
On the Temporal Authentication ofDigital Data
byMichael K. Just

A thesis submitted tothe Faculty of Graduate Studies and Researchin partial ful�llment ofthe requirements for the degree ofDoctor of Philosophy
Ottawa-Carleton Institute for Computer ScienceSchool of Computer ScienceCarleton UniversityOttawa, OntarioDecember 1998c Copyright1998, Michael K. Just

The undersigned hereby recommend tothe Faculty of Graduate Studies and Researchacceptance of the thesis,On the Temporal Authentication of Digital Datasubmitted byMichael K. Just
Prof. Evangelos Kranakis(Director, School of Computer Science)
Prof. Evangelos Kranakis(Thesis Co-Supervisor)
Dr. Paul Van Oorschot(Thesis Co-Supervisor)

Dr. Aviel Rubin(External Examiner)Carleton UniversityDecember 1998ii

AbstractIn this thesis, we examine the authentic provision, maintenance and veri�cation ofa time associated with data. We begin by assimilating the current techniques forauthentically associating a time with digital data, i.e., time stamping protocols. Thisprovides a basis for further classi�cation and examination useful both within thethesis, as speci�cally related to time stamping and notarization, as well as for thearea of digital authentication itself. We introduce the distinction between absoluteand relative time stamps and classify the previous work based on this re�nement.This work is subsequently analyzed and critiqued with respect to various measures ofe�ciency.We de�ne the notion of temporal authentication. General techniques for the pro-vision and veri�cation of both absolute and relative temporal authentication are ex-amined. The usefulness of these distinctions is motivated by the discovery of protocolfailures for the time stamping protocols of Haber and Stornetta (Journal of Cryptol-ogy '91) and of Benaloh and de Mare (Eurocrypt '93).We analyze the provision of temporal authentication for certi�cate-based digi-tal signatures. The necessity of time stamping digital signatures is motivated, andprotocols for the production, veri�cation and adjudication of time stamped digital sig-natures are presented. Beyond the time stamping of the signature, the need for themaintenance of temporal storage over the long-term (e.g., for revocation information),in anticipation of possible disputes is also identi�ed as a requirement. Additionally,protocols for notarizing and extending the lifetime of digital signatures are also pre-sented and reviewed. iii

The time stamping of both signatures and revocation information aids in deter-mining whether a signed message is acceptable or not, e.g., if the message was signedbefore the corresponding veri�cation key was revoked. However, if the owner of thesigning key is unaware of any need for revocation (e.g., resulting from an undetectedkey compromise), then other solutions are required. We identify the problem of un-detected signature key compromise and introduce for the �rst time in the literature,techniques that allow one to maintain the provision of temporal authentication evenwhen a signing key has been compromised. Various techniques for detecting a com-promise and preventing forged signature acceptance are proposed.

iv

AcknowledgementsThanks to Paul Van Oorschot for taking the time to provide extensive, constructivecomments on earlier drafts of this thesis. Thanks also for his guidance and supportin directing the content, precision and detail of this thesis and his consideration foralways responding to my queries in a timely manner.Many thanks to Evangelos Kranakis for his constant encouragement, advising meto always question what I read. He helped me to surpass one of the larger hurdlesencountered when writing a thesis: �nding a research topic. His encouragement tosearch and study the current literature for a topic that I found interesting, allowedme to work on a topic that I wanted to work on and was hence able and willing topursue and complete. More importantly, he emphasized the importance of thinkingabout a potential research topic every day, whether it be for only �ve or ten minutes.This constant analysis of a topic allowed me to discover the issues that form the basisof this thesis.

v

Contents
Abstract iiiAcknowledgements v1 Introduction and Overview 11.1 From Physical to Digital Data . 21.1.1 The Importance of Time . 41.1.2 Message and Temporal Authentication 51.2 Time and Cryptographic Authentication 61.3 Outline and Overview of Contributions 72 A Taxonomy of Time Stamping Protocols 122.1 Time Stamping Components . 142.1.1 Stamping and Veri�cation Protocols 142.1.2 Hashing and Signing . 172.2 Critique of a Simple Time Stamping Protocol 202.3 Group Hashing . 232.3.1 Linear Storage . 252.3.2 Logarithmic Storage . 262.3.3 Constant Storage . 302.4 Absolute Time Stamps . 372.4.1 Using a Time Stamping Service 372.4.2 Decentralized Solutions: User-Constructed Stamps 392.5 Relative Time Stamps . 41vi

2.6 Concluding Remarks . 513 Critical Analysis of Previous Work 523.1 Critique Metrics . 523.2 Critique of Group Hashing . 543.2.1 Formalizing Group Hashing 563.2.2 Storage Analysis . 583.2.3 Incremental Group Hashing 613.3 Critique of Absolute Time Stamping 643.3.1 On the Use of Implicit Time 673.4 Critique of Relative Time Stamping 694 A Framework for Temporal Authentication 714.1 Temporal Authentication . 724.1.1 Authenticating Data . 734.1.2 Temporal Authentication . 744.2 Providing Temporal Authentication 764.2.1 Alternatives for Authenticating the Stamp 804.3 Associating a Time with Data . 834.3.1 Applying a Consistent Time 834.3.2 Providing Absolute Time . 854.3.3 Providing Relative Time . 884.3.4 Providing Hybrid Time . 964.4 Importance of Proper Temporal Measurements 974.4.1 Protocol Failure: Inability to Measure an Absolute Time . . . 984.4.2 Protocol Failure: An Improper Relative Measurement 994.5 Hybrid Implementations . 1095 Time Stamping Digital Signatures 1145.1 Data With Inherent Time . 1155.1.1 Relevance to Temporal Authentication 1195.1.2 Extending a Finite Lifetime 120vii

5.1.3 Implications for Backward and Forward Stamping 1205.2 Public Key Certi�cates { Background 1225.2.1 Certi�cate Construction . 1225.2.2 Certi�cate Distribution and Trust 1255.2.3 Certi�cate Revocation . 1295.3 Time Stamping Digital Signatures . 1365.3.1 Digital Signature Requirements 1375.3.2 Signature Veri�cation and Adjudication 1485.4 Notarizing Digital Signatures . 1535.4.1 Notarization: Trusted Corroboration 1555.4.2 Notarizing Digital Signatures 1575.5 Digital Signature Renewal . 1635.5.1 De�nitions and Motivation . 1635.5.2 Anticipation and Redundancy 1665.5.3 Signature Renewal . 1676 Undetected Signature Key Compromise 1726.1 De�nitions, Assumptions and Motivation 1736.1.1 Compromise Detection . 1746.1.2 Events Related to a Key Compromise. 1756.1.3 Limits of Revocation . 1766.1.4 Time Stamping is Necessary but not Su�cient 1776.2 Dealing with Signature Key Compromise 1786.3 Overview of New Approach . 1816.3.1 Second Level Authentication for Signature Production 1826.3.2 Positioning of New Work . 1856.4 Preventing Forged Signature Production 1876.4.1 Second Level Protocols . 1876.4.2 Comparative Analysis . 1906.5 Detecting Forged Signatures . 1916.5.1 Use of Synchronization for Detecting Forgeries 193viii

6.5.2 One-Way Function Variant Requests 1996.5.3 Time Variant Requests . 2046.5.4 Modi�cation of the Synchronization Parameter 2066.6 Preventing Forged Signature Acceptance 2097 Concluding Remarks 2157.1 Positioning of Contributions . 2157.2 Future Work . 216Bibliography 220A A Historical Review of Notarization 227A.1 Notaries Public . 227A.2 Digital Notary . 229

ix

List of Tables2.1 Bit Length for Nyberg's One-Way Transformation. 363.1 Comparison of Storage for Group Hashing Techniques. 603.2 Speci�cation of Table 3.1 Results. 603.3 Overall System Storage E�ciency for Group Hashing Techniques. . . 613.4 Comparison of Updates for Group Hashing Techniques. 643.5 Comparison of Absolute Time Stamping Techniques 663.6 Linking Elements for Relative Time Stamping Protocols. 704.1 Requirements for the Association of Time in a Time Stamping Protocol 855.1 Requirements for the Digital Signature Model 1385.2 Evidence Required for Signature Veri�cations 1475.3 Assumptions Made for Time Stamped Digital Signature Model 1485.4 Statements a Digital Signature Notary can Attest to the Truthfulness 1565.5 Attacks to a Signature Scheme . 1646.1 Properties Required for the Second-Level Authentication Mechanism 1846.2 Comparison of Techniques Using a Secret Key for Secondary Authen-tication . 1926.3 Requirements for Protocol DT1 . 1956.4 Requirements of Protocols Implementing Check-In Periods and Cooling-O� Periods . 211
x

List of Figures2.1 Logarithmic User Storage Group Hash Technique. 282.2 Generic Message Passing . 432.3 Chain of Stamps in Protocol RL1. 442.4 Chain of Stamps in Protocol RL3. 494.1 Global View of a Time Stamping Process 774.2 Generic Structure of a Time Stamping Protocol. 794.3 Improved E�ciency with Intermediate Stamps. 944.4 Cross-Stamps Allowing for Relative Stamp Interoperability. 954.5 Multiple Chains in Protocol RL1. 1025.1 A Timeline Representation of Data y with Only an Expiry Date . . . 1185.2 A Timeline Representation of Data y with Only a Creation Date . . . 1185.3 Two Views of Signing and Veri�cation Periods. 1245.4 Single, Disjoint and Cross-Certi�ed Certi�cation Authorities. 1275.5 Classi�cation of Techniques for Distributing/Obtaining Certi�cate Re-vocation Information . 1335.6 Generic Signature Transmission from Originator u to Recipient v. . . 1395.7 Periods of Change in a Certi�cate's Status. 1395.8 Certi�cate Veri�cation Life Extended with Time Stamp. 1445.9 Signing Periods for a Non-Revoked Certi�cate. 1495.10 Signing Periods for a Revoked Certi�cate. 1525.11 Periods of Legitimate and Forged Signature Production 165xi

6.1 Timeline of Events Related to a Key Compromise 1767.1 Timeline of Relevant and Related Concepts Since the Origination ofPublic-Key Cryptography . 219

xii

List of ProtocolsSG1 The Digital Signature Algorithm (DSA) 19SM1 Centralized Document Storage . 21GH1 Cumulative Group Hash. 25GH2 Recursive Group Hash. 26GH3 Tree Group Hash. 29GH4 Exponentiation Group Hash. 32GH5 Bit Group Hash. 34AB1 Centralized Time Stamp Construction 38AB2 Centralized Time Stamp Construction with Additional Corroboration. 40AB3 Broadcast Time Stamp . 41AB4 Published Time Stamp . 42AB5 Decentralized Time Stamp Construction 42RL1 Haber-Stornetta Linking. 45RL2 Recursive Hash Linking. 46RL3 Haber-Stornetta Extended Linking. 47RL4 Cumulative Extended Linking. 50RL5 Cumulative Hash Extended Linking. 50TS1 General Time Stamp Protocol . 78HY1 A Hybrid Time Stamp using Widespread Storage. 110HY2 A Hybrid Time Stamp Proposal. 112DS1 Signature Veri�cation Protocol . 150NT1 Signature Notarization by Veri�er . 158NT2 Notarization of a Digital Signature 160xiii

RN1 Digital Signature Renewal by Time Stamping 168SL1 Generic Structure of Signature Protocols Using a Second Level Au-thentication . 183PV1 Using Biometrics as Secondary Authentication 188PV2 Using a Signature as Secondary Authentication 189PV3 Using a Symmetric Key as Secondary Authentication 189PV4 Using a Private Seed as Secondary Authentication 190DT1 Generic Secondary Authentication Using Synchronization 194DT2 Dealing with Fraudulent Secondary Authentication Requests 200DT3 Synchronization by Verifying Recursive Representation of Past Signa-tures . 201DT4 Using a Shared Seed for Synchronization 201DT5 An Insecure, Signature-Dependent Synchronization 202DT6 Using a Counter for Secondary Synchronization 205DT7 Using the Time of Last Signature for Secondary Synchronization . . . 206

xiv

Chapter 1Introduction and OverviewTraditional cryptographic authentication techniques allow for assurances with respectto an action performed (what was done) as well as what entity performed the action(who did it). The what may be the application of a digital signature such thatwhat was done (e.g., a previous commitment or assertion) cannot be altered withoutdetection. In verifying the maintenance of this integrity, it is necessary to determinewho performed the original action.Equally as important is the ability to recognize when something was done. Theroles associated with and privileges a�orded to an individual entity can change withtime. Determining simply what action an entity performed may not be su�cient. It isoften important to determine the time at which the action took place. In this thesis,we examine the importance and relevance of time for cryptographic authentication.Chapter OutlineIn this chapter, we motivate the importance of the relationship between time and cryp-tographic authentication. In Section 1.1, the importance of authentication for bothdigital and paper-based information processing techniques is examined. The di�erentchallenges encountered with digital technology are also discussed, with an introduc-tion to the importance of time. In Section 1.2, the role of time in a cryptographicinfrastructure providing for message authentication is motivated. In Section 1.3, we1

CHAPTER 1. INTRODUCTION AND OVERVIEW 2present an overview of the remainder of the thesis. Emphasis is directed towardsour particular contributions and as well to the overall contribution of the thesis as awhole to the area of cryptographic authentication.1.1 From Physical to Digital DataThe world is changing. At one time, a handshake referred only to the clasping of openhands for the purpose of either an introduction, a meeting, or possibly to indicatesome sort of agreement. It is now also used to indicate the initiation of a connectionbetween two computing devices.Computers are certainly having an impact on our everyday lives. With each taskthey help us to solve, our reliance on them increases. They exist because there areproblems that we need solved and we constantly push them to their limit in order toaid in solving newer challenges that are presented to us.The language is often the same, as with the \handshake" described above. Con-sider the signature. Our handwritten or physical signature is still used often in aworld that is arguably in a transitionary phase, from paper-based to digital. Our sig-nature is used to signify agreement, authorize action or prove membership and maybe accepted as legally binding. The powers of authorization given to a signer rely onthe assumption that the signature is not easily forgeable.The parallel in the (arguably superior) digital world is the digital signature. Theprevalence of the digital (versus the physical) signature is becoming more noticeableeach day. What advantages does a digital signature o�er? Realizing that the digitalsignature is not the cause of the digital revolution, but rather an e�ect of it, itsgreatest advantage is that it allows for the provision of a signature for digital data.Why is such a technique required? In a world where paper-based transactions arebecoming less frequent, the corresponding physical services become less desirable. Itis cheaper to store a disk full of information rather than boxes of paper. It is cheaperto transport digital data than paper-based information. Though certainly inuencedby economic concerns, the convenience is equally as responsible.Familiarity can help to improve convenience. Though dealing with digital media, it

CHAPTER 1. INTRODUCTION AND OVERVIEW 3is important to o�er the same services as those provided for the physical counterpart.This includes the signature. This is why a digital counterpart to the handwrittensignature is required. It provides a familiar counterpart to a physical signature, foruse with digital data. But how does one apply a signature to digital data? The exactparallel with paper does not work. Consider how one might digitize their physicalsignature and simply append it to the end of a digital �le. However, notice the lack ofbinding or association between the document data and the digitized signature. Thereis nothing to stop one from simply copying this digitized signature and appendingit to the end of another �le, or even altering the �le in which the original signaturewas applied. After all, this is what the legitimate user would do with their digitizedsignature for subsequent documents anyways.It is the di�erent media that makes this forgery of the digitized signature achiev-able. This is the challenge for those wishing to o�er digital services in place ofphysical-based ones. Along with the desireable properties of digital media, are thosethat make it di�cult to o�er the familiar, paper-based services. As the example aboveindicates, digital data1. is easily transferable as it is no longer attached to a physical medium. Copyingis easy, making it di�cult to determine which copy is the original.2. can be modi�ed without detection. Documents on digital media can be modi�edin any manner, including both the data body as well as any appendage such asa digitized signature.Note that for our example above, it is not that easy to copy a physical signature.One can typically distinguish an original document as authentic by physical means orappearance. Interestingly though, it is quite serendipitous (from the point of view ofdigital media proponents) that digital technology is also making tampering of physicaldata less susceptible to detection, e.g., by using high quality digital photocopiers orscanners. Hence, digital technology is creating a need for digital security techniques.

CHAPTER 1. INTRODUCTION AND OVERVIEW 41.1.1 The Importance of TimeThe application of a conventional signature often has legal implications, e.g., it canbe viewed as an acceptance of the statements contained therein. Often accompanyingthe signature is a line indicating the date of the signature. What is the purpose ofthis date? Suppose a contract were signed by Mr. X, a representative of company C,stating that company C agreed to build an attachment onto the business propertyof Ms. Y. The contract was signed on March 12, 1998 (though this date was notindicated on the contract). Ms. Y expects that this is su�cient time for the work tobe completed by September 1, 1998.However, subsequent to a disagreement between Mr. X and company C, Mr. X is�red on March 31, 1998. On May 1, 1998, Ms. Y contacts company C, concerned thatthey have not begun work on her building. Company C representative Ms. Z claimsthat the purported contract is invalid since it was signed subsequent to the dismissalof Mr. X (possibly by a vindictive Mr. X). Ms. Y claims that the contract was signedprior to the dismissal of Mr. X and demands that company C honour their contract.Other physical evidence may exist to resolve this dispute. For example, physicalanalyses of the paper and pen markings may ultimately prove that the contract wasindeed signed prior to the dismissal. However, there exists the intolerable possibilityfor Ms. Y that the contract may be deemed invalid.For a digital contract, such physical evidence is less likely to exist. The datingprovides a potential solution for the paper contract, but simply appending the timeto the end of the digital contract may not be su�cient. However, by including atime as part of the original document and signing the entire combination, digitalauthentication of the contract can be provided.Beyond the inclusion of the date and signing of the contract, additional propertiesmust be met in order to ensure the authenticity of the contract:1. Mr. X must be who he claims to be;2. The correct `date of signing' must be indicated on the contract;3. Mr. X must work for company C as of the time of signing of the contract.

CHAPTER 1. INTRODUCTION AND OVERVIEW 5The �rst point requires an authorization (certi�cation) of Mr. X's signature privilegeand can be provided for the physical signature by requiring Mr. X, for example, topossess a universally veri�able validation card identifying Mr. X as an employee ofcompany C and containing a reference copy of his signature, allowing for subsequentsignature veri�cation. This trusted, veri�ability of the signature refers to the messageauthentication of the signed data. The digital certi�cation of users is discussed inSection 5.2.1. The latter two points relate to the temporal authentication of thecontract.1.1.2 Message and Temporal AuthenticationThe undesirable properties of digital data (e.g., inability to detect tampering) leadus to the conclusion that the prevention of digital signature forgery requires that thesignature have the following properties:1. the signature must be dependent upon the entire data �le to which it is applied,thus preventing the alteration of some or all of the �le without rendering thesignature invalid;2. the signature must be tied to a particular individual so that no one other thanthis individual can produce a digital signature in the name of the individual.We say that data integrity is provided if it is ensured that a message has not beenaltered in an unauthorized manner since its latest authorized alteration (or morecorrectly, that any unauthorized changes are detectable). This property satis�es the�rst point. Message authentication (data-origin authentication) is provided when arecipient is assured of the source (i.e., entity authorized to alter the data) of a givenmessage. This property satis�es the second point. Notice that if data-origin authen-tication is provided, then so is data integrity, and vice-versa. For if data integrity isnot provided then the data can be altered in an unauthorized manner without de-tection, hence the source (creator) of the message has changed. As well, if messageauthentication is not provided then the authorized (or unauthorized) alteration of adocument is not well de�ned. As indicated in the previous subsection, the time at

CHAPTER 1. INTRODUCTION AND OVERVIEW 6which the message authentication is provided is also important. This motivates thefollowing de�nition for temporal authentication.De�nition 1.1 Temporal authentication combines message authentication with thenotion of timeliness of messages.The temporal authenticity of data produced by a time stamping protocol was �rstdiscussed by Just [Jus98]. This concept is discussed in greater detail in Chapter 4.In the following section, we further motivate the importance of time for the provisionof temporal authentication.1.2 Time and Cryptographic AuthenticationCryptographic authentication has inherent properties that necessitate a concept oftime, related both to the participating entities as well as any operations that areperformed. In this section we briey highlight the requirement for time within currentpractice for the provision of cryptographic authentication.At a very high level, a cryptographic infrastructure is composed of entities andprotocols. The protocols provide for privacy and authenticity among the entities. Therole of an entity changes over time. Employees are hired, �red and promoted eachday. Privilege and responsibility are often associated with the role an entity plays,rather than with the (name of the) entity itself. Thus, it is important to know notonly the identity of the entity that performed a certain action, but also when thataction was performed.Consider a private signature key held by some entity. Contracts and promisorynotes may be signed by this entity each day. Later disputes over these signatures mayrequire the determination of when the actions were performed, e.g., when the contractwas signed. As well, for the provision of non-repudiation, it is important to determinewhen signatures were produced by a given entity in anticipation of the revocation ofthe entity's certi�cate. Determining the validity of a message signed with the privatesignature key requires detecting whether the message was signed before or after the

CHAPTER 1. INTRODUCTION AND OVERVIEW 7corresponding certi�cate was revoked. Digital signatures alone do not allow for thisdetermination. Incorporating an authentic notion of time does.Protocols are similarly dynamic. Note that the security of many cryptographicprotocols is based on computational complexity. As the amount of computing poweravailable to adversaries increases, protocols may become vulnerable, e.g., if weak sig-nature algorithms were used. Increases in computing power are a catalyst for largerkey sizes and stronger algorithms. Renewing the privacy or authenticity associatedwith some information protected with \outdated" algorithms is therefore an impor-tant possibility.Messages signed by a given entity with a particular version of a digital signaturescheme (e.g., a given algorithm and key size) can only be deemed authentic for a�nite amount of time. However, some signatures may require a period of authenticitythat outlasts the lifetime of the digital signature scheme. Periodic increments inthe security of time stamping protocols (either by advancing the size of the securityparameter or using a new scheme all together) allows older, potentially vulnerablestamps or signatures to be renewed with a current timestamping scheme. A notionof time for these operations is important since the security will often depend on whensomething was done, and it is important that this temporal notion be maintainedeven when something is renewed.1.3 Outline and Overview of ContributionsThe objective of this thesis isto assimilate, conceptualize and analyze techniques for the provision,maintenance and veri�cation of an authentic time, allowing one to de-termine the time of existence of digital data relative to the occurrence ofother cryptographic events.In the remainder of this section, we summarize the contents of each of the remainingchapters, emphasizing the novel contributions to the study of cryptographic authen-tication.

CHAPTER 1. INTRODUCTION AND OVERVIEW 8Chapter 2: A Taxonomy of Time Stamping ProtocolsThis chapter provides an assimilation and classi�cation of full protocol descriptions ofthe previous literature on the time stamping of digital data. The speci�c contributionsof this chapter are:1. provision of the �rst comprehensive survey of known literature related to thetime stamping of digital data;2. an introduction of the distinction between absolute, relative and hybrid timestamps and a classi�cation of the previous work under these terms.Chapter 3: Critical Analysis of Previous WorkThis chapter provides a critical and comparative analysis of previously published timestamping protocols. The speci�c contributions of this chapter are:1. the �rst self-contained analysis of previous time stamping protocols;2. the formalization and analysis of so-called group hashing techniques and theintroduction of incremental group hashing.Chapter 4: A Framework for Temporal AuthenticationThis chapter abstracts techniques from previous time stamping protocols and pro-vides a general framework under which subsequent time stamping protocols, thatprovide temporal authentication, can be constructed. The speci�c contributions ofthis chapter are:1. an introduction of the notion of temporal authentication and de�nition of theprovision of absolute, relative and hybrid temporal authentication of digitaldata;2. description of a �rst general framework (see Figure 4.2) allowing one to sub-sequently construct time stamping protocols that allow for the provision andveri�cation of the temporal authentication of digital data. This construction

CHAPTER 1. INTRODUCTION AND OVERVIEW 9involves describing techniques for the provision of absolute, relative or hybridtime for the data as well as subsequent authentication and storage;3. an identi�cation of protocol failures for two previously proposed time stampingprotocols (see Section 4.4 and Just [Jus98]). In particular, protocol failures areidenti�ed for(a) Protocol RL1 from Haber and Stornetta [HS91] in which we identify un-reasonable requirements regarding the trust in the time stamp providerwhich allow the production of false time stamps (see Section 4.4.2), and(b) Protocol GH4 from Benaloh and de Mare [BdM93] in which the provisionof an absolute time during time stamp production is shown to be unmea-surable during time stamp veri�cation (see Section 4.4.1);4. the presentation of Protocol HY2, a hybrid time stamping protocol that fol-lows the new framework for the provision of temporal authentication (see Sec-tion 4.5).Chapter 5: Time Stamping Digital SignaturesThis chapter provides a comprehensive examination of the provision, veri�cation,adjudication and renewal of time stamped or notarized digital signatures and relevantcerti�cate information. The speci�c contributions of this chapter are:1. a �rst identi�cation of the requirements of temporally authenticated signaturesand their storage, allowing for digital signature production and subsequent ver-i�cation and adjudication of digital signatures even in the event of the expiryor revocation of a user's veri�cation certi�cate or a change in the trust thatsignature recipients may have in a signature originator's certi�cate (see Sec-tion 5.3.1);2. the �rst description of steps that must be taken and information or evidencerequired during the production, veri�cation and adjudication of time stampeddigital signatures (see Section 5.3.2);

CHAPTER 1. INTRODUCTION AND OVERVIEW 103. de�ning the role of a notary and presenting Protocol NT2 which allows for thenotarization of digital signatures (see Sections 5.4.1 and 5.4.2);Chapter 6: Detecting Signature Key CompromiseThis chapter provides an examination of techniques allowing one to address the prob-lem of a signature key compromise so that one can detect a compromise and preventthe acceptance of signatures produced during a period of undetected signature keycompromise (see Just and van Oorschot [JvO98]). The speci�c contributions of thischapter are:1. an introduction of the problem of signatures being forged subsequent to a keycompromise but prior to the detection of the compromise and identifying thelimitations of current techniques for solving the problem (see Sections 6.1 and6.2);2. the introduction of a second level of authentication to solve the problem of unde-tected key compromise in which the signing user is required to obtain additionalcorroborative evidence from a trusted third party (through a secondary identi-�cation) for a signature to be accepted by a verifying party (see Section 6.3);3. the presentation of solutions in which an independent, secret key is shared withthe trusted third party to allow for secondary identi�cation of the signing user(see Section 6.4);4. the presentation of general techniques and speci�c solutions in which signingusers are synchronized with the trusted authority so that a forged signaturecauses the synchronization property to be destroyed, and subsequently detected(see Section 6.5);5. a �rst use of a cooling-o� requirement for the acceptance of signatures combinedwith a check-in period for legitimate signers, allowing for the detection andprevention of acceptance of forged signatures (see Section 6.6).

CHAPTER 1. INTRODUCTION AND OVERVIEW 11Chapter 7: Concluding RemarksIn this chapter, we conclude with the positioning of the thesis as a novel contributionand aid to the study of cryptographic authentication.

Chapter 2A Taxonomy of Time StampingProtocolsThis chapter surveys and classi�es protocols in which time is authentically associatedwith digital data. This time may relate to the time of construction of the data,or more commonly, the time of submission of the data to some entity, and can beinterpreted as evidence of the existence of the data at the given time.The �rst discussions regarding the time stamping or notarization1 of digital datacan be traced to around the time of the origins of public-key cryptography. In 1979,Popek and Kline [PK79, page 353] state the following as the function of a so-callednotary public machine upon receipt of a submitted message:2The notary public machine time-stamps the message, signs it itself (therebyencoding it a second time), and returns the result to the author.Di�e [Dif82, page 67] makes reference to \a digital `notary public' which dates [a]document and signs the date with its own private key." The earliest time stampingprotocol was presented by Merkle [Mer80, Mer82] (see Protocol NT1 or the simpli�ed1References to notarization here refer only to the provision of a time stamp. More recent consensusregarding the interpretation of a notary di�ers from that of a time stamper (see Section 5.4 andAppendix A).2Popek and Kline acknowledge David Redell for initially suggesting that the role of a notarypublic machine should be based on the notaries public in the paper world.12

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 13Protocol AB1). Adleman [Adl83] makes use of a tamper-proof device to limit theamount of trust required in a so-called notary public. Davies and Price [DP84, page287] also enlist a \notary to sign and time-date stamp" input documents (in theirparticular case, digital signatures).The growing need for some sort of digital temporal authentication (though thisterm was not used) providing for the authentic association of time with data wasnoted by Kanare [Kan86] though this was 7 years after the work of Popek and Kline.More recent investigations into digital time stamping were undertaken by Haber andStornetta [HS91] in 1991.Despite the Haber and Stornetta revival, the remaining history related to digitaltime stamping, from 1991 to the present, is fragmented and comprised of works whichrarely reference each other (most likely because of their low pro�le, rather than formalicious reasons). This is best evidenced by the fact that there does not exist a paperthat surveys the current state of the art of digital time stamping techniques (thoughsee the partial work of Massias and Quisquater [MQ97]). This chapter provides sucha survey.Chapter OutlineIn Section 2.1, the components of a time stamping protocol are identi�ed and somebasic primitives (e.g., hash and signature functions) are reviewed. In Section 2.2 asimple time stamping protocol is critiqued for motivational purposes. Section 2.3illustrates many-to-one group hashing techniques in which a number of data submis-sions can be input to a function that produces only a single resultant value. Thesetechniques allow for the possibility of more e�cient time stamp production since thetime provision techniques of Section 2.4 and Section 2.5 can be applied to a singlerepresentative group hash result rather than a number of data items. In Section 2.4,we begin our classi�cation of time stamping techniques by reviewing protocols inwhich an absolute time stamp (see De�nition 2.3) is provided. In Section 2.5, wecomplete our classi�cation by reviewing methods for providing relative time stamps(see De�nition 2.4).

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 142.1 Time Stamping ComponentsIn this section we review and present several de�nitions and components relatedto the time stamping of digital data. The purpose of these intuitive de�nitions isto facilitate a classi�cation and discussion of the previous work related to the timestamping of digital data. More formal de�nitions, generalizing on the previous workin this chapter and absorbing the critiques of Chapter 3, are presented in Chapter 4.2.1.1 Stamping and Veri�cation ProtocolsIn this subsection, we review and present several de�nitions and components used inthe provision and recovery of a \time" for digital data. Several kinds of \time" areidenti�ed and used for later classi�cations of time stamping protocols reviewed in thischapter. The purpose of this subsection is only to provide an intuitive understandingof de�nitions and concepts related to time stamping. In Chapter 4, we provide moreprecision through the presentation of a framework that allows for the provision oftime stamps.De�nition 2.1 A non-cryptographic time stamp (NCTS) is the output w 2 W ofthe function F : Y � T ! W where y 2 Y is a binary message of arbitrary lengthand t 2 T is a representation of a date or time.The purpose of the NCTS w is to allow an indication of when the data y existed. Thesame data y may be time stamped on multiple occasions.The cryptographic \authentication" of a NCTS is useful in anticipation of possibledisputes, or more generally, in anticipation of low con�dence in the \time" associatedwith the data by the NCTS. For example, if user u were to construct a time stampw for a message y, u would compute w = F (y; t). If u is honest, t would, forexample, refer to the time of construction of w. However, there is no reason thatone should or would necessarily trust u. \Authentication" serves to increase thecon�dence in the time provided during the construction of the NCTS, by establishinga veri�able, trustworthy process upon which the resultant, authenticated time stampis constructed.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 15De�nition 2.2 A (cryptographic) time stamp s (or temporal stamp or simply stamp)associated with a message y is the result of the \authentication" of a non-cryptographictime stamp w = F (y; d) (see De�nition 2.1) and for which the time t 2 T has some\consistent meaning" for every time stamp.The \consistent meaning" of a time stamp refers to the consistent notion of what thetime t implies and how it is provided. (The discussed further in Section 4.3.1.) Webriey introduce di�erent types of time below (and elaborate in Section 4.3).Various Types of TimeA time stamp s can be one of three types, depending on the type of \time" provided.Speci�cally, s can be either1. an absolute time stamp,2. a relative time stamp or3. a hybrid time stamp.De�nition 2.3 An absolute time stamp s is a (cryptographic) time stamp (see De�ni-tion 2.2) for which a universal, absolute time t (see De�nition 4.7) is cryptographicallybound to data y.The provision of an absolute time stamp is memoryless with respect to any othertime stamps that are produced. An absolute time stamp can be either explicit orimplicit. An (explicit) absolute time stamp (the default) has the precise time directlyrecoverable or veri�able from the time stamp. For example,Mon Oct 5 10:31:35 EDT 1998is an example of an explicit, absolute time. An implicit absolute time stamp containsinformation from which the precise time can be uniquely determined. For example,an implicit absolute time stamp might include the values from several stocks at a par-ticular time of day. The underlying assumption is that one can uniquely3 determine3Although the granularity of the time may vary (e.g., using the closing stock values may onlyprovide a granularity of one day), a mapping to a single explicit time is required.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 16the time at which this information was generated, from this stock information. Theuse of an implicit time is discussed in Section 3.3.1.De�nition 2.4 A relative time stamp s is a (cryptographic) time stamp (see De�-nition 2.2) for which a relative time t (see De�nition 4.12), ordering the data y afterpreviously stamped data and before subsequently stamped data, is cryptographicallybound to y.Unlike an absolute time stamp, the time speci�ed by a relative time stamp is mean-ingless on its own until compared to the times associated with other time stamps,i.e., the ordering of two or more stamps is determined.De�nition 2.5 A hybrid time stamp s is an (cryptographic) time stamp (see De�ni-tion 2.2) for which both absolute (see De�nition 4.7) and relative times (see De�ni-tion 4.12) are cryptographically bound to y.Stamping and Veri�cation ProtocolsLet u 2 U represent a user in a distributed network who would like to obtain a timestamp s for a message y that can thereafter be veri�ed for its authenticity by a ver-i�er (challenger) v. To accomplish this task, we make use of the following Stampingand Veri�cation sub-protocols (similar to those presented by Benaloh and de Mare[BdM91] and mentioned briey by Haber and Stornetta [HS91]). The production andsubsequent authentication of a time stamp s is referred to as the temporal authentica-tion of the message m, and is performed by a time stamping protocol (TP). Henceforthwe refer to the time stamping (or simply stamping) of a message (or document or data)y.De�nition 2.6 A time stamping protocol (SP), when input a message y, outputs atime stamp s, as given by De�nition 2.2.Although the message y may possess special form (e.g., a document-signature pair), aSP treats y as a �nite string of bits. The message y can be some data that u would liketo stamp, or in the more likely case, y will be the output of a collision-resistant hash of

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 17the actual data x, i.e., y = h(x) (see De�nition 2.10 for de�nition and Section 2.2 formotivation of use). In Chapter 5, we discuss how a notary protocol takes advantageof the special form of the input, in particular, a digital signature. A more detailedanalysis of a time stamping protocol is given in Chapter 4.The \consistent meaning" of the time associated with digital data through theprovision of a time stamp allows for subsequent comparisons of the times associatedwith several events. The veri�cation of a time stamp s therefore involves a validationof the authenticity of the time stamp allowing a subsequent\temporal measurement"involving the associated time(s) t.De�nition 2.7 A time stamp capsule (or timecapsule or simply capsule) capy =(y; t; s; : : :) is a collection of data necessary to allow for the veri�cation (see De�-nition 2.8) of the time t associated with the data y through the time stamp s.De�nition 2.8 A time stamping veri�cation protocol (VP), on input a time capsulecapy performs a \validation" of the authenticity of the time stamp s, relative to (atleast) the purported message y and time t.De�nition 2.9 A time stamping (temporal) measurement determines the orderingof two times t1 and t2, i.e., which of t1 or t2 is earlier or later, or whether they areequal.When respectively associated with data y1 and y2 through time stamps s1 and s2,a temporal measurement determines which of the stamps, for example, may havebeen produced �rst. The veri�cation and temporal measurement of a time stamp(s)is discussed briey for schemes described in this chapter, and is expanded on inChapter 4.2.1.2 Hashing and SigningIn this subsection, we review the concepts of a hash function and signature algorithms.The use of each with regard to time stamping is motivated in Section 2.2. Moredetailed coverage regarding hashing and signing can be obtained from Menezes et al.[MvOV97] or Stinson [Sti95].

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 18De�nition 2.10 A hash function h takes as input an arbitrarily, �nite sized bitstringx and produces an l-bit output, e.g., l = 160 for SHA-1 [FIP95].When several data are input to h, the data are concatentated and input as asingle data item. Concatenation will be denoted using commas as in h(x; y) whichrepresents the hash of the concatenation of data x and y. For use in this thesis, hwill have the following properties1. Ease of computation. Given x, y = h(x) is easy to compute.2. Collision resistance. It is di�cult to �nd inputs x 6= x0 such that h(x) = h(x0).3. One-wayness. It is di�cult to �nd x given y = h(x).Under suitable conditions (and for most hash functions used in practice) a collision-resistant hash function is also one-way.A digital signature provides for the following properties for signed data.1. Data-origin authentication. Authentically binds the identity of the signing userto a message.2. Non-repudiation. Does not allow the legitimate signer to repudiate the legiti-mate production of a valid signature, i.e., in an attempt to deny having producedthe signature.De�nition 2.11 A signature scheme SS is a �ve-tuple (M;Q;K;SA;VA), wherethe following conditions are satis�ed ([Sti95, Def. 6.1]):1. M is a �nite set of possible messages2. Q is a �nite set of possible signatures3. K, the keyspace, is a �nite set of possible keys4. For each user u 2 U , possessing a key K 2 K, there is a signing algorithmsigu 2 SA and a corresponding veri�cation algorithm veru 2 VA. Each sigu :

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 19M!Q and veru :M�Q! ftrue, falseg are functions such that the followingequation is satis�ed for every message m 2 M and for every signature c 2 Q:veru(m; c) = 8<: true if c = sigu(m)false if c 6= sigu(m)A particular instatiation of a signature scheme is given as Protocol SG1.Protocol SG1 The Digital Signature Algorithm (DSA) [FIP94].InitializationNote: This initialization is performed by each user u 2 U .1: u selects a 512-bit prime p with the property that computing discrete logarithmsin ZZp is computationally infeasible.2: u selects a 160-bit prime q such that q divides p� 1.3: u repeatedly selects an element g 2 ZZp� and computes � = g(p�1)=q mod p until� 6= 1.4: u selects a random a where 1 � a < q and computes w = �a mod p.5: u's public key is the tuple (p; q; �; w), while the private key is a.Signature ProductionInput: message mOutput: signature c = sigu(m) = (r1; r2) for message m1: For a messagem, u computes y = h(m) using SHA-1 [FIP95] and selects a randomk where 1 � k < q. The signature (r1; r2) for the message m is de�ned asr1 = (�k mod p) mod qr2 = (y + ar1)k�1 mod qSignature Veri�cationInput: message m0 and signature (r01; r02) purportedly corresponding to message m0Output: indication of whether (r01; r02) is a mathematically correct signature for m01: Veri�er v computes y0 = h(m0), as well asz1 = w(r02)�1 mod qz2 = r01(r02)�1 mod q:2: veru(m0; c0) = true i� (�z1yz2 mod p) mod q = r01.The signature function sigu is used to digitally sign a message m and is denotedc = sigu(m). In most cases, m will be hashed �rst giving c = sigu(h(m)) and unless

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 20otherwise indicated, we assume that messages are hashed before they are signed, butdo not explicitly show this in the notation. veru can be used by all other users toverify the authenticity of a signature (i.e., that a given message was indeed signedby u). If the message has been hashed �rst, this requires delivery of m along withs and computation of h(m) for signature veri�cation. The veri�cation key of u islikewise typically, or for our discussion assumed to be signed by a trusted certi�cationauthority (CA), resulting in a public key certi�cate certu. Certi�cates allow one totrust the binding, i.e., that the key does indeed belong/is associated with the namedentity. (We briey discuss certi�cates here. A more detailed examination is givenin Section 5.2.) This certi�cate typically contains at least, a unique identi�cationnumber (certi�cate serial number), the distinguished name of u, u's veri�cation key,and a validity period. In this way, u is bound to signatures that are successfullyveri�ed using u's public veri�cation key, which has been bound to u's name throughthe CA-signed certi�cate certu. The strength of this binding is determined by, amongother things, the thoroughness of the identity check performed by the CA beforeissuing a certi�cate to u.2.2 Critique of a Simple Time Stamping ProtocolConsider the time stamping protocol given by Haber and Stornetta [HS91] in Proto-col SM1 (a similar scheme was described by Kanare [Kan86]). The scheme is usefulfor motivating the use of the hashing and signing primitives described in Section 2.1.2and illuminating some important requirements concerning the authentic provision ofa time for data.Some concerns with such a scheme (expanding on points made by Haber andStornetta [HS91]) are:1. Privacy of the document. This is not necessarily a concern for all submitteddocuments. However, where there is concern, it results from the fact that Tas well as any eavesdropper, is able to read the contents of the submission intransit to T.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 21Protocol SM1 Document storage by a trusted authority [HS91, Kan86]StampingRequire: The time stamping service T is required to maintain the authenticity ofthe database in which the time stamps are stored for each user.Input: document xOutput: central storage of the time stamp s = (x; t), i.e., the absolute time t ap-pended to x1: user u submits the original document x to a time stamping service T2: T appends the time of submission to x producing s = (x; t) and stores the resultVeri�cationInput: document x, query of the time(s) associated with xOutput: absolute time(s) associated with document x1: user v submits document x to the time stamping service T, with a request for thetime(s) associated with x2: T searches through its entire database outputting the time(s) associated with x2. Size (storage) of the document. This is especially relevant considering that T isaccepting submissions from a potentially large number of users, that may requirelong (e.g., 10 years) storage periods. Multiple, variable-sized submissions froma number of users can soon make storage prohibitive for T.3. Bandwidth required to transmit the document. Similar to the storage requiredfor T, the task of transmitting the document to T may impose a burden on thedistributed system. (Although the transmission of the entire data appears to benecessary, we see below how the submission size can be signi�cantly decreased.)4. Authenticity of the document. The document may be altered during transit byan attacker or erroneously recorded (i.e., the data or the time) by T. Any sucherrors (malicious or otherwise) are not necessarily detectable to T.5. Trust. For example, a malicious T might create false stamps. More speci�cally,T can append a `time' of its choosing to any document of its choosing. Forexample, T has the ability to time stamp a document with a time that is oneyear earlier than the current time. Also, during veri�cation, a user does nothave a method for determining the trustworthiness of the response from the

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 22alleged T.Although the privacy of the submission may not be necessary for the submitter ofthe document, it is certainly not necessary for T to have knowledge of the contents.(Recall that a time stamping protocol is not concerned with the form of a message,but rather, treats the input document only as a �nite string of bits.) Encrypting thedocument is one option. Indeed, since u may encrypt the document for himself onlocal storage, it may make sense to also send an encrypted copy to T. (Notice thatthis complicates the veri�cation procedure since a copy of the decryption key andalgorithm would be required by the veri�er.)The size of the transmitted document and storage required by T are not aidedby the encryption of the document. However, compression of the document will, inmany cases, reduce the size of the submitted document. Indeed, the document canbe compressed, followed by an encryption.However, a better solution exists. As suggested by Haber and Stornetta [HS91],u can deal with the privacy, storage and transmission concerns by using a collision-resistant hash function (see Section 2.1.2), i.e., by submitting y = h(x) as opposedto simply x. u still maintains a copy of the original document x. A user v 6= u,verifying the time associated with y would obtain x from u and submit y = h(x) toT for a veri�cation of the time. The one-wayness property precludes u from claimingthat an alternative document is the actual input to the hash. Privacy concerns onu's machine can still be solved by encrypting the document.Transmission or storage errors can be dealt with by having T return an acknowl-edgement for each submission. u can verify that the correct hash has been recordedwith the correct corresponding submission time. However, this does not preclude thepossibility of the `loss' of the information at T's end or an active attack or imper-sonation of T to the submitting or verifying user. An alternative to this problem,as well as some limiting of malicious incompetence can be achieved by having theacknowledgement for a given submission authenticated by T , along with the time ofsubmission, and returned to u and veri�ed for its authenticity. For example, this mayinvolve the returning of a T-signed time stamp to u. Altering Protocol SM1 to takeinto account the concerns above, one obtains Protocol AB1 as given in Section 2.4.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 23The question of trust in a central time stamping authority may be handled inmany ways, including the following. One is to decentralize the stamp computation.The veri�cation of valid stamps then becomes one of designing a secure multi-partystamping protocol. A second solution, linking, may be used to restrict the stampsthat T is allowed to produce, and more importantly, the times at which he is able toproduce them (see Section 2.5). Restricting T's ability to alter the temporal orderingserves to reduce the trust required in him.2.3 Group HashingIn this section we review techniques for allowing a coarser granularity for the timeprovided by the time stamping of data. This granularity is provided by the timestamping of a round's worth of documents, rather than of individual data. Morethan one document is input per round, producing a single representative group hashvalue; one value will be produced for a given round. The duration of the round canbe parameterized by a �xed length of time or a maximum number of documents thatmight be group hashed during a particular round.The temporal ordering of each document is performed by having the submittinguser1. demonstrate that a document was submitted to a given round; and2. recover the time associated with the resultant round value in which the docu-ment was asserted as being submitted.In this section, Item 1 is dealt with. In Section 3.2, we analyze these techniques.Techniques for providing a time for the group hash result (i.e., Item 2) are reviewedin Sections 2.4 and 2.5.Two motivations for using a group hash over a round of submitted documents are:1. Storage e�ciency [HS91, Mer80]. For time stamping protocols in which multi-ple copies of a time stamp are required or a centralized storage facility is used,some group hash techniques allow for more e�cient storage to be realized (see

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 24Section 3.2.2 for further analysis). Rather than one stamp for each document,there is one stamp for every m documents. The size of the resultant group hasha�ects the success of this technique at decreasing the storage.2. Decentralized computation [BdM93, Nyb96]. The resultant group hash value arfor round r can (in most cases) be computed individually by each user; it maynot be necessary to have a centralized T compute the resultant value.An important practical concern (especially with a decentralized computation) in-volves the ordering of the documents input to a particular round, to allow eachparticipating user to recover the same round value (in the case that the group hashcomputation is non-commutative). Benaloh and de Mare [BdM91] suggest that eachuser in the entire system have a regular position for each round (their suggestionapplied particularly to Protocol GH3). In rounds in which users do not participate,a default value is used in place of a real document. Thus, if there were m documentssubmitted per round and n total users in a particular distributed system, then n doc-uments would be submitted to the group hash function. This is clearly impracticalsince it may often be the case that n >> m. Using a centralized T for stamp com-putation is useful for cases when an ordering of the participants' input to the grouphash function is required and as well, avoids the need for expensive broadcasting andimpractical user interactions. The beginning and end of a round can be delimited bypublically known times (e.g., every 10 minutes starting on the hour) or may be moredynamic if orchestrated by a central authority.Let y1; y2; : : : ; ym be the documents submitted during round r; submitted heremeans either broadcast by each user to all others in the case where each user must beable to compute ar or simply transmitted to a centralized time stamp authority (T).For simplicity, let ui be the submitter of yi, though in reality, one user can submitmore than one document. Let jyij = log2 yi = lg yi = n denote the number of bitscontained in yi. In most cases, beyond the production of ar for a given round, user uiwill also have some additional information, necessary (if it exists) for demonstratingthat the data yi was indeed used in the computation of ar. We refer to this informationas memberyi .

