
An Examination of Pattern Matching
Algorithms for Intrusion Detection Systems

By

James Kelly

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario, Canada

August 2006

c©Copyright

James Kelly, 2006

The undersigned hereby recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis,

An Examination of Pattern Matching Algorithms for Intrusion

Detection Systems

submitted by

James Kelly

Dr. Frank Dehne

(Director, School of Computer Science)

Dr. Paul Van Oorschot

(Thesis Supervisor)

Carleton University

August 2006

Abstract

Multiple-pattern matching algorithms are the heart of many network intrusion de-

tection systems’ signature matching engines. They allow these engines to quickly

search for many patterns simultaneously in input passing through such systems, but

often consume most of the processing time. Thus, they should be as fast as possible

to ensure system scalability into networks of ever-increasing speeds. Concurrently

they must enforce security so that they are not susceptible to algorithmic complexity

attacks.

We provide a comprehensive overview of significant pattern matching algorithms

and discuss their suitability for these kinds of systems. Using the Snort network in-

trusion detection system as a platform, we implement and compare several apposite

algorithms. Multiple Backward Oracle Matching has not been used in intrusion de-

tection to our knowledge, and we introduce it in options we add to Snort: MBOM

and AUTO. Our AUTO option is a new approach to pattern matching in Snort using

multiple algorithms.

ii

Acknowledgements

I want to thank especially the delicate and encouraging research guidance and saga-

cious feedback given by Paul C. van Oorschot over the course of the graduate studies

leading to this work. As well, I wish to thank Anil Somayaji, Tim Furlong, Glenn

Wurster, James Muir, and the rest of the Carleton Computer Security Lab members

for their support and feedback on various parts of the material in this thesis. I am

grateful to have been among you during my time at Carleton University.

I also want to thank the commitee members and chairman—Paul C. van Oorschot,

Pat Morin, Ali Miri, and Michiel Smid—who reviewed this thesis.

Many thanks go to Ontario’s Ministry of Training, Colleges and Universities,

Nortel Networks, and Carleton University and for their generous financial support

through various scholarships.

Last but not least, I would like to thank my family members. Thank you for

giving me the support and love to complete my work.

