On the Temporal Authentication of
Digital Data

by
Michael K. Just

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science
Carleton University

Ottawa, Ontario

December 1998

(© Copyright
1998, Michael K. Just

The undersigned hereby recommend to
the Faculty of Graduate Studies and Research

acceptance of the thesis,
On the Temporal Authentication of Digital Data
submitted by

Michael K. Just

Prof. Evangelos Kranakis
(Director, School of Computer Science)

Prof. Evangelos Kranakis
(Thesis Co-Supervisor)

Dr. Paul Van Oorschot
(Thesis Co-Supervisor)

Dr. Aviel Rubin
(External Examiner)

Carleton University
December 1998

i

Abstract

In this thesis, we examine the authentic provision, maintenance and verification of
a time associated with data. We begin by assimilating the current techniques for
authentically associating a time with digital data, i.e., time stamping protocols. This
provides a basis for further classification and examination useful both within the
thesis, as specifically related to time stamping and notarization, as well as for the
area of digital authentication itself. We introduce the distinction between absolute
and relative time stamps and classify the previous work based on this refinement.
This work is subsequently analyzed and critiqued with respect to various measures of
efficiency.

We define the notion of temporal authentication. General techniques for the pro-
vision and verification of both absolute and relative temporal authentication are ex-
amined. The usefulness of these distinctions is motivated by the discovery of protocol
failures for the time stamping protocols of Haber and Stornetta (Journal of Cryptol-
ogy '91) and of Benaloh and de Mare (Eurocrypt '93).

We analyze the provision of temporal authentication for certificate-based digi-
tal signatures. The necessity of time stamping digital signatures is motivated, and
protocols for the production, verification and adjudication of time stamped digital sig-
natures are presented. Beyond the time stamping of the signature, the need for the
maintenance of temporal storage over the long-term (e.g., for revocation information),
in anticipation of possible disputes is also identified as a requirement. Additionally,
protocols for notarizing and extending the lifetime of digital signatures are also pre-

sented and reviewed.

i1

The time stamping of both signatures and revocation information aids in deter-
mining whether a signed message is acceptable or not, e.g., if the message was signed
before the corresponding verification key was revoked. However, if the owner of the
signing key is unaware of any need for revocation (e.g., resulting from an undetected
key compromise), then other solutions are required. We identify the problem of un-
detected signature key compromise and introduce for the first time in the literature,
techniques that allow one to maintain the provision of temporal authentication even
when a signing key has been compromised. Various techniques for detecting a com-

promise and preventing forged signature acceptance are proposed.

v

Acknowledgements

Thanks to Paul Van Oorschot for taking the time to provide extensive, constructive
comments on earlier drafts of this thesis. Thanks also for his guidance and support
in directing the content, precision and detail of this thesis and his consideration for
always responding to my queries in a timely manner.

Many thanks to Evangelos Kranakis for his constant encouragement, advising me
to always question what I read. He helped me to surpass one of the larger hurdles
encountered when writing a thesis: finding a research topic. His encouragement to
search and study the current literature for a topic that I found interesting, allowed
me to work on a topic that I wanted to work on and was hence able and willing to
pursue and complete. More importantly, he emphasized the importance of thinking
about a potential research topic every day, whether it be for only five or ten minutes.
This constant analysis of a topic allowed me to discover the issues that form the basis
of this thesis.

Contents

Abstract

Acknowledgements

1

2

Introduction and Overview

1.1 From Physical to Digital Data
1.1.1 The Importance of Time
1.1.2 Message and Temporal Authentication

1.2 Time and Cryptographic Authentication

1.3 Outline and Overview of Contributions

A Taxonomy of Time Stamping Protocols

2.1 Time Stamping Components
2.1.1 Stamping and Verification Protocols
2.1.2 Hashing and Signing L.

2.2 Critique of a Simple Time Stamping Protocol

2.3 Group Hashing
2.3.1 Linear Storage. o
2.3.2 Logarithmic Storage
2.3.3 Constant Storage

2.4 Absolute Time Stamps
2.4.1 Using a Time Stamping Service
2.4.2 Decentralized Solutions: User-Constructed Stamps

2.5 Relative Time Stamps

Vi

iii

] O Ut = N -

2.6 Concluding Remarks,

Critical Analysis of Previous Work

3.1 Critique Metrics L

3.2 Critique of Group Hashing
3.2.1 Formalizing Group Hashing
3.2.2 Storage Analysis L o
3.2.3 Incremental Group Hashing

3.3 Critique of Absolute Time Stamping
3.3.1 On the Use of Implicit Time

3.4 Critique of Relative Time Stamping

A Framework for Temporal Authentication

4.1 Temporal Authentication
4.1.1 Authenticating Data L.
4.1.2 Temporal Authentication

4.2 Providing Temporal Authentication
4.2.1 Alternatives for Authenticating the Stamp

4.3 Associating a Time with Data
4.3.1 Applying a Consistent Time
4.3.2 Providing Absolute Time
4.3.3 Providing Relative Time
4.3.4 Providing Hybrid Time

4.4 Importance of Proper Temporal Measurements
4.4.1 Protocol Failure: Inability to Measure an Absolute Time . . .
4.4.2 Protocol Failure: An Improper Relative Measurement

4.5 Hybrid Implementations oL

Time Stamping Digital Signatures
5.1 Data With Inherent Time
5.1.1 Relevance to Temporal Authentication

5.1.2 Extending a Finite Lifetime

vil

52
52
54
56
58
61
64
67
69

71
72
73
74
76
80
83
83
85
88
96
97
98
99
109

5.1.3 Implications for Backward and Forward Stamping
5.2 Public Key Certificates — Background
5.2.1 Certificate Construction
5.2.2 Certificate Distribution and Trust
5.2.3 Certificate Revocation
5.3 Time Stamping Digital Signatures
5.3.1 Digital Signature Requirements
5.3.2 Signature Verification and Adjudication
5.4 Notarizing Digital Signatures
5.4.1 Notarization: Trusted Corroboration
5.4.2 Notarizing Digital Signatures
5.5 Digital Signature Renewal
5.5.1 Definitions and Motivation
5.5.2 Anticipation and Redundancy
5.5.3 Signature Renewal

Undetected Signature Key Compromise

6.1 Definitions, Assumptions and Motivation
6.1.1 Compromise Detection
6.1.2 Events Related to a Key Compromise.
6.1.3 Limits of Revocation
6.1.4 Time Stamping is Necessary but not Sufficient

6.2 Dealing with Signature Key Compromise

6.3 Overview of New Approach
6.3.1 Second Level Authentication for Signature Production
6.3.2 Positioning of New Work

6.4 Preventing Forged Signature Production
6.4.1 Second Level Protocols
6.4.2 Comparative Analysis

6.5 Detecting Forged Signatures

6.5.1 Use of Synchronization for Detecting Forgeries

viii

6.5.2 One-Way Function Variant Requests

6.5.3 Time Variant Requests

6.5.4 Modification of the Synchronization Parameter

6.6 Preventing Forged Signature Acceptance

7 Concluding Remarks

7.1 Positioning of Contributions

7.2 Future Work .

Bibliography

A A Historical Review of Notarization

A.1 Notaries Public
A.2 Digital Notary

ix

215
215
216

220

List of Tables

2.1

3.1
3.2
3.3
3.4
3.9
3.6

4.1

5.1
5.2
5.3
5.4
2.5

6.1

6.2

6.3
6.4

Bit Length for Nyberg’s One-Way Transformation. 36
Comparison of Storage for Group Hashing Techniques. 60
Specification of Table 3.1 Results. 60
Overall System Storage Efficiency for Group Hashing Techniques. . . 61
Comparison of Updates for Group Hashing Techniques. 64
Comparison of Absolute Time Stamping Techniques 66
Linking Elements for Relative Time Stamping Protocols. 70

Requirements for the Association of Time in a Time Stamping Protocol 85

Requirements for the Digital Signature Model 138
Evidence Required for Signature Verifications 147
Assumptions Made for Time Stamped Digital Signature Model 148

Statements a Digital Signature Notary can Attest to the Truthfulness 156
Attacks to a Signature Schemeo 164

Properties Required for the Second-Level Authentication Mechanism 184

Comparison of Techniques Using a Secret Key for Secondary Authen-

tication L 192
Requirements for Protocol DT1 195
Requirements of Protocols Implementing Check-In Periods and Cooling-

Off Periods e 211

List of Figures

2.1 Logarithmic User Storage Group Hash Technique. 28
2.2 Generic Message Passing 43
2.3 Chain of Stamps in Protocol RL1. 44
2.4 Chain of Stamps in Protocol RL3. 49
4.1 Global View of a Time Stamping Process 7
4.2 Generic Structure of a Time Stamping Protocol. 79
4.3 Improved Efficiency with Intermediate Stamps. 94
4.4 Cross-Stamps Allowing for Relative Stamp Interoperability. 95
4.5 Multiple Chains in Protocol RL1. 102
5.1 A Timeline Representation of Data y with Only an Expiry Date . . . 118
5.2 A Timeline Representation of Data y with Only a Creation Date . . . 118
5.3 Two Views of Signing and Verification Periods. 124
5.4 Single, Disjoint and Cross-Certified Certification Authorities. 127
5.5 Classification of Techniques for Distributing/Obtaining Certificate Re-
vocation Information L 133
5.6 Generic Signature Transmission from Originator u to Recipient v. . . 139
5.7 Periods of Change in a Certificate’s Status. 139
5.8 Certificate Verification Life Extended with Time Stamp. 144
5.9 Signing Periods for a Non-Revoked Certificate. 149
5.10 Signing Periods for a Revoked Certificate. 152
5.11 Periods of Legitimate and Forged Signature Production 165

xi

6.1 Timeline of Events Related to a Key Compromise

7.1 Timeline of Relevant and Related Concepts Since the Origination of
Public-Key Cryptography

xii

List of Protocols

SG1 The Digital Signature Algorithm (DSA) 19
SM1 Centralized Document Storage 21
GH1 Cumulative Group Hash. 25
GH2 Recursive Group Hash. 26
GH3 Tree Group Hash., 29
GH4 Exponentiation Group Hash. 32
GH5 Bit Group Hash.o 34
AB1 Centralized Time Stamp Construction 38
AB2 Centralized Time Stamp Construction with Additional Corroboration. 40
AB3 Broadcast Time Stamp 41
AB4 Published Time Stamp 42
AB5 Decentralized Time Stamp Construction 42
RL1 Haber-Stornetta Linking. 45
RL2 Recursive Hash Linking. 46
RL3 Haber-Stornetta Extended Linking. 47
RL4 Cumulative Extended Linking. 50
RL5 Cumulative Hash Extended Linking. 50
TS1 General Time Stamp Protocol 78
HY1 A Hybrid Time Stamp using Widespread Storage. 110
HY2 A Hybrid Time Stamp Proposal. 112
DS1 Signature Verification Protocol 150
NT1 Signature Notarization by Verifier 158
NT2 Notarization of a Digital Signature 160

xiii

RN1 Digital Signature Renewal by Time Stamping 168

SL1 Generic Structure of Signature Protocols Using a Second Level Au-

thenticationo Lo 183
PV1 Using Biometrics as Secondary Authentication 188
PV2 Using a Signature as Secondary Authentication 189
PV3 Using a Symmetric Key as Secondary Authentication 189
PV4 Using a Private Seed as Secondary Authentication 190
DT1 Generic Secondary Authentication Using Synchronization 194
DT2 Dealing with Fraudulent Secondary Authentication Requests 200
DT3 Synchronization by Verifying Recursive Representation of Past Signa-

tures Lo 201
DT4 Using a Shared Seed for Synchronization 201
DT5 An Insecure, Signature-Dependent Synchronization 202
DT6 Using a Counter for Secondary Synchronization 205
DTT7 Using the Time of Last Signature for Secondary Synchronization . . . 206

xXiv

Chapter 1
Introduction and Overview

Traditional cryptographic authentication techniques allow for assurances with respect
to an action performed (what was done) as well as what entity performed the action
(who did it). The what may be the application of a digital signature such that
what was done (e.g., a previous commitment or assertion) cannot be altered without
detection. In verifying the maintenance of this integrity, it is necessary to determine
who performed the original action.

Equally as important is the ability to recognize when something was done. The
roles associated with and privileges afforded to an individual entity can change with
time. Determining simply what action an entity performed may not be sufficient. It is
often important to determine the time at which the action took place. In this thesis,

we examine the importance and relevance of time for cryptographic authentication.

Chapter Outline

In this chapter, we motivate the importance of the relationship between time and cryp-
tographic authentication. In Section 1.1, the importance of authentication for both
digital and paper-based information processing techniques is examined. The different
challenges encountered with digital technology are also discussed, with an introduc-
tion to the importance of time. In Section 1.2, the role of time in a cryptographic

infrastructure providing for message authentication is motivated. In Section 1.3, we

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

present an overview of the remainder of the thesis. Emphasis is directed towards
our particular contributions and as well to the overall contribution of the thesis as a

whole to the area of cryptographic authentication.

1.1 From Physical to Digital Data

The world is changing. At one time, a handshake referred only to the clasping of open
hands for the purpose of either an introduction, a meeting, or possibly to indicate
some sort of agreement. It is now also used to indicate the initiation of a connection
between two computing devices.

Computers are certainly having an impact on our everyday lives. With each task
they help us to solve, our reliance on them increases. They exist because there are
problems that we need solved and we constantly push them to their limit in order to
aid in solving newer challenges that are presented to us.

The language is often the same, as with the “handshake” described above. Con-
sider the signature. Our handwritten or physical signature is still used often in a
world that is arguably in a transitionary phase, from paper-based to digital. Our sig-
nature is used to signify agreement, authorize action or prove membership and may
be accepted as legally binding. The powers of authorization given to a signer rely on
the assumption that the signature is not easily forgeable.

The parallel in the (arguably superior) digital world is the digital signature. The
prevalence of the digital (versus the physical) signature is becoming more noticeable
each day. What advantages does a digital signature offer? Realizing that the digital
signature is not the cause of the digital revolution, but rather an effect of it, its
greatest advantage is that it allows for the provision of a signature for digital data.
Why is such a technique required? In a world where paper-based transactions are
becoming less frequent, the corresponding physical services become less desirable. It
is cheaper to store a disk full of information rather than boxes of paper. It is cheaper
to transport digital data than paper-based information. Though certainly influenced
by economic concerns, the convenience is equally as responsible.

Familiarity can help to improve convenience. Though dealing with digital media, it

CHAPTER 1. INTRODUCTION AND OVERVIEW 3

is important to offer the same services as those provided for the physical counterpart.
This includes the signature. This is why a digital counterpart to the handwritten
signature is required. It provides a familiar counterpart to a physical signature, for
use with digital data. But how does one apply a signature to digital data? The exact
parallel with paper does not work. Consider how one might digitize their physical
signature and simply append it to the end of a digital file. However, notice the lack of
binding or association between the document data and the digitized signature. There
is nothing to stop one from simply copying this digitized signature and appending
it to the end of another file, or even altering the file in which the original signature
was applied. After all, this is what the legitimate user would do with their digitized
signature for subsequent documents anyways.

It is the different media that makes this forgery of the digitized signature achiev-
able. This is the challenge for those wishing to offer digital services in place of
physical-based ones. Along with the desireable properties of digital media, are those
that make it difficult to offer the familiar, paper-based services. As the example above

indicates, digital data

1. is easily transferable as it is no longer attached to a physical medium. Copying

is easy, making it difficult to determine which copy is the original.

2. can be modified without detection. Documents on digital media can be modified
in any manner, including both the data body as well as any appendage such as

a digitized signature.

Note that for our example above, it is not that easy to copy a physical signature.
One can typically distinguish an original document as authentic by physical means or
appearance. Interestingly though, it is quite serendipitous (from the point of view of
digital media proponents) that digital technology is also making tampering of physical
data less susceptible to detection, e.g., by using high quality digital photocopiers or

scanners. Hence, digital technology is creating a need for digital security techniques.

CHAPTER 1. INTRODUCTION AND OVERVIEW 4

1.1.1 The Importance of Time

The application of a conventional signature often has legal implications, e.g., it can
be viewed as an acceptance of the statements contained therein. Often accompanying
the signature is a line indicating the date of the signature. What is the purpose of
this date? Suppose a contract were signed by Mr. X, a representative of company C|,
stating that company C' agreed to build an attachment onto the business property
of Ms. Y. The contract was signed on March 12, 1998 (though this date was not
indicated on the contract). Ms. Y expects that this is sufficient time for the work to
be completed by September 1, 1998.

However, subsequent to a disagreement between Mr. X and company C', Mr. X is
fired on March 31, 1998. On May 1, 1998, Ms. Y contacts company C', concerned that
they have not begun work on her building. Company C' representative Ms. Z claims
that the purported contract is invalid since it was signed subsequent to the dismissal
of Mr. X (possibly by a vindictive Mr. X). Ms. Y claims that the contract was signed
prior to the dismissal of Mr. X and demands that company C honour their contract.
Other physical evidence may exist to resolve this dispute. For example, physical
analyses of the paper and pen markings may ultimately prove that the contract was
indeed signed prior to the dismissal. However, there exists the intolerable possibility
for Ms. Y that the contract may be deemed invalid.

For a digital contract, such physical evidence is less likely to exist. The dating
provides a potential solution for the paper contract, but simply appending the time
to the end of the digital contract may not be sufficient. However, by including a
time as part of the original document and signing the entire combination, digital
authentication of the contract can be provided.

Beyond the inclusion of the date and signing of the contract, additional properties

must be met in order to ensure the authenticity of the contract:
1. Mr. X must be who he claims to be;
2. The correct ‘date of signing’ must be indicated on the contract;

3. Mr. X must work for company C' as of the time of signing of the contract.

CHAPTER 1. INTRODUCTION AND OVERVIEW 5

The first point requires an authorization (certification) of Mr. X's signature privilege
and can be provided for the physical signature by requiring Mr. X, for example, to
possess a universally verifiable validation card identifying Mr. X as an employee of
company C' and containing a reference copy of his signature, allowing for subsequent
signature verification. This trusted, verifiability of the signature refers to the message
authentication of the signed data. The digital certification of users is discussed in
Section 5.2.1. The latter two points relate to the temporal authentication of the

contract.

1.1.2 Message and Temporal Authentication

The undesirable properties of digital data (e.g., inability to detect tampering) lead
us to the conclusion that the prevention of digital signature forgery requires that the

signature have the following properties:

1. the signature must be dependent upon the entire data file to which it is applied,
thus preventing the alteration of some or all of the file without rendering the

signature invalid;

2. the signature must be tied to a particular individual so that no one other than

this individual can produce a digital signature in the name of the individual.

We say that data integrity is provided if it is ensured that a message has not been
altered in an unauthorized manner since its latest authorized alteration (or more
correctly, that any unauthorized changes are detectable). This property satisfies the
first point. Message authentication (data-origin authentication) is provided when a
recipient is assured of the source (i.e., entity authorized to alter the data) of a given
message. This property satisfies the second point. Notice that if data-origin authen-
tication is provided, then so is data integrity, and vice-versa. For if data integrity is
not provided then the data can be altered in an unauthorized manner without de-
tection, hence the source (creator) of the message has changed. As well, if message
authentication is not provided then the authorized (or unauthorized) alteration of a

document is not well defined. As indicated in the previous subsection, the time at

CHAPTER 1. INTRODUCTION AND OVERVIEW 6

which the message authentication is provided is also important. This motivates the

following definition for temporal authentication.

Definition 1.1 Temporal authentication combines message authentication with the

notion of timeliness of messages.

The temporal authenticity of data produced by a time stamping protocol was first
discussed by Just [Jus98]. This concept is discussed in greater detail in Chapter 4.
In the following section, we further motivate the importance of time for the provision

of temporal authentication.

1.2 Time and Cryptographic Authentication

Cryptographic authentication has inherent properties that necessitate a concept of
time, related both to the participating entities as well as any operations that are
performed. In this section we briefly highlight the requirement for time within current
practice for the provision of cryptographic authentication.

At a very high level, a cryptographic infrastructure is composed of entities and
protocols. The protocols provide for privacy and authenticity among the entities. The
role of an entity changes over time. Employees are hired, fired and promoted each
day. Privilege and responsibility are often associated with the role an entity plays,
rather than with the (name of the) entity itself. Thus, it is important to know not
only the identity of the entity that performed a certain action, but also when that
action was performed.

Consider a private signature key held by some entity. Contracts and promisory
notes may be signed by this entity each day. Later disputes over these signatures may
require the determination of when the actions were performed, e.g., when the contract
was signed. As well, for the provision of non-repudiation, it is important to determine
when signatures were produced by a given entity in anticipation of the revocation of
the entity’s certificate. Determining the validity of a message signed with the private

signature key requires detecting whether the message was signed before or after the

CHAPTER 1. INTRODUCTION AND OVERVIEW 7

corresponding certificate was revoked. Digital signatures alone do not allow for this
determination. Incorporating an authentic notion of time does.

Protocols are similarly dynamic. Note that the security of many cryptographic
protocols is based on computational complexity. As the amount of computing power
available to adversaries increases, protocols may become vulnerable, e.g., if weak sig-
nature algorithms were used. Increases in computing power are a catalyst for larger
key sizes and stronger algorithms. Renewing the privacy or authenticity associated
with some information protected with “outdated” algorithms is therefore an impor-
tant possibility.

Messages signed by a given entity with a particular version of a digital signature
scheme (e.g., a given algorithm and key size) can only be deemed authentic for a
finite amount of time. However, some signatures may require a period of authenticity
that outlasts the lifetime of the digital signature scheme. Periodic increments in
the security of time stamping protocols (either by advancing the size of the security
parameter or using a new scheme all together) allows older, potentially vulnerable
stamps or signatures to be renewed with a current timestamping scheme. A notion
of time for these operations is important since the security will often depend on when
something was done, and it is important that this temporal notion be maintained

even when something is renewed.

1.3 Outline and Overview of Contributions

The objective of this thesis is

to assimilate, conceptualize and analyze techniques for the provision,
maintenance and verification of an authentic time, allowing one to de-
termine the time of existence of digital data relative to the occurrence of

other cryptographic events.

In the remainder of this section, we summarize the contents of each of the remaining
chapters, emphasizing the novel contributions to the study of cryptographic authen-

tication.

CHAPTER 1. INTRODUCTION AND OVERVIEW 8

Chapter 2: A Taxonomy of Time Stamping Protocols

This chapter provides an assimilation and classification of full protocol descriptions of
the previous literature on the time stamping of digital data. The specific contributions

of this chapter are:

1. provision of the first comprehensive survey of known literature related to the

time stamping of digital data;

2. an introduction of the distinction between absolute, relative and hybrid time

stamps and a classification of the previous work under these terms.

Chapter 3: Critical Analysis of Previous Work

This chapter provides a critical and comparative analysis of previously published time

stamping protocols. The specific contributions of this chapter are:
1. the first self-contained analysis of previous time stamping protocols;

2. the formalization and analysis of so-called group hashing techniques and the

introduction of incremental group hashing.

Chapter 4: A Framework for Temporal Authentication

This chapter abstracts techniques from previous time stamping protocols and pro-
vides a general framework under which subsequent time stamping protocols, that
provide temporal authentication, can be constructed. The specific contributions of

this chapter are:

1. an introduction of the notion of temporal authentication and definition of the
provision of absolute, relative and hybrid temporal authentication of digital

data;

2. description of a first general framework (see Figure 4.2) allowing one to sub-
sequently construct time stamping protocols that allow for the provision and

verification of the temporal authentication of digital data. This construction

CHAPTER 1. INTRODUCTION AND OVERVIEW 9

involves describing techniques for the provision of absolute, relative or hybrid

time for the data as well as subsequent authentication and storage;

3. an identification of protocol failures for two previously proposed time stamping
protocols (see Section 4.4 and Just [Jus98]). In particular, protocol failures are
identified for

(a) Protocol RL1 from Haber and Stornetta [HS91] in which we identify un-
reasonable requirements regarding the trust in the time stamp provider

which allow the production of false time stamps (see Section 4.4.2), and

(b) Protocol GH4 from Benaloh and de Mare [BAM93] in which the provision
of an absolute time during time stamp production is shown to be unmea-

surable during time stamp verification (see Section 4.4.1);

4. the presentation of Protocol HY2, a hybrid time stamping protocol that fol-
lows the new framework for the provision of temporal authentication (see Sec-
tion 4.5).

Chapter 5: Time Stamping Digital Signatures

This chapter provides a comprehensive examination of the provision, verification,
adjudication and renewal of time stamped or notarized digital signatures and relevant

certificate information. The specific contributions of this chapter are:

1. a first identification of the requirements of temporally authenticated signatures
and their storage, allowing for digital signature production and subsequent ver-
ification and adjudication of digital signatures even in the event of the expiry
or revocation of a user’s verification certificate or a change in the trust that
signature recipients may have in a signature originator’s certificate (see Sec-
tion 5.3.1);

2. the first description of steps that must be taken and information or evidence
required during the production, verification and adjudication of time stamped

digital signatures (see Section 5.3.2);

CHAPTER 1. INTRODUCTION AND OVERVIEW 10

3. defining the role of a notary and presenting Protocol NT2 which allows for the

notarization of digital signatures (see Sections 5.4.1 and 5.4.2);

Chapter 6: Detecting Signature Key Compromise

This chapter provides an examination of techniques allowing one to address the prob-
lem of a signature key compromise so that one can detect a compromise and prevent
the acceptance of signatures produced during a period of undetected signature key
compromise (see Just and van Oorschot [JvO98]). The specific contributions of this

chapter are:

1. an introduction of the problem of signatures being forged subsequent to a key
compromise but prior to the detection of the compromise and identifying the
limitations of current techniques for solving the problem (see Sections 6.1 and
6.2);

2. the introduction of a second level of authentication to solve the problem of unde-
tected key compromise in which the signing user is required to obtain additional
corroborative evidence from a trusted third party (through a secondary identi-

fication) for a signature to be accepted by a verifying party (see Section 6.3);

3. the presentation of solutions in which an independent, secret key is shared with
the trusted third party to allow for secondary identification of the signing user

(see Section 6.4);

4. the presentation of general techniques and specific solutions in which signing
users are synchronized with the trusted authority so that a forged signature
causes the synchronization property to be destroyed, and subsequently detected

(see Section 6.5);

5. a first use of a cooling-off requirement for the acceptance of signatures combined
with a check-in period for legitimate signers, allowing for the detection and

prevention of acceptance of forged signatures (see Section 6.6).

CHAPTER 1. INTRODUCTION AND OVERVIEW 11

Chapter 7: Concluding Remarks

In this chapter, we conclude with the positioning of the thesis as a novel contribution

and aid to the study of cryptographic authentication.

Chapter 2

A Taxonomy of Time Stamping

Protocols

This chapter surveys and classifies protocols in which time is authentically associated
with digital data. This time may relate to the time of construction of the data,
or more commonly, the time of submission of the data to some entity, and can be
interpreted as evidence of the existence of the data at the given time.

The first discussions regarding the time stamping or notarization' of digital data
can be traced to around the time of the origins of public-key cryptography. In 1979,
Popek and Kline [PK79, page 353] state the following as the function of a so-called

notary public machine upon receipt of a submitted message:?

The notary public machine time-stamps the message, signs it itself (thereby

encoding it a second time), and returns the result to the author.

Diffie [Dif82, page 67| makes reference to “a digital ‘notary public’ which dates [a]
document and signs the date with its own private key.” The earliest time stamping
protocol was presented by Merkle [Mer80, Mer82] (see Protocol NT1 or the simplified

IReferences to notarization here refer only to the provision of a time stamp. More recent consensus
regarding the interpretation of a notary differs from that of a time stamper (see Section 5.4 and
Appendix A).

2Popek and Kline acknowledge David Redell for initially suggesting that the role of a notary
public machine should be based on the notaries public in the paper world.

12

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 13

Protocol AB1). Adleman [AdI83] makes use of a tamper-proof device to limit the
amount of trust required in a so-called notary public. Davies and Price [DP84, page
287] also enlist a “notary to sign and time-date stamp” input documents (in their
particular case, digital signatures).

The growing need for some sort of digital temporal authentication (though this
term was not used) providing for the authentic association of time with data was
noted by Kanare [Kan86] though this was 7 years after the work of Popek and Kline.
More recent investigations into digital time stamping were undertaken by Haber and
Stornetta [HS91] in 1991.

Despite the Haber and Stornetta revival, the remaining history related to digital
time stamping, from 1991 to the present, is fragmented and comprised of works which
rarely reference each other (most likely because of their low profile, rather than for
malicious reasons). This is best evidenced by the fact that there does not exist a paper
that surveys the current state of the art of digital time stamping techniques (though
see the partial work of Massias and Quisquater [MQ97]). This chapter provides such

a survey.

Chapter Outline

In Section 2.1, the components of a time stamping protocol are identified and some
basic primitives (e.g., hash and signature functions) are reviewed. In Section 2.2 a
simple time stamping protocol is critiqued for motivational purposes. Section 2.3
illustrates many-to-one group hashing techniques in which a number of data submis-
sions can be input to a function that produces only a single resultant value. These
techniques allow for the possibility of more efficient time stamp production since the
time provision techniques of Section 2.4 and Section 2.5 can be applied to a single
representative group hash result rather than a number of data items. In Section 2.4,
we begin our classification of time stamping techniques by reviewing protocols in
which an absolute time stamp (see Definition 2.3) is provided. In Section 2.5, we
complete our classification by reviewing methods for providing relative time stamps
(see Definition 2.4).

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 14

2.1 Time Stamping Components

In this section we review and present several definitions and components related
to the time stamping of digital data. The purpose of these intuitive definitions is
to facilitate a classification and discussion of the previous work related to the time
stamping of digital data. More formal definitions, generalizing on the previous work

in this chapter and absorbing the critiques of Chapter 3, are presented in Chapter 4.

2.1.1 Stamping and Verification Protocols

In this subsection, we review and present several definitions and components used in
the provision and recovery of a “time” for digital data. Several kinds of “time” are
identified and used for later classifications of time stamping protocols reviewed in this
chapter. The purpose of this subsection is only to provide an intuitive understanding
of definitions and concepts related to time stamping. In Chapter 4, we provide more
precision through the presentation of a framework that allows for the provision of

time stamps.

Definition 2.1 A non-cryptographic time stamp (NCTS) is the output w € W of
the function F' : Y x T — W where y €) is a binary message of arbitrary length

and t € T is a representation of a date or time.

The purpose of the NCTS w is to allow an indication of when the data y existed. The
same data y may be time stamped on multiple occasions.

The cryptographic “authentication” of a NCTS is useful in anticipation of possible
disputes, or more generally, in anticipation of low confidence in the “time” associated
with the data by the NCTS. For example, if user u were to construct a time stamp
w for a message y, u would compute w = F(y,t). If u is honest, ¢ would, for
example, refer to the time of construction of w. However, there is no reason that
one should or would necessarily trust u. “Authentication” serves to increase the
confidence in the time provided during the construction of the NCTS, by establishing
a verifiable, trustworthy process upon which the resultant, authenticated time stamp

is constructed.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 15

Definition 2.2 A (cryptographic) time stamp s (or temporal stamp or simply stamp)
associated with a message y is the result of the “authentication” of a non-cryptographic
time stamp w = F(y, d) (see Definition 2.1) and for which the time ¢t € 7 has some

“consistent meaning” for every time stamp. m

The “consistent meaning” of a time stamp refers to the consistent notion of what the
time ¢ implies and how it is provided. (The discussed further in Section 4.3.1.) We

briefly introduce different types of time below (and elaborate in Section 4.3).

Various Types of Time

A time stamp s can be one of three types, depending on the type of “time” provided.

Specifically, s can be either

1. an absolute time stamp,
2. a relative time stamp or
3. a hybrid time stamp.

Definition 2.3 An absolute time stamp s is a (cryptographic) time stamp (see Defini-
tion 2.2) for which a universal, absolute time t (see Definition 4.7) is cryptographically

bound to data y.

The provision of an absolute time stamp is memoryless with respect to any other
time stamps that are produced. An absolute time stamp can be either explicit or
implicit. An (explicit) absolute time stamp (the default) has the precise time directly

recoverable or verifiable from the time stamp. For example,
Mon Oct 5 10:31:35 EDT 1998

is an example of an explicit, absolute time. An implicit absolute time stamp contains
information from which the precise time can be uniquely determined. For example,
an implicit absolute time stamp might include the values from several stocks at a par-

ticular time of day. The underlying assumption is that one can uniquely® determine

3 Although the granularity of the time may vary (e.g., using the closing stock values may only
provide a granularity of one day), a mapping to a single explicit time is required.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 16

the time at which this information was generated, from this stock information. The

use of an implicit time is discussed in Section 3.3.1.

Definition 2.4 A relative time stamp s is a (cryptographic) time stamp (see Defi-
nition 2.2) for which a relative time t (see Definition 4.12), ordering the data y after
previously stamped data and before subsequently stamped data, is cryptographically
bound to .

Unlike an absolute time stamp, the time specified by a relative time stamp is mean-
ingless on its own until compared to the times associated with other time stamps,

i.e., the ordering of two or more stamps is determined.

Definition 2.5 A hybrid time stamp s is an (cryptographic) time stamp (see Defini-
tion 2.2) for which both absolute (see Definition 4.7) and relative times (see Defini-
tion 4.12) are cryptographically bound to y.

Stamping and Verification Protocols

Let u € U represent a user in a distributed network who would like to obtain a time
stamp s for a message y that can thereafter be verified for its authenticity by a ver-
ifier (challenger) v. To accomplish this task, we make use of the following Stamping
and Verification sub-protocols (similar to those presented by Benaloh and de Mare
[BAM91] and mentioned briefly by Haber and Stornetta [HS91]). The production and
subsequent authentication of a time stamp s is referred to as the temporal authentica-
tion of the message m, and is performed by a time stamping protocol (TP). Henceforth

we refer to the time stamping (or simply stamping) of a message (or document or data)

Y.

Definition 2.6 A time stamping protocol (SP), when input a message y, outputs a

time stamp s, as given by Definition 2.2.

Although the message y may possess special form (e.g., a document-signature pair), a
SP treats y as a finite string of bits. The message y can be some data that « would like

to stamp, or in the more likely case, y will be the output of a collision-resistant hash of

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 17

the actual data x, i.e., y = h(x) (see Definition 2.10 for definition and Section 2.2 for
motivation of use). In Chapter 5, we discuss how a notary protocol takes advantage
of the special form of the input, in particular, a digital signature. A more detailed
analysis of a time stamping protocol is given in Chapter 4.

The “consistent meaning” of the time associated with digital data through the
provision of a time stamp allows for subsequent comparisons of the times associated
with several events. The verification of a time stamp s therefore involves a validation
of the authenticity of the time stamp allowing a subsequent “temporal measurement”

involving the associated time(s) t.

Definition 2.7 A time stamp capsule (or timecapsule or simply capsule) cap, =
(y,t,s,...) is a collection of data necessary to allow for the verification (see Defi-

nition 2.8) of the time ¢ associated with the data y through the time stamp s.

Definition 2.8 A time stamping verification protocol (VP), on input a time capsule
cap, performs a “validation” of the authenticity of the time stamp s, relative to (at

least) the purported message y and time ¢.

Definition 2.9 A time stamping (temporal) measurement determines the ordering
of two times t; and t,, i.e., which of #; or ¢, is earlier or later, or whether they are

equal.

When respectively associated with data y; and y, through time stamps s; and s,,
a temporal measurement determines which of the stamps, for example, may have
been produced first. The verification and temporal measurement of a time stamp(s)
is discussed briefly for schemes described in this chapter, and is expanded on in
Chapter 4.

2.1.2 Hashing and Signing

In this subsection, we review the concepts of a hash function and signature algorithms.
The use of each with regard to time stamping is motivated in Section 2.2. More
detailed coverage regarding hashing and signing can be obtained from Menezes et al.
[MvOV97] or Stinson [Sti95].

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 18

Definition 2.10 A hash function h takes as input an arbitrarily, finite sized bitstring
x and produces an [-bit output, e.g., [= 160 for SHA-1 [FIP95].

When several data are input to h, the data are concatentated and input as a
single data item. Concatenation will be denoted using commas as in A(x,y) which
represents the hash of the concatenation of data x and y. For use in this thesis, h

will have the following properties
1. Ease of computation. Given x, y = h(x) is easy to compute.
2. Collision resistance. It is difficult to find inputs x # 2’ such that h(x) = h(a').
3. One-wayness. It is difficult to find = given y = h(z).

Under suitable conditions (and for most hash functions used in practice) a collision-
resistant hash function is also one-way.

A digital signature provides for the following properties for signed data.

1. Data-origin authentication. Authentically binds the identity of the signing user

to a message.

2. Non-repudiation. Does not allow the legitimate signer to repudiate the legiti-
mate production of a valid signature, i.e., in an attempt to deny having produced

the signature.

Definition 2.11 A signature scheme SS is a five-tuple (M, Q,K,SA,VA), where
the following conditions are satisfied ([Sti95, Def. 6.1]):

1. M is a finite set of possible messages
2. Qis a finite set of possible signatures
3. K, the keyspace, is a finite set of possible keys

4. For each user u € U, possessing a key K € K, there is a signing algorithm

sig, € SA and a corresponding verification algorithm ver, € VA. Each sig, :

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 19

M — Q and ver, : M x Q — {true, false} are functions such that the following

equation is satisfied for every message m € M and for every signature c € Q:

ver,(m,c) = {

true if ¢ = sig,(m)

false if ¢ # sig,(m)

A particular instatiation of a signature scheme is given as Protocol SG1.

Protocol SG1 The Digital Signature Algorithm (DSA) [FIP94].

| Initialization |

Note: This initialization is performed by each user u € U.

1: u selects a 512-bit prime p with the property that computing discrete logarithms
in 7, is computationally infeasible.

2: u selects a 160-bit prime ¢ such that ¢ divides p — 1.

3: u repeatedly selects an element g € 7Z," and computes a = ¢P~V/1 mod p until
a# 1.

4: u selects a random a where 1 < a < ¢ and computes w = a® mod p.

5: u's public key is the tuple (p, ¢, @, w), while the private key is a.

‘ Signature Production ‘

Input: message m
Output: signature ¢ = sig,(m) = (ry,75) for message m
1. For a message m, u computes y = h(m) using SHA-1 [FIP95] and selects a random
k where 1 < k < ¢q. The signature (ry, ry) for the message m is defined as

r1 = (o mod p) mod ¢

ry = (y+ar))k™" mod g

Signature Verification ‘

Input: message m’ and signature (7], ry) purportedly corresponding to message m'
Output: indication of whether (r],r}) is a mathematically correct signature for m’
1. Verifier v computes y' = h(m'), as well as

z1 = w(rh) ' modgq

z = 7i(rh) t mod q.

2: very,(m',) = true iff (®y*> mod p) mod ¢ = r}.

The signature function sig, is used to digitally sign a message m and is denoted

¢ = sig,(m). In most cases, m will be hashed first giving ¢ = sig,(h(m)) and unless

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 20

otherwise indicated, we assume that messages are hashed before they are signed, but
do not explicitly show this in the notation. wver, can be used by all other users to
verify the authenticity of a signature (i.e., that a given message was indeed signed
by u). If the message has been hashed first, this requires delivery of m along with
s and computation of h(m) for signature verification. The verification key of w is
likewise typically, or for our discussion assumed to be signed by a trusted certification
authority (CA), resulting in a public key certificate cert,. Certificates allow one to
trust the binding, i.e., that the key does indeed belong/is associated with the named
entity. (We briefly discuss certificates here. A more detailed examination is given
in Section 5.2.) This certificate typically contains at least, a unique identification
number (certificate serial number), the distinguished name of u, u’s verification key,
and a validity period. In this way, u is bound to signatures that are successfully
verified using w’s public verification key, which has been bound to u’s name through
the CA-signed certificate cert,. The strength of this binding is determined by, among
other things, the thoroughness of the identity check performed by the CA before

issuing a certificate to .

2.2 Critique of a Simple Time Stamping Protocol

Consider the time stamping protocol given by Haber and Stornetta [HS91] in Proto-
col SM1 (a similar scheme was described by Kanare [Kan86]). The scheme is useful
for motivating the use of the hashing and signing primitives described in Section 2.1.2
and illuminating some important requirements concerning the authentic provision of
a time for data.

Some concerns with such a scheme (expanding on points made by Haber and
Stornetta [HS91]) are:

1. Privacy of the document. This is not necessarily a concern for all submitted
documents. However, where there is concern, it results from the fact that T
as well as any eavesdropper, is able to read the contents of the submission in

transit to T.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 21

Protocol SM1 Document storage by a trusted authority [HS91, Kan86]

Require: The time stamping service 7' is required to maintain the authenticity of
the database in which the time stamps are stored for each user.
Input: document x
Output: central storage of the time stamp s = (z,?), i.e., the absolute time ¢ ap-
pended to x
1: user u submits the original document x to a time stamping service T
2: T appends the time of submission to x producing s = (z,t) and stores the result

Input: document z, query of the time(s) associated with x
Output: absolute time(s) associated with document x
1: user v submits document x to the time stamping service T, with a request for the
time(s) associated with x
2: T searches through its entire database outputting the time(s) associated with z

2. Size (storage) of the document. This is especially relevant considering that T is
accepting submissions from a potentially large number of users, that may require
long (e.g., 10 years) storage periods. Multiple, variable-sized submissions from

a number of users can soon make storage prohibitive for T.

3. Bandwidth required to transmit the document. Similar to the storage required
for T, the task of transmitting the document to T may impose a burden on the
distributed system. (Although the transmission of the entire data appears to be

necessary, we see below how the submission size can be significantly decreased.)

4. Authenticity of the document. The document may be altered during transit by
an attacker or erroneously recorded (i.e., the data or the time) by T. Any such

errors (malicious or otherwise) are not necessarily detectable to T.

5. Trust. For example, a malicious T might create false stamps. More specifically,
T can append a ‘time’ of its choosing to any document of its choosing. For
example, T has the ability to time stamp a document with a time that is one
year earlier than the current time. Also, during verification, a user does not

have a method for determining the trustworthiness of the response from the

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 22

alleged T.

Although the privacy of the submission may not be necessary for the submitter of
the document, it is certainly not necessary for T to have knowledge of the contents.
(Recall that a time stamping protocol is not concerned with the form of a message,
but rather, treats the input document only as a finite string of bits.) Encrypting the
document is one option. Indeed, since u may encrypt the document for himself on
local storage, it may make sense to also send an encrypted copy to T. (Notice that
this complicates the verification procedure since a copy of the decryption key and
algorithm would be required by the verifier.)

The size of the transmitted document and storage required by T are not aided
by the encryption of the document. However, compression of the document will, in
many cases, reduce the size of the submitted document. Indeed, the document can
be compressed, followed by an encryption.

However, a better solution exists. As suggested by Haber and Stornetta [HS91],
u can deal with the privacy, storage and transmission concerns by using a collision-
resistant hash function (see Section 2.1.2), i.e., by submitting y = h(x) as opposed
to simply z. wu still maintains a copy of the original document z. A user v # u,
verifying the time associated with y would obtain x from « and submit y = h(x) to
T for a verification of the time. The one-wayness property precludes u from claiming
that an alternative document is the actual input to the hash. Privacy concerns on
u’s machine can still be solved by encrypting the document.

Transmission or storage errors can be dealt with by having T return an acknowl-
edgement for each submission. u can verify that the correct hash has been recorded
with the correct corresponding submission time. However, this does not preclude the
possibility of the ‘loss’ of the information at T’s end or an active attack or imper-
sonation of T to the submitting or verifying user. An alternative to this problem,
as well as some limiting of malicious incompetence can be achieved by having the
acknowledgement for a given submission authenticated by 7', along with the time of
submission, and returned to u and verified for its authenticity. For example, this may
involve the returning of a T-signed time stamp to u. Altering Protocol SM1 to take

into account the concerns above, one obtains Protocol AB1 as given in Section 2.4.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 23

The question of trust in a central time stamping authority may be handled in
many ways, including the following. One is to decentralize the stamp computation.
The verification of valid stamps then becomes one of designing a secure multi-party
stamping protocol. A second solution, linking, may be used to restrict the stamps
that T is allowed to produce, and more importantly, the times at which he is able to
produce them (see Section 2.5). Restricting T’s ability to alter the temporal ordering

serves to reduce the trust required in him.

2.3 Group Hashing

In this section we review techniques for allowing a coarser granularity for the time
provided by the time stamping of data. This granularity is provided by the time
stamping of a round’s worth of documents, rather than of individual data. More
than one document is input per round, producing a single representative group hash
value; one value will be produced for a given round. The duration of the round can
be parameterized by a fixed length of time or a maximum number of documents that
might be group hashed during a particular round.

The temporal ordering of each document is performed by having the submitting

user
1. demonstrate that a document was submitted to a given round; and

2. recover the time associated with the resultant round value in which the docu-

ment was asserted as being submitted.

In this section, Item 1 is dealt with. In Section 3.2, we analyze these techniques.
Techniques for providing a time for the group hash result (i.e., Item 2) are reviewed
in Sections 2.4 and 2.5.

Two motivations for using a group hash over a round of submitted documents are:

1. Storage efficiency [HS91, Mer80]. For time stamping protocols in which multi-
ple copies of a time stamp are required or a centralized storage facility is used,

some group hash techniques allow for more efficient storage to be realized (see

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 24

Section 3.2.2 for further analysis). Rather than one stamp for each document,
there is one stamp for every m documents. The size of the resultant group hash

affects the success of this technique at decreasing the storage.

2. Decentralized computation [BAM93, Nyb96]. The resultant group hash value a,
for round 7 can (in most cases) be computed individually by each user; it may

not be necessary to have a centralized 7' compute the resultant value.

An important practical concern (especially with a decentralized computation) in-
volves the ordering of the documents input to a particular round, to allow each
participating user to recover the same round value (in the case that the group hash
computation is non-commutative). Benaloh and de Mare [BdM91| suggest that each
user in the entire system have a regular position for each round (their suggestion
applied particularly to Protocol GH3). In rounds in which users do not participate,
a default value is used in place of a real document. Thus, if there were m documents
submitted per round and n total users in a particular distributed system, then n doc-
uments would be submitted to the group hash function. This is clearly impractical
since it may often be the case that n >> m. Using a centralized 7" for stamp com-
putation is useful for cases when an ordering of the participants’ input to the group
hash function is required and as well, avoids the need for expensive broadcasting and
impractical user interactions. The beginning and end of a round can be delimited by
publically known times (e.g., every 10 minutes starting on the hour) or may be more
dynamic if orchestrated by a central authority.

