbyte countfwd 0.1036 | 0.1607 | 0.2686 | 0.0804 | 0.0332
nonemptycountfwd 0.1036 | 0.3129 | 0.2075 | 0.2261 | 0.1286
meandelay fwd 0.2846 | 0.2525 | [0H4GSY | OIS |
meanpkt len fwd 0.3707 | 0.2168 | 0.3604 | 0.0700 | 0.0382
meanpayloadlen fwd 0.1068 | 0.1896 | 0.1800 | 0.0550 | 0.0229
meannonemptypayloadlen fwd | 10.1025 0.1314
flag urg fwd 05179 - 0.5186
flag ack fwd 0.1154 0.1407 0.2864
flag pshfwd 0.1018 | 0.4836 0.1064
flag rstfwd 0.4921 £ 0.4814 £ 0.4339
flag_syn fwd 0.3211 -
flag fin_fwd 0.3196 | 0.2754 | 0.1568 | 0.3093 | [I58S0E
pkt_countrev 0.2711 0.2379 -
pkt_byte countrev 0.2525 0.2868 0.3214
payloadbyte countrev 0.2571 0.2964 0.3039
nonemptycountrev 0.3021 0.2364 --
meandelayrev 10.4250 | o. 0.2086 | [0:4443 | [0S |
meanpkt len_rev 0.2246 | |I5888 | 0.3654 | |0S0E
meanpayloadlen rev 0.2404 | IS8 | 0.3400 | [OI5568
meannonemptypayloadlenrev | 0.2293 0.3546 0.1879
flag.urg rev 05200 0.5286 05207 05207 0.5200
flag ack rev 0.2600 05279 05164 0.5161 |
flag pshrev 0.1318 | 0.2254 | 0.2500 | [0.4082
flagrstrev 05032 05186 05211 05125 05243
flag synrev 0.3007 | 0.3136 | 0.1457 | 0.3314 | 0.3800
flag fin_rev 0.2868 | 0.2732 | 0.1582| 0.2882 | [0.3854 |

Table B.2: POP3 — per-half-flow metrics

154

sp.alphal fwd

sp.alpha2_fwd

sp.alpha3_fwd

sp.betal fwd

Telnet

SMTP

HTTP

sp.beta2 fwd

sp.beta3_fwd

sp.gammal fwd

sp.gammaz2_fwd

sp.gamma3_fwd

sp.deltal fwd

=
w
o
(o2}
i

0.3329

sp.delta2_fwd

sp.delta 3_fwd

spalphal_rev

o o i
2 SR -
0 W Q
N %) a

QD

sp.alpha?2_rev 0.1025
sp.alpha3_rev 0.3039
sp.betal rev 0.1186
sp.beta2_rev 0.0907
sp.beta3_rev 0.1096

sp.gammal_rev

0.3304

sp.gammaz2_rev

0.1125

sp.gamma3_rev

0.1082

sp.deltal rev

sp.delta2_rev

0.1132

sp.delta3.rev

oo o o
W N w w
w | O1 = =
1| 01 ()] N
B~ O = ©

Table B.3: POP3 — small packet heuristics

FTP-data

Ip_alphal_fwd

Ip_alpha2_fwd

Ip_alpha3_fwd

Ip_alpha4_fwd

Ip_alpha5_fwd

Ip_alpha6_fwd

Ip_betal fwd

lp_beta?2 fwd

Ip_beta3_fwd

Ip_beta4 _fwd

Ip_beta5_fwd

Ip_beta6_fwd

Ip_.gammal fwd

Ip_.gamma2_fwd

Ip_.gamma3_fwd

Ip_.gamma4_fwd

Ip_.gamma5_fwd

Ip_.gamma6_fwd

FTP-ctrl

Ip_alphal_rev

0.2750

Ip_alpha2_rev

0.2764

Ip_alpha3_rev

0.3489

Ip_alpha4_rev

0.2629

Ip_alphab_rev

0.2668

Ip_alpha6_rev

0.3443

Ip_betal_rev

0.1939

Ip_beta?2 rev

0.2289

Ip_beta3.rev

0.3264

Ip_beta4 rev

0.1939

Ip_beta5_rev

0.2282

Ip_beta6_rev

0.3261

Ip_.gammal_rev

0.2189

Ip_.gammaz2_rev

0.2436

Ilp_gamma3_rev

0.3311

lp.gamma4_rev

0.2186

lp.gamma5_rev

0.2432

lp_.gammab_rev

0.3307

Telnet

HTTP

oo O 0O 0O«
N | = N2 W
~| ol ~N| o1 =
W[N W N W
o0l o0 o

i

Table B.4: POP3 — large packet heuristics

156

B.2 FTP-data

POP3 | FTP-ctrl| Telnet | SMTP | HTTP

pkt_count 0.2700 | 0.3239 | [IBE8Y | 0.2993 | 0.2864

duration 0.3404 | 04568 | 0.3296 | 0.3921 |

nonemptycount 0.2750 | 0.3468 | [BI5268 | 0.3032 | 0.2904

pkt_byte count 0.2221 | 0.1771 | 0.3350 | 0.2654 | 0.3050

payloadbyte count 0.2157 | 0.1464 | 0.3229 | 0.2654 | 0.3068

meandelay 0.2925 | 0.2182 | 0.4564 |

meanpkt_len 0.1439 | 0.0593 | 0.1318 | 0.2089 | [0.3761 |

meanpayloadlen 0.1475 | 10.0582 | 0.1361 | 0.2129 | [0.3711 |

meannonemptypayloadlen | 0.1243 | [0.0482 | [0.0943 | 0.1621 | [0:3914 |

dir_data 0.1593 | 0.1668 | 0.2282 | 0.2475 | 0.1636

meanpkt_datarate 0.2046 | 0.1111 | 0.0986 | 0.3011 | [0.3796
meanpayloaddatarate 0.1804 | 0.0950 | 0.0964 | 0.2882