iii

Contents

Abstract ii

Acknowledgements iii

Glossary of Acronyms x

1 Introduction and Overview 1

2 Background on Intrusion Detection Systems 4

2.1 Passive versus Reactive IDSs . 5

2.2 Misuse-based versus Anomaly-based IDSs 7

2.3 Host-based versus Network-based IDSs 9

2.3.1 Traits of Signature-based and Network-based IDSs 10

2.3.2 Deploying a Signature-based NIDS 13

2.3.3 Architecture of a Signature-based NIDS 14

2.4 Chapter Summary . 20

3 Single-Keyword Pattern Matching Algorithms 21

3.1 Brute Force Algorithm . 23

3.2 Karp-Rabin Algorithm . 24

3.3 Knuth-Morris-Pratt Algorithm . 27

iv

CONTENTS v

3.4 Boyer-Moore Algorithm . 29

3.5 Backward Oracle Matching Algorithm 39

3.6 Chapter Summary . 46

4 Multiple-Keyword Pattern Matching Algorithms 47

4.1 Aho-Corasick Algorithm . 49

4.2 Commentz-Walter Algorithm . 51

4.3 Wu-Manber Algorithm . 60

4.4 Fan-Su Algorithm . 64

4.5 Set Backward Oracle Matching Algorithm 72

4.6 Chapter Summary . 78

5 Pattern Matching for NIDS Signatures 82

5.1 Algorithm Requirements . 82

5.1.1 Searching for Multiple Patterns Simultaneously 83

5.1.2 Searching for Large Sets of Patterns 83

5.1.3 Searching With a Large Alphabet Size 84

5.1.4 Searching With a Wide Range of Keyword Lengths 85

5.1.5 An Algorithm Designed for the Average and Worst Cases . . . 86

5.1.6 Extended Searching Characteristics 89

5.2 Candidate Algorithms to Fulfill Requirements 89

5.3 Chapter Summary . 93

6 Software Solutions That Have Been Proposed 94

6.1 The First Multiple-Keyword Pattern Matching Solutions for Snort . . 95

6.2 Current Solutions in Snort 2.6 . 97

6.3 Piranha . 100

CONTENTS vi

6.4 Deterministic Memory Efficient String Matching 104

6.5 Chapter Summary . 108

7 Implementing and Comparing Pattern Matching Algorithms for Snort109

7.1 Algorithms Applicable For Snort . 110

7.2 Adding the New Algorithms . 112

7.3 Evaluating Our Algorithms In Snort 120

7.4 Chapter Summary . 124

8 Further Discussion and Concluding Remarks 125

8.1 Pattern Matching Algorithms in Other Security Applications 125

8.1.1 Antivirus Software . 125

8.1.2 Spam Detection Software . 128

8.2 Pattern Matching in Hardware . 129

8.3 Future Work in the MBOM Snort Options 130

8.4 Concluding Remarks . 131

A Modifications to Snort 133

A.1 Adding the New Search Method Options 133

A.2 The MBOM Option . 145

A.3 The MBOM2 Option . 164

A.4 Changes to the AC-Std Option . 185

List of Figures

2.1 An overview of Snort’s architecture 16

2.2 A sample Snort rule . 17

3.1 Boyer-Moore algorithm’s good suffix shift examples [16] 34

3.2 Three data structures that hold all factors of a word 40

3.3 Iterations in the construction of a factor oracle for the word abbbaab 43

3.4 The matching phase of the Backward Oracle Matching algorithm . . . 45

3.5 Example of a suffix oracle for the string abbbaab 45

4.1 An example of a trie versus an Aho-Corasick automaton. 52

4.2 An example of a basic Commentz-Walter style trie for x ={“hers”,

“his”, “she”, “he” } . 53

4.3 Commentz-Walter style trie with sets and shift functions for keyword

set {“cacbaa”, “acb”, “aba”, “acbab”, “ccbab”,} 55

4.4 Commentz-Walter algorithm B1 . 58

4.5 Commentz-Walter style trie with new sets for algorithm B1 59

vii

List of Tables

5.1 Table of algorithms’ fulfillment for NIDS desirable features 90

7.1 Average results for Snort search methods on machine 1 121

7.2 Average results for Snort search methods on machine 2 122

viii

List of Algorithms

3.1 Brute Force Single-Keyword Matching Algorithm 24

3.2 Karp-Rabin Single-Keyword Matching Algorithm 28

3.3 Knuth-Morris-Pratt Single-Keyword Matching Algorithm 30

3.4 Boyer-Moore Bad Character Shift Pre-computation Algorithm 33

3.5 Boyer-Moore Good Suffix Shift Pre-computation Algorithm 35

3.6 Boyer-Moore Single-Keyword Matching Algorithm 37

3.7 Boyer-Moore-Horspool Single-Keyword Matching Algorithm 38

3.8 Factor Oracle Construction Algorithm 42

3.9 Backward Oracle Matching Single-Keyword Matching Algorithm . . . 44

4.1 Aho-Corasick Multiple-Keyword Matching Algorithm 50

4.2 Commentz-Walter Multiple-Keyword Matching Algorithm B 56

4.3 Wu and Manber Multiple-Keyword Matching Algorithm 65

4.4 Fan and Su Multiple-Keyword Matching Algorithm 67

4.5 Factor Oracle Construction Algorithm From a Keyword Set 75

4.6 Set BOM Multiple-Keyword Matching Algorithm 77

7.1 Multiple BOM Multiple-Keyword Matching Algorithm 117

ix

Glossary of Acronyms

AC - Aho-Corasick. A multiple-pattern matching algorithm. (Page 49).

AC-Banded - An AC algorithm option in Snort. (Page 97).

AC-Bitmap - An AC algorithm option for Snort proposed by Tuck et al. [86]. (Page

104).

AC-Full - An AC algorithm option in Snort. (Page 97).

AC-Path - An AC algorithm option for Snort proposed by Tuck et al. [86]. (Page

104).

AC-Std - An AC algorithm option in Snort. (Page 97).

BM - Boyer-Moore. A single-pattern matching algorithm. (Page 29).

BMH - Boyer-Moore-Horspool. A single-pattern matching algorithm. (Page 36).

BOM - Backward Oracle Matching. A single-pattern matching algorithm. (Page

39).

BSOM - Backward Suffix Oracle Matching. A single-pattern matching algorithm.

(Page 46).

CW - Commentz-Walter. A set of multiple-pattern matching algorithms. (Page 51).

DAWG - Directed acyclic word graph. (Page 39).

DFSA - Deterministic finite state automaton. (Page 64).

HIDS - Host-based intrusion detection system. (Page 9).

IDS - Intrusion detection system. (Page 3).

x

xi

IPS - Intrusion prevention system. (Page 6).

KMP - Knuth-Morris-Pratt. A single-pattern matching algorithm. (Page 27).

MBOM - Multiple Backward Oracle Matching. A multiple-pattern matching algo-

rithm. (Page 2).

MWM - Modified Wu-Manber. A multiple-pattern matching algorithm option in

Snort. (Page 97).

NIDS - Network-based intrusion detection system. (Page 9).

SBMH - Setwise Boyer-Moore-Horspool. A multiple-pattern matching algorithm.

(Page 95).

SBOM - Set Backward Oracle Matching. A multiple-pattern matching algorithm.

(Page 72).

SBSOM - Set Backward Suffix Oracle Matching. A multiple-pattern matching algo-

rithm. (Page 76).

WM - Wu-Manber. A multiple-pattern matching algorithm. (Page 60).

Chapter 1

Introduction and Overview

Since their gain in popularity, intrusion detection systems have begun to be used

frequently as one component of an effective layered security model for an organization.

Various alterations of what started as monitoring systems [7, 32, 43] spurred interest,

and intrusion detection quickly became known as an important computer security tool

for individual computers as well as in computer networks. Today they are used in

many places both inside and outside security perimeters and in many different ways.

Always quintessential is that the information collected through detection can be made

into powerful intelligence if put to use to strengthen computer security in the areas

of intrusion prevention, preemption, deterrence, deflection, and countermeasures.

Understandably, a protected system or network is only as secure as its defences

are strong. In the intrusion detection systems that we focus on in this thesis, we

show how pattern matching is a critical ability, and that it must be a strength of the

system. Unfortunately, in the past it has been identified as a visible and exploitable

weakness, and as such, has been the topic of much specialized research for some

years now. Although intrusion detection systems have various uses as is explained

further in Chapter 2, many types of these systems rely heavily on pattern matching

1

2

within certain core components. Moreover, pattern matching is widely used in many

computer security applications.

The main contributions of this thesis are to examine the older and well-studied

problem of pattern matching and its solutions fully, and present the applicability of

the solutions to pattern matching within the context of network intrusion detection

systems. We show that many popular current and past solutions may not be suitable

at all within this context; furthermore, some solution domains have not even yet

been examined. In our assessment of pattern matching algorithms we discovered one

particular solution domain of pattern matching using factor oracles [3, 4, 5] that, to

our knowledge, until now, has not yet been seen in practice within network intrusion

detection systems. However, it may well have an appropriate place. Markedly, we

clarify, modify, and use the Multiple Backward Oracle Matching (MBOM) algorithm

[6]. In this thesis we give both a detailed theoretical explanation and pseudocode

of this solution’s algorithm and the code that we used to implement the algorithm.

Neither of these are available in the original MBOM publication by Allauzen and

Raffinot [6] which focuses on Set Backward Oracle Matching (see Section 4.5) and

only introduces MBOM in passing as a minor contribution. Although it was not their

primary focus, MBOM should be of high interest to the network intrusion detection

community because of its performance characteristics as a multiple-pattern matching

algorithm. We discuss this further in Chapter 7.