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 25The potential decrease in the amount of storage required for the resultant grouphash value has the e�ect of potentially increasing the amount of storage required formemberyi for each participant in a round. The next three subsections respectivelyreview techniques in which this amount is decreased.2.3.1 Linear StorageIn this subsection we discuss schemes for which the amount of storage for each userparticipating in the round is linearly proportional to the number of participants (=number of documents) submitted in the round. In other words, if ui submits yi, thenmemberyi contains a number of components (each the same size as yi) that is a linearfunction of the number of users participating in the round.Protocol GH1 Cumulative Group Hash [BdM91].Group HashRequire: An ordering of the users participating in each round is required to allowconsistent computations of ar by each participating user.Input: fy1; : : : ; ymgOutput: ar, memberyi1: yi = h(xi) for document xi is broadcast by each ui2: each user computes and stores ar = h(y1; : : : ; ym) and memberyi =(y1; : : : ; yi�1; yi+1; : : : ; ym) for their own yi.Veri�cationInput: yi, memberyi , arOutput: indication of whether yi contributed to the construction of ar1: user v obtains yi and memberyi from ui, computes a =h(y1; : : : ; yi�1; yi; yi+1; : : : ; ym) and accepts that yi contributed to the pro-duction of ar only if a = ar.Protocol GH1 was given by Benaloh and de Mare [BdM91]. Assuming that h iscollision-resistant (see Section 2.1.2), it should be computationally infeasible for oneto �nd inputs y01; y02; : : : ; y0m0 such thath(y1; y2; : : : ; ym) = h(y01; y02; : : : ; y0m0):Notice that it may be that m0 6= m, as the veri�er may not be aware of the number

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 26of documents submitted for the computation of ar. If each user stores ar, it is onlynecessary that the submitter has the inputs necessary to reproduce ar, and hencedemonstrate that his document belongs to the round in which ar was computed.Protocol GH1 can be altered slightly to allow for a recursive construction of ar[BdM91]. Let z1 = y1; z2 = h(z1; y2); : : : ; zm = h(zm�1; ym)ar = zm (2.1)On average, each user stores m2 documents and asymptotically, the storage over thesystem is the same as the previous scheme, i.e., approximately m2 documents arestored in total by the m users participating in a particular round. Protocol GH2describes the scheme.Protocol GH2 Recursive Group Hash [BdM91].Group HashRequire: An ordering of the users participating in each round is required to allowconsistent computations of ar by each participating user.Input: fy1; : : : ; ymgOutput: ar, memberyi1: yi = h(xi) for document xi is broadcast by each ui2: each user computes and stores ar (as computed in (2.1)) and memberyi =(zi�1; yi+1; yi+2; : : : ; ym) for their own yiVeri�cationInput: yi, memberyi , arOutput: indication of whether yi contributed to the construction of ar1: user v obtains yi and memberyi from ui, computes a = h(zi�1; yi; yi+1; : : : ; ym)and accepts yi if a = ar.2.3.2 Logarithmic StorageThe schemes of Section 2.3.1 required that each user that submitted a document forgroup hashing during a particular round, stored an amount of information that wasalways linearly proportional to the total number of documents submitted to a given

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 27round. In what follows, we review a technique for reducing this storage, allowing oneto achieve a logarithmic storage requirement.We can think of the production of a group hash as a technique to authenticate anumber of pieces y1; y2; : : : ; ym to produce a single authentic value ar. However, inour case, we only require a resultant value whose authenticity is maintained by othermeans, i.e., the timing information is provided at a later time. A similar problemwas tackled by Merkle [Mer80, Mer82] for the authentication of a �le of public keys.Rather than having each user store all yi (e.g., the public keys of all other users),compute ar as ar = h(h(y1; : : : ; ybm2 c); h(ybm2 c+1; : : : ; ym))In this way, ui need only store the single hash of the jm2 k documents that doesn'tcontain his own yi as well as the remaining jm2 k documents, i.e. jm2 k+ 1 total piecesas opposed to m � 1 for Protocol GH1. Notice as well the alternative computationfor h(y1; : : : ; ybm2 c) (and similarly for h(ybm2 c+1; : : : ; ym)) ash(h(y1; : : : ; ybm4 c); h(ybm4 c+1; : : : ; ybm2 c)):This additional measure reduces the storage to jm4 k+ 3 for each user.One can continue by recursively dividing until each is the hash of only a single yi,in other words until m2d = 1, which occurs when d = lgm. Generalizing from above,the amount of storage for each user is the number of intermediate hashes plus thenumber of documents required to compute the hash to which you belong, or in otherwords, m2d + (d� 1)which is lgm when d = lgm. Therefore, the storage for each user, is logarithmic inthe number of round participants. This computation is shown in Figure 2.1 whenm = 8.Speci�c implementations of this idea (as applied directly to digital time stamping)were given independently by Benaloh and de Mare [BdM91] and Bayer, Haber andStornetta [BHS93]. They are essentially straightforward implementations of Merkle'stree authentication [Mer80, Mer82]. A variation of this technique is used in a commer-cial time stamping implementation given as Protocol HY1 [Tro95], where a central

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 28

��������������������������������
���� ���� ���� ����
���� ����

����

������� AAAAAAK ������� ������� �������AAAAAAK AAAAAAK AAAAAAK
������� @@@@@@I ������� @@@@@@I

������������* HHHHHHHHHHHHY

yy y y y y y y y
yyy

y y
y

1 2 3 4 5 6 7 8
12 34 56 78

14 58
ar

Figure 2.1: Logarithmic user storage group hash technique. A speci�c example isillustrated in which 8 data are group hashed to produce ar. Each yi is computed asthe hash of the concatentation of the two children. For example, y58 = h(y56; y78)where `,' denotes the concatentation of the bitstrings y56 and y78.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 29entity performs the computation of the hash. The time stamp is returned to the user(including an indication of which leaf position the user has been given) who can thenverify his inclusion in the round by comparing his compuation of the time stampwith the one that is published say weekly, for example, in the NY Times. A generic(decentralized) version of the tree-based hashing technique is given in Protocol GH3.Protocol GH3 Tree Group Hash [Mer80, BdM91, BHS93]Group HashRequire: An ordering of the users participating in each round is required to allowconsistent computations of ar by each participating user.Input: fy1; : : : ; ymgOutput: ar, memberyi1: yi = h(xi) for document xi is broadcast by each ui2: each user participating in the current round computes ar as shown speci�cally form = 8 in Figure 2.1 where the parent of nodes containing bit strings y and y0 iscomputed as h(y; y0) and `;' denotes the concatenation of bit strings. memberyi =(z1; : : : ; zlgm) is a list containing the lgm values in the tree necessary to recomputear. From Figure 2.1 for example, we have membery3 = (y4; y12; y58)Veri�cationInput: yi, memberyi , arOutput: indication of whether yi contributed to the construction of ar1: user v obtains yi and memberyi from ui, computes a = h(: : : (h(yi; z1); : : :); zlgm)and accepts yi if a = ar. We use a `;' here to indicate concatenation as beforeexcept that the order of these inputs varies for each user. For example, fromFigure 2.1, for y3 and membery3 , v computesa = h(h(y12; h(y3; y4)| {z }y34)| {z }y14 ; y58)where if the correct y3 and membery3 were maintained by u3, a = ar is true.Therefore for u3, y34 = h(y3; z1) where z1 is the �rst element of membery3 whilefor u4, y34 = h(z1; y4) using membery4 .As demonstrated by Benaloh and de Mare [BdM91] (and similar to the securityprovided for the schemes of Section 2.3.1), �nding a y0 62 fy1; : : : ; ymg such thata challenger could be fooled into believing that y0 was indeed part of the hash to

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 30produce ar would imply that a collision for the hash function h has been found. This,however, would contradict the assumption of collision resistance for the hash.2.3.3 Constant StorageIn the previous two subsections, linear and logarithmic storage factors were respec-tively achieved for each user participating in a round. These solutions used a (non-speci�c) hash function for which the only assumption made was it be collision-resistant. In this subsection, additional assumptions on the hash function are usedto allow one to achieve a constant amount of storage for each user.Schemes Based on Associative Hash FunctionsContinuing along the same lines as in Section 2.3.1, the resultant group hash ar overthe documents y1; y2; : : : ; ym is computed recursively as in (2.1).De�nition 2.12 A function h : X ! Y is associative if 8x; y; z 2 X, h(x; h(y; z)) =h(h(x; y); z).The following ideas were presented by Benaloh and de Mare [BdM91]. Supposethat the hash function h is associative. Since the order of application of an associativefunction h is irrelevant, ui need only store zi�1, yi and an accumulated hash of allyj where j = i + 1; : : : ; m, namely wi+1. The computation of the hash for the roundby this user consists in computing h(h(zi�1; yi); wi+1). If h is also commutative, thenuser ui need only store yi along with a single accumulated hash for all yj, j 6= i.Is the construction of an associative one-way hash an achievable goal? As of yet,the answer is no, and they do have other applications as well (which are beyond thescope of this thesis). An overview of this topic is given by Rabi and Sherman [RS97].One-Way AccumulatorsBenaloh and de Mare [BdM93] use the properties of quasi-commutativity (de�nedbelow) and one-wayness to develop a one-way accumulator which allows the resultant

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 31hash value for a round to be computed with only a constant amount of storage foreach user. The scheme is described as a decentralized computation.To achieve their goal, the de�nition of a hash function is slightly altered. A familyof one-way hash functions is an in�nite set of functions hi : Xi � Yi ! Zi such that(i is subsequently omitted for simplicity):1. Ease of computation. Given x and y, z = h(x; y) is computationally feasible tocompute.2. Collisions. Given a pair (x; y) and given a y0, it should be computationallyinfeasible to �nd an x0 such that h(x; y) = h(x0; y0). Note that it may bepossible that given (x; y), one can easily �nd a pair (x0; y0).A function f : X � Y ! X is quasi-commutative iff(f(x; y1); y2) = f(f(x; y2); y1)A family of one-way accumulators is a family of one-way hash functions that areeach quasi-commutative. The one-way accumulator is useful in that computationssuch as z = h(h(: : : h(: : : (h(h(x; y1); y2); : : : ; yi); : : : ; ym�1); ym)for initial value x, do not depend on the order of the yi. Thus, given only a singleintermediate hash value wi wherewi = h(h(: : : h(h(: : : (h(h(x; y1); y2) : : : ; yi�1); yi+1); : : : ; ym�1); ym);z = h(wi; yi) is computable.Notice that addition, multiplication and exponentiation are all quasi-commutative.However, only exponentiation has the potential of being one-way. Therefore, leten(x; y) = xy mod nbe the accumulator, where n = pq is the product of two primes, the form of which isdiscussed below. Group hashing using this accumulator is described in Protocol GH4.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 32Protocol GH4 Exponentiation Group Hash [BdM93].Group HashRequire: A rigid composite integer n = pq, initially constructed by a trusted au-thority. The primes p and q are destroyed subsequent to the computation ofnInput: fy1; : : : ; ymgOutput: ar, memberyi1: yi = h(xi) for document xi is broadcast by each ui2: users agree upon a value x (though likely there is a common public value usedby all users for each round, e.g., as suggested by Benaloh and de Mare, a rep-resentation of the current time), from which the starting seed x0 = x2 mod n isobtained. Each user ui computes and stores ar = xy1���ym0 mod n and memberyi =xy1���yi�1yi+1���ym0 mod n for their own yi.Veri�cationInput: yi, memberyi , ar, nOutput: indication of whether yi contributed to the construction of ar1: user v obtains yi and memberyi from ui, computes a = (memberyi)yi mod n andaccepts yi if a = ar.To achieve a temporal authentication of this group hash, the authors suggest thatthe value x might represent the current date or time. The fault with this suggestionis discussed in Section 4.4.1. With regards to one-wayness, for a suitably chosencomposite n, the product of two primes, Shamir [Sha81] has shown that if root �ndingis di�cult (i.e., for a given y0 and ar, �nding membery0 such that ar � (membery0)y0(mod n)), then en(x; y) is one-way for suitably chosen n. However, because of therepeated exponentiations, the worry that small subgroups may be reached necessitatesa stricter construction for n, as now discussed.A prime p is safe if p = 2p0 + 1 where p0 is an odd prime. A rigid integern = pq is composed of distinct safe primes p and q such that jpj = jqj, denoting thatthe bitlengths of the primes are equal [BdM93]. Given that gcd(y; n0) = 1 wheren0 = p�12 q�12 , computations of en will stay in the large subgroup of squares modulo nprovided x 6= �1 and y 6= 0. The construction of n may be undertaken via a trustedoutside source, a special purpose physical device, or a secure multiparty computation.One thing that might help an attacker is the access to a number of other roots

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 33modulo n, i.e., the stamps of each of the other users for a particular round. Benalohand de Mare [BdM93] go on to show that such an attack is computationally infeasible.Fast Accumulated HashingNyberg [Nyb96] describes a scheme for accumulated hashing. It is an improvementover Protocol GH4 in that it does not have a trapdoor. In Protocol GH4, the pa-rameters were chosen such that there exists a trapdoor for easily cheating the scheme(i.e., the factorization of n). Despite the existence of this information, the trapdooris not used in the scheme nor is it even supposed to remain known as it is ideallydestroyed during the public parameter creation period. An equally attractive advan-tage for Nyberg's scheme is that besides the submitted data, the user need not storeany additional information, i.e., jmemberyi j = 0.Assume that yi, i = 1; : : : ; m are the l-bit one-way transformations of documentssubmitted for accumulation (the process of obtaining the l-bit transformations isdescribed later). Further assume that the yi are randomly chosen elements from a setY with uniform distribution. Each yi can be decomposed asyi = fyi1; yi2; : : : ; yirg (2.2)where jyijj = d for i = 1; : : : ; m, j = 1; : : : ; r.Using this partitioning, for each yi, an r-bit bi = fbi1; : : : ; birg is obtained usingthe following rule:for i = 1; : : : ; m; j = 1; : : : ; r; bij = 8<: 0 if yij = f0gd;1 otherwise (2.3)This �rst compression by a factor of d is a function f : f0; 1grd ! f0; 1gr where eachd-bit yij is mapped to a single bit bij.The r-bit accumulation value (time stamp) is obtained by performing bitwisemultiplication modulo 2 of the components of the bi. In other words, the accumulationvalue a = fa1; a2; : : : ; arg is obtained asaj = mYi=1 bij mod 2; j = 1; : : : ; r (2.4)

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 34This second compression by a factor of m can be described by the function g :f0; 1grm ! f0; 1gr. Notice also that we have memberyi = ;. The protocol stepsare described in Protocol GH5.Protocol GH5 Bit Group Hash [Nyb96].Group HashInput: fy1; : : : ; ymgOutput: ar1: For their own document xi, each user ui computes the l = rd bit yi = gen(h(xi))as described below for (2.5).2: yi is decomposed as in (2.2).3: yi is compressed to obtain the r bit bi as in (2.3).4: bi is broadcast to all users.5: Each user computes and stores a as computed in (2.4).Veri�cationInput: xi, arOutput: indication of whether yi contributed to the construction of ar1: user v obtains xi from ui, computes bi (as described for computation of the GroupHash shown above in the �rst part of the protocol) and accepts xi if the jth bitin a is 0 when the j bit in bi is also 0.Analysis of Protocol GH5. Suppose that a user claims that a value x0 contributedto the production of a. Firstly, x0 is submitted to obtain the l-bit y0. y0 is split intor d-bit pieces and the �rst part of the compression is performed to obtain the r-bitvalue b0 = fb01; b02; : : : ; b0rg.Comparing the submitted b0 with the authenticated accumulation value a, a suf-�cient condition to have aj = 0 is that b0j = 0 (it is only su�cient since any one of mb0i's can contribute to having aj = 0). Now if b0j = 0 in the test string, the claim isthat b0 belongs to the round in which a was produced. Therefore, for b0 to \belong toa" it must be true thatif b0j = 0 then aj = 0, where j = 1; : : : ; r.For the security of Protocol GH5, it is important to know if such a y0 62 fy1; : : : ; ymgcan easily be found that passes the veri�cation step. To simplify the analysis, assume

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 35a given b0, produced subject to the restraints of Protocol GH5. For this b0, we canstate the following probabilities:P (b0j = 0) = 2�d;P (b0j = 1) = 1� P (b0j = 0) = 1� 2�d:For the group hash value a,P (aj = 1) = mYi=1P (bij = 1)= mYi=1(1� 2�d)= (1� 2�d)mP (aj = 0) = 1� P (aj = 1)= 1� (1� 2�d)m:Returning to the candidate b0, it is important to determine its probability ofsuccess for being deemed to \belong to a". Thereafter, one can choose parameters tominimize this probability. In the theorem below, let N = 2d be the upper bound onthe number of messages that can be hashed, i.e., m � N .Theorem 2.1 [Nyb96] Given a candidate b0 and an authenticated, accumulatedhash, denoted a, created subject to the restraints of Protocol GH5, thenP (b0 \belongs to" a) � e�rNeProof The following steps will determine the probability that b0 will pass theveri�cation step. Let qj be the proposition \if b0j = 0 then aj = 0". The negation :qjof qj is the statement \b0j = 0 ^ aj = 1".P (:qj) = P (b0j = 0)P (aj = 1)= 2�d(1� 2�d)mP (qj) = 1� P (:qj)= 1� 2�d(1� 2�d)m

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 36t l30 835K50 1.4M75 2.1M100 2.8MTable 2.1: BitLength l required for the output of the one-way transformation to allowa random value b0 to have e�t probability of \belonging to" accumulator a. l = rdwhere r = Net and d = lgN . e = 2:71828 is the natural logarithm. For this particularexample, d = 10 (so that N = 1024).P (b0 \belongs to" a) = P (q1 ^ � � � ^ qr)= P (q1) � � �P (qr)= (1� 2�d(1� 2�d)m)rFrom here, we have(1� 12d (1� 12d)m)r � (1� 1N (1� 1N)N)r � (1� 1Ne)r � e�rNeLet e�t be the probability of success for a candidate b0 givingl = rz}|{Net lgN| {z }d :Table 2.1 displays some possible choices where N = 1024 (hence d = 10) for avariable t. It demonstrates that for even the most minimal security { e�30 { theoutput bitlength of the one-way transformation required for the production of the yiis quite large, i.e., 835 Kilobits. In contrast, most hash functions produce an outputof � 160 bits, given an arbitrarily large input size. To obtain such an output, Nyberg[Nyb96] suggests use of a hash function h in conjunction with a pseudo-random bitgenerator (PRBG) gen. The document x0 is input to h whose short output is inputas a seed to gen. From the PRNG gen, l bits can be produced. Therefore,y0 = gen(h(x0)) (2.5)Notice that this large number of bits is only temporarily required at the timeof computation of the authenticated accumulator a or during the veri�cation of any

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 37values at some subsequent time. However, note that the size of a itself (which mustbe stored long-term) is also quite large. For the example given in Table 2.1, the sizeof a is 110 the size of l (since d = 10).2.4 Absolute Time StampsStamping protocols in which an absolute time stamp (see De�nition 2.3) is issuedhave the speci�c time at which a message was stamped contained in the time stamp(or at least a piece of data from which the time is directly and uniquely obtained).The granularity of this time may depend on the application in which the time is tobe provided, but can include time to the nearest minute, second, etc. This timinginformation for one message can be obtained independently of the timing materialprovided for other messages. In this way, the production of an absolute time stampis memoryless with respect to (i.e., independent of) other stamps that are produced.Assigning an absolute stamp in a distributed network assumes the existence of an au-thentic clock from which each potential verifying user maintains their local clocks. Areasonable amount of clock drift between respective clocks is assumed to be tolerated.The schemes reviewed in this section are critiqued in Section 3.3. Generalizationsregarding the production of absolute time stamps are discussed in Section 4.3.2. Inthis section, we review the current literature related to the provision of absolute timestamps. Subsection 2.4.1 reviews techniques in which a time stamp is produced by acentral time stamp authority (or several such authorities). Subsection 2.4.2 reviewstechniques in which individual user entities participate in the time stamp production.2.4.1 Using a Time Stamping ServiceConsider the time stamping protocol given in Protocol AB1 [HS91]. Notice the di�er-ence from Protocol SM1 where T need now maintain only the secrecy of his signaturekey, while each user must have (or be able to obtain) an authentic copy of T's sig-nature veri�cation key. The exact same scheme (termed the \Anonymous Service")was later given by Pinto and Freitas [PF96]. Yet these are both pre-dated by the

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 38presentation of a similar scheme by Merkle [Mer80, Mer82] (see Protocol NT1).Protocol AB1 Centralized Time Stamp Construction [Mer80, HS91, PF96].StampingRequire: A time stamp authority T that is trusted to provide the correct absolutetime to submitted data.Input: the hash y = h(x) of a document xOutput: the time stamp s = sigT (y; t) produced by T1: User u sends the hash y of the document x to the time stamp authority T.2: T veri�es that the request is of the proper form, appends the current time t andreturns t along with the T-signed response s = sigT (y; t).3: u veri�es the signature applied by T and ensures that an acceptable time t isassociated with y (where acceptable might mean a time greater than when y wassubmitted and prior to when the T-signed response was received).4: u stores fx; s; tg as the time stamp capsule.Veri�cationInput: fx; s; tgOutput: indication of whether x is time stamped with time t1: user v obtains fx; s; tg from u, computes y0 = h(x) and ensures that (y0; t) wassigned by T, producing s.One concern with Protocol AB1 is that trust is required in a single trusted author-ity, for the honest production of time stamps, as well as the secure maintenance ofprivate keying material. To reduce the trust required, Adams et al. [ACPZ98] buildon top of Protocol AB1 with a scheme that uses so-called temporal data authorities(TDAs) for additional corroborations regarding the time t.Continuing from the submission of y in Protocol AB1, T submits y to a number ofTDAs (as speci�ed by u), requesting additional, unpredictable \timing information"that associates y with a particular event. This timing information is appended toy, signed by the TDA and returned to T . Suggestions for the unpredictable timinginformation include [ACPZ98]1. stock market information,2. sports results,3. o�cial weather for a speci�c location,

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 394. lottery results,5. birth or death announcements in speci�c newspapers,6. headlines in speci�c newspapers,7. information linking the request with previous and subsequent requests (e.g.,hash values) that can be veri�ed against information that is made public by theTDA, and8. a signed packet from a secure time source.Items 1 to 6 refer to what we de�ne as implicit absolute time (see De�nition 3.4).The use of such a time is discussed in Section 3.3.1. Item 7 refers to the relativeordering of time stamp submissions by linking them. The public storage allows asubsequent recovery of the corresponding absolute time so long as one is authenticallyprovided along with the public storage (see Sections 4.3.3 and 4.2.1). Item 8 indicatesthe option in which the TDAs are used as the providers of corroborating absolutetimes. Note that each TDA can provide a di�erent kind of temporal data. The entirescheme is described as Protocol AB2.2.4.2 Decentralized Solutions: User-Constructed StampsIn this section, we review three schemes that remove the requirement for a centraltime stamping service T. The stamps are constructed by individual users. Since auser has the capability to construct a stamp at any time, some additional propertiesmust be used. These vary from distributing the stamp storage to distributing itsconstruction.As in Section 2.4.1, absolute time stamps are assigned to each of the submissions.For the �rst two schemes, the stamp computation is performed by the submittinguser, while the stamp authentication is distributed (via a distributed storage). Thethird scheme distributes the construction of the stamp among a number of users.Storage of the stamp is maintained by the submitter of the document.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 40
Protocol AB2Centralized Time Stamp Construction with Additional Corroboration[ACPZ98].StampingRequire: Temporal data authorities (TDAs) are an optional enhancement, whosefunction is to accept a request from the time stamp authority and return a signedresponse over the received request with corroborative temporal data informationappended.Input: the hash y = h(x) of a document xOutput: time stamp s = sigT (y; t; tempData1; : : : ; tempDatak)1: User u sends the hash y of the document x and optionally, a request for k addi-tional corroborative times, to the time stamp authority T.2: T veri�es that the request is of the proper form. Should any corroborative tem-poral data be requested, T sends y to k TDAs.3: Each TDAi accepts y, appends appropriate, unpredictable information,tempDatai, signs and returns the result tempDataTokeni to T .4: T veri�es the signature for tempDataTokeni, for each i, ensuring that it is com-puted over y. T may, but is not required to verify the time provided by tempDatai.5: T appends the current time t and returns t along with the T-signed responses = sigT (y; t; tempDataToken1; : : : ; tempDataTokenk).6: u veri�es the signature applied by T and ensures that an acceptable time t isassociated with y (where acceptable might mean a time greater than when y wassubmitted and prior to when the T-signed response was received).7: u may also verify that the times provided by the tempDatai are within acceptablebounds, e.g., close to the time t.8: u stores fx; s; t; tempDataToken1; : : : ; tempDataTokenkg as the time stamp cap-sule.Veri�cationInput: fx; s; t; tempDataToken1; : : : ; tempDataTokenkgOutput: indication of whether s is a valid signature, i.e., for x time stamped withtime t1: user v obtains fx; s; t; tempDataToken1; : : : ; tempDataTokenkg from u, com-putes y0 = h(x) and ensures that (y0; t; tempDataToken1; : : : ; tempDataTokenk)was signed by T, producing s.2: should v also require additional corroborative evidence regarding the time ofstamping, each tempDatai may also be veri�ed against the time t, possibly in-volving interacting with the appropriate TDA.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 41Protocol AB3 Broadcast-and-save time stamping technique [BdM91].StampingInput: the hash y = h(x) of a document xOutput: distributed storage of y1: User u broadcasts y = h(x) to all other users at time t.2: Every other user stores y, along with the time t corresponding to when y wasreceived.Veri�cationInput: fx; tgOutput: indication of whether x is time stamped with time t1: User v obtains x, computes y = h(x) and determines (by lookup in v's ownrecords) whether y was recorded at time t.Benaloh and de Mare [BdM91] make reference to a scheme which we describe asProtocol AB3. Stinson [Sti95] alters Protocol AB3 so that a centralized entity isrequired for the coordination of the storage of the time stamps, where this storage isdistributed. In particular, the resultant time stamp is recorded in a publically veri-�able medium, e.g., a local newspaper. Alternatives for authenticating the resultanttime stamp are discussed in Section 4.2.1. Protocol AB4 describes Stinson's scheme.The use of so-called unpredictable information such as pub is discussed further inSection 3.3.A solution that speci�es more fully the storage responsibilities for the users wasgiven by Haber and Stornetta [HS91]. Each user ui has access to a secure signaturescheme sigui as well as a pseudo-random number generator gen. Protocol AB5 de-scribes the steps taken for user u to obtain a time stamp. y is used as a seed forgen, where the deterministically generated output can be used to select some subsetof users.2.5 Relative Time StampsIn this section, we review schemes in which the stamps for several rounds are linked,allowing for the provision of a temporal ordering of the stamps. The idea of linkingis similar to the linking used in message passing protocols. (See Menezes et al.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 42Protocol AB4 Posting of time stamp to a distributed, publically veri�able medium[Sti95].StampingRequire: A publically veri�able storage medium for which information can be addedby users, but not modi�ed nor deleted.Input: the hash y = h(x) of a document xOutput: Storage of u's signature s = sigu(y; t) in a publically veri�able medium.1: At time t, user u computes the digital signature s over the concatentation ofy = h(x) and pub, i.e., s = sigu(y; pub) where pub refers to public information thatcould not have been predicted before time t. For example, pub might representthe hash of the closing values of the New York Stock exchange.2: The triple c = fy; s; pubg is published in a publically veri�able medium, e.g., localnewspaper.Veri�cationInput: fx; tgOutput: indication of whether x is time stamped with time t1: User v obtains fx; tg from user u, computes y = h(x), obtains the pub informationcorresponding to time t and searches for (and determines the correctness of) theentry fy; s; pubg in the publically veri�able medium.Protocol AB5 Decentralized time stamp construction with local storage [HS91].StampingRequire: Each user requires possession of or access to veri�cation keys of other users.The participation of users is required for the production of a time stamp.Input: the hash y = h(x) of a document xOutput: [(y; u); (z1; : : : ; zk)] where zi = sigui(t; y)1: For document x, u computes y = h(x) as well as gen(y)! (u1; : : : ; uk) denotingthat the output of the pseudo-random function gen(y) is used to select to somesubset of users.2: u gives y to each ui.3: Each recipient computes and returns to u, zi = sigui(t; y).4: u stores [(y; u); (z1; : : : ; zk)].Veri�cationInput: fx; t; (z1; : : : ; zk)gOutput: indication of whether x is time stamped with time t1: User v obtains [(y; u); (z1; : : : ; zk)] from u, computes (u1; : : : ; uk) from gen(y).2: v veri�es each of the zi (i.e., veri�es that the time in each certi�cate is within thetime in question).

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 43A Bmsg1������������������������!msg2 ������������������������msg3������������������������!Figure 2.2: Generic Message Passing[MvOV97, Chapter 10], Meyer et al. [MM82, Chapter 8] or Davies et al. [DP84,Chapter 5] for background.) The goal of linking messages is to prevent attacks suchas message replay, message insertion, message deletion. For example, consider thesimple message exchange between users A and B given in Figure 2.2. One wouldlike to prevent, for example, the malicious insertion of msg20 between messages msg1and msg2. One of the means for preventing such attacks is the use of time-variantparameters (TVPs). Random numbers, sequence numbers and date or time stampsare examples of TVPs.The analogous attack for relative time stamping protocols is the insertion of amessage with a false time stamp into the current temporal ordering of messages. Justas TVPs allow for the distinguishing of several protocol instances in a message passingprotocol, they can also be used to distinguish (or order) one round from another in atime stamping protocol. Each time stamp issued (i.e., the result of a round) can bethought of as a single message in a large, ongoing time stamping protocol.The basic linking relation can be described by the simple recurrence relationar = h(ar�1; yr)where ar is the time stamp for the rth round and yr = h(xr) is the hash of thedocument to be stamped during the rth round (or alternatively, may represent theoutput of a group hash). This equation provides an ordering of the yi. Furtherauthentication of the resultant ar allows for a recovery of this ordering during stampveri�cation. Variations result from the particular construction of ar�1 and the amountof user versus central entity cooperation required for the validation of a relativelyordered time stamp. These linking techniques are discussed further in Section 3.4.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 44
- - - -ID1CLID1112

IDCLID
IDCLIDiiii i+1

rrrrr+1.a a a
Figure 2.3: Chain of time stamps in Protocol RL1.Haber and Stornetta [HS91] provide for a recovery of the relative ordering of thedocuments by requiring user interactions during stamp veri�cation. The protocol usesa central time stamping service T that requires no record-keeping. Each user storesinformation pertaining to their own submission and as well, information explicitlyde�ning a relationship with the stamp produced immediately prior to their own. Here,r denotes the rth round, where one document is stamped per round. Protocol RL1describes their protocol. The resultant chain of stamps is shown in Figure 2.3. InSection 4.4.2, the security of this protocol is analyzed.A similar recursive linking to Protocol RL1 is given by Pinto and Freitas [PF96]with Protocol RL2. The distinguishing feature is the use of a central time stampauthority when validating the temporal order of two stamps. A more interestingdistinction regards the di�ering use of the relative ordering of the stamps. WhereasProtocol RL1 (and likewise Protocol RL3) uses the linking as a means for detectinga rogue time stamp authority, Protocol RL2 (and likewise Protocols RL4 and RL5)uses the linking to allow for a subsequent temporal measurement between two inputdata. This point is discussed further in Section 4.3.3.The extension of the linking element can be used to explicitly reference more thanone of the previous stamps. The purpose of this technique is to reduce the requirednumber of potential interactions between users (as required speci�cally for Proto-col RL1), as well as increasing the work and potentially the number of conspiratorsrequired by an attacker attempting to produce a false stamp.Protocol RL3 describes the Haber and Stornetta [HS91] variant of Protocol RL1.Its intention is to remove the requirement for users to keep all of their time stamps(in anticipation of their participation in future challenges). A challenger can now

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 45
Protocol RL1 Haber-Stornetta Linking [HS91].StampingNote: As indicated by Haber and Stornetta, the time stamp authority T need notperform any record keeping nor be trusted since T is unable to back or forwarddate stamps. (See Section 4.4.2 for and indication as to why this claim is false.)Input: yr = h(xr) is the hash of document xrOutput: ar; IDr+11: User u sends yr = h(xr), for document xr and IDr = IDu where IDu is theunique identi�cation for user u, to the time stamp authority T.2: T computes the certi�cate ar for this rth submission, namely ar = sigT (Cr),where Cr = (r; tr; IDr; yr;Lr)Lr = (tr�1; IDr�1; yr�1; H(Lr�1))and H is a collision resistant hash function, and tr is the absolute time of thesubmission. Lr is referred to as the linking information and contains the respectiveinformation pertaining to the submission from the previous round.3: Upon receiving the next request for a stamp from user v, T sends time stamp(ar; IDr+1 = IDv) to u who veri�es that the signature has been computed prop-erly and saves the time stamp for future use.Veri�cationInput: (ar; IDr+1)Output: indication of whether the absolute time tr associated with yr in ar is trust-worthy1: User v obtains (ar; IDr+1) from u.2: v veri�es the mathematical correctness of the signature ar.3: To verify that there hasn't been a collusion with T (i.e., T did not use a fake timetr), v contacts IDr+1 and obtains (ar+1; IDr+2) wherear+1 = sigT (r + 1; tr+1; IDr+1; yr+1;Lr+1)and checks that Lr+1 contains both yr and H(Lr).4: Optionally, v may also check IDr+2's stamp or verify previous stamps using IDr�1(as it is included in Lr).

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 46

Protocol RL2 Recursive Hash Linking [PF96].StampingInput: yr = h(xr) is the hash of document xrOutput: far; Cr; Lr; tr; rg1: User u submits yr = h(xr) to a time stamping authority T who computes the timestamp ar = sigT (Cr), where Cr = (r; tr; yr; Lr), where tr is the time of submissionof yr and the linking element is computed asL1 = IV (2.6)Lr = h(ar�1; Lr�1); r � 2;where IV refers to an initial value.2: far; Cr; Lr; tr; rg are returned to u by T and maintained in a database by T .Veri�cationInput: fai; Ci; Li; xi; ti; ig; faj; Cj; Lj; xj; tj; jgOutput: A determination of the temporal ordering of xi and xj.1: User v computes yi = h(xi) and yj = h(xj) and validates the signatures on theT-signed ai and aj.2: v requests sij = fset of stamps from round i to jg from T.3: v continues the recursive hash computation (as in (2.7) above) from Li, using aiand sij to see if Lj is the result. If so, v concludes that ai contributed to thecomputation of aj and was therefore stamped prior to aj. If not, v repeats theprocess starting at Lj to determine if aj contributed to the computation of ai andwas therefore stamped prior to ai.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 47
Protocol RL3 Haber-Stornetta Extended Linking [HS91].StampingInput: yr = h(xr) is the hash of document xrOutput: ar; (IDr+1; : : : ; IDr+k)1: Similar request and construction to Protocol RL1 except that the linking infor-mation is nowLr = [(tr�k; IDr�k; yr�k; H(Lr�k)); : : : ; (tr�1; IDr�1; yr�1; H(Lr�1))]2: Upon receiving the next k requests for a stamp from user v, T sends(ar; (IDr+1; : : : ; IDr+k)) to u who veri�es the time stamp ar by verifying themathematical correctness of the signature over Cr and veri�es that the informa-tion signed is consistent with the information that was submitted.Veri�cationInput: (ar; (IDr+1; : : : ; IDr+k))Output: indication of whether the absolute time tr associated with yr in ar is trust-worthy1: User v obtains (ar; (IDr+1; : : : ; IDr+k)) from u.2: v veri�es the validity of the time stamp ar by validating the mathematical cor-rectness of the signature applied by T .3: To verify that there hasn't been a collusion with T, v contacts any of the next kclients, IDr+i, i = 1; : : : ; k and ensures that the time stamp information for ar isincluded in the linking information of the time stamp for these clients.4: Optionally, v may also verify the correct inclusion of previous time stampingmaterial in Lr by consulting with any of the k clients included in u's own timestamp.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 48check any of the previous or next k clients, IDr+i, i = 1; : : : ; k. Inserting a documentpresumably requires �nding k simultaneous collisions for the hash H. In other words,referring to Figure 2.4, notice that an attempt to backdate a stamp immediatelyprior to ar�k would require �nding collisions for the inputs to the computations ofthe linking elements Lr�k; : : : ; Lr (since each contains reference to the k most previousstamps). A noticeable drawback is that the size of Lr (for Protocol RL3) is quite large.Figure 2.4 displays the relationship between a particular stamp and its k \children".Pinto and Freitas [PF96] use some of the techniques of Section 2.3 and apply themto Protocol RL3 in order to reduce the size of the linking element. The time stampfor a single document y returned by T is ar as in Protocol RL3 where now we haveCr = (r; tr; yr; Lr) (2.7)so that the only di�erence from both Protocol RL1 and Protocol RL3 is that Lr isdi�erent.This �rst method is Protocol RL4. There are obvious problems with storage hereas well. Note that all the ai must be stored by T (allowing computation of new linkingelements) and the linking elements stored by each user are prohibitively large. Thisscheme has the advantage that disputes can be resolved between two users, withoutthe cooperation of T or other users.An alternative in which the storage for each user is reduced to a �xed size foreach stamp is Protocol RL5. Veri�cation involves the intervention of T (to determineif ai 2 Aj since only a (one-way) hash of the linking element is available to users).This solution provides for a constant size for the linking element, independent of thenumber of time stamps produced. There are several concerns with this scheme. Asabove, all the ai must be stored by T. Beyond this, the server is required to recomputethe Li based on all previously input time stamps. Lastly, disputes require veri�cationof all stamps from a1 to the disputed stamp. (Though they could make this simplerby having Li include a �xed number of stamps rather than an unbounded number asin Protocol RL3.)A suggestion made by Pinto and Freitas [PF96] for controlling jsijj is to insertintermediate stamps aI < aII (see De�nition 4.17 in Section 4.3.3) whose relative

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 49
@@@@@@@@@@@@@@@@R

���������
������>

CLIDrrrr+1

CLID

CLID

r-1r-1r-1

r-kr-kr-k

...ID
...IDr+k

...ID

r
r+k-1

r-k+1
r

...IDr-k

IDr-1

rID
a

a
a

Figure 2.4: Chain of time stamps in Protocol RL3. Lr is explicitly computed as afunction of the k most immediately previous stamps, i.e., those stamps held by usersIDr�k; : : : ; IDr�1; the arrows are used to indicate this dependence. User IDr (ownerof stamp ar) maintains the IDs of the next k stamp owners, i.e., IDr+1; : : : ; IDr+k.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 50Protocol RL4 Cumulative Extended Linking [PF96].StampingInput: yr = h(xr) is the hash of document xrOutput: far; Cr; Lr; tr; rg1: User u submits yr = h(xr) to a time stamping authority T who computes the timestamp ar = sigT (Cr) (for Cr from (2.7)) where the linking element is computedas Lr = (a1; a2; : : : ; ar�1):2: far; Cr; Lr; tr; rg is returned to u by T.Veri�cationInput: fai; Ci; Li; xi; ti; ig; faj; Cj; Lj; xj; tj; jgOutput: A determination of the temporal ordering of xi and xj.1: User v computes yi = h(xi) and yj = h(xj) and validates the signatures on theT-signed ai and aj.2: User v determines whether ai 2 Lj or aj 2 Li.3: The former implies that ai was constructed before Lj was produced, hence, xiwas stamped before xj. The latter implies the opposite conclusion.Protocol RL5 Cumulative Hash Extended Linking [PF96].StampingInput: yr = h(xr) is the hash of document xrOutput: far; Cr; Lr; tr; rg1: Same as Protocol RL4 except that the linking element is computed asAr = (a1; a2; : : : ; ar�1)Lr = h(Ar):Veri�cationInput: fai; Ci; Li; xi; ti; ig; faj; Cj; Lj; xj; tj; jgOutput: A determination of the temporal ordering of xi and xj.1: User v computes yi = h(xi) and yj = h(xj) and validates the signatures on theT-signed ai and aj.2: v requests Ai and Aj from T.3: v determines whether Li = h(Ai) and Lj = h(Aj).4: v determines whether ai 2 Aj or aj 2 Ai.5: The former implies that ai was constructed before Lj was produced, hence, xiwas stamped before xj. The latter implies the opposite conclusion.

CHAPTER 2. A TAXONOMY OF TIME STAMPING PROTOCOLS 51order is known a priori so that(ai < aI) ^ (aII < aj)! ai < aj:In other words, not all intermediate stamps between ai and aj would be requiredfor validation. Rather, only the stamps from ai to aI and from aII to aj would berequired. The stamps from aI to aII would not be required. Intermediate stamps arediscussed further in Section 4.3.3.2.6 Concluding RemarksThe techniques described in this chapter demonstrate how a time can be authenticallyassociated with a string of bits. Although these bits may have associated semantics,this meaning is irrelevant to the entity performing the stamping. In other words,though data with a speci�c form might be submitted to the time stamper, this datais not interpreted prior to the application of time. In Chapter 5 for example, the timestamping of digital signatures is examined. Interpreting the semantics of the inputcan be handled by a digital notary, and is discussed in Section 5.4.This chapter presented a review of the state-of-the-art in the literature with re-spect to time stamping. (Work related to the linking of time stamps has recentlybeen presented by Buldas et al. [BLLV98].) Critical analysis of the schemes pre-sented in this chapter is presented in Chapter 3. Generalizations and extensions arepresented in Chapter 4. Although there are many applications in which a time stampmight be useful, e.g., patent submissions, electronic commerce, chapters 5 and 6 dealspeci�cally with the temporal authentication of certi�cate-based digital signatures.