flag urg 05286 05079 05293 05279

flag ack 0.3236 - 0.3757 | 0.3043

flag_psh 0.1071 | 0.0964 | 0.0889 | 0.1304 | 0.3864 |

flag rst 0.4696 [0B5248 o0.4221 0.4054

flag syn 0.3043 0.3411 | 0.3664 | 0.3168

flag fin 0.2982 0.3600 0.3496 | 0.3561

Table B.5: FTP-data — per-flow metrics

157

POP3 | FTP-ctrl| Telnet | SMTP | HTTP
pkt_countfwd 0.2986 | 0.3361 | [0i52@ | 0.3221 | 0.3075
pkt_byte countfwd 0.2736 | 0.3193 0.3614
payloadbyte countfwd 0.1036 | 0.1364 | 0.1850 | 0.1432 | 0.1021
nonemptycountfwd 0.1036 | 0.1550 | 0.1518 | 0.1082 | 0.1764
meandelay fwd 1004898 | 0.2989 | 0.2543 | [004420 | [0782
meanpkt len fwd 0.3707 | JOIBBA | [0:4271 | 0.1493 | 0.1586
meanpayloadlen fwd 0.1068 | 0.1182 | 0.1239 | 0.1046 | 0.1054
meannonemptypayloadlen fwd | 10.1025 | 0.1193 | 0.3068 | 0.1364 | 0.0836
flag urg fwd 05314 0.5307 0.5250 05171 0.5257
flag ack fwd 0.1154 | 0.1821 | 04168 | 0.1168 | 0.1229
flag pshfwd 0.1018 | 0.1075 | 0.1200 | 0.1071 | 0.2064
flag rst fwd (04921 | 0.3911 [OM968 0.4339 0.4089
flag syn fwd 0.3211 |OIB868 | 0.3321 | [0:4448 0.3150
flag fin_fwd 0.3196 |0I5248 | 0.3496 | [0I5@A 0.3768
pkt countrev 0.2711 | 0.2893 0.2625 | 0.2850
pkt_byte countrev 0.2525 | 0.1921 0.1375 | 0.3536
payloadbyte countrev 0.2571 | 0.1968 0.1343
nonemptycountrev 0.3021 | 0.3439 | [0IBE | 0.2336 | 0.3446
meandelay rev 10:4250 | 0.2700 | 0.1982 © 0.4693 |
meanpkt_len_rev 0.2246 | 0.1304 | 0.2439 | 0.1046 | [0:4271
meanpayloadlen.rev 0.2404 | 0.1536 | 0.3318 | 0.1043 -
meannonemptypayloadlenrev | 0.2293 | 0.1282 | 0.2836 | 0.1014
flag.urg.rev -
flag ackrev 0.2600 | 0.2611 | 0.2689 | 0.2632 | 0.2725
flag_pshrev 0.1318 0.1793 | 0438 |
flag.rstrev - -
flag synrev 0.3007 0.3250
flag fin_rev 0.2868 0.3111 | 0.3361

Table B.6: FTP-data — per-half-flow metrics

158

POP3 | FTP-ctrl| Telnet | SMTP | HTTP
spalphal fwd |[0.0389 | 0.1750 | 0.1300 | [0:4093 | |OISHEE
spalpha2_fwd |[0.0693 | [0.1121 | 0.1304 | 0.1254 | |ON8S
spalpha3.fwd | 0.2339 | 0.2964 | 0.2568 | 0.3068 | |ONGE |
spbetal fwd |[0.0118 | [0.0800 | [0.0621 | 0.1250 | |GGG |
spbeta2 fwd | [0.0271 | [0.0543 | [0.0632 | 0.1143
spbeta3 fwd | [0.0336 | [0.0514 | [0.0550 | 0.1125
sp.gammal fwd | [0.0871 | 0.1732 | 0.1379 - 0.5029 |
sp.gamma2_fwd | [0.0529 | (0.1068 | 0.1436 | 0.1661 | D08 |
sp.gamma3_fwd | [0.0589 | (0.0989 | 0.1414 | 0.1361 | |[ONSS |
spdeltal fwd |[0.0557 | 0.1729 | 0.1468 | [0:4025 | [OIBE
spdelta2 fwd | 0.0782 | [0.1086 | 0.1607 | (0.1204 | |ONSS
spdelta3fwd |[0.0493 | [0.0918 | 0.1139 | [0.0639 | |[OFEE
spalphalrev |[0.3675 0.1704 - 0.5032 |
spalpha2rev | 0.1025 | 0.1243 | 0.1368 | 0.1264
spalpha3.rev | 0.3039 | 0.2154 | 0.1564 | 0.3004
spbetalrev | 0.1186 | 0.1543 | 0.1146 | 0.3254 | [IGH2E
spbeta2rev | 0.0907 | [0.0643 | 0.1218 | 0.0604 | [ONIS0Y |
spbeta3.rev | 0.1096 | [0.0432 | 0.1011 | [0.0443 | [0M454
spgammal._rev | [0.3675 - 0.1636 --
sp.gamma2_rev | 0.1125 | [0.1043 | [0.1429 | [0.0914
sp.gamma3_rev | 0.1082 | [0.0729 | [0.1196 | [0.0904 | |OIS08E
spdeltalrev |[0.3675 0.1721 - 0.4857 |
spdelta2rev |0.1132 | [0.1179 | 0.1471 | 0.1521 | |ON4S |
spdelta3.rev | 0.0596 | 0.0739 | [0.0861 | [0.0743 | |OHISEE

Table B.7: FTP-data — small packet heuristics

159

POP3 | FTP-ctrl| Telnet | SMTP | HTTP
Ip_alphalfwd | [0M50% | [0M582 | [0MS7 | 0.2379
Ip_alpha2_fwd | [0iGHS | 0678 | 0686 | 0.3232
Ip-alpha3 fwd | [ONISON | [OMISO0Y | [OMISE | (074008
Ip_alpha4_fwd | [0/4850 | [0/485% 0.2368
Ip_alpha5_fwd | [0H582 | 0586 | 0588 | 0.3239
Ip-alpha6 fwd | [ONSA | [ONSY | [OWGH | (04111 |
Ip_betal fwd | 014807 | (04825 | 04482 | 0.2311
Ip_beta2 fwd | |ONISEE | [0M528 | [0M554 | 0.2868
Ip_beta3.fwd | |ON0Y [OW0Y | [0M21 | [0.3436
Ip_betad fwd | 004307 | 004325 | 04478 | 0.2311 | [0.1257
Ip_beta5_fwd | 04508 | (04521 0.2807
Ip_beta6_fwd | |ONG0N | [ORNOY | 0.3439
Ip_.gammal fwd | [0:4886 | [0/4848 | 0.3164
Ip-gamma2 fwd | [OW456d | [OMS68 | %582 | 0.3239 | [OMB0T
Ip-gamma3_fwd | OGS | [OM7S2 | [OWE | (074107 | [OMVSE
Ip-gammad fwd | (0336 | [0/4848 | 04404 | '0.3168 | [BHISOE
Ip-gammas fwd | [OMI564 | [OMS68 | [OMS7S | 0.3254 | [OMB0T
Ip-gammas fwd | |2 | [OMS2 | [OM7SS | (074107 | [ON7SE
Ip_alphalrev | 0.2750 | 0.1546 | 0.3246 | 0.1400
lp_alpha2rev | 0.2764 | 0.2196 | 0.2468 | 0.2061
Ip_alpha3_rev |0.3489 | 0.3129 | [0.3189 | 0.3014
Ip_alphad_rev | 0.2629 | (0.1464 | [0.3389 | 0.1293 | [OMI568 |
Ip_alpha5.rev | 0.2668 | 0.2107 | 0.2443 | 0.2007 | [O¥564 |
Ip_alpha6_rev |0.3443 | (0.3082 | (0.3143 | 0.2989 | [0¥628
Ip_betalrev | 0.1939 | 0.1107 | 0.1839 | 0.1011 | |ONISEE
Ip_beta2rev | 0.2289 | 0.1779 | 0.2164 | 0.1757
Ip_beta3.rev |0.3264 | 0.2889 | 0.3100 | 0.2821 | |0NI682 |
Ip_beta4 rev 0.1939 | 0.1104 | 0.1832 | 0.1011
Ip_beta5rev | 0.2282 | 0.1786 | 0.2150 | 0.1757 | 014388 |
Ip_beta6rev | 0.3261 | 0.2893 | (0.3096 | 0.2825 | |[ONIGS2 |
lp_gammal_rev | 0.2189 | [0.1300 | 0.1868 | 0.1225 | [0:4198 |
Ip.gamma2_rev | 0.2436 | 0.1986 | 0.2086 | 0.1961 | [0:4054
Ip_.gamma3_rev | [0.3311 | (0.3032 | 0.3032 | 0.2950
Ip.gammad.rev | 0.2186 | 0.1300 | 0.1854 | 0.1225
Ip.gamma5_rev | 0.2432 | 0.1986 | 0.2089 | 0.1961 | [0:4046 |
Ip.gamma6_rev | [0.3307 | (0.3032 | 0.3032 | 0.2950 | |0M4446 |