In addition to these contributions, we use the popular and free network intrusion

detection system, Snort [72, 77], to compare what we justify to be the best selection of

applicable pattern matching algorithms in practice. Specifically, we implement three

new options for Snort using the existing MBOM algorithm. One option in particular,

our AUTO option (see Chapter 7), takes a new approach to pattern matching in

Snort because it uses more than one algorithm—unlike any of the other pattern

3

matching approaches available in the existing Snort options. It decides on a suitable

algorithm depending on the pattern group (see Chapter 2) characteristics before the

searches take place. Our AUTO option proves to be a serious contender and worth

consideration given that it performs better or about equally as well as Snort’s current

fastest approach.

In the balance of this thesis Chapter 2 provides background material on intrusion

detection systems, as well as a detailed introduction of the signature-based network

intrusion detection systems, such as Snort, that we focus on in this thesis. The next

four chapters (Chapters 3–6) go over a large body of pattern matching research and

pattern matching within network intrusion detection systems. In order to gain a

proper understanding of multiple-pattern matching algorithms for use in a signature-

and network-based IDS, we first explore types of simpler and classical single-keyword

pattern matching in Chapter 3. These often helped inspire the multiple-keyword pat-

tern matching (multiple-pattern matching) algorithms we go through in Chapter 4.

Subsequently, we evaluate how the presented multiple-pattern matching algorithms

fare in the domain of network intrusion detection systems in Chapter 5. We then

proceed to investigate several contemporary software-based multiple-pattern match-

ing algorithms that are appropriate and suggested for use in practice in the target

type of intrusion detection system (Snort and those that are similar) in Chapter 6.

Chapter 7 begins by presenting our rational behind selecting what we identify as a

subset of algorithms applicable for use within Snort. The MBOM algorithm that we

implement in Snort—which is not detailed in other works—is also documented before

we go on to compare the selected algorithms in practice through our experimenta-

tion and results. Chapter 8 presents future work and other uses of our contributions

presented herein, and discusses future direction for pattern matching in intrusion

detection like creating hardware-based network intrusion detection systems.

Chapter 2

Background on Intrusion Detection

Systems

In this chapter we give the background for intrusion detection systems (IDSs). This

content along with the state of the art in pattern matching algorithms used within

IDSs (in Chapters 5) are important to fully grasp in order to understand the contribu-

tions of this thesis. Intrusion detection covers a broad range of digital security because

IDSs have a wide range of uses. In general, these systems automate the process of

extracting intelligence about past or present actions that attempt to compromise the

confidentiality, integrity, or availability of a resource.

The definition of an intrusion in this context is not fixed, but rather is a concept

that changes depending on the administration or objective of the system. More

specifically, the intelligence and information provided by an IDS is contingent upon

how the system is being used, and is as important as the chosen IDS itself. Indeed,

there are many ways to use IDSs. If and when an IDS discovers an intrusion, regardless

of how it has been defined, it is common for a system to make a record or report of

the intrusion, typically by way of logging or generating an alert that is sent off to an

4

2.1. Passive versus Reactive IDSs 5

appropriate party [13]. More and more, these systems are built to act not only as a

judge of intrusions, but also to react to them as we show in the next section.

In the subsequent sections of this chapter we review a classification of intrusion

detection systems that is familiar to the intrusion detection community. Considering

this classification helps to narrow the focus of the context in which an action or

inaction constitutes an intrusion. An understanding of this classification will clarify

the scope of the contributions of this thesis. We examine more closely the domain

of IDSs where our contributions are positioned. Section 2.1 discusses passive versus

reactive IDSs. Section 2.2 discusses misuse-based versus anomaly-based IDSs. Section

2.3 discusses network-based versus host-based IDSs. It is in this section that we dig

deeper showing that the implementation and comparison work of this thesis (see

Chapter 7) is contained in the intersection between network-based and misuse-based

IDSs. Section 2.3.1 focuses on this specific intersection under examination, and when

it is appropriate to use systems in this class. Section 2.3.2 deals with best practices

of how network-based IDSs like these are used within networks. Finally, Section 2.3.3

gives an overview of the architecture of an example IDS in this class which illustrates

and motivates the importance of the algorithms used within such systems like those

discussed in the following chapters.

2.1 Passive versus Reactive IDSs

Traditionally, intrusion detection systems were passive monitoring systems [7]. As

the name indicates, the nature of detection does not involve any form of response to

the intrusion. The model upon which classic IDSs are supposed to have been built is,

therefore, that of a passive system. A passive system is one in which sensors detect

intrusions and report them to the system’s reporting engine which, depending on its

2.1. Passive versus Reactive IDSs 6

capability and configuration, could format and log the intrusion to a database, a file,

or even a computer console. A passive system may also signal an alarm of some kind,

but its distinguishing characteristic is that it does not deal directly with the intrusion

to stop it or prevent future intrusions of the same sort in any way. To the contrary,

in a reactive IDS a response to the suspicious activity is performed by, for example,

logging off a user or by reprogramming a firewall to block network traffic from the

suspected malicious source [80].

If the system takes action to directly affect the current or future intrusions it

may be designated as an intrusion prevention system (IPS) [43]. For example, in the

context of a network-based intrusion prevention system, the system may be able to

directly terminate or rate-limit connections. This differs very little from a reactive

intrusion detection system in only that it performs the action itself. A reactive in-

trusion detection system, in contrast to the above example, might have signaled a

firewall or another network appliance to terminate the malicious connection under

suspicion. Firewalls and even application layer firewalls differ in the sense that they

do not usually have the capability to search for anomalies or specific content patterns

(or keywords) called signatures (discussed further in Section 2.2) to the same degree

as intrusion detection and prevention systems do [37, 86]. Despite the classification

that we present here, we point out that it is of course not impossible to make a

firewall with all the same capabilities that an IDS possesses. It is often simply a

matter of which names and terms are chosen to best market the system. Further-

more, although here the example of an intrusion prevention system is network-based,

intrusion prevention systems could be host-based acting to deny potentially malicious

activity [26, 74, 75].