Chapter 3Critical Analysis of Previous WorkIn this chapter, we critique the time stamping protocols from Chapter 2. Beyondclassifying the schemes as accomplished by the ordering into di�erent sections (i.e.,distinguishing those schemes providing absolute and relative time stamps), variousother analyses can be performed. In Section 3.2, we examine the methods of grouphashing reviewed in Section 2.3. Several new properties are de�ned and comparisonsare made between the various techniques. In Section 3.3 and Section 3.4, the respec-tive absolute and relative time stamping schemes of Section 2.4 and Section 2.5 areexamined.3.1 Critique MetricsIn this section, we briey review some of the properties that are used in the remain-ing sections of this chapter for the critical analysis of the time stamping protocolsfrom Chapter 2. More speci�cally, we consider the traditional measures of storage,communication and computational complexity.We also note that the participation of the trusted authority is an important con-cern. In some cases, an authority may be required for only a one-time setup. Inother cases, the authority may participate a �xed number of times (over the life ofthe protocol) or even an indeterminate number of times. The role of the authoritymay also be restricted to being o�-line (where real-time participation in the protocol52

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 53is not required) or on-line (where real-time participation is required). The variance ofthese roles will have an a�ect on the e�ciency of the protocol, as well as contributingto the complexity and therefore, potential for disputes.StorageThe amount of storage required for a particular protocol can typically be measuredrelative to various roles. For example, each user may only be concerned with theamount of storage required at their own site. Should the protocol also involve the useof a centralized entity, the amount of storage maintained by this entity is importantas well. Beyond individual entities, the amount of storage over the entire system canalso provide a measure of e�ciency. For example, each user may have a reasonableamount of local storage but if each store the same information, the storage over thesystem as a whole may be considered unreasonable.More precisely, suppose that a centralized version of some protocol required w bitsof storage at a central site. In a distributed version in which the storage is uniformlydistributed, we would expect that, on average, each of the m distributed entitiesparticipating in the protocol would require at least wm bits of storage.One may also introduce temporal quanti�cations that determine the length of timethat the storage of particular data must be maintained. For example, are users allowedto throw away unwanted stamps, or must they necessarily be stored inde�nitely forthe proper functioning of the time stamping protocol?Beyond the quantitative storage measures, we also have some qualitative measures.For example, of the information stored, which must be authentically stored and/orhave its privacy maintained. Such storage should be clearly identi�ed and minimizedas it creates additional overhead, e.g., costs.Communication ComplexityIt is important to measure the number of interactions and amount of entity involve-ment required for each step of the time stamping protocol. A quantitative measureof the number of bits communicated is not su�cient. One must also be wary of how

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 54users are called to participate in the protocols. For example, does the Stamping Pro-tocol (see Section 2.1.1) require that users who may not be submitting a documentfor a particular round, are still required to participate in the protocol. As well, areusers required to participate in the veri�cation of the time stamps of other users? Itwould be advantageous for users to only participate in protocols when the nature ofthe protocol is directly related to a speci�c time stamp of theirs.Computational ComplexityComputational complexity concerns a measure of the cost of producing, challenging,or verifying a time stamp. A reasonable measure might be in terms of the numberof primitive operations required to complete a particular protocol. These could be,for example, a measure of the number of applications of a hash function (or internalstages of the hash, e.g., more time required for the hash of longer messages), signaturealgorithm and veri�cation algorithms (see Section 2.1.2). Such an analysis allows oneto compare the e�ciency of those schemes which are not instantiated with identicalhash functions or signature schemes.Architectural ComplexityRelated to the implementation and maintenance of the schemes is their architecturalcomplexity. This has an impact on the communication complexity during the runningof the protocols as well as on the initial development costs and potential introductionof security aws for the more complex solutions. Also of interest are the potentialfor denial of services as well as simply bottlenecks that may result from reliance on acentral server, i.e., a single point of failure.3.2 Critique of Group HashingThe group hashing techniques reviewed in Section 2.3 are used to allow for so-calleddocument membership tests. Given a document, it is necessary to be able to verifywhether or not the document in question contributed to the construction of the stamp

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 55for a particular round. This is done by �rst determining whether the documentcontributed to the group hash computation. Subsequent testing is used to recoverthe time associated with the group hash result.The motivation for a granularity whereby multiple documents are used to producea single stamp is twofold:1. to allow for a decentralized stamp computation;2. to decrease the amount of storage by using a single value as representative ofan entire round of documents.The �rst point results from the fact that since there is no secret key involved in thecomputation of the stamp (at least for the schemes reviewed in Section 2.3), anyuser can compute the stamp given the document submissions from all participants.Indeed, the intention for the creators of some of the schemes (e.g., Benaloh and deMare [BdM93]) was to remove the requirement of trusting a central authority for thecomputation of the round result. Note that for the second item above, the amountof storage is decreased only if the size of the stamp is smaller than the sum of thesize of the document submissions. Ideally, the stamp is equivalent in size to a givensubmission, or at least independent of the size or number of submissions. As evidencedin Section 2.3, achieving this property may a�ect the amount of storage required foreach user. This property is discussed further in Section 3.2.2.Centralized versus Decentralized Group HashingFor a decentralized computation, there is an additional amount of communicationrequired for participants. This is especially true for those schemes in which an orderingof the submissions is required, i.e., there needs to be consensus (either unilateral ormultilateral) on the ordering of the inputs to the group hashing function. Thus, forProtocols GH4 and GH5 (where no such ordering is required), there appears to bethe advantage of a more e�cient stamp creation protocol (at least relative to thoseschemes in which an ordering is required). On the other hand, use of Protocol GH1,Protocol GH2 and Protocol GH3 require additional communication in a decentralized

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 56protocol (to reach a consensus on the order of inputs to the group hash function) sincethe order of the inputs to their group hash functions, does matter.A centralized variation in which a trusted entity T computes the group hashresult for the round, would be similar to the application of multiple instances ofProtocol AB1 except that storage at T or at an alternative source is lessened by afactor of m (should the size of the resultant stamp be proportional to the size of asubmission), where m documents contribute to the computation for a given round.The reason for this is that T would perform an authentication over the group hashresult rather than a di�erent application over each user's submission.Authenticating the group hash resultGroup hashing provides no message or temporal authentication on its own. Subse-quent authenticity provisions are therefore very important. In a decentralized version,it is not clear whose \authentic" version of the resultant stamp for a given round,would \succeed" in the event of a dispute. In a centralized variation, the locationand maintainer of the stamp's authenticity is equally as important. The group hashcomputations reviewed in Section 2.3 are not keyed by any secret parameter. Hence,anyone can compute what appears to be a valid time stamp, corresponding to a doc-ument of their choice. Therefore, the maintenance of the authenticity of the resultantstamp is of the utmost importance. This point is discussed further in Section 4.2.1.3.2.1 Formalizing Group HashingIn this subsection, we formalize the notion of group hashing, and discuss some of therequirements for the components of a group hash protocol.De�nition 3.1 A group hash scheme G is a seven-tuple (Y;A;B; G; F; V;W), wherethe following conditions are satis�ed:1. Y is a �nite set of possible messages;2. A is a �nite set of group hashes;

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 573. B is a �nite set of membership values;4. Let G : Y�� � ��Y ! A be a group hash function, and F : Y�� � ��Y ! B be amembership production function. For a veri�cation test function V : A�Y�B !ftrue, falseg, and veri�cation function W : Y � B ! A, and for every yi 2 Y,a = G(y1; : : : ; ym), and memberyi = F (y1; : : : ; ym)V (a; yi; memberyi) = 8<: true if W (yi; memberyi) = afalse if W (yi; memberyi) 6= a
Referring to De�nition 3.1, there are two fundamental operations related to theproduction of a group hash given a set of data Y = fy1; : : : ; ymg. The �rst is thecompression of the data which involves the production of the value a used to representthe set Y : a = G(Y) = G(y1; : : : ; ym):For Protocol GH4, a = x0y1y2���ym mod n for publically known x0 and suitable com-posite n. The second operation is the computation ofmemberyi = F (y1; : : : ; yi�1; yi+1; : : : ; ym) (3.1)which, if it exists, is additional information necessary for document membershipveri�cation. For Protocol GH4, memberyi = x0y1���yi�1yi+1���ym mod n. As indicated,memberyi is a function of data other than the user's own yi.Veri�cation of an items \membership" in a group hash value, involves computinga(i) = W (yi; memberyi) and determining whether a = a(i). For Protocol GH4, a(i) =(memberyi)yi mod n. Veri�cation occurs at a subsequent time when the owner u ofsome y0 wants to demonstrate that y0 = yi for some i 2 f1; : : : ; mg. This is doneindirectly (as opposed to directly which would check for membership of y0 in Y) usingthe representation a for Y and the membership veri�cation function V . We haveV (a; y0; membery0) = 8<: true if y0 2 Yfalse otherwise.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 58This veri�cation is performed as above whereby a(0) = W (y0; membery0) is computedand tested for equivalence to a. Recall Protocol GH1 where a = h(y1; : : : ; ym)and memberyi = (y1; : : : ; yi�1; yi+1; : : : ; ym). Veri�cation involves computing a(i) =h(y1; : : : ; yi�1; yi; yi+1; : : : ; ym) and determining if a = a(i).G must be collision-resistant so that one cannot �nd an alternate set Y 0 6= Ysuch that G(Y) = G(Y 0). If this were not so, one might, for example, for a setY = fy1; : : : ; yi; : : : ; ymg, �nd a set Y 0 = fy1; : : : ; y0; : : : ; ymg such thatG(Y) = G(Y 0).Interestingly, the order of the input to G need not be important. For example,althoughG(fy1; y2g) = G(fy2; y1g) for a commutative G, no real collision has occurredsince no y0 62 Y has been found that succeeds veri�cation. As well, for a given grouphash a, and y0 62 Y , it should be di�cult to determine any membery0 such thatV (a; y0; membery0) is true. In other words, it should be computationally infeasible tocompute a0 = W (y0; membery0) such that a(0) = a if y0 62 Y . Thus, not only is V ()one-way in some sense, but membery0 should be computationally infeasible to obtainfor a y0 62 Y , with respect to a given group hash value a, i.e., at least F should becollision-resistant.3.2.2 Storage AnalysisIn this subsection, comparisons are made between the storage requirements for eachof the group hashing techniques described in Section 2.3. Consider �rst the bit sizejaj of the group hash value a. Two categories can be identi�ed based on its size:1. jaj is dependent on the number of submissions. For example, jaj = m � jyij inthe most trivial scheme where a = Y .2. jaj is �xed. There are two sub-cases here. In the �rst, jaj is independent ofthe size of or number of inputs to G. This is true for Protocol GH4, where jajis dependent upon a chosen security parameter and as well for Protocol GH5where jaj = cN , for constant c where the restriction is that m � N . However,one must be careful to note that jY j = m is also dependent (i.e., bounded,though not tightly) on this security parameter. Secondly, we have jaj = jh()j

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 59where jh()j is the size of the output of the hash used (as in Protocols GH1, GH2and GH3).For Protocol GH4, though the stamp size is �xed, it is noticeably larger than thesize of the submissions. For example, in comparison to Protocols GH1, GH2 and GH3where jh()j will be approximately 160 bits in practice, k may be 1024 or even 2048 bits.For Protocol GH5, even with two compressions by factors of d and m respectively, a\large" resultant round value is still obtained. Recall that the submission of a useris expanded to an l-bit yi where l = rz }| {(Net) (lgN)| {z }d :Despite the fact that each yi is reduced by a factor of d, and there is an m-to-1compression from these m r-bit bi to a, we still have jaj = r. Now r = Net where Nis an upper bound on the number of messages that can be submitted. Referring toTable 2.1, for l = 1:4M , we have jaj = 140K which would only provide compression(i.e., less storage e�ciency than simply storing the original document submissions) ifat least 875 160-bit inputs were available.The same concerns with regard to size follow for jmemberyi j. For Protocols GH1and GH2, jmemberyi j = O(m � jh()j) while jmemberyi j = O((lgm) � jh()j) for Pro-tocol GH3. For Protocols GH4 and GH5, jmemberyi j = k and jmemberyi j = 0,respectively, where k = jnj = lg n is the length in bits of the security parameter(modulus). These results are summarized in Table 3.1.In Table 3.2 the results from Table 3.1 are instantiated with m = 16, m = 256,andm = 1024 respective documents. Noteworthy increases include the linear increasein jmemberyi j for Protocols GH1 and GH2 compared to the logarithmic increasewith Protocol GH3. Each has a constant size for the group hash value a as doesProtocol GH4. Protocols GH4 and GH5 have a constant size for jmemberyi j wherethe latter protocol it is in fact 0.In Table 3.3, the e�ciency of the storage over the system as a whole is measured,relative to a control scheme in which each user maintains their own yi as well as itsstorage being authentically maintained at a central repository. Protocols GH3 and

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 60
Size in bitsHash Protocol hash result a veri�cation info. memberyiGH1: Cumulative jh()j (m� 1) � jh()jGH2: Recursive jh()j (m� 1) � jh()jGH3: Tree jh()j (lgm) � jh()jGH4: Exponentiation k kGH5: Bit cN 0Table 3.1: Comparison of Storage for Group Hashing Techniques. There are m datasubmitted for group hashing, each of size jh()j, where jh()j is the number of outputbits from the particular hash function used. k = jnj = lg n is the length in bits of thesecurity parameter (modulus). N is the implementation-dependent upper bound onm and c is a constant ranging from 135 to 200 for practical purposes. See Table 2.1for more details regarding the parameters of Protocol GH5.

m = 24 = 16 m = 28 = 256 m = 210 = 1024Hash Protocol jaj jmemberyi j jaj jmemberyi j jaj jmemberyi jGH1: Cumulative 160 2:4K 160 41K 160 164KGH2: Recursive 160 2:4K 160 41K 160 164KGH3: Tree 160 640 160 1:3K 160 1:6KGH4: Exponentiation 1K 1K 1K 1K 1K 1KGH5: Bit 2:2K 0 34:8K 0 139:2K 0Table 3.2: Speci�cation of Table 3.1 Results. jaj refers to the size (in bits) of theresultant group hash value computed with input (y1; : : : ; ym) where each yi = h(xi)is a 160 bit hash over a document xi of arbitrary length. jmemberyi j refers to the size(in bits) of data that each user must maintain (not including storage of their own yior xi) to allow later demonstration that yi did indeed contribute to the constructionof a. For Protocol GH4 a 1024 bit composite integer is assumed. For Protocol GH5,we assume that N = m, t = 50 where jaj = r = Net. (See Table 2.1 for furtherdetails regarding the parameters for Protocol GH5).

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 61m = 24 = 16 m = 28 = 256 m = 210 = 1024Hash Protocol actual actualcontrol actual actualcontrol actual actualcontrolGH1: Cumulative 41:1K 8:03 10:5M 128 167:7M 512GH2: Recursive 42K 8:03 10:5M 128 167:7M 512GH3: Tree 13K 2:53 0:4M 4:50 1:8M 5:50GH4: Exponentiation 20K 3:90 0:3M 3:71 1:2M 3:70GH5: Bit 4:8K 0:92 75:8K 0:92 0:3M 0:92Table 3.3: Overall System Storage E�ciency for Group Hashing Techniques. Theoverall system storage for each technique is computed as actual = m � jh()j + m �jmemberyi j + jaj where the �rst term accounts for the storage by each user of theirown yi = h(xi), the second accounts for the storage by each user of their memberyiwhile the third accounts for the storage of the resultant group hash by a centralauthority. The values for each term are taken from the corresponding examples inTable 3.2. actualcontrol refers to the ratio of the protocol's overall system storage to thecontrol scheme in which a copy each user's yi is maintained by themselves as well asa central authority; the storage for this technique is control = 2m � jh()j.GH4 are the most e�cient of the schemes in which the size of the group hash value ais constant (with respect to changes in jmj). Protocol GH4 is the most e�cient basedon the metric described in Table 3.3 though as evidenced by Table 3.2, the size of aincreases linearly with the size of m.3.2.3 Incremental Group HashingIn this subsection, we de�ne the concept of a group hash as being e�ciently incremen-tal or e�ciently decremental , and examine the schemes of Section 2.3 with respectto these properties.Bellare, Goldreich and Goldwasser [BGG94] introduced the concept of incremen-tal cryptography. The basic idea is to allow repeated function computations to becomputed e�ciently in the case that the input has only changed slightly. Particu-larly for hashing, given the hash of a message and a subsequent modi�cation of themessage, the time required to update the hash (to produce a new hash over the mod-i�ed message) should be \proportional" to the amount that the message has beenmodi�ed.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 62We can also de�ne such e�cient incrementality for group hashing. The \message"modi�ed in this case is the set of data input to the group hash. More speci�cally, if theoriginal group hash was applied to the set Y = fy1; : : : ; ymg then the modi�ed set towhich a group hash result would be required would be either Y 0 = fy1; : : : ; ym; ym+1gfor the appendage of an item ym+1 or Y 0 = fy1; : : : ; yi�1; yi+1; : : : ; ymg for the removalof an item. Although not speci�cally applicable to the production of a time stamp,group hashing with an incremental property is useful for the group hash of revocationinformation, related to the time stamping and non-repudiation of digital signatures(see Section 5.2.3).De�nition 3.2 A group hashing function G is e�ciently incremental if for an l-bit element ym+1 2 Y, where f(l) time is required to compute G(ym+1) for somefunction f , then at most af(l) + b time is required to compute G(y1; : : : ; ym; ym+1)given G(y1; : : : ; ym), for constants a and b (independent of l and m).Intuitively, G is e�ciently incremental if the amount of work required to recom-pute a group hash value a is \linearly proportional" to the size of the additional dataelement ym+1. For Protocol GH1, recomputation of the entire hash is required, andis hence not e�ciently incremental. Note that given a = h(y1; : : : ; ym), incrementingwith ym+1 may require computing a0 = h(y1; : : : ; ym; ym+1), i.e., computation of thehash over an input size that is m � 1 times larger than ym+1.1 For Protocol GH2,a hash computation proportional in size to the new element is computed. In otherwords, a = h(� � �h(h(y1; y2); y3); : : : ; ym) can be incremented with ym+1 by computinga0 = h(a; ym+1). Hence, Protocol GH2 is e�ciently incremental. Protocol GH3 is note�ciently incremental since O(lgm) hash computations are required to recompute a(the root of the tree). Given the group hash value a, Protocol GH4 requires computinga0 = aym+1 mod n and is therefore e�ciently incremental. Although Protocol GH5,requires only a single application of G, it is applied to data that is extended to anl � bit value after submission of the original hash by the user. This l � bit value isdependent on an upper bound on the number m of submissions so that Protocol GH5is not e�ciently incremental. These results are summarized in Table 3.4.1For hash functions which use an iterated compression function and do not appending padding(see Menezes et al. [MvOV97, Section 9.3]), the computation of a0 will be e�ciently incremental.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 63Regarding the incrementality of group hash techniques, an important concernrelates to the requirement for the owners of the initial y1; : : : ; ym to update theirmemberyi . For each of the group hash protocols except Protocol GH5 (in whichthere is no memberyi for users), updates are required. This requirement necessitatesadditional communication with users (likely performed by a central entity) to reectthe change to a.De�nition 3.3 A group hashing function G is e�ciently decremental if for an l-bitelement yi 2 Y, where f(l) time is required to compute G(yi) for some function f ,then at most af(l) + b time is required to compute G(y1; : : : ; yi�1; yi+1; : : : ; ym) givenG(y1; : : : ; ym), for constants a and b (independent of l and m).Intuitively, G is e�ciently decremental if the amount of work required to re-compute the group hash value a is \linearly proportional" to the size of the re-moved data element yi. Decrements di�er slightly from increments in that deletionsfrom fy1; : : : ; ymg are not restricted to occur only at the end, i.e., any yi may beremoved. Given the removal of yi, notice that the recomputation of the functionG(y1; : : : ; yi�1; yi+1; : : : ; ym) given fy1; : : : ; yi�1; yi+1; : : : ; ymg is not an option unlessthe input data are available. However, their availability would defeat the point ofusing of a compressed representation.Protocols GH1 and GH3 are not e�ciently decremental for the same reason thatthey are not e�ciently incremental. Protocol GH2 is not e�ciently decrementalsince it requires knowledge of the inverse of h() for even the e�cient removal ofym. For Protocol GH4, although it is e�ciently incremental, it is not e�cientlydecremental since this would require knowledge of the inverse of the element to beremoved; knowledge of this fact would allow one to factor the modulus. Finally,Protocol GH5 is not e�ciently decremental since for any 1's in the element yi tobe removed, knowledge of whether any other yj, j 6= i, has a 1 in that particularposition is required for the authenticator to be properly updated. The requirementsfor changes to memberyi are the same as for the addition of a new element. Theseresults are summarized in Table 3.4.Depending on the intended application, Protocols GH2 and GH4 are superior with

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 64Additions DeletionsHash Protocol e�. incr.? static memberyi? e�. decr.? static memberyi?GH1: Cumulative no no no noGH2: Recursive yes no no noGH3: Tree no no no noGH4: Exponentiation yes no no noGH5: Bit no yes no yesTable 3.4: Comparison of Updates for Group Hashing Techniques. `e�. incr.?' is yesif the protocol is e�ciently incremental (see De�nition 3.2). Likewise for `e�. decr.?'(see De�nition 3.3). `static memberyi ' is no if updates are required to memberyi inresponse to an addition or deletion of a data element from the group hash computa-tion.regard to the amount of time required to increment a group hash value given the ap-pendage of an element to the original hash input. However, notice that Protocol GH1may also be e�ciently incremental, depending on the particular group hash functionused. On the other hand, though not e�ciently incremental, Protocol GH5 does notrequire the updating of memberyi subsequent to either the addition or removal of anelement from the original hash input. Protocol GH5 would therefore be advantageousin situations where computation time is not a major concern, but communication timeis.3.3 Critique of Absolute Time StampingIn this section, we critique the absolute time stamping protocols reviewed in Sec-tion 2.4. Protocol AB1 is a model of simplicity. Each user stores an amount ofinformation proportional to the number of stamps submitted. No record-keeping isrequired by the time stamp authority (T). The communication involves only a singlemessage pass by both the user and T. Document submission and stamp computationinvolve only a nominal number of applications of hash functions and digital signatures.The main motivation for the remaining schemes is the requirement of total trustin T for Protocol AB1. Indeed, Protocol AB2 directly addresses this concern bybuilding on top of Protocol AB1. The fundamental concern is that the issuance of

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 65a false time stamp can be devastating to a scheme. Suppose, for example, that forthe provision of non-repudiation, users might have their signatures time stamped(as examined in Section 5.3). The ability to alter such a time (either in collusionwith T or subsequent to a compromise of T 's private signature key) allows one tobackdate a signature applied with user u's private signature key, at a time when u'skey may be compromised, to a time when u's key was not compromised. Hence, uis apparently made responsible for a message that he may not have signed. Such anexample illustrates both the importance and fragility of the association between timeand cryptography.The schemes of Section 2.4.2 di�er in that they do not require a trusted, centralizedtime stamping service to produce time stamps. Rather, they attempt to decentralizeeither the stamp computation or the storage of the resultant stamp. Protocols AB3and AB4 distribute the storage of the resultant stamp. The former is impractical withregards to communication and storage, and because it requires each user to store eachand every \submitted" stamp. This appears not to leave room for error in the casethat stamps are incorrectly recorded for either malicious or unintentional reasons.Even further, this seems to imply a static membership since new users would notpossess the stamps to documents from older submissions. This makes the veri�cation(and potential adjudication) of a stamp's correctness a di�cult, if not impossible task.As well, the amount of storage is excessive over the system as a whole since the samestamp will be stored in multiple locations.In Protocol AB4, the delegation of authority is unclear. After all, who ensures thecorrect publication of the stamp? Considering that the authentication of this storageis important in case of disputes, it is critical that such a responsibility be delegatedwith clear goals in mind. As well, this scheme does not appear to allow for the optionof verifying the signature applied by the submitter, i.e., is it left up to the publisherof the newspaper to con�rm this? Though similar to Protocol AB1 in terms of thesubmission from the user (e.g. with respect to the time and space complexities), the\stamp" for the message appears to make the veri�cation or adjudication of its validitydi�cult. After all, the source of and responsibility for maintaining the authenticityof the stamp is unclear. As well, the motivation and purpose for the inclusion of pub

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 66Centralized Protocols Decentralized ProtocolsProperties AB1 AB2 AB3 AB4 AB5Certi�cate Obtained? Y Y N N YParticipation Req'd? N/N N/N Y/Y N/Y Y/NUser Storage 1 1 � k n � 1 1 1 � kTable 3.5: Comparison of Absolute Time Stamping Techniques. A certi�cate is ob-tained if the document submitter receives a signed response. The requirement ofparticipation refers to the external participation of other user entities (i.e., usersother than the submitter of the document for stamp production): (cooperation forStamping Protocol?)/(cooperation for Veri�cation Protocol?). User storage assumesthat for n users, user ui submits a document to be time stamped at time interval i.The storage computation consists of the multiplication (number of rounds in which astamp is stored by ui)�(size of stamp in each round), where the size of a stamp fromProtocol AB1 is de�ned as the unit size of a stamp and k � n.is not well motivated. It is not clear what conclusions we can draw from its use. Adocument submitted at time t can easily associate an old pub value to it, for example.(The provision of an implicit absolute time is discussed in Section 3.3.1.)Motivated by the same concern of trust in a centralized authority, Protocol AB5distributes the stamp computation as opposed to its storage. The storage for eachuser is increased by a factor of k in comparison to Protocol AB1. In practice, thisdistribution will also increase the time required to obtain the stamp. Using k fellowusers as opposed to one trusted center may introduce some problems. For example,what if some of the k users refuse to, or simply can't participate in the stamping of amessage. It is unclear how this could be handled in a secure manner to allow for theproper results to be obtained from subsequent veri�cation or adjudications. As well,the simple act of communicating with k other entities to receive a single time stampis very costly.Table 3.5 provides a summary of some of these concerns. The greatest distinctionis that Protocol AB1 and Protocol AB2 makes use of a trusted, centralized entityfor producing the time stamp, while stamps are constructed by the users themselvesin the remaining schemes. Participation is required for Protocol AB3 in both thestamping and veri�cation stages. In the former, each stamp submission is broadcast

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 67to all users, requiring their maintenance of its storage. In the latter, veri�cation of thesubmission received by other users may be required in case of disputes. As mentionedearlier, it is not clear how disputes would be handled in Protocol AB4. Veri�cation ora dispute regarding a particular stamp involves the participation of other users (e.g.,users that possess copies of the widespread publication) though it is not clear whetherthese users are trusted entities or not. As well, although the question of cooperationfor the stamping protocol is answered \No" here, there is the open question of who isrequired to maintain the eventual storage of the widespread publication. It appearsthough, that some user cooperation might be required. For Protocol AB5, it is unclearhow the time of stamping should be veri�ed since k, potentially di�erent, times areincluded in a single time stamp.With regards to the architectural complexity for the absolute schemes, each ap-pears to require no more than the participating users themselves (i.e., potential timestamp requesters) and a single time stamp authority (if required at all). However,schemes in which the stamps are stored via a widespread publication may be suscep-tible to a large architectural complexity, depending on how much overhead is requiredfor the publication, storage and veri�cation of the stamps. The use of a widespreadpublication for the purpose of authenticating the stamps is discussed further in Sec-tion 4.2.1.Overall, for each of the schemes highlighted in Table 3.5, Protocols AB3, AB4 andAB5 appear to be the least suitable for any practical implementation. Although Pro-tocols AB4 and AB5 provide interesting, distributed alternatives for respectively stor-ing and constructing time stamps, their protocol descriptions are ambiguous enoughto cause concern with the consistency of future veri�cations of resultant time stamps.3.3.1 On the Use of Implicit TimeIntuitively, an implicit absolute time is data from which a speci�c time can be uniquelyand e�ciently computed. More speci�cally, we have the following.De�nition 3.4 An implicit absolute time impT ime 2 I is the output of a functionZ : D � T ! I, where (d; t) 2 D � T is a data, time pair where d is uniquely

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 68associated with only one time t. The association between d and t is publically known,and trustworthy.As an example, d 2 D might represent the contents of a particular local newspaperat time t, where impT ime 2 I might represent the listing of the current weather forthe day, as printed at time t. Implicit time was used (as opposed to an explicit time) inProtocols AB2 and AB4. More speci�cally, they used a particular type of implicit timeknown as unpredictable information. (Not all unpredictable information is an implicittime, e.g., consider the the use of hashes linking data together as recommended byItem 7 for Protocol AB2. Until this information is provided with an absolute time,it is unpredictable, but certainly does not allow a method for computing the explicittime from it.) Unpredictable information is data created at time t, having the propertythat it's entire contents could not have been predicted before time t. More speci�cally,we have the following.De�nition 3.5 Unpredictable information is an l-bit data uI 2 UI, created at timet, such that it is computationally infeasible to correctly determine or predict all l bitsof uI prior to time t (the time at which all l bits are known).The motivation for using unpredictable information is to prevent forward dating.For example, at time t, a document can be time stamped (e.g., by a malicious timestamper) with an explicit time t0 > t but not with unpredictable information (fromwhich the time t0 would be uniquely determined) since, by de�nition, this informationcan not be determined at time t.However, there appears to be little advantage to using unpredictable informationto prevent forward dating in this manner. Note that in Protocol AB4, if an explicittime were used as opposed to pub, it makes little sense to forward stamp the datawith a time t0 > t where t is the current time. This attempt would be detected byanyone who veri�es the posting of the stamp, and in the case of a newspaper, thedate on the newspaper would alert future veri�ers to the discrepancy with the dateof the posted stamp.

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 693.4 Critique of Relative Time StampingThe linking of data (resulting either from a single document submission or a grouphashing) for the purpose of temporally ordering the data was reviewed in Section 2.5.In this section, we elaborate on some of the more relevant properties.Additional communication is required (more-so for decentralized protocols) whencompared with schemes in which only an absolute time is provided since the process oflinking is not memoryless but dependent on result(s) from previous round(s), i.e., theauthenticity of a stamp is measured \relative" to the stamps produced during otherrounds, and hence requires access to previous stamps. This dependence has the e�ectof an increased interaction for either the production or veri�cation of time stamps(e.g. recall the veri�cation subprotocol of Protocol RL1) or necessitates some form ofsecondary, authentic storage (which requires an extra communication to obtain thisvalue during stamp creation or veri�cation).Remark 3.1 A relevant and practical concern with the application of relative tem-poral authentication is the notion of interoperability. Note that the temporal \links"produced within a particular group of users or by a particular central authority, arepart of a closed system. Given a second group of users or time stamping authority, itmay be di�cult to obtain a relative measure among the time stamps produced withinthe di�erent domains. See De�nition 4.17 of Section 4.3.3 for further discussion.The contents of the linking elements for the protocols from Section 2.5 are shown inTable 3.6. Participation required during the validation of the temporal authenticity ofthe stamps is shown in the `Validation' column of Table 3.6. The participation duringvalidation is not dependent upon the particular linking element used, but rather, theprotocol description and where the linking information is stored.For Protocol RL1, veri�cation of a time stamp requires an ability to access anindeterminate number of stamps produced before and/or after the stamp in question.This would require that the storage of all stamps be maintained by a particular user.This does not allow for the case when a user might not want to maintain the storageof a particular stamp any longer (in the case that there is no secondary storage),

CHAPTER 3. CRITICAL ANALYSIS OF PREVIOUS WORK 70Protocol Linking Element Lr ValidationRL1: Haber-Stornetta (tr�1; IDr�1; yr�1; H(Lr�1)) GRL2: Recursive Hash h(ar�1; Lr�1) TRL3: Extended Haber-Stornetta [(tr�k; IDr�k; yr�k; H(Lr�k)); : : : ; G(tr�1; IDr�1; yr�1; H(Lr�1))]RL4: Cumulative (a1; a2; : : : ; ar�1) URL5: Cumulative Hash h(a1; a2; : : : ; ar�1) TTable 3.6: Linking Elements for Relative Time Stamping Protocols. `Validation'indicates the participation required for the validation of a time stamp. `G' refers togroup validation in which users other than the stamp owner are required for validatingthe stamp's temporal authenticity. `T' refers to validation in which participation fromthe trusted time stamp authority is required. `U' refers to user validation in which thestamp owner has su�cient linking information to allow a self-contained veri�cationtemporal authenticity by others.nor is it robust against the simple loss of a stamp. Protocols RL2 and Protocol RL5deal with this problem by having a centralized authority maintain the storage of thestamps. Protocol RL3 (likewise Protocol RL5) extends the explicit reach of the linkingelement so that only 1 of k links are required to verify the authenticity of a stamp.Protocol RL4 places the storage of all stamps in possession of each stamp requester,thereby allowing stamp validation to be performed without the participation of anyother users or trusted entities.Distinctions can also be made with respect to the goal of the use of linking foreach scheme. Protocols RL1 and RL3 use linking as a means for preventing the timestamp authority (T) from either backdating or forward dating time stamp requests.In Section 4.4, we present an attack to this provision which allows T to indeed back-date stamps for these particular protocols. Protocols RL2, RL4 and RL5 provideda relative ordering for the purpose of determining the position of two time stampsat some later time. These techniques are discussed further in subsections 4.3.3 and4.2.1.

Chapter 4A Framework for TemporalAuthenticationIn this chapter, we examine time stamping from the viewpoint of a time stampingprotocol providing authentication. Just as a digital signature can provide messageauthentication and a key agreement protocol can provide key authentication, a timestamping protocol provides temporal authentication. A framework for the provision oftemporal authentication is constructed from the time stamping protocols reviewed inChapter 2. This framework provides precision for the informal de�nitions, conceptsand protocols introduced and reviewed in Chapter 2. Generalizations are motivatedwith the presentation of two protocol failures and demonstrated by a hybrid timestamping protocol proposal.Chapter OutlineIn Section 4.1, we de�ne a time stamping scheme (see De�nition 4.1) and discuss theprovision of temporal authentication with this scheme. Section 4.2 presents Proto-col TS1, providing one alternative for implementing a time stamping scheme. Variousoptions for authenticating the time stamp are also discussed. In Section 4.3, the pro-vision of absolute, relative and hybrid temporal authentication are examined. In Sec-tion 4.4, the importance of the distinction between absolute and relative time stamps71

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 72and the proper veri�cation of their temporal authenticity is demonstrated by identify-ing protocol failures with the Benaloh-de Mare (Protocol GH4) and Haber-Stornetta(see Protocol RL1) protocols. In Section 4.5, we critique a hybrid time stamping pro-tocol (see Protocol HY1) that most closely follows our framework (though it does sowith solutions that are non-cryptographic). Subsequently, we modify this hybrid pro-tocol giving Protocol HY2, which more closely follows our framework and addressesconcerns raised regarding Protocol HY1.4.1 Temporal AuthenticationIn this section, we introduce the notion of the temporal authentication of digital dataas accomplished by time stamping the data. We begin by de�ning a time stampingscheme, which together with Protocol TS1 (see Section 4.2), add some precision tothe stamping protocol of De�nition 2.6.De�nition 4.1 The seven� tuple (M;S;G;SS; T ;K;P) is a time stamping schemeT S where the following conditions are satis�ed:1. M is a �nite set of possible messages;2. S is a �nite set of possible time stamps;3. G is a group hash scheme (see De�nition 3.1);4. SS is a signature scheme (see De�nition 2.11);5. T is a �nite set of times;6. K, the keyspace, is a �nite set of possible keys;7. For each K 2 K, corresponding to a time stamp provider P 2 P, for the tem-poral authenticator (time stamping) function sigP 2 SA (see De�nition 2.11),where sigP : (M [A) � T ! S (where A is the set of group hash values,see De�nition 3.1) and time stamp veri�cation function verP 2 VA (see De�ni-tion 2.11) where verP : S�T �(M[A)! ftrue, falseg, the following equation

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 73is satis�ed for every message or group hash z 2 (M[A), time t 2 T and timestamp s 2 S: verP (s; t; z) = 8<: true if s = sigP (z; t)false if s 6= sigP (z; t)De�nition 4.1 more clearly de�nes the authentication of a (cryptographic) timestamp, as informally de�ned with De�nition 2.2. The authentication is providedby the signature of the time stamp provider. To aid in the presentation of how atime stamping scheme provides temporal authentication, we �rst review the notionof authenticity.4.1.1 Authenticating DataThe term \authentication" is an overused and often abused term in cryptography. Inthis subsection, we provide an intuitive understanding of what it means to authenti-cate data by reviewing several requirements that would typically be used in a schemewith certi�cate-based digital signatures { a scheme providing message authentication.Claiming that something is authentic implies that it is \fully trustworthy as ac-cording with fact" [Mer98]. The object in question is \actually and exactly what isclaimed" and \not false or [an] imitation" [Mer98]. In cryptography, the objects thatare purported to be authentic can include message or key data, a digital signature, orthe identity of an individual. We introduce here the concept of temporal authentica-tion which deals with the authentication of time data as provided by a time stampingscheme (see De�nition 4.1).One can think of the \authentication of data" as the legitimization of the data us-ing a set of mathematical functions with corresponding requirements and assumptionswith regard to both the functions and the provider of the authentication. The func-tions serve to specify the properties that a particular form of authentication provides.The requirements and assumptions allow a verifying party to measure their trust orcon�dence in the authentication of the data through a veri�cation procedure. As anexample, recall the message authentication of data m, as reviewed in Section 1.1.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 74The message authentication ofm can be achieved by the production of a signaturec = sigu(m), purportedly by the user u, as de�ned by the functions of De�nition 2.11.The message authentication of m is intended to corroborate that the source of c isindeed u. This corroboration can be achieved by the binding of u's name to theveri�cation key veru used to verify the mathematical correctness of the signaturec. This binding is performed by a trusted certi�cation authority (CA), where thesubsequent veri�cation of this certi�cation (by signature verifying parties) may beachieved through the a priori possession of the CA's veri�cation key. Therefore, forthis example, trust is achieved by the delegation of the trustworthy certi�cation ofuser's veri�cation key to a trusted CA that provides veri�able certi�cation of user'sveri�cation keys. For users that trust this particular CA and its practices, the messageauthenticity of signatures received from users certi�ed by this CA, can hence verifythe mathematical correctness of the signature and ensure that the public key used toperform the veri�cation, is bound to u by a trusted CA. (A more complete signatureveri�cation procedure is given as Protocol DS1 in Section 5.3.2.)Remark 4.1 (Trust) The term trust can be very di�cult to de�ne, e.g., as for\trusted entities" or \trusted data." For our purposes, we assume that a trustedentity is an entity that honestly and correctly executes functions for which it is rec-ognized as intended to execute. The entity honestly determines the correctness of anyinput data or any requesting entity with regard to the publically veri�able requirementscorresponding to the function for which the trusted entity will be executing. Trusteddata is data produced by a trusted entity(s).4.1.2 Temporal AuthenticationTemporal authentication intuitively combines message authentication with the notionof timeliness of messages (see De�nition 4.2). The term temporal refers to something\of or relating to the sequence of time or to a particular time" [Mer98]. The temporalauthentication of the message y ensures that in addition to producing an authenticrepresentation for y, this representation is ordered amongst all other temporally au-thenticated data (i.e., \[related] to the sequence of time") and/or associated with a

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 75speci�c time (i.e., \[related] to a particular time"). We refer to the former representa-tion as relative temporal authentication (see De�nition 4.13) and the latter as absolutetemporal authentication (see De�nition 4.8).A temporal association ensures that the resulting representation for y is bothauthentic and timely. The temporal authentication of y can be accomplished by theproduction of a time stamp s 2 S by a trusted time stamp provider, which is afunction of both the message y (which itself may be the function of some document)and a time t 2 T from which the temporal position of y can later be inferred. Thiscan be accomplished with the time stamping scheme of De�nition 4.1. The timestamp is temporally authentic if it1. is veri�ably produced by a trusted provider(s) and2. includes a trustworthy time.The provision of message authentication (as described above) relied on a trustworthycerti�cation by a CA. The same is true for the property of temporal authentication.De�nition 4.2 The temporal authentication of data y provides corroborative evi-dence regarding a time of existence of y in the form of a time stamp s and can beachieved by a time stamping scheme (see De�nition 4.1) using a trusted time stampprovider (authority) T .The role of a time stamp provider(s) is examined further in Section 4.2.1. The pro-vision of time is discussed further in Section 4.3.Temporal authentication provides an assurance of the temporal ordering (inducedby the time stamp construction) of two messages. The ordering of these stamps is apartial ordering. If any two stamps are comparable, the set of stamps form a totalorder or chain. We refer to this set as a temporal chain (or temporal order) sinceelements of the set are comparable based on their temporal interpretation. Note thatwe can discuss orderings of stamps versus the ordering of a document/stamp pair.This distinction is relevant in cases where several documents are input to producea single time stamp, i.e., group hashing as reviewed in Section 2.3. Although the

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 76resultant stamps from each round form a total order, it is not necessarily the casethat the document-stamp pairs within a given round can be ordered since grouphashing does not necessarily provide an ordering of the data.4.2 Providing Temporal AuthenticationThe process of temporally authenticating data can be achieved with a time stampingscheme (see De�nition 4.1). Each instance or round of a larger time stamping processimplements this scheme as a time stamping protocol. The time stamping process isillustrated in Figure 4.1. One possible implementation of the time stamping schemeas a time stamping protocol is presented as Protocol TS1. Throughout, we make useof the following de�nitions. Unless otherwise noted, the `event' associated with timeti refers to the time of stamping.De�nition 4.3 Let `�' represent the `earlier than' relation where ti � tj if the eventassociated with the time ti occurred earlier than the event associated with tj. Let `�'be the `earlier than' relation in which ti = tj may be true.De�nition 4.4 Let `�' represent the `later than' relation where ti � tj if the eventassociated with the time ti occurred later than the event associated with tj. Let `�'be the `later than' relation in which ti = tj may be true.This ordering of the times is used to de�ne a time stamp process as follows.De�nition 4.5 A time stamping process is a set of functions ff1; f2; : : :g de�ned byfi(z) = sigP (z; ti)such that 8i � 1, ti+1 � ti, where z; ti and sigP are de�ned in De�nition 4.1. Atrusted time stamp provider executes fi `earlier than' fi+1 for all i � 1. (Furtherrequirements regarding the application of time are discussed in Section 4.3.)An important assumption with regard to Protocol TS1 is that the time stampprovider is trusted to honestly produce time stamps with a correct time and maintains

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 77Round 1.1. User u1 submits data y1 for stamping to T .2. T returns the time t1 and time stamp s1 to u1.Round 2.1. User u2 submits data y2 for stamping to T .2. T returns the time t2 and time stamp s2 to u2....Figure 4.1: Global View of a Time Stamping Process. Each round identi�es aninstance of this process as might be performed by the general time stamping Proto-col TS1.reasonable protection of the signing key used for the production of time stamps.Alternatively though, the function of the time stamp provider can be distributedusing either threshold or proactive signatures (see brief discussion in Section 6.2) sothat a number of time stamp providers contribute to the production of a single stampand compromise of a single provider's signing key does not allow the production offorged time stamps. Alternative options in the case that corroborative evidence isrequired, in addition to the temporal authentication provided by a single time stampprovider, are discussed in Section 4.2.1.Figure 4.2 gives a conceptual representation of the functions used in the timestamping Protocol TS1. The length of a round (in which more than one document issubmitted to be time stamped) may be determined either by �xing an upper boundof the number of messages that will be jointly stamped in the round or on the amountof time that is allowed to elapse before a stamp is output. A group hash is used inthe case that more than one document is input during a particular round. In anyevent, only one time stamp is output for a particular round. The provision of timefor the time stamp is discussed in Section 4.3. The authentication and storage of thestamp are discussed in Section 4.2.1.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 78
Protocol TS1 General Time Stamp Protocol.Description: This protocol gives the abstract steps required for the production andveri�cation of a time stamp s from De�nition 4.1.Note: Let P represent the time stamp provider. Each potential verifying party hasa copy of P 's ver�cation key a priori.Time Stamp ProductionInput: data y or set of data (y1; : : : ; ym)Output: time stamp capsule capy = (y; t; s; a;membery)1: User u submits the data y to P for time stamping.2: If a group hashing scheme G (see De�nition 3.1) is being used, then P gathers msuch input, (y1; : : : ; ym) and computes the group hash value a = G(y1; : : : ; ym).3: P obtains the time t (either an absolute, relative or hybrid time) as speci�ed inSection 4.3.4: P computes the time stamp s = sigP (z; t) wherez = (a if group hashing is usedy otherwise (4.1)5: P returns the time stamp capsule capy = (y; t; s; a;membery) to u, where a andmembery are included only if group hashing is used.Time Stamp Veri�cationInput: time stamp capsule capy = (y; t; s; a;membery)Output: whether s is a valid time stamp for data y at time t1: Veri�er v obtains the time stamp capsule capy, e.g., user u is the veri�er of thecapsule upon receipt from P .2: If a and membery are included in the time stamp capsule (so that group hashingwas purportedly used), then v computes V (a; y;membery) (see De�nition 3.1)and continues to step 3 if successful and aborts with `false' output otherwise.3: Let z be de�ned as in (4.1). v determines the truth value of verP (s; t; z) bydetermining the mathematical correctness of the signature s using an a prioristored copy of P 's signature veri�cation key.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 79

�� ��
����

�� ��
������ ��

����

--
-������+ ����/

- -6 6

�

6�� ���� ���?... . . .
Append Time Temporal Authenticator

TimeSource PrivateKey
Storage

Bu�er
GroupHash(optional)y1y2

ym
membery1 memberym

time stamp s(relative time only)

Figure 4.2: Generic structure of a time stamping protocol. Each yi = h(xi) is the hashof a document xi, input to receive a time stamp. Rectangles indicate functions that areperformed (typically by the time stamp producer) and corresponed to those describedin Sections 4.2 and 4.3. Cubes indicate sources of trusted or authenticated storage.The role of the Bu�er and the Time Source are described in Sections 4.3.2, 4.3.3 and4.3.4. The Temporal Authenticator and Storage are described in Section 4.2.1.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 80The veri�cation of the stamp assumes trust in the time stamp provider for honestlyproducing time stamps. However, not all stamp veri�cations will be successful. Weidentify a false stamp as one in which an unsuccessful veri�cation results.De�nition 4.6 A false stamp is a time stamp for which the veri�cation of the stamp'stemporal authenticity has failed. A stamp s for a document y is a valid stamp if s isnot a false stamp.Notice that this de�nition of a false stamp di�ers from a fraudulent stamp producedby a dishonest time stamp provider, e.g., if the provider includes an improper time.4.2.1 Alternatives for Authenticating the StampIn situations where long-term trust in a single time stamp provider (authority) T isnot desireable, additional corroborative evidence may be provided for the time stamps. In this subsection, we examine several options or enhancements to Protocol TS1for authenticating or legitimizing the resultant time stamp, with particular emphasison techniques that corroborate a time stamp that would be provided by a single timestamp authority.Message AuthenticationSeveral uses of a digital signature were provided by the stamping protocols reviewedin Chapter 2, including the following:1. the digital signature of a trusted authority, e.g., Protocol AB1;2. a decentralized protocol requiring the digital signatures of other entities, e.g.,Protocol AB5.The digital signature of a trusted authority can consist of a centralized protocolor a distributed version, e.g., a threshold or proactive scheme (see brief descriptionin Section 6.2). Protocol AB1 is an example of a centralized protocol that requirescomplete trust in the provision of temporal authentication by the single time stampauthority. On the other hand, Protocol AB2 additionally provides corroborative

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 81evidence by the inclusion of independent time stamps from a number of so-calledtemporal data authorities. The provision of a time stamp in which several varyingtimes are included, as in Protocol AB2 and Protocol AB5 has the e�ect of weakeningthe granularity of time provided. In other words, given that for k absolute timesprovided in a time stamp, where t1 � : : : � tk, one may only be able to determinethat a data item was time stamped after time t1 and before time tk. A large gapbetween these two times can reduce a scheme's practicality.Alternatively, there may be no message authentication provided for the (data; time)pair. For example, in Protocol AB4, although the submitting user signs the (data; time)pair, no real temporal authentication is provided since a lone user should not betrusted for providing a valid time. In Protocol AB4, subsequent storage techniques(see below) are used to provide authentication for the data.StorageStorage of a time stamp (as well as any other information required for the veri�cationof the stamp) refers to the maintenance of its existence and integrity for the purposeof future veri�cation(s). The storage of the stamp serves many purposes, includingthe following.1. Functionality. The storage of the time stamp, if stored only by the time stampsubmitter, is required for subsequent veri�cation to be performed at all.2. Redundancy. The storage of the time stamp may also be used as alternativemeans for demonstrating the existence of the time stamp. It can be used ascorroborative evidence in the case of a dispute regarding the status of a user'sversion. In this sense, its mere existence at a secondary storage facility reducesthe trust required in a central time stamp authority in the case that a temporalordering is provided by the storage (see next point). See Protocol HY2 (ofSection 4.5) for a scheme that uses a storage facility for redundant storage oftime stamps.3. Relative Ordering. A centralized storage of time stamps may provide for anincidental relative ordering (see Section 4.3.3) of the stamps in the case that

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 82newly received stamps are appended to the end of storage upon receipt (and aswell, are received in the same order that they are time stamped).The integrity of the storage is required for each of the points indicated above. Theprovision of this integrity depends on the how the stamp is stored. This provision cana�ect one's trust in the time stamp and can also a�ect the e�ciency of the stamp'sveri�cation. Alternatives for storage of the stamp include:1. Storage by Owner. In this case, only the submitting user maintains a copy ofthe resultant time stamp, e.g., Protocol AB1.2. Centralized Storage. Centralized storage may involve a storage facility main-tained by a trusted entity (possibly but not necessarily the time stamp author-ity). Redundancy may be provided by distributing the storage among severaltrusted entities. See Protocol HY2 (of Section 4.5) for an example usage ofcentralized storage.3. Decentralized Storage. The decentralized storage of time stamps, involves thedistribution of the time stamps among users. Protocol AB3 distributed thestorage of the time stamp among users. Protocol RL1 distributed informationallowing the veri�cation of time stamps among users. Additional cooperationmay be required here for the veri�cation of the time stamp since users notdirectly responsible for the production of the time stamp may need to be con-tacted.4. Widespread Publication. A widespread publication involves a large scale distri-bution of the stamp. If performed only periodically (so that the informationfrom the widespread publication alone is not su�cient to validate the stamp),alternative means (as described above) must be used for storage of necessaryinformation. See Protocol HY1 (of Section 4.5) for an example usage of awidespread publication.The most interesting option for \authenticating" storage involves the use of awidespread publication of the information. Originally suggested by Merkle [Mer80]