Let y1,v2,...,Ym be the documents submitted during round r; submitted here
means either broadcast by each user to all others in the case where each user must be
able to compute a, or simply transmitted to a centralized time stamp authority (T).
For simplicity, let u; be the submitter of y;, though in reality, one user can submit
more than one document. Let |y;| = log,y; = lgy; = n denote the number of bits
contained in y;. In most cases, beyond the production of a, for a given round, user u;
will also have some additional information, necessary (if it exists) for demonstrating
that the data y; was indeed used in the computation of a,.. We refer to this information

as member,,.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 25

The potential decrease in the amount of storage required for the resultant group
hash value has the effect of potentially increasing the amount of storage required for
member,, for each participant in a round. The next three subsections respectively

review techniques in which this amount is decreased.

2.3.1 Linear Storage

In this subsection we discuss schemes for which the amount of storage for each user
participating in the round is linearly proportional to the number of participants (=
number of documents) submitted in the round. In other words, if u; submits y;, then
member,, contains a number of components (each the same size as y;) that is a linear

function of the number of users participating in the round.

Protocol GH1 Cumulative Group Hash [BAM91].

Group Hash

Require: An ordering of the users participating in each round is required to allow
consistent computations of a, by each participating user.
Input: {y1,...,ym}
Output: a,, member,,
1. y; = h(x;) for document x; is broadcast by each w;
2: each user computes and stores a. = h(yi,...,yn) and member, =

(yla s Y Yk e ym) for their own Yi-

Input: y;, member,,, a,
Output: indication of whether y; contributed to the construction of a,
1: user v obtains y; and member, from w;, computes a =
h(y1, . s Yict, Yis Yivts - - > Ym) and accepts that gy, contributed to the pro-
duction of a, only if a = a,.

Protocol GH1 was given by Benaloh and de Mare [BAM91]. Assuming that h is
collision-resistant (see Section 2.1.2), it should be computationally infeasible for one

to find inputs yi, v5, ...,y such that

h(yla Y2y vy ym) = h(ylla yl27 ce 7@/;71’)'

Notice that it may be that m’ # m, as the verifier may not be aware of the number

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 26

of documents submitted for the computation of a,. If each user stores a,, it is only
necessary that the submitter has the inputs necessary to reproduce a,, and hence
demonstrate that his document belongs to the round in which a, was computed.

Protocol GH1 can be altered slightly to allow for a recursive construction of a,
[BAMI1]. Let

21 = y,22=h(z1,92)s s Zm = P(Zm_1, Ym)
@ = Zm (2.1)

m

5 documents and asymptotically, the storage over the

On average, each user stores
system is the same as the previous scheme, i.e., approximately m? documents are
stored in total by the m users participating in a particular round. Protocol GH2

describes the scheme.

Protocol GH2 Recursive Group Hash [BAM91].

Require: An ordering of the users participating in each round is required to allow
consistent computations of a, by each participating user.
Input: {y1,....ym}
Output: a,, member,,
1. y; = h(x;) for document x; is broadcast by each w;
2: each user computes and stores a, (as computed in (2.1)) and member, =

(2i-1,Yit1, Yigas - - Ym) for their own y;

Input: y;, member,,, a,
Output: indication of whether y; contributed to the construction of a,
1: user v obtains y; and member,, from wu;, computes a = h(zi_1, Yi, Yit1s - - -+ Ym)
and accepts y; if a = a,.

2.3.2 Logarithmic Storage

The schemes of Section 2.3.1 required that each user that submitted a document for
group hashing during a particular round, stored an amount of information that was

always linearly proportional to the total number of documents submitted to a given

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 27

round. In what follows, we review a technique for reducing this storage, allowing one
to achieve a logarithmic storage requirement.

We can think of the production of a group hash as a technique to authenticate a
number of pieces yi,¥s,...,ym to produce a single authentic value a,. However, in
our case, we only require a resultant value whose authenticity is maintained by other
means, i.e., the timing information is provided at a later time. A similar problem
was tackled by Merkle [Mer80, Mer82] for the authentication of a file of public keys.
Rather than having each user store all y; (e.g., the public keys of all other users),

compute a, as
ar = h(h(ys -y m)) (Y e Ym)

In this way, u; need only store the single hash of the [%J documents that doesn’t
contain his own y; as well as the remaining [%J documents, i.e. {%J + 1 total pieces
as opposed to m — 1 for Protocol GH1. Notice as well the alternative computation

for h(yi,... ,yL%J) (and similarly for h(yL%JH’ c oy Um)) as
hCh(yrs oy) R (Y e Y)

This additional measure reduces the storage to [%J + 3 for each user.

One can continue by recursively dividing until each is the hash of only a single y;,
in other words until §7 = 1, which occurs when d = Igm. Generalizing from above,
the amount of storage for each user is the number of intermediate hashes plus the
number of documents required to compute the hash to which you belong, or in other

words,

m
§+(d—1)

which is lgm when d = lgm. Therefore, the storage for each user, is logarithmic in
the number of round participants. This computation is shown in Figure 2.1 when
m = 8.

Specific implementations of this idea (as applied directly to digital time stamping)
were given independently by Benaloh and de Mare [BdM91]| and Bayer, Haber and
Stornetta [BHS93]. They are essentially straightforward implementations of Merkle’s
tree authentication [Mer80, Mer82|. A variation of this technique is used in a commer-

cial time stamping implementation given as Protocol HY1 [Tro95], where a central

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 28

Figure 2.1: Logarithmic user storage group hash technique. A specific example is
illustrated in which 8 data are group hashed to produce a,. Each y; is computed as
the hash of the concatentation of the two children. For example, yss = h(ys6, y7s)
where ‘,” denotes the concatentation of the bitstrings ys¢ and y7s.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 29

entity performs the computation of the hash. The time stamp is returned to the user
(including an indication of which leaf position the user has been given) who can then
verify his inclusion in the round by comparing his compuation of the time stamp
with the one that is published say weekly, for example, in the NY Times. A generic

(decentralized) version of the tree-based hashing technique is given in Protocol GH3.

Protocol GH3 Tree Group Hash [Mer80, BAM91, BHS93|

Require: An ordering of the users participating in each round is required to allow
consistent computations of a, by each participating user.

Input: {y1,....ym}

Output: a,, member,,

1. y; = h(x;) for document x; is broadcast by each w;

2: each user participating in the current round computes a, as shown specifically for
m = 8 in Figure 2.1 where the parent of nodes containing bit strings y and ¥/’ is
computed as h(y,y') and ;" denotes the concatenation of bit strings. member,, =
(21, ..., 21gm) is a list containing the 1g m values in the tree necessary to recompute
a,. From Figure 2.1 for example, we have member,, = (y4, Y12, Yss)

Input: y;, member,,, a,
Output: indication of whether y; contributed to the construction of a,

1: user v obtains y; and member,, from w;, computes a = k(... (h(y;; 21);...); Zigm)
and accepts y; if @ = a,. We use a ‘;" here to indicate concatenation as before
except that the order of these inputs varies for each user. For example, from
Figure 2.1, for y3 and member,,, v computes

a = h(h(yIZa h(y37 y4>>7 y58>
————r

Y34

. /

Y14

where if the correct y3 and member,, were maintained by uz, a = a, is true.
Therefore for us, yss = h(ys, z1) where z; is the first element of member,, while
for uy, ys4a = h(z1, ys4) using member,, .

As demonstrated by Benaloh and de Mare [BdM91] (and similar to the security
provided for the schemes of Section 2.3.1), finding a " &€ {yi,...,¥ym} such that
a challenger could be fooled into believing that 3’ was indeed part of the hash to

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 30

produce a, would imply that a collision for the hash function i has been found. This,

however, would contradict the assumption of collision resistance for the hash.

2.3.3 Constant Storage

In the previous two subsections, linear and logarithmic storage factors were respec-
tively achieved for each user participating in a round. These solutions used a (non-
specific) hash function for which the only assumption made was it be collision-
resistant. In this subsection, additional assumptions on the hash function are used

to allow one to achieve a constant amount of storage for each user.

Schemes Based on Associative Hash Functions

Continuing along the same lines as in Section 2.3.1, the resultant group hash a, over

the documents yy, 42, . . ., ¥ is computed recursively as in (2.1).

Definition 2.12 A function h: X — Y is associative if Vz,y, 2 € X, h(z, h(y, 2)) =
h(h(z,y), 2).

The following ideas were presented by Benaloh and de Mare [BAM91]|. Suppose
that the hash function A is associative. Since the order of application of an associative
function A is irrelevant, u; need only store z;_q, y; and an accumulated hash of all
y; where j =¢+1,...,m, namely w;;;. The computation of the hash for the round
by this user consists in computing h(h(z;_1,y;), w;y1). If h is also commutative, then
user u; need only store y; along with a single accumulated hash for all y;, j # <.

Is the construction of an associative one-way hash an achievable goal? As of yet,
the answer is no, and they do have other applications as well (which are beyond the

scope of this thesis). An overview of this topic is given by Rabi and Sherman [RS97].

One-Way Accumulators

Benaloh and de Mare [BAM93] use the properties of quasi-commutativity (defined

below) and one-wayness to develop a one-way accumulator which allows the resultant

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 31

hash value for a round to be computed with only a constant amount of storage for
each user. The scheme is described as a decentralized computation.

To achieve their goal, the definition of a hash function is slightly altered. A family
of one-way hash functions is an infinite set of functions h; : X; X Y; — Z; such that

(i is subsequently omitted for simplicity):

1. Ease of computation. Given x and y, z = h(x,y) is computationally feasible to

compute.

2. Collisions. Given a pair (x,y) and given a ¢/, it should be computationally
infeasible to find an 2’ such that h(z,y) = h(2',y'). Note that it may be

possible that given (z,y), one can easily find a pair (z/,y').

A function f: X XY — X is quasi-commutative if

f(f(xvyl)ayQ) = f(f(xva)vyl)

A family of one-way accumulators is a family of one-way hash functions that are
each quasi-commutative. The one-way accumulator is useful in that computations

such as
z=h(h(...h(...(R(R(2, 1), 92)s -3 Yi)s e o s Y1), Ym)

for initial value x, do not depend on the order of the y;. Thus, given only a single

intermediate hash value w; where

w; =h(h(...h(h(...(R(h(z,y1),99) - Yi1)s Yit1)s -+ s Ym—1)s Ym),

z = h(w;,y;) is computable.
Notice that addition, multiplication and exponentiation are all quasi-commutative.

However, only exponentiation has the potential of being one-way. Therefore, let
en(x,y) = 2¥ mod n

be the accumulator, where n = pq is the product of two primes, the form of which is

discussed below. Group hashing using this accumulator is described in Protocol GHA4.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 32

Protocol GH4 Exponentiation Group Hash [BdM93|.

Group Hash

Require: A rigid composite integer n = pq, initially constructed by a trusted au-
thority. The primes p and ¢ are destroyed subsequent to the computation of
n
Input: {y1,....ym}
Output: a,, member,,
1: y; = h(z;) for document x; is broadcast by each w;
2: users agree upon a value x (though likely there is a common public value used
by all users for each round, e.g., as suggested by Benaloh and de Mare, a rep-
resentation of the current time), from which the starting seed zy = 2% mod n is

obtained. Each user u; computes and stores a, = zg' ™ mod n and member,, =

agt Y™ mod i for their own ;.

Input: y;, member,,, a,, n
Output: indication of whether y; contributed to the construction of a,
1: user v obtains y; and member,, from u,;, computes a = (member,,)¥" mod n and
accepts y; if a = a,.

To achieve a temporal authentication of this group hash, the authors suggest that
the value x might represent the current date or time. The fault with this suggestion
is discussed in Section 4.4.1. With regards to one-wayness, for a suitably chosen
composite n, the product of two primes, Shamir [Sha81] has shown that if root finding
is difficult (i.e., for a given y' and a,, finding member, such that a, = (member,)¥
(mod n)), then e,(z,y) is one-way for suitably chosen n. However, because of the
repeated exponentiations, the worry that small subgroups may be reached necessitates
a stricter construction for n, as now discussed.

A prime p is safe if p = 2p’ + 1 where p' is an odd prime. A rigid integer
n = pq is composed of distinct safe primes p and ¢ such that |p| = |¢|, denoting that
the bitlengths of the primes are equal [BAM93]. Given that ged(y,n’) = 1 where
n' = %%, computations of e, will stay in the large subgroup of squares modulo n
provided = # +1 and y # 0. The construction of n may be undertaken via a trusted
outside source, a special purpose physical device, or a secure multiparty computation.

One thing that might help an attacker is the access to a number of other roots

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 33

modulo n, i.e., the stamps of each of the other users for a particular round. Benaloh

and de Mare [BAM93] go on to show that such an attack is computationally infeasible.

Fast Accumulated Hashing

Nyberg [Nyh96] describes a scheme for accumulated hashing. It is an improvement
over Protocol GH4 in that it does not have a trapdoor. In Protocol GH4, the pa-
rameters were chosen such that there exists a trapdoor for easily cheating the scheme
(i.e., the factorization of n). Despite the existence of this information, the trapdoor
is not used in the scheme nor is it even supposed to remain known as it is ideally
destroyed during the public parameter creation period. An equally attractive advan-
tage for Nyberg’s scheme is that besides the submitted data, the user need not store
any additional information, i.e., |member,,| = 0.

Assume that y;, 7 = 1,..., m are the [-bit one-way transformations of documents
submitted for accumulation (the process of obtaining the [-bit transformations is
described later). Further assume that the y; are randomly chosen elements from a set

Y with uniform distribution. Each y; can be decomposed as

Yi = {yir, Yizs - -, Yir } (2.2)

where |y;;| =dfori=1,....m,j=1,....7.
Using this partitioning, for each y;, an r-bit b; = {b;1,...,b;.} is obtained using

the following rule:

0 lf yij = {O}d,

(2.3)
1 otherwise

fori=1,...,m,j=1,...,r bj= {

This first compression by a factor of d is a function f : {0,1}"? — {0, 1}" where each
d-bit y;; is mapped to a single bit b;;.

The r-bit accumulation value (time stamp) is obtained by performing bitwise

multiplication modulo 2 of the components of the b;. In other words, the accumulation

value a = {ay,ay,...,a,} is obtained as

a]‘:Hbi]‘mOdQ,jzl,...,T (24)
i=1

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 34

This second compression by a factor of m can be described by the function ¢ :
{0,1}™ — {0,1}". Notice also that we have member,, = (. The protocol steps
are described in Protocol GH5.

Protocol GH5 Bit Group Hash [Nyb96].

Group Hash

Input: {y1,....ym}
Output: «,
1. For their own document z;, each user u; computes the [= rd bit y; = gen(h(z;))
as described below for (2.5).
y; is decomposed as in (2.2).
y; is compressed to obtain the 7 bit b; as in (2.3).
b; is broadcast to all users.
Each user computes and stores a as computed in (2.4).

Input: z;, a,
Output: indication of whether y; contributed to the construction of a,
1: user v obtains z; from wu;, computes b; (as described for computation of the Group
Hash shown above in the first part of the protocol) and accepts x; if the jth bit
in a is 0 when the 5 bit in b; is also 0.

Analysis of Protocol GH5. Suppose that a user claims that a value 2’ contributed
to the production of a. Firstly, 2’ is submitted to obtain the [-bit 3. ¥’ is split into
r d-bit pieces and the first part of the compression is performed to obtain the r-bit
value b’ = {b},0,,...,0.}.

Comparing the submitted ' with the authenticated accumulation value a, a suf-
ficient condition to have a; = 0 is that b, = 0 (it is only sufficient since any one of m
bi’s can contribute to having a; = 0). Now if b, = 0 in the test string, the claim is
that &’ belongs to the round in which a was produced. Therefore, for o’ to “belong to

a” it must be true that
if . = 0 then a; = 0, where j =1,...,7.

For the security of Protocol GH5, it is important to know if such ay’ & {y1, ..., Ym}

can easily be found that passes the verification step. To simplify the analysis, assume

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 35

a given b, produced subject to the restraints of Protocol GH5. For this ', we can
state the following probabilities:

PW=0) = 27,

P,=1) = 1-Pl,=0)=1-27"

~
QQ
I
=
I
jamp
e
=
|
=

«
Il
—

,d)

Il
f=F
N
|
b

— Zzl o Qfd)m
P(a;=0) = 1—P(a;=1)
= 1-(1-27%Hm,

Returning to the candidate 0, it is important to determine its probability of
success for being deemed to “belong to a”. Thereafter, one can choose parameters to
minimize this probability. In the theorem below, let N = 2¢ be the upper bound on

the number of messages that can be hashed, i.e., m < N.

Theorem 2.1 [Nyb96] Given a candidate ' and an authenticated, accumulated
hash, denoted a, created subject to the restraints of Protocol GH5, then

PV “belongs to” a) ~ e¥e

Proof The following steps will determine the probability that & will pass the
verification step. Let ¢; be the proposition “if b; = 0 then a; = 0”. The negation —g;

of ¢; is the statement “b; =0 A a; =17,

P(=q;) = P(;=0)P(a; =1)
— 2—d(1 o 2—d)m
P(g;) = 1-P(~g)
= 1-27%1—27%Hm

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 36

¢t L]

30 | 835K
50 || 1.4M
7 | 2.1M
100 || 2.8M

Table 2.1: BitLength [required for the output of the one-way transformation to allow
a random value 0’ to have e~! probability of “belonging to” accumulator a. | = rd
where r = Net and d =1g N. e = 2.71828 is the natural logarithm. For this particular
example, d = 10 (so that N = 1024).

P(' “belongs to” a) = P(g A+ Ag)

= Pla) - Plg)
= (1-2%1-279)my

From here, we have

1 1 1 1 1 _,
l——1-—=)")"<(0-——=01-=)"Y~(1-—) ~enr
(1= 5 =5)") = (1= 50=-F)") A= 5=) ~ev

Let et be the probability of success for a candidate 0’ giving

—~
[= Netlg N .
~——
d
Table 2.1 displays some possible choices where N = 1024 (hence d = 10) for a
variable t. It demonstrates that for even the most minimal security — e=3Y — the
output bitlength of the one-way transformation required for the production of the y;
is quite large, i.e., 835 Kilobits. In contrast, most hash functions produce an output
of ~ 160 bits, given an arbitrarily large input size. To obtain such an output, Nyberg
[Nyb96] suggests use of a hash function h in conjunction with a pseudo-random bit
generator (PRBG) gen. The document 2’ is input to A whose short output is input
as a seed to gen. From the PRNG gen, [bits can be produced. Therefore,

y' = gen(h(z')) (2.5)

Notice that this large number of bits is only temporarily required at the time

of computation of the authenticated accumulator a or during the verification of any

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 37

values at some subsequent time. However, note that the size of a itself (which must
be stored long-term) is also quite large. For the example given in Table 2.1, the size

of a is = the size of [(since d = 10).

2.4 Absolute Time Stamps

Stamping protocols in which an absolute time stamp (see Definition 2.3) is issued
have the specific time at which a message was stamped contained in the time stamp
(or at least a piece of data from which the time is directly and uniquely obtained).
The granularity of this time may depend on the application in which the time is to
be provided, but can include time to the nearest minute, second, etc. This timing
information for one message can be obtained independently of the timing material
provided for other messages. In this way, the production of an absolute time stamp
is memoryless with respect to (i.e., independent of) other stamps that are produced.
Assigning an absolute stamp in a distributed network assumes the existence of an au-
thentic clock from which each potential verifying user maintains their local clocks. A
reasonable amount of clock drift between respective clocks is assumed to be tolerated.

The schemes reviewed in this section are critiqued in Section 3.3. Generalizations
regarding the production of absolute time stamps are discussed in Section 4.3.2. In
this section, we review the current literature related to the provision of absolute time
stamps. Subsection 2.4.1 reviews techniques in which a time stamp is produced by a
central time stamp authority (or several such authorities). Subsection 2.4.2 reviews

techniques in which individual user entities participate in the time stamp production.

2.4.1 Using a Time Stamping Service

Consider the time stamping protocol given in Protocol AB1 [HS91]. Notice the differ-
ence from Protocol SM1 where T need now maintain only the secrecy of his signature
key, while each user must have (or be able to obtain) an authentic copy of T’s sig-
nature verification key. The exact same scheme (termed the “Anonymous Service”)
was later given by Pinto and Freitas [PF96]. Yet these are both pre-dated by the

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 38

presentation of a similar scheme by Merkle [Mer80, Mer82] (see Protocol NT1).

Protocol AB1 Centralized Time Stamp Construction [Mer80, HS91, PF96].

Require: A time stamp authority 7" that is trusted to provide the correct absolute
time to submitted data.

Input: the hash y = h(z) of a document x

Output: the time stamp s = sigr(y,t) produced by T

1: User u sends the hash y of the document x to the time stamp authority T.

2: T verifies that the request is of the proper form, appends the current time ¢ and
returns t along with the T-signed response s = sigr(y,t).

3: u verifies the signature applied by T and ensures that an acceptable time t is
associated with y (where acceptable might mean a time greater than when y was
submitted and prior to when the T-signed response was received).

4: u stores {x, s,t} as the time stamp capsule.

Input: {z,s,t}
Output: indication of whether x is time stamped with time ¢
1. user v obtains {z,s,t} from u, computes y' = h(x) and ensures that (y',t) was
signed by T, producing s.

One concern with Protocol AB1 is that trust is required in a single trusted author-
ity, for the honest production of time stamps, as well as the secure maintenance of
private keying material. To reduce the trust required, Adams et al. [ACPZ98| build
on top of Protocol AB1 with a scheme that uses so-called temporal data authorities
(TDASs) for additional corroborations regarding the time t.

Continuing from the submission of 3 in Protocol AB1, T" submits y to a number of
TDAs (as specified by u), requesting additional, unpredictable “timing information”
that associates y with a particular event. This timing information is appended to
y, signed by the TDA and returned to 7'. Suggestions for the unpredictable timing
information include [ACPZ98]

1. stock market information,
2. sports results,

3. official weather for a specific location,

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 39

4. lottery results,
5. birth or death announcements in specific newspapers,
6. headlines in specific newspapers,

7. information linking the request with previous and subsequent requests (e.g.,
hash values) that can be verified against information that is made public by the
TDA, and

8. a signed packet from a secure time source.

Items 1 to 6 refer to what we define as implicit absolute time (see Definition 3.4).
The use of such a time is discussed in Section 3.3.1. Item 7 refers to the relative
ordering of time stamp submissions by linking them. The public storage allows a
subsequent recovery of the corresponding absolute time so long as one is authentically
provided along with the public storage (see Sections 4.3.3 and 4.2.1). Item 8 indicates
the option in which the TDAs are used as the providers of corroborating absolute
times. Note that each TDA can provide a different kind of temporal data. The entire

scheme is described as Protocol AB2.

2.4.2 Decentralized Solutions: User-Constructed Stamps

In this section, we review three schemes that remove the requirement for a central
time stamping service T. The stamps are constructed by individual users. Since a
user has the capability to construct a stamp at any time, some additional properties
must be used. These vary from distributing the stamp storage to distributing its
construction.

As in Section 2.4.1, absolute time stamps are assigned to each of the submissions.
For the first two schemes, the stamp computation is performed by the submitting
user, while the stamp authentication is distributed (via a distributed storage). The
third scheme distributes the construction of the stamp among a number of users.

Storage of the stamp is maintained by the submitter of the document.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 40

Protocol AB2 Centralized Time Stamp Construction with Additional Corroboration
[ACPZ98].

Require: Temporal data authorities (TDAs) are an optional enhancement, whose
function is to accept a request from the time stamp authority and return a signed
response over the received request with corroborative temporal data information
appended.

Input: the hash y = h(z) of a document x

Output: time stamp s = sigr(y, t,tempDatay, ..., tempDatay)

1: User u sends the hash y of the document x and optionally, a request for k& addi-
tional corroborative times, to the time stamp authority T.

2: T verifies that the request is of the proper form. Should any corroborative tem-
poral data be requested, T sends y to & TDAs.

3: Each TDA; accepts y, appends appropriate, unpredictable information,
tempData;, signs and returns the result tempDataT oken; to T.

4. T verifies the signature for tempDataT oken;, for each i, ensuring that it is com-
puted over y. T may, but is not required to verify the time provided by tempData;.

5. T appends the current time ¢ and returns ¢ along with the T-signed response
s = sigr(y, t,tempDataT okeny, ..., tempDataT okeny).

6: u verifies the signature applied by T and ensures that an acceptable time t is
associated with y (where acceptable might mean a time greater than when y was
submitted and prior to when the T-signed response was received).

7: u may also verify that the times provided by the tempData; are within acceptable
bounds, e.g., close to the time ¢.

8: u stores {z, s, t,tempDataT okeny, ..., tempDataTokeny} as the time stamp cap-
sule.

Input: {z,s,t,tempDataTokeny, ... tempDataTokeny}
Output: indication of whether s is a valid signature, i.e., for x time stamped with
time ¢
1. user v obtains {x,s,t, tempDataTokeny, ..., tempDataToken;} from u, com-
putes y' = h(x) and ensures that (y',t, tempDataT okeny, ..., tempDataT okeny,)
was signed by T, producing s.
2: should v also require additional corroborative evidence regarding the time of
stamping, each tempData; may also be verified against the time ¢, possibly in-
volving interacting with the appropriate TDA.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 41

Protocol AB3 Broadcast-and-save time stamping technique [BAM91].

Input: the hash y = h(z) of a document x
Output: distributed storage of y
1. User u broadcasts y = h(x) to all other users at time t.
2: Every other user stores y, along with the time ¢ corresponding to when y was
received.

Input: {z,t}
Output: indication of whether x is time stamped with time ¢
1. User v obtains x, computes y = h(z) and determines (by lookup in v’s own
records) whether y was recorded at time t.

Benaloh and de Mare [BAM91| make reference to a scheme which we describe as
Protocol AB3. Stinson [Sti95] alters Protocol AB3 so that a centralized entity is
required for the coordination of the storage of the time stamps, where this storage is
distributed. In particular, the resultant time stamp is recorded in a publically veri-
fiable medium, e.g., a local newspaper. Alternatives for authenticating the resultant
time stamp are discussed in Section 4.2.1. Protocol AB4 describes Stinson’s scheme.
The use of so-called unpredictable information such as pub is discussed further in
Section 3.3.

A solution that specifies more fully the storage responsibilities for the users was
given by Haber and Stornetta [HS91]. Each user u; has access to a secure signature
scheme sig,, as well as a pseudo-random number generator gen. Protocol AB5 de-
scribes the steps taken for user w to obtain a time stamp. y is used as a seed for
gen, where the deterministically generated output can be used to select some subset

of users.

2.5 Relative Time Stamps

In this section, we review schemes in which the stamps for several rounds are linked,
allowing for the provision of a temporal ordering of the stamps. The idea of linking

is similar to the linking used in message passing protocols. (See Menezes et al.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 42

Protocol AB4 Posting of time stamp to a distributed, publically verifiable medium
[Sti95].

Require: A publically verifiable storage medium for which information can be added
by users, but not modified nor deleted.

Input: the hash y = h(z) of a document x

Output: Storage of u’s signature s = sig,(y,t) in a publically verifiable medium.

1: At time ¢, user u computes the digital signature s over the concatentation of
y = h(x) and pub, i.e., s = sig,(y, pub) where pub refers to public information that
could not have been predicted before time ¢. For example, pub might represent
the hash of the closing values of the New York Stock exchange.

2: The triple ¢ = {y, s, pub} is published in a publically verifiable medium, e.g., local
newspaper.

Input: {z,t}
Output: indication of whether x is time stamped with time ¢
1. User v obtains {z, ¢} from user u, computes y = h(x), obtains the pub information
corresponding to time ¢ and searches for (and determines the correctness of) the
entry {y, s, pub} in the publically verifiable medium.

Protocol AB5 Decentralized time stamp construction with local storage [HS91].

Require: Fach user requires possession of or access to verification keys of other users.
The participation of users is required for the production of a time stamp.

Input: the hash y = h(z) of a document x

Output: [(y,u),(21,...,2;)] where z; = sig,,(t,y)

1. For document z, u computes y = h(x) as well as gen(y) — (uq,...,u;) denoting
that the output of the pseudo-random function gen(y) is used to select to some
subset of users.

2: u gives y to each wu;.

3: Each recipient computes and returns to u, z; = sig,, (¢, y).

4: u stores [(y, u), (21, ..., 2x)].

Input: {z,t, (21,...,21)}
Output: indication of whether x is time stamped with time ¢
1. User v obtains [(y,u), (z1,..., 2)] from u, computes (uy,...,u;) from gen(y).
2: v verifies each of the z; (i.e., verifies that the time in each certificate is within the
time in question).

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 43

Mg

msgs

A

msgs

~N-

Figure 2.2: Generic Message Passing

[MvOV97, Chapter 10], Meyer et al. [MM82, Chapter 8] or Davies et al. [DP84,
Chapter 5] for background.) The goal of linking messages is to prevent attacks such
as message replay, message insertion, message deletion. For example, consider the
simple message exchange between users A and B given in Figure 2.2. One would
like to prevent, for example, the malicious insertion of msgy between messages msg;
and msgy. One of the means for preventing such attacks is the use of time-variant
parameters (TVPs). Random numbers, sequence numbers and date or time stamps
are examples of TVPs.

The analogous attack for relative time stamping protocols is the insertion of a
message with a false time stamp into the current temporal ordering of messages. Just
as TVPs allow for the distinguishing of several protocol instances in a message passing
protocol, they can also be used to distinguish (or order) one round from another in a
time stamping protocol. Each time stamp issued (i.e., the result of a round) can be
thought of as a single message in a large, ongoing time stamping protocol.

The basic linking relation can be described by the simple recurrence relation

ar = h(arfla yr)

where a, is the time stamp for the rth round and y, = h(x,) is the hash of the
document to be stamped during the rth round (or alternatively, may represent the
output of a group hash). This equation provides an ordering of the y;. Further
authentication of the resultant a, allows for a recovery of this ordering during stamp
verification. Variations result from the particular construction of a,_; and the amount
of user versus central entity cooperation required for the validation of a relatively

ordered time stamp. These linking techniques are discussed further in Section 3.4.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 44

1D, ID. ID
Cl Ci Cr
L1 L, L,

ID, ID; 4 D,y

Figure 2.3: Chain of time stamps in Protocol RL1.

Haber and Stornetta [HS91] provide for a recovery of the relative ordering of the
documents by requiring user interactions during stamp verification. The protocol uses
a central time stamping service T that requires no record-keeping. Each user stores
information pertaining to their own submission and as well, information explicitly
defining a relationship with the stamp produced immediately prior to their own. Here,
r denotes the rth round, where one document is stamped per round. Protocol RL1
describes their protocol. The resultant chain of stamps is shown in Figure 2.3. In
Section 4.4.2, the security of this protocol is analyzed.

A similar recursive linking to Protocol RL1 is given by Pinto and Freitas [PF96]
with Protocol RL2. The distinguishing feature is the use of a central time stamp
authority when validating the temporal order of two stamps. A more interesting
distinction regards the differing use of the relative ordering of the stamps. Whereas
Protocol RL1 (and likewise Protocol RL3) uses the linking as a means for detecting
a rogue time stamp authority, Protocol RL2 (and likewise Protocols RL4 and RL5)
uses the linking to allow for a subsequent temporal measurement between two input
data. This point is discussed further in Section 4.3.3.

The extension of the linking element can be used to explicitly reference more than
one of the previous stamps. The purpose of this technique is to reduce the required
number of potential interactions between users (as required specifically for Proto-
col RL1), as well as increasing the work and potentially the number of conspirators
required by an attacker attempting to produce a false stamp.

Protocol RL3 describes the Haber and Stornetta [HS91| variant of Protocol RLI.
Its intention is to remove the requirement for users to keep all of their time stamps

(in anticipation of their participation in future challenges). A challenger can now

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 45

Protocol RL1 Haber-Stornetta Linking [HS91].

Note: As indicated by Haber and Stornetta, the time stamp authority 7" need not

perform any record keeping nor be trusted since 7' is unable to back or forward
date stamps. (See Section 4.4.2 for and indication as to why this claim is false.)

Input: y, = h(x,) is the hash of document x,
Output: a,,ID,

1:

2:

User u sends y, = h(z,), for document x, and ID, = ID, where ID, is the
unique identification for user u, to the time stamp authority T.

T computes the certificate a, for this rth submission, namely a, = sigr(C,),
where

Cr = (7", tr, IDra Yr; Lr)
Lr (tr—lalDr—layr—laH(Lr—l))

and H is a collision resistant hash function, and ¢, is the absolute time of the
submission. L, is referred to as the linking information and contains the respective
information pertaining to the submission from the previous round.

Upon receiving the next request for a stamp from user v, T sends time stamp
(a,,ID,.1 = ID,) to u who verifies that the signature has been computed prop-
erly and saves the time stamp for future use.

Input: (a,,ID, 1)
Output: indication of whether the absolute time ¢, associated with g, in a, is trust-

worthy

1. User v obtains (a,, ID,;1) from u.
2: v verifies the mathematical correctness of the signature a,.
3: To verify that there hasn’t been a collusion with T (i.e., T did not use a fake time

t.), v contacts ID, 1 and obtains (a,y1, ID,;5) where

ary1 = sigp(r + 1,6y, ID, 1 Yr1s Log)

and checks that L, contains both y, and H(L,).
Optionally, v may also check I D, 5’s stamp or verify previous stamps using I D, _;
(as it is included in L,).

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 46

Protocol RL2 Recursive Hash Linking [PF96].

Input: y, = h(z,) is the hash of document z,
Output: {a,,C,, L, t. 1}
1. User u submits y, = h(x,) to a time stamping authority 7" who computes the time
stamp a, = sigr(C,), where C, = (r,t,,y,, L,), where ¢, is the time of submission
of y, and the linking element is computed as

L = IV (2.6)
L, = h(arflaerl)aTZQa

where IV refers to an initial value.
2: {a,,C,, L, t,,r} are returned to v by T and maintained in a database by T.

Input: {a,-, C,‘, L,‘, Xy, t,', Z}, {a]‘, C]‘, L]‘, Xy, t]‘,j}
Output: A determination of the temporal ordering of x; and ;.

1: User v computes y; = h(x;) and y; = h(z;) and validates the signatures on the
T-signed a; and a;.

2: v requests s;; = {set of stamps from round i to j} from T.

3: v continues the recursive hash computation (as in (2.7) above) from L;, using «;
and s;; to see if L; is the result. If so, v concludes that a; contributed to the
computation of a; and was therefore stamped prior to a;. If not, v repeats the
process starting at L; to determine if a; contributed to the computation of a; and
was therefore stamped prior to a;.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 47

Protocol RL3 Haber-Stornetta Extended Linking [HS91].

Stamping
Input: y, = h(x,) is the hash of document x,
Output: a,,(ID,y1,..., 1D,)
1: Similar request and construction to Protocol RL1 except that the linking infor-
mation is now

Lr = [(tr—ku]Dr—ka Yr—k; H(Lr—k))a ey (tr—la IDr—la Yr—1, H(Lr—l))]

2: Upon receiving the next £ requests for a stamp from user v, T sends
(ap,(IDy41,...,1D,1¢)) to u who verifies the time stamp a, by verifying the
mathematical correctness of the signature over C, and verifies that the informa-
tion signed is consistent with the information that was submitted.

Input: (a,,(ID,11,...,1D,y))
Output: indication of whether the absolute time ¢, associated with g, in a, is trust-
worthy

1. User v obtains (a,, (ID,y1,...,ID,)) from u.

2: v verifies the validity of the time stamp a, by validating the mathematical cor-
rectness of the signature applied by 7.

3: To verify that there hasn’t been a collusion with T, v contacts any of the next &
clients, ID,;, i =1,... k and ensures that the time stamp information for a, is
included in the linking information of the time stamp for these clients.

4. Optionally, v may also verify the correct inclusion of previous time stamping
material in L, by consulting with any of the £ clients included in u’s own time
stamp.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 48

check any of the previous or next k clients, ID,;, 2 =1,..., k. Inserting a document
presumably requires finding £ simultaneous collisions for the hash H. In other words,
referring to Figure 2.4, notice that an attempt to backdate a stamp immediately
prior to a,_; would require finding collisions for the inputs to the computations of
the linking elements L, _y, ..., L, (since each contains reference to the k most previous
stamps). A noticeable drawback is that the size of L, (for Protocol RL3) is quite large.
Figure 2.4 displays the relationship between a particular stamp and its £ “children”.

Pinto and Freitas [PF96] use some of the techniques of Section 2.3 and apply them
to Protocol RL3 in order to reduce the size of the linking element. The time stamp

for a single document y returned by T is a, as in Protocol RL3 where now we have
C, = (7’, trayraLr) (27)

so that the only difference from both Protocol RL1 and Protocol RL3 is that L, is
different.

This first method is Protocol RL4. There are obvious problems with storage here
as well. Note that all the a; must be stored by T (allowing computation of new linking
elements) and the linking elements stored by each user are prohibitively large. This
scheme has the advantage that disputes can be resolved between two users, without
the cooperation of T or other users.

An alternative in which the storage for each user is reduced to a fixed size for
each stamp is Protocol RL5. Verification involves the intervention of T (to determine
if a; € A; since only a (one-way) hash of the linking element is available to users).
This solution provides for a constant size for the linking element, independent of the
number of time stamps produced. There are several concerns with this scheme. As
above, all the a¢; must be stored by T. Beyond this, the server is required to recompute
the L; based on all previously input time stamps. Lastly, disputes require verification
of all stamps from a; to the disputed stamp. (Though they could make this simpler
by having L; include a fixed number of stamps rather than an unbounded number as
in Protocol RL3.)

A suggestion made by Pinto and Freitas [PF96] for controlling |s;;| is to insert

intermediate stamps a; < aj; (see Definition 4.17 in Section 4.3.3) whose relative

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 49

r-1
Cr-l
L r-1
& 1
IDr
IDr+k-1
ID
r
Cr
L r
a,
IDr—+—1
ID '
-k
r ID]th
Cr—k
L r-k
&)
IDr—k—H
IDr

Figure 2.4: Chain of time stamps in Protocol RL3. L, is explicitly computed as a
function of the £ most immediately previous stamps, i.e., those stamps held by users
ID, y,...,ID, q; the arrows are used to indicate this dependence. User I D, (owner
of stamp «a,) maintains the IDs of the next & stamp owners, i.e., D, y,..., 1D, .

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 50

Protocol RL4 Cumulative Extended Linking [PF96].

Stamping
Input: y, = h(z,) is the hash of document z,
Output: {a,,C,, L, t., 1}
1. User u submits y, = h(x,) to a time stamping authority 7" who computes the time
stamp a, = sigr(C,) (for C, from (2.7)) where the linking element is computed
as

Lr = (alaa27 - 'aar—l)-

2: {a,,C,, L, t,,r} is returned to u by T.

Input: {Cli7 Ci, L“ Z;, ti, Z}, {aj, Cj, Lj, X, tj,j}
Output: A determination of the temporal ordering of x; and ;.
1: User v computes y; = h(x;) and y; = h(x;) and validates the signatures on the
T-signed a; and a;.
2: User v determines whether a; € L; or a; € L;.
3: The former implies that a; was constructed before L; was produced, hence, z;
was stamped before x;. The latter implies the opposite conclusion.

Protocol RL5 Cumulative Hash Extended Linking [PF96].

Input: y, = h(z,) is the hash of document z,
Output: {a,,C,, L, t., 1}
1: Same as Protocol RLL4 except that the linking element is computed as

Ar - (a17a27"'aar71)
L, = h(A).

Input: {a,-, C,‘, L,‘, Xy, t,', Z}, {a]-, C]', L]', Xy, t]‘,j}
Output: A determination of the temporal ordering of x; and ;.
1: User v computes y; = h(x;) and y; = h(x;) and validates the signatures on the
T-signed a; and a;.
v requests A; and A; from T.
v determines whether L, = h(A;) and L; = h(A4;).
v determines whether a;, € A; or a; € A;.
The former implies that a; was constructed before L; was produced, hence, z;
was stamped before x;. The latter implies the opposite conclusion.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 51

order is known a prior: so that
(ai < a[) N (a[[< aj) — a; < aj.

In other words, not all intermediate stamps between a, and a; would be required
for validation. Rather, only the stamps from a; to a; and from a;; to a; would be
required. The stamps from a; to a;; would not be required. Intermediate stamps are

discussed further in Section 4.3.3.

2.6 Concluding Remarks

The techniques described in this chapter demonstrate how a time can be authentically
associated with a string of bits. Although these bits may have associated semantics,
this meaning is irrelevant to the entity performing the stamping. In other words,
though data with a specific form might be submitted to the time stamper, this data
is not interpreted prior to the application of time. In Chapter 5 for example, the time
stamping of digital signatures is examined. Interpreting the semantics of the input
can be handled by a digital notary, and is discussed in Section 5.4.

This chapter presented a review of the state-of-the-art in the literature with re-
spect to time stamping. (Work related to the linking of time stamps has recently
been presented by Buldas et al. [BLLV98].) Critical analysis of the schemes pre-
sented in this chapter is presented in Chapter 3. Generalizations and extensions are
presented in Chapter 4. Although there are many applications in which a time stamp
might be useful, e.g., patent submissions, electronic commerce, chapters 5 and 6 deal

specifically with the temporal authentication of certificate-based digital signatures.

Chapter 3
Critical Analysis of Previous Work

In this chapter, we critique the time stamping protocols from Chapter 2. Beyond
classifying the schemes as accomplished by the ordering into different sections (i.e.,
distinguishing those schemes providing absolute and relative time stamps), various
other analyses can be performed. In Section 3.2, we examine the methods of group
hashing reviewed in Section 2.3. Several new properties are defined and comparisons
are made between the various techniques. In Section 3.3 and Section 3.4, the respec-
tive absolute and relative time stamping schemes of Section 2.4 and Section 2.5 are

examined.

3.1 Critique Metrics

In this section, we briefly review some of the properties that are used in the remain-
ing sections of this chapter for the critical analysis of the time stamping protocols
from Chapter 2. More specifically, we consider the traditional measures of storage,
communication and computational complexity.

We also note that the participation of the trusted authority is an important con-
cern. In some cases, an authority may be required for only a one-time setup. In
other cases, the authority may participate a fixed number of times (over the life of
the protocol) or even an indeterminate number of times. The role of the authority

may also be restricted to being off-line (where real-time participation in the protocol

52

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 53

is not required) or on-line (where real-time participation is required). The variance of
these roles will have an affect on the efficiency of the protocol, as well as contributing

to the complexity and therefore, potential for disputes.

Storage

The amount of storage required for a particular protocol can typically be measured
relative to various roles. For example, each user may only be concerned with the
amount of storage required at their own site. Should the protocol also involve the use
of a centralized entity, the amount of storage maintained by this entity is important
as well. Beyond individual entities, the amount of storage over the entire system can
also provide a measure of efficiency. For example, each user may have a reasonable
amount of local storage but if each store the same information, the storage over the
system as a whole may be considered unreasonable.

More precisely, suppose that a centralized version of some protocol required w bits
of storage at a central site. In a distributed version in which the storage is uniformly
distributed, we would expect that, on average, each of the m distributed entities
participating in the protocol would require at least = bits of storage.

One may also introduce temporal quantifications that determine the length of time
that the storage of particular data must be maintained. For example, are users allowed
to throw away unwanted stamps, or must they necessarily be stored indefinitely for
the proper functioning of the time stamping protocol?

Beyond the quantitative storage measures, we also have some qualitative measures.
For example, of the information stored, which must be authentically stored and/or
have its privacy maintained. Such storage should be clearly identified and minimized

as it creates additional overhead, e.g., costs.

Communication Complexity

It is important to measure the number of interactions and amount of entity involve-
ment required for each step of the time stamping protocol. A quantitative measure

of the number of bits communicated is not sufficient. One must also be wary of how

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 54

users are called to participate in the protocols. For example, does the Stamping Pro-
tocol (see Section 2.1.1) require that users who may not be submitting a document
for a particular round, are still required to participate in the protocol. As well, are
users required to participate in the verification of the time stamps of other users? It
would be advantageous for users to only participate in protocols when the nature of

the protocol is directly related to a specific time stamp of theirs.

Computational Complexity

Computational complexity concerns a measure of the cost of producing, challenging,
or verifying a time stamp. A reasonable measure might be in terms of the number
of primitive operations required to complete a particular protocol. These could be,
for example, a measure of the number of applications of a hash function (or internal
stages of the hash, e.g., more time required for the hash of longer messages), signature
algorithm and verification algorithms (see Section 2.1.2). Such an analysis allows one
to compare the efficiency of those schemes which are not instantiated with identical

hash functions or signature schemes.

Architectural Complexity

Related to the implementation and maintenance of the schemes is their architectural
complexity. This has an impact on the communication complexity during the running
of the protocols as well as on the initial development costs and potential introduction
of security flaws for the more complex solutions. Also of interest are the potential
for denial of services as well as simply bottlenecks that may result from reliance on a

central server, i.e., a single point of failure.

3.2 Critique of Group Hashing

The group hashing techniques reviewed in Section 2.3 are used to allow for so-called
document membership tests. Given a document, it is necessary to be able to verify

whether or not the document in question contributed to the construction of the stamp

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 55

for a particular round. This is done by first determining whether the document
contributed to the group hash computation. Subsequent testing is used to recover
the time associated with the group hash result.

The motivation for a granularity whereby multiple documents are used to produce

a single stamp is twofold:
1. to allow for a decentralized stamp computation;

2. to decrease the amount of storage by using a single value as representative of

an entire round of documents.

The first point results from the fact that since there is no secret key involved in the
computation of the stamp (at least for the schemes reviewed in Section 2.3), any
user can compute the stamp given the document submissions from all participants.
Indeed, the intention for the creators of some of the schemes (e.g., Benaloh and de
Mare [BAM93]) was to remove the requirement of trusting a central authority for the
computation of the round result. Note that for the second item above, the amount
of storage is decreased only if the size of the stamp is smaller than the sum of the
size of the document submissions. Ideally, the stamp is equivalent in size to a given
submission, or at least independent of the size or number of submissions. As evidenced
in Section 2.3, achieving this property may affect the amount of storage required for

each user. This property is discussed further in Section 3.2.2.