2.2. Misuse-based versus Anomaly-based IDSs 7

2.2 Misuse-based versus Anomaly-based IDSs

Misuse detection is very comparable to classical or first-generation virus scanning.

It involves dealing with the input to the system and searching it for what the IDS

rules refer to as patterns of misuse, however those rules define them. Accordingly,

we distinguish that in the context of IDSs, the term “misuse” does not have to

refer to an attack by an insider or authorized user [13]. A pattern in this context

may be very simple, like looking for a specific string of bytes at a given position

or any position. It may also be rather complex like matching a regular expression,

for example, involving the presence of one string and the subsequent omission of

another string within a certain range of bytes. It may not even involve what is

typically thought of as a pattern, but instead search for a predefined harmful state

that constitutes an abuse. These misuse patterns are very often of the same nature

as patterns in strings or regular expressions, and in the area of IDSs are referred to as

signatures. Consequently, misuse-based intrusion detection systems are also known as

signature-based intrusion detection systems (and sometimes knowledge- or rule-based

IDSs) [13, 21].

The nature of the patterns present in an intrusion detection system depends on

the power of the system itself and its intended use. Naturally a system that can

search for matches of complex patterns must have a more complex language to allow

the system’s users to describe the patterns. Conjointly and in general, systems that

match complicated patterns would also be expected to take longer to process the input

than a system that can only match simpler patterns. These patterns or signatures are

predefined and preloaded into a system before it starts processing input. When the

system starts processing input and, in effect, searching for possible signature matches,

the relevance of the signature complexity and the number of signatures may greatly

2.2. Misuse-based versus Anomaly-based IDSs 8

affect the speed of processing which, depending on the circumstances, may be very

important.

Because the misuse-based IDSs are only as good as their signatures, the effective-

ness of the system is clearly evident offline by simply looking at the completeness of

the rule set or signatures it will search for. Often this list of signatures is referred to as

a database of signatures. With this style of IDS the primary resource that is updated

frequently is the database of signatures. Although often the terms “signature” and

“rule” are used closely and in connection, veritably they are different; it is custom

for a rule to hold a signature along with supplementary information such as the alert

to report if the signature is encountered in a search.

While true that these kinds of systems only detect known attack classes, it does not

mean they are not valuable for detecting new attacks. It is plausible to misconstrue

that known attack-class signatures identify old attacks, and yet, this is not necessarily

the case. Known attack classes are simply ones for which a vulnerability exists. It

may or may not have been already exploited in a specific attack. Also, depending

on the level of sophistication of the system’s signatures it may be able to stop whole

classes of possible attacks with a certain set of signatures.

By stark contrast to misuse detection, anomaly-based (also called behaviour-

based) intrusion detection systems do not rely on definitions of what is suspected

as malicious, incorrect, or abnormal. Rather they are programmed to identify what

is normal; hence, they should also identify what falls outside this range. Typically the

system’s heuristics of what is normal are learned through self-learning and keeping

statistics [21], but rules may also be input from a user. Anomaly IDSs can, thus,

be characterized as identifying unknown actions, and consequently, the output from

such a system may be harder to interpret [21]. Unfortunately, it is also possible

that the conditioning process of learning normal behaviour is corrupted if the initial

2.3. Host-based versus Network-based IDSs 9

conditioning happens during an attack or another anomaly.

Sometimes specification-based detection as another classification is considered,

which is slightly different than misuse and anomaly detection. Instead of detect-

ing bad or anomalous states it aims to detect states that are known not to be good;

that is, it detects actions that violate a specification of valid actions (often on a

per-program basis) [13]. It can be thought of as anomaly detection with all good

behaviour pre-programmed (specified) rather than having the IDS learn the typical

and normal behaviour.

2.3 Host-based versus Network-based IDSs

The difference between host- and network-based intrusion detection is markedly the

location of the system and most importantly its input. Systems that can handle both

types of input are called hybrids or distributed intrusion detection systems (DIDSs)

[13].

A host-based intrusion detection system (HIDS) consists of an application, gener-

ally software, on a machine that is designed to inspect input actions that are internal

to the machine like system calls, application and audit logs, file-system modifications,

and other host activities and states. A commonality often seen in HIDSs is the use

of an object or checksum database that catalogs the last or known good states of the

objects being monitored. Attackers that know of a HIDS on their target system may

try to circumvent the HIDS’s detection by covering up traces of their attacks through

modifying entries in this database so as to not set off alarms during the next HIDS

scan. For this reason a HIDS database needs to be strongly, often cryptographically,

protected.

A network-based intrusion detection system (NIDS) may take the form of an inde-

2.3. Host-based versus Network-based IDSs 10

pendent network appliance or device tapped into the network with associated process-

ing capabilities. It monitors network activity, and therefore, its input is solely in the

form of the traffic on the network. Since frequently attacks on networks or machines

within them originate outside of the network in question, NIDSs have a wide range

of possible attacks to detect from the outside (ingress). These typically include, but

are not limited to, denial of service (DoS) attacks, port-scans, spreading viruses, and

attempts to break into or exploit vulnerabilities in computer systems by malicious

individuals, worms, or other malware self-spreading on the network. However, NIDSs

can also help to warn about or guard against sensitive data and attacks within the

network or leaving the relevant network (egress).

The main niche of examination in this thesis is the intersection between network-

based intrusion detection systems and signature-based intrusion detection systems.

In the next sections we explore this particular sort of system in the details relevant

to the remainder of this thesis.

2.3.1 Traits of Signature-based and Network-based IDSs

When considering intrusion detection systems both host- and network-based systems

have their own traits, advantages, and strengths, but there is no need to choose be-

tween them. Both may be easily used together—independently in the case of separate

systems, or dependently in the case of hybrid systems. While both kinds of systems

have distinctive and common traits, understanding those of the network-based sys-

tems of interest in this thesis provides insight as to how they are useful and when.