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 83(often referred to as a \Merkle channel") for the authentication of public keys andlater by Bayer, Haber and Stornetta [BHS93] for the authentication of time stamps,a widespread publication can be thought of as a decentralized storage. For example,recall Protocol AB4 where time stamps are published daily in the local newspaper.More correctly, suppose that the submissions of users were published. The publicationdate accompanying the submissions provides an absolute time stamp. Authentica-tion of the submissions is provided by the fact that the widespread dissemination ofthe information has bound their submission with the associated time of publication.Linking can be combined with group hashing so that resultant information need onlybe published periodically. This technique is used by Protocol HY1 in Section 4.5where some additional concerns with a widespread publication are presented.4.3 Associating a Time with DataSection 2.1.1 introduced the protocols and functions used to provide a (cryptographic)time stamp s for data y by the authentic association of a `time' t with y. Three vari-eties of `time' were also introduced. A typical purpose for obtaining a time stamp isto allow a determination of `when' y existed as compared to some other `time' (pos-sibly also contained within another time stamp); a so-called temporal measurement(see De�nition 2.9). In this section, we present several requirements regarding theproduction of a time for a time stamp, and examine how each type of time providesthese requirements.4.3.1 Applying a Consistent TimeThe production of a time stamp s is an instance of a larger, ongoing time stamp-ing process (see De�nition 4.5). Each such instance is referred to as a round, andthe provision of the time stamp during each round is performed by a time stamp-ing protocol (see De�nition 2.6). To allow for meaningful temporal measurements,1each assignment of a time by a time stamping protocol should be consistent for all1A temporal measurement is a comparison between two times, the result of which determineswhich time (or more speci�cally, the event associated with the particular time) was earlier.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 84protocol instances. In this subsection, we present several requirements regarding theapplication of a time in a time stamping protocol, that allow for such meaningfulmeasurements.To motivate and clarify this consistency requirement, consider the production ofthe time stamps s1 = sigT (y1; t1) and s2 = sigT (y2; t2) for respective data y1 and y2with times t1 and t2, using Protocol AB1 of Section 2.4.1. A natural question mightbe: \Which of y1 or y2 were time stamped �rst?" However, this question is relevantonly if t1 and t2 indicate the times at which y1 and y2 were time stamped. In otherwords, suppose that the time stamp authority T time stamps data with the `timeof receipt' of the data. Therefore, t1 and t2 would represent the respective times atwhich the data y1 and y2 were received by T . Suppose, without loss of generality,that y1 was received prior to y2 so that t1 � t2. Yet suppose that y1 happened tobe time stamped by T later than y2, even though it was received earlier. Therefore,there would be an inconsistency with the answer provided for the question above,and the times associated with the data since although the time associated with y1 isearlier than the time associated with y2, y1 as stamped later than y2.Consider also the following example where the stamps s1 and s2 are de�ned asabove. Suppose that y1 happened to be received at time t1, while y2 happened tobe stamped at time t2, where as above, t1 � t2. Beyond being inconsistent with theprovision of times in the time stamps, the answer to the question \Which of y1 or y2were time stamped �rst?" would be indeterminable since the time of stamping of y1is not known; t1 indicates only the time of receipt of y1.The lack of precision regarding the application of a time by T in the above twoexamples was purposeful. Its intent was to illustrate the requirement for precision sothat time stamps produced by T should be applied with times that obey a consistentand unambiguous rule for all rounds in which a time stamp is produced. A variety ofsuch rules, regarding the `meaning' associated with the time of stamping include thefollowing:1. each input to be time stamped is assigned a time upon its receipt, to be includedin the resultant time stamp by the time stamp provider, or

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 851. The time applied to each data or group of data should be consistent and itsmeaning unambiguous for all rounds in which a time stamp is produced.2. The time applied to each data or group of data should be monotonically in-creasing with the number of data input to be time stamped (see De�nition 4.5).Table 4.1: Requirements for the Association of a Time in a Time Stamping Protocol.2. each input received is ordered in a queue where each item is assigned a time, tobe included in the resultant time stamp, upon its removal from the queue.A time stamp provider must ensure that a single, unambiguous, consistent rule isfollowed for each time stamp production. Additionally, the provision of time througha time stamp must allow for subsequent determination of the order in which thetime stamps were provided. In other words, if data yi was submitted no later thandata yj, then for the respective times ti and tj associated with the data through therespective time stamps si and sj, then one must be able to determine that ti � tj. Therequirements for the association of a time in a time stamping protocol are summarizedin Table 4.1.4.3.2 Providing Absolute TimeDe�nition 2.3 provides a de�nition of an absolute time stamp as the result of theauthentic association of an absolute, universal time with data. In this subsection, wemore precisely de�ne an absolute time, and examine how such a time is provided fora time stamp.An absolute time is more intuitive than a relative time (see Section 4.3.3 below).It is the de facto form of time that is recognizable by many people on this earth. Forexample, the time t wheret = Mon Aug 28 15:43:32 EDT 1998is an example of an absolute time. Indicated are the day of the week:`Mon'; themonth of the year:`Aug'; the date within that month:`28'; the time of day:`15:43:32';

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 86the current `time zone':`EDT'; and the year:`1998'. This time has meaning rela-tive to other times. For example, t is one hour later than the absolute time t� =Mon Aug 28 14:43:32 EDT 1998, identifying the time, and any events associated witht as `later than' events associated with t�, i.e., t � t�.Although there is no (known) truly \absolute" time, for digital applications, onecan be constructed. For example, this time might be represented, similar to theabove representation, by the current year (number of times the earth has revolvedaround the moon since the birth of Christ), the month within that year and daywithin that month (following the Julian calendar) and the time of day (speci�ed byUniversal Coordinated Time (UCT)). However, there can be alternative de�nitions[DS93, Section 3]. A consistent, clear de�nition of how the time is provided and formatfor describing this time is required in any case [DS93]. Throughout, we assume thata standarized time value is recognized by all time stamp authorities. We refer to thistime as a universal time.De�nition 4.7 An absolute time is a time t from which a universal time t0 canbe uniquely and e�ciently determined. The absolute time t is explicit if t0 can becomputed from t using only arithmetic operations, while t is implicit if additionally,external time data is required to compute t0 from t.Examples of an explicit absolute time include the time t = Mon Aug 28 15:43:32 EDT 1998(which is also one possibility for a universal time) as shown above or alternatively,the time t1 which represents the number of seconds that have elapsed since a certainsome `base' time, i.e., t1 = 1 with base time of t, would represent the universal timet0 = Mon Aug 28 15:43:33 EDT 1998. Examples of an implicit time were given forProtocol AB2 in Section 2.4.1.An absolute time stamping protocol is memoryless since the time stamp construc-tion computations during one round are not dependent on any function of the timestamps from previous rounds. Rather, an absolute time stamp requires a source for itstime independent of occasions of time stamp production. This source of the absolutetime can be a clock that is either internal or external to the time stamp provider. An

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 87internal clock is maintained by the time stamp provider, i.e., its integrity is main-tained locally by T . More than one internal clock may be used whereby some functionof the times (e.g., their average so long as the di�erence between their times is nottoo great) is used in the time stamping operation.Remark 4.2 (Similarities between cryptographic keys and clocks.) A clock is similarto a cryptographic key whose authenticity must be maintained, but not its privacy(e.g., a public veri�cation key). Both are susceptible to attacks in which the currentstate or value is modi�ed, e.g., by forwarding or reversing the time on the clockor altering the value of the key. Synonymous to a key that is renewed to limit theexposure subsequent to an attack, clocks may be periodically synchronized, to limit thee�ects of \clock skew" but as well to allow the detection of potential, unauthorizedalterations of the time (where an unauthorized alteration would involve, for example,the modi�cation of the time).De�nition 4.8 A time stamping protocol that provides temporal authenticationwith an absolute time provides absolute temporal authentication.Measuring Absolute TimeDe�nition 4.9 An absolute temporal measurement is a temporal measurement (seeDe�nition 2.9) for which the order of absolute times t and t0 is determined. In otherwords, whether t � t0, t = t0 or t � t0.Unlike a relative measurement, the times in an absolute measurement need not becryptographically associated with a time stamp. Since absolute times are so ubiqui-tous, other times may be used in an absolute measurement, including:1. the current time, i.e., time when the comparison is being made;2. the absolute time(s) from some other stamp(s); or3. some other event or object for which an absolute time is supplied, e.g., thedeadline for submission of a conference paper might be compared with the timestamp on the particular version of that paper.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 88Given a rule for a particular absolute time stamping protocol, stating the time,relative to the time of submission of a document, should be associated with a givensubmission, we de�ne the malicious back or forward stamping of a document asfollows.De�nition 4.10 A document y has been absolutely back stamped if an absolute tem-poral measure of the time stamp s for y infers that the time t associated with y isearlier than the time expected, based on the rule of the time stamping protocol.De�nition 4.11 A document y has been absolutely forward stamped if a temporalmeasure of the time stamp for y infers that the time associated with y is greater thanthe time expected, based on the rule of the time stamping protocol.For example, suppose that the rule for a particular time stamping protocol states thatdata are time stamped with the time indicating their time of receipt by the time stampprovider. Suppose that data y was received at time t. y would be absolutely backstamped if a stamp s was constructed for y, using a time t0 � t. Similarly, if a timet00 � t were used as the time of stamping, then y would be absolutely forward stamped.Such malicious action by a rogue T is di�cult to prevent. However, some possibilitiesfor limiting the extent of a back or forward stamp are examined in Section 5.1.3.4.3.3 Providing Relative TimeDe�nition 2.4 provides a de�nition of a relative time stamp as the result of theauthentic association of a relative time with data. In this subsection, we de�ne arelative time more precisely, and examine how such a time is provided for a timestamp.De�nition 4.12 A relative time is a value ri such that given at least one otherrelative time value rj, it can be determined which of the following is true (see De�ni-tions 4.3 and 4.4):1. ri � rj,

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 892. ri = rj, or3. ri � rj.Notice that an absolute time is also a relative time since given two absolute times tiand tj, one can determine which of the above conditions is true. The key distinctionis that a relative time need not allow one to compute a unique universal time from it.Unlike an absolute time (where the time increases independent of data submittedto be time stamped), the provision of a relative time is dependent upon the stampingof previous data. Therefore, notice that from De�nition 4.12, a single relative timemay have no temporal meaning on its own.De�nition 4.13 A time stamping protocol that provides temporal authenticationwith relative time provides relative temporal authentication.Remark 4.3 (Di�erent uses for a relative time.) A relative can serve many func-tions. For the provision of relative temporal authentication, two such purposes of arelative time have been used.1. (Relative Measure.) In protocols such as Protocol RL2 (of Section 2.5) a relativetime was used to allow the ordering of two time stamps to be determined.2. (Corroborating Evidence.) In protocols such as Protocol HY1 (of Section 4.5),an ordering of time stamps is used to provide corrobating evidence for a timestamp by using a relative time (linking) with a periodic \authentication" ofstamps. This corroborating evidence serves to reduce the amount of trust re-quired in the principal time stamp provider.The \time" in a relative time stamp could be represented by a variety of values,including:1. Linking information. Explicit dependency on one or more previous stamps.2. Counter. A monotonically increasing positive integer.Both linking information and a counter were used by all of the schemes reviewed inSection 2.5. In the following, we expand on the varieties of a relative time.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 90Linking InformationA relative time using linking information can be implemented using a bu�er to storeprevious stamp information. This (variable or �xed sized) bu�er can be initializedwith a publically veri�able value. For Protocol RL1 a bu�er of size 1 was used sothat each stamp was authentically bound to only 1 previous stamp. Protocol RL3used a bu�er of size k so that each stamp was authentically bound to only k previousstamps. Denoting the current stamp as si, the bu�er contains some subset S 0 of somefunction of the previous stamps S = fs1; : : : ; si�1g. The appendage of a relative timefrom this bu�er makes use of a subset S 00 � S 0.Linking can be described in general as computation of the recurrence relationlr = link(prev; ar)given some initial value, where lr represents the relative time for the current round,ar represents a partial result of the current round (where ar likely has no timelinessprovisions) and prev represents the time stamp result(s) from previous round(s). armight be a single document (or some function thereof) or the representative resultof a group hashing of m documents. The goal of executing the link() function is torelatively order data.Remark 4.4 The link() function must be collision-resistant else one might be ableto produce an alternative prev0 from a previous round in an attempt to maliciouslydemonstrate precedence over the current round, e.g., so that link(prev; ar) = link(prev0; ar).CounterAlternatively or in conjunction with the linking of stamps, T may use a counter toorder time stamps where the counter is a positive integer, initialized to zero and incre-mented by 1 for each time stamp produced. Because of the simplicity of maintaininga counter and the dependence on each stamping of a document, this time source istypically internal to T .

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 91Incidental Relative Orderings with Counters Alternative to the explicit pro-vision of relative time via linking or a counter, other stages in the production of a timestamp can incidently provide a relative time (meaning that their main purpose is notto provide a time, though such a relative measure, as described below, is recoverable).For example, recall the group hashing techniques reviewed in Section 2.5. Theschemes of Section 2.3.1 and Section 2.3.2 provide a relative ordering of the inputdata. Consider the computation ar = h(y1; : : : ; ym) of Protocol GH1. Given yi and yj,and their respective memberyi and memberyj , the relative positioning of yi and yj canbe determined during the recomputation of ar. This relative ordering would typicallybe implemented similar to a counter whereby one would store (i; yi; memberyi) tofacilitate proper recomputation of the group hash; i represents the counter value.Notice though that this relative ordering (provided by the group hashing), exists onlyfor documents within the same round.Protocols GH4 and GH5 do not provide such an incidental ordering. However,a relative ordering can certainly be explicitly provided during the production of thegroup hash. For example, in Protocol GH4, rather than broadcasting yi, users mightexplicitly order their submissions (as required for the protocols from the previousparagraph) and input h(i; yi) to the group hash.However, this precedence relationship should not be interpreted as an indicationof which yi has time precedence over another, unless this is explicitly indicated. Asdescribed, the group hash protocols gather submissions with no apparant regard totheir \order" of submission. However, consider the situation in which documentsare submitted to a central time stamp authority who after the reciept of m submis-sions, performs a group hash operation before stamping the result. By inputting thedocuments to the group hash in the order they were received, an incidental relativeordering is achieved.Besides group hashing, an incidental ordering can also be provided during thestorage of time stamps. For example, if stamps are appended to the current storagethe last stamp appended would be the stamp with the latest \time" associated withit. As with the group hashing above, this ordering is based on a counter maintainedwithin the �le, pointing to the memory location(s) for each stamp.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 92Measuring Relative TimeRecovery of a relative time alone does not yield any information regarding \when" arelative time stamp was constructed. Rather, a relative time stamp contains a \time"which allows the temporal position of the stamp to be determined against other itemsfor which a relative time is also provided.De�nition 4.14 A relative temporal measurement is a temporal measurement forwhich the order of relative times t and t0 is determined . In other words, a determi-nation of whether t � t0, t = t0 or t � t0. For linked times, one can determine forexample that t � t0 by determining if for a set of intermediate times (t1; : : : ; tk) withrespective data (a1; : : : ; ak) for stamps (s1; : : : ; sk),t = link(tk; ak); tk = link(tk�1; ak�1); : : : ; t1 = link(t0; aj):For a counter based relative time, one can determine, for example, that t � t0 ift� t0 > 0.De�nition 4.15 A document y has been relatively back stamped if a temporal mea-surement infers that y was stamped before y0 when in fact, y was stamped aftery0.De�nition 4.16 A document y has been relatively forward stamped if a temporalmeasurement infers that y was stamped after y0 when in fact, y was stamped beforey0. Consider the unsuitability of these de�nitions for absolute time stamps (and hencethe distinctions with De�nitions 4.10 and 4.11). Suppose that a protocol provides atime stamp s for data y where s = stamp(y). Suppose further that s is an abso-lute time stamp for which the time t, of submission of y, is associated with y. ByDe�nitions 4.15 and 4.16, it would not be back stamping to assign a time t0 � t tothe stamp s for y, so long as t0 is greater than the time of the most recently issuedstamp. However, this could cause great confusion. Consider the example of havingconference submissions time stamped. Suppose that the deadline for submissions

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 93is Tuesday morning and that the latest submission so far was received on Mondaymorning. For the application of an absolute time stamp, the above de�nition allowsa time from Monday afternoon to be applied to a paper that may be submitted afterthe Tuesday morning deadline.RelativeMarkers. One problem with measuring the distance between linked stampsis that there may be a long chain between the times associated with s and s0, requiringa potentially large number of computations to be performed for veri�cation. As well,if the storage of the stamps is distributed (as in Protocol RL1) then a large amount ofcommunication is required. Large chains can be dealt with by using relative markers.De�nition 4.17 Relative markers are distinguished stamps within a temporal chainthat serve a special purpose. Two such markers are1. Intermediate Stamps. Intermediate stamps are used by Pinto and Freitas [PF96]to shorten the chain of comparison between two stamps that contain many chainlinks between them.2. Cross-Stamps. Cross-stamps which link two di�erent time stamping \domains",allow for the relative comparison of two stamps that may have been producedby di�erent time stamping authorities.
The use of intermediate stamps by Pinto and Freitas [PF96] was reviewed at theend of Section 2.5. Their usefulness can be motivated with the following example.Consider the veri�cation of stamps ai and aj in Protocol RL2. Presuming that ai wasindeed produced prior to aj, in step 2 of the veri�cation of Protocol RL2, the veri�erv obtains aij = (ai+1; ai+2; : : : ; aj�1) from T and in step 3, computesL0k+1 = h(ak; Lk); i � k � (j � 1)and ensures that Lk+1 = L0k+1 for each value of k. This recursive operation (relativetemporal measurement) demonstrates that ai was used in the computation of aj and

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 94

ai aj

ai
ai

aj
aj

a I a II

a I a II

$'

�$'� $'

-

����� @@@R
6 6

time

veri�cation chain
veri�cation chain

a)
b)

Figure 4.3: Improved E�ciency with Intermediate Stamps. ai and aj are time stamps(with respective times ti and tj) produced for users ui and uj respectively. aI andaII are trusted time stamps (with respective times tI and tII) produced solely by T .The temporal order tI � tII is known and trusted to be true. (a) The entire sequenceof stamps is required for determining that ti � tj. (b) Given that tI � tII , one needonly show that ti � tI and tII � tj. The length of the verifying chain is reduced bythe number of stamps between aI and aII .

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 95

l l l l l l l l l

l l l l l l l l l

-

-6
?

Time StampAuthority T'

ai

Ia'

a

a'j
Time StampAuthority T

a'

IIa

p

kFigure 4.4: Cross-Stamps Allowing for Relative Stamp Interoperability. ai and a0j areuser stamps created by respective time stamp authorities T and T 0. a0I is a cross-stamp produced by T 0 as a function of both the previous stamp in the upper chainas well as ak. aII is a cross-stamp produced by T as a function of both the previousstamp in the lower chain as well as a0p.hence, time stamped before aj. However, it requires that j � i stamps be obtainedfrom T and at least j � i hash computations be performed. As noted at the end ofSection 2.5 and illustrated in Figure 4.3, intermediate stamps aI and aII allow thelength of the veri�cation process to be reduced by an amount proportional to thenumber of stamps between aI and aII . Intermediate stamps are also used by Haberand Stornetta (see Protocol HY1 of Section 4.5) and authenticated via a widespreadpublication in the New York Times.Cross-stamps allow for interoperability between two temporal chains. Considerthe user stamps ai and a0j from Figure 4.4 produced respectively by time stampauthorities T and T 0. On their own, the temporal chains to which ai and a0j belong,have no comparable ordering. Therefore, without additional provisions, one would

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 96not be able to determine the positioning of stamps produced by di�erent time stampauthorities. To overcome this problem, one can use cross-stamps as in Figure 4.4. akis a regular stamp produced for some user by T . T 0 obtains ak from T and createsthe cross stamp a0I which connects the stamps prior to ak on the lower chain to thestamps after a0I on the upper chain. To complete the process so that the stamps priorto a0I on the upper chain are comparable to stamps on the lower chain, T obtains astamp from T 0 in a similar manner (in this case, T obtains a0p to construct aII).4.3.4 Providing Hybrid TimeDe�nition 2.5 provides a de�nition of a hybrid time stamp as the result of the authen-tic association of both an absolute and relative time with data. In this subsection,we examine how such a time is provided within a time stamp. Protocols RL1 andRL3 were reviewed in Section 2.5 and Protocol HY1 is reviewed in Section 4.5. Inaddition to the provision of a relative temporal ordering, these schemes also providefor the recovery of an absolute time during stamp veri�cation. Hence they provide ahybrid time stamp.De�nition 4.18 A time stamping protocol that provides temporal authenticationwith both an absolute and relative time provides hybrid temporal authentication.The intent of using a hybrid time is to combine the advantages of both an absoluteand relative time. However, it also incorporates some of the disadvantages. The choicebetween an absolute versus a relative time can depend on several factors. For example,the provision of an absolute time requires a trusted clock (see [LB92]) for the providerof the absolute time stamp and possibly for the veri�ers of the absolute time containedwithin the stamp, should the correctness of the time stamp upon its initial receipt,need to be checked; also required by veri�ers so as to allow a determination of whatthe current time is, during temporal measures of time stamps. On the other hand, theapplication of only relative times allows only for comparisons between like-stampeddata, i.e., data for which a relative time stamp has also been provided. The choicebetween the more suitable time to provide will depend on the intended application

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 97for which the time stamps are being provided as well as the resources of the timestamp provider and veri�ers.Besides providing a recoverable temporal ordering of data, relative time or linkingcan also serve to reduce the trust required in the time stamp provider (see Section 4.2.1and Section 4.3.3). Therefore, a natural hybrid scheme is one in which the linking isused as more of an integrity measure than a temporal measure (as in Protocols RL1,RL3 and upcoming with Protocol HY1).A hybrid scheme can also provide both an absolute and hybrid stamp, whereasveri�cation need only perform an absolute or relative measure. This may be practicalin the case that a particular time stamp has both an absolute and relative time, yetthe veri�er, who does not have access to a trusted clock for validation of the absolutetime, chooses not to determine the validity of the absolute time. In this case, theveri�er must ensure that the time he has chosen to measure was provided for thepurpose of temporally authenticating the data.4.4 Importance of Proper Temporal MeasurementsIn this section, we present two protocol failures in schemes previously proposed inthe literature. These failures occur as a result of misunderstanding the veri�cationof a time stamp. These protocol failures were presented at the 1998 Symposium onNetwork and Distributed System Security [Jus98].In Section 4.4.1 we discuss how the inclusion of an absolute time in the productionof a time stamp for Protocol GH4 is not recoverable nor veri�able during stampveri�cation thereby not permitting a successful temporal measurement. Section 4.4.2presents a collusion attack on Protocol RL1. We demonstrate how the use of onlyan absolute temporal measure (in a scheme that is intended to provide both absoluteand relative temporal authentication) and unreasonable assumptions regarding trustin the time stamp authority, allows the relative backdating of documents.The particular attack against Protocol RL1 is presented relative to the model inwhich the original scheme was given. The model assumes that the time stampingauthority (T) need not be trusted. In Section 4.4.2, we show that a dishonest T can

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 98subvert the scheme unless certain precautions are taken. One should not presumehowever that such an attack is only successful against Protocol RL1. Indeed, oneshould be careful when designing similar linking schemes and speci�cally must con-sider the necessity of properly authenticating the resultant stamp (see Section 4.2.1).In environments where it is not unreasonable to trust T, such an assumption, andtherefore the attack and precautions, may be unnecessary.4.4.1 Protocol Failure: Inability to Measure an AbsoluteTimeIn Section 2.3.3, Protocol GH4 was reviewed. In addition to the computation of agroup hash, it was suggested that an absolute time may be included in the stampconstruction, thereby allowing one to also provide absolute temporal authenticationfor the group hash.The protocol allows the resultant time stamp for a round to be computed in such amanner that an on-line, centralized entity is not required for the stamp computation.We demonstrate here that the constructed time stamp does not allow for the recoveryof an absolute time during its veri�cation, even though such information is suggestedfor optional inclusion during stamp construction. In a sense, the time is \lost" duringthe stamp construction. More speci�cally, we state the following.Proposition 4.1 For Protocol GH4, one can neither recover nor validate (the abso-lute time) x during stamp veri�cation.Proof:Consider the veri�cation of a time stamp by user v. User ui would demon-strate that that the document yi contributed to the round in question by givingfyi; memberyig to v. User v would compute (memberyi)yi mod n and determine itsequivalence to ar modulo n. Although an absolute time may have been included inthe stamp computation (i.e., by setting x to be the current date), no such absolutetime is uniquely recoverable during time stamp veri�cation. In other words, there ismore than one candidate x such that xy � ar mod n. Therefore, there is no reason

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 99for any recovered x to be trusted as the time of stamping of ar. Hence, the inclusionof the current date as described in the stamp construction, serves no purpose since itis not recoverable during stamp veri�cation.One way to provide for the absolute temporal authentication of the stamp forProtocol GH4 is to authenticate ar along with t (the time of stamping). The time twill be veri�ed for its correctness rather than recovered from ar. Use of a hash bycomputing a0r = h(ar; t) and storing a0r and t allows for increased storage e�ciency.However, there may be additional overhead in case a decentralized protocol is used,for users to agree upon a time t. The provision of a relative temporal measure wouldallow users to demonstrate a time precedence ordering for documents submitted indistinct rounds. Techniques for providing absolute and relative times were respec-tively discussed in Sections 4.3.2 and 4.3.3. Authentication of storage of the stampswas discussed in Section 4.2.1.4.4.2 Protocol Failure: An Improper Relative MeasurementIn what follows, we demonstrate how the use of only an absolute temporal measure(in a scheme that is intended to provide hybrid temporal authentication) allows therelative back dating of documents in Protocol RL1. As well, some unreasonableassumptions with regard to the lack of requiring any trust in a central entity are alsodiscussed.Recall that Protocol RL1 is actually a hybrid scheme, and not just a relativestamping scheme since absolute times ti are included in each time stamp, in additionto the linking of the stamps. Indeed, the veri�cation process determines the position ofonly a single document rather than the relative positioning of a number of challengeddocuments. The linking of the resulting absolute time stamps is used as a means toprevent T from back or forward dating stamps. We therefore assume that if ai�1,ai and ai+1 are stamps that are consecutively linked in a temporal chain and therespective absolute times associated with each are ti�1, ti and ti+1, then ti�1 � ti �ti+1. We make this assumption for the successful running of the protocol, i.e., weassume that any challenger that moves along the chain will check that the times will

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 100follow the same temporal order as the stamps to which they are associated.Meaning of the AttackA fake chain attack is recognized by Haber and Stornetta [HS91], where it is claimedthat the only possible spoof is to prepare a fake chain of time-stamps, longenough to exhaust the most suspicious challenger that one anticipates.Since each time stamp requires a signature by the time stamp authority (T), thisattack would presumably require collaboration with T. This attack might appearnot that di�cult to implement except that for assigning fake stamps, a number ofadditional collaborators would be required. After all, a suspicious challenger mightonly be convinced of the legitimacy of a chain if a large number of distinct participantsare contacted for veri�cation.In Lemma 4.1, a new attack is presented whereby one can collude with T andpartially insert a single false stamp into a valid chain of stamps. In this way, only asmall fake chain need be produced, that can be \fused" into the valid chain (thoughonly one end of the fake chain is connected to the valid chain). This fake chain is thelower chain in Figure 4.5. The attack demonstrates that an untrusted, centralized Twith no record-keeping is not su�cient for providing the claimed level of security. Wecan summarize the requirements and results of the attack as follows:Attack Requirements1. Collusion with T . The absolute backstamping (backdating) (cf. De�nition 4.10)of a document requires the participation of the time stamp authority T . Pro-tocol RL1 claimed that T need not perform any record-keeping, nor be trust-worthy. The linking alone was claimed to prevent even T from backstamping adocument.2. Additional collusion or advanced knowledge of attack. The backstamping of adocument requires either the participation of another user with a time stamp

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 101produced near the time of the desired backstamping or the anticipation of asubsequent attack by the attacker having a previously time stamped documentexisting near the time of the desired backstamp.3. Subsequent maintenance by T . As discussed below, the attack can require thatT perform subsequent maintenance in order to \disguise" the existence of abackstamped document.Attack Results and Limitations1. Absolute but not relative backstamping of a document. As explained below, theattack does not allow one to relatively backstamp a document. This is not thatconstrictive since the veri�cation procedure (see Protocol RL1) only performs anabsolute temporal measure (see Section 4.3.2); the relative ordering is providedonly to reduce the trust required in T and is not used in the recovery of arelative ordering during veri�cation.2. Attack detection with enhanced veri�cation. The attack can be thwarted witha more vigorous veri�cation protocol.The absolute backstamping in Protocol RL1 is successful since the veri�cationprotocol performs a temporal comparison based only on the absolute times associatedwith the time stamps. However, it is not successful for relatively backstamping adocument. In other words, T cannot backstamp to show the time precedence of onestamp over a previously, legitimately constructed stamp that would be veri�ed bya relative measure. There is no relationship between stamps that are solely on theupper or lower chains here (see Figure 4.5 and Lemma 4.1). For example there doesnot exist a relative temporal relationship between the stamps aj+1 and ai as they arenot linked together (via a series of directed links).Let f : P ! P be a function where P is the set of all possible time stampcapsules. For example, from Figure 4.5, we have p1 2 P belonging to u1, wherep1 = fC1; L1; a1; ID2g. Then p2 = f(p1) = fC2; L2; a2; ID3g. In other words, on inputp1, f produces the time stamp capsule for a time stamp whose linking information is

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 102
C
L

ID

C
L

ID

C
L

ID

C

ID

L
1
1

1

j
j

j

j+1
j+1

j+1

i-1

i-1

i-1

Lower
Chain

2 j+1 j+2 i’

ID ID ID ID

Upper Chain

1 j j+1 i-1

Valid Chain

i+1ID
i

L i

Ci

IDi

a a a a

aFigure 4.5: Multiple Chains in Protocol RL1. Each of the smaller rectangles repre-sents the time stamp capsules for a user. The valid chain is an example of what mightbe produced from a normal running of Protocol RL1. The lower chain is producedby T in collusion with IDi, in order to backstamp a document yi. IDi0 indicates thatthere is more than one possibility for the placement of the next stamp, depending onhow the attack is mounted.computed explicitly as a function of the stamp contained in p1. As long as H (whereH is used to compute L2; see Protocol RL1) is collision resistant, the assumption isthat f is a one-to-one function.The claim of Haber and Stornetta [HS91] was that T need not be trusted since anattack would require �nding a collision for H. From our attack, we can in fact statethe following.Lemma 4.1 The collision-resistance of H is not su�cient so as to permit the truthof both statements in Protocol RL1:1. T need not be trusted; and2. T cannot back or forward stamp data.Proof:For the proof, we demonstrate that T can indeed back stamp data for user ui.The attack proceeds with user ui colluding with T to backstamp a document yi (with

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 103corresponding stamp ai). (Readers may wish to re-read Protocol RL1 of Section 2.5 atthis point to regain familiarity with the protocol.) Referring to Figure 4.5, we see howthe resultant T -signed time stamp ai is expected to appear immediately after ai�1,i.e., normal running of the protocol assumes that additions take place at the end of thevalid chain. However, as in the �gure, ai is placed by T , immediately after aj. Whatadvantage does this give ui? Suppose that aj, aj+1 and ai�1 contained the respectivetimes tj, tj+1 and ti�1 where tj � tj+1 � ti�1. If the stamp ai (corresponding todocument yi) were placed in its correct place (i.e., after ai�1), T would associate atime ti � ti�1 with it. By placing it immediately after aj, T can assign any time tito yi (in stamp ai) such that ti � tj. Since tj � ti�1, T has absolutely backstampedyi for ui by assigning it a time earlier than the current time. Notice however that Thas not relatively backstamped yi here since a relative measurement does not showprecedence of ai (the time stamp for yi) over any stamp in the upper chain.Subsequent to the linking of yi in this new chain, all future legitimate stamprequests can either be added by T in the lower chain (i.e., after yi whereby IDi0 inthe upper chain could simply be assigned IDi; see Figure 4.5) wherein only the lowerchain would be continuing, or alternately added to �rst the lower then the upper chain(whereby IDi0 in the upper chain would be assigned IDi+2; see Figure 4.5) so thatboth chains are continuing. The latter technique ensures that challenges can proceedin the forward direction for documents contained in the upper chain (though how achallenger would even know when a chain is supposed to end when moving forwardmust be considered). However, it does require that the stamps for two documentswill have the same round number associated with them (i.e., the same r) which maylead to a detection of the fraudulently produced stamp if the veri�cation procedurewere enhanced. This is under the assumption that consecutive stamps must haveconsecutive round numbers associated with them.Now that T has produced a backstamped ai (for submission yi), suppose v wereto verify the time stamp ai following the procedure outlined in Protocol RL1. If vproceeds forward from ai, no faults are discovered since documents are subsequently,legitimately stamped after ai in the lower chain. However, if v proceeds backwardsfrom ai, note that the owner of aj, namely uj was previously given IDj+1 by T,

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 104However, v expects uj to have been given IDi. Hence, v would discover the possibilitythat something is wrong with ai. Yet there are still some options to enhance the attackto overcome this apparent obstacle:1. T and ui can also collude with uj, requiring uj to store IDi as well IDj+1. Ifprompted from a veri�er proceeding on the upper chain, uj can reveal IDj+1while from the lower chain, reveal IDi; the requirement of uj knowing whichchain the veri�er is proceeding on is discussed in the section on `Attack De-tection' below. This additional requirement for the attack requires a singleadditional collusion which is still much less work in comparison to the fakechain attack reviewed earlier.2. Have IDj = IDi. This can be accomplished by having ui periodically stamp(possibly meaningless) documents. For example, referring to Figure 4.5, anadditional collusion would still be required with the user identi�ed by IDj,but if this user happens to be the attacker ui, then no additional collusion isrequired.The second option is clearly more favourable since no additional colluding partnersare required. In either case, T has succeeded in absolutely back stamping yi for userui. Notice that if T is dishonest, then f is not necessarily a function at all; it is arelation. For example, from Figure 4.5 we have that f(pj) = pj+1 as well as f(pj) = pi.Therefore, rather than forming a total order, the set P of time stamp capsules formsa partial order. Let each stamp be a vertex in a directed graph with an edge fromstamp ai to stamp aj if ai was stamped before aj and one can follow a directed chainfrom ai to aj (or vice-versa). Rather than exclusively forming a single chain, a treeis obtained, directed from the root. We have a tree (and hence no cycles) since eachvertex has no more than a single incoming edge (dictated by the collision resistance ofH), but can have more than one outgoing edge (allowing for the creation of multiplepaths). Each path from root to leaf is a potentially valid chain which represents atotal ordering on its own.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 105Attack Detection?In the following, we consider di�erent possibilities that might be suggested as a meansfor detecting the lower chain (see Figure 4.5) produced from the attack described inLemma 4.1. We de�ne a valid state as one in which only a single temporal chainhas been produced by T (i.e., the valid chain in Figure 4.5). Attack detection is thediscovery of a state that is not valid. For each of the cases discussed here, detectionof the attack is possible only if certain preventive measures are taken and explicitlyrequired during stamp creation and stamp veri�cation (in addition to those given byProtocol RL1). Suggestions for attack prevention are given below.In item 1 given above, for the next stamp in the \chain" after aj, uj stores IDj+1and IDi where IDj+1 6= IDi. IDj+1 refers to the upper chain of stamps while IDirefers to the lower chain. In item 2, this \fork" in the temporal chain is advancedahead one link. In other words, uj stores IDj+1 = IDi pointing to each of thenext stamps. On the other hand, ui, possessing a stamp in both the upper andlower chains, holds IDj+2 6= IDi+1 referring respectively to the continuation of ui'spreviously constructed stamp on the upper chain and backstamped document on thelower chain.In the the �rst detection possibility, we examine possible scenarios in which averi�er v is traversing along the chains shown in Figure 4.5, traversing both from(backwards or forwards in the direction of time) and to (backwards or forwards inthe direction of time) the stamps relevant to the attack; namely the stamps aj, aj+1and ai and as well, those stamps legitimately added after ai�1 or ai subsequent to theattack. The second detection possibility notes how a relative measurement included inthe veri�cation procedure might discover the attack. The third detection possibilitydiscusses the limits of how far back a document might be time stamped.Detection possibility #1. For either Item 1 or Item 2 above, proceeding backwardor forward during a veri�cation of the temporal chain starting from the stamp aj (inthe �rst case) or from the stamps both submitted and stored by ui, ai or aj+1 (in thesecond case), causes no suspicion on the part of the veri�er v. This is because movingbackwards from any of these stamps continues along the previously constructed valid

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 106chain and hence relies on the correctness of the protocol itself since a veri�er will nowencounter only legitimately produced stamps. Moving forward from aj+1 or ai leadsrespectively forward on the upper or lower chains and does not cause suspicion in thecase that stamps have been legitimately added to the upper and lower chains duringthe production of stamps produced subsequent to the attack. A similar situationoccurs for a veri�er proceeding through a veri�cation to aj, aj+1 or ai from earlierstamps. For example, considering the case in which uj (the owner of aj) possessesboth IDj+1 and IDi indicating the newly created fork in the chain resulting from theattack, it does not matter which chain the veri�er is sent on, e.g., v is sent on theupper chain if given IDj+1 by uj.However, consider item 1 (item 2 is analogous) and suppose that stamp aj+k iscurrently being challenged where (j + k) < (i � 1) and thus the stamp appears inthe upper chain (see Figure 4.5). Working backwards to aj+1, the challenger willeventually obtain IDj from Lj+1 (which is stored by uj+1) and hence asks uj for histime stamp capsule, namely faj; ID0g. Notice that if the challenger were proceedingon the upper chain then he would expect ID0 = IDj+1 whereas on the lower chain hewould expect ID0 = IDi. Notice also that uj has no way of knowing which chain thechallenger is proceeding on. However, consider that uj may possess many stamps (allpresumably along the same chain from the challenger's point of view). The challengerwill have to inform uj about which stamp he wishes to challenge. This may includeinformation which identi�es which chain he may be proceeding with his challenge on.(The protocol description given by Haber and Stornetta [HS91] is not speci�c enoughto determine the exact steps taken during such a challenge.) As well, since the entirecapsule (i.e., faj; ID0g) was not signed by T, there is no reason that any integrityshould be expected to be associated with it by any challenger.Detection possibility #2. A second possible suggestion for detection relates tothe observation that subsequent to the partial insertion of the false (lower) chain(see Figure 4.5), maintenance of both the upper and lower chains requires that somestamps will share the same corresponding identi�cation (round) number. However,

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 107the same identi�cation number will only be shared by stamps that appear on di�er-ent chains. Stamps will have unique identi�cation numbers relative to the chain thatthey are on. Therefore, unless two such documents are compared for their relativepositioning, such number repetition is not detected during a stamp veri�cation. Per-forming a relative measure (see Section 4.3.3 as well as `Attack Prevention' below)may detect this attack.Detection possibility #3. A third method for possible detection involves thefollowing observation regarding the limits to how far back in time a document mightbe time stamped. Depending on how far back ai is partially inserted into the validchain (to produce the lower chain { see Figure 4.5) the amount of time between thetime recorded in the stamp for ai and the stamp following ai in the lower chain maybe \uncomfortably large." Note that legitimately produced stamps following ai willbe stamped with a time that is at least as late as the (actual) current time. Whereasai (since it is being backstamped) will be stamped with a time that is earlier (possiblymuch earlier) than the (actual) current time.However, it is di�cult to determine how this might be interpreted by a challenger.Should Protocol RL1 require that an upper bound be placed on the amount of timethat might elapse between the construction of two consecutive stamps? Prior toknowledge of this attack, such an additional constraint was unmotivated. Givenknowledge of this attack, it may still be di�cult to enforce.Implications of detecting multiple chains. If it happened that multiple chainswere detected and this evidence is given to an adjudicator, then this essentially bringssome suspicion on T. At this point, T may claim that his private signature key musthave been compromised. Either he can refute having created one temporal chain, orthe other or even both. Note that this loss of key scenario is not the same as if we wereto have a single chain for which T refutes some or all of the stamps that he produced.In such a case, the adjudicator may have a choice to believe or not believe T and tonot accept or to accept the temporal chain. However, in the case given above, theadjudicator does not have this luxury. Even if he choses not to believe T, how can he

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 108tell which chain is correct? We note again here that such malicious action by T maybe unlikely, though not impossible. Below, we discuss some additional measures thatmight be taken to limit the extent of the attack. One must also bear in mind thatthe relevance of this attack lies mainly in its exposure that assuming that T need notbe trusted may be unreasonable.Preventing the Attack on Protocol RL1In the following, some enhancements to both the stamp production and veri�cationas described by Protocol RL1 are presented. Two ways to prevent the aforementionedattack are1. authentic storage of the stamps by a trusted authority and/or2. treat the protocol as only a relative scheme.These points were respectively discussed in Sections 4.2.1 and 4.3.3.It is important to realize that the use of authenticated storage does not simplyprovide for an extra level of security (should one claim that T need not be trusted)since we have shown the scheme to be insecure without it. With this provision ofauthentic storage, producing an alternative chain is made more di�cult if the one truechain is authentically veri�able. As well, notice that providing for such authenticationof the time stamps is not simply an extra feature that can be added to the protocolsince its addition produces an entirely new protocol { i.e., the interactions required forthe veri�cation protocol (the main feature of the scheme) appear to be unnecessaryin this case. The authentication and storage of time stamps was discussed in moredetail in Section 4.2.1.For treating the protocol as only a relative scheme, there are some drawbacks.First is a loss of �ne granularity. It can no longer be determined exactly when adocument was time stamped, but rather only when it was time stamped relativeto when other documents were time stamped. The provision of relative time wasdiscussed in Section 4.3.3.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 1094.5 Hybrid ImplementationsIn this section, we critique one of the more widely used time stamping implemen-tations. Protocol HY1 is currently used by Surety Technologies and is described byHaber and Stornetta [HS97, Section 2.4] and Trowbridge [Tro95]. This protocol is ofinterest since it closely follows the framework described in Section 4.2 (though it doesso with a solution that is non-cryptographic).In anticipation of longer requirements for the temporal authentication of user'sdata, Protocol HY1 uses a 288-bit hash function consisting of the concatentation ofan MD5 [Riv92] and SHA-1 [FIP95] hash. In other words,y = h(x) =MD5(x); SHA-1(x);where `;' denotes concatenation. The advantage of this technique is discussed furtherin Section 5.5.Referring to Protocol HY1, `Veri�cation II' is used in the case that the responsefor the original veri�cation from T is in dispute, or requires further corroborativeevidence. This is not all that unreasonable since no message authentication is providedfor any of the communications performed by T . We can summarize several concernswith Protocol HY1:1. Authenticity of the Time Stamp. (This same concern was noted for Proto-col SM1 of Section 2.2.) Even after the execution of `Veri�cation I', the verifyinguser has little evidence assuring him of the correctness of the time stamp. Thisis a result of the lack of message authentication provided for the time stamp.Indeed, discrepancies between various copies of CD-ROMs require resolutionusing Veri�cation II (discussed further in the next point).2. Adjudication. A realistic concern relates to how the `storage' used in Proto-col HY1 will be treated in the event of disputes. In other words, what makesone copy of newspaper more trustworthy than another. This might requiretrusted archival of the newspaper at several sites, requiring participation ofthe archivists in case of a dispute. Indeed, the veri�cation and adjudicationprotocols seem very di�cult to automate.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 110Protocol HY1 A Hybrid Time Stamp using Widespread Storage [HS97].StampingInput: fy1; : : : ; ymgOutput: ar,memberyi from Protocol GH3 (see Section 2.3.2) and widespread storageof ar1: User ui submits yi = h(xi) to T .2: T collects the submissions after 1 second (hence the rounds are 1 second in length)and uses Protocol GH3 to compute ar.3: A so-called super-hash value (SHV) is computed for this rth round, using ar andthe previous round's SHV: SHV r = h(SHV r�1; ar)4: SHV r is recorded in a Universal Validation Record (UVR) along with the currenttime t , i.e., as `t:SHV r; ar'.a5: SHV r, memberyi and the time t are returned to ui.Periodic Publication1: The UVR is periodically distributed (on a CD-ROM) to registered users.2: Each Sunday, the most recent SHV is published in the NY-Times.Veri�cation IInput: yi, memberyi , tOutput: whether yi was time stamped at time t1: User v, verifying the purported time t of stamping of yi, submits yi, memberyiand t to T .2: T uses yi and memberyi to recompute ar, uses t to locate SHV r�1 (in the UVR),computes SHV 0r = h(SHV r�1; ar) and determines whether it is equal to SHV ras recorded in the UVR.3: T returns a success or failure response to ui.Veri�cation IIInput: UVR and trusted copies of the NY TimesOutput: Corroboration of the correctness of the UVR1: The SHV recorded in the NY Times is treated as a trusted intermediate stamp(see De�nition 4.17(1)) as similarly described for Protocol RL2.2: Let SHVj represent the �rst SHV following SHV i, published in the NY-Times.To verify the correctness of a particular SHVi in the UVR, the veri�er v computesSHV k = h(SHV k�1; ak), i � k � jensuring that for i � k � (j � 1), the values of SHV k match those given in theUVR and that the value of SHV j matches the value printed in the NY-Times.aThe description of Haber and Stornetta [HS97, Section 2.4] is not speci�c on this point whereasTrowbridge [Tro95] indicates the storage in the UVR as `t:SHV r'. However, for `Veri�cation II',knowledge of ar for each entry is required.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 1113. Interoperability. The ability to compare the relative order of time stamps pro-duced by di�erent time stamp authorities can be partially handled by the use ofcross-stamps (see De�nition 4.17(2)), and as well by the recording of an absolutetime in the UVR.As an alternative, we propose Protocol HY2, which modi�es Protocol HY1 to dealwith some of the concerns provided above by providing1. Message Authentication. The stamp is signed by a time stamp authority (T)and veri�ed upon return to the submitter of the data to be time stamped.2. Authenticated Storage. The stamp is recorded and maintained by a storageauthority (S) who is independent of T .and following the framework described in Section 4.2. Rather than using linking fora relative ordering, a counter is used.With regard to trust in authorities, we take the view of protecting against attacksto the authorities rather than attacks by the authorities. For example, notice that Tand S could collude by having T periodically advance the round counter r ahead byone position, thereby allowing subseqent backdating. Indeed, T could even colludewith S to backdate, simply by repeating an r which has already been used, so longas the detection of this is not too likely. Rather, Protocol HY2 protects againstmalicious attacks that might occur against either T or S. Notice that if T 's privatekey is compromised, the backdating of documents would require storage of stampswith an incorrect form by S, e.g., with an old round number r. Likewise, a compromiseof S would require collusion with T to produce a T -signed signature.Notice that the use of a storage authority allows for the provision of corroborativeevidence regarding the time stamp s (see Section 4.2.1). The advantage is that thesubmitting user u is unaware of the provision of storage since it is done o�-line withregard to the communication between u and T . Regarding the choice of group hashin Protocol HY2, referring to Table 3.2, Protocol GH3 is the most favourable forlimiting the size of ar and has the second smallest size for memberyi when less than27 data are group hashed.