Centralized versus Decentralized Group Hashing

For a decentralized computation, there is an additional amount of communication
required for participants. This is especially true for those schemes in which an ordering
of the submissions is required, i.e., there needs to be consensus (either unilateral or
multilateral) on the ordering of the inputs to the group hashing function. Thus, for
Protocols GH4 and GH5 (where no such ordering is required), there appears to be
the advantage of a more efficient stamp creation protocol (at least relative to those
schemes in which an ordering is required). On the other hand, use of Protocol GHI,

Protocol GH2 and Protocol GH3 require additional communication in a decentralized

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 56

protocol (to reach a consensus on the order of inputs to the group hash function) since
the order of the inputs to their group hash functions, does matter.

A centralized variation in which a trusted entity T computes the group hash
result for the round, would be similar to the application of multiple instances of
Protocol AB1 except that storage at T or at an alternative source is lessened by a
factor of m (should the size of the resultant stamp be proportional to the size of a
submission), where m documents contribute to the computation for a given round.
The reason for this is that T would perform an authentication over the group hash

result rather than a different application over each user’s submission.

Authenticating the group hash result

Group hashing provides no message or temporal authentication on its own. Subse-
quent authenticity provisions are therefore very important. In a decentralized version,
it is not clear whose “authentic” version of the resultant stamp for a given round,
would “succeed” in the event of a dispute. In a centralized variation, the location
and maintainer of the stamp’s authenticity is equally as important. The group hash
computations reviewed in Section 2.3 are not keyed by any secret parameter. Hence,
anyone can compute what appears to be a valid time stamp, corresponding to a doc-
ument of their choice. Therefore, the maintenance of the authenticity of the resultant

stamp is of the utmost importance. This point is discussed further in Section 4.2.1.

3.2.1 Formalizing Group Hashing

In this subsection, we formalize the notion of group hashing, and discuss some of the

requirements for the components of a group hash protocol.

Definition 3.1 A group hash scheme G is a seven-tuple (¥, A, B, G, F,V, W), where

the following conditions are satisfied:
1.) is a finite set of possible messages;

2. A is a finite set of group hashes;

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 57

3. B is a finite set of membership values;

4. Let G : Y x---xY — A be a group hash function,and F': Y x---x) — Bbea
membership production function. For a verification test functionV : AXYxB —
{true, false}, and werification function W : Y x B — A, and for every y; € Y,
a=Gyi,...,Ym), and member,, = F(y1, ..., Ym)

true if W (y,;, member,,) = a
V(a,y;, member,,) = '
false if W (y,;, member,,) # a

Referring to Definition 3.1, there are two fundamental operations related to the
production of a group hash given a set of data Y = {y1,...,ym}. The first is the
compression of the data which involves the production of the value a used to represent
the set Y

a=GY)=Gy1, - Ym).

For Protocol GH4, a = x¢¥'¥>"'¥" mod n for publically known zy and suitable com-

posite n. The second operation is the computation of

membery, = F(Y1. ..., Yic1, Yit1s -+ Ym) (3.1)

which, if it exists, is additional information necessary for document membership
verification. For Protocol GH4, member,, = ¥ ¥i-1¥i+1"¥» mod n. As indicated,
member,, is a function of data other than the user’s own ;.

Verification of an items “membership” in a group hash value, involves computing
aV = W (y;, member,,) and determining whether a = a(¥). For Protocol GH4,) =
(member,,)¥" mod n. Verification occurs at a subsequent time when the owner u of
some y' wants to demonstrate that y’' = y; for some i € {1,...,m}. This is done
indirectly (as opposed to directly which would check for membership of ' in V') using

the representation a for Y and the membership verification function V. We have

V(a,y', member,) =

true ify' €Y
false otherwise.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 58

This verification is performed as above whereby a!') = W (y', member,) is computed
and tested for equivalence to a. Recall Protocol GH1 where a = h(y1,...,Ym)
and membery, = (Y1,...,Yi—1,Yit1,---,Ym). Verification involves computing al) =
R(Yi, .. Yicts YirYists - - - Ym) and determining if a = (9.

G must be collision-resistant so that one cannot find an alternate set Y’ # Y
such that G(Y) = G(Y’). If this were not so, one might, for example, for a set
Y ={v1.. - Yi, .., Ym}, findaset Y = {y1,..., ¢, ..., ym} such that G(Y) = G(Y’).
Interestingly, the order of the input to G need not be important. For example,
although G({y1,12}) = G({y2, y1}) for a commutative G, no real collision has occurred
since no ¥’ € Y has been found that succeeds verification. As well, for a given group
hash a, and 3 ¢ Y, it should be difficult to determine any member, such that
V(a,y', member,) is true. In other words, it should be computationally infeasible to
compute a’ = W(y', member,) such that o) = a if y’ ¢ Y. Thus, not only is V()
one-way in some sense, but member, should be computationally infeasible to obtain
for a ' € Y, with respect to a given group hash value a, i.e., at least F' should be

collision-resistant.

3.2.2 Storage Analysis

In this subsection, comparisons are made between the storage requirements for each
of the group hashing techniques described in Section 2.3. Consider first the bit size

|a| of the group hash value a. Two categories can be identified based on its size:

1. |a| is dependent on the number of submissions. For example, |a| = m - |y;| in

the most trivial scheme where ¢ =Y.

2. la| is fixed. There are two sub-cases here. In the first, |a| is independent of
the size of or number of inputs to G. This is true for Protocol GH4, where |a|
is dependent upon a chosen security parameter and as well for Protocol GH5
where |a| = ¢N, for constant ¢ where the restriction is that m < N. However,
one must be careful to note that |Y| = m is also dependent (i.e., bounded,

though not tightly) on this security parameter. Secondly, we have |a| = |h()]

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 59

where |h()| is the size of the output of the hash used (as in Protocols GH1, GH2
and GH3).

For Protocol GH4, though the stamp size is fixed, it is noticeably larger than the
size of the submissions. For example, in comparison to Protocols GH1, GH2 and GH3
where |h()| will be approximately 160 bits in practice, £ may be 1024 or even 2048 bits.
For Protocol GH5, even with two compressions by factors of d and m respectively, a
“large” resultant round value is still obtained. Recall that the submission of a user

is expanded to an [-bit y; where

Despite the fact that each y; is reduced by a factor of d, and there is an m-to-1
compression from these m r-bit b; to a, we still have |a| = r. Now r = Net where N
is an upper bound on the number of messages that can be submitted. Referring to
Table 2.1, for [= 1.4M, we have |a| = 140K which would only provide compression
(i.e., less storage efficiency than simply storing the original document submissions) if
at least 875 160-bit inputs were available.

The same concerns with regard to size follow for |member,,|. For Protocols GH1
= O((lgm) - |h()|) for Pro-
tocol GH3. For Protocols GH4 and GH5, |member,,| = k and |member,,| = 0,

respectively, where & = |n| = lgn is the length in bits of the security parameter

and GH2, |member,,| = O(m - |h()|) while |member,,

(modulus). These results are summarized in Table 3.1.

In Table 3.2 the results from Table 3.1 are instantiated with m = 16, m = 256,
and m = 1024 respective documents. Noteworthy increases include the linear increase
in |member,,| for Protocols GH1 and GH2 compared to the logarithmic increase
with Protocol GH3. Each has a constant size for the group hash value a as does
Protocol GH4. Protocols GH4 and GH5 have a constant size for |member,,| where
the latter protocol it is in fact 0.

In Table 3.3, the efficiency of the storage over the system as a whole is measured,
relative to a control scheme in which each user maintains their own y; as well as its

storage being authentically maintained at a central repository. Protocols GH3 and

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 60

Size in bits
Hash Protocol hash result a | verification info. member,,
GH1: Cumulative \h()] (m—=1)-|h()]
GH2: Recursive \h()] (m—1) - |h()]
GH3: Tree \h()] (Igm) - |h()]
GH4: Exponentiation k k
GHS5: Bit cN 0

Table 3.1: Comparison of Storage for Group Hashing Techniques. There are m data
submitted for group hashing, each of size |h()|, where |h()| is the number of output
bits from the particular hash function used. k& = |n| = lgn is the length in bits of the
security parameter (modulus). N is the implementation-dependent upper bound on
m and ¢ is a constant ranging from 135 to 200 for practical purposes. See Table 2.1
for more details regarding the parameters of Protocol GH5.

m=2"=16 m = 2% = 256 m = 2'0=1024
Hash Protocol la| | |member,,] la| | [membery,| a] | [membery,|
GH1: Cumulative 160 24K 160 41K 160 164K
GH2: Recursive 160 24K 160 41K 160 164K
GH3: Tree 160 640 160 1.3K 160 1.6K
GH4: Exponentiation || 1K 1K 1K 1K 1K 1K
GHS5: Bit 2.2K 0 34.8K 0 139.2K 0

Table 3.2: Specification of Table 3.1 Results. |a| refers to the size (in bits) of the
resultant group hash value computed with input (y,...,y,) where each y; = h(z;)
is a 160 bit hash over a document z; of arbitrary length. |member,, | refers to the size
(in bits) of data that each user must maintain (not including storage of their own y;
or z;) to allow later demonstration that y; did indeed contribute to the construction
of a. For Protocol GH4 a 1024 bit composite integer is assumed. For Protocol GH5,
we assume that N = m, ¢t = 50 where |a| = r = Net. (See Table 2.1 for further
details regarding the parameters for Protocol GH5).

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 61

m=2*=16 m=2%=256 || m=2"=1024

Hash Protocol actual | 2L getyal | 29h W getyal | 2l
GH1: Cumulative 41.1K 8.03 10.5M 128 167.7TM 512
GH2: Recursive 42K 8.03 || 10.6M | 128 167.7M | 512
GH3: Tree 13K 2.53 0.4M 4.50 1.8M 5.50
GH4: Exponentiation 20K 3.90 0.3M | 3.71 1.2M 3.70
GH5: Bit 4.8K 0.92 75.8K | 0.92 0.3M 0.92

Table 3.3: Overall System Storage Efficiency for Group Hashing Techniques. The
overall system storage for each technique is computed as actual = m - |h()| + m -
|member,,| + |a| where the first term accounts for the storage by each user of their
own y; = h(x;), the second accounts for the storage by each user of their member,,
while the third accounts for the storage of the resultant group hash by a central
authority. The values for each term are taken from the corresponding examples in
Table 3.2. “ctual rofers to the ratio of the protocol’s overall system storage to the

control

control scheme in which a copy each user’s y; is maintained by themselves as well as
a central authority; the storage for this technique is control = 2m - |h()|.

GH4 are the most efficient of the schemes in which the size of the group hash value «
is constant (with respect to changes in |m|). Protocol GH4 is the most efficient based
on the metric described in Table 3.3 though as evidenced by Table 3.2, the size of a

increases linearly with the size of m.

3.2.3 Incremental Group Hashing

In this subsection, we define the concept of a group hash as being efficiently incremen-
tal or efficiently decremental, and examine the schemes of Section 2.3 with respect
to these properties.

Bellare, Goldreich and Goldwasser [BGG94] introduced the concept of incremen-
tal cryptography. The basic idea is to allow repeated function computations to be
computed efficiently in the case that the input has only changed slightly. Particu-
larly for hashing, given the hash of a message and a subsequent modification of the
message, the time required to update the hash (to produce a new hash over the mod-
ified message) should be “proportional” to the amount that the message has been
modified.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 62

We can also define such efficient incrementality for group hashing. The “message”
modified in this case is the set of data input to the group hash. More specifically, if the
original group hash was applied to the set Y = {91,..., 4} then the modified set to
which a group hash result would be required would be either Y’ = {y1, ..., ¥, Yms1}
for the appendage of an item ¥y, 11 or Y’ = {y1, ..., Yi—1,Yit1, ..., Ym} for the removal
of an item. Although not specifically applicable to the production of a time stamp,
group hashing with an incremental property is useful for the group hash of revocation
information, related to the time stamping and non-repudiation of digital signatures
(see Section 5.2.3).

Definition 3.2 A group hashing function G is efficiently incremental if for an -
bit element y,,,1 € Y, where f(l) time is required to compute G(y,,41) for some
function f, then at most af(l) + b time is required to compute G(y1, ..., Ym, Ymi1)

given G(yi,...,Ym), for constants a and b (independent of [and m).

Intuitively, G is efficiently incremental if the amount of work required to recom-
pute a group hash value a is “linearly proportional” to the size of the additional data
element 7,,,1. For Protocol GH1, recomputation of the entire hash is required, and
is hence not efficiently incremental. Note that given a = h(yy,...,¥m), incrementing
with 4,11 may require computing @' = h(y1,. .., Ym, Ym+1), i-e., computation of the
hash over an input size that is m — 1 times larger than y,,.1.! For Protocol GH2,
a hash computation proportional in size to the new element is computed. In other
words, a = h(---h(h(y1,92), Y3), ..., Ym) can be incremented with y,, 1 by computing
a' = h(a,yms1). Hence, Protocol GH2 is efficiently incremental. Protocol GH3 is not
efficiently incremental since O(lgm) hash computations are required to recompute a
(the root of the tree). Given the group hash value a, Protocol GH4 requires computing
a' = a¥+' mod n and is therefore efficiently incremental. Although Protocol GH5,
requires only a single application of G, it is applied to data that is extended to an
[— bit value after submission of the original hash by the user. This [— bit value is
dependent on an upper bound on the number m of submissions so that Protocol GH5

is not efficiently incremental. These results are summarized in Table 3.4.

!For hash functions which use an iterated compression function and do not appending padding
(see Menezes et al. [MvOV97, Section 9.3]), the computation of a’ will be efficiently incremental.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 63

Regarding the incrementality of group hash techniques, an important concern
relates to the requirement for the owners of the initial y,..., v, to update their
member,,. For each of the group hash protocols except Protocol GH5 (in which
there is no member,, for users), updates are required. This requirement necessitates
additional communication with users (likely performed by a central entity) to reflect

the change to a.

Definition 3.3 A group hashing function G is efficiently decremental if for an [-bit
element y; € Y, where f(I) time is required to compute G(y;) for some function f,
then at most af(l) + b time is required to compute G(y1,. .., Yi—1, Yit1, - - -, Ym) given
G(Y1,.--,Ym), for constants a and b (independent of [and m).

Intuitively, G is efficiently decremental if the amount of work required to re-
compute the group hash value a is “linearly proportional” to the size of the re-
moved data element y;. Decrements differ slightly from increments in that deletions
from {yi,...,ym} are not restricted to occur only at the end, i.e., any y; may be
removed. Given the removal of y;, notice that the recomputation of the function
Gty Yicts Yitts - Ym) given {yi, ..., ¥i1,Yit1,---,Ym} is NOt an option unless
the input data are available. However, their availability would defeat the point of
using of a compressed representation.

Protocols GH1 and GH3 are not efficiently decremental for the same reason that
they are not efficiently incremental. Protocol GH2 is not efficiently decremental
since it requires knowledge of the inverse of h() for even the efficient removal of
Ym- For Protocol GH4, although it is efficiently incremental, it is not efficiently
decremental since this would require knowledge of the inverse of the element to be
removed; knowledge of this fact would allow one to factor the modulus. Finally,
Protocol GH5 is not efficiently decremental since for any 1’s in the element y; to
be removed, knowledge of whether any other y;, j # 7, has a 1 in that particular
position is required for the authenticator to be properly updated. The requirements
for changes to member,, are the same as for the addition of a new element. These
results are summarized in Table 3.4.

Depending on the intended application, Protocols GH2 and GH4 are superior with

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 64

Additions Deletions
Hash Protocol eff. incr.? ‘ static member,,? | eff. decr.? ‘ static member,,”?
GH1: Cumulative no no no no
GH2: Recursive yes no no no
GH3: Tree no no no no
GH4: Exponentiation yes no no no
GH5: Bit no yes no yes

Table 3.4: Comparison of Updates for Group Hashing Techniques. ‘eff. incr.?’ is yes
if the protocol is efficiently incremental (see Definition 3.2). Likewise for ‘eff. decr.?’
(see Definition 3.3). ‘static member,,” is no if updates are required to member,, in
response to an addition or deletion of a data element from the group hash computa-
tion.

regard to the amount of time required to increment a group hash value given the ap-
pendage of an element to the original hash input. However, notice that Protocol GH1
may also be efficiently incremental, depending on the particular group hash function
used. On the other hand, though not efficiently incremental, Protocol GH5 does not
require the updating of member,, subsequent to either the addition or removal of an
element from the original hash input. Protocol GH5 would therefore be advantageous
in situations where computation time is not a major concern, but communication time

is.

3.3 Critique of Absolute Time Stamping

In this section, we critique the absolute time stamping protocols reviewed in Sec-
tion 2.4. Protocol AB1 is a model of simplicity. Each user stores an amount of
information proportional to the number of stamps submitted. No record-keeping is
required by the time stamp authority (T). The communication involves only a single
message pass by both the user and T. Document submission and stamp computation
involve only a nominal number of applications of hash functions and digital signatures.

The main motivation for the remaining schemes is the requirement of total trust
in T for Protocol AB1. Indeed, Protocol AB2 directly addresses this concern by

building on top of Protocol AB1. The fundamental concern is that the issuance of

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 65

a false time stamp can be devastating to a scheme. Suppose, for example, that for
the provision of non-repudiation, users might have their signatures time stamped
(as examined in Section 5.3). The ability to alter such a time (either in collusion
with 7" or subsequent to a compromise of 7’s private signature key) allows one to
backdate a signature applied with user u’s private signature key, at a time when u’s
key may be compromised, to a time when u’s key was not compromised. Hence, u
is apparently made responsible for a message that he may not have signed. Such an
example illustrates both the importance and fragility of the association between time
and cryptography.

The schemes of Section 2.4.2 differ in that they do not require a trusted, centralized
time stamping service to produce time stamps. Rather, they attempt to decentralize
either the stamp computation or the storage of the resultant stamp. Protocols AB3
and AB4 distribute the storage of the resultant stamp. The former is impractical with
regards to communication and storage, and because it requires each user to store each
and every “submitted” stamp. This appears not to leave room for error in the case
that stamps are incorrectly recorded for either malicious or unintentional reasons.
Even further, this seems to imply a static membership since new users would not
possess the stamps to documents from older submissions. This makes the verification
(and potential adjudication) of a stamp’s correctness a difficult, if not impossible task.
As well, the amount of storage is excessive over the system as a whole since the same
stamp will be stored in multiple locations.

In Protocol AB4, the delegation of authority is unclear. After all, who ensures the
correct publication of the stamp? Considering that the authentication of this storage
is important in case of disputes, it is critical that such a responsibility be delegated
with clear goals in mind. As well, this scheme does not appear to allow for the option
of verifying the signature applied by the submitter, i.e., is it left up to the publisher
of the newspaper to confirm this? Though similar to Protocol AB1 in terms of the
submission from the user (e.g. with respect to the time and space complexities), the
“stamp” for the message appears to make the verification or adjudication of its validity
difficult. After all, the source of and responsibility for maintaining the authenticity

of the stamp is unclear. As well, the motivation and purpose for the inclusion of pub

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 66

Centralized Protocols | Decentralized Protocols
Properties AB1 | AB2 AB3 | AB4 | AB5
Certificate Obtained? || Y Y N N Y
Participation Req’d? || N/N | N/N Y/Y | N/Y | Y/N
User Storage 1 1-k n-1|1 1-k

Table 3.5: Comparison of Absolute Time Stamping Techniques. A certificate is ob-
tained if the document submitter receives a signed response. The requirement of
participation refers to the external participation of other user entities (i.e., users
other than the submitter of the document for stamp production): (cooperation for
Stamping Protocol?)/(cooperation for Verification Protocol?). User storage assumes
that for n users, user u; submits a document to be time stamped at time interval 7.
The storage computation consists of the multiplication (number of rounds in which a
stamp is stored by u;)-(size of stamp in each round), where the size of a stamp from
Protocol AB1 is defined as the unit size of a stamp and £ < n.

is not well motivated. It is not clear what conclusions we can draw from its use. A
document submitted at time ¢ can easily associate an old pub value to it, for example.
(The provision of an implicit absolute time is discussed in Section 3.3.1.)

Motivated by the same concern of trust in a centralized authority, Protocol AB5
distributes the stamp computation as opposed to its storage. The storage for each
user is increased by a factor of k in comparison to Protocol AB1. In practice, this
distribution will also increase the time required to obtain the stamp. Using £ fellow
users as opposed to one trusted center may introduce some problems. For example,
what if some of the k users refuse to, or simply can’t participate in the stamping of a
message. It is unclear how this could be handled in a secure manner to allow for the
proper results to be obtained from subsequent verification or adjudications. As well,
the simple act of communicating with £ other entities to receive a single time stamp
is very costly.

Table 3.5 provides a summary of some of these concerns. The greatest distinction
is that Protocol AB1 and Protocol AB2 makes use of a trusted, centralized entity
for producing the time stamp, while stamps are constructed by the users themselves
in the remaining schemes. Participation is required for Protocol AB3 in both the

stamping and verification stages. In the former, each stamp submission is broadcast

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 67

to all users, requiring their maintenance of its storage. In the latter, verification of the
submission received by other users may be required in case of disputes. As mentioned
earlier, it is not clear how disputes would be handled in Protocol AB4. Verification or
a dispute regarding a particular stamp involves the participation of other users (e.g.,
users that possess copies of the widespread publication) though it is not clear whether
these users are trusted entities or not. As well, although the question of cooperation
for the stamping protocol is answered “No” here, there is the open question of who is
required to maintain the eventual storage of the widespread publication. It appears
though, that some user cooperation might be required. For Protocol AB5, it is unclear
how the time of stamping should be verified since k, potentially different, times are
included in a single time stamp.

With regards to the architectural complexity for the absolute schemes, each ap-
pears to require no more than the participating users themselves (i.e., potential time
stamp requesters) and a single time stamp authority (if required at all). However,
schemes in which the stamps are stored via a widespread publication may be suscep-
tible to a large architectural complexity, depending on how much overhead is required
for the publication, storage and verification of the stamps. The use of a widespread
publication for the purpose of authenticating the stamps is discussed further in Sec-
tion 4.2.1.

Overall, for each of the schemes highlighted in Table 3.5, Protocols AB3, AB4 and
ABS5 appear to be the least suitable for any practical implementation. Although Pro-
tocols AB4 and AB5 provide interesting, distributed alternatives for respectively stor-
ing and constructing time stamps, their protocol descriptions are ambiguous enough

to cause concern with the consistency of future verifications of resultant time stamps.

3.3.1 On the Use of Implicit Time

Intuitively, an implicit absolute time is data from which a specific time can be uniquely

and efficiently computed. More specifically, we have the following.

Definition 3.4 An implicit absolute time impTime € T is the output of a function

Z :DxT — I, where (d,t) € D x T is a data, time pair where d is uniquely

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 68

associated with only one time ¢. The association between d and t is publically known,

and trustworthy. m

As an example, d € D might represent the contents of a particular local newspaper
at time ¢, where impTime € Z might represent the listing of the current weather for
the day, as printed at time ¢. Implicit time was used (as opposed to an explicit time) in
Protocols AB2 and AB4. More specifically, they used a particular type of implicit time
known as unpredictable information. (Not all unpredictable information is an implicit
time, e.g., consider the the use of hashes linking data together as recommended by
Item 7 for Protocol AB2. Until this information is provided with an absolute time,
it is unpredictable, but certainly does not allow a method for computing the explicit
time from it.) Unpredictable information is data created at time ¢, having the property
that it’s entire contents could not have been predicted before time t. More specifically,

we have the following.

Definition 3.5 Unpredictable information is an [-bit data ul € UZ, created at time
t, such that it is computationally infeasible to correctly determine or predict all [bits

of ul prior to time ¢ (the time at which all [bits are known).

The motivation for using unpredictable information is to prevent forward dating.
For example, at time ¢, a document can be time stamped (e.g., by a malicious time
stamper) with an explicit time ¢ > ¢ but not with unpredictable information (from
which the time ¢’ would be uniquely determined) since, by definition, this information
can not be determined at time ¢.

However, there appears to be little advantage to using unpredictable information
to prevent forward dating in this manner. Note that in Protocol AB4, if an explicit
time were used as opposed to pub, it makes little sense to forward stamp the data
with a time #' > ¢ where ¢ is the current time. This attempt would be detected by
anyone who verifies the posting of the stamp, and in the case of a newspaper, the
date on the newspaper would alert future verifiers to the discrepancy with the date

of the posted stamp.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 69

3.4 Critique of Relative Time Stamping

The linking of data (resulting either from a single document submission or a group
hashing) for the purpose of temporally ordering the data was reviewed in Section 2.5.
In this section, we elaborate on some of the more relevant properties.

Additional communication is required (more-so for decentralized protocols) when
compared with schemes in which only an absolute time is provided since the process of
linking is not memoryless but dependent on result(s) from previous round(s), i.e., the
authenticity of a stamp is measured “relative” to the stamps produced during other
rounds, and hence requires access to previous stamps. This dependence has the effect
of an increased interaction for either the production or verification of time stamps
(e.g. recall the verification subprotocol of Protocol RL1) or necessitates some form of
secondary, authentic storage (which requires an extra communication to obtain this

value during stamp creation or verification).

Remark 3.1 A relevant and practical concern with the application of relative tem-
poral authentication is the notion of interoperability. Note that the temporal “links”
produced within a particular group of users or by a particular central authority, are
part of a closed system. Given a second group of users or time stamping authority, it
may be difficult to obtain a relative measure among the time stamps produced within
the different domains. See Definition 4.17 of Section 4.3.3 for further discussion.

The contents of the linking elements for the protocols from Section 2.5 are shown in
Table 3.6. Participation required during the validation of the temporal authenticity of
the stamps is shown in the ‘Validation’ column of Table 3.6. The participation during
validation is not dependent upon the particular linking element used, but rather, the
protocol description and where the linking information is stored.

For Protocol RL1, verification of a time stamp requires an ability to access an
indeterminate number of stamps produced before and/or after the stamp in question.
This would require that the storage of all stamps be maintained by a particular user.
This does not allow for the case when a user might not want to maintain the storage

of a particular stamp any longer (in the case that there is no secondary storage),

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 70

‘ Protocol H Linking Element L, ‘ Validation ‘
RL1: Haber-Stornetta (tr1,IDy 1, yr 1, H(Ly 1)) G
RL2: Recursive Hash h(a,—1,L,_1) T
RL3: Extended Haber-Stornetta || [(t,—x, IDy—k, Yr—ts H(Ly—k))s - - -, G

(tr—1, IDy—1,yr1, H(Lr—1))]
RL4: Cumulative (a1, a9,...,a,_1) U
RL5: Cumulative Hash h(ay,as, ... a._1) T

Table 3.6: Linking Elements for Relative Time Stamping Protocols. ‘Validation’
indicates the participation required for the validation of a time stamp. ‘G’ refers to
group validation in which users other than the stamp owner are required for validating
the stamp’s temporal authenticity. ‘T’ refers to validation in which participation from
the trusted time stamp authority is required. ‘U’ refers to user validation in which the
stamp owner has sufficient linking information to allow a self-contained verification
temporal authenticity by others.

nor is it robust against the simple loss of a stamp. Protocols RL2 and Protocol RL5
deal with this problem by having a centralized authority maintain the storage of the
stamps. Protocol RL3 (likewise Protocol RL5) extends the explicit reach of the linking
element so that only 1 of £ links are required to verify the authenticity of a stamp.
Protocol RL4 places the storage of all stamps in possession of each stamp requester,
thereby allowing stamp validation to be performed without the participation of any
other users or trusted entities.

Distinctions can also be made with respect to the goal of the use of linking for
each scheme. Protocols RL1 and RL3 use linking as a means for preventing the time
stamp authority (7) from either backdating or forward dating time stamp requests.
In Section 4.4, we present an attack to this provision which allows 1" to indeed back-
date stamps for these particular protocols. Protocols RL2, RL4 and RL5 provided
a relative ordering for the purpose of determining the position of two time stamps
at some later time. These techniques are discussed further in subsections 4.3.3 and
4.2.1.

Chapter 4

A Framework for Temporal

Authentication

In this chapter, we examine time stamping from the viewpoint of a time stamping
protocol providing authentication. Just as a digital signature can provide message
authentication and a key agreement protocol can provide key authentication, a time
stamping protocol provides temporal authentication. A framework for the provision of
temporal authentication is constructed from the time stamping protocols reviewed in
Chapter 2. This framework provides precision for the informal definitions, concepts
and protocols introduced and reviewed in Chapter 2. Generalizations are motivated
with the presentation of two protocol failures and demonstrated by a hybrid time

stamping protocol proposal.

Chapter Outline

In Section 4.1, we define a time stamping scheme (see Definition 4.1) and discuss the
provision of temporal authentication with this scheme. Section 4.2 presents Proto-
col TS1, providing one alternative for implementing a time stamping scheme. Various
options for authenticating the time stamp are also discussed. In Section 4.3, the pro-
vision of absolute, relative and hybrid temporal authentication are examined. In Sec-

tion 4.4, the importance of the distinction between absolute and relative time stamps

71

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 72

and the proper verification of their temporal authenticity is demonstrated by identify-
ing protocol failures with the Benaloh-de Mare (Protocol GH4) and Haber-Stornetta
(see Protocol RL1) protocols. In Section 4.5, we critique a hybrid time stamping pro-
tocol (see Protocol HY1) that most closely follows our framework (though it does so
with solutions that are non-cryptographic). Subsequently, we modify this hybrid pro-
tocol giving Protocol HY2, which more closely follows our framework and addresses

concerns raised regarding Protocol HY1.

4.1 Temporal Authentication

In this section, we introduce the notion of the temporal authentication of digital data
as accomplished by time stamping the data. We begin by defining a time stamping
scheme, which together with Protocol TS1 (see Section 4.2), add some precision to

the stamping protocol of Definition 2.6.

Definition 4.1 The seven —tuple (M, S,G,8S,T,K,P) is a time stamping scheme

TS where the following conditions are satisfied:
1. M is a finite set of possible messages;
2. § is a finite set of possible time stamps;
3. G is a group hash scheme (see Definition 3.1);
4. 8§ is a signature scheme (see Definition 2.11);
5. T is a finite set of times;
6. K, the keyspace, is a finite set of possible keys;

7. For each K € I, corresponding to a time stamp provider P € P, for the tem-
poral authenticator (time stamping) function sigp € SA (see Definition 2.11),
where sigp : (MU A) x T — S (where A is the set of group hash values,
see Definition 3.1) and time stamp verification function verp € VA (see Defini-

tion 2.11) where verp : S x T x (MUA) — {true, false}, the following equation

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 73

is satisfied for every message or group hash z € (M U A), time t € T and time
stamp s € S:
true if s = sigp(z,t)

false if s # sigp(z,t)

verp(s,t,z) = {

Definition 4.1 more clearly defines the authentication of a (cryptographic) time
stamp, as informally defined with Definition 2.2. The authentication is provided
by the signature of the time stamp provider. To aid in the presentation of how a
time stamping scheme provides temporal authentication, we first review the notion

of authenticity.

4.1.1 Awuthenticating Data

The term “authentication” is an overused and often abused term in cryptography. In
this subsection, we provide an intuitive understanding of what it means to authenti-
cate data by reviewing several requirements that would typically be used in a scheme
with certificate-based digital signatures — a scheme providing message authentication.

Claiming that something is authentic implies that it is “fully trustworthy as ac-
cording with fact” [Mer98]. The object in question is “actually and exactly what is
claimed” and “not false or [an] imitation” [Mer98|. In cryptography, the objects that
are purported to be authentic can include message or key data, a digital signature, or
the identity of an individual. We introduce here the concept of temporal authentica-
tion which deals with the authentication of time data as provided by a time stamping
scheme (see Definition 4.1).

One can think of the “authentication of data” as the legitimization of the data us-
ing a set of mathematical functions with corresponding requirements and assumptions
with regard to both the functions and the provider of the authentication. The func-
tions serve to specify the properties that a particular form of authentication provides.
The requirements and assumptions allow a verifying party to measure their trust or
confidence in the authentication of the data through a verification procedure. As an

example, recall the message authentication of data m, as reviewed in Section 1.1.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 74

The message authentication of m can be achieved by the production of a signature
¢ = sig,(m), purportedly by the user u, as defined by the functions of Definition 2.11.
The message authentication of m is intended to corroborate that the source of c is
indeed u. This corroboration can be achieved by the binding of u’s name to the
verification key wer, used to verify the mathematical correctness of the signature
c. This binding is performed by a trusted certification authority (CA), where the
subsequent verification of this certification (by signature verifying parties) may be
achieved through the a prior: possession of the CA’s verification key. Therefore, for
this example, trust is achieved by the delegation of the trustworthy certification of
user’s verification key to a trusted CA that provides verifiable certification of user’s
verification keys. For users that trust this particular CA and its practices, the message
authenticity of signatures received from users certified by this CA, can hence verify
the mathematical correctness of the signature and ensure that the public key used to
perform the verification, is bound to u by a trusted CA. (A more complete signature

verification procedure is given as Protocol DS1 in Section 5.3.2.)

Remark 4.1 (Trust) The term trust can be very difficult to define, e.g., as for
“trusted entities” or “trusted data.” For our purposes, we assume that a trusted
entity is an entity that honestly and correctly executes functions for which it is rec-
ognized as intended to execute. The entity honestly determines the correctness of any
iput data or any requesting entity with regard to the publically verifiable requirements
corresponding to the function for which the trusted entity will be executing. Trusted

data is data produced by a trusted entity(s).

4.1.2 Temporal Authentication

Temporal authentication intuitively combines message authentication with the notion
of timeliness of messages (see Definition 4.2). The term temporal refers to something
“of or relating to the sequence of time or to a particular time” [Mer98]. The temporal
authentication of the message y ensures that in addition to producing an authentic
representation for y, this representation is ordered amongst all other temporally au-

thenticated data (i.e., “[related] to the sequence of time”) and/or associated with a

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 75

specific time (i.e., “[related] to a particular time”). We refer to the former representa-
tion as relative temporal authentication (see Definition 4.13) and the latter as absolute
temporal authentication (see Definition 4.8).

A temporal association ensures that the resulting representation for y is both
authentic and timely. The temporal authentication of y can be accomplished by the
production of a time stamp s € S by a trusted time stamp provider, which is a
function of both the message y (which itself may be the function of some document)
and a time ¢t € T from which the temporal position of y can later be inferred. This
can be accomplished with the time stamping scheme of Definition 4.1. The time

stamp is temporally authentic if it
1. is verifiably produced by a trusted provider(s) and
2. includes a trustworthy time.

The provision of message authentication (as described above) relied on a trustworthy

certification by a CA. The same is true for the property of temporal authentication.

Definition 4.2 The temporal authentication of data y provides corroborative evi-
dence regarding a time of existence of y in the form of a time stamp s and can be
achieved by a time stamping scheme (see Definition 4.1) using a trusted time stamp

provider (authority) 7.

The role of a time stamp provider(s) is examined further in Section 4.2.1. The pro-
vision of time is discussed further in Section 4.3.

Temporal authentication provides an assurance of the temporal ordering (induced
by the time stamp construction) of two messages. The ordering of these stamps is a
partial ordering. If any two stamps are comparable, the set of stamps form a total
order or chain. We refer to this set as a temporal chain (or temporal order) since
elements of the set are comparable based on their temporal interpretation. Note that
we can discuss orderings of stamps versus the ordering of a document/stamp pair.
This distinction is relevant in cases where several documents are input to produce

a single time stamp, i.e., group hashing as reviewed in Section 2.3. Although the

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 76

resultant stamps from each round form a total order, it is not necessarily the case
that the document-stamp pairs within a given round can be ordered since group

hashing does not necessarily provide an ordering of the data.

4.2 Providing Temporal Authentication

The process of temporally authenticating data can be achieved with a time stamping
scheme (see Definition 4.1). Each instance or round of a larger time stamping process
implements this scheme as a time stamping protocol. The time stamping process is
illustrated in Figure 4.1. One possible implementation of the time stamping scheme
as a time stamping protocol is presented as Protocol TS1. Throughout, we make use
of the following definitions. Unless otherwise noted, the ‘event’ associated with time

t; refers to the time of stamping.

Definition 4.3 Let ‘<’ represent the ‘earlier than’ relation where ¢; < ¢; if the event
associated with the time ¢; occurred earlier than the event associated with ¢;. Let ‘=<’

be the ‘earlier than’ relation in which ¢; = ¢; may be true.

Definition 4.4 Let “>" represent the ‘later than’ relation where ¢; >~ ¢; if the event
associated with the time ¢; occurred later than the event associated with ¢;. Let ‘>’

be the ‘later than’ relation in which ¢; = ¢; may be true.

This ordering of the times is used to define a time stamp process as follows.
Definition 4.5 A time stamping process is a set of functions { fi, fo, ...} defined by
fi(z) = sigp(z,t;)

such that Vi > 1, t;41 > t;, where 2,t; and sigp are defined in Definition 4.1. A
trusted time stamp provider executes f; ‘earlier than’ f;; for all i« > 1. (Further

requirements regarding the application of time are discussed in Section 4.3.) m

An important assumption with regard to Protocol TS1 is that the time stamp

provider is trusted to honestly produce time stamps with a correct time and maintains

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 7

Round 1.

1. User u; submits data y; for stamping to 7T'.

2. T returns the time ¢; and time stamp s; to u;.
Round 2.

1. User uy submits data y, for stamping to 7.

2. T returns the time ¢, and time stamp sy to us.

Figure 4.1: Global View of a Time Stamping Process. Each round identifies an

instance of this process as might be performed by the general time stamping Proto-
col TS1.

reasonable protection of the signing key used for the production of time stamps.
Alternatively though, the function of the time stamp provider can be distributed
using either threshold or proactive signatures (see brief discussion in Section 6.2) so
that a number of time stamp providers contribute to the production of a single stamp
and compromise of a single provider’s signing key does not allow the production of
forged time stamps. Alternative options in the case that corroborative evidence is
required, in addition to the temporal authentication provided by a single time stamp
provider, are discussed in Section 4.2.1.

Figure 4.2 gives a conceptual representation of the functions used in the time
stamping Protocol TS1. The length of a round (in which more than one document is
submitted to be time stamped) may be determined either by fixing an upper bound
of the number of messages that will be jointly stamped in the round or on the amount
of time that is allowed to elapse before a stamp is output. A group hash is used in
the case that more than one document is input during a particular round. In any
event, only one time stamp is output for a particular round. The provision of time
for the time stamp is discussed in Section 4.3. The authentication and storage of the

stamp are discussed in Section 4.2.1.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 78

Protocol TS1 General Time Stamp Protocol.

Description: This protocol gives the abstract steps required for the production and

verification of a time stamp s from Definition 4.1.

Note: Let P represent the time stamp provider. Each potential verifying party has

a copy of P’s verfication key a priori.

Time Stamp Production ‘

Input: data y or set of data (y1,...,ym)
Output: time stamp capsule cap, = (y,t, s, a, member,)
1: User u submits the data y to P for time stamping.

2:

If a group hashing scheme G (see Definition 3.1) is being used, then P gathers m
such input, (yi,...,¥n) and computes the group hash value a = G(y1,. .., Ym)-

. P obtains the time ¢ (either an absolute, relative or hybrid time) as specified in

Section 4.3.

. P computes the time stamp s = sigp(z,t) where

L { a if group hashing is used (4.1)

y otherwise

: P returns the time stamp capsule cap, = (y,t, s, a, member,) to u, where a and

member, are included only if group hashing is used.

Time Stamp Verification ‘

Input: time stamp capsule cap, = (y,t, s, a, member,)
Output: whether s is a valid time stamp for data y at time ¢

1:

2:

Verifier v obtains the time stamp capsule cap,, e.g., user u is the verifier of the
capsule upon receipt from P.

If @ and member, are included in the time stamp capsule (so that group hashing
was purportedly used), then v computes V(a,y, member,) (see Definition 3.1)
and continues to step 3 if successful and aborts with ‘false’ output otherwise.
Let z be defined as in (4.1). v determines the truth value of verp(s,t, z) by
determining the mathematical correctness of the signature s using an a priori
stored copy of P’s signature verification key.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 79

time stamp s

(relative time only)

A

Buffer

Y, »| Append Time »| Temporal Authenticator
Ys —* Group - o
Hash
(optional)
Time Private
T Source Key
member member
Yy Ym
Storage

Figure 4.2: Generic structure of a time stamping protocol. Each y; = h(x;) is the hash
of a document x;, input to receive a time stamp. Rectangles indicate functions that are
performed (typically by the time stamp producer) and corresponed to those described
in Sections 4.2 and 4.3. Cubes indicate sources of trusted or authenticated storage.
The role of the Buffer and the Time Source are described in Sections 4.3.2, 4.3.3 and
4.3.4. The Temporal Authenticator and Storage are described in Section 4.2.1.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 80

The verification of the stamp assumes trust in the time stamp provider for honestly
producing time stamps. However, not all stamp verifications will be successful. We

identify a false stamp as one in which an unsuccessful verification results.

Definition 4.6 A false stamp is a time stamp for which the verification of the stamp’s
temporal authenticity has failed. A stamp s for a document y is a valid stamp if s is

not a false stamp.

Notice that this definition of a false stamp differs from a fraudulent stamp produced

by a dishonest time stamp provider, e.g., if the provider includes an improper time.

4.2.1 Alternatives for Authenticating the Stamp

In situations where long-term trust in a single time stamp provider (authority) 7" is
not desireable, additional corroborative evidence may be provided for the time stamp
s. In this subsection, we examine several options or enhancements to Protocol TS1
for authenticating or legitimizing the resultant time stamp, with particular emphasis
on techniques that corroborate a time stamp that would be provided by a single time

stamp authority.

Message Authentication

Several uses of a digital signature were provided by the stamping protocols reviewed

in Chapter 2, including the following:
1. the digital signature of a trusted authority, e.g., Protocol AB1;

2. a decentralized protocol requiring the digital signatures of other entities, e.g.,
Protocol AB5.

The digital signature of a trusted authority can consist of a centralized protocol
or a distributed version, e.g., a threshold or proactive scheme (see brief description
in Section 6.2). Protocol AB1 is an example of a centralized protocol that requires
complete trust in the provision of temporal authentication by the single time stamp

authority. On the other hand, Protocol AB2 additionally provides corroborative

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 81

evidence by the inclusion of independent time stamps from a number of so-called
temporal data authorities. The provision of a time stamp in which several varying
times are included, as in Protocol AB2 and Protocol AB5 has the effect of weakening
the granularity of time provided. In other words, given that for k& absolute times
provided in a time stamp, where t; < ... < t;, one may only be able to determine
that a data item was time stamped after time ¢; and before time ¢,. A large gap
between these two times can reduce a scheme’s practicality.

Alternatively, there may be no message authentication provided for the (data, time)
pair. For example, in Protocol AB4, although the submitting user signs the (data, time)
pair, no real temporal authentication is provided since a lone user should not be
trusted for providing a valid time. In Protocol AB4, subsequent storage techniques

(see below) are used to provide authentication for the data.

Storage

Storage of a time stamp (as well as any other information required for the verification
of the stamp) refers to the maintenance of its existence and integrity for the purpose
of future verification(s). The storage of the stamp serves many purposes, including

the following.

1. Functionality. The storage of the time stamp, if stored only by the time stamp

submitter, is required for subsequent verification to be performed at all.

2. Redundancy. The storage of the time stamp may also be used as alternative
means for demonstrating the existence of the time stamp. It can be used as
corroborative evidence in the case of a dispute regarding the status of a user’s
version. In this sense, its mere existence at a secondary storage facility reduces
the trust required in a central time stamp authority in the case that a temporal
ordering is provided by the storage (see next point). See Protocol HY2 (of
Section 4.5) for a scheme that uses a storage facility for redundant storage of

time stamps.

3. Relative Ordering. A centralized storage of time stamps may provide for an

incidental relative ordering (see Section 4.3.3) of the stamps in the case that

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 82

newly received stamps are appended to the end of storage upon receipt (and as

well, are received in the same order that they are time stamped).

The integrity of the storage is required for each of the points indicated above. The
provision of this integrity depends on the how the stamp is stored. This provision can
affect one’s trust in the time stamp and can also affect the efficiency of the stamp’s

verification. Alternatives for storage of the stamp include:

1. Storage by Owner. In this case, only the submitting user maintains a copy of

the resultant time stamp, e.g., Protocol AB1.

2. Centralized Storage. Centralized storage may involve a storage facility main-
tained by a trusted entity (possibly but not necessarily the time stamp author-
ity). Redundancy may be provided by distributing the storage among several
trusted entities. See Protocol HY2 (of Section 4.5) for an example usage of

centralized storage.

3. Decentralized Storage. The decentralized storage of time stamps, involves the
distribution of the time stamps among users. Protocol AB3 distributed the
storage of the time stamp among users. Protocol RL1 distributed information
allowing the verification of time stamps among users. Additional cooperation
may be required here for the verification of the time stamp since users not
directly responsible for the production of the time stamp may need to be con-
tacted.

4. Widespread Publication. A widespread publication involves a large scale distri-
bution of the stamp. If performed only periodically (so that the information
from the widespread publication alone is not sufficient to validate the stamp),
alternative means (as described above) must be used for storage of necessary
information. See Protocol HY1 (of Section 4.5) for an example usage of a

widespread publication.

The most interesting option for “authenticating” storage involves the use of a

widespread publication of the information. Originally suggested by Merkle [Mer80]

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 83

(often referred to as a “Merkle channel”) for the authentication of public keys and
later by Bayer, Haber and Stornetta [BHS93] for the authentication of time stamps,
a widespread publication can be thought of as a decentralized storage. For example,
recall Protocol AB4 where time stamps are published daily in the local newspaper.
More correctly, suppose that the submissions of users were published. The publication
date accompanying the submissions provides an absolute time stamp. Authentica-
tion of the submissions is provided by the fact that the widespread dissemination of
the information has bound their submission with the associated time of publication.
Linking can be combined with group hashing so that resultant information need only
be published periodically. This technique is used by Protocol HY1 in Section 4.5

where some additional concerns with a widespread publication are presented.

4.3 Associating a Time with Data

Section 2.1.1 introduced the protocols and functions used to provide a (cryptographic)
time stamp s for data y by the authentic association of a ‘time’ ¢ with y. Three vari-
eties of ‘time’ were also introduced. A typical purpose for obtaining a time stamp is
to allow a determination of ‘when’ y existed as compared to some other ‘time’ (pos-
sibly also contained within another time stamp); a so-called temporal measurement
(see Definition 2.9). In this section, we present several requirements regarding the
production of a time for a time stamp, and examine how each type of time provides

these requirements.