Network-based intrusion detection systems have at least seven possible characteris-

tics that make them appropriate for detecting intrusions [54]. Actual advantages and

disadvantages with respect to these traits are different on a system-by-system basis.

2.3. Host-based versus Network-based IDSs 11

1. Low cost of ownership for wide coverage, meaning that a single system

can detect intrusions directed at a whole network of hosts. This entails multiple

costs, as opposed to just monetary costs.

2. Packet analysis of network traffic containing known network protocol fields

and payload data in the packets as well.

3. Evidence gathering that is permanent, meaning that the existence of certain

traffic in the network cannot be denied, hidden, or undone. It may be captured

and kept as evidence.

4. Real-time detection is most often used (and sometimes response); although,

capturing traffic and later passing it through a NIDS is often possible.

5. Suspicious activity detection, meaning that even attacks that do not succeed

can be detected and researched depending on how and where the system is setup.

6. Verification of the type of traffic expected in accordance with the existing

security policy or as a complement to other monitors.

7. Operating system independence, meaning that the system works regardless

of what operating systems are running on the hosts in the relevant network.

Nevertheless, depending on the actual NIDS’s use, it may still be beneficial to

be aware of the operating systems running on the resources under protection.

Security administrators frequently opt to include a signature-based NIDS as part

of their layered defence solution. This is largely due to a specific instance of this

kind of system called Snort [72, 77]. Snort is a free, GPL-licensed, open-source NIDS

distributed by Sourcefire [78]. A key component in the success of Snort is its freely

available database of signatures which is regularly updated—albeit, there is now a

2.3. Host-based versus Network-based IDSs 12

paid update service available as well, providing more frequent updates. This signifi-

cantly lessens the burden for administrators by having a prepared and widely reviewed

list of vulnerabilities that affect networks world-wide. Naturally, depending on the

use of the intrusion detection system, the list could and probably should be pruned

and tailored to the needs for the circumstances where the system is to be deployed.

With respect to signature- versus anomaly-based detection methods, selecting an

IDS is no longer an either/or proposition because many systems use both techniques.

However, due to the wide-spread use of Snort and other factors, signature-based

intrusion detection systems may be more prevalent than anomaly-based intrusion

detection systems or hybrids within the context of networks [41]. Though this could

be the case for various reasons, one strong contributing reason is certainly because

signature-based approaches are usually able to process input (network traffic) at much

faster speeds and empirically with far less resources (processing and memory) [84].

This assumes that statistical modeling and the self-learning processes typically used

in anomaly detection are more complicated and slower than the tasks performed in

misuse detection; this is something that is always changing. Moreover, there is some

degree of inscrutability with respect to the actions of an anomaly-based IDS whenever

self-learning is involved. Thus, the problem of false positives and understanding the

true positives is another significant reason.

Systems that are possible to extend into hardware implementations—where pro-

cessing and memory restrictions are of even more concern—are also likely to grow

faster than solutions that are not hardware-friendly. Of all these things, the speed

factor is especially important in a network setting where real-time processing may be

desired without interruption by overloading the system with too much or the wrong

kind of input. With increasing network speeds this has become even more significant;

currently, even the signature-based NIDSs are faltering to keep up to modern-day net-

2.3. Host-based versus Network-based IDSs 13

work speeds at or over the gigabit (one billion bits) per second rates. An important

challenge addressed in this thesis is looking at ways to speed up signature matching

engines and algorithms used for NIDS as to, in effect, speed up the whole system’s

processing of input. Because of the factors described in Section 2.3.2 that NIDSs

often deal with, it is understandably all the more crucial why NIDS performance is

so heavily stressed and sought to be improved.

2.3.2 Deploying a Signature-based NIDS

Network-based intrusion detection systems face many of the security troubles that

most software faces, but moreover, they must also deal with network communications

issues. Nowadays, deploying an IDS in a local network means it is dealing with

switched media not shared media—which was commonplace only a few years ago—

unless dealing with a wireless network. This means that instead of network hubs and

bridges, layer-2 switches like those present in modern-day Ethernet local area networks

(LANs) are in place [54]. Consequently, all of the connections on the network are no

longer able to be intercepted by anyone other than the parties in communication

which is a good thing for network speed, protocols, and privacy. In other words,

Ethernet broadcast domains have been isolated to, in effect, create point-to-point

networks.

In this style of full-duplex (as opposed to half-duplex) network, a NIDS is typically

setup to have access to all traffic inside, outside, or inside and outside the network by

configuring port mirroring from a switch or by use of a network tap [54]. Regardless

of where the NIDS is to be setup on the network, it is always required to configure

its network interface on which it detects in promiscuous mode—unless configured in

inline network-node IPS style, that is, it is able to block and affect network traffic. A

network interface in promiscuous mode intercepts all traffic on its receiving channels

2.3. Host-based versus Network-based IDSs 14

not just the traffic destined for its own media access control (MAC) or layer-2 address.

Such a network interface in relation to a NIDS is referred to as a sensor interface. It

is commonplace to not allow any traffic destined to or coming from the IDS sensor’s

interface as it could pose a security risk. In this way the sensor interface only listens

or intercepts traffic destined to others. In addition, in many cases the transmit

channel for this network interface can be disabled altogether. It is well regarded that

communication with the IDS (or the IDS’s sensors nodes) is best done over a separate

interface [54].

When using a switch with port mirroring to the NIDS, the bandwidth and speed

needed to receive the accumulation of traffic on the network link is required to be

multiple times greater and faster because it is receiving traffic from multiple links

combined into one link. For this reason sometimes multiple NIDSs are used for the

sake of load balancing. Lastly, when deploying multiple NIDSs within one network it

is crucial for certain kinds of NIDSs to see both directions of a connection to be able

to detect SYN floods and other types of attacks [54]. To achieve this a flow switch

[54] can ensure both directions of the same connection are sent to a single sensor

interface.