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 112
Protocol HY2 A Hybrid Time Stamp Proposal.StampingInput: fy1; : : : ; ymgOutput: ar, memberyi from Protocol GH31: User ui submits yi = h(xi) and a time granularity request to T .2: T collects the submissions and queues each based on the granularity requested byeach user (see Remark 4.5).3: At the end of each appropriate time interval, T uses Protocol GH3 to computear for the appropriate queues.4: T computes s = sigT (r; ar; t) for absolute time t and returnsr;memberyi ; s; t to ur; ar; s; t to storage authority S:5: ui computes a0r using Protocol GH3 with yi and memberyi as input, and veri�esthat s is indeed a signature over (r; a0r; t).6: ui stores (r; t;memberyi ; yi; xi; s).7: S veri�es that s is a signature over the received (r; ar; t); veri�es that t is withint0 � � of the current time for small � and ensures that r is 1 greater than the lastreceived from T .8: S stores (r; t; ar; s).Veri�cationInput: (r; t;memberyi ; yi; xi; s)Output: whether yi was time stamped at time t1: User v, verifying the purported time t of stamping of yi, computes y0i = h(xi) andensures that y0i = yi.2: v computes a0r using Protocol GH3 with input yi and memberyi and veri�es thats is a signature over (r; a0r; t).3: (Optional.) v contacts S and veri�es the existence of the entry (r; ar; t; s) storedby S. (This step is also useful in the case that T 's private signature key iscompromised.)

CHAPTER 4. A FRAMEWORK FOR TEMPORAL AUTHENTICATION 113Remark 4.5 (Variable Time Granularity.) The granularity of a group hash oper-ation is determined by the length of the round, which may be �xed or variable, anddepend on either the length of time or number of submissions received. A variabletime based granularity might work as follows. Note that not all users (submitting arequest for a time stamp) obtain the same granularity. Some users require a timestamp to the nearest second, others to the nearest minute or hour. The granularitiesrequired by each user can be requested by the submitting users, whereby the time stampprovider can subsequently place each request in separate bins, e.g., a `second-bin', a`minute-bin' and an `hour-bin'. At the end of each second, the second-queue would beprocessed for group hashing followed by time stamping. Likewise, every minute andhour respectively for the minute- and hour-queues.

Chapter 5Time Stamping Digital SignaturesA time stamping protocol provides for the temporal authentication of digital data.The input to a time stamping protocol is viewed as no more than a string of bits. Insome cases, input data possessing particular properties allows for additional conclu-sions to be drawn regarding the data both during the production and veri�cation ofa time stamp. One such form of data is that which has an authentic lifetime (i.e.,validity period) associated with it.In this chapter, we focus on the time stamping (temporal authentication) of dig-ital signatures. A public key used to validate a signature is typically, in practice,contained in a certi�cate; the lifetime of the certi�cate can be (as we assume in thischapter) constrained by a �nite validity period. By time stamping a digital signa-ture, subsequent veri�cation can determine if the signature was produced when thecorresponding certi�cate was valid. Alternatively, this signature validity imposed bythe �nite validity period of the corresponding certi�cate can also be veri�ed duringtime stamp production thereby preventing the time stamping (and hence acceptance)of signatures produced subsequent to a certi�cate's expiry. This \notarization" ofdigital signatures determines the correctness of the input and decides whether or notto notarize based on this determination. The time stamping or notarization of sig-natures also introduces the extension of a signature's message authentication beyondthe expected lifetime of the original digital signature algorithm. This chapter exam-ines each of these concerns, providing general techniques allowing a system to obtain114

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 115clear and consistent veri�cations of a digital signature.Chapter OutlineIn Section 5.1, several de�nitions regarding the association of a �nite validity periodwith data are presented. The relevance of these concepts is discussed in relationto remaining sections in this chapter. In Section 5.2, the construction, distribution,maintenance and trust in public-key certi�cates is reviewed. In Section 5.3, we exam-ine the e�ect that time has on the status of a digital signature validation. Section 5.3.1motivates and presents requirements that allow for consistent veri�cations of a digi-tial signature over time. In particular, De�nition 5.13 presents the components of acerti�cate-based signature scheme with time stamping. The time stamping and long-term storage of a signature and its corresponding veri�cation certi�cate's status areidenti�ed as key requirements for consistent signature veri�cations. Section 5.3.2ful�lls these requirements in more detail with the presentation of the signature veri�-cation Protocol DS1. Practical concerns regarding the process of certi�cate revocationare highlighted by Figure 5.10. The role of a signature dispute adjudicator is pre-sented as a signature veri�cation by a trusted third party. In Section 5.4, we presenta digital signature notary as a trusted third party that establishes the truth of variousstatements regarding the status of a digital signature and its corresponding veri�ca-tion certi�cate at various points in time. This notarization of digital signatures ispresented as Protocol NT2. In Section 5.5, we review the concept of digital signaturerenewal. The subtle problems o�ered by a time stamping solution are reviewed andthe application of a notarization solution is presented.5.1 Data With Inherent TimeBeyond the existence of data at a particular time as may be identi�ed by the timestamping of the data, a data item may be de�ned by a �nite validity period or lifetime.Creation and expiry dates delimit the lifetime of the data.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 116De�nition 5.1 The lifetime of data y 2 Y is the output returned by the functionlifeT ime : Y ! (T [�1) � (T [1) where T represents a �nite set of possibletimes. For each data y 2 Y, lifeT ime(y)[1] (the �rst element of the ordered pair)represents the creation date (see De�nition 5.2) for y whereas lifeT ime(y)[2] (thesecond element of the ordered pair) represents the expiry date (see De�nition 5.4) fory. Unde�ned creation and expiry dates are represented by �1 and 1 respectively.As an example of a data's lifetime, a public key certi�cate's lifetime is parame-terized by a creation date cd and expiry date ed (see Section 5.2.1). The lifetime ofuser u's certi�cate is thus denoted as lifeT ime(certu) = (cd; ed). In this section, wediscuss the usefulness of the concept of a data lifetime with particular emphasis onthe lifetime of a digital signature and its corresponding public key certi�cate.De�nition 5.2 A creation date cy associated with a data item y, is a veri�able orrecoverable date cryptographically bound to y indicating the start of a validity periodfor that data. Data that is distinguished (see De�nition 5.3) can have a creation dateuniquely associated with it.A time stamp provides authentically veri�able recognition of the existence of somedata at a particular point in time. The �rst time that data is time stamped can de�nea creation date for the data. However, since the same data can be time stampednumerous times it may be di�cult to determine the earliest or unique creation datefor the data. A particular time stamp merely implies that the time stamped datawas created no later than the time of stamping. It may have been created, even timestamped, at an earlier time.Since the same data can be time stamped many times, if the data is distinguishedfrom other data at the time of application of the creation date, can a unique cre-ation date be associated with this distinguished data. This motivates the followingde�nition.De�nition 5.3 A set S = fs1; : : : ; skg of binary data is distinguished if for any pair ofelements (si; sj), i 6= j, either length(si) 6= length(sj) or if length(si) = length(sj) =n, then si � sj 6= 0n.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 117For a set S that is not distinguished, one can create an alternative, distinguishedrepresentation for S, namely the set S 0 where for each element s 2 S a correspondingelement s0 2 S 0 can be created by either of the following techniques.1. Associating a unique identi�er with s. For example, a public key can be assigneda unique serial number (see Section 5.2 for further details regarding certi�cateconstruction) representing a unique or distinguished certi�cate. Although theremay exist several di�erent certi�cates for a particular public key (by inclusionof the same public key in di�erent certi�cates), each certi�cate is unique asidenti�ed by its serial number.2. Removing duplicate elements from S. An alternative to the association of aunique identi�er as performed above would involve an authority that only issueda single certi�cate for each public key. Subsequent to the initial request andissuance of a certi�cate for a particular public key, all subsequent requests withthe same public key would be rejected.De�nition 5.4 An expiry date ey associated with a data item y, is a veri�able orrecoverable date cryptographically bound to y indicating the end of a validity periodfor that data. Data that is distinguished (see De�nition 5.3) can have an expiry dateuniquely associated with it.The date of expiry of a public key is incorporated within its corresponding cer-ti�cate. A patent also has a speci�c date of expiry, relative to its date of �ling, i.e.,currently 20 years after the date of �ling.De�nition 5.5 Data y 2 Y is said to be alive as of time t if alive(y; t) = true, wherealive : Y � T ! ftrue, falseg is de�ned by the following:alive(y; t) = 8<: true if lifeT ime(y)[1] � t � lifeT ime(y)[2]false otherwise

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 118This general concept of \aliveness" can be used for various concepts regarding adata's aliveness status. For the example of a public key certi�cate certu (see Sec-tion 5.2.1) belonging to user u, alive(certu; t) (written as expired(certu; t) in De�ni-tion 5.10) is true if and only if cd � t � ed where cd and ed are the respective creationand expiry dates of the certi�cate. --t timeyFigure 5.1: A timeline representation of data y in which only the expiry date t isknown (or relevant).Data need not necessarily have either an authentic creation or expiry date. Fig-ure 5.1 gives a pictorial representation for data y that has an expiry date yet nocreation date, i.e., lifeT ime(y) = (�1; ey). For example, consider the issuance ofa club membership, although the creation date may be known (since it is the timeof issuance of the membership), it may not be necessary at some subsequent time.The membership card may therefore only require an indication of the expiry date.Figure 5.2 gives a pictorial representation for data y that has a creation date yetno expiry date, i.e., lifeT ime(y) = (cy;1). For example, consider the receipt of auniverity degree. Although this degree may have a related creation date (identi�edby the date of completing the degree requirements), it typically has no such expirydate. --yt timeFigure 5.2: A timeline representation of data y in which only the creation date t isknown (or relevant).It is important to note that a lifetime is not necessarily �xed. Although the cre-ation and expiry dates, once set, do not change, data can prematurely expire. Forexample, although a credit card has an expiry date, abuse or loss of the card subse-quent to its issuance may result in a premature removal of the privileges associated

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 119with the card, amounting to an early expiry. For an example more relevant to theremainder of this chapter, consider the creation and expiry dates contained within apublic key certi�cate. As a result of a revocation (see Section 5.2.3), the \expiry" ofthe certi�cate may occur prior to the originally intended date of expiry.5.1.1 Relevance to Temporal AuthenticationThe role of a time stamper is to time stamp raw data for which any semantics as-sociated with the data are considered irrelevant. Yet for data with some associatedattributes or auxiliary information (i.e., some meaning associated with the data), ad-ditional conclusions can be drawn with regard to the data. In particular, consider datawith some cryptographically associated timing information, e.g., a creation and/orexpiry date. This timing information may be relevant either during time stamp pro-duction or veri�cation as respectively described below.1. An authority uses the timing information for deciding whether or not to authen-ticate the submitted data, e.g., apply a signature to the data. In other words,the data y might be authenticated at time t only if alive(y; t) = true. For ex-ample, if data is not currently considered to be alive, the time stamp operationmight fail. In this way, the time stamper is acting as a notary by positivelyattesting to the current `liveness' of the data. The role of a notary is discussedin Section 5.4. As an example, a notary might only authenticate a signature ifthe signature was received at a time when the corresponding certi�cate of thesigning user has not yet expired.2. The data is authenticated by a trusted authority as before, without any inter-pretation of timing information (associated with the data) during the provisionof message authentication. Data from sources used to provide the auxiliarytiming information for the data (e.g., its creation and/or expiry date) are usedto draw further conclusions regarding the message authentication of the dataduring veri�cation or adjudication. For example, if a digital signature is timestamped as opposed to notarized, subsequent veri�cation is required to deter-mine if it was stamped during a time when the public key certi�cate of the

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 120signer was valid (i.e., had not yet expired nor been revoked).5.1.2 Extending a Finite LifetimeThe lifetime of data input to a time stamp or notary authority can be unde�ned andhence assumed in�nite in the direction of increasing time, unless it possesses someinherent or alternative timing information. A time stamp often has a �nite lifetimein both directions (e.g., based on prudence should the stamp construction be basedon complexity theoretic assumptions). The end of a time stamp's lifetime may be1. parameterized by an expiry date included in the stamp or2. dictated by some external source, e.g., in the signature veri�cation certi�cateof the entity who created the stampThe pair consisting of data y and its corresponding time stamp constitute a documentof their own that can be input to a time stamp or notary authority. In this way, the�nite lifetime of the original time stamp can be extended by the production of asubsequent time stamp. This procedure can be used as a process of renewing a timestamp. With regard to digital signatures, just as successive time stamping serves torenew former time stamps, the time stamping of a digital signature may extend thelifetime associated with the digital signature (as de�ned by the validity period of thepublic key certi�cate). This extension and renewal of authentication is discussed inSection 5.5.5.1.3 Implications for Backward and Forward StampingIn this subsection, we present some interesting implications (for data possessing in-herent timing information) with respect to the back (see De�nitions 4.10 and 4.15) orforward stamping (see De�nitions 4.11 and 4.16) of time stamps. For cases in whichonly an expiry date associated with data is relevant (see Figure 5.1), only the pre-vention of (absolute and relative) forward stamping is typically necessary. Producinga false back stamp for y is considered irrelevant since the goal of an attack would beto stamp y as far forward as possible. This more clearly explains the example given

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 121by Benaloh and de Mare [BdM91] stating that a photo of somone holding the MagnaCarta does not give evidence that this person was alive in the year 1215 A.D. It givesno evidence because back stamping is not relevant with such a scheme. The schemeis only designed to show the latest date that something has not yet expired (i.e., thisperson is alive as of this time), and has no relation to the date of creation. As well,there are cases where it is not important when y expires, only when it was created (seeFigure 5.2). Thus, only the prevention of backward stamping are typically relevanthere. Remark 5.1 summarizes these concerns.Remark 5.1 The prevention of backward stamping is typically unnecessary for datawhose lifetime is unbounded in the direction of decreasing time. The prevention offorward stamping is typically unnecessary for data whose lifetime is unbounded in thedirection of increasing time.A �nite lifetime also has some interesting implications with regard to the extentto which data can be back or forward stamped. Suppose that a digital signaturec has some inherent timing information (i.e., the validity period for producing cdictated by the corresponding veri�cation certi�cate), de�ning a creation date t (forthe corresponding certi�cate). Let t0 be the current time and the time that might belegitimately associated with c by an absolute time stamp. The absolute back stampingof c might associate a time t00 � t0 with c. However, it makes little sense for t00 tobe less than t (it is generally assumed that subsequent veri�cation or adjudicationwould deem this as disallowable). Therefore, in cases where the data c possessessome associated timing information, the ability to provide a back stamp for c maybe constrained by the associated lifetime for c. Similarly results hold for forwardstamping. This point is summarized by Remark 5.2.Remark 5.2 The lifetime of data as parameterized by its creation and expiry datesmay be used to constrain the range in which data can be forward or back stamped.For a document that has no associated timing information, forward stampingcannot be prevented. For the particular example of a digital signature, the submissionof the signature to a time stamp authority can merely be postponed an inde�nite

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 122amount of time. In this case, forward stamping cannot be prevented. This observationwas made by Haber and Stornetta [HS91] (where the term used was forward dating),though as indicated with Property 5.2, successful forward stamping can be preventedin the event that the data has an associated expiry date.5.2 Public Key Certi�cates { BackgroundThe format of a certi�cate was mentioned briey in Section 2.1.2. In Section 5.2.1, weexpand on a certi�cate's construction and contents. In Section 5.2.2 we discuss howcerti�cates are obtained by users (both the certi�cate owner and veri�ers of signedmessages from the certi�cate owner). As well, we recall issues of trust related tocerti�cates, e.g., how does one user trust a certi�cate received from another user?Section 5.2.3 reviews the purpose and methods of certi�cate revocation.5.2.1 Certi�cate ConstructionCerti�cates are typically constructed by a certi�cation authority (CA). A CA-signeduser certi�cate authentically binds a user's name to a public key.De�nition 5.6 A (user) certi�cate certu is de�ned as a data structure containing atleast the following elements,certu = fnu; Iu; pu; cd; ed; sigCA(nu; Iu; pu; cd; ed)g;where each element in certu is identi�ed as follows:nu: a unique certi�cate serial number;Iu: a distinguished subject name uniquely identifying u among all other users withinthe name space relevant or controlled by this CA;pu: a public key;(cd; ed): a validity period for the certi�cate, denoted by the creation date cd andexpiry date ed for the certi�cate;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 123sigCA(� � �): the signature of the CA over the items listed above (as well as any otheritems potentially included in the certi�cate).Possible additional entries include alternative names or attributes related to the owneror key.Users may have several certi�cates, distinguished by di�erent serial numbers. Asa speci�c example, u might have di�erent public keys and hence certi�cates for en-cryption or for digital signatures. Unless speci�ed otherwise, we assume that pu is asignature veri�cation key.Users can obtain their own certi�cate(s) from the CA through various techniques.For example, employees might be issued a certi�cate upon joining a corporation andbe physically given a disk containing the CA-signed certi�cate, which can subse-quently can be uploaded by the user to their personal computer. An important detailregarding the issuance of a certi�cate is the veri�cation of the identity Iu of the cer-ti�cate requestor and ensuring that this person is indeed the owner of the veri�cationkey pu (where ownership here means that u has knowledge of the signature key su cor-responding to pu). Various \levels" of certi�cates can exist depending on the diligenceof the CA to validate this identi�cation.Validity Period of a Certi�cateThe use and interpretation regarding a validity period can vary for a certi�cate. Letus �rst consider variances in the length of the validity period. For example, in somesystems, certi�cates might have an inde�nite expiry date. Alternatively, certi�catesmight only be considered valid for a short period of time (e.g., one hour) after theirissuance. Throughout this thesis, we assume that a certi�cate has a �nite validityperiod (of reasonably long length, i.e., useful for a number of signature productions)de�ned by its creation and expiry dates.It is also important to consider the implications regarding a certi�cate's expiry.Figure 5.3 gives two possible interpretations. Relative to the validity period, one canalso consider signing and veri�cation periods. The signing period delimits the timeafter which the signature producer should no longer produce signatures, nor should

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 124

validity period of certi�catesigning periodveri�cation period
signing period -veri�cation period

-

a) Option 1
b) Option 2

timeFigure 5.3: Two views of the signing and veri�cation periods for a signature relativeto the validity of the veri�cation certi�cate.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 125signatures received after this time be veri�ed (the latter applies only to Figure 5.3(b)).The veri�cation period delimits the time after which the veri�er of a signature canno longer trust the corresponding certi�cate and hence should no longer attempt toverify such signatures. Signatures received prior to the end of the certi�cate's validitymay still be veri�ed until the end of the veri�cation period.For the �rst option (see Figure 5.3(a)), the signing period is a fraction of thevalidity period while the period in which signatures can be veri�ed ends with theexpiry of the certi�cate. Veri�cation subsequent to the certi�cate's expiry wouldrequire a renewal of the signature's authenticity (see Section 5.5). For the secondoption (see Figure 5.3(b)), signatures can be produced and hence veri�ed as validuntil the end of the certi�cate's validity period. The signature can be veri�ed atany time, though only signatures received prior to the signature period expiry (i.e.,expiry of the certi�cate) will be veri�able. These options are discussed further inSection 5.3.1.Additional complications may result from the fact that the lifetime of certi�catesis not always �xed. Key compromise and employee dismissal are examples of twosituations which might warrant an earlier expiry or revocation of a certi�cate. InSection 5.2.3, implications of this early termination are discussed. In Section 5.3, wediscuss the distribution and attainment of trust in certi�cates.5.2.2 Certi�cate Distribution and TrustTrust in a public key can be obtained by verifying the cryptographic binding betweenthe name and public key contained within the CA-signed certi�cate. This veri�cationcan be performed using a copy of the CA's veri�cation key, obtained, for example,when a user �rst obtains their certi�cate from the CA, e.g., through a physical meetingto initiate their relationship with the CA. This veri�cation key may be contained, aswe assume in this chapter, in a self-signed certi�cate produced by and containing theveri�cation key of the CA.1 When one user receives a certi�cate from another, the usercerti�cate can then be validated using the CA's veri�cation key. User's certi�cates1The expiry or revocation of this certi�cate is beyond the scope of this thesis and hence thevalidity period of such certi�cates is assumed to be unbounded in the direction of increasing time.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 126can be distributed amongst themselves by many methods, including:1. Sent to the recipient by the message originator, most likely accompanying asigned message;2. Stored in a certi�cate repository (database) and obtained by using one of thefollowing techniques.(a) Pull. Message recipients obtain certi�cates as necessary.(b) Push. A CA distributes newly created certi�cates at the time of theircreation or at periodic intervals;3. Cached by recipients, from an initial distribution using either of the methodsabove.Multiple Certi�cation AuthoritiesFor reasons of scalability and diversity, it may be impractical for all users' certi�catesto be managed by a single certi�cation authority (CA). Scalability concerns mayresult if all users have certi�cates issued from a single CA. This places a tremendousburden on the CA for the construction and distribution of the certi�cates. Diversityconcerns result from requiring all users to accept the services of a single CA. Suchservices might include, for example, the maintenance of revocation information (seeSection 5.2.3). Users with certi�cates used for high risk transactions might requirea CA that performs frequent broadcasts of revocation information. However, thismay be unnecessary for certi�cate owners with more modest certi�cate requirements.Although a variety of services can be o�ered by a single CA, a large and ever-increasingnumber of users can make this task overbearing for a CA.One solution to single-CA limitations is to use multiple certi�cation authorities.However, this solution introduces some additional complications related to the trust auser has in a particular certi�cate. Consider the �rst two cases shown in Figure 5.4. InFigure 5.4(a), v is able to validate u's veri�cation certi�cate (as part of the validationof a u-signed message; see Section 5.3) since v already possesses a copy of the CAs

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 127
&%'$

&%'$ &%'$
������	 @@@@@@R

CA
vu

a) Single certi�cation authority

CA1
&%'$

&%'$ &%'$
&%'$

������	 ������	
b) Multiple, disjoint certi�cation authorities

u v
CA2

CA1
&%'$

&%'$ &%'$
&%'$

������	 ������	
�

u v
CA2c) Unilateral cross-certi�cation between certi�cation authorities

Figure 5.4: Single, Disjoint and Cross-Certi�ed Certi�cation Authorities (CAs). (a)Users u and v have certi�cates produced by the same CA. (b) Users u and v havecerti�cates produced respectively by the certi�cation authorities CA1 and CA2. (c)CA2 has cross-certi�ed CA1, producing the cross-certi�cate CA2fCA1g.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 128public key (since the same CA produced v's certi�cate). For reasons of scalabilityand diversity indicated above, u and v might have certi�cates produced by di�erentCAs, as in Figure 5.4(b). In this situation, v is unable to validate u's veri�cationcerti�cate without the public key of CA1; and v only possesses the public key of CA2.To allow v to validate u's certi�cate (or any other user's certi�cate produced bya \foreign" CA), v requires an authentic copy of CA1's public key. One possiblesolution is to obtain it in the same way that CA2's public key was obtained, e.g.,by a physical meeting. However, in the case that there is a large number of CAs,such a solution doesn't o�er an e�cient means for v to validate signatures whosecorresponding certi�cates are produced by \foreign" CAs. An alternative solutioninvolves treating CA1's public key as that of a normal user. CA2 can then certify thepublic key of CA1 as well. This solution is described below.Trust Relationships and Their Certi�cationDe�nition 5.7 A cross-certi�cate CAifCAjg is a certi�cate created and signed bythe certi�cation authority CAi, binding the name and public key of certi�cationauthority CAj.In Figure 5.4(c), CA2 cross-certi�es CA1 allowing v to validate u's certi�cate by1. initially possessing a trusted copy of CA2's veri�cation key,2. obtaining the cross-certi�cate CA2fCA1g, either accompanying a signature sentby u or from a directory maintained by CA2,3. using CA2's veri�cation key to validate the cross-certi�cate CA2fCA1g, therebyallowing v to trust CA1's veri�cation key,4. using CA1's veri�cation key to validate user u's certi�cate.v is able to gain trust in both CA1 and u by respectively validating the CA2- and CA1-signing of certi�cates. Notice that the cross-certi�cate CA2fCA1g does not imply theexistence of the certi�cate CA1fCA2g. Therefore, for the example above, CA1fCA2gis not available to allow u to verify v's certi�cate, even though CA2fCA1g exists.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 129De�nition 5.8 Let CAikfug represent certu (see De�nition 5.6) as produced byCAik . The collection of certi�cates,(CAi1fCAi2g; CAi2fCAi3g; : : : ; CAik�2fCAik�1g; CAik�1fCAikg; CAikfug)is called a certi�cate chain. For simplicity, this certi�cate chain may also be denotedas (CAi1; CAi2 ; CAi3; : : : ; CAik�2 ; CAik�1; CAik ; u)We say that entity A trusts entity B if A can successfully verify the authenticityof B's purported certi�cate, e.g., with a certi�cate chain. An entity refers to eithera user or a certi�cation authority. See De�nition 5.12 for a more formal de�nition oftrust.Certi�cate validation can become quite complex. For example, extending theexample in Figure 5.4(c), suppose that CA1 and CA2 did not directly cross-certifyeach other, but rather, each cross-certi�ed with CA3. An extra veri�cation would berequired by both u and v for the validation of their respective certi�cates. A completediscussion is beyond the scope of this thesis. See Menezes et al. [MvOV97, Section13.6.2] and Ford et al. [FB97, Section 7.2] for further information.5.2.3 Certi�cate RevocationThe lifetime of a certi�cate may be shortened due to a revocation of a user's certi�cate.In the case of a signature veri�cation certi�cate, it may imply that once a particularcerti�cate has been revoked, signatures produced subsequent to the time of revocationwith the corresponding signing key are no longer considered valid and hence no longeraccepted. The authority to revoke a certi�cate should be su�ciently restricted in orderto prevent a user from maliciously revoking the certi�cate of another user (resultingin a denial of service). For example, the user named in the certi�cate as well as theissuing CA may be allowed to initiate a revocation. For certain environments, anemployer may also be able to request the revocation of an employee's corporation-issued certi�cate. Reasons for revoking a user's certi�cate include the following:

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1301. suspected or detected compromise of the signing key (either the user's or CA'sprivate key);2. change of security requirements in anticipation of or in reponse to a protocolfailure, e.g., increasing the CA's key size in anticipation of new cryptanalyticattacks;3. change of information contained in the certi�cate, e.g., changing the distin-guished name of the owner;4. revocation of privileges associated with the certi�cate, e.g., subsequent to dis-missal, an employee may have his corporation-issued certi�cate revoked;5. change of role within an organization, e.g., moving from one department toanother.Other entities possessing copies of a currently revoked certi�cate (without knowingthat it is currently revoked) must be able to learn of the certi�cate's shortened lifetimeso that signatures produced subsequent to the date of revocation, are not accepted.Distributing Revocation InformationThere are a number of techniques for conveying revocation information to potentialsignature recipients. A certi�cate revocation list (CRL) typically contains at least,for each revoked certi�cate, the certi�cate serial number and the date of revocation.As well, the name of the issuer (e.g., the certi�cation authority (CA) that originallyissued the certi�cate) and the issue date of the CRL are included. This list is signedby the issuing CA.De�nition 5.9 A certi�cate revocation list (CRL) crlt is a list created and signed attime t by the certi�cation authority CAi containing at least the following information:1. the unique certi�cate serial number nu, corresponding to each certu (see De�-nition 5.6) previously issued by CAi, that is revoked as of time t;2. the time revu of revocation of certu;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1313. the time t of construction of the CRL; and4. the signature of CAi over the above information.More speci�cally,crlt = f(ni1 ; revi1); : : : ; (nip; revip); t; sigCAi((ni1 ; revi1); : : : ; (nip ; revip); t)gCRLs can be distributed using techniques similar to the methods for distributingcerti�cates described in Section 5.2.2, as described below.Push. For example, using the push method, the CA broadcasts the CRL to all\relying parties", i.e., users that will verify certi�cates. This can be done either peri-odically or may be event-based, e.g., subsequent to each revocation. The periodicityof the distribution depends on the policy of the CA, e.g., every hour versus once aday. Both the periodic and event-based options are susceptible to an attacker in-tercepting and stopping the delivery of the revocation information. For this reason,the implementation of a periodic distribution may include a �eld within the currentCRL indicating the time of the next update. Relative temporal authentication (seeSection 4.3.3) allows one to detect the deletion of revocation information for the event-based option, e.g., by using a sequence number for each CRL. The CRL broadcastmay consist of all currently revoked certi�cates or alternatively, the most recentlyrevoked (see delta-CRL discussion on page 134).Pull. Alternatively, the pull method can be used whereby users request revocationinformation directly from the CA or more commonly a directory/repository. In casethat a user may be anticipating a loss of (e.g., online) access to CRL informationfor a period of time, it might be prudent for a user to obtain the entire, most recentCRL. As an alternative to a CRL, a user might only query for information regarding aparticular certi�cate. The latter has the disadvantage of increased overhead resultingfrom multiple pulls, one required for each certi�cate query. However, there may bedecreased storage at the user's site by requesting only a single certi�cate. If the user

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 132caches the results of the individual certi�cate or CRL queries, one disadvantage is thestaleness of the revocation information.We can expand on the pull technique described above (for individual certi�cateinformation) where a real-time method is used (i.e., online certi�cate status check).Each certi�cate to be validated involves a query to the CA for the status of thecerti�cate. The response from the CA may consist of either1. a signed response from the CA indicating the status of the certi�cate (withoutreturning a copy of the actual certi�cate itself) or2. returning the certi�cate. This can be accomplished by returning the certi�catewith a statement from the CA indicating its status or make use of extended �eldswithin the certi�cate to indicate whether the particular certi�cate is revoked ornot, e.g., in the CA's directory of certi�cates, the original certi�cate might bereplaced by a copy in which the \revocation bit" is set to 1.Scalability concerns are present here in case of a large number of users under a partic-ular CA. These include bottlenecks occurring from many users requesting informationfrom a single CA directory as well as designating a single point of failure in the caseof CA down-time or even worse, a CA whose information is maliciously corrupted.On one hand, it appears prudent to combine the functionality of certi�cate dis-tribution with the distribution of revocation information by having the CA return afreshly signed certi�cate subsequent to a request from a potential signature recipient.In this way, the validity period of the certi�cate can be limited to a very short time(as indicated in Section 5.2.1). However this limits the usefulness of the signature forapplications requiring non-repudiation (see Section 2.1.2) guarantees. Alternatively,returning the status of the certi�cate allows the CA to perform less computation andreturn a smaller response. As well, users may prefer the option of only obtaining astatus check for a fraction of certi�cates, i.e., rely on cached versions of the certi�cateor certi�cates sent directly from the signature originator.Freshness of Revocation Information. It is important to note here the freshnessof revocation status information in the possession of a certi�cate relying party. Among

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 133Push by CA Pull by UserCRL Broadcast CRL Request Individual Cert. RequestEvent-Based Periodic Event-Based Periodic Certi�cate Certi�cate StatusFigure 5.5: Classi�cation of techniques for distributing/obtaining certi�cate revoca-tion information.other complications (see Figure 5.10), even in the case where an on-line certi�catestatus check is used, the certi�cate owner (and originator of some signature) may be inthe process of revoking their certi�cate when the status information is being obtainedby a verifying party. This point is discussed further in Section 5.3.2. The techniquesfor distributing certi�cate revocation information are summarized in Figure 5.5.Reducing CRL SizeOne disadvantage of using certi�cate revocation lists (CRLs) versus individual cer-ti�cate revocation queries is their size. This has an e�ect on the bandwidth usedto transmit CRL information from the CA to individual users and on the ability ofusers to accept and store the information at their local machines. In a large commu-nity of users (under a particular CA), a signature recipient may only require a smallnumber of certi�cates and likely only a small portion of the information providedby a CRL. Obtaining individual certi�cate information is convenient though can bemore di�cult for scalability for a single CA or directory. In what follows, we examinethe distribution of information through CRLs, and expand on three techniques forreducing their size. Information regarding CRL distribution points and delta-CRLswas obtained from Ford et al. [FB97] and Menezes et al. [MvOV97]. The solutionusing group hashing (see Section 2.3) was presented by Kocher [Koc98].CRL Distribution Points. CRL distribution points partition CRLs, limiting eachdistribution point (itself a smaller CRL) to grow only to a �xed maximum size.Whereas certi�cate relying parties previously requested revocation information fromthe corresponding CA that signed the certi�cate in question, distribution points in-troduce some indirection:

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1341. Certi�cate redirection. An additional entry within each user's certi�cate indi-cating which distribution points (e.g., CRL, directory entry, or other location)may contain revocation information with regard to the particular certi�cate.2. CRL redirection. An additional entry within the original CA's CRL indicatingthe location of distribution points which may contain revocation informationregarding certi�cates that would otherwise have appeared in the CRL.CRL distribution points may be distinguished by the class of certi�cates they hold.For example, there may be 10 distribution points, each containing revocation infor-mation for the di�erent possible last digits in a certi�cate's serial number. As well,the distribution points might be distinguished by a \reason code" where certi�catesthat have been revoked as a result of a suspected or detected key compromise mightonly reside at a particular distribution point.Delta-CRLs. Delta-CRLs reduce the size of revocation information that must bedownloaded at each push or pull of a CRL. A so-called base CRL is issued �rst. Subse-quently, delta-CRLs are issued (e.g., periodically or event-based), which only containinformation regarding revoked certi�cates since the last base CRL was issued. Thesedelta-CRLs contain a pointer to the base CRL. A relative ordering (see Section 4.3.3)allows detection of maliciously deleted delta-CRL transmissions from a CA.Group Hashing. Group hashing can be used to reduce the size of the informationthat must be obtained by a signature veri�er, while potentially increasing the sizeof the information accompanying the signature from the originator. Consider thefollowing use of the group hashing Protocol GH3 (see Section 2.3.2) given by Kocher[Koc98].At time t, a trusted tree issuer (TTI) obtains up-to-date revocation information(e.g., using CRLs) and produces statements indicating the range of certi�cates revokedby each CA. For example, if CA1 has 2 revoked certi�cates with serial numbers 121and 300, then the TTI would produce the following statements:If CA1 and �1 � X < 121 then X is revoked i� X = �1

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 135If CA1 and 121 � X < 300 then X is revoked i� X = 121If CA1 and 300 � X <1 then X is revoked i� X = 300Such statements are made for the revoked certi�cates of each CA and used as theinput to Protocol GH3. The output ar is time stamped by the TTI giving s =sigTTI(ar; time) and made available to all potential signature veri�ers just as a CRLwould.When sending a signature, user u would obtain the supporting evidence that bestdescribes his certi�cate. More speci�cally, u would obtain memberyi from Proto-col GH3 where yi is the hash of the statement that answers the question regardingthe position of u's certi�cate, i.e., the statement indicating the range into which u'scerti�cate number lies. This information is obtained from the TTI and sent by u,accompanying a signature. A signature veri�er determines the correctness of the in-formation by computing a0r as a function of the user's certi�cate and accompanyinginformation, and determining whether a0r = ar.One advantage of this scheme concerns the size of information required by theveri�er, i.e., a signature of a single hash value. Also notice that only a single signatureveri�cation allows multiple certi�cates to be validated for their revocation status.However, as with CRLs, fresh information (in this case, a new tree root) must beobtained when subsequent revocations are performed.We note here that a tradeo� between size and computational cost for the TTIwould involve the use of an e�ciently incremental group hash (see De�nition 3.2).Though computationally more e�cient for the TTI, each of the remaining grouphash protocols from Section 2.3 would increase the size of either ar or memberyi .Protocol GH5 has the attractive property of not requiring any additional information(beyond the originator's certi�cate and statement yi) to be sent with the signature(since jmemberyi j = 0).

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1365.3 Time Stamping Digital SignaturesIn this section we motivate and examine the relationship between time and the pro-duction, veri�cation and adjudication of digital signatures. More speci�cally, weidentify the importance and relevance of changes in trust regarding a signature thatis veri�ed over time. The following are identi�ed as key requirements allowing forrepeated, consistent veri�cation of a digital signature:1. the temporal speci�cation of when the message was signed;2. the maintenance of relevant certi�cate information evidence from when the mes-sage was signed, allowing subsequent veri�cations to be performed using thisevidence from the point in time at which the message was originally signed,including(a) the long-term storage of certi�cate revocation information, and(b) the long-term storage of cross-certi�cates.To the author's best knowledge, this section presents the �rst complete analysis ofthese concepts.Haber, Kaliski and Stornetta [HKS95] include the most recent discussion of howtime stamping can be used to support digital signatures. The (signature, message)pair is time stamped by T and widely published (see Section 5.3). Any challenge tothe validity of the signature involves comparing the time of stamping by T with thetime of reported loss of sigu by the originating sender u of the message. Pinto andFreitas [PF96] include similar mention of how time stamping isolates a point in timewhen a message was signed (i.e., the receiver of a message time stamps the messageupon receipt). Each identi�es the importance of time stamping the signature butdoes not recognize the importance of Item 2 above.In Section 5.3.1, the basic digital signature model is reviewed and requirementsfor the production of digital signatures are identi�ed and examined. In Section 5.3.2,we describe in more detail, the processes involved in the production, veri�cation andadjudication of digital signatures.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1375.3.1 Digital Signature RequirementsIn this subsection, we examine the process of verifying a digital signature. The maingoal is to discover requirements that can be satis�ed during signature productionso as to make all subsequent veri�cations, including possible dispute adjudication,as trustworthy, reliable and consistent as possible. More speci�cally, we examinechanges in the status of veri�cation certi�cates over time, potentially altering theresult of what might have once been a successful signature validation. It is thetemporal recording of these changes over time, that allow a once successfully veri�edsignature to remain as such at points in the future.Webster's Dictionary [Mer98] de�nes a dispute as a \a verbal controversy." Ratherthan resorting to a term such as \cyber-dispute", we recognize the use of voicelesscommunication, and refer to a dispute simply as some form of a controversy. Theimportant consideration is the cause of the controversy. The basic protocol overwhich a dispute might occur is depicted in Figure 5.6. The simplicity conveyedby this snapshot of a particular point in time is misleading. The construction anddistribution of the certi�cate precede the signature's transmission. The certi�cate'sexpiry or potential revocation typically follow it. Veri�cations of the signature mayoccur at numerous points of time subsequent to the signature production. A numberof actions may occur from the time the signature was created till the time(s) it isveri�ed. Disputes can occur with respect to the occurrence and time of occurrenceof each of these events. Table 5.1 lists the assumptions made, that de�ne the basemodel in which digital signatures are produced, transmitted and veri�ed.We consider the potential for dispute regarding the production of a digital signa-ture based on the intended use for that signature.1. Short-term requirement. A signature is received and veri�ed. If successful,some short-term privilege is given to the originator, e.g., access granted to aconnection. If unsuccessful, the signature is rejected and no privilege is granted.22. Long-term requirement. The signature is received and veri�ed. If successful, the2This short term requirement is better suited to entity authentication (see Menezes et al.[MvOV97, De�nition 10.1]) as opposed to temporal authentication.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 138Multiple Certi�cation Authorities (CAs) There is a set CA = fCA1; : : : ; CAkgof certi�cation authorities, each of whom maintain a read-only public databasefrom which users query relevant information.Cross-Certi�cates Cross-certi�cates (see De�nition 5.7) may exist between any pairof CAs. These certi�cates are added to the database of the creating CA andremoved subsequent to their expiry.Revoked Cross-Certi�cates The revocation of cross-certi�cates is added periodi-cally to the database maintained by the issuing CA as an authority revocationlist (ARL). An ARL is synonymous to a CRL (see De�nition 5.9) except thatit contains reference to revoked cross-certi�cates as opposed to revoked usercerti�cates. The ith ARL arlti , posted at time ti contains the serial numberand revocation date for all revoked cross-certi�cates previously issued by theCA, and overwrites the (i � 1)st ARL arlti�1 previously posted at time ti�1.Certi�cates which are expired as of time ti are included on arlti if and only ifthey were not on arlti�1 .User Certi�cates Each user u has a certi�cate CAifug = certu issued by CAi andis assumed to have a trusted copy of CAi's self-signed certi�cate CAifCAig,containing the public veri�cation key of CAi. The expiry or revocation of thisself-signed certi�cate is beyond the scope of this thesis. Where reference to theCA is evident or not required, we refer to the certi�cate certu as opposed toCAifug. Each user certi�cate is added to CAi's database subsequent to itscreation and deleted subsequent to its expiry.Revoked User Certi�cates The revocation of user's certi�cates is added periodi-cally to the database maintained by the issuing CA as a CRL (see De�nition 5.9).The CRL crlti , posted at time ti contains the serial number and revocation datefor all revoked certi�cates previously issued by CAi, and overwrites the (i�1)stCRL crlti�1 previously posted at time ti�1. Certi�cates which are expired as oftime ti are included on arlti if and only if they were not on arlti�1 .Globally Trusted Time Stamp Authority The is a globally trusted time stampauthority T , where \globally" here means across the entire community of re-lying parties who must rely upon the time stamp authority's signatures. Eachuser maintains a trusted copy of T 's self-signed certi�cate certT , containing thepublic veri�cation key verT for T . The expiry or revocation of this certi�cateis beyond the scope of this thesis.Table 5.1: Requirements for the Digital Signature Model. This table contains a list ofrequirements and assumptions made to allow for the veri�cation of signed messages,assuming the bounding of the signature and veri�cation periods as in Figure 5.3(a).Section 5.3.1 demonstrates some limits of these requirements and several enhance-ments are presented in Table 5.3.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 139u vmessage m c = sigu(m); certu����������������! verify certu; cFigure 5.6: Generic signature sending from originator u to recipient v.
 # $'

� AAAAAAAK��������
- time

creation date ofcerti�cate expiry date ofcerti�caterevocation date ofcerti�cate
operationalperiod

validity period(original)(revised)

Figure 5.7: Periods of Change in a Certi�cate's Status.signature is stored by the recipient as evidence of some form of commitment bythe signature originator. If unsuccessful, the signature is rejected.The distinguishing feature between these uses is that the former requires a singleveri�cation at the time of receipt of the signature, while the latter may require sub-sequent, consistent veri�cations, and hence, the existence of timely evidence for theseveri�cations. In the remainder of this subsection, requirements for the long-termveri�cation of signatures are identi�ed.Signature Veri�cationIn order to validate a digital signature c, purportedly originating from user u, a veri�erv performs the following:

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1401. Verify signature correctness. Verify the mathematical correctness of the sigaturec, purportedly for the message m and purportedly produced by user u. Thisveri�cation is performed using the veri�cation key veru contained in certu, e.g.,the signature veri�cation for DSA from Protocol SG1 (see Section 2.1.2).2. Determine certi�cate status. Determine the status of the signature originator'sveri�cation certi�cate, including both of the following.(a) Validity. A determination of whether the certi�cate is currently expired,and therefore not valid, or revoked, and therefore not operational (seeFigure 5.7).(b) Trust. The trust measured from the point of view of v relative to u. Inother words, is there a chain of certi�cates (see De�nition 5.8) available tovalidate (and hence obtain trust in) certu (see De�nition 5.12)?Changes Over TimeThe status of a certi�cate can change over time. The veri�cation of a digital signaturedetermines the status of the certi�cate and hence, of the signature, relative to the �rstveri�cation of the signature and its corresponding certi�cate. Veri�cation subsequentto the initial receipt of the signature is likely performed relative to the current time atwhich the subsequent veri�cation is performed and therefore, relative to the currentstatus of the certi�cate. The signature may be validated numerous times. Given thatthe information used to validate the signature may change over time, it is importantto recall the state of matters at the time when the signature was produced in orderfor the signature to be fairly and consistently validated at these later times. (In otherwords, validated relative to the state of information at the time the signature wasproduced.)Remark 5.3 A signature that is veri�ed against information that is current as ofthe time of veri�cation permits the possibility that di�erent results may be obtainedfrom validations of the same signature over time.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 141Problems can arise from the fact that the status of the signature originator'sceriti�cate might di�er from when a signature was originally veri�ed. We identifyhere, the importance of changes regarding a certi�cate's expiry, revocation or trust,relative to the verifying party, for repeated, consistent veri�cations of a signature.(1) Certi�cate Expiry. The expiry (end of the validity period) of a certi�cateintroduces some restraints regarding the production and veri�cation of a signature.More speci�cally, it may not allow for subsequent trustworthy and consistent veri�ca-tion and hence, may not be suitable for long-term signature requirements unless thesignature veri�cation procedure is enhanced. Consider the following de�nition whichreturns a measure of a certi�cate's validity (expiration) status over time.De�nition 5.10 Let expired : C�T ! ftrue,falseg represent the function such thatfor the �nite set of possible certi�cates C, where T is a �nite set of possible times,expired(certu; t) = 8<: false if cd � t � edtrue otherwisewhere cd = lifeT ime(certu)[1] is the creation date of certu and ed = lifeT ime(certu)[2]is the expiry date of certu 2 C. Therefore, expired(certu; t) is true if certu is valid attime t (see Figure 5.7).Recall the two interpretations regarding the expiry of a certi�cate from Figure 5.3of Section 5.2.1. For Figure 5.3(a), the expiry of the certi�cate e�ectively ends thelife of any signature requiring veri�cation with an expired certi�cate. Veri�cationof a signature at time t � ed should not be performed with certi�cate certu sinceexpired(certu; t) = true. Hence, veri�cation or adjudication subsequent to the ex-piry is made very di�cult. For Figure 5.3(b), although veri�cation is permissiblesubsequent to the certi�cate's expiry (i.e., even though expired(certu; t) = true),veri�cation or adjudication cannot ensure when the signature was produced relativeto the certi�cate's expiry. Besides possibly local evidence maintained by a recipi-ent, indicating the time of signature receipt (which would not typically be consideredtrustworthy in any case), there is in general, no evidence that would indicate to athird party when the signature was actually produced.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 142(2) Certi�cate Revocation. Suppose that a signature is produced during thevalidity period of the corresponding veri�cation certi�cate. If the certi�cate is revokedprior to its expiry, it is placed on a CRL. Prior to the expiry of the certi�cate, therevocation status of the certi�cate can be obtained from the proper CA's database.De�nition 5.11 Let revoked : C � T ! ftrue, falseg represent the function suchthat, for the �nite set of possible certi�cates C, where T is a �nite set of possibletimes,revoked(certu; t) = 8>>><>>>: true 9 crlt0 (see De�nition 5.9) such that (nu; revu) 2 crlt0for revu 2 T where revu � tfalse otherwiseTherefore, revoked(certu; t) is false if certu is operational at time t (see Figure 5.7).Thus, one can determine the revocation status for any time t, by determining if certuis contained on a CRL prior to time t. However, one must also be able to determinewhen a signature was produced, relative to this revocation.(3) Change in Trust. Suppose that a signature recipient veri�es a signature uponits receipt and is able to obtain a chain of certi�cates (see De�nition 5.8) that demon-strate trust in the signature originator's certi�cate. At some time in the future, thetrust between CAs may change so that the signature veri�er no longer trusts anysignatures currently received from this signature originator. However, if the recipi-ent has not maintained previous cross-certi�cates (as well as information regardingtheir possible revocation), there may be no evidence that there was once trust inthe original signature. The temporal changes in trust are captured by the followingde�nition.De�nition 5.12 Let certT rust : C�C�T ! ftrue,falseg such that for the verifyinguser v 2 U who initially trusts the certi�cate CAi1fCAi2g (it may be that i1 = i2),

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 143and user u 2 U possessing a certi�cate certu 2 C, for the �nite set of possible timesT ,
certT rustv(CAi1fCAi2g; certu; t) =