4.3.1 Applying a Consistent Time

The production of a time stamp s is an instance of a larger, ongoing time stamp-
ing process (see Definition 4.5). Each such instance is referred to as a round, and
the provision of the time stamp during each round is performed by a time stamp-
ing protocol (see Definition 2.6). To allow for meaningful temporal measurements,’

each assignment of a time by a time stamping protocol should be consistent for all

IA temporal measurement is a comparison between two times, the result of which determines
which time (or more specifically, the event associated with the particular time) was earlier.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 84

protocol instances. In this subsection, we present several requirements regarding the
application of a time in a time stamping protocol, that allow for such meaningful
measurements.

To motivate and clarify this consistency requirement, consider the production of
the time stamps s; = sigr(y1,t1) and sy = sigr(ys,ts) for respective data y; and y,
with times ¢; and ¢y, using Protocol AB1 of Section 2.4.1. A natural question might
be: “Which of y; or y, were time stamped first?” However, this question is relevant
only if ¢#; and ¢, indicate the times at which y; and y, were time stamped. In other
words, suppose that the time stamp authority 7' time stamps data with the ‘time
of receipt’ of the data. Therefore, t; and ¢, would represent the respective times at
which the data y; and y, were received by T. Suppose, without loss of generality,
that y; was received prior to ys so that t; < t5. Yet suppose that y; happened to
be time stamped by T later than ys, even though it was received earlier. Therefore,
there would be an inconsistency with the answer provided for the question above,
and the times associated with the data since although the time associated with y, is
earlier than the time associated with s, y; as stamped later than ys,.

Consider also the following example where the stamps s; and s, are defined as
above. Suppose that y; happened to be received at time t;, while y, happened to
be stamped at time 5, where as above, t; < t5. Beyond being inconsistent with the
provision of times in the time stamps, the answer to the question “Which of y; or
were time stamped first?” would be indeterminable since the time of stamping of y;
is not known; ¢; indicates only the time of receipt of y;.

The lack of precision regarding the application of a time by 7" in the above two
examples was purposeful. Its intent was to illustrate the requirement for precision so
that time stamps produced by 7" should be applied with times that obey a consistent
and unambiguous rule for all rounds in which a time stamp is produced. A variety of
such rules, regarding the ‘meaning’ associated with the time of stamping include the

following;:

1. each input to be time stamped is assigned a time upon its receipt, to be included

in the resultant time stamp by the time stamp provider, or

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 85

1. The time applied to each data or group of data should be consistent and its
meaning unambiguous for all rounds in which a time stamp is produced.

2. The time applied to each data or group of data should be monotonically in-
creasing with the number of data input to be time stamped (see Definition 4.5).

Table 4.1: Requirements for the Association of a Time in a Time Stamping Protocol.

2. each input received is ordered in a queue where each item is assigned a time, to

be included in the resultant time stamp, upon its removal from the queue.

A time stamp provider must ensure that a single, unambiguous, consistent rule is
followed for each time stamp production. Additionally, the provision of time through
a time stamp must allow for subsequent determination of the order in which the
time stamps were provided. In other words, if data y; was submitted no later than
data y;, then for the respective times ¢; and ¢; associated with the data through the
respective time stamps s; and s;, then one must be able to determine that ¢; < ¢;. The
requirements for the association of a time in a time stamping protocol are summarized
in Table 4.1.

4.3.2 Providing Absolute Time

Definition 2.3 provides a definition of an absolute time stamp as the result of the
authentic association of an absolute, universal time with data. In this subsection, we
more precisely define an absolute time, and examine how such a time is provided for
a time stamp.

An absolute time is more intuitive than a relative time (see Section 4.3.3 below).
It is the de facto form of time that is recognizable by many people on this earth. For

example, the time ¢ where
t = Mon Aug 28 15:43:32 EDT 1998

is an example of an absolute time. Indicated are the day of the week:‘Mon’; the

month of the year:*Aug’; the date within that month:‘28’; the time of day:‘15:43:32";

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 86

the current ‘time zone:"EDT’; and the year:'1998’. This time has meaning rela-
tive to other times. For example, ¢ is one hour later than the absolute time t* =
Mon Aug 28 14:43:32 EDT 1998, identifying the time, and any events associated with
t as ‘later than’ events associated with t*, i.e., £ > t*.

Although there is no (known) truly “absolute” time, for digital applications, one
can be constructed. For example, this time might be represented, similar to the
above representation, by the current year (number of times the earth has revolved
around the moon since the birth of Christ), the month within that year and day
within that month (following the Julian calendar) and the time of day (specified by
Universal Coordinated Time (UCT)). However, there can be alternative definitions
[DS93, Section 3]. A consistent, clear definition of how the time is provided and format
for describing this time is required in any case [DS93]. Throughout, we assume that
a standarized time value is recognized by all time stamp authorities. We refer to this

time as a unwersal time.

Definition 4.7 An absolute time is a time ¢ from which a universal time ¢ can
be uniquely and efficiently determined. The absolute time ¢ is exzplicit if ' can be
computed from ¢ using only arithmetic operations, while ¢ is implicit if additionally,

external time data is required to compute t' from ¢.

Examples of an explicit absolute time include the time ¢t = Mon Aug 28 15:43:32 EDT 1998
(which is also one possibility for a universal time) as shown above or alternatively,
the time #; which represents the number of seconds that have elapsed since a certain
some ‘base’ time, i.e., t; = 1 with base time of ¢, would represent the universal time
t" = Mon Aug 28 15:43:33 EDT 1998. Examples of an implicit time were given for
Protocol AB2 in Section 2.4.1.
An absolute time stamping protocol is memoryless since the time stamp construc-
tion computations during one round are not dependent on any function of the time
stamps from previous rounds. Rather, an absolute time stamp requires a source for its
time independent of occasions of time stamp production. This source of the absolute

time can be a clock that is either internal or external to the time stamp provider. An

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 87

internal clock is maintained by the time stamp provider, i.e., its integrity is main-
tained locally by T'. More than one internal clock may be used whereby some function
of the times (e.g., their average so long as the difference between their times is not

too great) is used in the time stamping operation.

Remark 4.2 (Similarities between cryptographic keys and clocks.) A clock is similar
to a cryptographic key whose authenticity must be maintained, but not its privacy
(e.g., a public verification key). Both are susceptible to attacks in which the current
state or wvalue is modified, e.q., by forwarding or reversing the time on the clock
or altering the value of the key. Synonymous to a key that is renewed to limit the
exposure subsequent to an attack, clocks may be periodically synchronized, to limit the
effects of “clock skew” but as well to allow the detection of potential, unauthorized
alterations of the time (where an unauthorized alteration would involve, for example,

the modification of the time).

Definition 4.8 A time stamping protocol that provides temporal authentication

with an absolute time provides absolute temporal authentication.

Measuring Absolute Time

Definition 4.9 An absolute temporal measurement is a temporal measurement (see
Definition 2.9) for which the order of absolute times ¢ and ¢’ is determined. In other

words, whether ¢t <t', t=t ort>=1t. m

Unlike a relative measurement, the times in an absolute measurement need not be
cryptographically associated with a time stamp. Since absolute times are so ubiqui-

tous, other times may be used in an absolute measurement, including:
1. the current time, i.e., time when the comparison is being made;
2. the absolute time(s) from some other stamp(s); or

3. some other event or object for which an absolute time is supplied, e.g., the
deadline for submission of a conference paper might be compared with the time

stamp on the particular version of that paper.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 88

Given a rule for a particular absolute time stamping protocol, stating the time,
relative to the time of submission of a document, should be associated with a given
submission, we define the malicious back or forward stamping of a document as

follows.

Definition 4.10 A document y has been absolutely back stamped if an absolute tem-
poral measure of the time stamp s for y infers that the time ¢ associated with y is

earlier than the time expected, based on the rule of the time stamping protocol.

Definition 4.11 A document y has been absolutely forward stamped if a temporal
measure of the time stamp for y infers that the time associated with y is greater than

the time expected, based on the rule of the time stamping protocol.

For example, suppose that the rule for a particular time stamping protocol states that
data are time stamped with the time indicating their time of receipt by the time stamp
provider. Suppose that data y was received at time t. y would be absolutely back
stamped if a stamp s was constructed for y, using a time ¢’ < ¢. Similarly, if a time
t" = t were used as the time of stamping, then y would be absolutely forward stamped.
Such malicious action by a rogue T is difficult to prevent. However, some possibilities

for limiting the extent of a back or forward stamp are examined in Section 5.1.3.

4.3.3 Providing Relative Time

Definition 2.4 provides a definition of a relative time stamp as the result of the
authentic association of a relative time with data. In this subsection, we define a
relative time more precisely, and examine how such a time is provided for a time

stamp.

Definition 4.12 A relative time is a value r; such that given at least one other
relative time value 7;, it can be determined which of the following is true (see Defini-
tions 4.3 and 4.4):

Lor; <rj,

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 89

2. 1, =1, or
3. T > Tj.
[

Notice that an absolute time is also a relative time since given two absolute times t;
and t;, one can determine which of the above conditions is true. The key distinction
is that a relative time need not allow one to compute a unique universal time from it.

Unlike an absolute time (where the time increases independent of data submitted
to be time stamped), the provision of a relative time is dependent upon the stamping
of previous data. Therefore, notice that from Definition 4.12, a single relative time

may have no temporal meaning on its own.

Definition 4.13 A time stamping protocol that provides temporal authentication

with relative time provides relative temporal authentication.

Remark 4.3 (Different uses for a relative time.) A relative can serve many func-
tions. For the provision of relative temporal authentication, two such purposes of a

relative time have been used.

1. (Relative Measure.) In protocols such as Protocol RL2 (of Section 2.5) a relative

time was used to allow the ordering of two time stamps to be determined.

2. (Corroborating Evidence.) In protocols such as Protocol HY1 (of Section 4.5),
an ordering of time stamps is used to provide corrobating evidence for a time
stamp by using a relative time (linking) with a periodic “authentication” of
stamps. This corroborating evidence serves to reduce the amount of trust re-

quired 1n the principal time stamp provider.

The “time” in a relative time stamp could be represented by a variety of values,

including:
1. Linking information. Explicit dependency on one or more previous stamps.

2. Counter. A monotonically increasing positive integer.

Both linking information and a counter were used by all of the schemes reviewed in

Section 2.5. In the following, we expand on the varieties of a relative time.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 90

Linking Information

A relative time using linking information can be implemented using a buffer to store
previous stamp information. This (variable or fixed sized) buffer can be initialized
with a publically verifiable value. For Protocol RL1 a buffer of size 1 was used so
that each stamp was authentically bound to only 1 previous stamp. Protocol RL3
used a buffer of size k£ so that each stamp was authentically bound to only & previous
stamps. Denoting the current stamp as s;, the buffer contains some subset S’ of some
function of the previous stamps S = {s1,...,$,_1}. The appendage of a relative time
from this buffer makes use of a subset S” C S’.

Linking can be described in general as computation of the recurrence relation
l, = link(prev, a,)

given some initial value, where [, represents the relative time for the current round,
a, represents a partial result of the current round (where a, likely has no timeliness
provisions) and prev represents the time stamp result(s) from previous round(s). a,
might be a single document (or some function thereof) or the representative result
of a group hashing of m documents. The goal of executing the link() function is to

relatively order data.

Remark 4.4 The link() function must be collision-resistant else one might be able
to produce an alternative prev’ from a previous round in an attempt to maliciously

demonstrate precedence over the current round, e.g., so that link(prev, a,) = link(prev', a,).

Counter

Alternatively or in conjunction with the linking of stamps, 1" may use a counter to
order time stamps where the counter is a positive integer, initialized to zero and incre-
mented by 1 for each time stamp produced. Because of the simplicity of maintaining
a counter and the dependence on each stamping of a document, this time source is

typically internal to 7T'.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 91

Incidental Relative Orderings with Counters Alternative to the explicit pro-
vision of relative time via linking or a counter, other stages in the production of a time
stamp can incidently provide a relative time (meaning that their main purpose is not
to provide a time, though such a relative measure, as described below, is recoverable).

For example, recall the group hashing techniques reviewed in Section 2.5. The
schemes of Section 2.3.1 and Section 2.3.2 provide a relative ordering of the input
data. Consider the computation a, = h(yy, ..., ym) of Protocol GH1. Given y; and y;,
and their respective member,, and member,,, the relative positioning of y; and y; can
be determined during the recomputation of a,. This relative ordering would typically
be implemented similar to a counter whereby one would store (4,y;, member,,) to
facilitate proper recomputation of the group hash; i represents the counter value.
Notice though that this relative ordering (provided by the group hashing), exists only
for documents within the same round.

Protocols GH4 and GH5 do not provide such an incidental ordering. However,
a relative ordering can certainly be explicitly provided during the production of the
group hash. For example, in Protocol GH4, rather than broadcasting y;, users might
explicitly order their submissions (as required for the protocols from the previous
paragraph) and input A(i,y;) to the group hash.

However, this precedence relationship should not be interpreted as an indication
of which y; has time precedence over another, unless this is explicitly indicated. As
described, the group hash protocols gather submissions with no apparant regard to
their “order” of submission. However, consider the situation in which documents
are submitted to a central time stamp authority who after the reciept of m submis-
sions, performs a group hash operation before stamping the result. By inputting the
documents to the group hash in the order they were received, an incidental relative
ordering is achieved.

Besides group hashing, an incidental ordering can also be provided during the
storage of time stamps. For example, if stamps are appended to the current storage
the last stamp appended would be the stamp with the latest “time” associated with
it. As with the group hashing above, this ordering is based on a counter maintained

within the file, pointing to the memory location(s) for each stamp.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 92

Measuring Relative Time

Recovery of a relative time alone does not yield any information regarding “when” a
relative time stamp was constructed. Rather, a relative time stamp contains a “time”
which allows the temporal position of the stamp to be determined against other items

for which a relative time is also provided.

Definition 4.14 A relative temporal measurement is a temporal measurement for
which the order of relative times ¢ and t' is determined . In other words, a determi-
nation of whether ¢t < ¢/, t = t' or t > t’. For linked times, one can determine for
example that ¢ > t' by determining if for a set of intermediate times (¢1,...,t;) with

respective data (aq,...,ay) for stamps (sy, ..., sk),
t =link(ty, ax), ty = link(t—1, ax_1), ..., t1 = link(t', a;).

For a counter based relative time, one can determine, for example, that ¢t > ¢ if
t—t'>0. =

Definition 4.15 A document y has been relatively back stamped if a temporal mea-

surement infers that y was stamped before y’ when in fact, y was stamped after

Y.
Definition 4.16 A document y has been relatively forward stamped if a temporal

measurement infers that y was stamped after 3y’ when in fact, y was stamped before

Y.

Consider the unsuitability of these definitions for absolute time stamps (and hence
the distinctions with Definitions 4.10 and 4.11). Suppose that a protocol provides a
time stamp s for data y where s = stamp(y). Suppose further that s is an abso-
lute time stamp for which the time ¢, of submission of y, is associated with y. By
Definitions 4.15 and 4.16, it would not be back stamping to assign a time ' < t to
the stamp s for y. so long as t’ is greater than the time of the most recently issued
stamp. However, this could cause great confusion. Consider the example of having

conference submissions time stamped. Suppose that the deadline for submissions

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 93

is Tuesday morning and that the latest submission so far was received on Monday
morning. For the application of an absolute time stamp, the above definition allows
a time from Monday afternoon to be applied to a paper that may be submitted after

the Tuesday morning deadline.

Relative Markers. One problem with measuring the distance between linked stamps
is that there may be a long chain between the times associated with s and s, requiring
a potentially large number of computations to be performed for verification. As well,
if the storage of the stamps is distributed (as in Protocol RL1) then a large amount of

communication is required. Large chains can be dealt with by using relative markers.

Definition 4.17 Relative markers are distinguished stamps within a temporal chain

that serve a special purpose. Two such markers are

1. Intermediate Stamps. Intermediate stamps are used by Pinto and Freitas [PF96]
to shorten the chain of comparison between two stamps that contain many chain

links between them.

2. Cross-Stamps. Cross-stamps which link two different time stamping “domains”,
allow for the relative comparison of two stamps that may have been produced

by different time stamping authorities.

The use of intermediate stamps by Pinto and Freitas [PF96] was reviewed at the
end of Section 2.5. Their usefulness can be motivated with the following example.
Consider the verification of stamps @; and a; in Protocol RL2. Presuming that a; was
indeed produced prior to a;, in step 2 of the verification of Protocol RL2, the verifier

v obtains a;; = (@j41, @ita,...,aj—1) from T and in step 3, computes
;H»l = h(akva)’ i1 <k < (] - 1)

and ensures that Ly, = Ly, for each value of k. This recursive operation (relative

temporal measurement) demonstrates that a; was used in the computation of a; and

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 94

a) / \

verification chain

b) verification chain

~ N

| l l l l l l l | » time

G a1 a1 &

Figure 4.3: Improved Efficiency with Intermediate Stamps. a; and a; are time stamps
(with respective times t; and t;) produced for users u; and wu; respectively. a; and
ayr are trusted time stamps (with respective times t; and ¢;7) produced solely by T.
The temporal order t; < t77 is known and trusted to be true. (a) The entire sequence
of stamps is required for determining that ¢; < ¢;. (b) Given that ¢; < ¢;7, one need
only show that #; < ¢; and #;; < t;. The length of the verifying chain is reduced by
the number of stamps between a; and a;;.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 95

Time Stamp
Authority T

JAR JaR JaR JAR JAR /AR /AR /AR /AR .
-/ -/ -/ -/ -/ -/ -/ -/ / g
a’ a’ a’.
I P J
A
Time Stamp
Authority T

V4 WY 40 WY 40 WY 40 WY 40 WY 40 WY WY 4 WY 4
s U v uvuU U uUouU U Y

Y

4 ar agr

Figure 4.4: Cross-Stamps Allowing for Relative Stamp Interoperability. a; and a; are
user stamps created by respective time stamp authorities 7 and 7". a} is a cross-
stamp produced by T' as a function of both the previous stamp in the upper chain
as well as ay. ayr is a cross-stamp produced by 7" as a function of both the previous
stamp in the lower chain as well as a,.

hence, time stamped before a;. However, it requires that j — ¢ stamps be obtained
from T and at least j — ¢ hash computations be performed. As noted at the end of
Section 2.5 and illustrated in Figure 4.3, intermediate stamps a; and a;; allow the
length of the verification process to be reduced by an amount proportional to the
number of stamps between a; and ay;. Intermediate stamps are also used by Haber
and Stornetta (see Protocol HY1 of Section 4.5) and authenticated via a widespread
publication in the New York Times.

Cross-stamps allow for interoperability between two temporal chains. Consider
the user stamps a; and) from Figure 4.4 produced respectively by time stamp
authorities T and T". On their own, the temporal chains to which a; and a} belong,

have no comparable ordering. Therefore, without additional provisions, one would

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 96

not be able to determine the positioning of stamps produced by different time stamp
authorities. To overcome this problem, one can use cross-stamps as in Figure 4.4. a
is a regular stamp produced for some user by T. T’ obtains a; from T and creates
the cross stamp a} which connects the stamps prior to a; on the lower chain to the
stamps after a’ on the upper chain. To complete the process so that the stamps prior
to @’ on the upper chain are comparable to stamps on the lower chain, T" obtains a

stamp from 7" in a similar manner (in this case, T' obtains a;, to construct ayz).

4.3.4 Providing Hybrid Time

Definition 2.5 provides a definition of a hybrid time stamp as the result of the authen-
tic association of both an absolute and relative time with data. In this subsection,
we examine how such a time is provided within a time stamp. Protocols RL1 and
RL3 were reviewed in Section 2.5 and Protocol HY1 is reviewed in Section 4.5. In
addition to the provision of a relative temporal ordering, these schemes also provide
for the recovery of an absolute time during stamp verification. Hence they provide a

hybrid time stamp.

Definition 4.18 A time stamping protocol that provides temporal authentication

with both an absolute and relative time provides hybrid temporal authentication.

The intent of using a hybrid time is to combine the advantages of both an absolute
and relative time. However, it also incorporates some of the disadvantages. The choice
between an absolute versus a relative time can depend on several factors. For example,
the provision of an absolute time requires a trusted clock (see [LB92]) for the provider
of the absolute time stamp and possibly for the verifiers of the absolute time contained
within the stamp, should the correctness of the time stamp upon its initial receipt,
need to be checked; also required by verifiers so as to allow a determination of what
the current time is, during temporal measures of time stamps. On the other hand, the
application of only relative times allows only for comparisons between like-stamped
data, i.e., data for which a relative time stamp has also been provided. The choice

between the more suitable time to provide will depend on the intended application

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 97

for which the time stamps are being provided as well as the resources of the time
stamp provider and verifiers.

Besides providing a recoverable temporal ordering of data, relative time or linking
can also serve to reduce the trust required in the time stamp provider (see Section 4.2.1
and Section 4.3.3). Therefore, a natural hybrid scheme is one in which the linking is
used as more of an integrity measure than a temporal measure (as in Protocols RL1,
RL3 and upcoming with Protocol HY1).

A hybrid scheme can also provide both an absolute and hybrid stamp, whereas
verification need only perform an absolute or relative measure. This may be practical
in the case that a particular time stamp has both an absolute and relative time, yet
the verifier, who does not have access to a trusted clock for validation of the absolute
time, chooses not to determine the validity of the absolute time. In this case, the
verifier must ensure that the time he has chosen to measure was provided for the

purpose of temporally authenticating the data.

4.4 Importance of Proper Temporal Measurements

In this section, we present two protocol failures in schemes previously proposed in
the literature. These failures occur as a result of misunderstanding the verification
of a time stamp. These protocol failures were presented at the 1998 Symposium on
Network and Distributed System Security [Jus98].

In Section 4.4.1 we discuss how the inclusion of an absolute time in the production
of a time stamp for Protocol GH4 is not recoverable nor verifiable during stamp
verification thereby not permitting a successful temporal measurement. Section 4.4.2
presents a collusion attack on Protocol RL1. We demonstrate how the use of only
an absolute temporal measure (in a scheme that is intended to provide both absolute
and relative temporal authentication) and unreasonable assumptions regarding trust
in the time stamp authority, allows the relative backdating of documents.

The particular attack against Protocol RL1 is presented relative to the model in
which the original scheme was given. The model assumes that the time stamping
authority (T) need not be trusted. In Section 4.4.2, we show that a dishonest T can

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 98

subvert the scheme unless certain precautions are taken. Omne should not presume
however that such an attack is only successful against Protocol RL1. Indeed, one
should be careful when designing similar linking schemes and specifically must con-
sider the necessity of properly authenticating the resultant stamp (see Section 4.2.1).
In environments where it is not unreasonable to trust T, such an assumption, and

therefore the attack and precautions, may be unnecessary.

4.4.1 Protocol Failure: Inability to Measure an Absolute
Time

In Section 2.3.3, Protocol GH4 was reviewed. In addition to the computation of a
group hash, it was suggested that an absolute time may be included in the stamp
construction, thereby allowing one to also provide absolute temporal authentication
for the group hash.

The protocol allows the resultant time stamp for a round to be computed in such a
manner that an on-line, centralized entity is not required for the stamp computation.
We demonstrate here that the constructed time stamp does not allow for the recovery
of an absolute time during its verification, even though such information is suggested
for optional inclusion during stamp construction. In a sense, the time is “lost” during

the stamp construction. More specifically, we state the following.

Proposition 4.1 For Protocol GH/, one can neither recover nor validate (the abso-

lute time) x during stamp verification.

Proof:

Consider the verification of a time stamp by user v. User u; would demon-
strate that that the document y; contributed to the round in question by giving
{yi, member,,} to v. User v would compute (member,,)¥ mod n and determine its
equivalence to a, modulo n. Although an absolute time may have been included in
the stamp computation (i.e., by setting x to be the current date), no such absolute
time is uniquely recoverable during time stamp verification. In other words, there is

more than one candidate x such that x¥ = a, mod n. Therefore, there is no reason

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 99

for any recovered x to be trusted as the time of stamping of a,. Hence, the inclusion
of the current date as described in the stamp construction, serves no purpose since it
is not recoverable during stamp verification. [

One way to provide for the absolute temporal authentication of the stamp for
Protocol GH4 is to authenticate a, along with ¢ (the time of stamping). The time ¢
will be verified for its correctness rather than recovered from a,. Use of a hash by
computing a!. = h(a,,t) and storing a, and ¢ allows for increased storage efficiency.
However, there may be additional overhead in case a decentralized protocol is used,
for users to agree upon a time t. The provision of a relative temporal measure would
allow users to demonstrate a time precedence ordering for documents submitted in
distinct rounds. Techniques for providing absolute and relative times were respec-
tively discussed in Sections 4.3.2 and 4.3.3. Authentication of storage of the stamps

was discussed in Section 4.2.1.

4.4.2 Protocol Failure: An Improper Relative Measurement

In what follows, we demonstrate how the use of only an absolute temporal measure
(in a scheme that is intended to provide hybrid temporal authentication) allows the
relative back dating of documents in Protocol RL1. As well, some unreasonable
assumptions with regard to the lack of requiring any trust in a central entity are also
discussed.

Recall that Protocol RL1 is actually a hybrid scheme, and not just a relative
stamping scheme since absolute times ¢; are included in each time stamp, in addition
to the linking of the stamps. Indeed, the verification process determines the position of
only a single document rather than the relative positioning of a number of challenged
documents. The linking of the resulting absolute time stamps is used as a means to
prevent T from back or forward dating stamps. We therefore assume that if a;_q,
a; and a;;q are stamps that are consecutively linked in a temporal chain and the
respective absolute times associated with each are ¢, |, t; and t;,¢, then #; | < ¢; <
t;r1. We make this assumption for the successful running of the protocol, i.e., we

assume that any challenger that moves along the chain will check that the times will

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 100

follow the same temporal order as the stamps to which they are associated.

Meaning of the Attack

A fake chain attack is recognized by Haber and Stornetta [HS91], where it is claimed
that

the only possible spoof is to prepare a fake chain of time-stamps, long

enough to exhaust the most suspicious challenger that one anticipates.

Since each time stamp requires a signature by the time stamp authority (T), this
attack would presumably require collaboration with T. This attack might appear
not that difficult to implement except that for assigning fake stamps, a number of
additional collaborators would be required. After all, a suspicious challenger might
only be convinced of the legitimacy of a chain if a large number of distinct participants
are contacted for verification.

In Lemma 4.1, a new attack is presented whereby one can collude with T and
partially insert a single false stamp into a valid chain of stamps. In this way, only a
small fake chain need be produced, that can be “fused” into the valid chain (though
only one end of the fake chain is connected to the valid chain). This fake chain is the
lower chain in Figure 4.5. The attack demonstrates that an untrusted, centralized T
with no record-keeping is not sufficient for providing the claimed level of security. We

can summarize the requirements and results of the attack as follows:

Attack Requirements

1. Collusion with T. The absolute backstamping (backdating) (cf. Definition 4.10)
of a document requires the participation of the time stamp authority 7. Pro-
tocol RL1 claimed that T need not perform any record-keeping, nor be trust-
worthy. The linking alone was claimed to prevent even 7" from backstamping a

document.

2. Additional collusion or advanced knowledge of attack. The backstamping of a

document requires either the participation of another user with a time stamp

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 101

produced near the time of the desired backstamping or the anticipation of a
subsequent attack by the attacker having a previously time stamped document

existing near the time of the desired backstamp.

3. Subsequent maintenance by T. As discussed below, the attack can require that
T perform subsequent maintenance in order to “disguise” the existence of a

backstamped document.

Attack Results and Limitations

1. Absolute but not relative backstamping of a document. As explained below, the
attack does not allow one to relatively backstamp a document. This is not that
constrictive since the verification procedure (see Protocol RL1) only performs an
absolute temporal measure (see Section 4.3.2); the relative ordering is provided
only to reduce the trust required in 7T and is not used in the recovery of a

relative ordering during verification.

2. Attack detection with enhanced verification. The attack can be thwarted with

a more vigorous verification protocol.

The absolute backstamping in Protocol RL1 is successful since the verification
protocol performs a temporal comparison based only on the absolute times associated
with the time stamps. However, it is not successful for relatively backstamping a
document. In other words, T cannot backstamp to show the time precedence of one
stamp over a previously, legitimately constructed stamp that would be verified by
a relative measure. There is no relationship between stamps that are solely on the
upper or lower chains here (see Figure 4.5 and Lemma 4.1). For example there does
not exist a relative temporal relationship between the stamps a;1; and a; as they are
not linked together (via a series of directed links).

Let f : P — P be a function where P is the set of all possible time stamp
capsules. For example, from Figure 4.5, we have p; € P belonging to u;, where
p1 ={C1, Li,a1,IDy}. Then py = f(p1) = {Cy, Ly, as, ID3}. In other words, on input

p1, f produces the time stamp capsule for a time stamp whose linking information is

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 102

Valid Chain
Upper Chain
D1 IDj IDj+1 IDj-1

Cy Ci Ciia
L1 | L Ljn
a, ch a1
ID2 IDj41! | |IDjs2
ID;

Lower

Chain

Figure 4.5: Multiple Chains in Protocol RL1. Each of the smaller rectangles repre-
sents the time stamp capsules for a user. The valid chain is an example of what might
be produced from a normal running of Protocol RLL1. The lower chain is produced
by T in collusion with I D;, in order to backstamp a document y;. I D; indicates that
there is more than one possibility for the placement of the next stamp, depending on
how the attack is mounted.

computed explicitly as a function of the stamp contained in p;. As long as H (where
H is used to compute Ly; see Protocol RL1) is collision resistant, the assumption is
that f is a one-to-one function.

The claim of Haber and Stornetta [HS91] was that T need not be trusted since an

attack would require finding a collision for H. From our attack, we can in fact state

the following.

Lemma 4.1 The collision-resistance of H is not sufficient so as to permit the truth
of both statements in Protocol RL1:

1. T need not be trusted; and

2. T cannot back or forward stamp data.

Proof:
For the proof, we demonstrate that 7" can indeed back stamp data for user u;.

The attack proceeds with user u; colluding with T to backstamp a document y; (with

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 103

corresponding stamp a;). (Readers may wish to re-read Protocol RL1 of Section 2.5 at
this point to regain familiarity with the protocol.) Referring to Figure 4.5, we see how
the resultant T-signed time stamp a; is expected to appear immediately after a; 1,
i.e., normal running of the protocol assumes that additions take place at the end of the
valid chain. However, as in the figure, a; is placed by T, immediately after a;. What
advantage does this give w;? Suppose that a;, a;4+1 and a;_; contained the respective
times t;, t;4, and ¢;,_; where t; < t;;; < t,_;. If the stamp a; (corresponding to
document y;) were placed in its correct place (i.e., after a;_1), T would associate a
time ¢; > ¢;_; with it. By placing it immediately after a;, 7" can assign any time ¢,
to y; (in stamp a;) such that ¢; > ¢;. Since t; < ¢,_y, T has absolutely backstamped
y; for u; by assigning it a time earlier than the current time. Notice however that T
has not relatively backstamped y; here since a relative measurement does not show
precedence of a; (the time stamp for y;) over any stamp in the upper chain.

Subsequent to the linking of y; in this new chain, all future legitimate stamp
requests can either be added by T in the lower chain (i.e., after y; whereby ID; in
the upper chain could simply be assigned ID;; see Figure 4.5) wherein only the lower
chain would be continuing, or alternately added to first the lower then the upper chain
(whereby ID; in the upper chain would be assigned ID;,; see Figure 4.5) so that
both chains are continuing. The latter technique ensures that challenges can proceed
in the forward direction for documents contained in the upper chain (though how a
challenger would even know when a chain is supposed to end when moving forward
must be considered). However, it does require that the stamps for two documents
will have the same round number associated with them (i.e., the same r) which may
lead to a detection of the fraudulently produced stamp if the verification procedure
were enhanced. This is under the assumption that consecutive stamps must have
consecutive round numbers associated with them.

Now that T has produced a backstamped a; (for submission y;), suppose v were
to verify the time stamp a; following the procedure outlined in Protocol RL1. If v
proceeds forward from a;, no faults are discovered since documents are subsequently,
legitimately stamped after a; in the lower chain. However, if v proceeds backwards

from a;, note that the owner of a;, namely u; was previously given ID;,; by T,

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 104

However, v expects u; to have been given I D;. Hence, v would discover the possibility
that something is wrong with a;. Yet there are still some options to enhance the attack

to overcome this apparent obstacle:

1. T and w; can also collude with u;, requiring u; to store ID; as well I1D; 4. If
prompted from a verifier proceeding on the upper chain, u; can reveal ID;
while from the lower chain, reveal ID;; the requirement of u; knowing which
chain the verifier is proceeding on is discussed in the section on ‘Attack De-
tection” below. This additional requirement for the attack requires a single
additional collusion which is still much less work in comparison to the fake

chain attack reviewed earlier.

2. Have ID; = ID;. This can be accomplished by having u; periodically stamp
(possibly meaningless) documents. For example, referring to Figure 4.5, an
additional collusion would still be required with the user identified by ID;,
but if this user happens to be the attacker u;, then no additional collusion is

required.

The second option is clearly more favourable since no additional colluding partners
are required. In either case, T' has succeeded in absolutely back stamping ¥; for user
u;. [

Notice that if T is dishonest, then f is not necessarily a function at all; it is a
relation. For example, from Figure 4.5 we have that f(p;) = p,+1 as well as f(p;) = p;.
Therefore, rather than forming a total order, the set P of time stamp capsules forms
a partial order. Let each stamp be a vertex in a directed graph with an edge from
stamp a; to stamp «a; if a; was stamped before a; and one can follow a directed chain
from a; to a; (or vice-versa). Rather than exclusively forming a single chain, a tree
is obtained, directed from the root. We have a tree (and hence no cycles) since each
vertex has no more than a single incoming edge (dictated by the collision resistance of
H), but can have more than one outgoing edge (allowing for the creation of multiple
paths). Each path from root to leaf is a potentially valid chain which represents a

total ordering on its own.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 105

Attack Detection?

In the following, we consider different possibilities that might be suggested as a means
for detecting the lower chain (see Figure 4.5) produced from the attack described in
Lemma 4.1. We define a wvalid state as one in which only a single temporal chain
has been produced by T (i.e., the valid chain in Figure 4.5). Attack detection is the
discovery of a state that is not valid. For each of the cases discussed here, detection
of the attack is possible only if certain preventive measures are taken and explicitly
required during stamp creation and stamp verification (in addition to those given by
Protocol RL1). Suggestions for attack prevention are given below.

In item 1 given above, for the next stamp in the “chain” after a;, u; stores ID;i4
and ID; where ID;y # ID,. 1D, refers to the upper chain of stamps while 1D,
refers to the lower chain. In item 2, this “fork” in the temporal chain is advanced
ahead one link. In other words, w; stores 1D,y = ID; pointing to each of the
next stamps. On the other hand, u;, possessing a stamp in both the upper and
lower chains, holds 1D,y # ID;y referring respectively to the continuation of w;’s
previously constructed stamp on the upper chain and backstamped document on the
lower chain.

In the the first detection possibility, we examine possible scenarios in which a
verifier v is traversing along the chains shown in Figure 4.5, traversing both from
(backwards or forwards in the direction of time) and to (backwards or forwards in
the direction of time) the stamps relevant to the attack; namely the stamps a;, a;41
and a; and as well, those stamps legitimately added after a; ; or a; subsequent to the
attack. The second detection possibility notes how a relative measurement included in
the verification procedure might discover the attack. The third detection possibility

discusses the limits of how far back a document might be time stamped.

Detection possibility #:1. For either Item 1 or [tem 2 above, proceeding backward
or forward during a verification of the temporal chain starting from the stamp a; (in
the first case) or from the stamps both submitted and stored by u;, a; or a;4+; (in the
second case), causes no suspicion on the part of the verifier v. This is because moving

backwards from any of these stamps continues along the previously constructed valid

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 106

chain and hence relies on the correctness of the protocol itself since a verifier will now
encounter only legitimately produced stamps. Moving forward from a;;; or a; leads
respectively forward on the upper or lower chains and does not cause suspicion in the
case that stamps have been legitimately added to the upper and lower chains during
the production of stamps produced subsequent to the attack. A similar situation
occurs for a verifier proceeding through a verification to a;, a;;; or a; from earlier
stamps. For example, considering the case in which u; (the owner of a;) possesses
both ID;; and ID; indicating the newly created fork in the chain resulting from the
attack, it does not matter which chain the verifier is sent on, e.g., v is sent on the
upper chain if given 1D, by u;.

However, consider item 1 (item 2 is analogous) and suppose that stamp a4 is
currently being challenged where (j + k) < (i — 1) and thus the stamp appears in
the upper chain (see Figure 4.5). Working backwards to a;;q, the challenger will
eventually obtain ID; from L;;; (which is stored by u;;;) and hence asks u; for his
time stamp capsule, namely {a;, ID'}. Notice that if the challenger were proceeding
on the upper chain then he would expect /D' = I D, whereas on the lower chain he
would expect I D' = ID;. Notice also that u; has no way of knowing which chain the
challenger is proceeding on. However, consider that u; may possess many stamps (all
presumably along the same chain from the challenger’s point of view). The challenger
will have to inform u; about which stamp he wishes to challenge. This may include
information which identifies which chain he may be proceeding with his challenge on.
(The protocol description given by Haber and Stornetta [HS91] is not specific enough
to determine the exact steps taken during such a challenge.) As well, since the entire
capsule (i.e., {a;,ID'}) was not signed by T, there is no reason that any integrity
should be expected to be associated with it by any challenger.

Detection possibility #2. A second possible suggestion for detection relates to
the observation that subsequent to the partial insertion of the false (lower) chain
(see Figure 4.5), maintenance of both the upper and lower chains requires that some

stamps will share the same corresponding identification (round) number. However,

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 107

the same identification number will only be shared by stamps that appear on differ-
ent chains. Stamps will have unique identification numbers relative to the chain that
they are on. Therefore, unless two such documents are compared for their relative
positioning, such number repetition is not detected during a stamp verification. Per-
forming a relative measure (see Section 4.3.3 as well as ‘Attack Prevention’ below)

may detect this attack.

Detection possibility #3. A third method for possible detection involves the
following observation regarding the limits to how far back in time a document might
be time stamped. Depending on how far back a; is partially inserted into the valid
chain (to produce the lower chain — see Figure 4.5) the amount of time between the
time recorded in the stamp for a; and the stamp following a; in the lower chain may
be “uncomfortably large.” Note that legitimately produced stamps following a; will
be stamped with a time that is at least as late as the (actual) current time. Whereas
a; (since it is being backstamped) will be stamped with a time that is earlier (possibly
much earlier) than the (actual) current time.

However, it is difficult to determine how this might be interpreted by a challenger.
Should Protocol RL1 require that an upper bound be placed on the amount of time
that might elapse between the construction of two consecutive stamps? Prior to
knowledge of this attack, such an additional constraint was unmotivated. Given

knowledge of this attack, it may still be difficult to enforce.

Implications of detecting multiple chains. If it happened that multiple chains
were detected and this evidence is given to an adjudicator, then this essentially brings
some suspicion on T. At this point, T may claim that his private signature key must
have been compromised. Either he can refute having created one temporal chain, or
the other or even both. Note that this loss of key scenario is not the same as if we were
to have a single chain for which T refutes some or all of the stamps that he produced.
In such a case, the adjudicator may have a choice to believe or not believe T and to
not accept or to accept the temporal chain. However, in the case given above, the

adjudicator does not have this luxury. Even if he choses not to believe T, how can he

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 108

tell which chain is correct? We note again here that such malicious action by T may
be unlikely, though not impossible. Below, we discuss some additional measures that
might be taken to limit the extent of the attack. One must also bear in mind that
the relevance of this attack lies mainly in its exposure that assuming that 7" need not

be trusted may be unreasonable.

Preventing the Attack on Protocol RL1

In the following, some enhancements to both the stamp production and verification
as described by Protocol RL1 are presented. Two ways to prevent the aforementioned

attack are
1. authentic storage of the stamps by a trusted authority and/or
2. treat the protocol as only a relative scheme.

These points were respectively discussed in Sections 4.2.1 and 4.3.3.

It is important to realize that the use of authenticated storage does not simply
provide for an extra level of security (should one claim that T need not be trusted)
since we have shown the scheme to be insecure without it. With this provision of
authentic storage, producing an alternative chain is made more difficult if the one true
chain is authentically verifiable. As well, notice that providing for such authentication
of the time stamps is not simply an extra feature that can be added to the protocol
since its addition produces an entirely new protocol —i.e., the interactions required for
the verification protocol (the main feature of the scheme) appear to be unnecessary
in this case. The authentication and storage of time stamps was discussed in more
detail in Section 4.2.1.

For treating the protocol as only a relative scheme, there are some drawbacks.
First is a loss of fine granularity. It can no longer be determined exactly when a
document was time stamped, but rather only when it was time stamped relative
to when other documents were time stamped. The provision of relative time was

discussed in Section 4.3.3.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 109

4.5 Hybrid Implementations

In this section, we critique one of the more widely used time stamping implemen-
tations. Protocol HY1 is currently used by Surety Technologies and is described by
Haber and Stornetta [HS97, Section 2.4] and Trowbridge [Tro95]. This protocol is of
interest since it closely follows the framework described in Section 4.2 (though it does
so with a solution that is non-cryptographic).

In anticipation of longer requirements for the temporal authentication of user’s
data, Protocol HY1 uses a 288-bit hash function consisting of the concatentation of
an MD5 [Riv92] and SHA-1 [FIP95] hash. In other words,

y = h(x) = MD5(x), SHA-1(x),

where ‘. denotes concatenation. The advantage of this technique is discussed further
in Section 5.5.

Referring to Protocol HY1, ‘Verification II' is used in the case that the response
for the original verification from 7 is in dispute, or requires further corroborative
evidence. This is not all that unreasonable since no message authentication is provided
for any of the communications performed by 7. We can summarize several concerns

with Protocol HY1:

1. Authenticity of the Time Stamp. (This same concern was noted for Proto-
col SM1 of Section 2.2.) Even after the execution of ‘Verification I’, the verifying
user has little evidence assuring him of the correctness of the time stamp. This
is a result of the lack of message authentication provided for the time stamp.
Indeed, discrepancies between various copies of CD-ROMSs require resolution

using Verification IT (discussed further in the next point).

2. Adjudication. A realistic concern relates to how the ‘storage’ used in Proto-
col HY1 will be treated in the event of disputes. In other words, what makes
one copy of newspaper more trustworthy than another. This might require
trusted archival of the newspaper at several sites, requiring participation of
the archivists in case of a dispute. Indeed, the verification and adjudication

protocols seem very difficult to automate.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 110

Protocol HY1 A Hybrid Time Stamp using Widespread Storage [HS97].

Stamping
Input: {y1,....ym}
Output: a,, member,, from Protocol GH3 (see Section 2.3.2) and widespread storage

of a,

1. User u; submits y; = h(x;) to T

2: T collects the submissions after 1 second (hence the rounds are 1 second in length)
and uses Protocol GH3 to compute a,.

3: A so-called super-hash value (SHV) is computed for this rth round, using a, and
the previous round’s SHV:

SHV, = h(SHV,_1,a,)

4: SHV , is recorded in a Universal Validation Record (UVR) along with the current
time ¢ , i.e., as ‘t:SHV,.a,’."
5. SHV,, member,, and the time ¢ are returned to u;.

‘ Periodic Publication ‘

1: The UVR is periodically distributed (on a CD-ROM) to registered users.
2: Each Sunday, the most recent SHV is published in the NY-Times.
‘Veriﬁcation I‘
Input: y;, member,,, t
Output: whether y; was time stamped at time ¢

1. User v, verifying the purported time ¢ of stamping of y;, submits y;, member,,
and t to T'.

2: T uses y; and member,, to recompute a,, uses t to locate SHV,_; (in the UVR),
computes SHV! = h(SHV, 1,a,) and determines whether it is equal to SHV,
as recorded in the UVR.

3: T returns a success or failure response to u;.

| Verification I1]

Input: UVR and trusted copies of the NY Times
Output: Corroboration of the correctness of the UVR
1: The SHV recorded in the NY Times is treated as a trusted intermediate stamp
(see Definition 4.17(1)) as similarly described for Protocol RL2.
2: Let SHVj represent the first SHV following SHV/;, published in the NY-Times.
To verify the correctness of a particular SHV; in the UVR, the verifier v computes

SHVk = h(SHVk_l,ak), 1 S k S]

ensuring that for ¢ < k < (j — 1), the values of SHV; match those given in the
UVR and that the value of SHV; matches the value printed in the NY-Times.

“The description of Haber and Stornetta [HS97, Section 2.4] is not specific on this point whereas
Trowbridge [Tro95] indicates the storage in the UVR as ‘t:SHV,’. However, for ‘Verification IT’,
knowledge of a, for each entry is required.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 111

3. Interoperability. The ability to compare the relative order of time stamps pro-
duced by different time stamp authorities can be partially handled by the use of
cross-stamps (see Definition 4.17(2)), and as well by the recording of an absolute
time in the UVR.

As an alternative, we propose Protocol HY2, which modifies Protocol HY1 to deal

with some of the concerns provided above by providing

1. Message Authentication. The stamp is signed by a time stamp authority (7)

and verified upon return to the submitter of the data to be time stamped.

2. Authenticated Storage. The stamp is recorded and maintained by a storage

authority (S) who is independent of T.

and following the framework described in Section 4.2. Rather than using linking for
a relative ordering, a counter is used.

With regard to trust in authorities, we take the view of protecting against attacks
to the authorities rather than attacks by the authorities. For example, notice that T’
and S could collude by having T periodically advance the round counter r ahead by
one position, thereby allowing subseqgent backdating. Indeed, T could even collude
with S to backdate, simply by repeating an r which has already been used, so long
as the detection of this is not too likely. Rather, Protocol HY2 protects against
malicious attacks that might occur against either T or S. Notice that if T’s private
key is compromised, the backdating of documents would require storage of stamps
with an incorrect form by S, e.g., with an old round number r. Likewise, a compromise
of S would require collusion with 7" to produce a T-signed signature.