2.3.3 Architecture of a Signature-based NIDS

To examine the architecture of a NIDS we will present an overview of Snort as an

example and sample architecture. Understanding the Snort model is valuable here

because it defines the typical framework in which this type of system’s pattern match-

ing algorithms are found. Furthermore, it is general enough that it often serves as a

rough baseline for what many network-based intrusion detection systems look like if

they do any signature matching at all.

For example, Bro [66], another NIDS, does signature matching, but also builds

2.3. Host-based versus Network-based IDSs 15

in additional functionality to understand the context of the signature. Bro uses a

different and what some may perceive as a more complex policy language to describe

signatures and unusual activities. Bro is generally capable of the same functionality

as Snort with respect to the detection engine. In fact, a Snort signature database can

easily be converted to the Bro policy language using a script that is available with Bro

[67]. Moreover, Bro naturally does things Snort cannot, unless Snort is configured

with custom Snort preprocessors (see Preprocessors below). Bro can analyze network

traffic at a much higher level of abstraction with powerful facilities for storing infor-

mation about past activity and incorporating it into analyses of the current activity

[67]. Unfortunately, this makes Bro more complex than Snort, and thus, it is less

suited for extremely high-speed large networks.

A diagram summarizing the Snort architecture and the data flow of packets

through the IDS is given in Figure 2.1.

Getting Data off the wire

The Snort data flow proceeds first to acquire traffic from the network link via libpcap

[55]. Libpcap is a Unix-based implementation of the PCAP application programming

interface for capturing data-link layer frames on a network. For our purposes we use

Snort on the Linux operating system. Because PCAP implementations exist for most

other operating system platforms as well, Snort is considered a platform independent

application (it could be run on Microsoft Windows using WinPcap). Once the frames

are captured they are passed through a series of Snort decoder routines that fill out all

the structures associated with the layer 2 through 4 protocols. These structures, which

we will refer to as packets, are then sent through the registered set of preprocessors.

2.3. Host-based versus Network-based IDSs 16

Decoder

Preprocessors

Detector Engine

Rules

Rules Subsets

Via libpcap

Loaded
on startup

Multi-Rule
Search Engine

Event Queue

Output System

Network data

Output

Figure 2.1: An overview of Snort’s architecture

Preprocessors

Snort’s preprocessors perform two fundamental functions. They either manipulate

packets so the detection engine—the next stop in the data flow—can properly analyze

them, or they examine traffic for suspicious use that cannot be discovered by signature

detection alone [53]. Snort has a variety of configurable preprocessors (plug-ins), most

of which have been added to combat new methods of NIDS evasion [53]. Examples of

simple uses for preprocessors would be reassembling fragmented packets or decoding

some disguised HTTP header fields. However, since preprocessors are customizable

they can be made arbitrarily complex to detect intrusions that Snort’s signature

matching alone cannot find. After packets are circulated through all the preprocessors,

they are sent on to the heart of Snort: the detection engine.

2.3. Host-based versus Network-based IDSs 17

alert tcp $EXTERNAL_NET any -> $HOME_NET 22

(msg:"EXPLOIT ssh CRC32 overflow /bin/sh"; flow:to_server,established;

content:"/bin/sh"; reference:bugtraq,2347; reference:cve,CVE-2001-0144;

classtype:shellcode-detect; sid:1324; rev:3;)

Figure 2.2: A sample Snort rule

Detection Engine

The detection engine has two main roles. First, upon starting or refreshing the

Snort process and before any packets pass through the data flow, part of Snort’s

detection engine parses the Snort rules file line by line. This is the file containing the

signature database. The rules used to be prioritized in this file so that at runtime

Snort would build the rules structure in a certain order and then process rules in

that same prioritized order, but since version 2.0, Snort has a rule optimizer (see

discussion below).

Snort Rules

Snort’s rules are each made up of two parts called the header and the option. The

header contains prerequisite information that must match the protocol fields defined

within the packet data structure. This is information containing fields such as the

protocol type, IP address, and port number that a packet must have before Snort

examines the option part of the rule. The option section contains the signature itself.

This consists of the specific pattern to search for as well as some auxiliary information

about the signature; for example, a vulnerability it detects and a message to log.

We include a sample rule in Figure 2.2 with the option section delimited by the

parentheses.

In this example the header is concerned with the source and destination IP ad-

dresses as well as ports. The source information is on the left side of the arrow and

2.3. Host-based versus Network-based IDSs 18

the destination information is on the right side of it. The “any” keyword in the header

signifies that any port number will match in this case for the source port of a packet.

The “$” symbols indicate variables which when loaded by Snort get substituted for

their configured value.

As mentioned above, Snort has a rule optimization process with a rule classifier

and manager that utilize a set-based methodology for managing rules and applying

them to packets when it comes time to examine them. Rule subsets (groups) are

first formed by the classifier based on unique rule and packet parameters using a

classification scheme based on set criteria [76]. Based on the parameter variations, the

rules are divided into each possible subset that could possibly match packets passing

through the system. When a packet passes through, it is the rule manager component

of Snort that ensures the packet is associated to the correct subset. Naturally if a

packet does not even match a single subset, then it simply passes through the packet

queue without any processing. However, often this is not the case and a subset

is selected. Once a rule subset is selected for a packet the next component of the

detection engine, the multi-rule search engine, begins processing it.

Multi-rule Search Engine

The multi-rule search engine is broken into three distinct searches based on unique

Snort rule properties [76]:

1. Protocol field search – The protocol field search allows a rule to specify a

value in a particular protocol field to search for.

2. Generic content search – The generic content search allows a rule to specify

a byte string to match against anywhere in the packet including the payload

data.

2.3. Host-based versus Network-based IDSs 19

3. Packet anomaly search – The packet anomaly search allows a rule to specify

characteristics of a packet or packet header that is cause for alarm.