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

true if 9 a certi�cate chain(CAi1 ; CAi2 ; : : : ; CAik ; u)(see De�nition 5.8)that is mathematically correctANDfor each certi�cate CAifCAjgexpired(CAifCAjg; t) = falseANDrevoked(CAifCAjg; t) = falsefalse otherwiseThe certi�cate CAi1fCAi2g is referred to as v's trust anchor.Providing Temporal AuthenticationThe �nite length of the lifetime of a certi�cate for each user is de�ned by its validityperiod. In this sense, absolute temporal authentication is provided for certi�cates bythe inclusion of the validity period and the message authentication (i.e., signature) ofthe CA over (amongst other items) both the validity period and the public key. Onemight think then that signatures have a lifetime imposed on them by the lifetime ofthe certi�cate corresponding to the particular signature key used to sign the message,i.e., indicating that the signature was produced during the lifetime (prior to theexpiry) of the certi�cate. However, the lifetime of a certi�cate does not necessarilyimply a lifetime for corresponding signatures beyond the point in time in which thesignature is �rst validated (or more speci�cally beyond a revocation or expiry of thecerti�cate). Although not providing su�cient evidence for subsequent veri�cations,information is provided by the validity period contained within the certi�cate to a�ectthe veri�cation of the signature upon receipt.Remark 5.4 The validity period of a public key certi�cate can be used to impose

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 144

- time
for certi�cateveri�cation/validity period

veri�cation/validity periodfor time stamp
Figure 5.8: Certi�cate Veri�cation Life Extended with Time Stamp. The validityperiod of the certi�cate is the period during which signatures could be veri�ed (seeFigure 5.3(a)). Without time stamping, the period beyond the expiry (i.e., end of thevalidity) of the certi�cate would not allow for trustworthy veri�cation. The validityperiod of the time stamp indicates that a signature was time stamped prior to theexpiry of the corresponding veri�cation certi�cate. This signature can be veri�ed solong as the time stamp is trustworthy.a restriction in a signature veri�cation procedure whereby signatures veri�ed with acurrently expired certi�cate need not be accepted.The time stamping of a digital signature establishes the existence of the signatureat a �xed point in time, thereby allowing subsequent veri�cations to be performedrelative to this time. The time stamping of a signature serves two functions:1. Fixes Point in Time. The time stamping pinpoints the time, allowing one tomeasure against changes in certi�cate status (expiry or revocation) or certi�catetrust (changes in cross-certi�cates). This solves the limitations of option 2 fromFigure 5.3(b) in which veri�cation subsequent to the expiry of the certi�catewas unable to determine when the signature was produced, i.e., whether it wasproduced prior to the expiry of the certi�cate. It also allows for the status ofcerti�cates relevant to the signature veri�cation to be measured as of the timeof stamping of the signature.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1452. Extends Lifetime. As indicated by Figure 5.8, the time stamping can extendthe lifetime of the original signature (see Section 5.5) beyond a possible �niteveri�cation period de�ned for a certi�cate (as with option 1 of Figure 5.3(a)).The period of time, after the expiry of the signature veri�cation certi�cate, thatthe signature can be validated is then determined by the lifetime of the timestamp, e.g., depends on the expiry of the veri�cation certi�cate corresponding tothe time stamp authority. As for Item 1 above, that also allows determination ofthe corresponding certi�cate's status as of the time of stamping of the signature.In this way the time stamping of the digital signature uses the best qualities fromthe two options given in Figure 5.3. The original user certi�cate maintains a �niteveri�cation lifetime (as in option 1) which is important for limiting the damage in caseof the undetected key compromise of a user's private signature key, for example. Yettime stamped signatures may still be veri�ed with a corresponding certi�cate eventhough the certi�cate may be currently expired, revoked or in which a veri�er cannotcurrently validate the trust. This temporal veri�cation of time stamped signaturesis captured by the following de�nition, an enhancement of the signature scheme ofDe�nition 2.11.De�nition 5.13 A certi�cate-based signature scheme with time stamping CSTS is asix� tuple (SS ; T S; CA;U ;V; C), where the following conditions are satis�ed:1. SS is a signature scheme (see De�nition 2.11);2. T S is a time stamping scheme (see De�nition 4.1);3. CA is a �nite set of possible certi�cation authorities (CAs);4. U is a �nite set of possible users within the name space of the certi�cationauthority CAi 2 CA;5. V is a set of possible users within the name space of the certi�cation authorityCAj 2 CA;6. C is a �nite set of possible certi�cates;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1467. validSigv : M� Q � S � T � C � C ! ftrue,falseg is a function such thatthe following equation is satis�ed for every message m 2 M, signature c 2 Q,time stamp s 2 S, time t 2 T , certi�cate certu 2 C and certi�cate relying partyv 2 V with trust anchor CAifCAi0g 2 C:
validSigv(m; c; s; t;certu; CAifCAi0g) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

true if veru(m; c) = true (see De�nition 2.11)ANDverT (s; t; c) = true (see De�nition 4.1)ANDexpired(certu; t) = false(see De�nition 5.10)ANDrevoked(certu; t) = false(see De�nition 5.11)ANDcertT rustv(CAifCAi0g; certu; t) = true(see De�nition 5.12)false otherwise (5.1)A signature c is valid if validSig(m; c; s; t; certu; v) = true.Intuitively, (5.1) states that a signature, time stamped at time t (which may beearlier than the current time), is valid so long as the corresponding certi�cate was notexpired nor revoked, and trustworthy (with respect to the veri�er) at time t and thateach signature and certi�cate is mathematically correct. The implementation of eachof the functions described by (5.1) are presented as Protocol DS1 in Section 5.3.2.In the following, we discuss enhancements to the requirements of Table 5.1 permit-ting the proper evaluations of the functions in (5.1) of De�nition 5.13. In particular,we identify the need for the long-term storage of information that allows subsequentdetermination of a certi�cate's status from earlier times.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1471. the message signed, in precisely the bit representation (canonical form) for whichthe signature was generated,2. the originator's veri�cation certi�cate,3. the time stamp, computed over the signature,4. the veri�cation certi�cate of the time stamp authority T ,5. revocation information related to the originator's and T 's certi�cates,6. any cross-certi�cates required to obtain trust in the originator's certi�cate,7. revocation information related to all cross-certi�cates used in the validation ofthe user's certi�cate.Table 5.2: Evidence Required for Signature Veri�cations. Referring to De�nition 5.13,this table lists the information that is required for all veri�cations of a digital signa-ture.Providing Long-Term Temporal StorageDi�ering slightly in purpose from the storage required for time stamping (see Sec-tion 4.2.1), the storage of information necessary for the validation of digital signaturesis required for functionality as well as the maintenance of evidence (in case of dis-putes). We assume that all current certi�cate information (e.g., certi�cate itself,revocation information, cross-certi�cates) is maintained in a database by the certi�-cation authority (CA) up to the point when the certi�cate expires. This is based onthe assumption that subsequent to the expiry of the certi�cate, the signature shouldnot be subsequently veri�ed.However, with the addition of time stamping, relevant certi�cate information isrequired after the time of expiry of the certi�cate. We refer to the storage of thisinformation as long-term storage.3 Referring to (5.1) of De�nition 5.13, to determinethe validity of a signature c, at any time, requires the computation of the truthvalues of each of the listed functions. The material necessary to achieve this is listed in3In Section 5.4, we see how a notary may remove the requirement for the long-term storage.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 148Cross-Certi�cates Modifying the requirements of Table 5.1, cross-certi�cates mustbe made available subsequent to their expiry in the case that a signature timestamped prior to their expiry, requires an expired certi�cate for veri�cation ofthe signature. Therefore, expired cross-certi�cates remain in the issuing CA'sdatabase.Revoked Cross-Certi�cates Modifying the requirements of Table 5.1, past ARLsare required. Therefore, rather than storing only the most recent ARL, allARLs are stored in an ARL database which adds the most recent ARL to thedatabase while not removing past ARLs. Expired cross-certi�cates are removedfrom individual ARLs that are posted to the database for reasons of e�ciency.Revoked User-Certi�cates Similar to revoked cross-certi�cates (above), a CRLdatabase is used in which current CRLs are added to the database.Table 5.3: Assumptions Made for Time Stamped Digital Signature Model. This tableenhances the requirements listed in Table 5.1 by including requirements made neces-sary for the long-term, consistent veri�cation of (time stamped) digital signatures.Table 5.2. This information is required for as long as the veri�er requires evidence thatthe signature originator did indeed sign the signature at a particular time. Table 5.3presents a list of modi�ed requirements of the previous assumptions from Table 5.1.In Section 5.3.2, it is shown how this information is used during the veri�cation ofdigital signatures.5.3.2 Signature Veri�cation and AdjudicationIn Section 5.3.1, the veri�cation of digital signatures was reviewed and temporalrequirements allowing for the long-term validation of signatures were explicitly pre-sented. In this section, we examine in more detail the steps undertaken by the veri�erof a digital signature. We expand the discussion from Section 5.3.1, where now, vveri�es a time stamped digital signature. More speci�cally, for the message m, vdetermines the correctness offm; sigu(m); sigT (sigu(m); t); certu�g

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 149
-� - -

� AAAAAAAK
� time

creation date ofcerti�cate expiry date ofcerti�cate
1 2

Figure 5.9: Signing periods for a non-revoked certi�cate. Time period 1 indicates theperiod of time during which the certi�cate remains valid. Time period 2 indicates theperiod of time after which the certi�cate has expired.where sigu(m) is u's purported signature on m, sigT () represents a purported signingof the contents by the time stamp authority (T) and t represents the purported timeof stamping (e.g., possibly the time of submission sigu(m) to T), and certu indicatesthe purported veri�cation certi�cate of u. An asterisk (*) indicates an optional item,e.g., certu may have been previously cached by v.A relative time can be provided and used for determining the order of two signedmessages. Since we are concerned with certi�cates whose lifetime is �nite and param-eterized by a validity period, an absolute time must be used for certi�cates themselvessince the expiry time cannot be indicated with a relative time. Time comparisonsbetween relatively stamped documents was discussed in Section 4.3.3. In this sec-tion, since are concerned with the time stamping of documents relative to absolutelystamped certi�cates, we consider only the absolute stamping of the signatures.The veri�cation of a signature can be described directly from the functional opera-tions given by (5.1) of De�nition 5.13. This signature veri�cation protocol is describedas Protocol DS1.Referring to Figure 5.9, certi�cates validated during period 1 may be veri�edusing the most current CRL and ARL information obtained from corresponding CAdatabases. During period 2, any user certi�cates or cross-certi�cates used in the

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 150Protocol DS1 Signature Veri�cation Protocol.Description: This protocol describes the veri�cation by v of a signature purportedlyoriginating from user u. The veri�cation is based on a certi�cate-based signaturescheme with time stamping (see De�nition 5.13). Table 5.3 lists protocol assump-tions and requirements.Note: For each computation in which the truth value of a function is determined, ifunsuccessful, c is rejected as invalid. If successful, continue, where the require-ments for success of each function are speci�ed by (5.1) of De�nition 5.13. vaccepts c as valid only if all steps are successful.Input: message m, purported signature c = sigu(m), purported time stamp s =sigT (c; t), purported time t of stamping, purported certi�cate certu of signatureoriginator u, and trust anchor CAi1fCAi2g of veri�er vOutput: result of validSigv(m; c; s; t; certu; CAi1fCAi2g) (see De�nition 5.13)1: (Signature correctness.) Given the message m and signature c = sigu(m), veri�erv determines the mathematical correctness of c by using the veri�cation key verufrom certu and determining the truth value of veru(m; c) (see De�nition 2.11).2: (Time stamp correctness.) Given the time stamp s, time t of stamping andsignature c, veri�er v determines the mathematical correctness of s by using theveri�cation key verT from (the stored copy of) certT and determining the truthvalue of verT (s; t; c) (see De�nition 4.1). If true, the time t is accepted as thetime of stamping of c.3: (Certi�cate expiry.) v ensures that c was time stamped during the validity periodof certu by determining the truth value of expired(certu; t) (see De�nition 5.10).4: (Certi�cate revocation.) v ensures that c was time stamped during the opera-tional period of certu by determining the truth value of revoked(certu; t) (seeDe�nition 5.11). Revocation information regarding CAifug = certu is obtainedfrom CAi's CRL database. The CRL crlt0 is obtained where t0 is the latest time(recorded for a CRL posting) that is earlier than the date of expiry of certu. Ifthis indicates the most recent CRL then, depending on the policy of the veri�er,the veri�cation may be delayed until the next CRL is posted by CAi.5: (Certi�cate Trust.) v determines certT rustv(CAi1fCAi2g; certu; t)'s truth value.As implied by De�nition 5.12, v must �rst determine a certi�cate chain, start-ing from CAi1fCAi2g, allowing trust to be obtained in certu. The constructionof this chain is beyond the scope of this document. Once a certi�cate chain isconstructed, each cross-certi�cate CAifCAjg is veri�ed by ensuring that bothexpired(CAifCAjg; t) and revoked(CAifCAjg; t) are false. The expiry of eachcross-certi�cate (as of time t) can be determined using the expiry date con-tained in each certi�cate. Revocation information regarding each cross-certi�cateCAifCAjg is obtained from CAi's ARL database. The ARL arlt0 is obtainedwhere t0 is the latest time (recorded for an ARL posting) that is earlier than thedate of expiry of CAifCAjg. If this indicates the most recent ARL then, depend-ing on the policy of the veri�er, the veri�cation may be delayed until the nextCRL is posted by CAi.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 151veri�cation of a signature will typically not appear on the most recent revocationlists. Hence the requirement for maintaining long-term storage of this information.And although the originating user's certi�cate (which is �xed for each veri�er) shouldbe accompanied with the signature, cross-certi�cates (which typically vary, dependingon the veri�er) are stored and made available long-term, by the issuing CA.Complications Regarding RevocationSystems which allow revocation of certi�cates introduce additional challenges. Re-ferring to Figure 5.10, one can recognize the additional complexities that revocationcreates. Consider a request for a revocation of certu made by user u at time t1, re-sulting from a suspected or detected key compromise. A signature forged at time twhere t1 � t � t2 might wrongly be accepted by a veri�er (without knowledge of therevocation) should a CRL have been issued at time t0 where t � t0 � t5 and usedfor veri�cation of the signature as in Protocol DS1. Using event-based as opposed toperiodic CRL distribution may allow some speedup in the receipt of revocation detailsby potential signature veri�ers, i.e., by decreasing the time required between t3 andt4. In addition, other means for minimizing delays between each of the intervals fromFigure 5.10 would be advantageous.Adjudicating DisputesAdjudication is a form of veri�cation. A mutually agreed upon, impartial judge(adjudicator of a dispute) J is queried by user u (the purported signature originator)or v (a signature veri�er) to resolve a dispute regarding1. the expected commitment resulting from a digitally signed statement, or2. the validation status of a signature.The discussion of a commitment from a signature is beyond the scope of this thesis.We present here, the role of a judge in determining the validity of a signature, asde�ned in De�nition 5.13 and determined by Protocol DS1.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 152
-� -� -� -""""""""""""""""""""" - �

bbbbbbbbbbbbbbbbbbbbb
�������

��
�������

�� QQQQQQQQQQk

@@@@I CCCCCCC
CO ����� �������

�� ����7

time
revocation date ofcerti�cate

request received bycerti�cation authority

expiry date ofcerti�catecreation date ofcerti�cate
revocation details receivedor obtained by usersdate of revocationrequest certi�caterevoked revocation details madeavailable or published

(certi�cate revoked)
2 3 4 51t t t t t

1 1' 2

1 1'

Figure 5.10: Signing periods for a revoked certi�cate. Time period 1 indicates theperiod of time prior to the certi�cate's revocation and expiry. Time period 10 indicatesthe period of time subsequent to the certi�cate's revocation but prior to its expiry.Time period 2 indicates the period of time after which the certi�cate has expired.The bottom portion of the �gure depicts more detailed steps involved in an actualcerti�cate revocation.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 153Merkle [Mer80, Mer82] talks at length on the adjudication of signatures by animpartial third party. His discussions deal more with the correctness of the par-ticular signature itself, with respect to the signature algorithm used, rather thanwhether or not the signature was signed during the operational or validity period ofthe veri�cation certi�cate. In what follows, we present the requirements necessary foradjudicating such disputes regarding certi�cate-based digital signatures.Evidence. The evidence required for an adjudication regarding the status of asignature is similar to what would be required by any verifying party, and includes:1. (Veri�cation Evidence) the purported evidence indicated in Table 5.2;2. (Trust Anchor) In order to determine the validity of the purported originatinguser's veri�cation certi�cate, the judge must be able to determine the truth-fulness of the predicate certT rustJ(CAifCAjg; certu; t) (see De�nition 5.12)therefore requiring that the judge is given a trust anchor CAifCAjg from whichthis trust can be determined.Adjudication. The function of the adjudicator is to subsequently perform valida-tions of the signature, given the evidence from u or from v. This is accomplishedby computing and outputting the result validSigJ(m; c; s; t; certu; CAifCAjg) (seeDe�nition 5.13) using Protocol DS1 with trust anchor CAifCAjg.5.4 Notarizing Digital SignaturesThe veri�cation of signatures described in Section 5.3 possess some potentially unde-sireable features:1. Storage. Subsequent to the expiry of a certi�cate, various certi�cate informationmay need to be stored long-term to allow for the continued veri�cation andpossible adjudication of signatures. The period of time might be exceedinglylong given the nature of certain signatures, e.g., large monetary contracts orwills.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1542. Veri�er Participation. Signatures are produced once yet may be veri�ed mul-tiple times. This requires multiple requests for information verifying the samesignature. This is lessened if cached/stored once obtained but there may benew veri�ers as well.One possible improvement is to have the signature originator provide more cor-roborating evidence to accompany a signature. This can be achieved, for example,by having the originator obtain the necessary evidence (e.g., most recent CRL) andsend it along with the signature. However, this increases the size of the informationaccompanying a signature and may provide a veri�er with unnecessary information,e.g., revocation information for certi�cates besides that of the originator. As well, thiswould require a signature originator to search for and obtain the necessary evidencefor particular recipients. Even further is the consideration, that like the certi�cate ofa user, this evidence may also become less trustworthy over time.The time stamping of the signature provides some corroborative evidence andturns out to be necessary in order to allow for consistent signature validations subse-quent to the expiry of the veri�cation certi�cate (cf. Section 5.3.1). As described here,the notarization of a signature provides for an enhancement of a time stamp in whichtrusted third-party corroborative evidence pertaining to the state of the aliveness ofthe signature originator's veri�cation certi�cate is also delivered. This notarizationprovides a trusted attestation of the status of submitted evidence with reference linksto stored information, thereby providing corroboration in addition to or in lieu of long-term, stored evidence. Responsibility of verifying pertinent certi�cate information isshifted from a signature veri�er to a notary authority.Appendix A provides a historical review of the concept of notarization includinga review of the (physical) notary public as well as a digital notary. In Section 5.4.1,we present a general de�nition of notarization. In Section 5.4.2, a protocol for thenotarization of digital signatures is presented.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1555.4.1 Notarization: Trusted CorroborationIn this subsection, we present De�nition 5.14 (re�ned from Menezes et al. [MvOV97,page 550]) specifying the function of a general notary N and subsequently presentDe�nition 5.15 which speci�es the role of a digital signature notary DSN . We proceedto identify a list of statements for which a DSN may attest to the truth of. Anotarization protocol of Merkle [Mer80, Mer82] is subsequently reviewed.De�nition 5.14 A notary N is a trusted third party whose role is to attest to theexistence and/or truth of any statement (over which it is trusted on or granted juris-diction over) at a given point in time thereby imparting authenticity to the statement.The notarization of a statement refers to the provision of an authentic attestation bya notary.In particular, this attestation may be performed as a notarization whereby N returnsa signed statement, wherein the statement contains explicit attestations to the truthof the statements presented by the submitting user. We examine this notarizationmore thoroughly, with particular emphasis on the notarization of purportedly validdigital signatures.De�nition 5.14 provides an open-ended de�ntion regarding the statements overwhich a notary can attest to the truth or establish the existence of. Our particularpurpose (in this section) is to notarize statements regarding the validity of a digitalsignature. Referring to (5.1) of De�nition 5.13, there are a number of functions, whosetruthfulness must be successfully determined in order to have a valid signature. Asdemonstrated by Protocol DS1 (see Section 5.3.2), determining the truthfulness ofsome of these functions requires obtaining additional information, in addition to thesignature itself. For example, for a signature c purportedly constructed by user uand time stamped at time t, a veri�er must determine the truth of the statementrevoked(certu; t). This requires obtaining the proper revocation lists from the appro-priate CAs. A DSN can therefore determine and attest to the truth of (see (5.1)from De�nition 5.13) various statements, including those listed in Table 5.4.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 156

1. veru(m; c): Given a veri�cation key, puportedly belonging to user u, a DSNcan determine and attest to the mathematical correctness of the signature c =sigu(m) for the purported message m;2. verT (s; t; c): Given a veri�cation key, purportedly belonging to the time stampauthority T , a DSN can determine and attest to the mathematical correctnessof the signature s = sigT (c; t) for the purported signature and time, c and t,and if successful, use t as the point in time for determining a certi�cate's status;3. expired(certu; t): Given a public key certi�cate certu, purportedly belonging touser u, and a time t, a DSN can determine and attest to whether or not certuwas valid at time t;4. revoked(certu; t): Given a public key certi�cate certu, purportedly belonging touser u, and a time t, a DSN can determine and attest to whether or not certuwas operational at time t;5. certT rustv(CAifCAi0g; certu; t): Given a public key certi�cate certu, a time tand a trusted certi�cate (trust anchor) CAifCAi0g, a DSN can determine andattest to whether or not, as of time t, there is (or was) a certi�cate chain (seeDe�nition 5.8) (CAi; CAi0; : : : ; u).Table 5.4: Statements (cf. De�nition 5.13) for Which a Digital Signature Notary (seeDe�nition 5.15) can Attest to the Truthfulness.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 157De�nition 5.15 A digital signature notary DSN is a trusted third party whose roleis to attest to the truth of the functions from (5.1) (see De�nition 5.13), which mayinvolve establishing the existence of supporting evidence. The notarization of thesestatements refers to the provision of an authentic attestation to the truth of thestatements by a DSN .As an example of notarization, consider Protocol NT1, which is slightly modi�edfrom the protocol as presented by Merkle [Mer80, Mer82]. The protocol uses a timestamp authority (T) (what Merkle refers to as a time-keeper) whose purpose is todigitally time stamp submitted information, and a CA (what Merkle refers to as acentral authority) to attest to the validity of a certi�cate at a given point in time;like an online certi�cate status check (see Section 5.2.3). More speci�cally, the CA isused to attest to the fact that certu is not currently expired or revoked.As speci�ed in Protocol NT1, the CA is acting as a DSN by attesting to the truthof the state of u's certi�cate certu, i.e., its expiry or revocation. In Section 5.4.2, wepresent Protocol NT2, in which a DSN determines and attests to the truth values ofall functions speci�ed in (5.1) of De�nition 5.13.5.4.2 Notarizing Digital SignaturesThe relevance of notarizing digital signatures is evident from the discussion in Sec-tion 5.3.1 noting that the veri�cation of a digital signature requires the maintenanceof evidence at a given point in time: the time at which the signature was timestamped. The main di�erence with the time stamping solution of Section 5.3 is thata notarization by a DSN (see De�nition 5.15) provides a self-contained package ofcorroborative evidence, allowing one to validate a digital signature numerous timeswithout requiring the veri�er to obtain additional information.The main purposes of the notarization of digital signatures is to1. centralize the validation of a digital signature so as to limit the amount of cor-roborative evidence gathering that may be performed by the signature veri�er,2. reduce the amount and type of information stored (as described in Section 5.3.1)for subsequent validations of signatures, and

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 158
Protocol NT1 Signature Notarization by Veri�er [Mer80, Mer82].Description: The recipient v of signature c uses a CA as aDSN (see De�nition 5.15)as part of a larger protocol in which evidence regarding the status of the purportedsignature originator's veri�cation certi�cate is collected by v. The end result ofthe protocol is v's decision as to whether or not to accept or reject a signaturebased, in part, on the information collected regarding the status of the originator'scerti�cate.Signature TransmissionInput: message mOutput: signature y = sigu(m) and purported originator certi�cate certu1: For a message m, u computes y = sigu(m) and sends (y; certu) to v.Time Stamping of SignatureInput: signature y = sigu(m)Output: time stamp s = sigT (y; t)1: v sends y to T .2: T returns the time stamp s = sigT (y; t) where t is typically the time of receipt ofy by T . (This same technique is used by Protocol AB1 in Section 2.4.1.)Notarization of Certi�cate Revocation & Expiry StatusInput: u's purported certi�cate certuOutput: whether certu is currently expired or revoked1: v requests a validity check from the CA with regards to the current status of u'scerti�cate by sending certu to the CA.2: Upon receiving certu at time t0, the CA determines the truth value ofexpired(certu; t0) and revoked(certu; t0) as performed by a signature veri�er insteps 3 and 4 of Protocol DS1. If true, then the CA notarizes this successfulresult by returning the signature sigCA(\u's certi�cate certu is still valid andoperational at time t0").Signature ValidationInput: time t of stamping of signature y and notarization of certuOutput: determination of whether or not y = sigu(m) is a valid signature1: If v receives a positive response from the CA and t � t0, then v completes steps 1and 5 of Protocol DS1 using the time t (obtained above from T) as the time ofstamping, and if successful, accepts u's signature y over m.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1593. provide trusted corroborative evidence for signature veri�cation in lieu of orin addition to stored evidence, with inclusion of submitted information andreference pointers to stored evidence information.There are several attestations that can be made by a DSN during the notariza-tion of a digital signature, each of which vouch for the existence and/or truth ofstatement(s) (relevant to the authenticity of the digital signature) at a speci�c time.A list of such statements was given in Table 5.4. The input to the DSN can varydepending on the attestation required by the requestor. The process of notarizationis presented as Protocol NT2.Using Protocol NT2Since the notary can attest to a variety of requests made by a signature originatoror veri�er, Protocol NT2 has a number of potential uses. Below, we present severalsuch uses, keeping in mind that Protocol NT2 may have other applications, and evenfurther, can be enhanced so as to satisfy other notarization requirements.Notarizing a signature. By submitting (m; c;�;�; certu; CAkfCAkg) at time t,where certu = CAkfug, one can obtain the notarization sigDSN(S) where S is thestatementThe signature c for the message m, which existed at time t, was veri�ed formathematical correctness using the certi�cate certu. The certi�cate certuissued by CAk was not expired nor revoked as of time t where the latterwas veri�ed using the CRL numbered rn and dated time t0. At time t, thecerti�cate chain (CAk; CAk; u) existed and was mathematically correct, asveri�ed using the respective cross-certi�cates numbered (cnk). Each cross-certi�cate was valid and operational according to the respective ARLs(ank) with respective times (tk).Notarizing a time stamped signature. Submitting (m; c; s; t; certu; CAkfCAkg),where certu = CAkfug, one can obtain the notarization sigDSN(S) where S is thestatement

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 160Protocol NT2 Notarization of a Digital Signature.Description: A digital signature notary DSN attests to the truth of selected func-tions from (5.1) of De�nition 5.13, based on the input from the requestor (seesample inputs starting on 159).Note: Let A represent Protocol DS1 of Section 5.3.2.Require: The DSN is assumed to have a trusted clock, and each user is assumed tohave a trusted copy of the DSN 's self-signed veri�cation certi�cate. The expiryor revocation this certi�cate is beyond the scope of this thesis.Input: A message m, purported signature c, purported time stamp s, time t, pur-ported certi�cate certu of the producer of c and a trust anchor CAifCAjg. Notall variables must be input, as speci�ed for each step below, though a trust anchoris required in any case.Output: A signed attestation to statements established by the DSN based on theinput variables to the protocol.1: If a time t and s are input (necessarily with c), perform step 2 of A. If a time tis input without s (i.e., without corroboration of the correctness of the time t),athen skip to step 3 if m and c are not input, else goto step 5 with failure. If atime t is not input, then t is assigned the time of receipt of the input.2: If m and c are input (necessarily with certu), perform step 1 of A. If successfulthen assign the statement S1 = \The signature c for the message m, which existedat time t, was veri�ed for mathematical correctness using the certi�cate certu."3: If certu is input, then perform steps 3 and 4 of A. If both are successful, thenassign the statementb S2 = \The certi�cate certu, issued by CAk was not expirednor revoked as of time t where the latter was veri�ed using the CRL numberedrn and dated time t0."4: For CAifCAjg (necessarily input with certu), execute step 5 of A to �nd a cer-ti�cate chainc from CAifCAjg to CAkfug = certu. If successful then assign thestatement S3 = \At time t, the certi�cate chain (CAi; CAj; : : : ; CAk; u) existedand was mathematically correct, as veri�ed using the respective cross-certi�catesnumbered (cni; cnj; : : : ; cnk). Each cross-certi�cate was valid and operational ac-cording to the respective ARLs (ani; : : : ; ank) with respective times (ti; : : : ; tk)."5: If each step was successful, the DSN produces a signature over the statementsas sigDSN(S1; S2; S3) (depending on the input variables presented, not all ofthese statements will be assigned). If any step fails, then the DSN outputssigDSN(input; \failure") where input represents the set of input variables.aIn this case, the time t has been input as a request for notarization regarding the status of certuat time t.bNotice the similarity of this step to the notarization performed in Protocol NT1.cAn optional enhancement to the present protocol would involve requesting for more than onecerti�cate chain (if they existed) to be output in S3.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 161The signature c for the message m, which existed at time t, was veri�ed formathematical correctness using the certi�cate certu. The certi�cate certuissued by CAk was not expired nor revoked as of time t where the latterwas veri�ed using the CRL numbered rn and dated time t0. At time t, thecerti�cate chain (CAk; CAk; u) existed and was mathematically correct, asveri�ed using the respective cross-certi�cates numbered (cnk). Each cross-certi�cate was valid and operational according to the respective ARLs(ank) with respective times (tk).Notice that the reply is identical to the previous notarization of a signature that wasnot time stamped. The di�erence is that for the time stamped signature, valida-tions regarding the revocation status of certu were performed as of time t, the timecontained in the time stamp, rather than the time of receipt of the request by theDSN .Notarizing a signature for known veri�ers. Submitting (m; c; s; t; certu; CAifCAjg)with certi�cate CAkfug = certu and knowledge of a trust anchor for an intended re-cipient of a time stamped signature from user u results in the notarization sigDSN(S)where S is the statementThe signature c for the message m, which existed at time t, was veri�edfor mathematical correctness using the certi�cate certu. The certi�catecertu issued by CAk was not expired nor revoked as of time t wherethe latter was veri�ed using the CRL numbered rn and dated time t0.At time t, the certi�cate chain (CAi; CAj; : : : ; CAk; u) existed and wasmathematically correct, as veri�ed using the respective cross-certi�catesnumbered (cni; cnj; : : : ; cnk). Each cross-certi�cate was valid and oper-ational according to the respective ARLs (ani; : : : ; ank) with respectivetimes (ti; : : : ; tk).This input may also be submitted to a DSN by a veri�er of a time stamped signature.If s and t are not included above, then t is taken as the time of receipt of the request bythe DSN . Notice that, depending on the organization of the certi�cation authorities,

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 162the choice of trust anchor can be chosen so as to allow acceptance of the notarizationfor a variably large group of users. For example, if the issuer of certu is CA2 andu wants to send a notarized signature to all users that possess certi�cates issued byCA1 then the trust anchor CA1fCA2g allows trust to be obtained in the signature cby all users possessing the self-signed certi�cate of CA1.Determining certi�cate status. Submitting (�;�;�; t; certu; CAkfCAkg), wherecertu = CAkfug, allows one to receive a notarization regarding the status of certu asof time t as sigDSN(S) where S is the statementThe certi�cate certu issued by CAk was not expired nor revoked as of timet where the latter was veri�ed using the CRL numbered rn and dated timet0. At time t, the certi�cate chain (CAk; CAk; u) existed and was math-ematically correct, as veri�ed using the respective cross-certi�cates num-bered (cnk). Each cross-certi�cate was valid and operational according tothe respective ARLs (ank) with respective times (tk).If t is not input, then t is taken as the time of receipt of the request by the DSN .Determining certi�cate chain existence. Submitting (�;�;�; t; certu; CAifCAjg)allows one to receive a notarization regarding the existence of a certi�cate chain(CAi; CAj; : : : ; CAk; u) by receiving the notarization sigDSN(S) where S is the state-ment The certi�cate certu, issued by CAk was not expired nor revoked as oftime t where the latter was veri�ed using the CRL numbered rn anddated time t0. At time t, the certi�cate chain (CAi; CAj; : : : ; CAk; u)existed and was mathematically correct, as veri�ed using the respectivecross-certi�cates numbered (cni; cnj; : : : ; cnk). Each cross-certi�cate wasvalid and operational according to the respective ARLs (ani; : : : ; ank) withrespective times (ti; : : : ; tk).If t is not input, then t is taken as the time of receipt of the request by the DSN .

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1635.5 Digital Signature RenewalThe prevention of signature forgery relies, in part, on the computational infeasibilityassociated with an attack that would forge a signature subsequent to, for example,exhaustively trying all signature keys. The choice of parameters for signature algo-rithms may be chosen large enough so as to discourage (and prevent) an attackerfrom attempting such malicious acts yet small enough so that the computationalcomplexity of computing a legitimate signature is reasonably e�cient. However, in-creases in computational power (e.g., faster computer chips and e�cient distributionof programs over increasingly large networks) imply that the parameters chosen atone point in time may not provide the same level of security at subsequent times.5.5.1 De�nitions and MotivationIn this subsection, we motivate and de�ne concepts related to the renewal of digitalsignatures. We �rst distinguish between legitimate and fraudently produced signa-tures with the following de�nitions.De�nition 5.16 A digital signature c = sigu(m) (see De�nition 2.11) over datam is legitimate with respect to a user u (i.e., the user named in the correspondingveri�cation certi�cate) if u was aware of or participated in the construction of c.Awareness includes knowledge that a signature for m is currently being producedin the absence of disapproval of this action. Participation includes the actions ofwillfully executing the software that produces the signature.We use the term legitimate owner (user) to identify the entity for whom the publickey was certi�ed.De�nition 5.17 A digital signature c = sigu(m) is forged if it is not legitimate withrespect to user u.There are numerous possibilities for compromising a signature system, resulting inthe subsequent forgery of signatures. A partial list of such attacks is given in Table 5.5.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 164

1. Algorithmic Attacks. The signature algorithm itself (e.g., RSA) has succumbedto mathematical or cryptanalytic attack.2. Implementation Failures. A particular signature algorithm has been poorlyimplemented. We include here the possibility of weak keys being chosen, apoor random number generator being used, or the private key not being ade-quately protected. As speci�c examples, note the attack on ElGamal signatures[Ble96], the timing analysis attack [Koc96] and di�erential power analysis at-tacks [KJJ98].3. Insider or Physical Attacks. This includes attacks whereby the private key isread from temporary memory (in which it is stored while being used). As well,an attacker might observe as a user enters the password used to provide access totheir private key or to decrypt keying information. This can also include a socialengineering attack whereby a user may be fooled into giving up a password orkey, or a system administrator may be bribed into revealing it.4. Brute-force attacks. An attack whereby the password (used to encrypt keyingmaterial) or private key itself is guessed. Schemes with low-entropy passwordsare most susceptible to such an attack.Table 5.5: Attacks to a Signature Scheme. The goal of the attacks is to compromiseeither the signature algorithm or the private key(s) of a signing user(s). The endresult is an ability to forge signatures.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 165
--t timelegitimate signatures produced signatures may be forged

Figure 5.11: Periods of Legitimate and Forged Signature Production. Time t indi-cates the point of a successful attack to the signature scheme of one or more users.Subsequent to time t, signatures may be forged in the names of those users whosesignature production capabilities have been successfully attacked.Consider also more futuristic attacks involving quantum computing [GC98, Sho94]and possible improvements in the e�ciency of factoring [Pom90].De�nition 5.18 A signature scheme is compromised if it allows the production offorged signatures.In Figure 5.11, the partitioning of legitimate and forged signatures is depicted, rel-ative to the time t of a successful signature attack. We make the following assumptionswith regard to actions performed relative to the time t:1. only legitimate signatures can be produced before time t;2. signatures may be forged after time t.De�nition 5.19 A digital signature renewal process provides for the renewal or ex-tension of the message authenticity of a legitimate signature c = sigu(m) for messagem by ensuring that, subsequent to a compromise at time t (see De�nition 5.18) of thesignature scheme (see De�nition 2.11) of which sigu() is a component,1. signatures legitimately produced with sigu() prior to time t are successfullyvalidated after time t, and2. forged signatures produced with sigu() at or after time t are successfully inval-idated after time t.

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1665.5.2 Anticipation and RedundancyThe attacks from Table 5.5 can be generally classi�ed as being either predictable orunpredictable. If a key compromise or equivalent attack is predictable, then digitalsignatures produced with the soon-to-be-attackable signature scheme can be renewedprior to an attack so as to extend their message authenticity beyond the point in timewhen the original signature mechanism succumbs to attack. In subsection 5.5.3, wedescribe the process of renewal.For those cases in which an attack is not anticipated nor predictable, there may bea number of forgeries produced before the attack has been detected. Once detected,the corresponding certi�cate can be revoked (see Section 5.2.3). Yet there will still besome question regarding the authenticity of signatures that may have been producedsubsequent to an attack yet prior to revocation. In Chapter 6, we discuss techniquesfor detecting and recovering from an attack. In this subsection, we discuss techniquesfor anticipating attacks to signature schemes, by decreasing the possibility that asingle attack will permit signature forgeries.One way to anticipate an attack and allow for subsequent renewal is to provideredundancy in the signature production mechanism. Some methods for providingredundancy are:1. Multiple Signature Keys. The use of multiple keys for the production of a digitalsignature allows one to extend the lifetime of previously constructed signatures(beyond that of a signature scheme in which a single signature key compromiseis typically su�cient for forgery production) so long as more than one attack isrequired to compromise all keys and that attacks are detectable at least beforeall keys are compromised. This solution is discussed further in Section 6.4;2. Multiple Hash Functions. Consider the technique used by Haber and Stornettain Protocol HY1 (see Section 4.5). The signature for a message m is computed,not as the traditional signature over a single hash of m (i.e., sigu(y) wherey = h(m)), but rather, over two hashes (i.e., sigu(y) where y = h1(m)jjh2(m)).In the case that one of the hash functions h1 or h2 succumbs to an unanticipatedattack, the authenticity of the original signature remains and can subsequently

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 167be renewed prior to a possible attack to the other hash function.Therefore, by constructing the signature algorithm in such a way that multiple, in-denpendent attacks are required, the detection of attacks allows one to anticipate andrenew signatures.5.5.3 Signature RenewalIn Section 5.3.1 (see Figure 5.8) it was observed (as discussed by Haber and Stornetta[HS91]) how the time stamping of a signature served to extend the lifetime of thesignature by allowing veri�cation of the signature past the point in time at whichthe corresponding signature veri�cation certi�cate had expired. In this subsection,we examine how time stamping is also useful for extending the validity period of thesignature when attacks to the signature algorithm can be detected.Consider the signature c = sigu(m) produced by user u for the message m andthe absolute time stamp s = sig0T (c; t) produced by time stamp authority T at timet, using Protocol HY2 (see Section 4.5) where sig0() and sig() represent di�erentsignature algorithms used respectively by T and u. Notice that, the compromiseof u's signature key at time t0, for example, prevents an attacker from producing avalid, time stamped signature so long as the certi�cate of u is revoked prior to theproduction of a forged signature. In this way, the time of the time stamp for the forgedsignature would be later than the time of revocation implying that veri�cation of thestatus of u's certi�cate before accepting a signature, would fail, i.e., Protocol DS1 (ofSection 5.3.2) would output a failed result { an invalid signature. The time stampingof the signature has anticipated the compromise of u's key. (In Chapter 6, we considerthe possibility in which a key compromise is not detected.)The technique for using time stamping as a method of renewal in this manner wasdescribed by Haber and Stornetta [HS91]. However, consider the following problemwith this technique as recognized by Bayer, Haber and Stornetta [BHS93]. Let us�rst characterize two methods by which a signature might be forged (subsequent toa successful attack to a signature scheme):1. by creating a new signature, independent of any previous legitimate signatures;

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 1682. by altering a legitimate signature.Suppose, for example, that the breach of security regarding sigu involved the discoveryof a computationally feasible method for �nding hash function collisions, for the hashfunction h used in computing c. Recall that in Section 2.1.2, it was indicated thatfor reasons of e�ciency, signatures were actually computed as c = sigu(h(m)) for amessage m, using a hash function h. Therefore, the resultant time stamp s would becomputed as s = sig0T (h0(c; t)) = sig0T (h0(sigu(h(m)); t)):Notice now that if h were to become insecure (i.e., one were able to �nd collisionsfor h), u could e�ectively absolutely back stamp (cf. De�nition 4.10) a message m0 solong as h(m) = h(m0).Remark 5.5 The time stamping of a signature is not su�cient for the renewal of asignature in the case of it becoming computationally feasible to �nd collisions for theonce collision-resistant hash function h, used during signature production.Protocol RN1 Digital Signature Renewal with Time Stamping [BHS93].Description: This protocol provides for a time stamp of a message-signature pair,di�ering from the time stamping of only the signature as described in Section 5.3(thereby allowing signature renewal even if the hash function h eventually becomessusceptible to the discovery of hash collisions).Assumption: Signature protocol independence between sig and sig0 whereby sigmay be susceptible to attack after time t, while sig0 is not compromised.Note: Inputs are hashed before signing.Note: The time t0 of stamping must be such that t0 � t for the message authenticityof the original signature c to be renewed.Input: message m and signature c = sigu(m)Output: time stamp s = sig0T ((m; c); t0) for time t01: u sends the pair (m; c) to the time stamp authority T where c = sigu(m).2: T returns the time stamp s = sig0T ((m; c); t0) to u where t0 is the time of receiptof the pair (m; c).Consider the alternative of Protocol RN1 as presented by Bayer et al. [BHS93].As noted (though not mentioned by the authors), Protocol RN1 should attempt to

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 169ensure the independence of the signature algorithms (including hash functions) usedby T and other users, so that the current role of the time stamp is met, i.e., extensionof the lifetime of the signature in case of attacks to the signature production performedby u. Proposition 5.1 demonstrates that even a weakness of the signature producer'shash function permits the successful renewal of the signature.Proposition 5.1 A computationally feasible method for �nding collisions for thehash function h() is not su�cient for fraudulently claiming the time stamping ofthe message-signature pair (m0; c) in place of the legitimately time stamped message-signature pair (m; c) for m 6= m0 in Protocol RN1.Proof Suppose there were such a pair of messages m 6= m0, then for the time stampcomputation: s = sig0T (h0((m; c); t0))= sig0T (h0((m; sigu(h(m))); t)) (5.2)= sig0T (h0((m0; sigu(h(m0))); t)): (5.3)Although it may be that h(m) = h(m0) for m 6= m0, the equality of (5.2) and (5.3)implies that h0((m; sigu(h(m))); t) = h0((m0; sigu(h(m0))); t) which would imply thata collision has also been found for the hash function h0(), a contradiction to theassumption of Protocol RN1.Remark 5.6 The time stamping of a message-signature pair extends the lifetime ofthe original signature even in the case of a hash function eventually being susceptible toa computational method for �nding hash collisions, subsequent to the time stamping.Renewal Using NotarizationTime stamping the pair (m; c = sigu(m)) as opposed to only c allows for the authen-ticity of c to be extended in the event of an anticipated compromise to the signaturescheme used to produce c. Since the time stamper T is not concerned with the form ofthe input and hence, blindly time stamps the input (m; c) as a single input, it appears

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 170to make little di�erence as to whether c or (m; c) are time stamped. Indeed, eventhough m may be included in the time stamping input, the size of the time stampremains the same (since the input is hashed �rst) as does the size of the user's storagesince u would be required to maintain the storage of m in any case. However, notethat by submitting (m; c) the privacy of m is not maintained, nor are there the band-width e�ciencies as o�ered by the submission of a hashed message (see Section 2.2).Therefore, Protocol RN1 is undesirable given such requirements.Alternatively, one can time stamp c and subsequently notarize (m; c) when a sig-nature scheme compromise is anticipated. More speci�cally, suppose that for the mes-sage m, and signature c = sigu(m), user u �rst obtains the time stamp s = sig0T (c; t0)at time t0. Further suppose that the signature scheme sigu() is compromised at timet � t0. Prior to time t, say time t00 where t0 � t00 � t, the time stamped signa-ture can be notarized. This can be accomplished as in the particular example frompage 159 whereby (m; c; s; t; certu; CAkfCAkg) is submitted to the digital signaturenotary DSN in Protocol NT2. The output of this protocol corroborates and atteststhat m was indeed signed at time t0, producing the signature c.This technique has the advantage (over Protocol RN1) that since not all signaturesrequire that their lifetime extend beyond the anticipated lifetime of their signaturealgorithms, not all require that both the message and corresponding signature areinitially time stamped.Renewing Time StampsJust as a time stamp extends the lifetime of a digital signature in anticipation of anattack in which signatures may be forged, the time stamp itself requires renewal (inanticipation of the compromise of the signature scheme used for the production ofthe time stamp). The time stamp also has a �xed lifetime that may not su�cientlyextend the lifetime of the original signature. As observed by Bayer et al. [BHS93]Protocol RN1 can also be used with m, signature c = sigu(m), and time stampedsignature s = sig0T ((m; c); t) where the required input would be ((m; c; t0); s).

CHAPTER 5. TIME STAMPING DIGITAL SIGNATURES 171Recording the Time of CompromiseJust as the time of stamping of a signature is compared to the time of revocation ofa certi�cate (e.g., from a CRL) or expiry (as contained within the certi�cate), theprocess of renewal relies on the ability to compare the time of stamping to the time ofcompromise. For this reason, the time of compromise (see De�nition 5.18) of a usersignature scheme must be authentically recorded, for example by an issuing CA.Initiation of RenewalThe time stamping of a signature c = sigu(m) renews the signature c beyond thetime of compromise of sigu, except in the case that the compromise of sigu includesthe discovery of a computationally feasible method for determining hash collisionsfor the hash h used in the computation of c. If such a compromise is not a concern,or if the required \message authenticity lifetime" for c is relatively short, then thealternative stamping of the message-signature pair (of Protocol RN1) or subsequentnotarization, may not be required.The renewal of a signature or time stamp will typically be initiated by a verifyingparty, requiring a long lifetime for a particular signature(s). This renewal can beaccomplished by repeated, periodic renewal of the digital signature and subsequenttime stamps and extends the message authenticity of the original digital signature solong as renewal is performed prior to compromises. In Chapter 6, we consider thepossibility of undetected compromises.