Notice that the use of a storage authority allows for the provision of corroborative
evidence regarding the time stamp s (see Section 4.2.1). The advantage is that the
submitting user u is unaware of the provision of storage since it is done off-line with
regard to the communication between u and T. Regarding the choice of group hash
in Protocol HY2, referring to Table 3.2, Protocol GH3 is the most favourable for
limiting the size of a, and has the second smallest size for member,, when less than

27 data are group hashed.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 112

Protocol HY2 A Hybrid Time Stamp Proposal.

Input: {y1,...,ym}
Output: a,, member,, from Protocol GH3

1. User u; submits y; = h(x;) and a time granularity request to 7.

2:

8:

T collects the submissions and queues each based on the granularity requested by
each user (see Remark 4.5).

At the end of each appropriate time interval, 7' uses Protocol GH3 to compute
a, for the appropriate queues.

T computes s = sigr(r, a,,t) for absolute time ¢ and returns

r.member,,,s,t tou

r,a,,s,t to storage authority S.

. u; computes a), using Protocol GH3 with y; and member,, as input, and verifies

that s is indeed a signature over (7, al,t).

u; stores (r,t, member,,, y;, x;, s).

S verifies that s is a signature over the received (r, a,,t); verifies that ¢ is within
t' £ 6 of the current time for small 6 and ensures that r is 1 greater than the last
received from 7.

S stores (r,t,a,,s).

Input: (r,t, member,,, y;, z;, s)
Output: whether y; was time stamped at time ¢

1:

2:

3:

User v, verifying the purported time t of stamping of y;, computes y. = h(x;) and
ensures that y, = y;.

v computes @, using Protocol GH3 with input y; and member,, and verifies that
s is a signature over (r,a.,t).

(Optional.) v contacts S and verifies the existence of the entry (7, a,,t,s) stored
by S. (This step is also useful in the case that T’s private signature key is

compromised.)

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 113

Remark 4.5 (Variable Time Granularity.) The granularity of a group hash oper-
ation is determined by the length of the round, which may be fized or variable, and
depend on either the length of time or number of submissions received. A wvariable
time based granularity might work as follows. Note that not all users (submitting a
request for a time stamp) obtain the same granularity. Some users require a time
stamp to the nearest second, others to the nearest minute or hour. The granularities
required by each user can be requested by the submitting users, whereby the time stamp
provider can subsequently place each request in separate bins, e.q., a ‘second-bin’, a
‘minute-bin’ and an ‘hour-bin’. At the end of each second, the second-queue would be
processed for group hashing followed by time stamping. Likewise, every minute and

hour respectively for the minute- and hour-queues.

Chapter 5
Time Stamping Digital Signatures

A time stamping protocol provides for the temporal authentication of digital data.
The input to a time stamping protocol is viewed as no more than a string of bits. In
some cases, input data possessing particular properties allows for additional conclu-
sions to be drawn regarding the data both during the production and verification of
a time stamp. One such form of data is that which has an authentic lifetime (i.e.,
validity period) associated with it.

In this chapter, we focus on the time stamping (temporal authentication) of dig-
ital signatures. A public key used to validate a signature is typically, in practice,
contained in a certificate; the lifetime of the certificate can be (as we assume in this
chapter) constrained by a finite validity period. By time stamping a digital signa-
ture, subsequent verification can determine if the signature was produced when the
corresponding certificate was valid. Alternatively, this signature validity imposed by
the finite validity period of the corresponding certificate can also be verified during
time stamp production thereby preventing the time stamping (and hence acceptance)
of signatures produced subsequent to a certificate’s expiry. This “notarization” of
digital signatures determines the correctness of the input and decides whether or not
to notarize based on this determination. The time stamping or notarization of sig-
natures also introduces the extension of a signature’s message authentication beyond
the expected lifetime of the original digital signature algorithm. This chapter exam-

ines each of these concerns, providing general techniques allowing a system to obtain

114

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 115

clear and consistent verifications of a digital signature.

Chapter Outline

In Section 5.1, several definitions regarding the association of a finite validity period
with data are presented. The relevance of these concepts is discussed in relation
to remaining sections in this chapter. In Section 5.2, the construction, distribution,
maintenance and trust in public-key certificates is reviewed. In Section 5.3, we exam-
ine the effect that time has on the status of a digital signature validation. Section 5.3.1
motivates and presents requirements that allow for consistent verifications of a digi-
tial signature over time. In particular, Definition 5.13 presents the components of a
certificate-based signature scheme with time stamping. The time stamping and long-
term storage of a signature and its corresponding verification certificate’s status are
identified as key requirements for consistent signature verifications. Section 5.3.2
fulfills these requirements in more detail with the presentation of the signature verifi-
cation Protocol DS1. Practical concerns regarding the process of certificate revocation
are highlighted by Figure 5.10. The role of a signature dispute adjudicator is pre-
sented as a signature verification by a trusted third party. In Section 5.4, we present
a digital signature notary as a trusted third party that establishes the truth of various
statements regarding the status of a digital signature and its corresponding verifica-
tion certificate at various points in time. This notarization of digital signatures is
presented as Protocol NT2. In Section 5.5, we review the concept of digital signature
renewal. The subtle problems offered by a time stamping solution are reviewed and

the application of a notarization solution is presented.

5.1 Data With Inherent Time

Beyond the existence of data at a particular time as may be identified by the time
stamping of the data, a data item may be defined by a finite validity period or lifetime.

Creation and expiry dates delimit the lifetime of the data.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 116

Definition 5.1 The lifetime of data y € Y is the output returned by the function
lifeTime : Y — (T U —o0) x (T Uoc) where T represents a finite set of possible
times. For each data y €), lifeTime(y)[1] (the first element of the ordered pair)
represents the creation date (see Definition 5.2) for y whereas lifeTime(y)[2] (the
second element of the ordered pair) represents the expiry date (see Definition 5.4) for

y. Undefined creation and expiry dates are represented by —oc and oc respectively.

As an example of a data’s lifetime, a public key certificate’s lifetime is parame-
terized by a creation date ¢d and expiry date ed (see Section 5.2.1). The lifetime of
user u’s certificate is thus denoted as lifeTime(cert,) = (cd,ed). In this section, we
discuss the usefulness of the concept of a data lifetime with particular emphasis on

the lifetime of a digital signature and its corresponding public key certificate.

Definition 5.2 A creation date c, associated with a data item y, is a verifiable or
recoverable date cryptographically bound to y indicating the start of a validity period
for that data. Data that is distinguished (see Definition 5.3) can have a creation date

uniquely associated with it.

A time stamp provides authentically verifiable recognition of the existence of some
data at a particular point in time. The first time that data is time stamped can define
a creation date for the data. However, since the same data can be time stamped
numerous times it may be difficult to determine the earliest or unique creation date
for the data. A particular time stamp merely implies that the time stamped data
was created no later than the time of stamping. It may have been created, even time
stamped, at an earlier time.

Since the same data can be time stamped many times, if the data is distinguished
from other data at the time of application of the creation date, can a unique cre-
ation date be associated with this distinguished data. This motivates the following

definition.

Definition 5.3 Aset S = {sq,..., s} of binary data is distinguished if for any pair of
elements (s;,s;), i # j, either length(s;) # length(s;) or if length(s;) = length(s;) =
n, then s; — s; # 0™,

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 117

For a set S that is not distinguished, one can create an alternative, distinguished
representation for S, namely the set S’ where for each element s € S a corresponding

element s’ € S’ can be created by either of the following techniques.

1. Associating a unique identifier with s. For example, a public key can be assigned
a unique serial number (see Section 5.2 for further details regarding certificate
construction) representing a unique or distinguished certificate. Although there
may exist several different certificates for a particular public key (by inclusion
of the same public key in different certificates), each certificate is unique as

identified by its serial number.

2. Remouving duplicate elements from S. An alternative to the association of a
unique identifier as performed above would involve an authority that only issued
a single certificate for each public key. Subsequent to the initial request and
issuance of a certificate for a particular public key, all subsequent requests with

the same public key would be rejected.

Definition 5.4 An ezpiry date e, associated with a data item y, is a verifiable or
recoverable date cryptographically bound to y indicating the end of a validity period
for that data. Data that is distinguished (see Definition 5.3) can have an expiry date

uniquely associated with it.

The date of expiry of a public key is incorporated within its corresponding cer-
tificate. A patent also has a specific date of expiry, relative to its date of filing, i.e.,

currently 20 years after the date of filing.

Definition 5.5 Data y € Y is said to be alive as of time t if alive(y,t) = true, where
alive : Y x T — {true, false} is defined by the following:

true if lifeTime(y)[1] 2t < lifeTime(y)[2]

false otherwise

alive(y,t) = {

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 118

This general concept of “aliveness” can be used for various concepts regarding a
data’s aliveness status. For the example of a public key certificate cert, (see Sec-
tion 5.2.1) belonging to user u, alive(cert,,t) (written as expired(cert,,t) in Defini-
tion 5.10) is true if and only if cd < t < ed where c¢d and ed are the respective creation

and expiry dates of the certificate.

Y >
t

> time

Figure 5.1: A timeline representation of data y in which only the expiry date ¢ is
known (or relevant).

Data need not necessarily have either an authentic creation or expiry date. Fig-
ure 5.1 gives a pictorial representation for data y that has an expiry date yet no
creation date, i.e., lifeTime(y) = (—o0,e,). For example, consider the issuance of
a club membership, although the creation date may be known (since it is the time
of issuance of the membership), it may not be necessary at some subsequent time.
The membership card may therefore only require an indication of the expiry date.
Figure 5.2 gives a pictorial representation for data y that has a creation date yet
no expiry date, i.e., lifeTime(y) = (c,,00). For example, consider the receipt of a
univerity degree. Although this degree may have a related creation date (identified
by the date of completing the degree requirements), it typically has no such expiry
date.

Neg
Yvy

time
t

Figure 5.2: A timeline representation of data y in which only the creation date ¢ is
known (or relevant).

It is important to note that a lifetime is not necessarily fixed. Although the cre-
ation and expiry dates, once set, do not change, data can prematurely expire. For
example, although a credit card has an expiry date, abuse or loss of the card subse-

quent to its issuance may result in a premature removal of the privileges associated

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 119

with the card, amounting to an early expiry. For an example more relevant to the
remainder of this chapter, consider the creation and expiry dates contained within a
public key certificate. As a result of a revocation (see Section 5.2.3), the “expiry” of

the certificate may occur prior to the originally intended date of expiry.

5.1.1 Relevance to Temporal Authentication

The role of a time stamper is to time stamp raw data for which any semantics as-
sociated with the data are considered irrelevant. Yet for data with some associated
attributes or auxiliary information (i.e., some meaning associated with the data), ad-
ditional conclusions can be drawn with regard to the data. In particular, consider data
with some cryptographically associated timing information, e.g., a creation and/or
expiry date. This timing information may be relevant either during time stamp pro-

duction or verification as respectively described below.

1. An authority uses the timing information for deciding whether or not to authen-
ticate the submitted data, e.g., apply a signature to the data. In other words,
the data y might be authenticated at time ¢ only if alive(y,t) = true. For ex-
ample, if data is not currently considered to be alive, the time stamp operation
might fail. In this way, the time stamper is acting as a notary by positively
attesting to the current ‘liveness’ of the data. The role of a notary is discussed
in Section 5.4. As an example, a notary might only authenticate a signature if
the signature was received at a time when the corresponding certificate of the

signing user has not yet expired.

2. The data is authenticated by a trusted authority as before, without any inter-
pretation of timing information (associated with the data) during the provision
of message authentication. Data from sources used to provide the auxiliary
timing information for the data (e.g., its creation and/or expiry date) are used
to draw further conclusions regarding the message authentication of the data
during verification or adjudication. For example, if a digital signature is time
stamped as opposed to notarized, subsequent verification is required to deter-

mine if it was stamped during a time when the public key certificate of the

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 120

signer was valid (i.e., had not yet expired nor been revoked).

5.1.2 Extending a Finite Lifetime

The lifetime of data input to a time stamp or notary authority can be undefined and
hence assumed infinite in the direction of increasing time, unless it possesses some
inherent or alternative timing information. A time stamp often has a finite lifetime
in both directions (e.g., based on prudence should the stamp construction be based

on complexity theoretic assumptions). The end of a time stamp’s lifetime may be
1. parameterized by an expiry date included in the stamp or

2. dictated by some external source, e.g., in the signature verification certificate

of the entity who created the stamp

The pair consisting of data y and its corresponding time stamp constitute a document
of their own that can be input to a time stamp or notary authority. In this way, the
finite lifetime of the original time stamp can be extended by the production of a
subsequent time stamp. This procedure can be used as a process of renewing a time
stamp. With regard to digital signatures, just as successive time stamping serves to
renew former time stamps, the time stamping of a digital signature may extend the
lifetime associated with the digital signature (as defined by the validity period of the
public key certificate). This extension and renewal of authentication is discussed in

Section 5.5.

5.1.3 Implications for Backward and Forward Stamping

In this subsection, we present some interesting implications (for data possessing in-
herent timing information) with respect to the back (see Definitions 4.10 and 4.15) or
forward stamping (see Definitions 4.11 and 4.16) of time stamps. For cases in which
only an expiry date associated with data is relevant (see Figure 5.1), only the pre-
vention of (absolute and relative) forward stamping is typically necessary. Producing
a false back stamp for y is considered irrelevant since the goal of an attack would be

to stamp y as far forward as possible. This more clearly explains the example given

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 121

by Benaloh and de Mare [BAM91] stating that a photo of somone holding the Magna
Carta does not give evidence that this person was alive in the year 1215 A.D. It gives
no evidence because back stamping is not relevant with such a scheme. The scheme
is only designed to show the latest date that something has not yet expired (i.e., this
person is alive as of this time), and has no relation to the date of creation. As well,
there are cases where it is not important when y expires, only when it was created (see
Figure 5.2). Thus, only the prevention of backward stamping are typically relevant

here. Remark 5.1 summarizes these concerns.

Remark 5.1 The prevention of backward stamping is typically unnecessary for data
whose lifetime is unbounded in the direction of decreasing time. The prevention of
forward stamping s typically unnecessary for data whose lifetime is unbounded in the

direction of increasing time.

A finite lifetime also has some interesting implications with regard to the extent
to which data can be back or forward stamped. Suppose that a digital signature
¢ has some inherent timing information (i.e., the validity period for producing ¢
dictated by the corresponding verification certificate), defining a creation date ¢ (for
the corresponding certificate). Let ¢ be the current time and the time that might be
legitimately associated with ¢ by an absolute time stamp. The absolute back stamping
of ¢ might associate a time t"” < t' with ¢. However, it makes little sense for ¢” to
be less than ¢ (it is generally assumed that subsequent verification or adjudication
would deem this as disallowable). Therefore, in cases where the data ¢ possesses
some associated timing information, the ability to provide a back stamp for ¢ may
be constrained by the associated lifetime for ¢. Similarly results hold for forward

stamping. This point is summarized by Remark 5.2.

Remark 5.2 The lifetime of data as parameterized by its creation and expiry dates

may be used to constrain the range in which data can be forward or back stamped.

For a document that has no associated timing information, forward stamping
cannot be prevented. For the particular example of a digital signature, the submission

of the signature to a time stamp authority can merely be postponed an indefinite

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 122

amount of time. In this case, forward stamping cannot be prevented. This observation
was made by Haber and Stornetta [HS91] (where the term used was forward dating),
though as indicated with Property 5.2, successful forward stamping can be prevented

in the event that the data has an associated expiry date.

5.2 Public Key Certificates — Background

The format of a certificate was mentioned briefly in Section 2.1.2. In Section 5.2.1, we
expand on a certificate’s construction and contents. In Section 5.2.2 we discuss how
certificates are obtained by users (both the certificate owner and verifiers of signed
messages from the certificate owner). As well, we recall issues of trust related to
certificates, e.g., how does one user trust a certificate received from another user?

Section 5.2.3 reviews the purpose and methods of certificate revocation.

5.2.1 Certificate Construction

Certificates are typically constructed by a certification authority (CA). A CA-signed

user certificate authentically binds a user’s name to a public key.

Definition 5.6 A (user) certificate cert, is defined as a data structure containing at

least the following elements,
certy = {nuy, L, pu, cd, ed, sigea(Nu, Ly, pu, cd, ed) },
where each element in cert, is identified as follows:
n,: a unique certificate serial number;

I,,: a distinguished subject name uniquely identifying « among all other users within

the name space relevant or controlled by this CA;
Pu: & public key:

(cd,ed): a validity period for the certificate, denoted by the creation date cd and
expiry date ed for the certificate;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 123

sigoa(--+): the signature of the CA over the items listed above (as well as any other

items potentially included in the certificate).

Possible additional entries include alternative names or attributes related to the owner

or key. m

Users may have several certificates, distinguished by different serial numbers. As
a specific example, v might have different public keys and hence certificates for en-
cryption or for digital signatures. Unless specified otherwise, we assume that p, is a
signature verification key.

Users can obtain their own certificate(s) from the CA through various techniques.
For example, employees might be issued a certificate upon joining a corporation and
be physically given a disk containing the CA-signed certificate, which can subse-
quently can be uploaded by the user to their personal computer. An important detail
regarding the issuance of a certificate is the verification of the identity I, of the cer-
tificate requestor and ensuring that this person is indeed the owner of the verification
key p, (where ownership here means that u has knowledge of the signature key s, cor-
responding to p,). Various “levels” of certificates can exist depending on the diligence
of the CA to validate this identification.

Validity Period of a Certificate

The use and interpretation regarding a validity period can vary for a certificate. Let
us first consider variances in the length of the validity period. For example, in some
systems, certificates might have an indefinite expiry date. Alternatively, certificates
might only be considered valid for a short period of time (e.g., one hour) after their
issuance. Throughout this thesis, we assume that a certificate has a finite validity
period (of reasonably long length, i.e., useful for a number of signature productions)
defined by its creation and expiry dates.

It is also important to consider the implications regarding a certificate’s expiry.
Figure 5.3 gives two possible interpretations. Relative to the validity period, one can
also consider signing and verification periods. The signing period delimits the time

after which the signature producer should no longer produce signatures, nor should

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 124

| validity period of certificate |

a) Option 1 signing period |

verification period |

b) Option 2 signing period |

verification period

time

Figure 5.3: Two views of the signing and verification periods for a signature relative
to the validity of the verification certificate.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 125

signatures received after this time be verified (the latter applies only to Figure 5.3(b)).
The verification period delimits the time after which the verifier of a signature can
no longer trust the corresponding certificate and hence should no longer attempt to
verify such signatures. Signatures received prior to the end of the certificate’s validity
may still be verified until the end of the verification period.

For the first option (see Figure 5.3(a)), the signing period is a fraction of the
validity period while the period in which signatures can be verified ends with the
expiry of the certificate. Verification subsequent to the certificate’s expiry would
require a renewal of the signature’s authenticity (see Section 5.5). For the second
option (see Figure 5.3(b)), signatures can be produced and hence verified as valid
until the end of the certificate’s validity period. The signature can be verified at
any time, though only signatures received prior to the signature period expiry (i.e.,
expiry of the certificate) will be verifiable. These options are discussed further in
Section 5.3.1.

Additional complications may result from the fact that the lifetime of certificates
is not always fixed. Key compromise and employee dismissal are examples of two
situations which might warrant an earlier expiry or revocation of a certificate. In
Section 5.2.3, implications of this early termination are discussed. In Section 5.3, we

discuss the distribution and attainment of trust in certificates.

5.2.2 Certificate Distribution and Trust

Trust in a public key can be obtained by verifying the cryptographic binding between
the name and public key contained within the CA-signed certificate. This verification
can be performed using a copy of the CA’s verification key, obtained, for example,
when a user first obtains their certificate from the CA, e.g., through a physical meeting
to initiate their relationship with the CA. This verification key may be contained, as
we assume in this chapter, in a self-signed certificate produced by and containing the
verification key of the CA.! When one user receives a certificate from another, the user

certificate can then be validated using the CA’s verification key. User’s certificates

IThe expiry or revocation of this certificate is beyond the scope of this thesis and hence the
validity period of such certificates is assumed to be unbounded in the direction of increasing time.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 126

can be distributed amongst themselves by many methods, including:

1. Sent to the recipient by the message originator, most likely accompanying a

signed message;

2. Stored in a certificate repository (database) and obtained by using one of the

following techniques.

(a) Pull. Message recipients obtain certificates as necessary.

(b) Push. A CA distributes newly created certificates at the time of their

creation or at periodic intervals;

3. Cached by recipients, from an initial distribution using either of the methods

above.

Multiple Certification Authorities

For reasons of scalability and diversity, it may be impractical for all users’ certificates
to be managed by a single certification authority (CA). Scalability concerns may
result if all users have certificates issued from a single CA. This places a tremendous
burden on the CA for the construction and distribution of the certificates. Diversity
concerns result from requiring all users to accept the services of a single CA. Such
services might include, for example, the maintenance of revocation information (see
Section 5.2.3). Users with certificates used for high risk transactions might require
a CA that performs frequent broadcasts of revocation information. However, this
may be unnecessary for certificate owners with more modest certificate requirements.
Although a variety of services can be offered by a single CA, a large and ever-increasing
number of users can make this task overbearing for a CA.

One solution to single-CA limitations is to use multiple certification authorities.
However, this solution introduces some additional complications related to the trust a
user has in a particular certificate. Consider the first two cases shown in Figure 5.4. In
Figure 5.4(a), v is able to validate u’s verification certificate (as part of the validation

of a u-signed message; see Section 5.3) since v already possesses a copy of the CAs

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 127

a) Single certification authority

b) Multiple, disjoint certification authorities

)

¢) Unilateral cross-certification between certification authorities

A

)

Figure 5.4: Single, Disjoint and Cross-Certified Certification Authorities (CAs). (a)
Users u and v have certificates produced by the same CA. (b) Users w and v have
certificates produced respectively by the certification authorities C'A; and C'A,. (c)
C'A, has cross-certified C'A;, producing the cross-certificate C Ay{C' A, }.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 128

public key (since the same CA produced v’s certificate). For reasons of scalability
and diversity indicated above, u and v might have certificates produced by different
CAs, as in Figure 5.4(b). In this situation, v is unable to validate u’s verification
certificate without the public key of C'A; and v only possesses the public key of C'As,.

To allow v to validate u’s certificate (or any other user’s certificate produced by
a “foreign” CA), v requires an authentic copy of C'A;’s public key. One possible
solution is to obtain it in the same way that C'A,’s public key was obtained, e.g.,
by a physical meeting. However, in the case that there is a large number of CAs,
such a solution doesn’t offer an efficient means for v to validate signatures whose
corresponding certificates are produced by “foreign” CAs. An alternative solution
involves treating C'A;’s public key as that of a normal user. C'A, can then certify the

public key of C'A; as well. This solution is described below.

Trust Relationships and Their Certification

Definition 5.7 A cross-certificate CA;{CA,;} is a certificate created and signed by
the certification authority C'A;, binding the name and public key of certification
authority CA;. =

In Figure 5.4(c), C'Ay cross-certifies C'A; allowing v to validate u’s certificate by
1. initially possessing a trusted copy of C'Ay’s verification key,

2. obtaining the cross-certificate C Ay {C A, }, either accompanying a signature sent

by u or from a directory maintained by C A,,

3. using C'Ay’s verification key to validate the cross-certificate C Ay {C A;}, thereby

allowing v to trust C'A;’s verification key,
4. using C'A;’s verification key to validate user u’s certificate.

v is able to gain trust in both C'A; and u by respectively validating the C'A,5- and C' A;-
signing of certificates. Notice that the cross-certificate C Ay{C A;} does not imply the
existence of the certificate C' A;{C' Ay }. Therefore, for the example above, CA;{C A,}

is not available to allow u to verify v’s certificate, even though CA,{C'A,} exists.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 129

Definition 5.8 Let C'A; {u} represent cert, (see Definition 5.6) as produced by
CA;,. The collection of certificates,

(Cn4h{cx4h}ﬂcn4h{CL4h}a"'7CL4%72{CL4M71}ﬂCL4%71{CL4%}7CL4%{U}>

is called a certificate chain. For simplicity, this certificate chain may also be denoted
as
(CA;,CA,,,CA,;,,....CA

CA;,_,,CA; u)

Tp—2) lp—1)

We say that entity A trusts entity B if A can successfully verify the authenticity
of B’s purported certificate, e.g., with a certificate chain. An entity refers to either
a user or a certification authority. See Definition 5.12 for a more formal definition of
trust.

Certificate validation can become quite complex. For example, extending the
example in Figure 5.4(c), suppose that C'A; and C'A,y did not directly cross-certify
each other, but rather, each cross-certified with C'A;. An extra verification would be
required by both u and v for the validation of their respective certificates. A complete
discussion is beyond the scope of this thesis. See Menezes et al. [MvOV97, Section
13.6.2] and Ford et al. [FB97, Section 7.2] for further information.

5.2.3 Certificate Revocation

The lifetime of a certificate may be shortened due to a revocation of a user’s certificate.
In the case of a signature verification certificate, it may imply that once a particular
certificate has been revoked, signatures produced subsequent to the time of revocation
with the corresponding signing key are no longer considered valid and hence no longer
accepted. The authority to revoke a certificate should be sufficiently restricted in order
to prevent a user from maliciously revoking the certificate of another user (resulting
in a denial of service). For example, the user named in the certificate as well as the
issuing CA may be allowed to initiate a revocation. For certain environments, an
employer may also be able to request the revocation of an employee’s corporation-

issued certificate. Reasons for revoking a user’s certificate include the following:

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 130

1. suspected or detected compromise of the signing key (either the user’s or CA’s

private key);

2. change of security requirements in anticipation of or in reponse to a protocol
failure, e.g., increasing the CA’s key size in anticipation of new cryptanalytic

attacks;

3. change of information contained in the certificate, e.g., changing the distin-

guished name of the owner;

4. revocation of privileges associated with the certificate, e.g., subsequent to dis-

missal, an employee may have his corporation-issued certificate revoked;

5. change of role within an organization, e.g., moving from one department to

another.

Other entities possessing copies of a currently revoked certificate (without knowing
that it is currently revoked) must be able to learn of the certificate’s shortened lifetime

so that signatures produced subsequent to the date of revocation, are not accepted.

Distributing Revocation Information

There are a number of techniques for conveying revocation information to potential
signature recipients. A certificate revocation list (CRL) typically contains at least,
for each revoked certificate, the certificate serial number and the date of revocation.
As well, the name of the issuer (e.g., the certification authority (CA) that originally
issued the certificate) and the issue date of the CRL are included. This list is signed
by the issuing CA.

Definition 5.9 A certificate revocation list (CRL) crl, is a list created and signed at

time ¢ by the certification authority C'A; containing at least the following information:

1. the unique certificate serial number n,,, corresponding to each cert, (see Defi-

nition 5.6) previously issued by C'A;, that is revoked as of time ¢;

2. the time rev, of revocation of cert,;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 131

3. the time t of construction of the CRL; and
4. the signature of C'A; over the above information.

More specifically,

crly = {(niy revi,), ..., (ng,, rev,), t, sigea, (i, revy,), ..., (ng,, rev;,), 1)}

CRLs can be distributed using techniques similar to the methods for distributing

certificates described in Section 5.2.2, as described below.

Push. For example, using the push method, the CA broadcasts the CRL to all
“relying parties”, i.e., users that will verify certificates. This can be done either peri-
odically or may be event-based, e.g., subsequent to each revocation. The periodicity
of the distribution depends on the policy of the CA, e.g., every hour versus once a
day. Both the periodic and event-based options are susceptible to an attacker in-
tercepting and stopping the delivery of the revocation information. For this reason,
the implementation of a periodic distribution may include a field within the current
CRL indicating the time of the next update. Relative temporal authentication (see
Section 4.3.3) allows one to detect the deletion of revocation information for the event-
based option, e.g., by using a sequence number for each CRL. The CRL broadcast
may consist of all currently revoked certificates or alternatively, the most recently

revoked (see delta-CRL discussion on page 134).

Pull. Alternatively, the pull method can be used whereby users request revocation
information directly from the CA or more commonly a directory/repository. In case
that a user may be anticipating a loss of (e.g., online) access to CRL information
for a period of time, it might be prudent for a user to obtain the entire, most recent
CRL. As an alternative to a CRL, a user might only query for information regarding a
particular certificate. The latter has the disadvantage of increased overhead resulting
from multiple pulls, one required for each certificate query. However, there may be

decreased storage at the user’s site by requesting only a single certificate. If the user

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 132

caches the results of the individual certificate or CRL queries, one disadvantage is the
staleness of the revocation information.

We can expand on the pull technique described above (for individual certificate
information) where a real-time method is used (i.e., online certificate status check).
Each certificate to be validated involves a query to the CA for the status of the

certificate. The response from the CA may consist of either

1. a signed response from the CA indicating the status of the certificate (without

returning a copy of the actual certificate itself) or

2. returning the certificate. This can be accomplished by returning the certificate
with a statement from the CA indicating its status or make use of extended fields
within the certificate to indicate whether the particular certificate is revoked or
not, e.g., in the CA’s directory of certificates, the original certificate might be

replaced by a copy in which the “revocation bit” is set to 1.

Scalability concerns are present here in case of a large number of users under a partic-
ular CA. These include bottlenecks occurring from many users requesting information
from a single CA directory as well as designating a single point of failure in the case
of CA down-time or even worse, a CA whose information is maliciously corrupted.
On one hand, it appears prudent to combine the functionality of certificate dis-
tribution with the distribution of revocation information by having the CA return a
freshly signed certificate subsequent to a request from a potential signature recipient.
In this way, the validity period of the certificate can be limited to a very short time
(as indicated in Section 5.2.1). However this limits the usefulness of the signature for
applications requiring non-repudiation (see Section 2.1.2) guarantees. Alternatively,
returning the status of the certificate allows the CA to perform less computation and
return a smaller response. As well, users may prefer the option of only obtaining a
status check for a fraction of certificates, i.e., rely on cached versions of the certificate

or certificates sent directly from the signature originator.

Freshness of Revocation Information. It is important to note here the freshness

of revocation status information in the possession of a certificate relying party. Among

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 133

Push by CA Pull by User
CRL Broadcast CRL Request Individual Cert. Request
Event-Based ‘ Periodic | Event-Based ‘ Periodic | Certificate ‘ Certificate Status

Figure 5.5: Classification of techniques for distributing/obtaining certificate revoca-
tion information.

other complications (see Figure 5.10), even in the case where an on-line certificate
status check is used, the certificate owner (and originator of some signature) may be in
the process of revoking their certificate when the status information is being obtained
by a verifying party. This point is discussed further in Section 5.3.2. The techniques

for distributing certificate revocation information are summarized in Figure 5.5.

Reducing CRL Size

One disadvantage of using certificate revocation lists (CRLs) versus individual cer-
tificate revocation queries is their size. This has an effect on the bandwidth used
to transmit CRL information from the CA to individual users and on the ability of
users to accept and store the information at their local machines. In a large commu-
nity of users (under a particular CA), a signature recipient may only require a small
number of certificates and likely only a small portion of the information provided
by a CRL. Obtaining individual certificate information is convenient though can be
more difficult for scalability for a single CA or directory. In what follows, we examine
the distribution of information through CRLs, and expand on three techniques for
reducing their size. Information regarding CRL distribution points and delta-CRLs
was obtained from Ford et al. [FB97| and Menezes et al. [MvOV97]. The solution
using group hashing (see Section 2.3) was presented by Kocher [Koc98].

CRL Distribution Points. CRL distribution points partition CRLs, limiting each
distribution point (itself a smaller CRL) to grow only to a fixed maximum size.
Whereas certificate relying parties previously requested revocation information from
the corresponding CA that signed the certificate in question, distribution points in-

troduce some indirection:

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 134

1. Certificate redirection. An additional entry within each user’s certificate indi-
cating which distribution points (e.g., CRL, directory entry, or other location)

may contain revocation information with regard to the particular certificate.

2. CRL redirection. An additional entry within the original CA’s CRL indicating
the location of distribution points which may contain revocation information

regarding certificates that would otherwise have appeared in the CRL.

CRL distribution points may be distinguished by the class of certificates they hold.
For example, there may be 10 distribution points, each containing revocation infor-
mation for the different possible last digits in a certificate’s serial number. As well,
the distribution points might be distinguished by a “reason code” where certificates
that have been revoked as a result of a suspected or detected key compromise might

only reside at a particular distribution point.

Delta-CRLs. Delta-CRLs reduce the size of revocation information that must be
downloaded at each push or pull of a CRL. A so-called base CRL is issued first. Subse-
quently, delta-CRLs are issued (e.g., periodically or event-based), which only contain
information regarding revoked certificates since the last base CRL was issued. These
delta-CRLSs contain a pointer to the base CRL. A relative ordering (see Section 4.3.3)

allows detection of maliciously deleted delta-CRL transmissions from a CA.

Group Hashing. Group hashing can be used to reduce the size of the information
that must be obtained by a signature verifier, while potentially increasing the size
of the information accompanying the signature from the originator. Consider the
following use of the group hashing Protocol GH3 (see Section 2.3.2) given by Kocher
[Koc98].

At time ¢, a trusted tree issuer (TTI) obtains up-to-date revocation information
(e.g., using CRLs) and produces statements indicating the range of certificates revoked
by each CA. For example, if C'A; has 2 revoked certificates with serial numbers 121
and 300, then the TT'I would produce the following statements:

If CA; and — oo < X <121 then X is revoked iff X = —oc

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 135

If CA; and 121 < X < 300 then X is revoked iff X =121
If CA; and 300 <X < oo then X is revoked iff X = 300

Such statements are made for the revoked certificates of each CA and used as the
input to Protocol GH3. The output a, is time stamped by the TT1I giving s =
sigrri(a,, time) and made available to all potential signature verifiers just as a CRL
would.

When sending a signature, user u would obtain the supporting evidence that best
describes his certificate. More specifically, u would obtain member,, from Proto-
col GH3 where y; is the hash of the statement that answers the question regarding
the position of u’s certificate, i.e., the statement indicating the range into which u’s
certificate number lies. This information is obtained from the T'T'I and sent by wu,
accompanying a signature. A signature verifier determines the correctness of the in-
formation by computing a. as a function of the user’s certificate and accompanying
information, and determining whether a, = a,.

One advantage of this scheme concerns the size of information required by the
verifier, i.e., a signature of a single hash value. Also notice that only a single signature
verification allows multiple certificates to be validated for their revocation status.
However, as with CRLs, fresh information (in this case, a new tree root) must be
obtained when subsequent revocations are performed.

We note here that a tradeoff between size and computational cost for the 771
would involve the use of an efficiently incremental group hash (see Definition 3.2).
Though computationally more efficient for the TTI, each of the remaining group
hash protocols from Section 2.3 would increase the size of either a, or member,,.
Protocol GH5 has the attractive property of not requiring any additional information
(beyond the originator’s certificate and statement y;) to be sent with the signature

(since [member,,| = 0).

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 136

5.3 Time Stamping Digital Signatures

In this section we motivate and examine the relationship between time and the pro-
duction, verification and adjudication of digital signatures. More specifically, we
identify the importance and relevance of changes in trust regarding a signature that
is verified over time. The following are identified as key requirements allowing for

repeated, consistent verification of a digital signature:
1. the temporal specification of when the message was signed;

2. the maintenance of relevant certificate information evidence from when the mes-
sage was signed, allowing subsequent verifications to be performed using this
evidence from the point in time at which the message was originally signed,

including

(a) the long-term storage of certificate revocation information, and

(b) the long-term storage of cross-certificates.

To the author’s best knowledge, this section presents the first complete analysis of
these concepts.

Haber, Kaliski and Stornetta [HKS95] include the most recent discussion of how
time stamping can be used to support digital signatures. The (signature, message)
pair is time stamped by T and widely published (see Section 5.3). Any challenge to
the validity of the signature involves comparing the time of stamping by T with the
time of reported loss of sig, by the originating sender u of the message. Pinto and
Freitas [PF96] include similar mention of how time stamping isolates a point in time
when a message was signed (i.e., the receiver of a message time stamps the message
upon receipt). Each identifies the importance of time stamping the signature but
does not recognize the importance of Item 2 above.

In Section 5.3.1, the basic digital signature model is reviewed and requirements
for the production of digital signatures are identified and examined. In Section 5.3.2,
we describe in more detail, the processes involved in the production, verification and

adjudication of digital signatures.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 137

5.3.1 Digital Signature Requirements

In this subsection, we examine the process of verifying a digital signature. The main
goal is to discover requirements that can be satisfied during signature production
so as to make all subsequent verifications, including possible dispute adjudication,
as trustworthy, reliable and consistent as possible. More specifically, we examine
changes in the status of verification certificates over time, potentially altering the
result of what might have once been a successful signature validation. It is the
temporal recording of these changes over time, that allow a once successfully verified
signature to remain as such at points in the future.

Webster’s Dictionary [Mer98| defines a dispute as a “a verbal controversy.” Rather
than resorting to a term such as “cyber-dispute”, we recognize the use of voiceless
communication, and refer to a dispute simply as some form of a controversy. The
important consideration is the cause of the controversy. The basic protocol over
which a dispute might occur is depicted in Figure 5.6. The simplicity conveyed
by this snapshot of a particular point in time is misleading. The construction and
distribution of the certificate precede the signature’s transmission. The certificate’s
expiry or potential revocation typically follow it. Verifications of the signature may
occur at numerous points of time subsequent to the signature production. A number
of actions may occur from the time the signature was created till the time(s) it is
verified. Disputes can occur with respect to the occurrence and time of occurrence
of each of these events. Table 5.1 lists the assumptions made, that define the base
model in which digital signatures are produced, transmitted and verified.

We consider the potential for dispute regarding the production of a digital signa-

ture based on the intended use for that signature.

1. Short-term requirement. A signature is received and verified. If successtul,
some short-term privilege is given to the originator, e.g., access granted to a

connection. If unsuccessful, the signature is rejected and no privilege is granted.?

2. Long-term requirement. The signature is received and verified. If successful, the

2This short term requirement is better suited to entity authentication (see Menezes et al.
[MvOV97, Definition 10.1]) as opposed to temporal authentication.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 138

Multiple Certification Authorities (CAs) Thereisaset CA = {CA,,...,CA;}
of certification authorities, each of whom maintain a read-only public database
from which users query relevant information.

Cross-Certificates Cross-certificates (see Definition 5.7) may exist between any pair
of CAs. These certificates are added to the database of the creating CA and
removed subsequent to their expiry.

Revoked Cross-Certificates The revocation of cross-certificates is added periodi-
cally to the database maintained by the issuing CA as an authority revocation
list (ARL). An ARL is synonymous to a CRL (see Definition 5.9) except that
it contains reference to revoked cross-certificates as opposed to revoked user
certificates. The ith ARL arl;,, posted at time ¢; contains the serial number
and revocation date for all revoked cross-certificates previously issued by the
CA, and overwrites the (i — 1)st ARL arl;,_, previously posted at time #; ;.
Certificates which are expired as of time #; are included on arl;, if and only if
they were not on arly, ,.

User Certificates Each user u has a certificate C A;{u} = cert, issued by C'A; and
is assumed to have a trusted copy of C'A;’s self-signed certificate C'A;{C'A;},
containing the public verification key of C'A;. The expiry or revocation of this
self-signed certificate is beyond the scope of this thesis. Where reference to the
CA is evident or not required, we refer to the certificate cert, as opposed to
CA;{u}. Each user certificate is added to C'A;’s database subsequent to its
creation and deleted subsequent to its expiry.

Revoked User Certificates The revocation of user’s certificates is added periodi-
cally to the database maintained by the issuing CA as a CRL (see Definition 5.9).
The CRL crly,, posted at time ¢; contains the serial number and revocation date
for all revoked certificates previously issued by C'A;, and overwrites the (i —1)st
CRL crl;, , previously posted at time ¢; ;. Certificates which are expired as of
time ¢, are included on arl;, if and only if they were not on arly,_,.

Globally Trusted Time Stamp Authority The is a globally trusted time stamp
authority 7', where “globally” here means across the entire community of re-
lying parties who must rely upon the time stamp authority’s signatures. Each
user maintains a trusted copy of T"'s self-signed certificate certy, containing the
public verification key very for T. The expiry or revocation of this certificate
is beyond the scope of this thesis.

Table 5.1: Requirements for the Digital Signature Model. This table contains a list of
requirements and assumptions made to allow for the verification of signed messages,
assuming the bounding of the signature and verification periods as in Figure 5.3(a).
Section 5.3.1 demonstrates some limits of these requirements and several enhance-
ments are presented in Table 5.3.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 139

u A%

c = sig,(m), cert, ,
message m > verify cert,, ¢

Figure 5.6: Generic signature sending from originator u to recipient v.

(original)
validity period

(revised)
operational
eriod
| b l . time
creation date of revocation date of eXpi‘ry date of
certificate certificate certificate

Figure 5.7: Periods of Change in a Certificate’s Status.

signature is stored by the recipient as evidence of some form of commitment by

the signature originator. If unsuccessful, the signature is rejected.

The distinguishing feature between these uses is that the former requires a single
verification at the time of receipt of the signature, while the latter may require sub-
sequent, consistent verifications, and hence, the existence of timely evidence for these
verifications. In the remainder of this subsection, requirements for the long-term

verification of signatures are identified.

Signature Verification

In order to validate a digital signature ¢, purportedly originating from user u, a verifier

v performs the following:

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 140

1. Verify signature correctness. Verify the mathematical correctness of the sigature
¢, purportedly for the message m and purportedly produced by user u. This
verification is performed using the verification key ver, contained in cert,, e.g.,

the signature verification for DSA from Protocol SG1 (see Section 2.1.2).

2. Determine certificate status. Determine the status of the signature originator’s

verification certificate, including both of the following.

(a) Validity. A determination of whether the certificate is currently expired,
and therefore not valid, or revoked, and therefore not operational (see
Figure 5.7).

(b) Trust. The trust measured from the point of view of v relative to u. In
other words, is there a chain of certificates (see Definition 5.8) available to

validate (and hence obtain trust in) cert, (see Definition 5.12)?

Changes Over Time

The status of a certificate can change over time. The verification of a digital signature
determines the status of the certificate and hence, of the signature, relative to the first
verification of the signature and its corresponding certificate. Verification subsequent
to the initial receipt of the signature is likely performed relative to the current time at
which the subsequent verification is performed and therefore, relative to the current
status of the certificate. The signature may be validated numerous times. Given that
the information used to validate the signature may change over time, it is important
to recall the state of matters at the time when the signature was produced in order
for the signature to be fairly and consistently validated at these later times. (In other
words, validated relative to the state of information at the time the signature was

produced.)

Remark 5.3 A signature that is verified against information that is current as of
the time of verification permits the possibility that different results may be obtained

from wvalidations of the same signature over time.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 141

Problems can arise from the fact that the status of the signature originator’s
ceritificate might differ from when a signature was originally verified. We identify
here, the importance of changes regarding a certificate’s expiry, revocation or trust,

relative to the verifying party, for repeated, consistent verifications of a signature.

(1) Certificate Expiry. The expiry (end of the validity period) of a certificate
introduces some restraints regarding the production and verification of a signature.
More specifically, it may not allow for subsequent trustworthy and consistent verifica-
tion and hence, may not be suitable for long-term signature requirements unless the
signature verification procedure is enhanced. Consider the following definition which

returns a measure of a certificate’s validity (expiration) status over time.

Definition 5.10 Let expired : C x T — {true,false} represent the function such that

for the finite set of possible certificates C, where T is a finite set of possible times,

false ifed <t <ed

expired(cert,,t) =
true otherwise

where cd = li feTime(cert,)[1] is the creation date of cert, and ed = lifeTime(cert,)|2]
is the expiry date of cert, € C. Therefore, expired(cert,,t) is true if cert, is valid at

time ¢ (see Figure 5.7). m

Recall the two interpretations regarding the expiry of a certificate from Figure 5.3
of Section 5.2.1. For Figure 5.3(a), the expiry of the certificate effectively ends the
life of any signature requiring verification with an expired certificate. Verification
of a signature at time ¢ > ed should not be performed with certificate cert, since
expired(cert,,t) = true. Hence, verification or adjudication subsequent to the ex-
piry is made very difficult. For Figure 5.3(b), although verification is permissible
subsequent to the certificate’s expiry (i.e., even though expired(cert,,t) = true),
verification or adjudication cannot ensure when the signature was produced relative
to the certificate’s expiry. Besides possibly local evidence maintained by a recipi-
ent, indicating the time of signature receipt (which would not typically be considered
trustworthy in any case), there is in general, no evidence that would indicate to a

third party when the signature was actually produced.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 142

(2) Certificate Revocation. Suppose that a signature is produced during the
validity period of the corresponding verification certificate. If the certificate is revoked
prior to its expiry, it is placed on a CRL. Prior to the expiry of the certificate, the

revocation status of the certificate can be obtained from the proper CA’s database.

Definition 5.11 Let revoked : C x T — {true, false} represent the function such
that, for the finite set of possible certificates C, where T is a finite set of possible

times,

true 3 erly (see Definition 5.9) such that (n,, rev,) € crly
revoked(cert,,t) = for rev, € T where rev, <t

false otherwise

Therefore, revoked(cert,,t) is false if cert, is operational at time t (see Figure 5.7).

Thus, one can determine the revocation status for any time ¢, by determining if cert,
is contained on a CRL prior to time ¢. However, one must also be able to determine

when a signature was produced, relative to this revocation.

(3) Change in Trust. Suppose that a signature recipient verifies a signature upon
its receipt and is able to obtain a chain of certificates (see Definition 5.8) that demon-
strate trust in the signature originator’s certificate. At some time in the future, the
trust between CAs may change so that the signature verifier no longer trusts any
signatures currently received from this signature originator. However, if the recipi-
ent has not maintained previous cross-certificates (as well as information regarding
their possible revocation), there may be no evidence that there was once trust in
the original signature. The temporal changes in trust are captured by the following

definition.