Table B.8: FTP-data — large packet heuristics

160

B.3 FTP-ctrl

POP3 | FTP-data] Telnet | SMTP | HTTP

pkt_count 0.3614 | 0.3239 | 0.2657 | |Ol5A2E | 0.3304
duration 0.2686 | [0MB68 | 0.3375 | 0.3439 | 0.3271
nonemptycount 0.3171 | 0.3468 | 0.2775 | [0:4886 | 0.2843
pkt_byte count 0.1771 | 0.2636 | 0.2625 | 0.3000
payloadbyte count 0.1464 | 0.2786 | 0.2171 | 0.2579
meandelay 0.2925 0.3439 | 0.3436
meanpkt_len 0.0593 | 0.3629 | 0.1357 | 0.0807
meanpayloadlen 0.0582 | 0.3750 | 0.1325 | 0.0746
meannonemptypayloadlen 0.0482 | 0.3721 | 0.1229 | 0.0189 |
dir_data 0.1668 | [0.3861 | 0.1382 | |07
meanpkt datarate 0.1111 | |O¥8%8 | 0.2514 | 0.1979
meanpayloaddatarate 0.0950 0.2211 | 0.1550
flag urg 05200 0.5204 0.5193 0.5257

flag ack 0.2350 0.3404

flag psh 0.0964 0.2650 | 0.1018

flag rst - 0.3850 04639 0.4757
flag_syn : - - 0.2800

flag fin . 08887 | 0.3050 | 0.3596 | 0.3189

Table B.9: FTP-ctrl — per-flow metrics

161

POP3 | FTP-data| Telnet | SMTP | HTTP
pkt_countfwd 0.3279 | 0.3361 | 0.2636 | |[0I5A4E | 0.3150
pkt_byte countfwd 0.2889 | 0.3193 | 0.2982 | 0.1493
payloadbyte countfwd 0.1607 | 0.1364 | [0:4471 | 0.1157 | 0.1486
nonemptycountfwd 0.3129 | 0.1550 | 0.2957 | [0M788 | 0.1414
meandelay fwd 0.2846 | 0.2989 | [IBERH | 0.3421 | 0.3461
meanpkt_len fwd 0.2168 | [IBBM | 0.2525 | 0.0821 | 0.0764
meanpayloadlen fwd 0.1896 | 0.1182 | 0.1629 | 0.0832 | 0.0764
meannonemptypayloadlenfwd | 0.1714 | [0.1193 | 0.1404 | 0.0857
flag urg fwd 05243 0.5307 05164 05143 05146
flag ack fwd 104898 | 0.1821 | 0.2193 | [04582 | 0.3364
flag pshfwd 104614 | 0.1075 | 0800 [0.4439 | 0.1046
flag rst fwd 04118 03911 0.3900 [0.4568 [0:4721
flag syn fwd 0.2839 | [OIB868 | 0.2139 | [0:4248 | 0.2686
flag fin_fwd 0.2754 | |0I5248 | 0.3004 | 0.3818 | 0.3443
pkt_countrev 0.2893 | 0.2768 0.3461
pkt_byte countrev 0.1921 | 0.2639 | 0.3382 | 0.3079
payloadbyte countrev 0.1968 | 0.2807 0.2857
nonemptycountrev 0.3282 | 0.3439 | 0.2893 0.3329
meandelayrev 0.2861 | 0.2700 | [OH808Y | ©. 0.3218
meanpkt_len rev l05888 = 0.1304 | 0.3471/0.3889 | 0.1536
meanpayloadlen rev I0B788 | 0.1536 | 0.3464 | [0.3979 | 0.1479
meannonemptypayloadlen_rev 0.1282 | 0.3521 0.0629
flag urg rev 05286 05264 05179 0.5271 |
flag ack rev 0.2611 - 0.5229 |
flag pshrev 0.1061 | [0I5096
flag rstrev 05164 05189
flag synrev 10:4289 | 0.2200
flag fin_rev 10804 | 0.3136

Table B.10: FTP-ctrl — per-half-flow metrics

162

POP3 | FTP-data) Telnet | SMTP | HTTP
sp.alphal fwd 0.1750 0.1700
sp.alpha2_fwd 0.1121 0.0843
sp.alpha3_fwd 0.2964 0.2564
sp.betal fwd 0.1704 | 0.0800 0.0671
sp.beta2_fwd 0.0543 0.1743 | 0.0375
sp.beta3_fwd 0.0514 0.1404 | 0.0468
spgammal fwd | 0.1921 | 0.1732 0.1646
sp.gamma2_fwd | [0:4296 | 0.1068 | [0.3846 | O. 0.0786
sp.gamma3_fwd | J06EE | 0.0989 | [0:3793 | 0.2579 | [0.0707
spdeltal fwd |[0.3214 | 0.1729 | J0¥854 | 0.2825 | 0.1632
spdelta2 fwd | |lS88E | 0.1086 | [0:4032 | [0/4382 | [0.0825
spdelta3fwd | |OHIS8E | [0.0918 | [074421 | [0M82E | 0.0664
spalphal.rev - 0.2393 -
sp.alpha?2_rev 0.1243 0.0943
sp.alpha3_rev 0.2154 0.1625
spbetalrev |[0:8948 | 0.1543 | 0.2314 | [0:4164 | 0.1504
spbeta2 rev | |0NANG2 | 0.0643 | [0:4300 | [OMSE8 | [0.0421
spbeta3rev | 04846 | 0.0432 | 0.2818 | [0:4018 | [0.0600
spgammal rev | [OMISE8 | [0T11 | 0.2232 | [OISHRN | [074011 |
sp.gamma2._rev 0.1043 0.0711
sp.gamma3_rev | 0.3554 | [0.0729 1 10.4061 | 0.0614
spdeltalrev | [04489 | 0.4014 |
spdelta2rev | [0:3789 | 10.1179 0.3118 | 0.0743
spdelta3rev | [0:3757 | [0.0739 0.3321 | 0.0621