The packet anomaly search is a specific type of signature detection in Snort that

would qualify as an atypically complex signature. An example of a packet anomaly

rule is one that looks for ICMP packets of over 800 bytes in length [76]. Note that

under the classification presented in this chapter, the packet anomaly search is still

considered misuse detection given that is it searching for a known misuse.

The multi-rule search engine uses a configurable high-performance multiple-pattern

matching algorithm to find all occurrences of generic content patterns which is the

lengthiest part of the whole packet processing [36, 86]. Some possible algorithms for

use here will be examined closely in the following chapters (Chapters 4 and 5). When

a match is found in any of the three search types, a Snort rule is fully validated,

and an event is generated and added to the event queue. It is the event selector

component that processes the event queue.

Event Queue

The event queue allows Snort to keep track of multiple rule matches for every packet

that passes through the IDS. The event selector prioritizes these events with the

longer matches having higher priority. Currently, the event selector always selects

the event in the queue with the highest priority to be sent to Snort’s output system

[76].

Output System

The output system is determined by which of Snort’s output plug-ins are configured

for use. Output plug-ins can range from simple comma-delimited output to complex

relational database output. Also, a unified binary output format has been specifically

2.4. Chapter Summary 20

designed for Snort to outsource the writing to databases, which has commonly been a

performance bottleneck in the past. This specific component that handles the output

from Snort is called Barnyard [77].

2.4 Chapter Summary

In this chapter we presented the required background on intrusion detection systems

to fully grasp the concepts and contributions of this thesis. First, we introduced a

classification of intrusion detection systems that organized them as passive or reactive;

signature- (misuse-), specification-, or anomaly-based; and lastly host- or network-

based. Intrusion detection systems classically fall to one side of these in all three

of these classifications; however, we also noted that as systems become increasingly

complex they tend to be partial or full hybrids of many contrasting types. With

respect to the network-based intrusion detection systems we introduced a popular

exemplification, Snort, which also falls into the class of signature-based NIDSs. We

further examined its architecture and attributes in preparation for the following chap-

ters which introduce the state of the art in pattern matching algorithms relevant to

NIDSs such as Snort.

Chapter 3

Single-Keyword Pattern Matching

Algorithms

Pattern matching algorithms solve the general keyword pattern matching problem.

That is, given a fixed and finite non-empty set of keywords and an input string,

they find all occurrences of any of the keywords in the input string [88]. In this

problem the input string is finite as well, but often a set of (multiple) input strings is

used as input when searching for the keywords. In our case in particular, the input

strings will be packets in the detection engine of the NIDS, and therefore, there will

be many of them to process rapidly. This implies an alphabet size of 256 (quite

large), and the size of the set of keywords on the other hand will be extremely small

in comparison to the number of input strings. Furthermore, the set of keywords is

known before the algorithm begins processing the input. Should this not be the case,

if efficient modifications to the keyword set are needed, the searching process is known

as dynamic string matching [63].

Herein, we refer to computation performed on the set of keywords before process-

ing the input as offline computation, pre-computation, or preprocessing. Because the

21

22

time involved in pattern matching (processing the input in search of matches) will

far outweigh the pre-computation time, the performance of the pre-computation is

not emphasized. This is typical when analyzing a pattern matching algorithm, and

partly because the length of the input to be processed may not be available at pre-

computation time and takes priority over the length of the algorithm parameters to

be preprocessed (i.e. the keyword set). Thus, our assumptions about the keyword set

and input string set are common assumptions.

The general keyword pattern matching problem has a specific instance that has

been shown empirically as easier to solve than the general problem. Before examining

algorithms of interest to solve the general problem in Chapter 4, we present some

classic algorithms solving this special case as necessary background and a stepping

stone to understanding the solutions to the general problem. This special situation

is the case when the size of the keyword set is one. This is also known as a singleton

keyword set [88].

For the discussion of the single-keyword pattern matching algorithms we use the

convention that the keyword x has length m and the input string y has length n.

The lengths represent the number of characters and in our case a character is any

possible 8-bit configuration, thus, taking one byte. We do not consider the case of

multiple input strings as the algorithms are simply repeated for all input strings. Of

course customarily, the pre-computation only needs to be done once before processing

the first of the input strings. Note that in our pseudocode for the pattern matching

algorithms presented in this thesis, we use the convention of outputting all the indexes

of the character (byte) in y that matches the leftmost character in the keyword x

(or in a keyword from the keyword set in the multiple-pattern matching algorithms

presented in following chapters).

The two key criteria we examine with the description of each algorithm is the

3.1. Brute Force Algorithm 23

running-time performance of the algorithm and the memory space required. The

running-time performance, also referred to as time complexity, is measured in the

number of machine steps, and in this case we are primarily concerned with character

or byte comparisons. Of course, fewer steps correspond to a faster and more favorable

algorithm. The time complexity will be considered for the average and worst case of

the algorithm’s execution. By this we mean that the performance may depend on the

keyword and the input as well as the algorithm itself. Another way to think of this

is that the time complexity changes depending on the algorithm parameters. The

average- and worst-case time complexities are the cases when the parameters cause

the algorithm’s performance to respectively either behave as expected on average or

degrade to its worst performance—whereby the time and memory complexity may

increase. The second criterion, the amount of memory consumed while the algorithm

runs, is considered only in addition to the necessary space to store the keyword and

input. Of course the keyword—and in the next chapter, the keyword set—must always

be stored; thus, we take this for granted and ignore it in our analysis. Often the same

assumption is made with the input. Although, the input may actually be coming

in on-the-fly, and most algorithms need only to keep a certain amount—sometimes

called a window—of the input. Generally, usage of less memory is favorable.

3.1 Brute Force Algorithm

The brute force algorithm’s methodology is very simple to understand. The brute

force algorithm consists in checking, at all positions in the input between positions

0 and n − m (left to right), whether an occurrence of the pattern starts there or

not. After each attempt, the algorithm shifts the pattern by exactly one position

to the right [16]. Algorithm 3.1 gives the pseudocode for this simple approach to

3.2. Karp-Rabin Algorithm 24

single-keyword pattern matching.