Definition 5.12 Let certTrust : C xC xT — {true,false} such that for the verifying
user v € U who initially trusts the certificate CA;, {CA,,} (it may be that i; = iy),

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 143

and user u € U possessing a certificate cert, € C, for the finite set of possible times

T,

true if 3 a certificate chain
(CA;,CA,,,...,CA; u)
(see Definition 5.8)
that is mathematically correct
AND
for each certificate CA;{CA,}
expired(CA;{CA;}, t) = false
AND
revoked(CA;{CA,},t) = false

false otherwise

certTrust,(CA,{CA,,},cert,,t) =

The certificate C'A; {C' A;,} is referred to as v’s trust anchor. =

Providing Temporal Authentication

The finite length of the lifetime of a certificate for each user is defined by its validity
period. In this sense, absolute temporal authentication is provided for certificates by
the inclusion of the validity period and the message authentication (i.e., signature) of
the CA over (amongst other items) both the validity period and the public key. One
might think then that signatures have a lifetime imposed on them by the lifetime of
the certificate corresponding to the particular signature key used to sign the message,
i.e., indicating that the signature was produced during the lifetime (prior to the
expiry) of the certificate. However, the lifetime of a certificate does not necessarily
imply a lifetime for corresponding signatures beyond the point in time in which the
signature is first validated (or more specifically beyond a revocation or expiry of the
certificate). Although not providing sufficient evidence for subsequent verifications,
information is provided by the validity period contained within the certificate to affect

the verification of the signature upon receipt.

Remark 5.4 The validity period of a public key certificate can be used to impose

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 144

verification /validity period
for certificate

verification /validity period
| for time stamp

» time

Figure 5.8: Certificate Verification Life Extended with Time Stamp. The validity
period of the certificate is the period during which signatures could be verified (see
Figure 5.3(a)). Without time stamping, the period beyond the expiry (i.e., end of the
validity) of the certificate would not allow for trustworthy verification. The validity
period of the time stamp indicates that a signature was time stamped prior to the
expiry of the corresponding verification certificate. This signature can be verified so
long as the time stamp is trustworthy.

a restriction in a signature verification procedure whereby signatures verified with a

currently expired certificate need not be accepted.

The time stamping of a digital signature establishes the existence of the signature
at a fixed point in time, thereby allowing subsequent verifications to be performed

relative to this time. The time stamping of a signature serves two functions:

1. Fizes Point in Time. The time stamping pinpoints the time, allowing one to
measure against changes in certificate status (expiry or revocation) or certificate
trust (changes in cross-certificates). This solves the limitations of option 2 from
Figure 5.3(b) in which verification subsequent to the expiry of the certificate
was unable to determine when the signature was produced, i.e., whether it was
produced prior to the expiry of the certificate. It also allows for the status of
certificates relevant to the signature verification to be measured as of the time

of stamping of the signature.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 145

2. Extends Lifetime. As indicated by Figure 5.8, the time stamping can extend
the lifetime of the original signature (see Section 5.5) beyond a possible finite
verification period defined for a certificate (as with option 1 of Figure 5.3(a)).
The period of time, after the expiry of the signature verification certificate, that
the signature can be validated is then determined by the lifetime of the time
stamp, e.g., depends on the expiry of the verification certificate corresponding to
the time stamp authority. As for Item 1 above, that also allows determination of

the corresponding certificate’s status as of the time of stamping of the signature.

In this way the time stamping of the digital signature uses the best qualities from
the two options given in Figure 5.3. The original user certificate maintains a finite
verification lifetime (as in option 1) which is important for limiting the damage in case
of the undetected key compromise of a user’s private signature key, for example. Yet
time stamped signatures may still be verified with a corresponding certificate even
though the certificate may be currently expired, revoked or in which a verifier cannot
currently validate the trust. This temporal verification of time stamped signatures
is captured by the following definition, an enhancement of the signature scheme of
Definition 2.11.

Definition 5.13 A certificate-based signature scheme with time stamping CSTS is a
six — tuple (88, TS,CA,U,V,C), where the following conditions are satisfied:

1. 8§ is a signature scheme (see Definition 2.11);
2. TS is a time stamping scheme (see Definition 4.1);
3. CA is a finite set of possible certification authorities (CAs);

4. U is a finite set of possible users within the name space of the certification
authority C'A; € CA;

5. V is a set of possible users within the name space of the certification authority
CA]' S CA,

6. C is a finite set of possible certificates;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 146

7. validSig, : M x Q@ x 8§ x T x C x C — {true,false} is a function such that
the following equation is satisfied for every message m € M, signature ¢ € Q,

time stamp s € S, time t € T, certificate cert, € C and certificate relying party
v € V with trust anchor CA,{C'A;} € C:

true if ver,(m, c) = true (see Definition 2.11)
AND
verr(s,t,c) = true (see Definition 4.1)
AND
expired(cert,,t) = false
(see Definition 5.10)
= AND
revoked(cert,,t) = false
(see Definition 5.11)
AND
certTrust,(CA{CAy}, cert,, t) = true
(see Definition 5.12)

false otherwise

validSig,(m, ¢, s, t,
cert,, CA;{CA;})

(5.1)

A signature c is valid if validSig(m, ¢, s, t, cert,,v) = true. m

Intuitively, (5.1) states that a signature, time stamped at time ¢ (which may be
earlier than the current time), is valid so long as the corresponding certificate was not
expired nor revoked, and trustworthy (with respect to the verifier) at time ¢ and that
each signature and certificate is mathematically correct. The implementation of each
of the functions described by (5.1) are presented as Protocol DS1 in Section 5.3.2.

In the following, we discuss enhancements to the requirements of Table 5.1 permit-
ting the proper evaluations of the functions in (5.1) of Definition 5.13. In particular,
we identify the need for the long-term storage of information that allows subsequent

determination of a certificate’s status from earlier times.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 147

1. the message signed, in precisely the bit representation (canonical form) for which
the signature was generated,

2. the originator’s verification certificate,

3. the time stamp, computed over the signature,

4. the verification certificate of the time stamp authority 7T,

5. revocation information related to the originator’s and T"’s certificates,

6. any cross-certificates required to obtain trust in the originator’s certificate,

7. revocation information related to all cross-certificates used in the validation of
the user’s certificate.

Table 5.2: Evidence Required for Signature Verifications. Referring to Definition 5.13,
this table lists the information that is required for all verifications of a digital signa-
ture.

Providing Long-Term Temporal Storage

Differing slightly in purpose from the storage required for time stamping (see Sec-
tion 4.2.1), the storage of information necessary for the validation of digital signatures
is required for functionality as well as the maintenance of evidence (in case of dis-
putes). We assume that all current certificate information (e.g., certificate itself,
revocation information, cross-certificates) is maintained in a database by the certifi-
cation authority (CA) up to the point when the certificate expires. This is based on
the assumption that subsequent to the expiry of the certificate, the signature should
not be subsequently verified.

However, with the addition of time stamping, relevant certificate information is
required after the time of expiry of the certificate. We refer to the storage of this
information as long-term storage.® Referring to (5.1) of Definition 5.13, to determine
the validity of a signature ¢, at any time, requires the computation of the truth

values of each of the listed functions. The material necessary to achieve this is listed in

3In Section 5.4, we see how a notary may remove the requirement for the long-term storage.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 148

Cross-Certificates Modifying the requirements of Table 5.1, cross-certificates must
be made available subsequent to their expiry in the case that a signature time
stamped prior to their expiry, requires an expired certificate for verification of
the signature. Therefore, expired cross-certificates remain in the issuing CA’s
database.

Revoked Cross-Certificates Modifying the requirements of Table 5.1, past ARLs
are required. Therefore, rather than storing only the most recent ARL, all
ARLs are stored in an ARL database which adds the most recent ARL to the
database while not removing past ARLs. Expired cross-certificates are removed
from individual ARLs that are posted to the database for reasons of efficiency.

Revoked User-Certificates Similar to revoked cross-certificates (above), a CRL
database is used in which current CRLs are added to the database.

Table 5.3: Assumptions Made for Time Stamped Digital Signature Model. This table
enhances the requirements listed in Table 5.1 by including requirements made neces-
sary for the long-term, consistent verification of (time stamped) digital signatures.

Table 5.2. This information is required for as long as the verifier requires evidence that
the signature originator did indeed sign the signature at a particular time. Table 5.3
presents a list of modified requirements of the previous assumptions from Table 5.1.
In Section 5.3.2, it is shown how this information is used during the verification of

digital signatures.

5.3.2 Signature Verification and Adjudication

In Section 5.3.1, the verification of digital signatures was reviewed and temporal
requirements allowing for the long-term validation of signatures were explicitly pre-
sented. In this section, we examine in more detail the steps undertaken by the verifier
of a digital signature. We expand the discussion from Section 5.3.1, where now, v
verifies a time stamped digital signature. More specifically, for the message m, v

determines the correctness of

{m, sig,(m), sigr(sig.(m),t), cert,”}

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 149

A
Y
A
Y

time

Y

expiry date of
certificate

creation date of
certificate

Figure 5.9: Signing periods for a non-revoked certificate. Time period 1 indicates the
period of time during which the certificate remains valid. Time period 2 indicates the
period of time after which the certificate has expired.

where sig,(m) is u’s purported signature on m, sigr() represents a purported signing
of the contents by the time stamp authority (T) and ¢ represents the purported time
of stamping (e.g., possibly the time of submission sig,(m) to T), and cert, indicates
the purported verification certificate of u. An asterisk (*) indicates an optional item,
e.g., cert, may have been previously cached by v.

A relative time can be provided and used for determining the order of two signed
messages. Since we are concerned with certificates whose lifetime is finite and param-
eterized by a validity period, an absolute time must be used for certificates themselves
since the expiry time cannot be indicated with a relative time. Time comparisons
between relatively stamped documents was discussed in Section 4.3.3. In this sec-
tion, since are concerned with the time stamping of documents relative to absolutely
stamped certificates, we consider only the absolute stamping of the signatures.

The verification of a signature can be described directly from the functional opera-
tions given by (5.1) of Definition 5.13. This signature verification protocol is described
as Protocol DS1.

Referring to Figure 5.9, certificates validated during period 1 may be verified
using the most current CRL and ARL information obtained from corresponding CA

databases. During period 2, any user certificates or cross-certificates used in the

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 150

Protocol DS1 Signature Verification Protocol.

Description: This protocol describes the verification by v of a signature purportedly
originating from user u. The verification is based on a certificate-based signature
scheme with time stamping (see Definition 5.13). Table 5.3 lists protocol assump-
tions and requirements.

Note: For each computation in which the truth value of a function is determined, if
unsuccessful, ¢ is rejected as invalid. If successful, continue, where the require-
ments for success of each function are specified by (5.1) of Definition 5.13. v
accepts ¢ as valid only if all steps are successtul.

Input: message m, purported signature ¢ = sig,(m), purported time stamp s =
sigr(c,t), purported time ¢ of stamping, purported certificate cert, of signature
originator u, and trust anchor C'A;, {C'A;,} of verifier v

Output: result of validSig,(m, ¢, s, t,cert,, CA;; {CA;,}) (see Definition 5.13)

1. (Signature correctness.) Given the message m and signature ¢ = sig,(m), verifier
v determines the mathematical correctness of ¢ by using the verification key ver,
from cert, and determining the truth value of ver,(m, ¢) (see Definition 2.11).

2: (Time stamp correctness.) Given the time stamp s, time t of stamping and
signature ¢, verifier v determines the mathematical correctness of s by using the
verification key very from (the stored copy of) certy and determining the truth
value of very(s,t,c) (see Definition 4.1). If true, the time ¢ is accepted as the
time of stamping of c.

3: (Certificate expiry.) v ensures that ¢ was time stamped during the validity period
of cert, by determining the truth value of expired(cert,,t) (see Definition 5.10).

4: (Certificate revocation.) v ensures that ¢ was time stamped during the opera-
tional period of cert, by determining the truth value of revoked(cert,,t) (see
Definition 5.11). Revocation information regarding C'A;{u} = cert, is obtained
from C'A;’s CRL database. The CRL crly is obtained where t' is the latest time
(recorded for a CRL posting) that is earlier than the date of expiry of cert,. If
this indicates the most recent CRL then, depending on the policy of the verifier,
the verification may be delayed until the next CRL is posted by C'A,.

5. (Certificate Trust.) v determines certTrust,(CA; {CA,,}, cert,,t)’s truth value.
As implied by Definition 5.12, v must first determine a certificate chain, start-
ing from C'A;, {CA;,}, allowing trust to be obtained in cert,. The construction
of this chain is beyond the scope of this document. Once a certificate chain is
constructed, each cross-certificate C'A;{C'A,} is verified by ensuring that both
expired(CA;{CA;},t) and revoked(CA;{CA,},t) are false. The expiry of each
cross-certificate (as of time ¢) can be determined using the expiry date con-
tained in each certificate. Revocation information regarding each cross-certificate
CA;{CA,} is obtained from CA;’s ARL database. The ARL arly is obtained
where ¢’ is the latest time (recorded for an ARL posting) that is earlier than the
date of expiry of CA,{C'A,}. If this indicates the most recent ARL then, depend-
ing on the policy of the verifier, the verification may be delayed until the next
CRL is posted by C'A;.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 151

verification of a signature will typically not appear on the most recent revocation
lists. Hence the requirement for maintaining long-term storage of this information.
And although the originating user’s certificate (which is fixed for each verifier) should
be accompanied with the signature, cross-certificates (which typically vary, depending

on the verifier) are stored and made available long-term, by the issuing CA.

Complications Regarding Revocation

Systems which allow revocation of certificates introduce additional challenges. Re-
ferring to Figure 5.10, one can recognize the additional complexities that revocation
creates. Consider a request for a revocation of cert, made by user u at time ¢, re-
sulting from a suspected or detected key compromise. A signature forged at time ¢
where t; < t <ty might wrongly be accepted by a verifier (without knowledge of the
revocation) should a CRL have been issued at time ¢ where t < t' < t5 and used
for verification of the signature as in Protocol DS1. Using event-based as opposed to
periodic CRL distribution may allow some speedup in the receipt of revocation details
by potential signature verifiers, i.e., by decreasing the time required between t3 and
t4. In addition, other means for minimizing delays between each of the intervals from

Figure 5.10 would be advantageous.

Adjudicating Disputes

Adjudication is a form of verification. A mutually agreed upon, impartial judge
(adjudicator of a dispute) .J is queried by user u (the purported signature originator)

or v (a signature verifier) to resolve a dispute regarding
1. the expected commitment resulting from a digitally signed statement, or
2. the validation status of a signature.

The discussion of a commitment from a signature is beyond the scope of this thesis.
We present here, the role of a judge in determining the validity of a signature, as
defined in Definition 5.13 and determined by Protocol DSI.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 152

< 1 I 1’ > 2 - time
creation date of revocation date of expiry date of
certificate certificate certificate
(certificate revoked)
t, ty t, t t 7
N | | | B 1
date of revocation certificate revocation details received
request revoked or obtained by users
request received by revocation details made
certification authority available or published

Figure 5.10: Signing periods for a revoked certificate. Time period 1 indicates the
period of time prior to the certificate’s revocation and expiry. Time period 1’ indicates
the period of time subsequent to the certificate’s revocation but prior to its expiry.
Time period 2 indicates the period of time after which the certificate has expired.

The bottom portion of the figure depicts more detailed steps involved in an actual
certificate revocation.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 153

Merkle [Mer80, Mer82] talks at length on the adjudication of signatures by an
impartial third party. His discussions deal more with the correctness of the par-
ticular signature itself, with respect to the signature algorithm used, rather than
whether or not the signature was signed during the operational or validity period of
the verification certificate. In what follows, we present the requirements necessary for

adjudicating such disputes regarding certificate-based digital signatures.

Evidence. The evidence required for an adjudication regarding the status of a

signature is similar to what would be required by any verifying party, and includes:
1. (Verification Evidence) the purported evidence indicated in Table 5.2;

2. (Trust Anchor) In order to determine the validity of the purported originating
user’s verification certificate, the judge must be able to determine the truth-
fulness of the predicate certTrust;(CA,{CA;}, cert,,t) (see Definition 5.12)
therefore requiring that the judge is given a trust anchor C' 4;{C'A;} from which

this trust can be determined.

Adjudication. The function of the adjudicator is to subsequently perform valida-
tions of the signature, given the evidence from wu or from v. This is accomplished
by computing and outputting the result validSig;(m,c,s,t, cert,, CA,{CA;}) (see
Definition 5.13) using Protocol DS1 with trust anchor C'A,{C'A;}.

5.4 Notarizing Digital Signatures

The verification of signatures described in Section 5.3 possess some potentially unde-

sireable features:

1. Storage. Subsequent to the expiry of a certificate, various certificate information
may need to be stored long-term to allow for the continued verification and
possible adjudication of signatures. The period of time might be exceedingly
long given the nature of certain signatures, e.g., large monetary contracts or

wills.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 154

2. Verifier Participation. Signatures are produced once yet may be verified mul-
tiple times. This requires multiple requests for information verifying the same
signature. This is lessened if cached/stored once obtained but there may be

new verifiers as well.

One possible improvement is to have the signature originator provide more cor-
roborating evidence to accompany a signature. This can be achieved, for example,
by having the originator obtain the necessary evidence (e.g., most recent CRL) and
send it along with the signature. However, this increases the size of the information
accompanying a signature and may provide a verifier with unnecessary information,
e.g., revocation information for certificates besides that of the originator. As well, this
would require a signature originator to search for and obtain the necessary evidence
for particular recipients. Even further is the consideration, that like the certificate of
a user, this evidence may also become less trustworthy over time.

The time stamping of the signature provides some corroborative evidence and
turns out to be necessary in order to allow for consistent signature validations subse-
quent to the expiry of the verification certificate (cf. Section 5.3.1). As described here,
the notarization of a signature provides for an enhancement of a time stamp in which
trusted third-party corroborative evidence pertaining to the state of the aliveness of
the signature originator’s verification certificate is also delivered. This notarization
provides a trusted attestation of the status of submitted evidence with reference links
to stored information, thereby providing corroboration in addition to or in lieu of long-
term, stored evidence. Responsibility of verifying pertinent certificate information is
shifted from a signature verifier to a notary authority.

Appendix A provides a historical review of the concept of notarization including
a review of the (physical) notary public as well as a digital notary. In Section 5.4.1,
we present a general definition of notarization. In Section 5.4.2, a protocol for the

notarization of digital signatures is presented.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 155

5.4.1 Notarization: Trusted Corroboration

In this subsection, we present Definition 5.14 (refined from Menezes et al. [MvOV97,
page 550]) specifying the function of a general notary N and subsequently present
Definition 5.15 which specifies the role of a digital signature notary DSN. We proceed
to identify a list of statements for which a DSN may attest to the truth of. A

notarization protocol of Merkle [Mer80, Mer82] is subsequently reviewed.

Definition 5.14 A notary N is a trusted third party whose role is to attest to the
existence and/or truth of any statement (over which it is trusted on or granted juris-
diction over) at a given point in time thereby imparting authenticity to the statement.
The notarization of a statement refers to the provision of an authentic attestation by

a notary.

In particular, this attestation may be performed as a notarization whereby N returns
a signed statement, wherein the statement contains explicit attestations to the truth
of the statements presented by the submitting user. We examine this notarization
more thoroughly, with particular emphasis on the notarization of purportedly valid
digital signatures.

Definition 5.14 provides an open-ended defintion regarding the statements over
which a notary can attest to the truth or establish the existence of. Our particular
purpose (in this section) is to notarize statements regarding the validity of a digital
signature. Referring to (5.1) of Definition 5.13, there are a number of functions, whose
truthfulness must be successfully determined in order to have a walid signature. As
demonstrated by Protocol DS1 (see Section 5.3.2), determining the truthfulness of
some of these functions requires obtaining additional information, in addition to the
signature itself. For example, for a signature ¢ purportedly constructed by user u
and time stamped at time f, a verifier must determine the truth of the statement
revoked(cert,,t). This requires obtaining the proper revocation lists from the appro-
priate CAs. A DSN can therefore determine and attest to the truth of (see (5.1)

from Definition 5.13) various statements, including those listed in Table 5.4.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 156

1. ver,(m,c): Given a verification key, puportedly belonging to user u, a DSN
can determine and attest to the mathematical correctness of the signature ¢ =
sig,(m) for the purported message m;

2. verp(s,t,c): Given a verification key, purportedly belonging to the time stamp
authority 7', a DSN can determine and attest to the mathematical correctness
of the signature s = sigr(c,t) for the purported signature and time, ¢ and ¢,
and if successful, use t as the point in time for determining a certificate’s status;

3. expired(cert,,t): Given a public key certificate cert,, purportedly belonging to
user u, and a time ¢, a DSN can determine and attest to whether or not cert,
was valid at time t;

4. revoked(cert,,t): Given a public key certificate cert,, purportedly belonging to
user u, and a time ¢, a DSN can determine and attest to whether or not cert,
was operational at time t;

5. certTrust,(CA;{CAy},cert,,t): Given a public key certificate cert,, a time ¢
and a trusted certificate (trust anchor) CA;{C'A;}, a DSN can determine and

attest to whether or not, as of time ¢, there is (or was) a certificate chain (see
Definition 5.8) (C'A;,C Ay, ... u).

Table 5.4: Statements (cf. Definition 5.13) for Which a Digital Signature Notary (see
Definition 5.15) can Attest to the Truthfulness.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 157

Definition 5.15 A digital signature notary DSN is a trusted third party whose role
is to attest to the truth of the functions from (5.1) (see Definition 5.13), which may
involve establishing the existence of supporting evidence. The notarization of these
statements refers to the provision of an authentic attestation to the truth of the
statements by a DSN.

As an example of notarization, consider Protocol NT1, which is slightly modified
from the protocol as presented by Merkle [Mer80, Mer82]. The protocol uses a time
stamp authority (T) (what Merkle refers to as a time-keeper) whose purpose is to
digitally time stamp submitted information, and a CA (what Merkle refers to as a
central authority) to attest to the validity of a certificate at a given point in time;
like an online certificate status check (see Section 5.2.3). More specifically, the CA is
used to attest to the fact that cert, is not currently expired or revoked.

As specified in Protocol NT1, the CA is acting as a DSN by attesting to the truth
of the state of u’s certificate cert,, i.e., its expiry or revocation. In Section 5.4.2, we
present Protocol NT2, in which a DSN determines and attests to the truth values of
all functions specified in (5.1) of Definition 5.13.

5.4.2 Notarizing Digital Signatures

The relevance of notarizing digital signatures is evident from the discussion in Sec-
tion 5.3.1 noting that the verification of a digital signature requires the maintenance
of evidence at a given point in time: the time at which the signature was time
stamped. The main difference with the time stamping solution of Section 5.3 is that
a notarization by a DSN (see Definition 5.15) provides a self-contained package of
corroborative evidence, allowing one to validate a digital signature numerous times
without requiring the verifier to obtain additional information.

The main purposes of the notarization of digital signatures is to
1. centralize the validation of a digital signature so as to limit the amount of cor-

roborative evidence gathering that may be performed by the signature verifier,

2. reduce the amount and type of information stored (as described in Section 5.3.1)

for subsequent validations of signatures, and

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 158

Protocol NT1 Signature Notarization by Verifier [Mer80, Mer82].

Description: The recipient v of signature ¢ uses a CA as a DSN (see Definition 5.15)
as part of a larger protocol in which evidence regarding the status of the purported
signature originator’s verification certificate is collected by ». The end result of
the protocol is v’s decision as to whether or not to accept or reject a signature
based, in part, on the information collected regarding the status of the originator’s
certificate.

‘ Signature Transmission ‘

Input: message m
Output: signature y = sig,(m) and purported originator certificate cert,
1. For a message m, u computes y = sig,(m) and sends (y, cert,) to v.

‘Time Stamping of Signature‘

Input: signature y = sig,(m)
Output: time stamp s = sigr(y,t)
1: v sends y to T.
2: T returns the time stamp s = sigr(y,t) where ¢ is typically the time of receipt of
y by T. (This same technique is used by Protocol AB1 in Section 2.4.1.)

Notarization of Certificate Revocation & Expiry Status

Input: u’s purported certificate cert,
Output: whether cert, is currently expired or revoked
1: v requests a validity check from the C'A with regards to the current status of u’s
certificate by sending cert, to the C'A.
2: Upon receiving cert, at time t', the CA determines the truth value of
expired(cert,,t') and revoked(cert,,t') as performed by a signature verifier in
steps 3 and 4 of Protocol DS1. If true, then the C'A notarizes this successful

result by returning the signature sigca(“u’s certificate cert, is still valid and
operational at time ¢'”).

Signature Validation ‘

Input: time ¢ of stamping of signature y and notarization of cert,
Output: determination of whether or not y = sig,(m) is a valid signature
1: If v receives a positive response from the CA and ¢ < ¢/, then v completes steps 1
and 5 of Protocol DS1 using the time ¢ (obtained above from T') as the time of
stamping, and if successful, accepts u’s signature y over m.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 159

3. prouvide trusted corroborative evidence for signature verification in lieu of or
in addition to stored evidence, with inclusion of submitted information and

reference pointers to stored evidence information.

There are several attestations that can be made by a DSN during the notariza-
tion of a digital signature, each of which vouch for the existence and/or truth of
statement(s) (relevant to the authenticity of the digital signature) at a specific time.
A list of such statements was given in Table 5.4. The input to the DSN can vary
depending on the attestation required by the requestor. The process of notarization

is presented as Protocol NT2.

Using Protocol NT2

Since the notary can attest to a variety of requests made by a signature originator
or verifier, Protocol NT2 has a number of potential uses. Below, we present several
such uses, keeping in mind that Protocol NT2 may have other applications, and even

further, can be enhanced so as to satisfy other notarization requirements.

Notarizing a signature. By submitting (m, ¢, —, —, cert,, CA{CA}) at time t,
where cert, = C'Ai{u}, one can obtain the notarization sigpsy(S) where S is the

statement

The signature ¢ for the message m, which existed at time ¢, was verified for
mathematical correctness using the certificate cert,. The certificate cert,
issued by C'A, was not expired nor revoked as of time ¢ where the latter
was verified using the CRL numbered rn and dated time ¢'. At time ¢, the
certificate chain (C' Ay, C Ay, u) existed and was mathematically correct, as
verified using the respective cross-certificates numbered (cny). Each cross-
certificate was valid and operational according to the respective ARLs

(any) with respective times ().

Notarizing a time stamped signature. Submitting (m, ¢, s,t, cert,, CA{CAL}),
where cert, = C'Ai{u}, one can obtain the notarization sigpsy(S) where S is the

statement

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 160

Protocol NT2 Notarization of a Digital Signature.

Description: A digital signature notary DSN attests to the truth of selected func-
tions from (5.1) of Definition 5.13, based on the input from the requestor (see
sample inputs starting on 159).

Note: Let A represent Protocol DS1 of Section 5.3.2.

Require: The DSN is assumed to have a trusted clock, and each user is assumed to
have a trusted copy of the DSN'’s self-signed verification certificate. The expiry
or revocation this certificate is beyond the scope of this thesis.

Input: A message m, purported signature ¢, purported time stamp s, time ¢, pur-
ported certificate cert, of the producer of ¢ and a trust anchor CA;{C'A;}. Not
all variables must be input, as specified for each step below, though a trust anchor
is required in any case.

Output: A signed attestation to statements established by the DSN based on the
input variables to the protocol.

1. If a time ¢ and s are input (necessarily with ¢), perform step 2 of A. If a time ¢
is input without s (i.e., without corroboration of the correctness of the time t),*
then skip to step 3 if m and ¢ are not input, else goto step 5 with failure. If a
time ¢ is not input, then ¢ is assigned the time of receipt of the input.

2: If m and ¢ are input (necessarily with cert,), perform step 1 of A. If successful
then assign the statement S; = “The signature ¢ for the message m, which existed
at time t, was verified for mathematical correctness using the certificate cert,.”

3: If cert, is input, then perform steps 3 and 4 of A. If both are successful, then
assign the statement® Sy = “The certificate cert,,, issued by C'A;, was not expired
nor revoked as of time ¢ where the latter was verified using the CRL numbered
rn and dated time t'.”

4: For CA;{CA;} (necessarily input with cert,), execute step 5 of A to find a cer-
tificate chain® from C'A,{CA;} to CAp{u} = cert,. If successful then assign the
statement S3 = “At time ¢, the certificate chain (C'A;,CA;,...,C Ay, u) existed
and was mathematically correct, as verified using the respective cross-certificates
numbered (cn;, cnj, ..., cng). Each cross-certificate was valid and operational ac-
cording to the respective ARLs (an,,...,any) with respective times (¢;,...,;).”

5. If each step was successful, the DSN produces a signature over the statements
as sigpsn(Si, Sz, S3) (depending on the input variables presented, not all of
these statements will be assigned). If any step fails, then the DSN outputs
sigpsn(input, “failure”) where input represents the set of input variables.

“In this case, the time ¢ has been input as a request for notarization regarding the status of cert,
at time t.

bNotice the similarity of this step to the notarization performed in Protocol NT1.

¢An optional enhancement to the present protocol would involve requesting for more than one
certificate chain (if they existed) to be output in Ss.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 161

The signature ¢ for the message m, which existed at time ¢, was verified for
mathematical correctness using the certificate cert,. The certificate cert,
issued by C'A, was not expired nor revoked as of time ¢ where the latter
was verified using the CRL numbered rn and dated time ¢'. At time ¢, the
certificate chain (C' Ay, C Ay, u) existed and was mathematically correct, as
verified using the respective cross-certificates numbered (cny). Each cross-
certificate was valid and operational according to the respective ARLs

(any) with respective times ().

Notice that the reply is identical to the previous notarization of a signature that was
not time stamped. The difference is that for the time stamped signature, valida-
tions regarding the revocation status of cert, were performed as of time ¢, the time
contained in the time stamp, rather than the time of receipt of the request by the
DSN.

Notarizing a signature for known verifiers. Submitting (m, ¢, s,t, cert,, CA;{CA;})
with certificate C Ap{u} = cert, and knowledge of a trust anchor for an intended re-
cipient of a time stamped signature from user u results in the notarization sigpsy(S)

where S is the statement

The signature ¢ for the message m, which existed at time ¢, was verified
for mathematical correctness using the certificate cert,. The certificate
cert, issued by C'Ap was not expired nor revoked as of time ¢ where
the latter was verified using the CRL numbered rn and dated time t'.
At time ¢, the certificate chain (C'A;,CA;, ..., C Ay, u) existed and was
mathematically correct, as verified using the respective cross-certificates
numbered (cn;, cnj, ..., cng). Each cross-certificate was valid and oper-
ational according to the respective ARLs (an;,...,any) with respective

times (¢;, ...,).

This input may also be submitted to a DSN by a verifier of a time stamped signature.
If s and t are not included above, then ¢ is taken as the time of receipt of the request by

the DSN. Notice that, depending on the organization of the certification authorities,

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 162

the choice of trust anchor can be chosen so as to allow acceptance of the notarization
for a variably large group of users. For example, if the issuer of cert, is C'A, and
u wants to send a notarized signature to all users that possess certificates issued by
C'A; then the trust anchor CA;{C' A,} allows trust to be obtained in the signature ¢
by all users possessing the self-signed certificate of C'A;.

Determining certificate status. Submitting (—, —, —, ¢, cert,, C A {C' A.}), where
cert, = C' Ap{u}, allows one to receive a notarization regarding the status of cert, as

of time ¢ as sigpsy(S) where S is the statement

The certificate cert, issued by C' A, was not expired nor revoked as of time
t where the latter was verified using the CRL numbered rn and dated time
t'. At time ¢, the certificate chain (C'Ay, C' Ay, u) existed and was math-
ematically correct, as verified using the respective cross-certificates num-
bered (cny). Each cross-certificate was valid and operational according to

the respective ARLs (ang) with respective times ().

If ¢ is not input, then ¢ is taken as the time of receipt of the request by the DSN.

Determining certificate chain existence. Submitting (—, —, —, ¢, cert,, CA;{CA,})
allows one to receive a notarization regarding the existence of a certificate chain
(CA;,CA;,...,CAy, u) by receiving the notarization sigpgy(S) where S is the state-

ment

The certificate cert,, issued by C'A; was not expired nor revoked as of
time ¢ where the latter was verified using the CRL numbered rn and
dated time ¢'. At time ¢, the certificate chain (C'A;,CA;,...,C A, u)

existed and was mathematically correct, as verified using the respective

cross-certificates numbered (cn;, cnj, ..., cny). Each cross-certificate was
valid and operational according to the respective ARLs (an;, . .., any) with
respective times (¢;, ...,).

If ¢ is not input, then ¢ is taken as the time of receipt of the request by the DSN.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 163

5.5 Digital Signature Renewal

The prevention of signature forgery relies, in part, on the computational infeasibility
associated with an attack that would forge a signature subsequent to, for example,
exhaustively trying all signature keys. The choice of parameters for signature algo-
rithms may be chosen large enough so as to discourage (and prevent) an attacker
from attempting such malicious acts yet small enough so that the computational
complexity of computing a legitimate signature is reasonably efficient. However, in-
creases in computational power (e.g., faster computer chips and efficient distribution
of programs over increasingly large networks) imply that the parameters chosen at

one point in time may not provide the same level of security at subsequent times.

5.5.1 Definitions and Motivation

In this subsection, we motivate and define concepts related to the renewal of digital
signatures. We first distinguish between legitimate and fraudently produced signa-

tures with the following definitions.

Definition 5.16 A digital signature ¢ = sig,(m) (see Definition 2.11) over data
m is legitimate with respect to a user u (i.e., the user named in the corresponding
verification certificate) if u was aware of or participated in the construction of c.
Awareness includes knowledge that a signature for m is currently being produced
in the absence of disapproval of this action. Participation includes the actions of

willfully executing the software that produces the signature.

We use the term legitimate owner (user) to identify the entity for whom the public

key was certified.

Definition 5.17 A digital signature ¢ = sig,(m) is forged if it is not legitimate with

respect to user u.

There are numerous possibilities for compromising a signature system, resulting in

the subsequent forgery of signatures. A partial list of such attacks is given in Table 5.5.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 164

1. Algorithmic Attacks. The signature algorithm itself (e.g., RSA) has succumbed
to mathematical or cryptanalytic attack.

2. Implementation Failures. A particular signature algorithm has been poorly
implemented. We include here the possibility of weak keys being chosen, a
poor random number generator being used, or the private key not being ade-
quately protected. As specific examples, note the attack on ElGamal signatures
[Ble96], the timing analysis attack [IKoc96] and differential power analysis at-
tacks [KJJ98].

3. Insider or Physical Attacks. This includes attacks whereby the private key is
read from temporary memory (in which it is stored while being used). As well,
an attacker might observe as a user enters the password used to provide access to
their private key or to decrypt keying information. This can also include a social
engineering attack whereby a user may be fooled into giving up a password or
key, or a system administrator may be bribed into revealing it.

4. Brute-force attacks. An attack whereby the password (used to encrypt keying
material) or private key itself is guessed. Schemes with low-entropy passwords
are most susceptible to such an attack.

Table 5.5: Attacks to a Signature Scheme. The goal of the attacks is to compromise
either the signature algorithm or the private key(s) of a signing user(s). The end
result is an ability to forge signatures.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 165

legitimate signatures produced signatures may be forged

Y

| ~ time

|
l

A

Figure 5.11: Periods of Legitimate and Forged Signature Production. Time ¢ indi-
cates the point of a successful attack to the signature scheme of one or more users.
Subsequent to time ¢, signatures may be forged in the names of those users whose
signature production capabilities have been successfully attacked.

Consider also more futuristic attacks involving quantum computing [GC98, Sho94|

and possible improvements in the efficiency of factoring [Pom90].

Definition 5.18 A signature scheme is compromised if it allows the production of

forged signatures.

In Figure 5.11, the partitioning of legitimate and forged signatures is depicted, rel-
ative to the time t of a successful signature attack. We make the following assumptions

with regard to actions performed relative to the time ¢:
1. only legitimate signatures can be produced before time ¢;

2. signatures may be forged after time ¢.

Definition 5.19 A digital signature renewal process provides for the renewal or ez-
tension of the message authenticity of a legitimate signature ¢ = sig, (m) for message
m by ensuring that, subsequent to a compromise at time ¢ (see Definition 5.18) of the

signature scheme (see Definition 2.11) of which sig,() is a component,

1. signatures legitimately produced with sig,() prior to time ¢ are successfully

validated after time ¢, and

2. forged signatures produced with sig,() at or after time ¢ are successfully inval-

idated after time ¢.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 166

5.5.2 Anticipation and Redundancy

The attacks from Table 5.5 can be generally classified as being either predictable or
unpredictable. 1f a key compromise or equivalent attack is predictable, then digital
signatures produced with the soon-to-be-attackable signature scheme can be renewed
prior to an attack so as to extend their message authenticity beyond the point in time
when the original signature mechanism succumbs to attack. In subsection 5.5.3, we
describe the process of renewal.

For those cases in which an attack is not anticipated nor predictable, there may be
a number of forgeries produced before the attack has been detected. Once detected,
the corresponding certificate can be revoked (see Section 5.2.3). Yet there will still be
some question regarding the authenticity of signatures that may have been produced
subsequent to an attack yet prior to revocation. In Chapter 6, we discuss techniques
for detecting and recovering from an attack. In this subsection, we discuss techniques
for anticipating attacks to signature schemes, by decreasing the possibility that a
single attack will permit signature forgeries.

One way to anticipate an attack and allow for subsequent renewal is to provide
redundancy in the signature production mechanism. Some methods for providing

redundancy are:

1. Multiple Signature Keys. The use of multiple keys for the production of a digital
signature allows one to extend the lifetime of previously constructed signatures
(beyond that of a signature scheme in which a single signature key compromise
is typically sufficient for forgery production) so long as more than one attack is
required to compromise all keys and that attacks are detectable at least before

all keys are compromised. This solution is discussed further in Section 6.4;

2. Multiple Hash Functions. Consider the technique used by Haber and Stornetta
in Protocol HY1 (see Section 4.5). The signature for a message m is computed,
not as the traditional signature over a single hash of m (i.e., sig,(y) where
y = h(m)), but rather, over two hashes (i.e., sig,(y) where y = hy(m)||ha(m)).
In the case that one of the hash functions hy or hy succumbs to an unanticipated

attack, the authenticity of the original signature remains and can subsequently

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 167

be renewed prior to a possible attack to the other hash function.

Therefore, by constructing the signature algorithm in such a way that multiple, in-
denpendent attacks are required, the detection of attacks allows one to anticipate and

renew signatures.

5.5.3 Signature Renewal

In Section 5.3.1 (see Figure 5.8) it was observed (as discussed by Haber and Stornetta
[HS91]) how the time stamping of a signature served to extend the lifetime of the
signature by allowing verification of the signature past the point in time at which
the corresponding signature verification certificate had expired. In this subsection,
we examine how time stamping is also useful for extending the validity period of the
signature when attacks to the signature algorithm can be detected.

Consider the signature ¢ = sig,(m) produced by user u for the message m and
the absolute time stamp s = sig/(c, t) produced by time stamp authority 7" at time
t, using Protocol HY2 (see Section 4.5) where sig’() and sig() represent different
signature algorithms used respectively by 7" and u. Notice that, the compromise
of u’s signature key at time t', for example, prevents an attacker from producing a
valid, time stamped signature so long as the certificate of u is revoked prior to the
production of a forged signature. In this way, the time of the time stamp for the forged
signature would be later than the time of revocation implying that verification of the
status of u’s certificate before accepting a signature, would fail, i.e., Protocol DS1 (of
Section 5.3.2) would output a failed result — an invalid signature. The time stamping
of the signature has anticipated the compromise of u’s key. (In Chapter 6, we consider
the possibility in which a key compromise is not detected.)

The technique for using time stamping as a method of renewal in this manner was
described by Haber and Stornetta [HS91]. However, consider the following problem
with this technique as recognized by Bayer, Haber and Stornetta [BHS93]. Let us
first characterize two methods by which a signature might be forged (subsequent to

a successful attack to a signature scheme):

1. by creating a new signature, independent of any previous legitimate signatures;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 168

2. by altering a legitimate signature.

Suppose, for example, that the breach of security regarding sig, involved the discovery
of a computationally feasible method for finding hash function collisions, for the hash
function h used in computing c¢. Recall that in Section 2.1.2, it was indicated that
for reasons of efficiency, signatures were actually computed as ¢ = sig,(h(m)) for a
message m, using a hash function h. Therefore, the resultant time stamp s would be

computed as
s = sigr(h'(c. 1)) = sigp(h'(sigu(h(m)), 1)),
Notice now that if h were to become insecure (i.e., one were able to find collisions

for h), u could effectively absolutely back stamp (cf. Definition 4.10) a message m’ so

long as h(m) = h(m').

Remark 5.5 The time stamping of a signature is not sufficient for the renewal of a
signature in the case of it becoming computationally feasible to find collisions for the

once collision-resistant hash function h, used during signature production.

Protocol RIN1 Digital Signature Renewal with Time Stamping [BHS93].

Description: This protocol provides for a time stamp of a message-signature pair,
differing from the time stamping of only the signature as described in Section 5.3
(thereby allowing signature renewal even if the hash function h eventually becomes
susceptible to the discovery of hash collisions).

Assumption: Signature protocol independence between sig and sig’ whereby sig
may be susceptible to attack after time ¢, while si¢g’ is not compromised.

Note: Inputs are hashed before signing.

Note: The time #' of stamping must be such that ¢ < ¢ for the message authenticity
of the original signature ¢ to be renewed.

Input: message m and signature ¢ = sig,(m)

Output: time stamp s = sigh((m,c),t') for time ¢’

1. u sends the pair (m,¢) to the time stamp authority T where ¢ = sig,(m).
2: T returns the time stamp s = sigh((m,c),t') to u where ¢’ is the time of receipt
of the pair (m, ¢).

Consider the alternative of Protocol RN1 as presented by Bayer et al. [BHS93].
As noted (though not mentioned by the authors), Protocol RN1 should attempt to

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 169

ensure the independence of the signature algorithms (including hash functions) used
by T and other users, so that the current role of the time stamp is met, i.e., extension
of the lifetime of the signature in case of attacks to the signature production performed
by u. Proposition 5.1 demonstrates that even a weakness of the signature producer’s

hash function permits the successful renewal of the signature.

Proposition 5.1 A computationally feasible method for finding collisions for the
hash function h() is not sufficient for fraudulently claiming the time stamping of
the message-signature pair (m', c) in place of the legitimately time stamped message-

signature pair (m,c) for m # m' in Protocol RN1.

Proof Suppose there were such a pair of messages m # m’, then for the time stamp

computation:

s = sigr(h'((m,c),t))
= sigr(h'((m. sigu(h(m))).1)) (5.2)
= sigp(h'((m', sigu(h(m'))). 1)). (5.3)

Although it may be that h(m) = h(m') for m # m’, the equality of (5.2) and (5.3)
implies that h'((m, sig,(h(m))),t) = h'((m', sig,(h(m'))),t) which would imply that
a collision has also been found for the hash function A'(), a contradiction to the

assumption of Protocol RN1. m

Remark 5.6 The time stamping of a message-signature pair extends the lifetime of
the original signature even in the case of a hash function eventually being susceptible to

a computational method for finding hash collisions, subsequent to the time stamping.

Renewal Using Notarization

Time stamping the pair (m, ¢ = sig,(m)) as opposed to only ¢ allows for the authen-
ticity of ¢ to be extended in the event of an anticipated compromise to the signature
scheme used to produce c¢. Since the time stamper 7" is not concerned with the form of

the input and hence, blindly time stamps the input (m, ¢) as a single input, it appears

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 170

to make little difference as to whether ¢ or (m,c) are time stamped. Indeed, even
though m may be included in the time stamping input, the size of the time stamp
remains the same (since the input is hashed first) as does the size of the user’s storage
since u would be required to maintain the storage of m in any case. However, note
that by submitting (m, ¢) the privacy of m is not maintained, nor are there the band-
width efficiencies as offered by the submission of a hashed message (see Section 2.2).
Therefore, Protocol RN1 is undesirable given such requirements.

Alternatively, one can time stamp ¢ and subsequently notarize (m, ¢) when a sig-
nature scheme compromise is anticipated. More specifically, suppose that for the mes-
sage m, and signature ¢ = sig,(m), user u first obtains the time stamp s = sigy(c,t')
at time ¢. Further suppose that the signature scheme sig,() is compromised at time
t = t'. Prior to time ¢, say time t” where ¢ < ¢’ < t, the time stamped signa-
ture can be notarized. This can be accomplished as in the particular example from
page 159 whereby (m, ¢, s,t, cert,, C A {C Ai}) is submitted to the digital signature
notary DSN in Protocol NT2. The output of this protocol corroborates and attests
that m was indeed signed at time ¢, producing the signature c.

This technique has the advantage (over Protocol RN1) that since not all signatures
require that their lifetime extend beyond the anticipated lifetime of their signature
algorithms, not all require that both the message and corresponding signature are

initially time stamped.

Renewing Time Stamps

Just as a time stamp extends the lifetime of a digital signature in anticipation of an
attack in which signatures may be forged, the time stamp itself requires renewal (in
anticipation of the compromise of the signature scheme used for the production of
the time stamp). The time stamp also has a fixed lifetime that may not sufficiently
extend the lifetime of the original signature. As observed by Bayer et al. [BHS93]
Protocol RN1 can also be used with m, signature ¢ = sig,(m), and time stamped

signature s = sigh((m, c),t) where the required input would be ((m,c,t'), s).

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 171

Recording the Time of Compromise

Just as the time of stamping of a signature is compared to the time of revocation of
a certificate (e.g., from a CRL) or expiry (as contained within the certificate), the
process of renewal relies on the ability to compare the time of stamping to the time of
compromise. For this reason, the time of compromise (see Definition 5.18) of a user

signature scheme must be authentically recorded, for example by an issuing CA.

Initiation of Renewal

The time stamping of a signature ¢ = sig,(m) renews the signature ¢ beyond the
time of compromise of sig,, except in the case that the compromise of sig, includes
the discovery of a computationally feasible method for determining hash collisions
for the hash h used in the computation of c¢. If such a compromise is not a concern,
or if the required “message authenticity lifetime” for ¢ is relatively short, then the
alternative stamping of the message-signature pair (of Protocol RN1) or subsequent
notarization, may not be required.

The renewal of a signature or time stamp will typically be initiated by a verifying
party, requiring a long lifetime for a particular signature(s). This renewal can be
accomplished by repeated, periodic renewal of the digital signature and subsequent
time stamps and extends the message authenticity of the original digital signature so
long as renewal is performed prior to compromises. In Chapter 6, we consider the

possibility of undetected compromises.

Chapter 6

Addressing the Problem of
Undetected Signature Key

Compromise

The digital signature is the digital counterpart to the physical, handwritten signature.
Each permits authorization with respect to the corresponding named individual. A
handwritten signature permits authorizations corresponding to the particular name
that is being signed. A digital signature private key may be used, together with
additional controls, to allow authorizations with respect to the name provided in the
corresponding public key certificate. The compromise of the private key results in a
loss of exclusive control over associated privileges, and allows impersonation.