Table B.11: FTP-ctrl — small packet heuristics

163

POP3 | FTP-data| Telnet | SMTP | HTTP
lp-aiphalfwd | [OISHS0 = [0W532 | [DISES2
Ip-aipha2 fwd | [GISHEE | [OWGES | [OIS2SE
Ip_alpha3 fwd | [HGHNE | [OWIS0Y | [OISERE |
Ip_alpha4 fwd | [BISE00 | [0%854 |
Ip_alpha5 fwd | [GISEHM | [O¥I586 | [DI52SE
Ip_alpha6 fwd | [ISHN | [ONSY | OISNE
Ip-betal fwd | [ONS0EE | 10325 | [OMISON
Ip-beta2 fwd | NSRS | [OMI525 | [OIS206
Ip-beta3fwd | [DHGEEE | [OWNOH | [OISTN
Ip-betad fwd | [DISESE | (0325 | [OMISOA
Ip-betaS fwd | [BISE0H | [OMS2T |
Ip-beta6 fwd | [N | [OWNIOH
Ip.gamma1 fwd | [IS8SY | [04848 |
Ip-gamma2 fwd | [GHSE0N | [OMS68 | [0IS261
Ip-gamma3 fwd | [OISH0E | [ONS2 | [DISEE
Ip_.gamma4_fwd --- 0.1546
lp.gamma5_fwd --- 0.2746
Ip-gammas fwd | [DNSESN | [ON7ES2 | [OISS5Y | [0:3836 |
Ip_alphal rev 0.1546 | 0.3179 0.2143
Ip_alpha2_rev 0.2196 0.2768
Ip_alpha3.rev 0.3129 0.3557
Ip_alpha4_rev |[0:8982 | 0.1464 | 0.2875 | [0S | 0.2064
Ip_alpha5_rev | 048 | 0.2107 | [OMI68E | [O8E8 0.2739
Ip_alpha6_rev - 0.3082 -- 0.3546
Ip_betalrev ||OM646 = 0.1107 | 0.2950 | [0.3500 | [0.0686
Ip_beta?2 rev 0.1779 0.2218
Ip_beta3rev | 04589 | 0.2839 | [074896 | [9IEE8E | 0.3193
Ip_beta4_rev 0.1104 | 0.2946 | 0.3500 | 0.0686
Ip_beta5.rev | [OMBOY | 0.1786 | [0.3714 | [OMIB6E | 0.2211
Ip_beta6rev | 0589 | 0.2893 | [014407 | [OI82E | 0.3193
lp_gammal_rev | [0:3948 | 0.1300 | 0.2771 | |J8IS884 | 0.1900
Ilp_gamma2_rev - 0.1986 -- 0.2689
Ip_.gamma3_rev 0.3032 0.3518
Ip_.gamma4_rev 0.1300 | 0.2775 0.1900
Ip.gamma5_rev | [0M446d | 0.1986 | [004882 | [OIBEE | 0.2689
Ip_.gamma6_rev | [04654 | 0.3032 | |0IEESS | [OE92S | [0.3518

Table B.12: FTP-ctrl — large packet heuristics

164

B.4 Telnet

POP3 | FTP-data] FTP-ctrl| SMTP | HTTP

pkt_count 0.2261 | [0l | 0.2657 | 0.2400 | 0.2382
duration 0.1464 | 0.3296 | 0.3375 | 0.2025 | 0.2186
nonemptycount 0.2264 | |0IB268 | 0.2775 | 0.2361 | 0.2307
pkt_byte count 0.2789 | (0.3350 | 0.2636 0.4493 |
payloadbyte count 0.2946 | 0.3229 | 0.2786 - 0.5043 |
meandelay 0.2382 | 0.2182 0.3061 | 0.3154
meanpkt_len '0.3821 | 0.1318 | [0.3629 | 0.3132 | 0.2400
meanpayloadlen 0.3461 | 0.1361 | [0.8750 | 0.3071 | 0.2421
meannonemptypayloadlen | [0.8600 | 10.0943 | [0.3721 | 0.2889 | |0.0950
dir_data IBBB82 | 0.2282 | [0.3861 | 0.1764 | [0/4396
meanpkt datarate 0.2907 | 0.0986 | JOM848 | 0.2282 | 0.1704
meanpayloaddatarate 0.0964 0.2343 | 0.1657
flag urg 05221 0.5079 = 0.5204 | 05146 0.5250
flag_ack 0.1511 0.2350 | 0.1532 | 0.1643

flag psh 0.3093 | 0.0889 | 04648 | 0.3136 | 0.0900

flag rst 04829 [05248 0.3961 0.4357 0.4143

flag syn 0.1400 | 0.3411 | 0.2139 | 0.1411 | 0.1589

flag fin 0.1561 | [0.3600 | 0.3050 | 0.1650 | 0.2125

Table B.13: Telnet — per-flow metrics

165

POP3 | FTP-data] FTP-ctrl| SMTP | HTTP
pkt_countfwd 0.2150 | [0l | 0.2636 | 0.2482 | 0.2257
pkt_byte countfwd 0.2061 0.2982 | 0.3511 | 0.3696
payloadbyte countfwd 0.2686 | 0.1850 | [0:447d | 0.1379 | 0.1929
nonemptycountfwd 0.2075 | 0.1518 | 0.2957 | 0.2954 | 0.1282
meandelay fwd 0.2525 | 0.2543 | |08 | 0.3132 | 0.3225
meanpkt len fwd 0.3604 | [074271 | 0.2525 | 0.0968 | 0.0771
meanpayloadlen fwd 0.1800 | 0.1239 | 0.1629 | 0.1111 | 0.0743
meannonemptypayloadlenfwd | 0.1314 | 0.3068 | 0.1404 | 0.1154 | |0.0314
flag urg fwd 05179 05250 0.5164 05236 0.5264
flag ack fwd 0.1407 | [0:4168 | 0.2193 | 0.1525 | 0.1454
flag pshfwd 104886 | 0.1200 | [0¥900 | [0%714 | 0.1218
flag rst fwd (04814 [0/968 0.3900 [0.4339 0.4057
flag_syn fwd 0.1314 | 0.3321 | 0.2139 | 0.1443 | 0.1468
flag fin_fwd 0.1568 | 0.3496 | 0.3004 | 0.1754 | 0.2496
pkt_countrev 0.2379 0.2768 | 0.2389 | 0.2525
pkt_byte countrev 0.2868 | 0.3739 | 0.2639 | 0.1779
payloadbyte countrev 0.2964 0.2807 | 0.1496
nonemptycountrev 0.2364 | |OIBE | 0.2893 | 0.1500 | 0.2657
meandelayrev 0.2086 | 0.1982 | J0M8BY = 0.3021 | 0.2729
meanpkt len_rev 0.3654 | 0.2439 | [0.3471 | 0.2407 | 0.3032
meanpayloadlen rev 0.3400 | 0.3318 | 0.3464 | 0.2761 | 0.3100
meannonemptypayloadlenrev | |0.3546 | 0.2836 | 0.3521 0.1986
flag urg rev 0.5207 05179
flag ack rev
flag_pshrev 0.2500 10.5096
flag_rstrev 0.5211 | - 0.5189 |
flag_ synrev 0.1457 0.2200
flag fin_rev 0.1582 0.3136 | 0.1632 | 0.2089