Chapter 6Addressing the Problem ofUndetected Signature KeyCompromiseThe digital signature is the digital counterpart to the physical, handwritten signature.Each permits authorization with respect to the corresponding named individual. Ahandwritten signature permits authorizations corresponding to the particular namethat is being signed. A digital signature private key may be used, together withadditional controls, to allow authorizations with respect to the name provided in thecorresponding public key certi�cate. The compromise of the private key results in aloss of exclusive control over associated privileges, and allows impersonation.Once it is known that a key has been compromised (i.e., once a compromise isdetected), suitable recovery actions may be taken to prevent further damage. Forexample, various means for key revocation (see Section 5.2.3) allow one to preventfuture acceptance of forged signatures time stamped later than the date of revocation(see Section 5.3.1). However, revocation can only be performed once a compromisehas been reported (and hence detected). The ability to distinguish forged signaturesfrom legitimate ones requires knowledge of when the compromise occurred.To date, the problem of protecting against the forgery of signatures resultingfrom an undetected compromise of a user's signature private key has not even been172

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 173considered in the open literature, let alone solved in any way. In this chapter, weintroduce and present a �rst study of the problem of undetected key compromise.Moreover, and perhaps counter-intuitively, solutions are provided which prevent evenan attacker who has obtained or deduced (by any means, for any signature algorithm)a user's signature private key, from being able to forge signatures that would beaccepted by an unsuspecting recipient.Chapter OutlineIn Section 6.1, we de�ne events related to a key compromise and the detection of thecompromise. As well, the inadequacy of revocation and time stamping for dealingwith the problem of an undetected compromise is discussed. Section 6.2 reviews andexamines solutions useful for reducing the damage subsequent to a signature key com-promise. In Section 6.3, we overview new solutions in which independent means areused to identify the legitimate signing user, and position the work relative to the cur-rent literature and practice as well as to the content of this thesis. In Section 6.4, weelaborate on a �rst solution in which a secondary (independent) identi�cation is usedfor enhanced protection against an undetected key compromise. In Section 6.5 tech-niques are presented which use a secondary (independent) synchronization methodto allow the legitimate signer to detect when forged signatures have been produced.Combining a periodic check-in by the legitimate user with a cooling-o� period forthe acceptance of signatures allows for the detection to be enhanced so that forgedsignatures will not be accepted by a recipient. This is discussed in Section 6.6.6.1 De�nitions, Assumptions and MotivationIn this section, the problem of undetected key compromise is introduced and the needfor new solutions is motivated.De�nition 6.1 A key compromise has occurred if the signature (private) key sigu(see De�nition 2.11), or equivalent key, is possessed by an individual other than the

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 174legitimate signature key owner u, and there exists a potential for the misuse of siguby this other entity (e.g., the forging of signatures - see De�nition 5.17).A variety of possible attacks to both the privacy of a signature key and security ofsignature algorithms were given in Table 5.5 of Section 5.5. Although access controlsare necessary, in many cases they might not be su�cient for protection of the signaturekey. It is important to recognize that despite various controls and protections, somekeying material may eventually be compromised.De�nition 6.2 An undetected key compromise is a key compromise for which thelegitimate key owner (see De�nition 5.16) is not aware of the possession of sigu byanother individual.If a private key compromise or equivalent attack is detected by u, the correspondingpublic key certi�cate can be revoked, and a new key pair can be introduced. Through-out this chapter, we use the term `key compromise' to indicate an attacker's abilityto impersonate u using an ability to forge signatures.6.1.1 Compromise DetectionIn discovering or becoming aware of (possibly only suspected) attacks, it is importantto consider the storage of the signature key. For example, the key might not be storedon any physical medium, but rather computed as some function of a memorizedpassword which appears in a computer system (e.g., RAM) for only a very shortperiod of time.1 We refer to this as an ephemeral token. The key may be stored ona user's disk. This is referred as a software token. As well, the key may be stored ona smartcard, i.e., hardware token. Alternatively, the key may be physically recorded(e.g., on a piece of paper) and is thus referred to as a physical token. A physicaltoken di�ers from a hardware token in that the former is easier to duplicate, whilethe latter, generally is not.1For example, a password could be used as a seed for a (reproducible) deterministic process whichgenerates the signature key.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 175Implemented correctly, a hardware token allows compromise to be easily detected,i.e., the user would recognize the missing token. However, it does not necessarilyprotect against an algorithmic attack or implementation failure (see Table 5.5), andcare must be taken in their use [BDL97, KJJ98], e.g., if a weak random numbergenerator were used. The techniques presented in this chapter provide protection evenin the case of signature key compromise due to these failures. Additional methodsfor detecting a signature key compromise include:1. detection of a physical attack to a user's computer system in which keyingmaterial is stored (this includes theft of a hardware token);2. the legitimate user receives a signature(s) from some other user, which thelegitimate user identi�es as a forged signature; and3. public announcement of a computationally feasible attack or protocol failureapplicable to the digital signature algorithm or related components (e.g., hashfunction).6.1.2 Events Related to a Key Compromise.Consider the timeline of actions related to a signature key compromise as given inFigure 6.1 (similar to Figure 5.10 with the additional indication of a key compromise(or equivalent attack) as the cause for revocation). The compromise of u's key takesplace at time t0. The compromise may be suspected at time t1 (the time of detection ofthe key compromise; u may or may not be aware of the precise time of its occurrence).u reports the compromise at time t2 (for example, to the certi�cation authority (CA)who issued the corresponding veri�cation certi�cate) and this information is receivedby the CA at time t3. Knowledge of the information is made available to users at timet4, e.g., using CRLs (see Section 5.2.3). Note that some time may elapse between t3and t4, e.g., if protocol dictates that compromises are published within 12 hours, asopposed to publishing after each revocation request is received. Knowledge of thekey compromise is obtained by users as early as time t5; di�erent users may obtain

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 176
t report received

received or obtained by users

3 by CA

t compromise reported2

t compromise suspected

4t compromise published

5t public notification

1

t key compromise0

t t t t t t0 1 2 3 4 5

time

Figure 6.1: Timeline of events related to a key compromise. From time t0 to t1 is aperiod of undetected key compromise.this information at di�erent times. We have t0 � t1 � t2 � t3 � t4 � t5 (seeDe�nition 4.3).6.1.3 Limits of RevocationEven if existing certi�cate revocation techniques were used in response to a key com-promise, they were not intended to handle the case of an undetected compromise sincethey rely on the compromise being reported, and hence detected. During the periodof time starting at t0 and ending prior to t1 (see Figure 6.1), a period of undetectedkey compromise (see De�nition 6.2), a number of messages may be signed, includingboth forged and legitimate signatures. In the worst case, a compromise may not bedetected at all, thereby allowing signatures to be forged until the date of expiry ofthe corresponding public key certi�cate. Using current techniques, it is di�cult todistinguish whether, for the case of disputed signatures (produced and time stampedduring the period of undetected key compromise),1. u did not actually sign the messages (i.e., an attacker did), or2. u legitimately signed the messages and is attempting to repudiate the signatures,by either claiming(a) a signature private key compromise prior to any actual compromise, or(b) a compromise when in fact there was no actual key compromise.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 177Note that the revocation information may be the only evidence available to an ad-judicator (see Section 5.3.2) asked to resolve if and when a key compromise mayhave occurred.2 Thus, it may be reasonable to assume that signatures time stampedprior to the date of revocation are considered legitimate. However, this may place anunexpected burden or unfair penalty on the legitimate user in cases where a user'sprivate signature key is indeed compromised without his/her knowledge. Indeed, umay be unable to pinpoint the exact time of the compromise. However, allowing uto repudiate signatures that may have already been accepted is equally unfair to therecipients of the signatures.6.1.4 Time Stamping is Necessary but not Su�cientThe determination of whether a signed message is valid involves, among other things,a comparison of the time of stamping of the signature with events related to the statusof the corresponding veri�cation certi�cate (see Protocol DS1 of Section 5.3). Thetime of a certi�cate's revocation (or expiry) can be compared to the time of signingof messages to allow determination of whether a message was signed before or after arevocation. Such a procedure may not be su�cient in the case of an undetected keycompromise. Let ts be the time of stamping of a signature c. The apparent legitimacyof c (from the point of view of a signature veri�er) given that ts � t2 (see Figure 6.1)may be unclear in the case that t1, the claimed suspected time of compromise, isdetermined only by the legitimate user. For example, in an attempt to repudiatea legitimate signature, the legitimate signer may dishonestly report to the CA thatt1 � ts. Indeed, until the compromise is detected, a number of legitimate and forgedsignatures may have been time stamped during the interval from t0 to t1, making itdi�cult to arbitrate a dispute regarding the legitimacy of such signatures. Thus, thetime stamping of the signature is insu�cient in this case. In the remainder of thischapter, we examine methods for dealing with this situation.2In some cases, additional information may be available, for example physical evidence. However,we focus on solutions that do not rely on such evidence.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 1786.2 Dealing with Signature Key CompromiseIn this section, we review and discuss techniques that can be used to deal with asignature key compromise by using either of the following general methods:1. Providing redundancy. A single key compromise is rendered insu�cient to allowthe forgery of signatures by requiring multiple keys for signature production.For example, requiring a private key to be compromised from each of a groupof users, thereby requiring multiple, subsequent attacks against di�erent usersin order to successfully forge a signature;2. Limiting exposure. Limiting the number or type of signatures that may beforged or the amount of time that undetected forgery can persist may limit thequantity of forged signatures resulting from a key compromise.Threshold signatures. Threshold signature schemes (e.g., [Des94, Lan95]) areprotocols in which n shares or pieces of a secret signing key are distributed amongst nusers (one share per user). To produce a signature (veri�able with a single veri�cationkey), at least t � n users must cooperate, each producing partial signatures that arethereafter combined to produce a resultant signature.Redundancy (against one class of attacks) is provided since compromise of a singleuser's share does not allow one to forge a signature (unless cooperation is obtainedfrom t� 1 other users). Exposure is limited so long as compromises are detected andsubsequent regeneration of signature keys is performed. However, there exists thepossibility that over a period of time, t signature shares may be compromised.Proactive signatures. In anticipation of the possibility of a long-term attack inwhich multiple shares of a signature key are eventually compromised (without detec-tion), a proactive approach has been proposed [HJJK97] whereby the shares corre-sponding to a single signature key (where as above, a threshold of signature key piecesare required to produce a signature veri�able by the single veri�cation key) are pe-riodically renewed so that an attacker would be required to compromise a threshold

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 179of the shares all within a given time period in order to successfully forge a signa-ture. One advantage is that despite the refreshment of the shares, the underlyingprivate/public key pair can remain �xed for a long time, e.g. several years. Thisrenewal of shares can be performed periodically or can be triggered by the detectionof a share compromise. A second advantage is that if one of n parties holding a keyshare leaves an organization or is dismissed, even without explicit revocation of hiskey share, the periodic update will cause his key share to be invalidated.Though suitable for some applications, for protecting individual users against keycompromise a disadvantage of using threshold schemes (proactive or otherwise) is therequirement of involving a number of users to produce a single, veri�able signature.Furthermore, it is important to note that such threshold and proactive schemes do notpreclude an algorithmic or brute force attack that would discover the single signingequivalent key.Proactive certi�cation. To remove the requirement of multiple users for the pro-duction of a veri�able signature, Canetti, Halevi and Herzberg [CHH97] use the sameproactive, distributed concept (as described above for `Proactive signatures') to allowfor a proactive distributed certi�cation of an individual user's signature key, wherebya single signature key is su�cient for the production of a signature, as opposed to adistributed signature construction. Their proactive solution requires periodic refresh-ment phases in which new signing key pairs (i.e., sigu and pubu as in De�nition 2.11)are generated by each user. Users additionally store shares of a global, private sig-nature (certi�cation) key, corresponding to a global, public veri�cation key. Theseshares are used in process (similar to the proactive signature scheme described above)to certify the new signature keys (just as would be done in a centralized scheme bya certi�cation authority in Section 5.2.1). The shares are also periodically refreshed(in addition to the signature key pairs).A weakness of this approach is that, although signing key pairs are refreshed atregular intervals, there is no protection in the case that a single user's signing keyis compromised (without detection by the private key owner) and used to produce a

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 180signature within a given time unit. This technique therefore provides some protec-tion against malicious certi�cation of public keys (by providing for a decentralizedcerti�cation process in which the shares corresponding to the private certi�cation keyare periodically renewed) and simultaneously limits the number of (as opposed topreventing) forged signatures that can be produced for a user by imposing periodicrenewal of the user's personal signature keys.Restricted signature privileges. An alternative technique for limiting the e�ectsof key compromise (e.g., forgery of signatures) is related to the idea of attribute cer-ti�cates. These are certi�cates that allow for additional information, other than apublic-key, to be conveyed in an authentic manner [ITU93]. For example, the addi-tional information may be privileges which can be certi�ed by an attribute authorityin separate certi�cates, or included as an optional �eld directly in a user's certi�cate.Suppose, for example, that di�erent privileges were assigned to di�erent users so thatonly certain classes of messages can be signed by particular users. For example, onlyusers with \signing o�cer" privileges might be able to sign cheques in the name oftheir company. An attacker with such a goal in mind, now has a smaller number ofusers that can be attacked since the compromise of a particular signature key maynot allow for the production of forged cheques. This technique can be combinedwith threshold signatures or proactive signatures (see above) whereby combinationsof users with di�erent attributes are required to produce a signature.Limiting the number of signatures. While such a solution above limits the typesof signatures that can be produced (and hence forged), one might also try to boundthe number of signatures that can be produced for a given certi�cate. This ideacan be implemented by using an intermediate trusted third party to decrement theremaining signature count after the production of each signature. Such a techniqueis used in Protocol PV4 (see Section 6.4).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 181Signature insurance. Related to the reduction of risk for a particular user orgroup of users is the protection against liability in the case of undetected key com-promise. Paralleling the paper world, insurance might be useful for protection insuch situations, i.e., each user pays insurance premiums for each certi�cate, protect-ing against the results of a key compromise. For example, comparing a system wheresingle user signatures are required with one where threshold signatures are required,the former might require for higher insurance premiums.6.3 Overview of New ApproachThe veri�cation of a time stamped signature was discussed in Section 5.3. Thisveri�cation forms what we refer to here as a primary or �rst level authentication.The �rst level authentication allows a signature veri�er to ensure that, among otherthings, the mathematical correctness of the signature is veri�able with the public keycontained in the corresponding certi�cate identi�ed by the purported originator of thesignature. Thus, the signer must have had knowledge of the corresponding privatesignature key (or equivalent information). The binding of the name to the publickey by the certi�cation authority (CA) (see Section 5.2.1) is intended to identify thenamed individual as owner of the corresponding veri�cation key. However, as impliedby a key compromise (see De�nition 6.1), the �rst level authentication alone doesnot necessarily identify the named individual as the only possessor of the (private)signature key and hence as the producer of a particular signature.The novelty of the new approach to dealing with a key compromise (in comparisonto the techniques of Section 6.2) is that it makes use of a second level of authentication,the result of which allows the veri�er v of a signed message to con�rm (with a higherdegree of assureness than with the �rst level digital signature protocol) that u (theuser named in the public key veri�cation certi�cate used to successfully validatethe �rst level digital signature) did indeed sign the message m despite a maliciousattacker's possible possession of sigu (or equivalent key). A successful second-levelauthentication results in a signature, produced by a third party Trusted Register(TR), over (at least) the signed message submitted by the originating user. After

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 182successful veri�cation by the originating user, the original (time stamped) signatureand message (to which the �rst level signature was applied) can be sent to otherusers, accompanied by the TR-signed message. More detailed descriptions of theparticular techniques whereby an enhanced second-level authentication is used aregiven in Section 6.4 and Section 6.5.In Section 6.3.1, the general structure and form of a second level authentication,incorporated with the �rst level digital signature, is described. Section 6.3.2 positionsthis second level approach relative to the previous work (of Section 6.2) and theprovision of temporal authentication.6.3.1 Second Level Authentication for Signature ProductionThe secondary method provides additional, corroborative evidence for the veri�er ofa digital signature, beyond the possession of the original �rst level signature. Thiscorroborative evidence results from an exchange made between the signing user andthe TR. The function of the TR is to validate an exchange between itself and thesubmitter of a secondary authentication request, and subsequently produce somesubstantiating information (to enhance the acceptability of a message signed withsigu) that is bound to the signature in question. Throughout this chapter, we considerthe technique whereby the TR produces a signature in response to a successful secondlevel authentication. Optionally, one might record user signatures in an integrity-protected database at the TR; signature recipients could verify the success of thesecond level authentication for a particular signature by querying the TR regardingthe membership of the signature in the database.The generic structure of the combined �rst and second level authentications isdescribed by Protocol SL1. The properties of the secondary authentication mecha-nism are given in Table 6.1. The beginning of a round is de�ned as the moment a(legitimate or fraudulent) secondary authentication request is received by the TR andends when the corroborating evidence r is received by the requester. Synonymous toDe�nitions 5.16 and 5.17, we can also identify the legitimacy of secondary requestswith the following.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 183
Protocol SL1 Generic Structure of Signature Protocols Using a Second Level Au-thentication.Description: This protocol provides the general steps combining a �rst level signa-ture with a second level authentication. This second level authentication com-bines a secondary request to the TR with a return of secondary corroborativeevidence to the submitting user. This corroborative evidence provides additionalcorroboration to the named producer of the �rst level signature.Note: The more speci�c protocols described in Sections 6.4 replace steps 4 and 5below while enhancements to allow for synchronization are described as Proto-col DT1 of Section 6.5.1: User u computes the signature c = sigu(m) for the message m.2: User u obtains a time stamp s for the signature c, using for example, Protocol AB1of Section 2.4.1.3: User u also sends the signature c = sigu(m) to the trusted register TR.a4: Along with c, u submits c0 as an algorithm dependent, second level authenticationrequest (see Remark 6.1) for the signature c to the TR.5: The TR validates the second-level authentication, and if successful, returnsr = sigTR(c0; c; u; : : :);the secondary authentication corroborating evidence, along with its contents tou. Here `: : :' refers to additional algorithm speci�c data.6: u veri�es the mathematical correctness of the TR-signed r using an a priori,authentically stored copy of the TR's veri�cation public key and ensures that itscontents match what was submitted by u.7: u sends fm; c; r; sg to a signature recipient v along with contents required todetermine the mathematical correctness of any signatures.8: v validates u's signature c over m and checks the time stamp s using Protocol DS1(Section 5.3.2) and veri�es the mathematical correctness of the TR's signature rover (c0; c; u; : : :).9: If each validation is successful, v accepts the signature c over the message m.aAlternatively, u might submit the time stamp s to the TR.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 1841. Any secret information or algorithms upon which the secondary authenticationmechanism relies (or more generally, things that may be vulnerable to the at-tacks mentioned in Table 5.5) should be `independent' of the signing private keyor algorithm used for the signature production itself, i.e., compromise of onedoesn't reveal information su�cient enough to allow a computationally feasiblekey compromise attack against the other.2. The secondary authentication corroborating evidence is cryptographicallybound or associated with the current signature in question, i.e., is computed asa cryptographic function of the signature.3. The method permits a suitable identi�cation to the TR, i.e., allows the TRto verify that only u could have produced a particular signature, given an apriori agreed upon identi�cation technique between u and the TR. This iden-ti�cation is performed via submission of a secondary authentication request (seeRemark 6.1).Table 6.1: Properties Required for the Second-Level Authentication Mechanism.De�nition 6.3 A secondary authentication request c0 (see Remark 6.1) is legitimateif the request received by the TR is the same as that transmitted by the legitimatelyidenti�ed requestor. A request that is not legitimate is fraudulent or forged.Remark 6.1 The secondary authentication request serves a purpose similar to a re-sponse in a challenge-response protocol. For our purposes, the \challenge" data refersto data shared (possibly secretly) between the legitimate user and the TR, combinedwith the digital signature data for which a secondary request is being made. Theresponse (i.e., the user's secondary authentication request) is a function of this infor-mation.The independence of the mechanism used to perform the secondary authenticationrequest, from the �rst level signing private key and algorithm, typically ensures thata second attack would be required subsequent to compromise of the �rst level signingkey. In this way, the independence of the second level from the �rst allows one tobetter survive attacks that may only succeed against the �rst level.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 185Identi�cation of a user to the TR (facilitated by the secondary request) can bebased on something known (e.g., a password), something possessed (e.g., a smart-card), or something inherent to an individual entity (e.g., a �ngerprint). Isolating on`something known', we observe that the known information can be either static (e.g.,mother's maiden name, birthdate) or dynamic (e.g., a periodically changed password).We can also identify non-secret synchronization parameters which are speci�cally usedfor a synchronization scheme with the TR (see Section 6.5). In this case, a lack ofsynchronization allows for the detection of forged signatures. Only the authenticityof this parameter need be maintained, not its con�dentiality.6.3.2 Positioning of New WorkIn this subsection, we outline the relationship of the new, second level solution to theprevious work of Section 6.2 and to the provision of temporal authentication.Outline of Solutions and Relationship to Previous WorkIn Section 6.4, second level authentication solutions are presented which provide for anidenti�cation of the user to the TR using either `something possessed' or `somethinginherent' to the requesting user. These solutions provide for redundancy wherebycompromise of the �rst level signature key is not su�cient for the production of asignature that would be accepted by a veri�er. They di�er from the threshold schemesreviewed in Section 6.2 in which single shares of a key are held by multiple users inthat multiple keys are held by a single user.In Section 6.5, schemes which limit the exposure to successfully forged signaturessubsequent to a compromise are examined. These schemes use a synchronization be-tween the legitimate user and the TR, allowing the detection of fraudulent secondaryauthentication requests and thus of forged signatures to be detected. Suitable re-vocation techniques can subsequently be performed subsequent to a detection. Thissolution di�ers from the threshold and proactive signature schemes of Section 6.2 inthat individual users can unilaterally produce signatures. It di�ers from the proactive

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 186certi�cation scheme reviewed in Section 6.2 in that it is proactive in the sense of pro-viding for the detection of forged signatures, but does not require the regeneration ofkeying material unless a forgery is detected. In short, the new schemes do not requirea key pair refreshment unless a forged signature attempt has been detected. As well,the new proposals protect against other possibilities for the compromise of a privatekey, beyond a break-in (see Table 5.5).In Section 6.6, we build on the detection schemes of Section 6.5 whereby once afraudulent request is detected, the acceptance of any forged signatures can be pre-vented. This is accomplished by creating a cooling-o� period for the acceptance ofsignatures while requiring legitimate key owners to acknowledge signatures for whichsecondary, corroborative evidence has been obtained, yet are currently cooling o� andhave not been accepted by signature recipients.Temporal Functions of the Trusted RegisterWhile the solutions presented here are positioned primarily for the purpose of pro-viding a second level authentication to protect against the case when an undetectedsignature key compromise (or equivalent attack) has occurred, they are intimatelyrelated to the temporal digital signature requirements discussed in Section 5.3.1. Theadditional requirement introduced in this chapter (beyond attempting to limit thee�ects of a single key compromise), in the case of forged signatures, is the determina-tion of when signatures were produced relative to the time of compromise. Although,as indicated in Section 6.1.4, time stamping is not su�cient to solve this problem,other techniques (such as the synchronization methods of Section 6.5) can be usedto help determine a time around which forged signatures were �rst produced. As anadditional role, the TR authority used in this solution may also simultaneously actas a time stamp authority T or a digital signature notary authority DSN .Additionally incorporating the role of a time stamp authority, the TR would returnr = sigTR(c0; c; u; : : : ; t) to u, in place of r = sigTR(c0; c; u; : : :) (see Protocol SL1 ofSection 6.3.1), where t may be the time of receipt of c. The time stamping of thesignature is necessary in any case, and this is one option for implementing timestamping with a TR. (See Protocol DT7 in Section 6.5.3 for a case in which the

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 187time stamp is incidently provided in the second level authentication response fromthe TR.)Considering that the TR is performing a role similar to a DSN , by verifying (butnot fully attesting to) the success of an attempted second-level authentication requestby u, the TR might also act as a notary and verify the signature c (as in Section 5.4)upon submission. In this way, the TR might also include a full attestation to thesuccess of the second as well as the �rst level authentication.6.4 Preventing Forged Signature ProductionThe successful forgery of a signature in a two-level signature scheme requires thatbeyond the compromise of the signature key, an attacker is also able to obtain asecond-level authentication from the trusted register (TR). Both a �rst level digitalsignature and second level corroborative evidence from the TR are required for asignature recipient to accept a signature.De�nition 6.4 We say that the forgery of signatures is prevented in a two-levelsignature scheme (i.e., Protocol SL1) if compromise of the primary signature keydoes not allow one to produce a signature that would be acceptable by a signatureveri�er.A successful attack would require the attainment of a forged signature and sec-ond level corroborative evidence that would be accepted by a signature veri�er. InSection 6.4.1, we present several protocols in which a secondary, private key, somefunction of which is shared between the legitimate user and the TR, is used in asecondary authentication request by the legitimate user. In Section 6.4.2, the storageand transmission e�ciency of the protocols is compared.6.4.1 Second Level ProtocolsConsider, for motivational purposes, Protocol PV1. It is impractical so long as currenttechnology is unable to consistently recognize a user's voice while also preventing

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 188impersonations. As well, it requires the \physical" intervention of the signing user asopposed to a completely automated process. However, it does allow an originatinguser to obtain corroborative evidence regarding the source of the signature c thatcan be supplied to potential signature recipients. In subsequent protocols, we presentmore cryptographic solutions.Protocol PV1 Using Biometrics as Secondary Authentication.Description: This protocol describes the secondary authentication request and re-turn of corroborative evidence by a trusted register (TR), replacing the like-numbered steps from the general secondary authentication Protocol SL1 (seeSection 6.3.1).4: u places a phone call to the TR identifying himself as u, reading the output ofh(c) to the TR for signature c.5: The TR validates that the voice of the requestor matches the stored vocal prop-erties for user u, determines the mathematical correctness of h(c) by computingand comparing h(c) upon receipt of the signature c, and returns r = sigTR(c; u)to u if the validation is successful.Whereas Protocol PV1 uses a separate channel for the secondary authenticationrequest, the remaining protocols in this subsection transmit the secondary authenti-cation request along with the �rst level signature. Consider the scheme described asProtocol PV2. At least one of the secondary algorithm or key must be independentfrom their primary (�rst level) counterparts. For example, if the secondary algorithmwere DSA [FIP94] and the primary were RSA [RSA78], the second level would likelybe resistant to potential attacks that existed only against RSA. In this case, thesignature algorithms are independent with respect to attacks that do not simultane-ously compromise the security of both schemes. Regarding the use of a secondarykey whose secrecy must be maintained, similar to the original signature key, both theconstruction and storage of the keys must be independent. In other words, an attackto the �rst key should not allow recovery of the second key. In the best case, thecompromise of the �rst key would be detected prior to compromise of the second, al-lowing revocation of the veri�cation certi�cate corresponding to the �rst key. Noticethat a certi�cate need not necessarily be constructed for the secondary public keypub0u since this public key will only be used by the TR (as opposed to other users).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 189Protocol PV2 Using a Signature as Secondary Authentication.Description: This protocol describes the secondary authentication request and re-turn of corroborative evidence by a trusted register (TR), replacing the like-numbered steps from the general secondary authentication Protocol SL1 (seeSection 6.3.1).Require: u must possess a secondary private signature method sig0u parameterizedby a key independent from the primary signature key and corresponding secondarypublic key pub0u. The TR maintains a copy of pub0u.4: u computes c0 = sig0u(c) and sends (u; c0) to the TR.5: The TR veri�es the mathematical correctness the secondary signature c0, usingpub0u, and if successful, returns r = sigTR(c0; c; u) to u.Alternatively, a private key algorithm can be used whereby u privately shares asymmetric key K with the TR as in Protocol PV3. This solution prevents an attackerfrom succeeding at having forged signatures accepted so long as he/she is not able torecover K, in addition to the private, �rst level signature key. The storage locationand algorithm used with K must be independent of the location of the signing privatekey and signature algorithm. E can be either an encryption function or preferably aMAC algorithm since no decryption operation need be performed by the TR. Notethat a MAC provides for a smaller secondary request size since encryption of c resultsin a request size equal in length to the size of the signature, which is longer than theoutput of a typical MAC function (cf. Table 6.2). Note that an attacker, in possessionof only the signature private key sigu, would not be able to obtain corroborativeevidence for a forged signature.Protocol PV3 Using a Symmetric Key as Secondary Authentication.Description: This protocol describes the secondary authentication request and re-turn of corroborative evidence by a trusted register (TR), replacing the like-numbered steps from the general secondary authentication Protocol SL1 (seeSection 6.3.1).Require: u shares a symmetric key K with the TR.4: u computes c0 = EK(c) (for �rst level signature c) and sends (u; c0) to the TR.5: The TR, using knowledge of K and receipt of c, computes c00 = EK(c) and returnsr = sigTR(c0; c; u) to u if c0 = c00.A variation from Protocol PV3 in which the TR need not maintain the secrecy

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 190of any information (that would be required for veri�cation of the next secondaryauthentication requests) for u uses Lamport one-time keys [Lam81], and is presentedas Protocol PV4. E must be invertible in this case (di�ering from Protocol PV3)to allow recovery of Ki+1 as the key required for the next secondary request. Anadvantage of this scheme (as compared to Protocols PV2 and PV3) is that a di�erent,pseudo-independent key is used to produce c0i for each i. As well, compromise of slimits an attacker to a �xed number of forged secondary requests. (A variation of thisscheme whereby the secrecy of s is not required by the user u, is given in Section 6.5as Protocol DT4.)Protocol PV4 Using a Private Seed as Secondary Authentication.Description: This protocol describes the secondary authentication request and re-turn of corroborative evidence by a trusted register (TR), replacing the like-numbered steps from the general secondary authentication Protocol SL1 (seeSection 6.3.1).Note: Signature ci refers to the round i instance of signature c from Protocol SL1.Initially, i = 0, and is incremented by 1 for each secondary authentication request.Require: u privately shares a secret encryption function key Ki = fn�i(s) with theTR where s 2 S is a random, secret seed, f : S ! S is a one-way function(i.e., a function for which it is easy to compute an image for all domain elementsbut computationally infeasible to compute a pre-image for almost all images) andn is a positive integer denoting the number of signatures u may produce beforerequiring reinitialization with the TR.4: For signature ci, u computes c0i = EKi(ci; Ki+1) (where `,' denotes concatenation)and sends (u; c0i) to the TR.5: Given possession of Ki, the TR decrypts c0i, recovers Ki+1 and computesf(Ki+1) = f(fn�i�1(s)) = fn�i(s) to ensure that it equals Ki. If true, the TRsubsequently stores Ki+1 in place of Ki and returns r = sigTR(c0; c; u) to u.6.4.2 Comparative AnalysisIn this subsection, we provide some comparative analysis of the storage and trans-mission e�ciency of Protocols PV2, PV3 and PV4. Each of these schemes requires asecondary, secret key to be maintained by each user u. u might have several signature

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 191keys (corresponding to several public key certi�cates) but need only keep a single sec-ondary key. The independence of this secondary key (and algorithm) increases thelikelihood that an additional attack would be required to compromise the secondarymechanism given a compromise of the �rst level.Table 6.2 displays a comparison of the protocols with regard to several storagecriteria. Each user stores and maintains the privacy of only a single secondary keywhile the TR need only maintain a single key corresponding to each user (though seethe footnote to `TR Storage' of Table 6.2). Although Protocol PV2 does not requirethe TR to maintain the privacy of the public keys for each user, it does require largerstorage for u (and the TR if the secondary signature key is not implemented usinga certi�cate) as well as a larger transmission size when compared to Protocol PV3.Protocol PV4 matches Protocol PV3 for user and TR storage, but because of therequirement of a reversible function (allowing the TR to recover Ki+1 from Ki),Protocol PV4 requires a larger secondary authentication request size.6.5 Detecting Forged SignaturesAttack detection, per the techniques proposed herein, involves the discovery of a lackof synchronization between the legitimate signing user and the TR; this implies thedetection of a fraudulent secondary authentication request and may imply that aforged signature has been constructed. The techniques for achieving this detectioninvolve the use of so-called synchronization parameters. Only the authenticity of thisparameter need be maintained by both the user and the TR, not its privacy. For everymessage signed by a user (even if a message is signed by an attacker in possession of thelegitimate user's signature private key), for which a secondary authentication requestis made, the parameter is updated by the TR. Detection occurs when the legitimatesigner is not synchronized with the TR at a given legitimate message signing, implyingan attacker has fraudulently and successfully submitted a secondary authenticationrequest since the last request made by the legitimate signing user. Unless otherwisenoted, it is assumed that the detection of a fraudulent request implies a detection ofsignature forgery and hence key compromise.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 192

ProtocolsProperties PV2 PV3 PV4user storage 1 signature key 1 MAC key 1 encryption key160 bits 128 bits 128 bitsTR storagea 1 public keyb 1 MAC key 1 decryption key1696 bits 128 bits 128 bitsrequest size 1 signature 1 MAC 1 signature + 1 key320 bits 128 bits 508 bitsTable 6.2: Comparison of Techniques Using a Secret Key for Secondary Authentica-tion. User storage refers to the storage required by u to allow use of the secondaryauthentication mechanism (ignoring the requirement to store the veri�cation key ofthe TR which is required for all schemes). The TR's storage refers to the storagerequired for each participating user, to be maintained in a central database. Requestsize refers to the size of the secondary authentication request from u to the TR. Thistable assumes the use of DSA (Protocol SG1 of Section 2.1.2) for digital signatureproduction and veri�cation and 128-bit MAC and encryption keys with 128-bit MACoutput.aAt the risk of concentrating too much reliance on a single master key, a standard proposal forsimplifying key management would be for the shared secret key for user i to be Ki = h(K;ui). ThenTR need only store one key K to allow regeneration of all user keys. This technique applies toProtocols PV4 and PV3.bNot required if sent in a CA-signed certi�cate with each request, and TR has a trusted copy ofthe CA's veri�cation key.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 193Detection alone does not prevent an attacker (in possession of a user's signingprivate key) from forging signatures which would normally be accepted as valid. How-ever, it does allow detection, and action can be taken to prevent continued forgeries.In Section 6.6 we introduce techniques that can be used to enhance this detection sothat forged signatures are not accepted by an unknowing recipient and no legitimatesignatures accepted by another user can be repudiated.Outline of Section 6.5In Section 6.5.1, properties and assumptions related to the detection of forged sig-natures using synchronization are discussed. In Sections 6.5.2 and 6.5.3, techniquesare presented in which one-way function variant and time variant parameters are re-spectively used for synchronization. In Section 6.5.4, the storage of the secondarytoken is examined and the necessity of maintaining the parameter's authenticity isalso discussed.6.5.1 Use of Synchronization for Detecting ForgeriesThe proposed method for detection of a signature forgery involves the detection ofa lack of synchronization between the legitimate signing user u and the TR, andoccurs at points when a signer requests secondary authentication evidence. Thissynchronization can be implemented using a synchronization parameter locally storedby both u and the TR, and updated by the TR after each secondary authenticationrequest and by u after each legitimate request. The key feature with this parameter(when compared to the private key techniques of Section 6.4) is that it need not bekept private; only the authenticity of the parameter need be maintained.De�nition 6.5 Let sui and sTi respectively represent the value of the synchronizationparameter stored by u and the TR after round i � 0 where initiallysu0 = sT0 = IVfor an initialization value IV .

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 194The equality of these synchronization parameters during the normal running of asecondary protocol is critical to the detection of a lack of synchronization.Protocol DT1 Generic Secondary Authentication Using Synchronization.Description: The steps in this protocol expand on steps 4 and 5 from Protocol SL1,particularly for synchronized secondary authentication. Each round begins witha secondary authentication request and ends with the return of corroboratingevidence from the TR.1: u and the TR initially share an initialization value IV so that for their respectivesynchronization parameters, su0 = sT0 = IV .2: During round i � 1, u submits the value c0i = sui�1 as a secondary authenticationrequest (see Remark 6.1) to the TR,a along with the signature ci.3: The TR receives the signature ci and secondary authentication request c0i andveri�es the correctness of the request by determining whether c0i = sTi�1. If equal,the TR1. updates the synchronization parameter stored for u from sTi�1 to sTi , and2. returns the secondary corroborative evidence ri =(c0i; sTi ; ci; u; sigTR(c0i; sTi ; ci; u)) to u,where inclusion of sTi is not required in the case that u is able compute sui . Ifc0i 6= sTi�1, the TR follows Protocol DT2.4: Upon receipt of ri, u veri�es its mathematical correctness and ensures that it wasindeed signed by the TR (using the a priori stored copy of the TR's veri�cationpublic key). u also ensures that the returned value of c0i matches sui�1. If correct,u updates the locally stored synchronization parameter from sui�1 to sui (using sTiif returned by TR, else computing independently). If the signature veri�cationis not successful or the contents of the signature are erroneous, u follows step 5of Protocol DT2. If u does not receive ri after some predetermined amount oftime, that is a priori set between u and the TR, then u contacts the TR throughout-of-band means to determine the status of the response ri.aAlternatively, u may choose to combine the signature ci with the secondary request value c0i andsend c0i = sigu(sui�1; ci).The general synchronized secondary authentication protocol is described as Pro-tocol DT1. Table 6.3 identi�es some assumptions regarding the execution of Proto-col DT1. For Item 2 (of Table 6.3), observe that detection serves to aid in protectingan honest signer from signatures forged subsequent to a key compromise. Of course,

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 1951. secondary authentication evidence must be veri�ed before accepting a user's�rst-level signature;2. the legitimate signer u is honest, i.e., behaves according to the protocol (weremove the need for this requirement in Section 6.6). In particular,(a) u honestly reports the receipt of invalid secondary responses from the TR,(b) u submits correct secondary authentication requests;3. the TR is honest, i.e.,(a) the TR veri�es the correctness of the sychronization parameter receivedfrom a requestor of a secondary authentication request (which may or maynot be the legitimate signature key owner),(b) the TR will report any lack of synchronization detected from a secondaryauthentication request;4. the authenticity of the secondary synchronization parameter is maintained, boththe version stored by u and by the TR.Table 6.3: Requirements for Protocol DT1.the earlier the compromise is detected, the less the e�ect on u. We expand on thisidea in Section 6.6 to protect signature recipients from fraudulent non-repudiation oflegitimately produced and accepted signatures.In an ideal system in which the legitimate signer is honest and there are no fraudu-lent secondary authentication requests, the values of the synchronization requests, asobserved by u and the TR, would be the same. Realistically, this cannot be assumed.We say that a protocol is detection resilient (D-resilient) if either u or the TR areable to detect the di�erences in their synchronization parameters. We formalize thisconcept below with De�nition 6.8.Detection ResilienceDe�nition 6.6 The ith view of a secondary synchronization protocol for u and TR isde�ned as the value of the synchronization request respectively sent by u and received

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 196by the TR during the ith round. For the legitimate signer u, this view is denoted byvui and vTi for the TR, i � 1, where vui = sui�1vTi = sTi�1;for the synchronization parameters (see De�nition 6.5) sui�1 and sTi�1.At the end of a legitimate round i, sTi�1 is updated to sTi to reect the change withthe new synchronization parameter, so that the view of TR for round i + 1 is theupdated value of the synchronization parameter. The same holds true for the view ofthe legitimate requestor u. For a fraudulent request, sTi�1 is updated as above to sTi ,but sui�1 is not updated, since for a fraudulent request, we assume that u did submitthe request. Therefore, the i + 1st view of u is vacuously updated to the same view(i.e., vui+1 = vui). The view of the protocol is critical to its proper running as well asits ability to detect fraudulent secondary authentication requests. These properties,are respectively de�ned below as the protocol's correctness and detection resilience.De�nition 6.7 Let P be a synchronized secondary authentication protocol (as inProtocol DT1) satisfying the requirements of Table 6.3. P is correct if, when onlylegitimate secondary authentication requests are performed, thenvui = vTi ; 8i � 1A subtle point in the case that fraudulent secondary authentication requests aremade is that it is important that not only are the fraudulent requests expected toalter the equality of the legitimate user and TR views, but also, that the attackershould not be able to \resynchronize" these views. This point is captured with thefollowing de�nition.De�nition 6.8 Let P be a synchronized secondary authentication protocol (as inProtocol DT1) satisfying the requirements of Table 6.3. P is detection resilient (D-resilient) if subsequent to a fraudulent authentication request in round i, then for

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 197j > i vuj 6= vTj : (6.1)In other words, an attacker cannot compute vTj for i < j < k such that vTj = vui ,where k represents a number for which k� j is a computationally feasible number ofsecondary authentication requests to make. (For example, the attacker might try tomake additional fraudulent requests in an attempt to reach a point which matchesthe view of TR to the earlier view of u.Notice that (6.1) holds whether or not vui�1 = vTi�1 (for the views prior to afraudulent request), so that an initial fraudulent request (subsequent to a legitimateone) or repeated fraudulent requests cannot resynchronize u (through any amountof computationally feasible computations) with the TR, using a D-resilient protocol.The key to the D-resilience of a protocol lies in the ability of detecting the inequalityvuj 6= vTj by u or the TR during some round j > i. In the following, we consider theattacks for which a D-resilient protocol is suitable protection against.Attacks Considered on Secondary Synchronization ProtocolsAssuming that a fraudulent secondary authentication request results from a protocolrequirement to obtain secondary authentication evidence for any (including a forged)signature, there are at least two cases to consider regarding the forgery of a signatureby an attacker X (in possession of u's signature key):1. X alters a current legitimate secondary signature request made by u;2. X constructs a secondary authentication request that is either(a) newly constructed, independent of any previous request made by u, or(b) constructed as a function of previous legitimate or fraudulent secondaryauthentication requests.We argue that for Item 1, if X alters a request from u to the TR, the alterationwill be detectable upon receipt by u of the secondary authentication response from theTR since the signature and synchronization parameter are included in the secondary

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 198authentication response (see Protocol DT1). We assume that if X were to block thisresponse, then u would interpret the absence of a response as a suspected compromiseand report a possible key compromise to u's CA, whereby subsequent revocationactions may be taken.For the protocols presented in Sections 6.5.2 and 6.5.3, we consider attacks asdescribed by Item 2. Demonstrating a protocol's D-resilience (see De�nition 6.8)will involve demonstrating that fraudulent secondary authentication requests are de-tectable by u or the TR.Updating the Synchronization ParameterA stronger restatement of the D-resilience requirement of De�nition 6.8 is to requirethat for the sequence vT1 ; vT2 ; : : : ; vTk ; (6.2)there are no 1 � i < j � k such that vTi = vTj . We identify two types of values thatcan be used for the synchronization parameter so as to ensure this property.1. Time-variant. The use of a time-variant synchronization parameter such thatthe value of the parameter is monotonically increasing with time can be used.In this way, for round j that occurs later than round i, we have vTj > vTi .2. One-way function variant. Combining a synchronization parameter that is up-dated each round with a one-way, collision-resistant hash function (see De�ni-tion 2.10) produces a \non-repeating" sequence satisfying (6.2).Protocols satisfying Item 2 are discussed in Section 6.5.2 while protocols satisfyingItem 1 are examined in Section 6.5.3.Dealing with Fraudulent Secondary RequestsThe TR detects fraudulent secondary authentication requests upon receipt of a syn-chronization parameter for a particular user, that doesn't match the value stored bythe TR.3 The legitimate signing user u detects a fraudulent request, either by the3Assuming correct operation of the protocol by legitimate parties, and the absence of networktransmission errors, etc.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 199return of a response from the TR that does not match the request submitted, orupon noti�cation from the TR that a fraudulent request has been received. Oncea fraudulent secondary authentication request has been detected by u or the TR, itis not always necessary for immediate revocation of the legitimate user's veri�cationcerti�cate to be performed. Protocol DT2 describes the actions taken subsequent toa detected fraudulent request.6.5.2 One-Way Function Variant RequestsIn this subsection, we present two secondary authentication protocols that follow thegeneral structure of Protocol DT1 (see Section 6.5.1). Both use a secondary requestthat is a hash of a non-secret synchronization parameter shared between u and theTR. One way to provide a synchronization is for u to acknowledge the signing of eachof the past signatures legitimately produced (i.e., from u's point of view) with sigu,each time a new request for secondary authentication is made. The synchronizationparameter is a function of the past signatures. An e�cient way to perform this iso�ered by Protocol DT3.Protocol DT3 uses a round variant, based on the variety of signatures submittedfrom one round to the next. Protocol DT4, a variation of Protocol PV4 (see Sec-tion 6.4.1) uses an iterative function of an initially shared seed. An incrementingcount of the current round is used to vary the number of iterations performed for thehash function.Detecting Forged SignaturesBefore discussing the security of DT3 and Protocols DT4 , we present Protocol DT5which illustrates a potential insecurity for such synchronization protocols. This inse-curity may not be obvious because of similarities with Protocols DT3 and DT4.Consider the following series of steps performed by an attacker X (in possessionof u's signature key), subsequent to the legitimately signed ci = sigu(m) (i.e., signedby u) for round i. The current views of u and the TR, for anticipated use in round