Once it is known that a key has been compromised (i.e., once a compromise is
detected), suitable recovery actions may be taken to prevent further damage. For
example, various means for key revocation (see Section 5.2.3) allow one to prevent
future acceptance of forged signatures time stamped later than the date of revocation
(see Section 5.3.1). However, revocation can only be performed once a compromise
has been reported (and hence detected). The ability to distinguish forged signatures
from legitimate ones requires knowledge of when the compromise occurred.

To date, the problem of protecting against the forgery of signatures resulting

from an undetected compromise of a user’s signature private key has not even been

172

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 173

considered in the open literature, let alone solved in any way. In this chapter, we
introduce and present a first study of the problem of undetected key compromise.
Moreover, and perhaps counter-intuitively, solutions are provided which prevent even
an attacker who has obtained or deduced (by any means, for any signature algorithm)
a user’s signature private key, from being able to forge signatures that would be

accepted by an unsuspecting recipient.

Chapter Outline

In Section 6.1, we define events related to a key compromise and the detection of the
compromise. As well, the inadequacy of revocation and time stamping for dealing
with the problem of an undetected compromise is discussed. Section 6.2 reviews and
examines solutions useful for reducing the damage subsequent to a signature key com-
promise. In Section 6.3, we overview new solutions in which independent means are
used to identify the legitimate signing user, and position the work relative to the cur-
rent literature and practice as well as to the content of this thesis. In Section 6.4, we
elaborate on a first solution in which a secondary (independent) identification is used
for enhanced protection against an undetected key compromise. In Section 6.5 tech-
niques are presented which use a secondary (independent) synchronization method
to allow the legitimate signer to detect when forged signatures have been produced.
Combining a periodic check-in by the legitimate user with a cooling-off period for
the acceptance of signatures allows for the detection to be enhanced so that forged

signatures will not be accepted by a recipient. This is discussed in Section 6.6.

6.1 Definitions, Assumptions and Motivation

In this section, the problem of undetected key compromise is introduced and the need

for new solutions is motivated.

Definition 6.1 A key compromise has occurred if the signature (private) key sig,

(see Definition 2.11), or equivalent key, is possessed by an individual other than the

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 174

legitimate signature key owner u, and there exists a potential for the misuse of sig,

by this other entity (e.g., the forging of signatures - see Definition 5.17).

A variety of possible attacks to both the privacy of a signature key and security of
signature algorithms were given in Table 5.5 of Section 5.5. Although access controls
are necessary, in many cases they might not be sufficient for protection of the signature
key. It is important to recognize that despite various controls and protections, some

keying material may eventually be compromised.

Definition 6.2 An undetected key compromise is a key compromise for which the
legitimate key owner (see Definition 5.16) is not aware of the possession of sig, by

another individual.

If a private key compromise or equivalent attack is detected by u, the corresponding
public key certificate can be revoked, and a new key pair can be introduced. Through-
out this chapter, we use the term ‘key compromise’ to indicate an attacker’s ability

to impersonate u using an ability to forge signatures.

6.1.1 Compromise Detection

In discovering or becoming aware of (possibly only suspected) attacks, it is important
to consider the storage of the signature key. For example, the key might not be stored
on any physical medium, but rather computed as some function of a memorized
password which appears in a computer system (e.g., RAM) for only a very short
period of time.! We refer to this as an ephemeral token. The key may be stored on
a user’s disk. This is referred as a software token. As well, the key may be stored on
a smartcard, i.e., hardware token. Alternatively, the key may be physically recorded
(e.g., on a piece of paper) and is thus referred to as a physical token. A physical
token differs from a hardware token in that the former is easier to duplicate, while

the latter, generally is not.

1For example, a password could be used as a seed for a (reproducible) deterministic process which
generates the signature key.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 175

Implemented correctly, a hardware token allows compromise to be easily detected,
i.e., the user would recognize the missing token. However, it does not necessarily
protect against an algorithmic attack or implementation failure (see Table 5.5), and
care must be taken in their use [BDLI7, KJJ98], e.g., if a weak random number
generator were used. The techniques presented in this chapter provide protection even
in the case of signature key compromise due to these failures. Additional methods

for detecting a signature key compromise include:

1. detection of a physical attack to a user’s computer system in which keying

material is stored (this includes theft of a hardware token);

2. the legitimate user receives a signature(s) from some other user, which the

legitimate user identifies as a forged signature; and

3. public announcement of a computationally feasible attack or protocol failure
applicable to the digital signature algorithm or related components (e.g., hash

function).

6.1.2 Events Related to a Key Compromise.

Consider the timeline of actions related to a signature key compromise as given in
Figure 6.1 (similar to Figure 5.10 with the additional indication of a key compromise
(or equivalent attack) as the cause for revocation). The compromise of u’s key takes
place at time to. The compromise may be suspected at time ¢; (the time of detection of
the key compromise; « may or may not be aware of the precise time of its occurrence).
u reports the compromise at time ¢, (for example, to the certification authority (CA)
who issued the corresponding verification certificate) and this information is received
by the CA at time ¢3. Knowledge of the information is made available to users at time
ty, e.g., using CRLs (see Section 5.2.3). Note that some time may elapse between t3
and t4, e.g., if protocol dictates that compromises are published within 12 hours, as
opposed to publishing after each revocation request is received. Knowledge of the

key compromise is obtained by users as early as time t5; different users may obtain

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 176

time

b L % 5 4 K

t, key compromise

t, compromise suspected

t, compromise reported

t, report received by CA

t, compromise published

t. public notification received or obtained by users

Figure 6.1: Timeline of events related to a key compromise. From time ¢y to ¢; is a
period of undetected key compromise.

this information at different times. We have ¢, < t; < t3 < t3 < t4 =< t5 (see
Definition 4.3).

6.1.3 Limits of Revocation

Even if existing certificate revocation techniques were used in response to a key com-
promise, they were not intended to handle the case of an undetected compromise since
they rely on the compromise being reported, and hence detected. During the period
of time starting at tg and ending prior to #; (see Figure 6.1), a period of undetected
key compromise (see Definition 6.2), a number of messages may be signed, including
both forged and legitimate signatures. In the worst case, a compromise may not be
detected at all, thereby allowing signatures to be forged until the date of expiry of
the corresponding public key certificate. Using current techniques, it is difficult to
distinguish whether, for the case of disputed signatures (produced and time stamped

during the period of undetected key compromise),
1. u did not actually sign the messages (i.e., an attacker did), or

2. ulegitimately signed the messages and is attempting to repudiate the signatures,

by either claiming

(a) a signature private key compromise prior to any actual compromise, or

(b) a compromise when in fact there was no actual key compromise.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 177

Note that the revocation information may be the only evidence available to an ad-
judicator (see Section 5.3.2) asked to resolve if and when a key compromise may
have occurred.? Thus, it may be reasonable to assume that signatures time stamped
prior to the date of revocation are considered legitimate. However, this may place an
unexpected burden or unfair penalty on the legitimate user in cases where a user’s
private signature key is indeed compromised without his/her knowledge. Indeed, u
may be unable to pinpoint the exact time of the compromise. However, allowing u
to repudiate signatures that may have already been accepted is equally unfair to the

recipients of the signatures.

6.1.4 Time Stamping is Necessary but not Sufficient

The determination of whether a signed message is valid involves, among other things,
a comparison of the time of stamping of the signature with events related to the status
of the corresponding verification certificate (see Protocol DS1 of Section 5.3). The
time of a certificate’s revocation (or expiry) can be compared to the time of signing
of messages to allow determination of whether a message was signed before or after a
revocation. Such a procedure may not be sufficient in the case of an undetected key
compromise. Let ¢, be the time of stamping of a signature ¢. The apparent legitimacy
of ¢ (from the point of view of a signature verifier) given that ¢, < ¢, (see Figure 6.1)
may be unclear in the case that ¢;, the claimed suspected time of compromise, is
determined only by the legitimate user. For example, in an attempt to repudiate
a legitimate signature, the legitimate signer may dishonestly report to the CA that
t; < t,. Indeed, until the compromise is detected, a number of legitimate and forged
signatures may have been time stamped during the interval from t, to ¢;, making it
difficult to arbitrate a dispute regarding the legitimacy of such signatures. Thus, the
time stamping of the signature is insufficient in this case. In the remainder of this

chapter, we examine methods for dealing with this situation.

2In some cases, additional information may be available, for example physical evidence. However,
we focus on solutions that do not rely on such evidence.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 178

6.2 Dealing with Signature Key Compromise

In this section, we review and discuss techniques that can be used to deal with a

signature key compromise by using either of the following general methods:

1. Providing redundancy. A single key compromise is rendered insufficient to allow
the forgery of signatures by requiring multiple keys for signature production.
For example, requiring a private key to be compromised from each of a group
of users, thereby requiring multiple, subsequent attacks against different users

in order to successfully forge a signature;

2. Limiting exposure. Limiting the number or type of signatures that may be
forged or the amount of time that undetected forgery can persist may limit the

quantity of forged signatures resulting from a key compromise.

Threshold signatures. Threshold signature schemes (e.g., [Des94, Lan95|) are
protocols in which n shares or pieces of a secret signing key are distributed amongst n
users (one share per user). To produce a signature (verifiable with a single verification
key), at least ¢ < n users must cooperate, each producing partial signatures that are
thereafter combined to produce a resultant signature.

Redundancy (against one class of attacks) is provided since compromise of a single
user’s share does not allow one to forge a signature (unless cooperation is obtained
from t — 1 other users). Exposure is limited so long as compromises are detected and
subsequent regeneration of signature keys is performed. However, there exists the

possibility that over a period of time, ¢ signature shares may be compromised.

Proactive signatures. In anticipation of the possibility of a long-term attack in
which multiple shares of a signature key are eventually compromised (without detec-
tion), a proactive approach has been proposed [HJJK97] whereby the shares corre-
sponding to a single signature key (where as above, a threshold of signature key pieces
are required to produce a signature verifiable by the single verification key) are pe-

riodically renewed so that an attacker would be required to compromise a threshold

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 179

of the shares all within a given time period in order to successfully forge a signa-
ture. One advantage is that despite the refreshment of the shares, the underlying
private/public key pair can remain fixed for a long time, e.g. several years. This
renewal of shares can be performed periodically or can be triggered by the detection
of a share compromise. A second advantage is that if one of n parties holding a key
share leaves an organization or is dismissed, even without explicit revocation of his
key share, the periodic update will cause his key share to be invalidated.

Though suitable for some applications, for protecting individual users against key
compromise a disadvantage of using threshold schemes (proactive or otherwise) is the
requirement of involving a number of users to produce a single, verifiable signature.
Furthermore, it is important to note that such threshold and proactive schemes do not
preclude an algorithmic or brute force attack that would discover the single signing

equivalent key.

Proactive certification. To remove the requirement of multiple users for the pro-
duction of a verifiable signature, Canetti, Halevi and Herzberg [CHH97] use the same
proactive, distributed concept (as described above for ‘Proactive signatures’) to allow
for a proactive distributed certification of an individual user’s signature key, whereby
a single signature key is sufficient for the production of a signature, as opposed to a
distributed signature construction. Their proactive solution requires periodic refresh-
ment phases in which new signing key pairs (i.e., sig, and pub, as in Definition 2.11)
are generated by each user. Users additionally store shares of a global, private sig-
nature (certification) key, corresponding to a global, public verification key. These
shares are used in process (similar to the proactive signature scheme described above)
to certify the new signature keys (just as would be done in a centralized scheme by
a certification authority in Section 5.2.1). The shares are also periodically refreshed
(in addition to the signature key pairs).

A weakness of this approach is that, although signing key pairs are refreshed at
regular intervals, there is no protection in the case that a single user’s signing key

is compromised (without detection by the private key owner) and used to produce a

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 180

signature within a given time unit. This technique therefore provides some protec-
tion against malicious certification of public keys (by providing for a decentralized
certification process in which the shares corresponding to the private certification key
are periodically renewed) and simultaneously limits the number of (as opposed to
preventing) forged signatures that can be produced for a user by imposing periodic

renewal of the user’s personal signature keys.

Restricted signature privileges. An alternative technique for limiting the effects
of key compromise (e.g., forgery of signatures) is related to the idea of attribute cer-
tificates. These are certificates that allow for additional information, other than a
public-key, to be conveyed in an authentic manner [ITU93]. For example, the addi-
tional information may be privileges which can be certified by an attribute authority
in separate certificates, or included as an optional field directly in a user’s certificate.
Suppose, for example, that different privileges were assigned to different users so that
only certain classes of messages can be signed by particular users. For example, only
users with “signing officer” privileges might be able to sign cheques in the name of
their company. An attacker with such a goal in mind, now has a smaller number of
users that can be attacked since the compromise of a particular signature key may
not allow for the production of forged cheques. This technique can be combined
with threshold signatures or proactive signatures (see above) whereby combinations

of users with different attributes are required to produce a signature.

Limiting the number of signatures. While such a solution above limits the types
of signatures that can be produced (and hence forged), one might also try to bound
the number of signatures that can be produced for a given certificate. This idea
can be implemented by using an intermediate trusted third party to decrement the
remaining signature count after the production of each signature. Such a technique
is used in Protocol PV4 (see Section 6.4).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 181

Signature insurance. Related to the reduction of risk for a particular user or
group of users is the protection against liability in the case of undetected key com-
promise. Paralleling the paper world, insurance might be useful for protection in
such situations, i.e., each user pays insurance premiums for each certificate, protect-
ing against the results of a key compromise. For example, comparing a system where
single user signatures are required with one where threshold signatures are required,

the former might require for higher insurance premiums.

6.3 Overview of New Approach

The verification of a time stamped signature was discussed in Section 5.3. This
verification forms what we refer to here as a primary or first level authentication.
The first level authentication allows a signature verifier to ensure that, among other
things, the mathematical correctness of the signature is verifiable with the public key
contained in the corresponding certificate identified by the purported originator of the
signature. Thus, the signer must have had knowledge of the corresponding private
signature key (or equivalent information). The binding of the name to the public
key by the certification authority (CA) (see Section 5.2.1) is intended to identify the
named individual as owner of the corresponding verification key. However, as implied
by a key compromise (see Definition 6.1), the first level authentication alone does
not necessarily identify the named individual as the only possessor of the (private)
signature key and hence as the producer of a particular signature.

The novelty of the new approach to dealing with a key compromise (in comparison
to the techniques of Section 6.2) is that it makes use of a second level of authentication,
the result of which allows the verifier v of a signed message to confirm (with a higher
degree of assureness than with the first level digital signature protocol) that u (the
user named in the public key verification certificate used to successfully validate
the first level digital signature) did indeed sign the message m despite a malicious
attacker’s possible possession of sig, (or equivalent key). A successful second-level
authentication results in a signature, produced by a third party Trusted Register

(TR), over (at least) the signed message submitted by the originating user. After

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 182

successful verification by the originating user, the original (time stamped) signature
and message (to which the first level signature was applied) can be sent to other
users, accompanied by the T R-signed message. More detailed descriptions of the
particular techniques whereby an enhanced second-level authentication is used are
given in Section 6.4 and Section 6.5.

In Section 6.3.1, the general structure and form of a second level authentication,
incorporated with the first level digital signature, is described. Section 6.3.2 positions
this second level approach relative to the previous work (of Section 6.2) and the

provision of temporal authentication.

6.3.1 Second Level Authentication for Signature Production

The secondary method provides additional, corroborative evidence for the verifier of
a digital signature, beyond the possession of the original first level signature. This
corroborative evidence results from an exchange made between the signing user and
the TR. The function of the TR is to validate an exchange between itself and the
submitter of a secondary authentication request, and subsequently produce some
substantiating information (to enhance the acceptability of a message signed with
sig,) that is bound to the signature in question. Throughout this chapter, we consider
the technique whereby the T'R produces a signature in response to a successful second
level authentication. Optionally, one might record user signatures in an integrity-
protected database at the TR; signature recipients could verify the success of the
second level authentication for a particular signature by querying the T'R regarding
the membership of the signature in the database.

The generic structure of the combined first and second level authentications is
described by Protocol SL1. The properties of the secondary authentication mecha-
nism are given in Table 6.1. The beginning of a round is defined as the moment a
(legitimate or fraudulent) secondary authentication request is received by the TR and
ends when the corroborating evidence 7 is received by the requester. Synonymous to
Definitions 5.16 and 5.17, we can also identify the legitimacy of secondary requests

with the following.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 183

Protocol SL1 Generic Structure of Signature Protocols Using a Second Level Au-

thentication.
Description: This protocol provides the general steps combining a first level signa-

ture with a second level authentication. This second level authentication com-
bines a secondary request to the TR with a return of secondary corroborative
evidence to the submitting user. This corroborative evidence provides additional
corroboration to the named producer of the first level signature.

Note: The more specific protocols described in Sections 6.4 replace steps 4 and 5
below while enhancements to allow for synchronization are described as Proto-
col DT1 of Section 6.5.

1. User u computes the signature ¢ = sig,(m) for the message m.

2: User u obtains a time stamp s for the signature ¢, using for example, Protocol AB1
of Section 2.4.1.

3: User u also sends the signature ¢ = sig,(m) to the trusted register TR.*

4: Along with ¢, u submits ¢’ as an algorithm dependent, second level authentication
request (see Remark 6.1) for the signature ¢ to the TR.

5. The T'R validates the second-level authentication, and if successful, returns

r = sigrr(d,c,u,...),

the secondary authentication corroborating evidence, along with its contents to
u. Here “..." refers to additional algorithm specific data.

6: u verifies the mathematical correctness of the T R-signed r using an a priori,
authentically stored copy of the T'R’s verification public key and ensures that its
contents match what was submitted by u.

7. u sends {m,c,r, s} to a signature recipient v along with contents required to
determine the mathematical correctness of any signatures.

8: v validates u’s signature ¢ over m and checks the time stamp s using Protocol DS1
(Section 5.3.2) and verifies the mathematical correctness of the T R’s signature r
over (', c,u,...).

9: If each validation is successful, v accepts the signature ¢ over the message m.

?Alternatively, u might submit the time stamp s to the T'R.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 184

1. Any secret information or algorithms upon which the secondary authentication
mechanism relies (or more generally, things that may be vulnerable to the at-
tacks mentioned in Table 5.5) should be ‘independent’ of the signing private key
or algorithm used for the signature production itself, i.e., compromise of one
doesn’t reveal information sufficient enough to allow a computationally feasible
key compromise attack against the other.

2. The secondary authentication corroborating evidence is cryptographically
bound or associated with the current signature in question, i.e., is computed as
a cryptographic function of the signature.

3. The method permits a suitable identification to the TR, i.e., allows the TR
to verify that only u could have produced a particular signature, given an a
priori agreed upon identification technique between w and the T'R. This iden-

tification is performed via submission of a secondary authentication request (see
Remark 6.1).

Table 6.1: Properties Required for the Second-Level Authentication Mechanism.

Definition 6.3 A secondary authentication request ¢’ (see Remark 6.1) is legitimate
if the request received by the T'R is the same as that transmitted by the legitimately

identified requestor. A request that is not legitimate is fraudulent or forged.

Remark 6.1 The secondary authentication request serves a purpose similar to a re-
sponse in a challenge-response protocol. For our purposes, the “challenge” data refers
to data shared (possibly secretly) between the legitimate user and the TR, combined
with the digital signature data for which a secondary request is being made. The
response (i.e., the user’s secondary authentication request) is a function of this infor-

mation.

The independence of the mechanism used to perform the secondary authentication
request, from the first level signing private key and algorithm, typically ensures that
a second attack would be required subsequent to compromise of the first level signing
key. In this way, the independence of the second level from the first allows one to

better survive attacks that may only succeed against the first level.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 185

Identification of a user to the TR (facilitated by the secondary request) can be
based on something known (e.g., a password), something possessed (e.g., a smart-
card), or something inherent to an individual entity (e.g., a fingerprint). Isolating on
‘something known’, we observe that the known information can be either static (e.g.,
mother’s maiden name, birthdate) or dynamic (e.g., a periodically changed password).
We can also identify non-secret synchronization parameters which are specifically used
for a synchronization scheme with the TR (see Section 6.5). In this case, a lack of
synchronization allows for the detection of forged signatures. Only the authenticity

of this parameter need be maintained, not its confidentiality:.

6.3.2 Positioning of New Work

In this subsection, we outline the relationship of the new, second level solution to the

previous work of Section 6.2 and to the provision of temporal authentication.

Outline of Solutions and Relationship to Previous Work

In Section 6.4, second level authentication solutions are presented which provide for an
identification of the user to the TR using either ‘something possessed’ or ‘something
inherent’ to the requesting user. These solutions provide for redundancy whereby
compromise of the first level signature key is not sufficient for the production of a
signature that would be accepted by a verifier. They differ from the threshold schemes
reviewed in Section 6.2 in which single shares of a key are held by multiple users in
that multiple keys are held by a single user.

In Section 6.5, schemes which limit the exposure to successfully forged signatures
subsequent to a compromise are examined. These schemes use a synchronization be-
tween the legitimate user and the T'R, allowing the detection of fraudulent secondary
authentication requests and thus of forged signatures to be detected. Suitable re-
vocation techniques can subsequently be performed subsequent to a detection. This
solution differs from the threshold and proactive signature schemes of Section 6.2 in

that individual users can unilaterally produce signatures. It differs from the proactive

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 186

certification scheme reviewed in Section 6.2 in that it is proactive in the sense of pro-
viding for the detection of forged signatures, but does not require the regeneration of
keying material unless a forgery is detected. In short, the new schemes do not require
a key pair refreshment unless a forged signature attempt has been detected. As well,
the new proposals protect against other possibilities for the compromise of a private
key, beyond a break-in (see Table 5.5).

In Section 6.6, we build on the detection schemes of Section 6.5 whereby once a
fraudulent request is detected, the acceptance of any forged signatures can be pre-
vented. This is accomplished by creating a cooling-off period for the acceptance of
signatures while requiring legitimate key owners to acknowledge signatures for which
secondary, corroborative evidence has been obtained, yet are currently cooling off and

have not been accepted by signature recipients.

Temporal Functions of the Trusted Register

While the solutions presented here are positioned primarily for the purpose of pro-
viding a second level authentication to protect against the case when an undetected
signature key compromise (or equivalent attack) has occurred, they are intimately
related to the temporal digital signature requirements discussed in Section 5.3.1. The
additional requirement introduced in this chapter (beyond attempting to limit the
effects of a single key compromise), in the case of forged signatures, is the determina-
tion of when signatures were produced relative to the time of compromise. Although,
as indicated in Section 6.1.4, time stamping is not sufficient to solve this problem,
other techniques (such as the synchronization methods of Section 6.5) can be used
to help determine a time around which forged signatures were first produced. As an
additional role, the T'R authority used in this solution may also simultaneously act
as a time stamp authority 7" or a digital signature notary authority DSN.
Additionally incorporating the role of a time stamp authority, the T'R would return
r = sigrr(c’,c,u, ... t) to u, in place of r = sigrr(c,c,u,...) (see Protocol SL1 of
Section 6.3.1), where ¢ may be the time of receipt of ¢. The time stamping of the
signature is necessary in any case, and this is one option for implementing time

stamping with a TR. (See Protocol DT7 in Section 6.5.3 for a case in which the

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 187

time stamp is incidently provided in the second level authentication response from
the TR.)

Considering that the TR is performing a role similar to a DSN, by verifying (but
not fully attesting to) the success of an attempted second-level authentication request
by u, the TR might also act as a notary and verify the signature ¢ (as in Section 5.4)
upon submission. In this way, the TR might also include a full attestation to the

success of the second as well as the first level authentication.

6.4 Preventing Forged Signature Production

The successful forgery of a signature in a two-level signature scheme requires that
beyond the compromise of the signature key, an attacker is also able to obtain a
second-level authentication from the trusted register (T'R). Both a first level digital
signature and second level corroborative evidence from the TR are required for a

signature recipient to accept a signature.

Definition 6.4 We say that the forgery of signatures is prevented in a two-level
signature scheme (i.e., Protocol SL1) if compromise of the primary signature key
does not allow one to produce a signature that would be acceptable by a signature

verifier.

A successful attack would require the attainment of a forged signature and sec-
ond level corroborative evidence that would be accepted by a signature verifier. In
Section 6.4.1, we present several protocols in which a secondary, private key, some
function of which is shared between the legitimate user and the TR, is used in a
secondary authentication request by the legitimate user. In Section 6.4.2, the storage

and transmission efficiency of the protocols is compared.

6.4.1 Second Level Protocols

Consider, for motivational purposes, Protocol PV1. It is impractical so long as current

technology is unable to consistently recognize a user’s voice while also preventing

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 188

impersonations. As well, it requires the “physical” intervention of the signing user as
opposed to a completely automated process. However, it does allow an originating
user to obtain corroborative evidence regarding the source of the signature ¢ that
can be supplied to potential signature recipients. In subsequent protocols, we present

more cryptographic solutions.

Protocol PV1 Using Biometrics as Secondary Authentication.

Description: This protocol describes the secondary authentication request and re-
turn of corroborative evidence by a trusted register (T'R), replacing the like-
numbered steps from the general secondary authentication Protocol SL1 (see
Section 6.3.1).

4: u places a phone call to the TR identifying himself as u, reading the output of
h(c) to the TR for signature c.

5: The TR validates that the voice of the requestor matches the stored vocal prop-
erties for user u, determines the mathematical correctness of h(c) by computing
and comparing h(c) upon receipt of the signature ¢, and returns r = sigrgr(c, u)
to u if the validation is successful.

Whereas Protocol PV1 uses a separate channel for the secondary authentication
request, the remaining protocols in this subsection transmit the secondary authenti-
cation request along with the first level signature. Consider the scheme described as
Protocol PV2. At least one of the secondary algorithm or key must be independent
from their primary (first level) counterparts. For example, if the secondary algorithm
were DSA [FIP94] and the primary were RSA [RSATS8], the second level would likely
be resistant to potential attacks that existed only against RSA. In this case, the
signature algorithms are independent with respect to attacks that do not simultane-
ously compromise the security of both schemes. Regarding the use of a secondary
key whose secrecy must be maintained, similar to the original signature key, both the
construction and storage of the keys must be independent. In other words, an attack
to the first key should not allow recovery of the second key. In the best case, the
compromise of the first key would be detected prior to compromise of the second, al-
lowing revocation of the verification certificate corresponding to the first key. Notice
that a certificate need not necessarily be constructed for the secondary public key

pub!, since this public key will only be used by the TR (as opposed to other users).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 189

Protocol PV2 Using a Signature as Secondary Authentication.

Description: This protocol describes the secondary authentication request and re-
turn of corroborative evidence by a trusted register (T'R), replacing the like-
numbered steps from the general secondary authentication Protocol SL1 (see
Section 6.3.1).

Require: u must possess a secondary private signature method sig,, parameterized
by a key independent from the primary signature key and corresponding secondary
public key pub,. The TR maintains a copy of pub),.

4: u computes ¢’ = sig! (¢) and sends (u, ') to the TR.
5: The TR verifies the mathematical correctness the secondary signature ¢, using
publ,, and if successful, returns r = sigrgr(c, ¢, u) to u.

Alternatively, a private key algorithm can be used whereby u privately shares a
symmetric key K with the TR as in Protocol PV3. This solution prevents an attacker
from succeeding at having forged signatures accepted so long as he/she is not able to
recover I, in addition to the private, first level signature key. The storage location
and algorithm used with A must be independent of the location of the signing private
key and signature algorithm. E can be either an encryption function or preferably a
MAC algorithm since no decryption operation need be performed by the T'R. Note
that a MAC provides for a smaller secondary request size since encryption of ¢ results
in a request size equal in length to the size of the signature, which is longer than the
output of a typical MAC function (cf. Table 6.2). Note that an attacker, in possession
of only the signature private key sig,, would not be able to obtain corroborative

evidence for a forged signature.

Protocol PV3 Using a Symmetric Key as Secondary Authentication.

Description: This protocol describes the secondary authentication request and re-
turn of corroborative evidence by a trusted register (T'R), replacing the like-
numbered steps from the general secondary authentication Protocol SL1 (see
Section 6.3.1).

Require: u shares a symmetric key K with the TR.

4: u computes ¢ = Ex(c) (for first level signature ¢) and sends (u,) to the TR.
5. The TR, using knowledge of K and receipt of ¢, computes ¢ = Ex(c) and returns
r=sigrr(cd,c,u) touif ¢ ="

A variation from Protocol PV3 in which the TR need not maintain the secrecy

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 190

of any information (that would be required for verification of the next secondary
authentication requests) for u uses Lamport one-time keys [Lam81], and is presented
as Protocol PV4. E must be invertible in this case (differing from Protocol PV3)
to allow recovery of K,;,; as the key required for the next secondary request. An
advantage of this scheme (as compared to Protocols PV2 and PV3) is that a different,
pseudo-independent key is used to produce ¢ for each i. As well, compromise of s
limits an attacker to a fixed number of forged secondary requests. (A variation of this

scheme whereby the secrecy of s is not required by the user u, is given in Section 6.5
as Protocol DT4.)

Protocol PV4 Using a Private Seed as Secondary Authentication.

Description: This protocol describes the secondary authentication request and re-
turn of corroborative evidence by a trusted register (T'R), replacing the like-
numbered steps from the general secondary authentication Protocol SL1 (see
Section 6.3.1).

Note: Signature ¢; refers to the round 7 instance of signature ¢ from Protocol SL1.
Initially, 2 = 0, and is incremented by 1 for each secondary authentication request.

Require: u privately shares a secret encryption function key K; = f"~'(s) with the
TR where s € S is a random, secret seed, f : S — S is a one-way function
(i.e., a function for which it is easy to compute an image for all domain elements
but computationally infeasible to compute a pre-image for almost all images) and
n is a positive integer denoting the number of signatures v may produce before
requiring reinitialization with the T'R.

4: For signature ¢;, u computes ¢; = Fk,(c;, K;11) (where ‘" denotes concatenation)
and sends (u, c}) to the TR.

5. Given possession of K;, the TR decrypts ¢}, recovers K;,; and computes
f(K;1) = f(f" i 1(s)) = f*%(s) to ensure that it equals K;. If true, the TR
subsequently stores K, in place of K; and returns r = sigrg(c’, c,u) to u.

6.4.2 Comparative Analysis

In this subsection, we provide some comparative analysis of the storage and trans-
mission efficiency of Protocols PV2, PV3 and PV4. Each of these schemes requires a

secondary, secret key to be maintained by each user u. u might have several signature

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 191

keys (corresponding to several public key certificates) but need only keep a single sec-
ondary key. The independence of this secondary key (and algorithm) increases the
likelihood that an additional attack would be required to compromise the secondary
mechanism given a compromise of the first level.

Table 6.2 displays a comparison of the protocols with regard to several storage
criteria. Each user stores and maintains the privacy of only a single secondary key
while the TR need only maintain a single key corresponding to each user (though see
the footnote to ‘T'R Storage’ of Table 6.2). Although Protocol PV2 does not require
the TR to maintain the privacy of the public keys for each user, it does require larger
storage for u (and the TR if the secondary signature key is not implemented using
a certificate) as well as a larger transmission size when compared to Protocol PV3.
Protocol PV4 matches Protocol PV3 for user and TR storage, but because of the
requirement of a reversible function (allowing the TR to recover K,y; from K;),

Protocol PV4 requires a larger secondary authentication request size.

6.5 Detecting Forged Signatures

Attack detection, per the techniques proposed herein, involves the discovery of a lack
of synchronization between the legitimate signing user and the T'R; this implies the
detection of a fraudulent secondary authentication request and may imply that a
forged signature has been constructed. The techniques for achieving this detection
involve the use of so-called synchronization parameters. Only the authenticity of this
parameter need be maintained by both the user and the T'R, not its privacy. For every
message signed by a user (even if a message is signed by an attacker in possession of the
legitimate user’s signature private key), for which a secondary authentication request
is made, the parameter is updated by the T'R. Detection occurs when the legitimate
signer is not synchronized with the TR at a given legitimate message signing, implying
an attacker has fraudulently and successfully submitted a secondary authentication
request since the last request made by the legitimate signing user. Unless otherwise
noted, it is assumed that the detection of a fraudulent request implies a detection of

signature forgery and hence key compromise.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 192

Protocols

Properties PV2 ‘ PV3 ‘ PV4

user storage || 1 signature key | 1 MAC key | 1 encryption key
160 bits 128 bits 128 bits

TR storage® | 1 public key® | 1 MAC key | 1 decryption key
1696 bits 128 bits 128 bits

request size 1 signature 1 MAC 1 signature + 1 key
320 bits 128 bits 508 bits

Table 6.2: Comparison of Techniques Using a Secret Key for Secondary Authentica-
tion. User storage refers to the storage required by u to allow use of the secondary
authentication mechanism (ignoring the requirement to store the verification key of
the TR which is required for all schemes). The TR’s storage refers to the storage
required for each participating user, to be maintained in a central database. Request
size refers to the size of the secondary authentication request from u to the T'R. This
table assumes the use of DSA (Protocol SG1 of Section 2.1.2) for digital signature
production and verification and 128-bit MAC and encryption keys with 128-bit MAC
output.

*At the risk of concentrating too much reliance on a single master key, a standard proposal for
simplifying key management would be for the shared secret key for user i to be K; = h(K,u;). Then
TR need only store one key K to allow regeneration of all user keys. This technique applies to
Protocols PV4 and PV3.

bNot required if sent in a CA-signed certificate with each request, and TR has a trusted copy of
the C'A’s verification key.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 193

Detection alone does not prevent an attacker (in possession of a user’s signing
private key) from forging signatures which would normally be accepted as valid. How-
ever, it does allow detection, and action can be taken to prevent continued forgeries.
In Section 6.6 we introduce techniques that can be used to enhance this detection so
that forged signatures are not accepted by an unknowing recipient and no legitimate

signatures accepted by another user can be repudiated.

Outline of Section 6.5

In Section 6.5.1, properties and assumptions related to the detection of forged sig-
natures using synchronization are discussed. In Sections 6.5.2 and 6.5.3, techniques
are presented in which one-way function variant and time variant parameters are re-
spectively used for synchronization. In Section 6.5.4, the storage of the secondary
token is examined and the necessity of maintaining the parameter’s authenticity is

also discussed.

6.5.1 Use of Synchronization for Detecting Forgeries

The proposed method for detection of a signature forgery involves the detection of
a lack of synchronization between the legitimate signing user u and the TR, and
occurs at points when a signer requests secondary authentication evidence. This
synchronization can be implemented using a synchronization parameter locally stored
by both u and the TR, and updated by the T'R after each secondary authentication
request and by u after each legitimate request. The key feature with this parameter
(when compared to the private key techniques of Section 6.4) is that it need not be

kept private; only the authenticity of the parameter need be maintained.

Definition 6.5 Let s* and s! respectively represent the value of the synchronization

parameter stored by u and the TR after round ¢ > 0 where initially
st =sl =1V

for an initialization value IV.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 194

The equality of these synchronization parameters during the normal running of a

secondary protocol is critical to the detection of a lack of synchronization.

Protocol DT1 Generic Secondary Authentication Using Synchronization.
Description: The steps in this protocol expand on steps 4 and 5 from Protocol SL1,
particularly for synchronized secondary authentication. Each round begins with
a secondary authentication request and ends with the return of corroborating
evidence from the TR.
1: u and the T'R initially share an initialization value IV so that for their respective
synchronization parameters, st = st = IV.
2: During round ¢ > 1, u submits the value ¢, = s | as a secondary authentication
request (see Remark 6.1) to the TR,” along with the signature ¢;.
3: The TR receives the signature ¢; and secondary authentication request ¢, and
verifies the correctness of the request by determining whether ¢, = s! . If equal,
the TR

1. updates the synchronization parameter stored for u from s | to s, and

2. returns the secondary corroborative evidence r; =

(C;, SzTa Ci, U, SigTR(C;, S;TF, G, u)) to u,

where inclusion of s? is not required in the case that u is able compute s¥. If
c. # sl |, the TR follows Protocol DT2.

4. Upon receipt of r;, u verifies its mathematical correctness and ensures that it was
indeed signed by the TR (using the a priori stored copy of the TR’s verification
public key). u also ensures that the returned value of ¢; matches st ;. If correct,
u updates the locally stored synchronization parameter from s* ; to s* (using s
if returned by TR, else computing independently). If the signature verification
is not successful or the contents of the signature are erroneous, u follows step 5
of Protocol DT2. If u does not receive r; after some predetermined amount of
time, that is a priori set between u and the TR, then u contacts the T'R through
out-of-band means to determine the status of the response 7;.

?Alternatively, u may choose to combine the signature ¢; with the secondary request value ¢; and
send ¢, = sig, (st 1, ¢i).

The general synchronized secondary authentication protocol is described as Pro-
tocol DT1. Table 6.3 identifies some assumptions regarding the execution of Proto-
col DT1. For Item 2 (of Table 6.3), observe that detection serves to aid in protecting

an honest signer from signatures forged subsequent to a key compromise. Of course,

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 195

1. secondary authentication evidence must be verified before accepting a user’s
first-level signature;

2. the legitimate signer u is honest, i.e., behaves according to the protocol (we
remove the need for this requirement in Section 6.6). In particular,
(a) u honestly reports the receipt of invalid secondary responses from the TR,

(b) u submits correct secondary authentication requests;
3. the T'R is honest, i.e.,

(a) the TR verifies the correctness of the sychronization parameter received
from a requestor of a secondary authentication request (which may or may
not be the legitimate signature key owner),

(b) the TR will report any lack of synchronization detected from a secondary
authentication request;

4. the authenticity of the secondary synchronization parameter is maintained, both
the version stored by u and by the T'R.

Table 6.3: Requirements for Protocol DT1.

the earlier the compromise is detected, the less the effect on u. We expand on this
idea in Section 6.6 to protect signature recipients from fraudulent non-repudiation of
legitimately produced and accepted signatures.

In an ideal system in which the legitimate signer is honest and there are no fraudu-
lent secondary authentication requests, the values of the synchronization requests, as
observed by u and the TR, would be the same. Realistically, this cannot be assumed.
We say that a protocol is detection resilient (D-resilient) if either u or the TR are
able to detect the differences in their synchronization parameters. We formalize this

concept below with Definition 6.8.

Detection Resilience

Definition 6.6 The ith view of a secondary synchronization protocol for v and TR is

defined as the value of the synchronization request respectively sent by u and received

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 196

by the TR during the ith round. For the legitimate signer u, this view is denoted by
v and v] for the TR, i > 1, where

u o __
v = s,

u
if
T _ T
Vi = Siq

for the synchronization parameters (see Definition 6.5) s* ; and s7 . =

At the end of a legitimate round 4, s’ | is updated to s! to reflect the change with
the new synchronization parameter, so that the view of TR for round ¢ + 1 is the
updated value of the synchronization parameter. The same holds true for the view of
the legitimate requestor u. For a fraudulent request, s7, is updated as above to s,
but si*, is not updated, since for a fraudulent request, we assume that u did submit
the request. Therefore, the i 4+ 1st view of u is vacuously updated to the same view
(ie., v}, = v}). The view of the protocol is critical to its proper running as well as
its ability to detect fraudulent secondary authentication requests. These properties,

are respectively defined below as the protocol’s correctness and detection resilience.

Definition 6.7 Let P be a synchronized secondary authentication protocol (as in
Protocol DT1) satisfying the requirements of Table 6.3. P is correct if, when only

legitimate secondary authentication requests are performed, then

v =] \Vi>1

A subtle point in the case that fraudulent secondary authentication requests are
made is that it is important that not only are the fraudulent requests expected to
alter the equality of the legitimate user and T'R views, but also, that the attacker
should not be able to “resynchronize” these views. This point is captured with the

following definition.

Definition 6.8 Let P be a synchronized secondary authentication protocol (as in
Protocol DT1) satisfying the requirements of Table 6.3. P is detection resilient (D-

resilient) if subsequent to a fraudulent authentication request in round 4, then for

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 197

j>i
u T

In other words, an attacker cannot compute v] for i < j < k such that v] = v}

70
where k represents a number for which £ — j is a computationally feasible number of
secondary authentication requests to make. (For example, the attacker might try to
make additional fraudulent requests in an attempt to reach a point which matches

the view of TR to the earlier view of u. m

Notice that (6.1) holds whether or not v*, = v! , (for the views prior to a
fraudulent request), so that an initial fraudulent request (subsequent to a legitimate
one) or repeated fraudulent requests cannot resynchronize u (through any amount
of computationally feasible computations) with the TR, using a D-resilient protocol.
The key to the D-resilience of a protocol lies in the ability of detecting the inequality
vl # va by u or the TR during some round j > i. In the following, we consider the

attacks for which a D-resilient protocol is suitable protection against.

Attacks Considered on Secondary Synchronization Protocols

Assuming that a fraudulent secondary authentication request results from a protocol
requirement to obtain secondary authentication evidence for any (including a forged)
signature, there are at least two cases to consider regarding the forgery of a signature

by an attacker X (in possession of u’s signature key):
1. X alters a current legitimate secondary signature request made by u;
2. X constructs a secondary authentication request that is either

(a) newly constructed, independent of any previous request made by u, or

(b) constructed as a function of previous legitimate or fraudulent secondary

authentication requests.

We argue that for Item 1, if X alters a request from u to the TR, the alteration
will be detectable upon receipt by u of the secondary authentication response from the

TR since the signature and synchronization parameter are included in the secondary

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 198

authentication response (see Protocol DT1). We assume that if X were to block this
response, then u would interpret the absence of a response as a suspected compromise
and report a possible key compromise to u’s CA, whereby subsequent revocation
actions may be taken.

For the protocols presented in Sections 6.5.2 and 6.5.3, we consider attacks as
described by Item 2. Demonstrating a protocol’s D-resilience (see Definition 6.8)
will involve demonstrating that fraudulent secondary authentication requests are de-
tectable by u or the TR.

Updating the Synchronization Parameter

A stronger restatement of the D-resilience requirement of Definition 6.8 is to require
that for the sequence

vl va .], (6.2)
there are no 1 < i < j < k such that v/ = va. We identify two types of values that

can be used for the synchronization parameter so as to ensure this property.

1. Time-variant. The use of a time-variant synchronization parameter such that
the value of the parameter is monotonically increasing with time can be used.

In this way. for round j that occurs later than round 4, we have v7 > v .

2. One-way function variant. Combining a synchronization parameter that is up-
dated each round with a one-way, collision-resistant hash function (see Defini-

tion 2.10) produces a “non-repeating” sequence satisfying (6.2).

Protocols satisfying Item 2 are discussed in Section 6.5.2 while protocols satisfying

Item 1 are examined in Section 6.5.3.

Dealing with Fraudulent Secondary Requests

The TR detects fraudulent secondary authentication requests upon receipt of a syn-
chronization parameter for a particular user, that doesn’t match the value stored by

the TR.3 The legitimate signing user u detects a fraudulent request, either by the

3 Assuming correct operation of the protocol by legitimate parties, and the absence of network
transmission errors, etc.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 199

return of a response from the TR that does not match the request submitted, or
upon notification from the T'R that a fraudulent request has been received. Once
a fraudulent secondary authentication request has been detected by u or the TR, it
is not always necessary for immediate revocation of the legitimate user’s verification
certificate to be performed. Protocol DT2 describes the actions taken subsequent to

a detected fraudulent request.

6.5.2 One-Way Function Variant Requests

In this subsection, we present two secondary authentication protocols that follow the
general structure of Protocol DT1 (see Section 6.5.1). Both use a secondary request
that is a hash of a non-secret synchronization parameter shared between u and the
TR. One way to provide a synchronization is for u to acknowledge the signing of each
of the past signatures legitimately produced (i.e., from u’s point of view) with sig,,
each time a new request for secondary authentication is made. The synchronization
parameter is a function of the past signatures. An efficient way to perform this is
offered by Protocol DT3.

Protocol DT3 uses a round variant, based on the variety of signatures submitted
from one round to the next. Protocol DT4, a variation of Protocol PV4 (see Sec-
tion 6.4.1) uses an iterative function of an initially shared seed. An incrementing
count of the current round is used to vary the number of iterations performed for the

hash function.

Detecting Forged Signatures

Before discussing the security of DT3 and Protocols DT4 , we present Protocol DT5
which illustrates a potential insecurity for such synchronization protocols. This inse-
curity may not be obvious because of similarities with Protocols DT3 and DT4.
Consider the following series of steps performed by an attacker X (in possession
of u’s signature key), subsequent to the legitimately signed ¢; = sig,(m) (i.e., signed

by u) for round i. The current views of u and the TR, for anticipated use in round

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 200

Protocol DT2 Dealing with Fraudulent Secondary Authentication Requests.

Description: This protocol supports the detection of fraudulent secondary authen-
tication requests as detected by Protocol DT1 (see Section 6.5.1), by describing
the actions taken by the TR and u subsequent to a detection.

Note: Requests for certificate revocation result in a revocation of the primary signa-
ture key as well as a reinitialization of the secondary synchronization parameter.

1: If the TR receives a fraudulent secondary authentication request, u is contacted
through out-of-band means, using a protocol pre-arranged with u, e.g., contacting
u through a telephone number supplied by u upon registration with the T'R.

2: If reliable contact is not made from step 1, then the T'R proceeds to request a
revocation of u’s certificate from u’s CA.

3: If reliable contact is made so that the legitimate u is informed of the fraudulent
request, the TR subsequently sends u, w = sigyp(ch, ¢;, ‘fraudulent’).

4: If u did not send the request, then u determines the extent of fraudulent requests
by comparing ¢, with the u’s current view of the synchronization parameter,

u

— u
v s¢ 4.

P =

1. If they are equal, and the protocol is D-resilient (see Definition 6.8), then u
can conclude that only 1 fraudulent request has been made. u verifies the
correctness of the signature ¢; (using u’s own verification key). If correct, u
requests a certificate revocation from the CA. If incorrect, nothing is done
since a forged signature has not been detected.

2. If they are not equal and the protocol is D-resilient, then u can be sure
that at least 1 successful fraudulent request has been made prior to the
current unsuccessful one. wu requests a certificate revocation from the CA
(to prevent additional frauds).

5. If u did send the fraudulent request, and the protocol is D-resilient and u is hon-
est, then the fraudulent request occurred because of the lack of synchronization,
indicating that previous, successful fraudulent requests have occurred. u requests
a certificate revocation from the CA (to prevent additional frauds).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 201

Protocol DT3 Synchronization by Verifying Recursive Representation of Past Sig-

natures.
Description: This protocol replaces the protocol-specific functions as described in

Protocol DT1. Initially, 7 = 0 and is incremented by 1 at the start of each round.
This protocol is D-resilient (see Proposition 6.1).