Table B.14: Telnet — per-half-flow metrics

166

POP3 | FTP-data] FTP-ctrl| SMTP | HTTP
spalphal fwd | [0M4279 | 0.1300 | [0M4478 0.1246
spalpha2 fwd | [0M456d | 0.1304 | [OHIGEE 0.1100
spalpha3_fwd | [I2EM | 0.2568 | [OIE0OBY | 0.1832
spbetal fwd | [0M4889 | [0.0621 | 0.2671 | 0.0886 | [0.0571
sp.beta2 fwd 0.0632 0.0446
sp.beta3_fwd 0.0550 0.0504
sp.gammal_fwd | 0.3061 | 0.1379 . 0.1229
sp.gamma2_fwd | [0.3329 | 10.1436 | [0.3846 | [0:4068 | [0.1096
sp.gamma3_fwd | [0.8457 | 0.1414 | [0.3793 | [0:4175 | 0.0993
spdeltal fwd | [0:3950 | 0.1468 | [0M4854 | 0.2654 | 0.1296
spdelta2 fwd | [0:8975 | 0.1607 | [0:4032 | |OIS4E 0.1154
spdelta3 fwd | [0:4028 | 0.1139 | [0M4421 | [0:3996 | 0.0871
spalphalrev | 0.3129 | 0.1704 | 0.2393 | 0.2371 | 0.1593
sp.alpha?2_rev 0.1368 0.1082
sp.alpha3_rev 0.1564 0.1139
spbetalrev |[0.8696 | [0.1146 | 0.2314 | 0.2743 | /0.1075
spbeta2 rev | 004046 | [0.1218 | [0%4300 | [0:3864 | [0.0921
spbeta3rev | 04107 | |0.1011 | 0.2818 | 0.2764 | 0.1475
spgammal_rev | 0.3161 | 0.1636 | 0.2232 | 0.2575 | 0.1375
sp.gamma2_rev 0.1429 0.1000
sp.gamma3_rev | |0M44%g | 0.1196 | [0:4275 | JOMI8E | 0.0946
spdeltalrev | 0.2550| 0.1721 | 0.2350 | 0.2025 | 0.1389
spdelta2rev | 0.3854 | 0.1471 | [0MB5% | 0.2682 | [0.0954
spdelta3rev | [0/4198 | [0.0861 | [OMISE | [0:3868 | [0.0739

Table B.15: Telnet — small packet heuristics

167

POP3 | FTP-datal FTP-ctrl| SMTP | HTTP
lp-alphalfwd | [OISS00 @ [OWSH | [DISESE
lp-alpha2 fwd | [OiSS0H | [OWGEE | [DIS2SE
Ip-alpha3 fwd | [CHSHES | |ONETE | [OISES |
Ip_alpha4 fwd | [GHSEEN | [O%4E |
Ip_alpha5 fwd | [GISHSE | [O¥508 | [GIS288
Ip-alpha6 fwd | [OISE0S | [OWGH | |DISENE | (03868
Ip_betal fwd | OGRS | 004482 | [OB0Y 0.0893
Ipbeta2_fwd | |IEHEE | 02554 | [BIB28E 0.1571
Ip_beta3.fwd | |IEE0N @021 | [0S | 0.3154
Ip_betad fwd | [ONS | 104478 | [0F80% 0.0893
Ip_beta5_fwd | [HiEES | 0554 0.1571
Ip_beta6_fwd | |ISHGY | [ON21 0.3154
Ip_.gammal fwd | |SiS0M | 04404 0.1600
Ip_.gamma2_fwd | [iSENg | 104582 | [BIB28H | 0.2754
Ip-gamma3_fwd | [OISHSE | [OMAS | [BIS2E | [0:3843 |
Ip.gammad4 fwd | [ONISEH | (0404 | [BISESE | o.
Ip-gamma5 fwd | [DISHSE | [OM57S | [OISSEE
Ip_gammasé fwd | [GISE0H | [OM7SS | [GISSS |
Ip_alphal_rev 0.3246 | 0.3179 | 0.3025
Ip_alpha2_rev 0.2468 0.3007
Ip_alpha3._rev 0.3189 0.3611
Ip_alpha4_rev | [0:4082 | [0.3389 | 0.2875 | 0.2704 | [0:3932 |
Ip_alpha5_rev | |ONGY | 0.2443 | [0MI686 | 06 | 0.3036
Ip_alpha6_rev - 0.3143 -- 0.3607
lp_betalrev ||0:4246 = 0.1839 | 0.2950 | 0.2007 | 0.1579
Ip_beta2_rev 0.2164 0.3214 | 0.2696
Ip_beta3rev | |BIS004 | 0.3100 | {04896 | [0:4807 | 0.3457
Ip_beta4_rev 0.1832 | 0.2946 | 0.2007 | 0.1586
Ip_beta5.rev | |BIBBEM | 0.2150 | [0.3714 | (0.3218 | 0.2696
Ip_beta6rev | |BIB00M | 0.3096 | 04407 | [004304 | 0.3457
Ip.gammai_rev | |58 | 0.1868 | 0.2771 | 0.2268 | 0.2529
lp_.gamma2_rev - 0.2086 -- 0.2829
Ip_.gamma3_rev 0.3032 0.3525
lp.gamma4_rev 0.1854 | 0.2775 | 0.2261 | 0.2525
Ip.gamma5_rev | [0S | 0.2089 | [0M4882 | 004264 | 0.2825
Ip_.gamma6_rev | 014608 | 0.3032 | [I5E8E | JOM84S | 0.3529