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 200
Protocol DT2 Dealing with Fraudulent Secondary Authentication Requests.Description: This protocol supports the detection of fraudulent secondary authen-tication requests as detected by Protocol DT1 (see Section 6.5.1), by describingthe actions taken by the TR and u subsequent to a detection.Note: Requests for certi�cate revocation result in a revocation of the primary signa-ture key as well as a reinitialization of the secondary synchronization parameter.1: If the TR receives a fraudulent secondary authentication request, u is contactedthrough out-of-band means, using a protocol pre-arranged with u, e.g., contactingu through a telephone number supplied by u upon registration with the TR.2: If reliable contact is not made from step 1, then the TR proceeds to request arevocation of u's certi�cate from u's CA.3: If reliable contact is made so that the legitimate u is informed of the fraudulentrequest, the TR subsequently sends u, w = sigTR(c0i; ci; `fraudulent').4: If u did not send the request, then u determines the extent of fraudulent requestsby comparing c0i with the u's current view of the synchronization parameter,vui = sui�1.1. If they are equal, and the protocol is D-resilient (see De�nition 6.8), then ucan conclude that only 1 fraudulent request has been made. u veri�es thecorrectness of the signature ci (using u's own veri�cation key). If correct, urequests a certi�cate revocation from the CA. If incorrect, nothing is donesince a forged signature has not been detected.2. If they are not equal and the protocol is D-resilient, then u can be surethat at least 1 successful fraudulent request has been made prior to thecurrent unsuccessful one. u requests a certi�cate revocation from the CA(to prevent additional frauds).5: If u did send the fraudulent request, and the protocol is D-resilient and u is hon-est, then the fraudulent request occurred because of the lack of synchronization,indicating that previous, successful fraudulent requests have occurred. u requestsa certi�cate revocation from the CA (to prevent additional frauds).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 201Protocol DT3 Synchronization by Verifying Recursive Representation of Past Sig-natures.Description: This protocol replaces the protocol-speci�c functions as described inProtocol DT1. Initially, i = 0 and is incremented by 1 at the start of each round.This protocol is D-resilient (see Proposition 6.1).Require: It is necessary that IV 62 f0; 1gl where f0; 1gl is the co-domain for thehash function h.1: u and the TR initially share the synchronization parameter su0 = sT0 = IV for ini-tialization value IV , whereas prior to round i, assuming no fraudulent secondaryrequests have been made, they share sui�1 = sTi�1 = h(sui�2; ci�1) where h is acollision-resistant hash function (see De�nition 2.10).2: During round i � 1, u submits the value c0i = sui�1 to the TR as a secondaryrequest along with the signature ci.3: The TR determines the correctness of the request by ensuring that c0i is equalto sTi�1 (the TR's stored value for u). If equal, the TR computes and storessTi = h(sTi�1; ci) and returns ri = (c0i; ci; u; sigTR(c0i; ci; u)) to u.4: u veri�es the mathematical correctness of ri and ensures that its contents matchwhat was originally sent by u. If successful, u computes and stores sui = h(sui�1; ci).Protocol DT4 Using a Shared Seed for Synchronization.Description: This protocol replaces the protocol-speci�c functions as described inProtocol DT1. Initially, i = 0 and is incremented by 1 at the start of each round.This protocol is D-resilient (see Proposition 6.1).Require: It is necessary that IV 62 f0; 1gl where f0; 1gl is the co-domain for thehash function h.1: u and the TR initially share the synchronization parameter su0 = sT0 = IV (=h0(IV)) for initialization value IV , whereas prior to round i, assuming no fraud-ulent secondary requests have been made, they share sui�1 = sTi�1 = hi�1(IV)where h is a collision-resistant hash function (see De�nition 2.10) and hn(IV) =h(h(� � �h(IV) � � �))| {z }n times .2: During round i � 1, u submits the value c0i = sui�1 to the TR as a secondaryrequest along with the signature ci.3: The TR determines the correctness of the request by ensuring that c0i is equalto sTi�1 (the TR's stored value for u). If equal, the TR computes and storessTi = h(sTi�1) and returns ri = (c0i; ci; u; sigTR(c0i; ci; u)) to u.4: u veri�es the mathematical correctness of ri and ensures that its contents matchwhat was originally sent by u. If successful, u computes and stores sui = h(sui�1).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 202Protocol DT5 An Insecure, Signature-Dependent Synchronization (that is not D-resilient).Description: This protocol replaces the protocol-speci�c functions as described inProtocol DT1. Initially, i = 0 and is incremented by 1 at the start of each round.This protocol is not D-resilient.Require: It is necessary that IV 62 f0; 1gl where f0; 1gl is the co-domain for thehash function h.1: u and the TR initially share the synchronization parameter su0 = sT0 = IV forinitialization value IV , whereas prior to round i, assuming no fraudulent sec-ondary requests have been made, they share sui�1 = sTi�1 = h(ci�1) where h is acollision-resistant hash function (see De�nition 2.10).2: During round i � 1, u submits the value c0i = sui�1 to the TR as a secondaryrequest along with the signature ci.3: The TR determines the correctness of the request by ensuring that c0i is equalto sTi�1 (the TR's stored value for u). If equal, the TR computes and storessTi = h(ci) and returns ri = (c0i; ci; u; sigTR(c0i; ci; u)) to u.4: u veri�es the mathematical correctness of ri and ensures that its contents matchwhat was originally sent by u. If successful, u computes and stores sui = h(ci).i+ 1 are vui+1 = sui = h(ci) = sTi = vTi+1:In the following attack, X obtains a successful secondary authentication from theTR, but does so in a way that makes the attack undetectable to u and the TR:1. In round i + 1, X forges the signature ci+1 = sigu(m0) and obtains secondaryauthentication corroboration evidence from the TR, by submitting c0i+1 = h(ci)as a secondary authentication request which the TR veri�es as correct. The TRsubsequently stores sTi+1 = h(ci+1);2. To \cover his tracks", during round i + 2, X resubmits the signature ci+2 =ci = sigu(m) for secondary authentication, where X submits c0i+2 = h(ci+1) asa secondary request which the TR veri�es as correct. The TR subsequentlystores sTi+2 = h(ci+2).At the end of this attack (i.e., after round i+ 2), the view of the TR will bevTi+3 = sTi+2 = h(ci+2) = h(ci) = sui = vui

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 203so that according to the TR's \state" information, the state from before the forgeryis equal to the state after the forgery and is hence, not detectable by u nor the TR(so long as u did not submit a legitimate request during the attack).Notice that for Protocol DT5, the ability of an attacker to resynchronize is notrestricted to dependencies on previous signatures or synchronization tokens. Eachsecondary request c0j submitted during round j > i can be constructed so that it equalsany vTj = vui ; Protocol DT5 is not D-resilient. On the other hand, Protocols DT3and DT4 are constructed so that each sui has a cryptographically strong dependenceon previous signatures and synchronization tokens. The strength of this bind isillustrated in Proposition 6.1.Proposition 6.1 Protocols DT3 and Protocol DT4 are D-resilient (see De�nition 6.8).Proof Let vui = sui�1 = h(si�2; ci�1) = sTi�1 = vTi be the view of both the legitimatesigning user u and the TR after the (i � 1)st legitimate secondary authenticationrequest for the signature ci�1. To show D-resilience, we need to demonstrate that forno j > i, can an attacker X produce vTj such that vTj = vui .Suppose that X did �nd such a j, and let j be the smallest positive integer greaterthan i for which vTj = vui . Expanding, we havevTj = sTj�1 = h(sTj�2; cj�1) = h(sui�2; ci�1) = sui�1 = vui : (6.3)There are two cases to consider:1. if (sTj�2; cj�1) 6= (sui�2; ci�1), then one obtains a contradiction to the assumptionthat h is a collision-resistant hash function;2. if (sTj�2; cj�1) = (sui�2; ci�1), then it must be that sTj�2 = sui�2 and cj�1 = ci�1.The latter equality can be satis�ed by submitting the same signature for bothrounds i� 1 and j � 1. Having sTj�2 = sui�2, requiresvTj�1 = sTj�2 = h(sTj�3; cj�2) = h(sui�3; ci�2) = sui�2 = vui�1similar to (6.3). Continuing recursively, avoiding the contradiction of a hashcollision, we arrive at a requirement whereby vTj�k = vui�k when k = i � 1. In

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 204other words vTj�i+1 = sTj�i = h(sTj�i�1; cj�i) = IV = su0 = vu1 :However, since IV was chosen such that IV 62 f0; 1gl for an l-bit hash, it cannotbe that sTj�i = h(sTj�i�1; cj�i) = IV for any j > i � 1.Therefore, Protocol DT3 is D-resilient.A similar argument can be used to demonstrate the D-resilience of Protocol DT4.Briey, suppose that for j > i � 1,vTj = sTj�1 = hj�1(IV) = hi�1(IV) = sui�1 = vui :Then for i � 2, we have h(hj�2(IV)) = h(hi�2(IV))implying that a collision has been found for h, since j 6= i. If i = 1, we have thath(hj�2(IV)) = IV;which cannot be true for any j � 2 since IV was chosen such that IV 62 f0; 1gl forthe l-bit hash h. Therefore, Protocol DT4 is D-resilient.6.5.3 Time Variant RequestsIt is important to use a synchronization parameter for which the ordered set of allsuch parameters contains distinct elements, i.e., it is computationally infeasible toobtain or use the same synchronization parameter twice. This was accomplished inSection 6.5.2 using the output of a collision-resistant hash function h. In this section,we present the use of time variant parameters that, as the name implies, monotonicallyincrease with time.Protocol DT4 (of Section 6.5.2) implicitly used a count of the current round tospecify the number of cumulative hashes of the initialization value. Protocol DT6 usesthis round counter (referring to the number of secondary authentication requests) onits own as a synchronization parameter that is sent in the clear.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 205Protocol DT6 Using a Counter for Secondary Synchronization.Description: This protocol replaces the protocol-speci�c functions as described inProtocol DT1. Initially, i = 0 and is incremented by 1 at the start of each round.This protocol is D-resilient (see Proposition 6.2).Require:1: u and the TR initially share the synchronization parameter (counter) su0 = sT0 = 0,whereas prior to round i, assuming no fraudulent secondary requests have beenmade, they share sui�1 = sTi�1 = i� 1.2: During round i � 1, u submits the value c0i = sui�1 to the TR as a secondaryrequest along with the signature ci.3: The TR determines the correctness of the request by ensuring that c0i is equalto sTi�1 (the TR's stored value for u). If equal, the TR computes and storessTi = sTi�1 + 1 and returns ri = (c0i; ci; u; sigTR(c0i; ci; u)) to u.4: u veri�es the mathematical correctness of ri and ensures that its contents matchwhat was originally sent by u. If successful, u computes and stores sui = sui�1+1.Alternatively, one can also use the time at which signatures are produced as a pa-rameter used to synchronize u with the TR. The use of the time here is advantageousin that beyond the usefulness of allowing a synchronization, it can allow the TR tosimultaneously provide a time stamp for the submitted signature as well as possess-ing su�cient information for the implementation of the cooling-o� period describedin Section 6.6.Detecting Forged SignaturesProposition 6.2 Protocols DT6 and DT7 are D-resilient (see De�nition 6.8).Proof Let vui = (i�1) = vTi be the view of both the legitimate signing user u and theTR after the ith legitimate secondary authentication request. To show D-resilience,we need to show that for no j > i, can an attacker X produce vTj such that vTj = vui .Suppose that X did �nd such a j, and let j be the smallest positive integer greaterthan i for which vTj = vui . Expanding, we havevTj = sTj�1 = (j � 1) = (i� 1) = sui�1 = vui : (6.4)However, this implies that j = i, contradicting the assumption that j is the smallest

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 206Protocol DT7 Using the Time of Last Signature for Secondary Synchronization.Description: This protocol replaces the protocol-speci�c functions as described inProtocol DT1. Initially, i = 0 and is incremented by 1 at the start of each round.This protocol is D-resilient (see Proposition 6.2).Require: ti denotes the time of receipt of the signature ci during round i by the TR.1: u and the TR initially share the synchronization parameter (time) su0 = sT0 = t0,whereas prior to round i, assuming no fraudulent secondary requests have beenmade, they share sui�1 = sTi�1 = ti�1 � ti�2 (see De�nition 4.4).2: During round i � 1, u submits the value c0i = sui�1 to the TR as a secondaryrequest along with the signature ci.3: The TR determines the correctness of the request by ensuring that c0i is equal tosTi�1 (the TR's stored value for u). If equal, the TR computes and stores sTi = tiand returns ri = (c0i; sTi ; ci; u; sigTR(c0i; sTi ; ci; u)) to u.4: u veri�es the mathematical correctness of ri and ensures that its contents matchwhat was originally sent by u. If successful, u computes and stores sui = sTi .integer strictly greater than i for which vTj = vui . Therefore, Protocol DT6 is D-resilient.Similarly for Protocol DT7, and assuming that an attacker could produce vTj = vuifor j > i, so that vTj = sTj�1 = tj�1 = ti�1 = sui�1 = vui : (6.5)However, since j > i � 1, then (j�1) > (i�1), so that having tj�1 = ti�1 contradictsthe requirement that tj�1 � ti�1.6.5.4 Modi�cation of the Synchronization ParameterIn this subsection, we consider the possibility of an attacker, already in possession ofthe legitimate signing user u's signature key, modifying the synchronization parameterstored by u. The possibility of such a modi�cation is considered relative to how thetoken is stored as well as how predictable it is.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 207Parameter StorageHow a synchronization parameter is stored can depend on how \memorizable" theparameter is. Consider, for example, the respective use of a counter and time in Pro-tocols DT6 and DT7. Ephemeral storage can be used whereby the current value ofthe counter is memorized by the legitimate signing user. The recognizable structureof these parameters allows for a potentially easily remembered parameter. On theother hand, schemes such as Protocol DT3 do not provide easily memorizable syn-chronization parameters since their value is the output of a one-way hash function.For all of the synchronization parameters presented in Section 6.5, the storagecan be maintained similar to how a password or private signature key is stored, e.g.,on u's local disk, or on a hardware token. The main di�erence is that the privacyof the secondary parameter need not be maintained, only its authenticity. Howeverit is stored, the storage of the synchronization parameter must be \independent" ofthe signature key storage so that compromise of the signature key does not simulta-neously allow modi�cation of the synchronization parameter. (The e�ect of such amodi�cation is discussed below.) In other words, the integrity of the parameter mustbe maintained.Malicious Parameter Modi�cationThe maintenance of the authenticity of the secondary authentication synchronizationparameter is crucial to the provision of D-resilience (see De�nition 6.8). Notice thatmodi�cation of the parameter, either subsequent to or coinciding with a signaturekey compromise, allows an attacker to submit fraudulent secondary authenticationrequests, and subsequently \resynchronize" the legitimate signing user u with the TR(by resetting the synchronization parameter to the value obtained by the attackersubsequent to the last fraudulent request).A di�erence from the use of only �rst level signatures is that in such schemes,once the signature key is compromised, an attacker can continue to forge signaturesuntil either the legitimate user detects or is informed of the compromise or the corre-sponding veri�cation key is revoked or expires. For schemes incorporating a second

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 208level authentication, alteration of the synchronization parameter, allows for only alimited number of signatures. This point requires further clari�cation.Consider an attacker X in possession of user u's signature key. If modi�cation ofthe synchronization parameter were possible, the modi�cation can occur either1. prior to the forgery of any signatures, or2. subsequent to the forgery of any signatures.As demonstrated for the �rst item in the section below on `Parameter Predictability'and for the second item in the next paragraph, so long as the legitimate signing userdoes not request a secondary authentication during the time that the �rst fraudu-lent secondary authentication request was made, till the time that the view of u ismodi�ed, an attack can be successful.A parameter modi�cation subsequent to the forgery of a signature would proceedas follows. Prior to round i + 1, the attacker X possesses sigu (the signature keyof u) and vui (the view or value of the synchronization parameter stored by u afterround i) where vui = vTi . X proceeds to forge signatures and submit secondaryauthentication requests for k rounds, after which vui = vui+1 = : : : = vui+k and u is notsynchronized with the TR since vui+k 6= vTi+k based on the D-resilience of the protocol.Using an ability to modify u's synchronization parameter, X would reset vui+k so thatvui+k vTi+k. A practical barrier to such an attack is not only the requirement of anability to modify the parameter, but modify subsequent to the initial compromise ofthe signature key. This might require a physical attacker to alter u's synchronizationparameter, subsequent to the signature key compromise. The forgery of additionalsignatures requires a subsequent modi�cation of the parameter.Parameter PredictabilityProtocols DT6 and DT7 use parameters that are predictable. In other words, giventhe view vui of the legitimate signing user u subsequent to round i, one can predict,with high probability, vuj for j > i. For Protocol DT6, this is trivial since vuj vui +(j�i+1). For Protocol DT7, one can determine vuj so long as one can estimate the

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 209time of the jth secondary request. This estimation can be self-ful�lled by submittinga secondary request around the predicted time (for example, if an attacker were ableto modify the parameter when compromising the signature key - see next paragraph).The determination of the exact time depends on, among other things, the granularityof the time used (is more di�cult if a granularity of milliseconds as opposed to secondsis used), as well as the lag time involved subsequent to the submission of the requestby u and prior to the assignment of the time by the TR.This predictability can be used to the advantage of an attacker X, already in pos-session of u's signature key (assuming that u does not perform a legitimate secondaryauthentication request until after round i+ k). Rather than requiring a modi�cationof the synchronization parameter subsequent to the forgery of signatures, X can nowmodify u's synchronization parameter prior to the forgery. If this happens to coincidewith the time of, for example, theft of the signature key, then only one occasion oftheft (in which the signature key is compromised and the synchronization parameteris modi�ed) is required by X. Such an attack would proceed for Protocol DT6, forexample, as follows.Upon obtaining sigu from the legitimate signing user u, prior to the (i + 1)stround, X also modi�es vui so that vui vui + k. In this way, X can submit ksecondary authentication requests, as user u, so that subsequent to the k requests, uwill be synchronized with the TR.4 One way to make the information less predictablewould be for the TR to return c00i and ni to u, where c00i = h(ni; c0i) and ni is a randomvalue chosen by the TR. The synchronization parameter stored by both u and theTR is the pair (c0i; ni). This mechanism is the same as was used for the one-wayfunction variant schemes of Section 6.5.2.6.6 Preventing Forged Signature AcceptanceFor the detection schemes described in Section 6.5.2 and Section 6.5.3, the legitimatesigner u or the TR is able to detect when a fraudulent secondary request has been4This attack would typically be more di�cult to mount against Protocol DT7 since the timeapplied by the TR at a subsequent round is likely di�cult to predict.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 210received, possibly indicating the forgery of a signature. Yet this still does not preventthe possibility that1. u may repudiate a legitimately signed message; or2. a recipient v may unknowingly receive a forged signature, prior to the detectionof a compromise by u.However, suppose that signed messages are, by rule, not accepted as being validuntil some period of time has elapsed, i.e., a Cooling-O� PEriod (COPE). The purposeof this COPE is to allow for \late" forgery detections or revocations, possibly resultingfrom a compromise, i.e., in the case a forged signature has been detected. For example,if a message is signed on Friday, it may be part of policy to not accept the signatureuntil Saturday. (Finer or coarser granularities may also be used.) This allows a dayof grace for the owner of the private signature key to claim the possible compromiseof his/her key.However, on its own, this COPE does not preclude the possibility that a com-promise is not detected until after the COPE has expired (and hence some forgedsignatures may have been accepted). As well, even if the compromise is detectedon time, there may be a delay before the corresponding certi�cate is revoked (seeFigure 6.1). To facilitate both items 1 and 2 above, we incorporate the COPE witha so-called Check-In Period (CHIP) giving CHIP/COPE.De�nition 6.9 A CHIP/COPE refers to a check-in period (CHIP) during which timethe legitimate owner of the signing private key is required to (at least once during theperiod) ensure synchronization with the trusted register (TR) (e.g., by obtaining asecond level authentication for a signature),5 and a cooling-o� period (COPE) duringwhich time, received signatures are still considered to be temporarily unveri�able.The maximum length of time between two CHIPs is denoted length(CHIP), whilelength(COPE) denotes the minimum length of time that must elapse before a sig-nature can be accepted as valid, subsequent to its receipt (or subsequent to a timecontained in a time stamp computed for the signature).5Certain scalability and denial of service issues would have to be considered in practice, relatedto the potential inability of a user to check in because of an overwhelmed TR.

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 2111. The legitimate signing user u is responsible for performing a check-in, everylength(CHIP) time units.2. A signature is not to be accepted until subsequent signature veri�cation,length(COPE) time units after the receipt of the signature.3. length(CHIP) � length(COPE).Table 6.4: Requirements of Protocols Implementing Check-In Periods (CHIPs) andCooling-O� Periods (COPEs); see De�nition 6.9.Remark 6.2 A CHIP for a synchronized secondary authentication protocol P is sim-ply the submission of a secondary authentication request, accompanied by a signaturefor which secondary corroborative evidence is required. If, before the end of the CHIP,a legitimate user does not have a signature that requires corroborative evidence, a sig-nature for a generic message such as \This message is a simple secondary authenti-cation message required for a check-in prior to time t" can be constructed to facilitatea check-in.If the length of the COPE is a single day (i.e., length(COPE) = 24 hours), thenthe legitimate user can wait no longer than 24 hours after a legitimate signing, beforeperforming a check-in. To allow for other tasks to be performed subsequent to thedetection of a compromise (cf. Figure 6.1), in practice the length of the COPE shouldbe bu�ered slightly so that it exceeds the length of the CHIP.The requirements of the CHIP/COPE are given in Table 6.4. Notice that sincethe legitimate owner of the signing private key is responsible for checking-in (i.e.,verifying synchronization) during a given time period, he is not able to repudiatea message that was legitimately signed. This is because for signatures that havebeen accepted by the recipient (i.e., signature has been received and the COPE hassince expired), the latency period must have passed and the loss of synchronizationwould have been detected for the time period in which the signature was sent. Also,forged signatures need not be accepted. The application of the CHIP/COPE withthe detection of forged signatures can achieve these goals (see Proposition 6.3).

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 212Combining a Cooling-O� Period with DetectionDe�nition 6.10 We say that a synchronized secondary authentication protocol isdetection-and-repudiation resilient (DR-resilient) if it is D-resilient (see De�nition 6.8)and if both1. u cannot successfully repudiate legitimate signatures that have been acceptedas valid by a signature recipient(s), and2. forged signatures can be detected and rejected prior to their acceptance by anunknowing signature recipient.The CHIP/COPE can be combined with Protocol DT1 to produce a DR-resilientprotocol. The is captured by the following proposition.Proposition 6.3 Let P be a D-resilient synchronized secondary authentication pro-tocol (as described by Protocol DT1) augmented with a CHIP/COPE (as de�ned inDe�nition 6.9). Assume that u must check-in (see Remark 6.2) every length(CHIP)time units and that signatures (accompanied by second level authentication) are notaccepted until length(COPE) time units after receipt and given the requirements inTable 6.4. Then P is DR-resilient (see De�nition 6.10).Proof (Outline) Let us �rst suppose that u could repudiate a legitimately signedmessage c by claiming it was forged. This would imply that length(COPE) time hadelapsed subsequent to the receipt of c by a recipient, and hence, that no compromisewas detected nor reported through the revocation of the corresponding veri�cationcerti�cate. Therefore, since P is D-resilient and such a forgery would be detectedby u, the last check-in by u must have been performed prior to the start of theCOPE. However, since length(COPE) time has subsequently elapsed and no check-in was performed by u during the COPE, then length(CHIP) > length(COPE), acontradiction.Similarly, suppose that a recipient v has accepted a forged signature c0. By thedesign of the COPE, c0 must have been accepted at least length(COPE) time units

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 213subsequent to the receipt of c0 and subsequent to a determination of whether acompromise has been reported. However, since P is D-resilient, if the forged sig-nature was not detected by the legitimate signer u, the last check-in by u musthave been performed prior to the start of the COPE. Since length(COPE) time hassubsequently elapsed and no check-in was performed by u during the COPE, thenlength(CHIP) > length(COPE), a contradiction.Therefore, D-resilient synchronized secondary authentication protocols augmentedwith a CHIP/COPE are DR-resilient.In this way, once a recipient of a signature has waited a length of time equal tothe COPE (plus additional time allowing for revocation, latency delays etc.), andsubsequent to a check of the revocation status of u's public key, she can be surethat the signature was legitimately constructed. The signatures are committed atthis time, in the sense that the CHIP/COPE is similar to an atomic transaction orprotocol. The legitimate signer must have legitimately signed a message subsequentto the signing of the message for the aforementioned user, yet before the CHIP expiryfor the recipient. By designing a protocol in such a way that the legitimate usercon�rms that the messages signed during the last CHIP were indeed signed by him,the signing user is limited in his ability to later deny having signed any of the messagesin question.How does the use of a CHIP/COPE alter, for example, Protocol DT7? Let thelength of the CHIP/COPE (see De�nition 6.9) be t time units. Beyond requiringu to check-in (see Remark 6.2) with the TR at least every t units, the TR wouldalso perform a check that ti � ti�1 < t (indicating that the amount of elapsed timebetween times ti and ti�1 is less than t). So long as a recipient waits t time unitsbefore accepting a signature, forged signatures can be detected by u or the TR. Aswell, t may be di�erent for each user. Allowing the recipient of a signed messageto determine the length of the COPE for a particular message can be achieved byhaving the TR return ri = (c0i; sTi ; t; ci; u; sigTR(c0i; sTi ; t; ci; u)). Alternatively, it mightbe included as a parameter in the user's �rst level public key certi�cate.Remark 6.3 Although described as a period of waiting subsequent to the receipt ofa signature, the CHIP/COPE concept can be generalized to refer to the elapse of

CHAPTER 6. UNDETECTED SIGNATURE KEY COMPROMISE 214the COPE subsequent to the time of stamping of the signature, so long as the timestamp is produced no later than the secondary authentication request. A simple way ofachieving this time stamp is for the TR to apply a time stamp as part of the returnedsecondary corroborative evidence.Implementation and PracticalityCoordinating the CHIP with an actual user may require, for example, that \suspen-sions of the CHIP requirement" are allowed in the case of long-term absences by auser, e.g., possibly by placing the veri�cation certi�cate \on hold" [ANS97]. Alsorelated to the practical implementation of such a scheme is that once a lack of syn-chronization is detected by the TR, additional time will be required before revocationinformation can be obtained by signature recipients. Therefore, in practice, the lengthof the COPE should be t+ � for a suitable �, where the CHIP is t time units.With regard to the practicality of using a CHIP/COPE, imposing such restrictionson both the signer and recipient may appear unreasonable. However, there alreadyexist examples of its use in current society (e.g., depositing a cheque normally re-quires a waiting period before the amount may be withdrawn from the account), itis certainly not practical for all situations. Yet there are situations in which it canbe very helpful, i.e., schemes for which undetected key compromise is intolerable,yet which can tolerate a time delay before the acceptance of a signature. Such highvalued transactions include major business deals, mergers and acquisitions, and realestate deals; transactions that want to use digital signatures for their convenience,but are so high-valued that they require an extra level of assurance.

Chapter 7Concluding RemarksIn this chapter, we examine the signi�cance of this thesis as a contribution to the�eld of cryptographic authentication and discuss some future directions for furtherresearch.7.1 Positioning of ContributionsSection 1.3 provided a summary of the contributions from the more detailed resultsgiven in each chapter of this thesis. In this section, we attempt to predict the signif-icance of these results for the study of cryptographic authentication.The assimilation and classi�cation of the previous work from Chapter 2 allows fora quick review of the previous work and convenient classi�cation of new time stampingprotocols. The critical analysis of this work from Chapter 3 allows one to determinethe suitability of the previous time stamping protocols and permits comparisons andanalysis of newly proposed protocols. Motivated by the discovery of protocol failuresfor two previous schemes, the time stamping framework of Chapter 4 permits theconstruction of a variety of sound new protocols.Illustration of the necessity of time stamped digital signatures allows for consistentand less disputable signature veri�cation. The notarization of digital signatures, asperformed by Protocol NT2 in Chapter 5, is suitable for environments in which thevalidation of digital signatures by signature recipients is costly. Time stamping or215

CHAPTER 7. CONCLUDING REMARKS 216notarization are useful for renewing the lifetime of a digital signature in the case thatthe lifetime required for the signed message's authenticity exceeds the provisions ofthe original authentication of the message.The protocols of Chapter 6 allow one to enhance the legitimacy of a digital signa-ture by providing additional corroborative evidence from a trusted authority regard-ing the success of an independent, second level authentication. Such a mechanism isuseful, for example, for high-valued, distributed transactions in which a subsequentclaim of key compromise cannot be tolerated.In the \grand scheme of public-key cryptography", the concept of time is quiteimportant and relevant, especially with regard to digital signatures. The originationof public key cryptography [DH76] required only the storage of a private signature keyby the signing user and authentic publication of the veri�cation key. Requirementsfor distribution of public keys introduced the concept of certi�cates [Koh78], whilelimiting the lifetime of these certi�cates introduced revocation [ITU93]. It is nowclear that certi�cate-based digital signatures require time stamping of the signaturesas well as temporally authenticated and stored certi�cate state information. Evenfurther, time stamping alone does not help in the case of a key compromise that isundetected. A timeline representation of these ideas is given by Figure 7.1.7.2 Future WorkThroughout the production of this thesis, several topics were discovered that wereconsidered either beyond the scope or direction of the current discussion or thoughtbetter suited for future research. In this section, we briey discuss some of theseideas.Group Hashing. Section 2.3 reviewed several group hashing techniques that weresubsequently analyzed in Section 3.2. An interesting investigation would involve thediscovery of new group hashing protocols or identi�cation and proof of some su�cientor necessary properties that a group hash function would possess. Some work inthis direction has been performed by Nyberg [Nyb95]. Also of interest, especially

CHAPTER 7. CONCLUDING REMARKS 217with regard to the distribution of revocation information, would be the discovery ofe�ciently incremental group hash functions for which modi�cation of a previouslyconstructed membery is not required (if they exist).Signature Key Lifetime. Beyond the lifetime of individual user's signature keys,the renewal of the keys of trusted authorities is an important practical concern.Should such a renewal be required in response to the compromise of a trusted author-ity's signature key then, as one example, the authenticity of certi�cates produced bythat certi�cation authority are called into question. Alternatively, consider that thecompromise of a time stamper's signing private key may prevent the proper veri�ca-tion of signatures that had been purportedly time stamped using the compromisedkey, prior to the compromise. Other techniques to deal with key compromise, eitherof a user or trusted authority, are therefore an interesting avenue for future research.The relationship between authorities may be helpful here as well. Suppose, forexample, that a time stamp authority is issued the signature veri�cation certi�catecertT by a CA, just as the CA would for a user. Given a �nite validity period for thiscerti�cate, notice that the compromise of T 's signature key can limit the \reach" offorged time stamps to the period of validity of the corresponding veri�cation certi�-cate. This can be implemented by requiring that, during veri�cation of a certi�cate,it is ensured that the time contained within the time stamp, is no later than theexpiry date of certT and no earlier than the creation date.Network Delay There are often several factors (e.g., system components, entities)that contribute to the performance of a particular action or event. For example, recallthe series of events subsequent to a user's signature key compromise, as displayedin Figure 6.1. Excessive delays resulting from any of these events diminishes theperformance of a protocol (relying on the completion of each of these events) and moreimportantly, can lead to the improper running of a protocol, e.g., delay regarding thereporting of a user's key compromise detection may result in a recipient unknowinglyaccepting a forged signature. An important area of research would therefore involvethe studying optimizations to the performance of various critical cryptographic events.

CHAPTER 7. CONCLUDING REMARKS 218This is especially relevant for the implementation of the CHIP/COPE of Section 6.6.Minimizing the delay required before a user can accept a signature (i.e., minimizingthe length of the COPE and length of time between CHIPs) is an important practicalconcern.

CHAPTER 7. CONCLUDING REMARKS 219

?
?
?
? ?

private/public key pair
certi�cates

undetected key compromise timetime stamping and notarization
certi�cate revocation

Figure 7.1: Timeline of relevant and related concepts since the origination of public-key cryptography.

Bibliography[ACPZ98] Carlisle Adams, Pat Cain, Denis Pinkas, and Robert Zuccherato. Timestamp protocols. Internet draft (work in progress), Internet EngineeringTask Force (IETF), July 1998. Available as http://www.ietf.org/internet-drafts/draft-adams-time-stamp-02.txt.[Adl83] Leonard Adleman. Implementing an electronic notary public. In Advancesin Cryptology: Proceedings of Crypto '82, pages 259{265. Plenum Press,1983.[ANS97] ANSI X9.57. Public key cryptography for the �nancial services industry:Certi�cate management. Draft standard, American National Standard forFinancial Services, February 1997.[Bar96] T. S. Barassi. The cybernotary: Public key registration,certi�cation and authentication of international transactions.http/www.intermarket.com/ecl/notary.html, 1996. Digital CommerceServices.[BDL97] Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On the importanceof checking cryptographic protocols for faults. In Advances in Cryptology:Proceedings of Eurocrypt '97, pages 37{51. Springer-Verlag, 1997.[BdM91] Josh Benaloh and Michael de Mare. E�cient broadcast time-stamping.Technical Report TR 91-1, Clarkson University, Department of Math andComputer Science, 1991. 220

BIBLIOGRAPHY 221[BdM93] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralizedalternative to digital signatures. In Advances in Cryptology: Proceedingsof Eurocrypt '93, pages 274{285. Springer-Verlag, 1993. Also appeared asClarkson University Technical Report TR-MCS-93-1, April 1993.[BGG94] Mihir Bellare, Oded Goldreich, and Sha� Goldwasswer. Incremental hash-ing: The case of hashing and signing. In Yvo G. Desmedt, editor, Advancesin Cryptology: Proceedings of Crypto '94, pages 216{233. Springer Verlag,1994.[BHS93] D. Bayer, S. Haber, and W.S. Stornetta. Improving the e�ciency and relia-bility of digital time-stamping. In Sequences II: Methods in Communication,Security and Computer Science. Springer-Verlag, 1993.[Ble96] Daniel Bleichenbacher. Generating ElGamal signatures without knowingthe secret key. In Advances in Cryptology: Proceedings of Eurocrypt '96,pages 10{18. Springer-Verlag, 1996.[BLLV98] Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-stamping with binary linking schemes. In Advances in Cryptology: Proceed-ings of Crypto '98. Springer-Verlag, 1998.[CHH97] R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated commu-nication in the presence of break-ins. In Proceedings of the 16th Annual ACMSymposium on Principles of Distributed Computing, pages 15{24, 1997.[Cus87] Charles Cushing. Cushing's Notarial Form Book, with a Treatise or His-torical Outline of the Notarial Profession. A. Periard, Montr�eal, Qu�ebec,1887.[Des94] Yvo Desmedt. Threshold cryptography. European Transactions on Telecom-munications, 5(4):449{457, July 1994.[DH76] Whit�eld Di�e and Martin Hellman. New directions in cryptography. IEEETransactions on Information Theory, IT-22(6):644{654, November 1976.

BIBLIOGRAPHY 222[Dif82] Whit�eld Di�e. Conventional versus public key cryptosystems. In GustavSimmons, editor, Secure Communications and Asymmetric Cryptosystems,pages 41{72. Westview Press Inc., Boulder, Colorado, 1982. (Based on apaper presented at a 1980 symposium. See [Sim82].).[DP84] D. Davies and W. Price. Security for Computer Networks. John Wiley &Sons, 1984.[DS93] C. Dyreson and R. Snodgrass. Timestamp semantics and representation.Information Systems, 18(3):143{166, 1993.[FB97] Warwick Ford and Michael Baum. Secure Electronic Commerce: Buildingthe infrastructure for digital signatures and encryption. Prentice Hall PTR,Upper Saddle River, New Jersey 07458, 1997.[FIP94] FIPS 186. Digital signature standard. Federal Information Processing Stan-dards Publication 186, U.S. Department of Commerce/N.I.S.T., NationalTechnical Information Service, Spring�eld, Virginia, 1994.[FIP95] FIPS 180-1. Secure hash standard. Federal Information Processing Stan-dards Publication 186, U.S. Department of Commerce/N.I.S.T., NationalTechnical Information Service, Spring�eld, Virginia, April 1995. (super-sedes FIPS PUB 180).[GC98] N. Gershenfeld and I. Chuang. Quantum computing with molecules. Scien-ti�c American, 1998.[HJJK97] A. Herzberg, M. Jakobsson, S. Jarecki, and H. Krawczyk. Proactive publickey and signature systems. In Proceedings of the 4th ACM Conference onComputer and Communications Security, 1997.[HKS95] Stuart Haber, Burt Kaliski, and W. Scott Stornetta. How do digital time-stamps support digital signatures? CryptoBytes, 1(3), Autumn 1995. (Avail-able from http://www.rsa.com/rsalabs/pubs/cryptobytes.html.).

BIBLIOGRAPHY 223[HS91] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital docu-ment. Journal of Cryptology, 3(2):99{111, 1991.[HS97] Stuart Haber and W. Scott Stornetta. Secure names for bit-strings. InProceedings of the 4th ACM Conference on Computer and CommunicationsSecurity. ACM Press, April 1997.[Ill91] Illinois notary act. http://www.notaryexpress.com/handbook.html, 1991.[ITU93] ITU-T Recommendation X.509. The directory - authentication framework.Technical report, International Telecommunication Union, Geneva, Switzer-land, November 1993. (equivalent to ISO/IEC 9594-8:1990&1995).[Jus98] Mike Just. Some timestamping protocol failures. In Proceedings of the1998 Symposium on Network and Distributed System Security, pages 89{96,March 1998.[JvO98] Mike Just and Paul C. van Oorschot. Addressing the problem of undetectedsignature key compromise. Technical Report TR-98-06, Carleton University,School of Computer Science, June 1998. To appear in the Proceedings of the1999 Symposium on Network and Distributed System Security.[Kan86] H. Kanare. Writing the Laboratory Notebook, chapter 6. American ChemicalSociety, 1986. (2nd printing).[KJJ98] P. Kocher, J. Ja�e, and B. Jun. Di�erential power analysis.http://www.cryptography.com/dpa/, 1998.[Koc96] Paul Kocher. Timing attacks on implementations of di�e-hellman, rsa, dss,and other systems. In Advances in Cryptology: Proceedings of Crypto '96,pages 104{113. Springer-Verlag, 1996.[Koc98] Paul Kocher. A quick introduction to certi�cate revocation trees (CRTs).http://www.valicert.com/resources/whitepaper/bodyIntroRevocation.html,1998.

BIBLIOGRAPHY 224[Koh78] L. M. Kohnfelder. Toward a practical public-key cryptosystem. B.Sc. Thesis,MIT Department of Electrical Engineering, 1978.[Lam81] L. Lamport. Password authentication with insecure communication. Com-munications of the ACM, 24:770{772, 1981.[Lan95] Susan K. Langford. Threshold DSS signatures without a trusted party. InDon Coppersmith, editor, Advances in Cryptology: Proceedings of Crypto'95, pages 397{409. Springer-Verlag, 1995.[LB92] Kwok-Yan Lam and Thomas Beth. Timely authentication in distributedsystems. In Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, editors, 2ndEuropean Symposium on Research in Computer Security (ESORICS'92),pages 293{303. Springer-Verlag, November 1992.[Mer80] Ralph Merkle. Protocols for public-key cryptosystems. In Proceedings ofthe 1980 IEEE Symposium on Security and Privacy, April 1980.[Mer82] Ralph Merkle. Protocols for public-key cryptosystems. In Gustav Simmons,editor, Secure Communications and Asymmetric Cryptosystems, pages 73{104. Westview Press Inc., Boulder, Colorado, 1982. See [Sim82]. A moredetailed version of [Mer80].[Mer98] Merriam-webster online dictionary. http://www.m-w.com/dictionary.htm,1998.[MM82] C. Meyer and S. Matyas. Cryptography: A New Dimension in ComputerData Security. John Wiley & Sons, 1982.[MQ97] Henri Massias and Jean-Jacques Quisquater. Time and cryptography. Tech-nical Report WP1, Universit�e Catholique de Louvain, March 1997.[MvOV97] Alfred Menezes, Paul C. van Oorschot, and Scott Vanstone. Handbook ofApplied Cryptography. CRC Press, 1997.

BIBLIOGRAPHY 225[Nyb95] Kaisa Nyberg. Commutativity in cryptography. In Proceedings of the FirstInternational Workshop on Functional Analysis, Trier University, Berlin,1995. Walter de Gruyter & Co.[Nyb96] Kaisa Nyberg. Fast accumulated hashing. In Dieter Gollmann, editor, FastSoftware Encryption, pages 83{87, Cambridge, UK, February 1996.[PF96] F. Pinto and V. Freitas. Digital time-stamping to support non repuda-tion in electronic communications. In MCI (Manifestations and Commu-nications Internationales), editors, Proceedings SECURICOM '96 - 14thWorldwide Congress on Computer and Communications Security and Pro-tection, pages 397{406, CNIT, Paris, France, June 1996. (Available fromhttp://marco.uminho.pt/CCG/ccom-pub.html.).[PK79] Gerald J. Popek and Charles S. Kline. Encryption and secure computernetworks. Computing Surveys, 11(4):332{356, December 1979.[Pom90] Carl Pomerance. Factoring. In Carl Pomerance, editor, Cryptology andComputational Number Theory, pages 27{47. American Mathematical Soci-ety, 1990.[Riv92] Ronald L. Rivest. The MD5 message-digest algorithm. Internet Requestfor Comments (RFC) 1321, April 1992. Also presented at Rump Session ofCrypto'91.[RS97] Muhammad Rabi and Alan Sherman. An observation on associative one-wayfunctions in complexity theory. Information Processing Letters, 64(5):239{244, December 1997.[RSA78] Ron Rivest, Adi Shamir, and Len Adleman. A method for obtaining digitalsignatures and public-key cryptosystems. Communications of the ACM,21:120{126, 1978.[Sha81] Adi Shamir. On the generation of cryptographically strong pseudo-randomsequences. In Proceedings of ICALP, pages 544{550, 1981.

BIBLIOGRAPHY 226[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithmsand factoring. In Proceedings of the 26th Symposium on Theory of Comput-ing (STOC), pages 124{134, Montreal, Canada, 1994.[Sim82] Gustavus J. Simmons, editor. Secure Communications and AsymmetricCryptosystems. Westview Press, Inc., Boulder, Colorado, 1982. This bookis based on a symposium held at the 1980 American Association for theAdvancement of Science (AAAS) National Annual Meeting in San Francisco,California.[Sti95] Doug Stinson. Cryptography: Theory and Practice. CRC Press, 1995.[Tro95] D. Trowbridge. Imagine a notary stamp for electronic documents. ComputerTechnology Review, XV(4), April 1995.

Appendix AA Historical Review ofNotarizationThe term notary is taken from the notary public whose responsibilities within theUnited States are to witness documents and administer oaths (we refer here to thephysical entity as opposed to a digital one). The traditional witnessing of physicaldocuments involves the veri�cation of the identity of the individual signing the docu-ment (see [Ill91]). The digital notary (notary agent in [MvOV97]) can have a greaterrange of powers, similar to the overseas conception of a notary public. Such powersinclude establishing the truth of statements ([Bar96, MvOV97]). A notary can also,for example, implement a time stamping scheme.In this appendix, we review the role a notary public. De�nitions related to themore recent digital incarnation are also reviewed. Further examinations regardingthe role of a notary appear in Section 5.4.A.1 Notaries PublicNotaries are public o�cers appointed to prepare and execute deeds andcontracts to which the parties desire or are bound to impart that char-acter of authenticity which is attached to acts entered into under publicauthority; to assure their date, to preserve them, and to deliver copies227

APPENDIX A. A HISTORICAL REVIEW OF NOTARIZATION 228thereof, or authentic extracts therefrom [Cus87].The need for notaries arose from the concept of ownership, around 5000 years ago.The growth of land settlements, materials and commerce increasingly necessitated aneed for proprietary attachments. Since many people lacked the ability to write, adesignated individual was usually appointed the responsibility. As well, the tradi-tional oral contract did not always allow for simple dispute resolution. It is believedthat the \Babylonians are regarded as the �rst who introduced the customs of passingprivate deeds in writing." [Cus87]The original \notary" was essentially a simple scribe responsible for the record-ing of information. As a result of cost concerns and the fact that writing was notconsidered an honorable task, many of the original scribes were slaves. The earliestmention of some form of notary comes from the Roman Empire. Various titles weregiven: Scrib� (responsible for maintenance of public records); Tabularii (writers ontablets); Notarii (denotes user of abbreviation or notes); Cursores (uses rapid writ-ing); Logographi (a sort of shorthand writer or stenographer); Testamentarii (writersof wills); and Argentarii (works with monetary contracts). The functions of the scribaare similar to the current prothonotary (derived from the Greek word protos (mean-ing �rst) and Latin notarius, refers to the chief notary though current meaning is thechief clerk for various courts of law).It was not until the 5th Century that citizens other than slaves were allowed tofunction as notaries. These so-called tabellions were given far greater powers thantheir counterparts, so that \the Scrib�, Tabularii, Cursores and Notarii became theirclerks." [Cus87]. Though, even at that time the tabellion did not provide for authen-tication. \Although binding on the parties, the acts of tabellions were not authenticor executory until veri�ed or compared, and to avoid the trouble of veri�cation theywere published or insinuated in court." [Cus87]Further change took place from the 13th to 15th centuries in countries such asFrance and England. Several varieties of notaries were appointed (e.g., by the Pope orArchbishops) though only those appointed by the King had the power to authenticatewritings with their seal [Cus87, page xiv]:

APPENDIX A. A HISTORICAL REVIEW OF NOTARIZATION 229[The] seal was the authentic sign of the authority given by the king tothe deeds passed by his o�cers; so that, when an act was sealed it hadan execution par�ee, that is, it was executory without any judicial order orsentence.The role of the tabellion was limited to the recording of information, \and did nota�ect the authenticity of notorial acts." [Cus87]A.2 Digital NotaryMost of the current interpretations (since 1979) regarding the role of a so-calleddigital notary are derived from their physical ancestor. However, there is consistentconfusion equating a notary with only a simple time stamper. The notary, as opposedto a time stamper, does more than simply authenticate the time at which a statementwas made.As indicated at the start of Chapter 2, Popek and Kline [PK79, page 353] ac-knowledge David Redell for �rst suggesting the use of a notary public in the digitalworld. Though the term notary was not used explicitly, Merkle [Mer80, Mer82] dis-cusses so-called witnessed digital signatures where a witness that was a priori agreedupon between parties A and B \physically con�rms that A signed message m [bycomputing] sigW (`I, W , physically saw A agree to and sign message m')".Di�ering from above, the following de�nitions equate a notary to a time stamper.Di�e [Dif82] discusses \a digital notary public which dates the document and signsthe date with its own private key" as a solution to the problem of contract signingbetween two untrusting parties. The notary public, according to Di�e, allows thereceivers of signed messages to protect themselves from the compromise of the signer'skey. According to Adleman [Adl83], \[t]he function of a notary public is to certifythat an `event' took place at a particular time and place." Stinson [Sti95, page 254]de�nes an electronic notary public as a trusted time stamping service.Menezes et al. [MvOV97] renewed the concept of di�ering roles between a notaryand a time stamper. Whereas a time stamp agent is \used to assert the existence of aspeci�ed document at a certain point in time, or a�x a trusted date to a transaction

APPENDIX A. A HISTORICAL REVIEW OF NOTARIZATION 230or digital message", a notary agent is \used to verify digital signatures at a givenpoint in time to support non-repudiation, or more generally establish the truth ofany statement (which it is trusted on or granted jurisdiction over) at a given point intime." [MvOV97, page 550] They go on further to point out that a \time stampingservice [. . .] is a document certi�cation or document notarization service. A notaryservice is a more general service capable not only of ascertaining the existence of adocument at a certain time, but of vouching for the truth of more general statementsat speci�ed points in time." [MvOV97, page 582]This sentiment is further echoed by Barassi [Bar96]. Beyond ful�lling various du-ties performed by a physical notary (and extending even further to aid in internationalagreements), an electronic notary or \CyberNotary" has three responsibilities:1. Attestations, oaths and declarations. Among other things, digitally attesting tothe signature produced by a requesting party;2. Certi�cation. Beyond the witnessing of a signature, yet short of a (legal) au-thentication, a certi�cation may involve, for example, ensuring the proper trans-lation of a particular document;3. Legal Validity. This involves validating \not only the legality of the message,but also its conformity to the norms of electronic commercial practice."[Bar96]1

1Rather than using the term `legal validity', Barassi [Bar96] used the term `authentication.' Weavoid this use of the term to prevent confusion with forms of cryptographic authentication.