Require: It is necessary that IV ¢ {0,1}' where {0,1} is the co-domain for the
hash function h.

1: u and the TR initially share the synchronization parameter sj = si = I'V for ini-
tialization value I'V, whereas prior to round ¢, assuming no fraudulent secondary
requests have been made, they share s* | = s | = h(s*,,c;_1) where h is a
collision-resistant hash function (see Definition 2.10).

2: During round 7 > 1, u submits the value ¢, = s ; to the TR as a secondary
request along with the signature ¢;.

3: The TR determines the correctness of the request by ensuring that ¢, is equal
to s, (the TR’s stored value for u). If equal, the TR computes and stores
sI' = h(sl' |, ¢;) and returns r; = (c}, ¢;, u, sigrr(ch, ci, u)) to u.

4: u verifies the mathematical correctness of r; and ensures that its contents match
what was originally sent by u. If successful, u computes and stores s¥ = h(s}{, ¢;).

Protocol DT4 Using a Shared Seed for Synchronization.

Description: This protocol replaces the protocol-specific functions as described in
Protocol DT1. Initially, # = 0 and is incremented by 1 at the start of each round.
This protocol is D-resilient (see Proposition 6.1).

Require: It is necessary that IV ¢ {0,1}' where {0,1}' is the co-domain for the
hash function h.

1: u and the TR initially share the synchronization parameter si = si = IV(=
hO(IV')) for initialization value I'V, whereas prior to round 7, assuming no fraud-
ulent secondary requests have been made, they share s* |, = s, = hi"L1(IV)
where h is a collision-resistant hash function (see Definition 2.10) and A"(IV') =

n times

2: During round 7 > 1, u submits the value ¢, = s ; to the TR as a secondary
request along with the signature c;.

3: The TR determines the correctness of the request by ensuring that ¢ is equal
to s, (the TR’s stored value for u). If equal, the TR computes and stores
s = h(s!"|) and returns r; = (¢, ¢;, u, sigrr(ch, ¢, u)) to u.

4: wu verifies the mathematical correctness of r; and ensures that its contents match
what was originally sent by u. If successful, u computes and stores s* = h(s¥ ;).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 202

Protocol DT5 An Insecure, Signature-Dependent Synchronization (that is not D-
resilient).

Description: This protocol replaces the protocol-specific functions as described in
Protocol DT1. Initially, 7 = 0 and is incremented by 1 at the start of each round.
This protocol is not D-resilient.

Require: It is necessary that IV ¢ {0,1}' where {0,1}' is the co-domain for the
hash function h.

1: u and the TR initially share the synchronization parameter si = s! = IV for
initialization value I'V, whereas prior to round 7, assuming no fraudulent sec-
ondary requests have been made, they share s* | = sI' | = h(c¢;_;) where h is a
collision-resistant hash function (see Definition 2.10).

2: During round 7 > 1, u submits the value ¢, = s, to the TR as a secondary
request along with the signature ¢;.

3: The TR determines the correctness of the request by ensuring that ¢ is equal
to sI', (the TR’s stored value for u). If equal, the TR computes and stores
s = h(c;) and returns r; = (¢}, ¢;, u, sigrr(ch, ¢;, u)) to u.

4: wu verifies the mathematical correctness of r; and ensures that its contents match
what was originally sent by u. If successful, u computes and stores s = h(c;).

1+ 1 are

u

LU T _ T
Vi1 = 55 = h(c;) = s; = Viy1-

In the following attack, X obtains a successful secondary authentication from the
TR, but does so in a way that makes the attack undetectable to v and the T'R:

1. In round i + 1, X forges the signature ¢;;1 = sig,(m’) and obtains secondary
authentication corroboration evidence from the TR, by submitting ¢}, = h(c;)
as a secondary authentication request which the TR verifies as correct. The TR

subsequently stores s, = h(ci41);

2. To “cover his tracks”, during round ¢ + 2, X resubmits the signature c;;, =
¢; = sig,(m) for secondary authentication, where X submits ¢}, , = h(c;41) as
a secondary request which the T'R verifies as correct. The TR subsequently

stores !, = h(cit2).
At the end of this attack (i.e., after round i + 2), the view of the TR will be

”iT+3 = SiT+2 = h(ciy2) = h(c;) = si = v}

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 203

so that according to the TR’s “state” information, the state from before the forgery
is equal to the state after the forgery and is hence, not detectable by u nor the TR
(so long as u did not submit a legitimate request during the attack).

Notice that for Protocol DT5, the ability of an attacker to resynchronize is not
restricted to dependencies on previous signatures or synchronization tokens. Each
secondary request ¢; submitted during round j > i can be constructed so that it equals
any U]T = v}'; Protocol DT5 is not D-resilient. On the other hand, Protocols DT3
and DT4 are constructed so that each si' has a cryptographically strong dependence
on previous signatures and synchronization tokens. The strength of this bind is

illustrated in Proposition 6.1.

Proposition 6.1 Protocols DT3 and Protocol DT} are D-resilient (see Definition 6.8).

Proof Let v = s* |, = h(si_s,ci_1) = s, = vl be the view of both the legitimate

signing user u and the TR after the (i — 1)st legitimate secondary authentication
request for the signature ¢; ;. To show D-resilience, we need to demonstrate that for
no j > i, can an attacker X produce v such that o7 = v}

Suppose that X did find such a j, and let j be the smallest positive integer greater

than i for which v] = v}". Expanding, we have
v] =si_y =h(sl_y.cj1) = h(siy. ci1) = sty = v} (6.3)
There are two cases to consider:

1. if (sT_,.¢;1) # (s{_5, ci—1), then one obtains a contradiction to the assumption

that h is a collision-resistant hash function;

2. if (SJT_Q, ¢j—1) = (s, ¢i—1), then it must be that SJT_Q = st and ¢ = ¢;1.
The latter equality can be satisfied by submitting the same signature for both

. . . T . u .
rounds ¢ — 1 and j — 1. Having s , = s{' 5, requires
T _ T _ (T — p(eu —
Vi1 = Sj—2 = h(sj—37 Cj—Q) = h(si_3, Cim2) = s{_y = V}",

similar to (6.3). Continuing recursively, avoiding the contradiction of a hash

collision, we arrive at a requirement whereby v]T_k =0, when k =¢—1. In

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 204

other words

T _.r _ T) — _u _ u
Viit1 = Sj—i — h(sj—i—lv Ca—z) =1V = s5 = vy.

However, since IV was chosen such that IV ¢ {0, 1}! for an [-bit hash, it cannot
be that s§ ; = h(s] ; j.c;—) = IV for any j >i > 1.

Therefore, Protocol DT3 is D-resilient.
A similar argument can be used to demonstrate the D-resilience of Protocol DT4.
Briefly, suppose that for j > > 1,

vl =T =N IV) = N IV) = 5% | = o

J J

Then for i > 2, we have
h(h?=2(IV)) = h(h'"2(1IV))

implying that a collision has been found for h, since j # i. If i = 1, we have that
h(W2(IV)) = IV,

which cannot be true for any j > 2 since I'V was chosen such that IV ¢ {0,1} for
the [-bit hash h. Therefore, Protocol DT4 is D-resilient. m

6.5.3 Time Variant Requests

It is important to use a synchronization parameter for which the ordered set of all
such parameters contains distinct elements, i.e., it is computationally infeasible to
obtain or use the same synchronization parameter twice. This was accomplished in
Section 6.5.2 using the output of a collision-resistant hash function A. In this section,
we present the use of time variant parameters that, as the name implies, monotonically
increase with time.

Protocol DT4 (of Section 6.5.2) implicitly used a count of the current round to
specify the number of cumulative hashes of the initialization value. Protocol DTG uses
this round counter (referring to the number of secondary authentication requests) on

its own as a synchronization parameter that is sent in the clear.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 205

Protocol DT6 Using a Counter for Secondary Synchronization.

Description: This protocol replaces the protocol-specific functions as described in
Protocol DT1. Initially, # = 0 and is incremented by 1 at the start of each round.
This protocol is D-resilient (see Proposition 6.2).

Require:

1: u and the TR initially share the synchronization parameter (counter) si = s§ = 0,
whereas prior to round 7, assuming no fraudulent secondary requests have been
made, they share s* | =s! =i—1.

2: During round 7 > 1, u submits the value ¢, = s, to the TR as a secondary
request along with the signature ¢;.

3: The TR determines the correctness of the request by ensuring that ¢ is equal
to s, (the TR’s stored value for u). If equal, the TR computes and stores

sI' =T | +1 and returns r; = (c}, ¢;, u, sigrgr(cl, ci,u)) to u.

4: wu verifies the mathematical correctness of r; and ensures that its contents match

what was originally sent by w. If successful, u computes and stores s} = s;* ; + 1.

Alternatively, one can also use the time at which signatures are produced as a pa-
rameter used to synchronize u with the T'R. The use of the time here is advantageous
in that beyond the usefulness of allowing a synchronization, it can allow the T'R to
simultaneously provide a time stamp for the submitted signature as well as possess-
ing sufficient information for the implementation of the cooling-off period described

in Section 6.6.

Detecting Forged Signatures

Proposition 6.2 Protocols DT6 and DT7 are D-resilient (see Definition 6.8).

Proof Let v} = (i—1) = v be the view of both the legitimate signing user u and the
TR after the ith legitimate secondary authentication request. To show D-resilience,
we need to show that for no j > i, can an attacker X produce v! such that vT = v},

Suppose that X did find such a j, and let j be the smallest positive integer greater

than i for which v] = v}". Expanding, we have

’U]T = S?fl = (j — 1) = (Z — 1) = S?ﬁl = /Uy', (64)

12

However, this implies that j = i, contradicting the assumption that j is the smallest

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 206

Protocol DT7 Using the Time of Last Signature for Secondary Synchronization.

Description: This protocol replaces the protocol-specific functions as described in
Protocol DT1. Initially, # = 0 and is incremented by 1 at the start of each round.
This protocol is D-resilient (see Proposition 6.2).

Require: t; denotes the time of receipt of the signature ¢; during round ¢ by the TR.

1: u and the TR initially share the synchronization parameter (time) si = sl = t,,
whereas prior to round 7, assuming no fraudulent secondary requests have been
made, they share s¥ | = s | =t,_; = t;_5 (see Definition 4.4).

2: During round 7 > 1, u submits the value ¢, = s* ; to the TR as a secondary
request along with the signature ¢;.

3: The TR determines the correctness of the request by ensuring that ¢, is equal to
sI' | (the TR’s stored value for u). If equal, the TR computes and stores s/ = t;
and returns r; = (c}, sT', c;, u, sigrg(cl, sT, c;,u)) to u.

4: wu verifies the mathematical correctness of r; and ensures that its contents match
what was originally sent by u. If successful, u computes and stores s% = sI’

;.

13

integer strictly greater than 7 for which va = v¥. Therefore, Protocol DT6 is D-
resilient.

Similarly for Protocol DT7, and assuming that an attacker could produce v]-T =)
for 7 > i, so that

= ti—l = 8?_1 = U;L. (65)

However, since j > > 1, then (j—1) > (i—1), so that having ¢,y = ¢,_; contradicts

the requirement that ¢;_; > ¢,_;. =

6.5.4 Modification of the Synchronization Parameter

In this subsection, we consider the possibility of an attacker, already in possession of
the legitimate signing user u’s signature key, modifying the synchronization parameter
stored by u. The possibility of such a modification is considered relative to how the

token is stored as well as how predictable it is.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 207

Parameter Storage

How a synchronization parameter is stored can depend on how “memorizable” the
parameter is. Consider, for example, the respective use of a counter and time in Pro-
tocols DT6 and DT7. Ephemeral storage can be used whereby the current value of
the counter is memorized by the legitimate signing user. The recognizable structure
of these parameters allows for a potentially easily remembered parameter. On the
other hand, schemes such as Protocol DT3 do not provide easily memorizable syn-
chronization parameters since their value is the output of a one-way hash function.
For all of the synchronization parameters presented in Section 6.5, the storage
can be maintained similar to how a password or private signature key is stored, e.g.,
on u’s local disk, or on a hardware token. The main difference is that the privacy
of the secondary parameter need not be maintained, only its authenticity. However
it is stored, the storage of the synchronization parameter must be “independent” of
the signature key storage so that compromise of the signature key does not simulta-
neously allow modification of the synchronization parameter. (The effect of such a
modification is discussed below.) In other words, the integrity of the parameter must

be maintained.

Malicious Parameter Modification

The maintenance of the authenticity of the secondary authentication synchronization
parameter is crucial to the provision of D-resilience (see Definition 6.8). Notice that
modification of the parameter, either subsequent to or coinciding with a signature
key compromise, allows an attacker to submit fraudulent secondary authentication
requests, and subsequently “resynchronize” the legitimate signing user v with the TR
(by resetting the synchronization parameter to the value obtained by the attacker
subsequent to the last fraudulent request).

A difference from the use of only first level signatures is that in such schemes,
once the signature key is compromised, an attacker can continue to forge signatures
until either the legitimate user detects or is informed of the compromise or the corre-

sponding verification key is revoked or expires. For schemes incorporating a second

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 208

level authentication, alteration of the synchronization parameter, allows for only a
limited number of signatures. This point requires further clarification.
Consider an attacker X in possession of user u’s signature key. If modification of

the synchronization parameter were possible, the modification can occur either
1. prior to the forgery of any signatures, or
2. subsequent to the forgery of any signatures.

As demonstrated for the first item in the section below on ‘Parameter Predictability’
and for the second item in the next paragraph, so long as the legitimate signing user
does not request a secondary authentication during the time that the first fraudu-
lent secondary authentication request was made, till the time that the view of u is
modified, an attack can be successful.

A parameter modification subsequent to the forgery of a signature would proceed
as follows. Prior to round i + 1, the attacker X possesses sig, (the signature key
of u) and v (the view or value of the synchronization parameter stored by u after

round i) where v* = v!. X proceeds to forge signatures and submit secondary

authentication requests for k& rounds, after which v} = v ; = ... = v}, and u is not
synchronized with the TR since v}, # v/, based on the D-resilience of the protocol.
Using an ability to modify «’s synchronization parameter, X would reset v}, , so that
v vl . A practical barrier to such an attack is not only the requirement of an
ability to modify the parameter, but modify subsequent to the initial compromise of
the signature key. This might require a physical attacker to alter u’s synchronization
parameter, subsequent to the signature key compromise. The forgery of additional

signatures requires a subsequent modification of the parameter.

Parameter Predictability

Protocols DT6 and DT7 use parameters that are predictable. In other words, given
the view v of the legitimate signing user u subsequent to round 7, one can predict,
with high probability, v} for j > 7. For Protocol DTG, this is trivial since v} <

vf+(j—i+1). For Protocol DT7, one can determine v¥ so long as one can estimate the

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 209

time of the jth secondary request. This estimation can be self-fulfilled by submitting
a secondary request around the predicted time (for example, if an attacker were able
to modify the parameter when compromising the signature key - see next paragraph).
The determination of the exact time depends on, among other things, the granularity
of the time used (is more difficult if a granularity of milliseconds as opposed to seconds
is used), as well as the lag time involved subsequent to the submission of the request
by u and prior to the assignment of the time by the T R.

This predictability can be used to the advantage of an attacker X, already in pos-
session of u’s signature key (assuming that u does not perform a legitimate secondary
authentication request until after round i + £). Rather than requiring a modification
of the synchronization parameter subsequent to the forgery of signatures, X can now
modify u’s synchronization parameter prior to the forgery. If this happens to coincide
with the time of, for example, theft of the signature key, then only one occasion of
theft (in which the signature key is compromised and the synchronization parameter
is modified) is required by X. Such an attack would proceed for Protocol DT6, for
example, as follows.

Upon obtaining sig, from the legitimate signing user w, prior to the (i + 1)st
round, X also modifies v so that v} <« v + k. In this way, X can submit &
secondary authentication requests, as user u, so that subsequent to the k£ requests, u
will be synchronized with the TR.* One way to make the information less predictable
would be for the TR to return ¢ and n; to u, where ¢ = h(n;, ¢}) and n; is a random
value chosen by the T'R. The synchronization parameter stored by both u and the
TR is the pair (¢, n;). This mechanism is the same as was used for the one-way

function variant schemes of Section 6.5.2.

6.6 Preventing Forged Signature Acceptance

For the detection schemes described in Section 6.5.2 and Section 6.5.3, the legitimate

signer u or the TR is able to detect when a fraudulent secondary request has been

4This attack would typically be more difficult to mount against Protocol DT7 since the time
applied by the TR at a subsequent round is likely difficult to predict.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 210

received, possibly indicating the forgery of a signature. Yet this still does not prevent

the possibility that
1. u may repudiate a legitimately signed message; or

2. a recipient v may unknowingly receive a forged signature, prior to the detection

of a compromise by .

However, suppose that signed messages are, by rule, not accepted as being valid
until some period of time has elapsed, i.e., a Cooling-Off PEriod (COPE). The purpose
of this COPE is to allow for “late” forgery detections or revocations, possibly resulting
from a compromise, i.e., in the case a forged signature has been detected. For example,
if a message is signed on Friday, it may be part of policy to not accept the signature
until Saturday. (Finer or coarser granularities may also be used.) This allows a day
of grace for the owner of the private signature key to claim the possible compromise
of his/her key.

However, on its own, this COPE does not preclude the possibility that a com-
promise is not detected until after the COPE has expired (and hence some forged
signatures may have been accepted). As well, even if the compromise is detected
on time, there may be a delay before the corresponding certificate is revoked (see
Figure 6.1). To facilitate both items 1 and 2 above, we incorporate the COPE with
a so-called Check-In Period (CHIP) giving CHIP /COPE.

Definition 6.9 A CHIP/COPE refers to a check-in period (CHIP) during which time
the legitimate owner of the signing private key is required to (at least once during the
period) ensure synchronization with the trusted register (TR) (e.g., by obtaining a
second level authentication for a signature),> and a cooling-off period (COPE) during
which time, received signatures are still considered to be temporarily unverifiable.
The maximum length of time between two CHIPs is denoted length(C HIP), while
length(COPE) denotes the minimum length of time that must elapse before a sig-
nature can be accepted as valid, subsequent to its receipt (or subsequent to a time

contained in a time stamp computed for the signature).

5Certain scalability and denial of service issues would have to be considered in practice, related
to the potential inability of a user to check in because of an overwhelmed T R.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 211

1. The legitimate signing user u is responsible for performing a check-in, every
length(C HIP) time units.

2. A signature is not to be accepted until subsequent signature verification,
length(COPE) time units after the receipt of the signature.

3. length(CHIP) < length(COPE).

Table 6.4: Requirements of Protocols Implementing Check-In Periods (CHIPs) and
Cooling-Off Periods (COPESs); see Definition 6.9.

Remark 6.2 A CHIP for a synchronized secondary authentication protocol P is sim-
ply the submission of a secondary authentication request, accompanied by a signature
for which secondary corroborative evidence is required. If, before the end of the CHIP,
a legitimate user does not have a signature that requires corroborative evidence, a sig-
nature for a generic message such as “This message is a simple secondary authenti-
cation message required for a check-in prior to time t” can be constructed to facilitate

a check-in.

If the length of the COPE is a single day (i.e., length(COPFE) = 24 hours), then
the legitimate user can wait no longer than 24 hours after a legitimate signing, before
performing a check-in. To allow for other tasks to be performed subsequent to the
detection of a compromise (cf. Figure 6.1), in practice the length of the COPE should
be buffered slightly so that it exceeds the length of the CHIP.

The requirements of the CHIP/COPE are given in Table 6.4. Notice that since
the legitimate owner of the signing private key is responsible for checking-in (i.e.,
verifying synchronization) during a given time period, he is not able to repudiate
a message that was legitimately signed. This is because for signatures that have
been accepted by the recipient (i.e., signature has been received and the COPE has
since expired), the latency period must have passed and the loss of synchronization
would have been detected for the time period in which the signature was sent. Also,
forged signatures need not be accepted. The application of the CHIP/COPE with

the detection of forged signatures can achieve these goals (see Proposition 6.3).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 212

Combining a Cooling-Off Period with Detection

Definition 6.10 We say that a synchronized secondary authentication protocol is
detection-and-repudiation resilient (DR-resilient) if it is D-resilient (see Definition 6.8)
and if both

1. u cannot successfully repudiate legitimate signatures that have been accepted

as valid by a signature recipient(s), and

2. forged signatures can be detected and rejected prior to their acceptance by an

unknowing signature recipient.

The CHIP/COPE can be combined with Protocol DT1 to produce a DR-resilient
protocol. The is captured by the following proposition.

Proposition 6.3 Let P be a D-resilient synchronized secondary authentication pro-
tocol (as described by Protocol DT1) augmented with a CHIP/COPE (as defined in
Definition 6.9). Assume that u must check-in (see Remark 6.2) every length(CHIP)
time units and that signatures (accompanied by second level authentication) are not
accepted until length(COPE) time units after receipt and given the requirements in
Table 6.4. Then P is DR-resilient (see Definition 6.10).

Proof (Outline) Let us first suppose that u could repudiate a legitimately signed
message ¢ by claiming it was forged. This would imply that length(COPE) time had
elapsed subsequent to the receipt of ¢ by a recipient, and hence, that no compromise
was detected nor reported through the revocation of the corresponding verification
certificate. Therefore, since P is D-resilient and such a forgery would be detected
by w, the last check-in by u must have been performed prior to the start of the
COPE. However, since length(COPFE) time has subsequently elapsed and no check-
in was performed by u during the COPE, then length(CHIP) > length(COPE), a
contradiction.

Similarly, suppose that a recipient v has accepted a forged signature ¢’. By the
design of the COPE, ¢ must have been accepted at least length(COPFE) time units

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 213

subsequent to the receipt of ¢ and subsequent to a determination of whether a
compromise has been reported. However, since P is D-resilient, if the forged sig-
nature was not detected by the legitimate signer u, the last check-in by u must
have been performed prior to the start of the COPE. Since length(COPE) time has
subsequently elapsed and no check-in was performed by u during the COPE, then
length(CHIP) > length(COPE), a contradiction.

Therefore, D-resilient synchronized secondary authentication protocols augmented
with a CHIP/COPE are DR-resilient. m

In this way, once a recipient of a signature has waited a length of time equal to
the COPE (plus additional time allowing for revocation, latency delays etc.), and
subsequent to a check of the revocation status of u’s public key, she can be sure
that the signature was legitimately constructed. The signatures are committed at
this time, in the sense that the CHIP/COPE is similar to an atomic transaction or
protocol. The legitimate signer must have legitimately signed a message subsequent
to the signing of the message for the aforementioned user, yet before the CHIP expiry
for the recipient. By designing a protocol in such a way that the legitimate user
confirms that the messages signed during the last CHIP were indeed signed by him,
the signing user is limited in his ability to later deny having signed any of the messages
in question.

How does the use of a CHIP/COPE alter, for example, Protocol DT7? Let the
length of the CHIP/COPE (see Definition 6.9) be ¢ time units. Beyond requiring
u to check-in (see Remark 6.2) with the TR at least every ¢ units, the TR would
also perform a check that ¢; — ¢, 1 < t (indicating that the amount of elapsed time
between times t; and ¢;_; is less than ¢). So long as a recipient waits ¢ time units
before accepting a signature, forged signatures can be detected by u or the TR. As
well, t may be different for each user. Allowing the recipient of a signed message
to determine the length of the COPE for a particular message can be achieved by
having the TR return r; = (c}, s7,t, ¢;, u, sigrr(ch, sT,t, ¢;,u)). Alternatively, it might

be included as a parameter in the user’s first level public key certificate.

Remark 6.3 Although described as a period of waiting subsequent to the receipt of
a signature, the CHIP/COPE concept can be generalized to refer to the elapse of

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 214

the COPE subsequent to the time of stamping of the signature, so long as the time
stamp s produced no later than the secondary authentication request. A simple way of
achieving this time stamp is for the TR to apply a time stamp as part of the returned

secondary corroborative evidence.

Implementation and Practicality

Coordinating the CHIP with an actual user may require, for example, that “suspen-
sions of the CHIP requirement” are allowed in the case of long-term absences by a
user, e.g., possibly by placing the verification certificate “on hold” [ANS97]. Also
related to the practical implementation of such a scheme is that once a lack of syn-
chronization is detected by the T'R, additional time will be required before revocation
information can be obtained by signature recipients. Therefore, in practice, the length
of the COPE should be t + € for a suitable ¢, where the CHIP is ¢ time units.

With regard to the practicality of using a CHIP/COPE, imposing such restrictions
on both the signer and recipient may appear unreasonable. However, there already
exist examples of its use in current society (e.g., depositing a cheque normally re-
quires a waiting period before the amount may be withdrawn from the account), it
is certainly not practical for all situations. Yet there are situations in which it can
be very helpful, i.e., schemes for which undetected key compromise is intolerable,
yet which can tolerate a time delay before the acceptance of a signature. Such high
valued transactions include major business deals, mergers and acquisitions, and real
estate deals; transactions that want to use digital signatures for their convenience,

but are so high-valued that they require an extra level of assurance.

Chapter 7
Concluding Remarks

In this chapter, we examine the significance of this thesis as a contribution to the
field of cryptographic authentication and discuss some future directions for further

research.

7.1 Positioning of Contributions

Section 1.3 provided a summary of the contributions from the more detailed results
given in each chapter of this thesis. In this section, we attempt to predict the signif-
icance of these results for the study of cryptographic authentication.

The assimilation and classification of the previous work from Chapter 2 allows for
a quick review of the previous work and convenient classification of new time stamping
protocols. The critical analysis of this work from Chapter 3 allows one to determine
the suitability of the previous time stamping protocols and permits comparisons and
analysis of newly proposed protocols. Motivated by the discovery of protocol failures
for two previous schemes, the time stamping framework of Chapter 4 permits the
construction of a variety of sound new protocols.

[lustration of the necessity of time stamped digital signatures allows for consistent
and less disputable signature verification. The notarization of digital signatures, as
performed by Protocol NT2 in Chapter 5, is suitable for environments in which the

validation of digital signatures by signature recipients is costly. Time stamping or

215

CHAPTER 7. CONCLUDING REMARKS 216

notarization are useful for renewing the lifetime of a digital signature in the case that
the lifetime required for the signed message’s authenticity exceeds the provisions of
the original authentication of the message.

The protocols of Chapter 6 allow one to enhance the legitimacy of a digital signa-
ture by providing additional corroborative evidence from a trusted authority regard-
ing the success of an independent, second level authentication. Such a mechanism is
useful, for example, for high-valued, distributed transactions in which a subsequent
claim of key compromise cannot be tolerated.

In the “grand scheme of public-key cryptography”, the concept of time is quite
important and relevant, especially with regard to digital signatures. The origination
of public key cryptography [DH76] required only the storage of a private signature key
by the signing user and authentic publication of the verification key. Requirements
for distribution of public keys introduced the concept of certificates [Koh78], while
limiting the lifetime of these certificates introduced revocation [ITU93]. It is now
clear that certificate-based digital signatures require time stamping of the signatures
as well as temporally authenticated and stored certificate state information. Even
further, time stamping alone does not help in the case of a key compromise that is

undetected. A timeline representation of these ideas is given by Figure 7.1.

7.2 Future Work

Throughout the production of this thesis, several topics were discovered that were
considered either beyond the scope or direction of the current discussion or thought
better suited for future research. In this section, we briefly discuss some of these

ideas.

Group Hashing. Section 2.3 reviewed several group hashing techniques that were
subsequently analyzed in Section 3.2. An interesting investigation would involve the
discovery of new group hashing protocols or identification and proof of some sufficient
or necessary properties that a group hash function would possess. Some work in

this direction has been performed by Nyberg [Nyb95]. Also of interest, especially

CHAPTER 7. CONCLUDING REMARKS 217

with regard to the distribution of revocation information, would be the discovery of
efficiently incremental group hash functions for which modification of a previously

constructed member, is not required (if they exist).

Signature Key Lifetime. Beyond the lifetime of individual user’s signature keys,
the renewal of the keys of trusted authorities is an important practical concern.
Should such a renewal be required in response to the compromise of a trusted author-
ity’s signature key then, as one example, the authenticity of certificates produced by
that certification authority are called into question. Alternatively, consider that the
compromise of a time stamper’s signing private key may prevent the proper verifica-
tion of signatures that had been purportedly time stamped using the compromised
key, prior to the compromise. Other techniques to deal with key compromise, either
of a user or trusted authority, are therefore an interesting avenue for future research.

The relationship between authorities may be helpful here as well. Suppose, for
example, that a time stamp authority is issued the signature verification certificate
certy by a CA, just as the CA would for a user. Given a finite validity period for this
certificate, notice that the compromise of 7’s signature key can limit the “reach” of
forged time stamps to the period of validity of the corresponding verification certifi-
cate. This can be implemented by requiring that, during verification of a certificate,
it is ensured that the time contained within the time stamp, is no later than the

expiry date of certr and no earlier than the creation date.

Network Delay There are often several factors (e.g., system components, entities)
that contribute to the performance of a particular action or event. For example, recall
the series of events subsequent to a user’s signature key compromise, as displayed
in Figure 6.1. Excessive delays resulting from any of these events diminishes the
performance of a protocol (relying on the completion of each of these events) and more
importantly, can lead to the improper running of a protocol, e.g., delay regarding the
reporting of a user’s key compromise detection may result in a recipient unknowingly
accepting a forged signature. An important area of research would therefore involve

the studying optimizations to the performance of various critical cryptographic events.

CHAPTER 7. CONCLUDING REMARKS 218

This is especially relevant for the implementation of the CHIP/COPE of Section 6.6.
Minimizing the delay required before a user can accept a signature (i.e., minimizing
the length of the COPE and length of time between CHIPs) is an important practical

concern.

CHAPTER 7. CONCLUDING REMARKS

private/public key pair

certificates

certifica

time stampin

te revocation

g and notarization

undetected key compromise

time

219

Figure 7.1: Timeline of relevant and related concepts since the origination of public-

key cryptography.

Bibliography

[ACPZ98] Carlisle Adams, Pat Cain, Denis Pinkas, and Robert Zuccherato. Time

[Ad183)

[ANS97]

[Bar96]

[BDL7]

[BAMO1]

stamp protocols. Internet draft (work in progress), Internet Engineering
Task Force (IETF), July 1998. Available as http://www.ietf.org/internet-
drafts/draft-adams-time-stamp-02.txt.

Leonard Adleman. Implementing an electronic notary public. In Advances
in Cryptology: Proceedings of Crypto 82, pages 259-265. Plenum Press,
1983.

ANSI X9.57. Public key cryptography for the financial services industry:
Certificate management. Draft standard, American National Standard for

Financial Services, February 1997.

T. S. Barassi. The cybernotary: Public key registration,
certification ~ and authentication of international transactions.
http/www.intermarket.com/ecl/notary.html, 1996. Digital Commerce

Services.

Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults. In Advances in Cryptology:
Proceedings of Furocrypt '97, pages 37-51. Springer-Verlag, 1997.

Josh Benaloh and Michael de Mare. Efficient broadcast time-stamping.
Technical Report TR 91-1, Clarkson University, Department of Math and
Computer Science, 1991.

220

BIBLIOGRAPHY 221

[BAM93] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital signatures. In Adwvances in Cryptology: Proceedings
of Eurocrypt 93, pages 274-285. Springer-Verlag, 1993. Also appeared as
Clarkson University Technical Report TR-MCS-93-1, April 1993.

[BGG94| Mihir Bellare, Oded Goldreich, and Shafi Goldwasswer. Incremental hash-
ing: The case of hashing and signing. In Yvo G. Desmedt, editor, Advances
in Cryptology: Proceedings of Crypto 94, pages 216—-233. Springer Verlag,
1994.

[BHS93| D. Bayer, S. Haber, and W.S. Stornetta. Improving the efficiency and relia-
bility of digital time-stamping. In Sequences II: Methods in Communication,

Security and Computer Science. Springer-Verlag, 1993.

[Ble96] Daniel Bleichenbacher. Generating ElGamal signatures without knowing
the secret key. In Advances in Cryptology: Proceedings of Furocrypt 96,
pages 10-18. Springer-Verlag, 1996.

[BLLV98] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-
stamping with binary linking schemes. In Advances in Cryptology: Proceed-

ings of Crypto '98. Springer-Verlag, 1998.

[CHH97] R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated commu-
nication in the presence of break-ins. In Proceedings of the 16th Annual ACM
Symposium on Principles of Distributed Computing, pages 15-24, 1997.

[Cus87] Charles Cushing. Cushing’s Notarial Form Book, with a Treatise or His-
torical Outline of the Notarial Profession. A. Periard, Montréal, Québec,
1887.

[Des94] Yvo Desmedt. Threshold cryptography. European Transactions on Telecom-
munications, 5(4):449-457, July 1994.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644-654, November 1976.

BIBLIOGRAPHY 222

Difs2]

[DPs4]

[DS93]

[FB97]

[FIP94]

[FIP95]

(GCOg]

Whitfield Diffie. Conventional versus public key cryptosystems. In Gustav
Simmons, editor, Secure Communications and Asymmetric Cryptosystems,
pages 41-72. Westview Press Inc., Boulder, Colorado, 1982. (Based on a
paper presented at a 1980 symposium. See [Sim82].).

D. Davies and W. Price. Security for Computer Networks. John Wiley &
Sons, 1984.

C. Dyreson and R. Snodgrass. Timestamp semantics and representation.
Information Systems, 18(3):143-166, 1993.

Warwick Ford and Michael Baum. Secure Electronic Commerce: Building

the infrastructure for digital signatures and encryption. Prentice Hall PTR,
Upper Saddle River, New Jersey 07458, 1997.

FIPS 186. Digital signature standard. Federal Information Processing Stan-
dards Publication 186, U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Springfield, Virginia, 1994.

FIPS 180-1. Secure hash standard. Federal Information Processing Stan-
dards Publication 186, U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Springfield, Virginia, April 1995. (super-
sedes FIPS PUB 180).

N. Gershenfeld and I. Chuang. Quantum computing with molecules. Scien-
tific American, 1998.

[HJJK97] A. Herzberg, M. Jakobsson, S. Jarecki, and H. Krawczyk. Proactive public

key and signature systems. In Proceedings of the jth ACM Conference on

Computer and Communications Security, 1997.

[HKS95] Stuart Haber, Burt Kaliski, and W. Scott Stornetta. How do digital time-

stamps support digital signatures? CryptoBytes, 1(3), Autumn 1995. (Avail-
able from http://www.rsa.com/rsalabs/pubs/cryptobytes.html.).

BIBLIOGRAPHY 223

[HSO1]

[HS97]

[1191]

ITU93]

[Jus9g]

[JvO98]

[Kang6]

[KJJ9g]

[Koc96]

[Koc98|

Stuart Haber and W. Scott Stornetta. How to time-stamp a digital docu-
ment. Journal of Cryptology, 3(2):99-111, 1991.

Stuart Haber and W. Scott Stornetta. Secure names for bit-strings. In
Proceedings of the 4th ACM Conference on Computer and Communications
Security. ACM Press, April 1997.

[llinois notary act. http://www.notaryexpress.com/handbook.html, 1991.

ITU-T Recommendation X.509. The directory - authentication framework.
Technical report, International Telecommunication Union, Geneva, Switzer-
land, November 1993. (equivalent to ISO/TEC 9594-8:1990&1995).

Mike Just. Some timestamping protocol failures. In Proceedings of the
1998 Symposium on Network and Distributed System Security, pages 89-96,
March 1998.

Mike Just and Paul C. van Oorschot. Addressing the problem of undetected
signature key compromise. Technical Report TR-98-06, Carleton University,
School of Computer Science, June 1998. To appear in the Proceedings of the
1999 Symposium on Network and Distributed System Security.

H. Kanare. Writing the Laboratory Notebook, chapter 6. American Chemical
Society, 1986. (2nd printing).

P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
http://www.cryptography.com/dpa/, 1998.

Paul Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Advances in Cryptology: Proceedings of Crypto 96,
pages 104-113. Springer-Verlag, 1996.

Paul Kocher. A quick introduction to certificate revocation trees (CRTSs).
http://www.valicert.com /resources/whitepaper/bodyIntroRevocation.html,
1998.

BIBLIOGRAPHY 224

[Koh78]

[Lam81]

[Lan95]

[LB92]

[Merg0]

[Mer82]

[Mer9g|

[MMS2]

[MQ97]

L. M. Kohnfelder. Toward a practical public-key cryptosystem. B.Sc. Thesis,
MIT Department of Electrical Engineering, 1978.

L. Lamport. Password authentication with insecure communication. Com-
munications of the ACM, 24:770-772, 1981.

Susan K. Langford. Threshold DSS signatures without a trusted party. In
Don Coppersmith, editor, Advances in Cryptology: Proceedings of Crypto
95, pages 397-409. Springer-Verlag, 1995.

Kwok-Yan Lam and Thomas Beth. Timely authentication in distributed
systems. In Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, editors, 2nd
European Symposium on Research in Computer Security (ESORICS’92),
pages 293-303. Springer-Verlag, November 1992.

Ralph Merkle. Protocols for public-key cryptosystems. In Proceedings of
the 1980 IEEE Symposium on Security and Privacy, April 1980.

Ralph Merkle. Protocols for public-key cryptosystems. In Gustav Simmons,
editor, Secure Communications and Asymmetric Cryptosystems, pages 73—
104. Westview Press Inc., Boulder, Colorado, 1982. See [Sim82]. A more
detailed version of [Mer80].

Merriam-webster online dictionary. http://www.m-w.com/dictionary.htm,
1998.

C. Meyer and S. Matyas. Cryptography: A New Dimension in Computer
Data Security. John Wiley & Sons, 1982.

Henri Massias and Jean-Jacques Quisquater. Time and cryptography. Tech-
nical Report WP1, Université Catholique de Louvain, March 1997.

[MvOV97] Alfred Menezes, Paul C. van Oorschot, and Scott Vanstone. Handbook of

Applied Cryptography. CRC Press, 1997.

BIBLIOGRAPHY 225

[Nyh95]

[Nyb96]

[PF96]

[PK79]

[Pom90]

[Riv92]

[RSO7]

[RSATE]

[Sha&1]

Kaisa Nyberg. Commutativity in cryptography. In Proceedings of the First
International Workshop on Functional Analysis, Trier University, Berlin,
1995. Walter de Gruyter & Co.

Kaisa Nyberg. Fast accumulated hashing. In Dieter Gollmann, editor, Fast
Software Encryption, pages 83-87, Cambridge, UK, February 1996.

F. Pinto and V. Freitas. Digital time-stamping to support non repuda-
tion in electronic communications. In MCI (Manifestations and Commu-
nications Internationales), editors, Proceedings SECURICOM 96 - 14th
Worldwide Congress on Computer and Communications Security and Pro-
tection, pages 397-406, CNIT, Paris, France, June 1996. (Available from
http://marco.uminho.pt/CCG/ccom-pub.html.).

Gerald J. Popek and Charles S. Kline. Encryption and secure computer
networks. Computing Surveys, 11(4):332-356, December 1979.

Carl Pomerance. Factoring. In Carl Pomerance, editor, Cryptology and
Computational Number Theory, pages 27-47. American Mathematical Soci-
ety, 1990.

Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request
for Comments (RFC) 1321, April 1992. Also presented at Rump Session of
Crypto'9l.

Muhammad Rabi and Alan Sherman. An observation on associative one-way
functions in complexity theory. Information Processing Letters, 64(5):239—
244, December 1997,

Ron Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21:120-126, 1978.

Adi Shamir. On the generation of cryptographically strong pseudo-random
sequences. In Proceedings of ICALP, pages 544-550, 1981.

BIBLIOGRAPHY 226

[Sho94| Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings of the 26th Symposium on Theory of Comput-
ing (STOC), pages 124-134, Montreal, Canada, 1994.

[Sim82] Gustavus J. Simmons, editor. Secure Communications and Asymmetric
Cryptosystems. Westview Press, Inc., Boulder, Colorado, 1982. This book
is based on a symposium held at the 1980 American Association for the
Advancement of Science (AAAS) National Annual Meeting in San Francisco,

California.
[Sti95] Doug Stinson. Cryptography: Theory and Practice. CRC Press, 1995.

[Tro95] D. Trowbridge. Imagine a notary stamp for electronic documents. Computer
Technology Review, XV (4), April 1995.

Appendix A

A Historical Review of

Notarization

The term notary is taken from the notary public whose responsibilities within the
United States are to witness documents and administer oaths (we refer here to the
physical entity as opposed to a digital one). The traditional witnessing of physical
documents involves the verification of the identity of the individual signing the docu-
ment (see [[1191]). The digital notary (notary agent in [MvOV97]) can have a greater
range of powers, similar to the overseas conception of a notary public. Such powers
include establishing the truth of statements ([Bar96, MvOV97]). A notary can also,
for example, implement a time stamping scheme.

In this appendix, we review the role a notary public. Definitions related to the
more recent digital incarnation are also reviewed. Further examinations regarding

the role of a notary appear in Section 5.4.

A.1 Notaries Public

Notaries are public officers appointed to prepare and execute deeds and
contracts to which the parties desire or are bound to impart that char-
acter of authenticity which is attached to acts entered into under public

authority; to assure their date, to preserve them, and to deliver copies

227

APPENDIX A. A HISTORICAL REVIEW OF NOTARIZATION 228

thereof, or authentic extracts therefrom [Cus87].

The need for notaries arose from the concept of ownership, around 5000 years ago.
The growth of land settlements, materials and commerce increasingly necessitated a
need for proprietary attachments. Since many people lacked the ability to write, a
designated individual was usually appointed the responsibility. As well, the tradi-
tional oral contract did not always allow for simple dispute resolution. It is believed
that the “Babylonians are regarded as the first who introduced the customs of passing
private deeds in writing.” [Cus87]

The original “notary” was essentially a simple scribe responsible for the record-
ing of information. As a result of cost concerns and the fact that writing was not
considered an honorable task, many of the original scribes were slaves. The earliest
mention of some form of notary comes from the Roman Empire. Various titles were
given: Scribae (responsible for maintenance of public records); Tabularii (writers on
tablets); Notarii (denotes user of abbreviation or notes); Cursores (uses rapid writ-
ing); Logographi (a sort of shorthand writer or stenographer); Testamentarii (writers
of wills); and Argentarii (works with monetary contracts). The functions of the scriba
are similar to the current prothonotary (derived from the Greek word protos (mean-
ing first) and Latin notarius, refers to the chief notary though current meaning is the
chief clerk for various courts of law).

It was not until the 5th Century that citizens other than slaves were allowed to
function as notaries. These so-called tabellions were given far greater powers than
their counterparts, so that “the Scribae, Tabularii, Cursores and Notarii became their
clerks.” [Cus87]. Though, even at that time the tabellion did not provide for authen-
tication. “Although binding on the parties, the acts of tabellions were not authentic
or executory until verified or compared, and to avoid the trouble of verification they
were published or insinuated in court.” [Cus87]

Further change took place from the 13th to 15th centuries in countries such as
France and England. Several varieties of notaries were appointed (e.g., by the Pope or
Archbishops) though only those appointed by the King had the power to authenticate

writings with their seal [Cus87, page xiv]:

APPENDIX A. A HISTORICAL REVIEW OF NOTARIZATION 229

[The] seal was the authentic sign of the authority given by the king to
the deeds passed by his officers; so that, when an act was sealed it had
an ervecution parée, that is, it was executory without any judicial order or

sentence.

The role of the tabellion was limited to the recording of information, “and did not

affect the authenticity of notorial acts.” [Cus87]

A.2 Digital Notary

Most of the current interpretations (since 1979) regarding the role of a so-called
digital notary are derived from their physical ancestor. However, there is consistent
confusion equating a notary with only a simple time stamper. The notary, as opposed
to a time stamper, does more than simply authenticate the time at which a statement
was made.

As indicated at the start of Chapter 2, Popek and Kline [PKT79, page 353] ac-
knowledge David Redell for first suggesting the use of a notary public in the digital
world. Though the term notary was not used explicitly, Merkle [Mer80, Mer82] dis-
cusses so-called witnessed digital signatures where a witness that was a priori agreed
upon between parties A and B “physically confirms that A signed message m [by
computing] sigw (‘I, W, physically saw A agree to and sign message m’)”.

Differing from above, the following definitions equate a notary to a time stamper.
Diffie [Dif82] discusses “a digital notary public which dates the document and signs
the date with its own private key” as a solution to the problem of contract signing
between two untrusting parties. The notary public, according to Diffie, allows the
receivers of signed messages to protect themselves from the compromise of the signer’s
key. According to Adleman [AdI83], “[t|he function of a notary public is to certify
that an ‘event’ took place at a particular time and place.” Stinson [Sti95, page 254]
defines an electronic notary public as a trusted time stamping service.

Menezes et al. [MvOV97] renewed the concept of differing roles between a notary
and a time stamper. Whereas a time stamp agent is “used to assert the existence of a

specified document at a certain point in time, or affix a trusted date to a transaction

APPENDIX A. A HISTORICAL REVIEW OF NOTARIZATION 230

or digital message”, a notary agent is “used to verify digital signatures at a given
point in time to support non-repudiation, or more generally establish the truth of
any statement (which it is trusted on or granted jurisdiction over) at a given point in
time.” [MvOV97, page 550] They go on further to point out that a “time stamping
service [...] is a document certification or document notarization service. A notary
service is a more general service capable not only of ascertaining the existence of a
document at a certain time, but of vouching for the truth of more general statements
at specified points in time.” [MvOV97, page 582]

This sentiment is further echoed by Barassi [Bar96]. Beyond fulfilling various du-
ties performed by a physical notary (and extending even further to aid in international

agreements), an electronic notary or “CyberNotary” has three responsibilities:

1. Attestations, oaths and declarations. Among other things, digitally attesting to
the signature produced by a requesting party;

2. Certification. Beyond the witnessing of a signature, yet short of a (legal) au-
thentication, a certification may involve, for example, ensuring the proper trans-

lation of a particular document;

3. Legal Validity. This involves validating “not only the legality of the message,

but also its conformity to the norms of electronic commercial practice.” [Bar96]!

'Rather than using the term ‘legal validity’, Barassi [Bar96] used the term ‘authentication.” We
avoid this use of the term to prevent confusion with forms of cryptographic authentication.