Table B.16: Telnet — large packet heuristics

168

B.5 SMTP

POP3 | FTP-data) FTP-ctrl| Telnet | HTTP

pkt_count 0.2993 | [0IBEB8 | 0.2400 | 0.3125
duration - [0:4189 | 0.3439 | 0.2025

nonemptycount 0.3032 0.2361 | 0.2339
pkt_byte count 0.2568 | 0.2654 | 0.2625 | 0.3821 |

payloadbyte count 0.2261 | 0.2654 | 0.2171

meandelay 0.3439 | 0.3061

meanpkt_len 0.2407 | 0.2089 | 0.1357 | 0.3132 | |0.3400

meanpayloadlen 0.2218 | 0.2129 | 0.1325 | 0.3071 | 0.3471

meannonemptypayloadlen | 0.2204 | 0.1621 | 0.1229 | 0.2889 | 0.2389

dir_data 0.0904 | 0.2475 | 0.1382 | 0.1764 | 0.1721

meanpkt datarate '0.3875 | 0.3011 | 0.2514 | 0.2282 | [0:4261 |

meanpayloaddatarate | [0.3336 | 0.2882 | 0.2211 | 0.2343 | 014196

flag urg 05236 05293 0.5193 0.5146 0.5250

flag ack '0.4036 | [0¥808 074582 0.1532 | 0.3021

flag psh 104518 | 0.1304 | 0.2650 | 0.3136 | 0.1568

flag rst 0.4557 0.4221 | [0.4639 | 0.4357 [0.4861

flag syn 0.2939 0.1411 | 0.2471

flag fin 0.2957 | 0.3496 | 0.3596 | 0.1650 | 0.3164

Table B.17: SMTP — per-flow metrics

169

POP3 | FTP-data] FTP-ctrl| Telnet | HTTP
pkt_countfwd 0.3607 | 0.3221 | 056 0.2482 | 0.3018
pkt_byte countfwd 0.1179 0.1493 | 0.3511 | 0.2079
payloadbyte countfwd 0.0804 | 0.1432 | 0.1157 | 0.1379 | 0.1907
nonemptycountfwd 0.2261 | 0.1082 | 038 | 0.2954 | 0.1004
meandelay fwd 104888 | [0:4429 | 0.3421 | 0.3132 | [0M814
meanpkt_len fwd 0.0700 | 0.1493 | 0.0821 | 0.0968 | 0.2121
meanpayloadlen fwd 0.0550 | 0.1046 | 0.0832 | 0.1111 | 0.2189
meannonemptypayloadlenfwd | [0.0346 | 0.1364 | 0.0857 | 0.1154
flag urg fwd 05171 05171 0.5143 05236 0.5271
flag ack fwd 0.3450 | 0.1168 | 04582 | 0.1525 | 0.2921
flag pshfwd 08821 | o.1071 | [0:4439 | [04714 | 0.1186
flag rst fwd 0.4543 0.4339 0.4568 0.4339 [0.4832
flag syn fwd 0.2868 | [0/4448 | [0.4243 | 0.2379
flag fin_fwd 0.3093 | [0I5#l | 0.3818 10.3729 |
pkt_countrev 0.2625 0.2389 | 0.3239
pkt_byte countrev 0.1375 | 0.3382 | 0.1779 | 0.2082
payloadbyte countrev 0.1343 0.1496 | 0.1579
nonemptycountrev - 0.2336 | 0.2121 | 0.1500 | 0.3214
meandelayrev 10:4443 | [0.4125 | 0.3471 | 0.3021
meanpkt len rev l0¥%80% = 0.1046 | [0.3889 | 0.2407 | 0.0786
meanpayloadlen rev I0B868 | 0.1043 | [0.3979 | 0.2761 | 0.0779
meannonemptypayloadlen_rev 0.1014 0.0254
flag urg rev 05207 0.5286 0.5271
flag ack rev 0.2632
flag pshrev 04082 | 0.1793 | 0.1768 | 0.2025 | 0.2182
flag rstrev 05125 05132 0.5057 |
flag synrev 0.3314 | 0.3250 | [0.4146 | 0.1375 | 0.2546
flag fin_rev 0.2882 | 0.3111 | 0.3457 | 0.1632 | 0.2789

Table B.18: SMTP — per-half-flow metrics

170

POP3 | FTP-data] FTP-ctrl| Telnet | HTTP
spalphal fwd 10.4093 0.2211
sp.alpha2_fwd 0.1254 0.0989
sp.alpha3_fwd 0.3068 0.2843
sp.betal fwd 0.1250 0.0996
spbeta2 fwd |[0.0679 | [0.1143 | 0.1743 | 0.1864 | [0.0746
spbeta3 fwd | [0.0782 | [0.1125 | 0.1404 | 0.1500 | 0.1268
sp.gammal_fwd | 0.0414 0.2586 | 0.1754
sp.gamma2_fwd | 0.1764 | 0.1661 | 0.2889 | [0:4068 | [0.1068
sp.gamma3_fwd | 0.2061 | (0.1361 | 0.2579 | [0:4475 | [0.0675
spdeltal fwd |0.1432 | [0:4025 | 0.2825 | 0.2654 | [0:3971 |
spdelta2 fwd | [0M4882 | 0.1204 | [0/4382 | |0IB4E 0.0836
spdelta3 fwd | |ISH0E | [0.0639 | |[0B2E [0:3996 [0.0386
spalphalrev | [0:4289 | [0/4886 0.2371
sp.alpha?2_rev 0.1264 0.1039
sp.alpha3_rev 0.3004 0.2793
spbetalrev |[0.3304 | 0.3254 | [0/4164 | 0.2743 | [0.3246
spbeta2_rev | |BIE08Y | [0.0604 | [OEGHE | 0.0400
spbeta3rev | [04157 | [0.0443 | [0:4018 | 0.2764 | [0.0607
sp.gammal_rev | [0/4400 | [04339 | [BIBEEE | 0.2575
sp.gammaz2_rev 0.0914 0.0725
sp.gamma3_rev | [0l4664 | [0.0904 | [0:4061 | [0¥8H | 0.0689
spdeltalrev | [0:4239 | |OMG8E 0.2025
spdelta2_rev | [0/4207 | 0.1521 | 0.3118 | 0.2682 | [0.0882
spdelta3rev | [OM4% | 0.0743 | [0.3321 | [0:3868 | [0.0614

Table B.19: SMTP — small packet heuristics

171

POP3 | FTP-data] FTP-ctrl| Telnet | HTTP
Ip_alphalfwd | 0.1907 | 0.2379 | 0.1914 | 0.1946 | 0.2107
Ip_alpha2_fwd | 0.2918 | [0.3232 | 0.2921 | 0.2929 | 0.2925
lp-alpha3 fwd | [0:3900 | [074098 | [0:3900 | [0:3907 | (0:3900 |
Ip_alpha4_fwd | 0.1686 | 0.2368 | 0.1696 | 0.1750 | 0.2143
Ip_alpha5_fwd | 0.2818 | [0.3239 | 0.2821 | 0.2829 | 0.2846
Ip-alpha6 fwd | [0:3861 | [0%441 | [0:3861 | [0:3868 | [0:3864 |
Ip_betal fwd |[0.0718 | 0.2311 | [0.0736 | [0.0893 | 0.1496
Ip_beta2 fwd | 0.1532 | 0.2868 | 0.1543 | 0.1571 | 0.1864
Ip_beta3.fwd | 0.3136 | [0.3436 | 0.3136 | 0.3154 | 0.3204
Ip_beta4 fwd |[0.0718 | 0.2311 | [0.0736 | [0.0893 | 0.1496
Ip_beta5fwd | 0.1532 | 0.2807 | 0.1546 | 0.1571 | 0.1854
Ip_beta6_fwd | 0.3136 | [0.3439 | 0.3136 | 0.3154 | 0.3204
Ip.gammal fwd | 0.1525 | 0.3164 | 0.1546 | 0.1600 | 0.2932
Ip.gamma2_fwd | 0.2736 | 0.3239 | 0.2743 | 0.2754 | 0.2779
lp-gamma3_fwd | [0:3836 | [0:4107 | [0:3836 | [0:3848 | [0:383¢ |
Ip_.gamma4_fwd | 0.1525 | 0.3168 | 0.1546 | 0.1600 | 0.2796
lp_gamma5_fwd | 0.2736 | [0.3254 | 0.2746 | 0.2754 | 0.2779
lp-gammasé fwd | [0:3836 | [04107 | [0:3836 | [0:3848 | [0:383¢ |
Ip_alphal_rev 0.1400 0.3025 | 0.2011
Ip_alpha2_rev 0.2061 0.2696
Ip_alpha3._rev 0.3014 0.3493
Ip_alpha4_rev | [0.3807 | 0.1293 | JOM8E | 0.2704 | 0.1932
Ip_alpha5_rev | 0407 | 0.2007 | [OISES | 0M6# | 0.2668
Ip_alpha6_rev | 0588 | 0.2989 | [DIE0EM | JOEE | [0.3479
Ip_betalrev |[0.8725 | 0.1011 | 0.3500 | 0.2007 | 0.0636
Ip_beta2_rev 0.1757 0.3214 | 0.2125
Ip_beta3rev | 04468 | 0.2821 | |BIBE8S | 004807 | 0.3129
Ip_beta4_rev 0.1011 | 0.3500 | 0.2007 | 0.0636
Ip_beta5.rev | 014200 | 0.1757 | JOMI668 | 0.3218 | 0.2125
Ip_beta6rev | |0M468 | 0.2825 | |ONISES | [004804 | 0.3129
Ip.gammal_rev | [0.3779 | 0.1225 | |[BIBB04 | 0.2268 | 0.1804
Ip_.gamma2_rev | [04882 | 0.1961 | [BIB0EE | [0/4264 | 0.2621
Ip_.gamma3_rev 0.2950 0.3457
lp.gamma4_rev 0.1225 0.2261 | 0.1804
Ip.gamma5_rev | [0/4882 | 0.1961 | [OIBEES | 004264 | 0.2621
Ip_.gamma6_rev | [04582 | 0.2950 | [OHIS2S | [OM8AS | 0.3457

Table B.20: SMTP — large packet heuristics

172

B.6 HTTP

POP3 | FTP-data] FTP-ctrl| Telnet | SMTP

pkt_count l0¥838 | 0.2864 | 0.3304 | 0.2382| 0.3125

duration I0¥85% | [0.3921 | 0.3271 | 0.2186 | [0:4386

nonemptycount 104264 | 0.2904 | 0.2843 | 0.2307 | 0.2339

pkt_byte count 0.3089 | 0.3050 | 0.3000 - 0.4564 |

payloadbyte count 0.2839 | 0.3068 | 0.2579 - 0.4411 |
meandelay 10.4932 | 0.3436 | 0.3154

meanpkt_len 0.2243 | [0.3761 | 0.0807 | 0.2400 | 0.3400

meanpayloadlen 0.2096 | [0.3741 | 0.0746 | 0.2421 | [0.3471

meannonemptypayloadlen | 0.1054 | [0.8914 | [0.0189 | [0.0950 | 0.2389

dir_data 05788 0.1636 | [0 | [074896 0.1721

meanpkt_datarate 0.3189 | [0.83796 | 0.1979 | 0.1704 | [0:4261
meanpayloaddatarate 0.2796 0.1550 | 0.1657

flag urg 05121 05279 | 0.5257 | 0.5250 0.5250

flag_ack 0.2843 | 0.3043 | 0.3404 | 0.1643 | 0.3021

flag psh 0.1279 | [0.3864 | 0.1018 | 0.0900 | 0.1568

flag rst 0.4425 0.4054 [0.4757 0.4143 [0:4861

flag syn 0.4025 | 0.2800 | 0.1589 | 0.2471

flag fin 0.5154 0.3189 | 0.2125 | 0.3164

Table B.21: HTTP — per-flow metrics

173

POP3 | FTP-data] FTP-ctrl| Telnet | SMTP
pkt_countfwd I0%878 | 0.3075 | 0.3150 | 0.2257 | 0.3018
pkt_byte countfwd 0.1725 | 0.3614 0.3696 | 0.2079
payloadbyte countfwd 0.0332 | 0.1021 | 0.1486 | 0.1929 | 0.1907
nonemptycountfwd 0.1286 | 0.1764 | 0.1414 | 0.1282 | 0.1004
meandelay fwd 05278 04782 | 0.3461 | 0.3225 |0M814 |
meanpkt len fwd 0.0382 | 0.1586 | 0.0764 | 0.0771 | 0.2121
meanpayloadlen fwd 0.0229 | 0.1054 | 0.0764 | 0.0743 | 0.2189
meannonemptypayloadlen fwd | [|0.0075 | [0.0836 | (0.0100 0.0314
flag urg fwd 05186 05257 05146 0.5264 0.5271
flag ack fwd 0.2864 | 0.1229 | 0.3364 | 0.1454 | 0.2921
flag psh.fwd 0.1064 | 0.2064 | 0.1046 | 0.1218 | 0.1186
flag rst fwd 04339 0.4089 [0:4721 0.4057 [0:4882
flag syn fwd 107486 | 0.3150 | 0.2686 | 0.1468 | 0.2379
flag fin_fwd I0B850 | 0.3768 | 0.3443 | 0.2496 | [0.8729
pkt_countrev 0.2850 | 0.3461 | 0.2525 | 0.3239
pkt_byte countrev 0.3214 | 0.3536 | 0.3079 0.2082
payloadbyte countrev 0.3039 0.2857 0.1579
nonemptycountrev - 0.3446 | 0.3329 | 0.2657 | 0.3214
meandelayrev 08875 | [0688 | 0.3218 | 0.2729
meanpkt_len_rev 0.2582 | [0/271 | 0.1536 | 0.3032 | 0.0786
meanpayloadlen rev 0.2525 | |0IS488 | 0.1479 | 0.3100 | 0.0779
meannonemptypayloadlenrev | 0.1879 0.0629 | 0.1986 | 0.0254
flag.urg rev 05200 05250 05157 0.5186
flag ack rev 0.2725 ©0.5200 |
flag_pshrev 0.1557 | [0M738 | 0.1368
flag rstrev 0.5243 0.4989 0.5186 0.5168 |
flag synrev '0.3800 | 0.3204 | 0.2957 | 0.1754
flag fin_rev '0.3854 | 0.3361 | 0.3100 | 0.2089 | 0.2789

Table B.22: HTTP — per-half-flow metrics

174

POP3 | FTP-data FTP-ctrl| Telnet | SMTP
spalphalfwd |[0.0321 | [IBEBE | 0.1700 | 0.1246 | [0:4048
spalpha2 fwd | [0.0307 | JOM8Y | (0.0843 | [0.1100 | [0.0989
spalpha3fwd | 0.2071 | |Ol#8E | 0.2564 | 0.1832 | 0.2843
spbetal fwd | [0.0096 | [BNS@M | 0.0671 | [0.0571 | (0.0996
spbeta2 fwd | [0.0050 | 0.0375 | 0.0446 0.0746
spbeta3.fwd | [0.0293 0.0468 | 0.0504 | 0.1268
sp.gammal_fwd | 10.0304 0.1646 | 0.1229
sp.gamma2_fwd | [0.0261 | 098 | 0.0786 | 0.1096 | 0.1068
sp.gamma3_fwd | [0.0264 | 088 | 0.0707 | [0.0993 | [0.0675
spdeltal fwd |[0.0446 | |BISEE | 0.1632 | 0.1296 | [0:3971 |
spdelta2fwd | [0.0404 | [OE88 | [0.0825 | 0.1154 | 0.0836
spdelta3 fwd |[0.0225 | 088 | 0.0664 | [0.0871 | [0.0386
spalphalrev | 0.3596 0.1593
spalpha2rev |[0.0725 0.0943 | 0.1082 | 0.1039
sp.alpha3.rev | 0.2825 0.1625 | 0.1139 | 0.2793
spbetalrev | 0.1121 | [ISEB8 | 0.1504 | 0.1075 | 0.3246
spbeta2 rev |0.0668 | OGN | [0.0421 | [0.0921 | [0.0400
spbeta3rev | 0.1457 | [0%454 | [0.0600 | 0.1475 | [0.0607
spgammal. rev | [0.3557 | [OEI86E | [0.4011 | 0.1375 | [0:4246
spgammaz2_rev | 0.0700 0.0711 | 0.1000 | 0.0725
sp.gamma3_rev | 0.0864 | |[BIBB88 | (0.0614 | [0.0946 | 0.0689
sp.deltalrev | 0.3529 0.1389
spdelta2_rev | 0.0532 | JOMI48 | [0.0743 | 0.0954 | 0.0882
spdelta3.rev | [0.0475 | |OlI88E | [0.0621 | [0.0739 | [0.0614

Table B.23: HTTP — small packet heuristics

175

POP3 | FTP-data FTP-ctrl| Telnet | SMTP
Ip-alphalfwd | [ONISO4 | [OWNSE | [OWS0N
Ip-aipha2 fwd | [OISHNS | [OWGEZ | [OISEM
Ip-aipha3 fwd | [ONSHN | [OWS0Y | [OI5228 0.3900 |
Ip_alpha4 fwd | [ONIS6 | |ONISE | [OW%56E
Ip_alpha5 fwd | [GISHES | [O¥607 | [BIS25E
Ip-aipha6 fwd | [HSEAY | [OWNSH | [OISEM 03864
Ip_betal fwd |]0.0404 | 0.1257 | [0.0418 | [0.0493 | 0.1496
ip-beta2 fwd | [ONAAG | OGNS | [ONVS0 | [0S | ©.1864
ip-beta3fwd | [N | [OWANA | [BISE2S | [BISE6E | ©.3204
Ip_betad fwd | [0.0404 | 0.1257 | [0.0418 | [0.0493 | 0.1496
Ip-betaS fwd | [ONEAG | |OWIAE | [OWES0
Ip-beta6 fwd | [IS00H | |OWNE | [OIS2SE
Ip gammal fwd | [01482¢ | [BHISES | (04886
Ip-gamma2 fwd | [IS82d | (0607 | BISESE
Ip-gamma3_fwd | [OISE | [OF7SE | [OISE | | 0.3839 |
lp-gammad fwd | [0M4328 | [BNISSS | (0836
Ip-gammas fwd | SIS | [0%607 | [BIS08E |
Ipgammasé fwd | [ISE00 | [OM7SE | OIS | 03839
Ip_alphalrev | 0.3221 0.2143 0.2011
Ip_alpha2rev | 0.3275 0.2768 | 0.3007 | 0.2696
Ip_alpha3_rev | [0.3900 | 0.3557 | 0.3611 | 0.3493
Ip_alpha4_rev | 0.3193 | [0¥868 | 0.2064 | [0:3982 | 0.1932
Ip_alpha5._rev | 0.3261 | [0#564 | 0.2739 | 0.3036 | 0.2668
Ip_alpha6_rev |[0.3889 | |0M628 | [0.3546 | [0.3607 | [0.3479
Ip_betalrev | 0.1471 | |OM864 | 0.0686 | 0.1579 | 0.0636
Ip_beta2rev | 0.2771 0.2218 | 0.2696 | 0.2125
Ip_beta3.rev |[0.3593 | [0M682 | 0.3193 | 0.3457 | 0.3129
Ip_betad_rev | 0.1464 0.0686 | 0.1586 | 0.0636
Ip_beta5rev | 0.2768 | [04889 | 0.2211 | 0.2696 | 0.2125
Ip_beta6rev |0.3611 | JOM682 | 0.3193 | [0.3457 | 0.3129
Ip.gammal_rev | 0.2779 | [0:4298 | 0.1900 | 0.2529 | 0.1804
Ip_.gamma2_rev | 0.3168 | [0:4054 | 0.2689 | 0.2829 | 0.2621
Ip_.gamma3_rev | [0.3848 | 0.3518 | 0.3525 | 0.3457
Ip.gamma4d_rev | 0.2786 0.1900 | 0.2525 | 0.1804
Ip.gamma5_rev | 0.3171 | [0:4046 | 0.2689 | 0.2825 | 0.2621
Ip_.gamma6_rev | [0.3839 | [0%4446 | [0.3518 | [0.3529 | |0.3457

Table B.24: HTTP — large packet heuristics

176