This algorithm is considered naive based on the fact that it does no pre-computation

on the keyword. However, that is advantageous if memory space is a concern, since it

keeps only a small constant (not a function of n or m) amount of information about its

current position. The worst-case time complexity of this algorithm is O(m(n−m+1))

(equals O(nm)) [25], and the expected number of comparisons is at most 2(n−m+1)

(equals O(n)) for randomly chosen strings [25]. That is, on average we perform a con-

stant number of comparisons at each position.

Algorithm 3.1 Brute Force Single-Keyword Matching Algorithm

1: procedure Brute Force(x, m, y, n)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length
. y ← array of n bytes representing the text input
. n ← integer representing the text length

2: for j = 0 → n − m do . For every possible character in y
3: i ← 0

4: while i < m and x[i] = y[i + j] do

5: i ← i + 1 . i = count of matching characters at and after y[j]
6: end while

7: if i ≥ m then

8: output j
9: end if

10: end for

11: end procedure

3.2 Karp-Rabin Algorithm

Rabin and Karp [49] proposed a pattern matching algorithm that also generalizes

to two-dimensional pattern matching [25]. This algorithm is based on the work of

3.2. Karp-Rabin Algorithm 25

Rabin, and specifically, uses the Rabin fingerprinting technique [68] which can be most

simply thought of as a number-theoretic notion for the purposes of the discussion

here. Rabin’s fingerprinting technique is similar to a hash function in its use in

this algorithm. It has special mathematical properties which we discuss further that

account for it sometimes being referred to as a rolling hash.

A Rabin fingerprint is a short tag like a hash value for a larger input [15]. These

fingerprints share the same property with output values from hash functions like

MD5 [71] in that if two fingerprints are different, then the corresponding inputs that

were used to create them are different. Furthermore, there is only a small chance of

two different objects having the same fingerprint [15]. We call this property a small

probability of collision.

Consider the fingerprint of the keyword and the set of all n − m + 1 fingerprints

made of the n − m + 1 substrings of length m found in the input string of length n.

We can compare these fingerprints instead of actually comparing the keyword against

the portion of the input. This saves comparisons at each position (compare to the

inner loop in Algorithm 3.1) because instead of comparing things of length m, we

compare only the fingerprints. Moreover, typically if we used a normal hash function

to calculate the fingerprints it would take O(m) time to generate a fingerprint (linear

in the length of the input to be hashed); however, using Rabin’s fingerprinting method

we can calculate a fingerprint on an input of length m in constant time and using few

simple machine operations. This is not the case in general, but in the case at hand

we can incrementally update the fingerprint result as the window of length m slides

over the input. During this time we maintain only two fingerprints: the current one

for the window and the one for the keyword which together take O(size of fingerprint)

memory space.

Consider two byte strings for the input and the keyword. The first fingerprint

3.2. Karp-Rabin Algorithm 26

over the first m bytes (0...m − 1) of the n byte input is calculated in time O(m),

but when we shift the window to calculate the fingerprint of the input for the next

m bytes (1...m) the fingerprint can be updated in constant time. This is true for all

subsequent positions as we shift the window over the input string. The key to the

speed of this algorithm is that the full fingerprint calculation is done only twice: first

for the keyword itself and once for the first m bytes of the input. The first of these

operations can be considered pre-computation since it is only done once. The second

of these operations will have to be done once per input string to be searched, but we

assume this is still only once in our pseudocode (only one input string y is accepted).

Hence, we say that the pre-computation phase of the Karp-Rabin algorithm takes

time O(m). As the window slides through the input updating the fingerprint result,

the result and the keyword’s fingerprint can be compared to check for a match. This

sliding and comparison process will happen exactly n − m + 1 times and each step

can be done in constant time; therefore, the matching phase of this algorithm runs in

expected time O(n − m + 1).

Unfortunately, if the fingerprints match in the comparison it does not guarantee a

pattern match because there is a negligibly small probability that two Rabin finger-

prints are the same when the sources from which they were created are different (for a

discussion on this probability see Broder [15]). In order to guarantee a match the ac-

tual keyword and the window portion of the input must be directly compared. When

the fingerprints match but the keyword is not matched it is referred to as a spurious

hit [25]. In theory if we had a spurious hit at every position of the input checked we

would have a worst-case time complexity of O(m(n−m+1)) which is no better than

the brute force algorithm. In practice, spurious hits can be made very infrequent by

fine-tuning the parameters to the Rabin fingerprinting algorithm. Therefore, if we do

not concern ourselves with this unlikely worst case the Karp-Rabin algorithm is a very

3.3. Knuth-Morris-Pratt Algorithm 27

good and simple algorithm to implement once the Rabin fingerprinting algorithm is

handled. Lastly, it is also common to see implementations that use a simpler function

than the original Rabin fingerprint function. This works and keeps the same time

complexity so long as the new function maintains the constant time update property

so that a window slide to the next position and the corresponding fingerprint update

is done in constant time. The update to the fingerprint at each position taking place

in constant time is theoretical, but in practice this operation may be simple or com-

plex depending on the chosen function; thus, this is an important consideration when

changing the function. Algorithm 3.2 demonstrates the Karp-Rabin method using

a simpler function than the Rabin fingerprinting technique. This simpler function

from Corman et al. [25] and uses a prime q. Arithmetic computations are performed

modulo q. For efficiency in this algorithm with this simpler function, the prime value

q should be chosen such that 256q fits just inside one computer word, which allows

all the necessary computations to be performed with single-precision arthmetic [25].

The constant 256 is chosen to match the alphabet size for our purposes.

3.3 Knuth-Morris-Pratt Algorithm

Knuth, Morris and Pratt [51] proposed a keyword pattern matching algorithm (herein

the KMP algorithm) that runs left to right over its text input in linear time and

improves on an algorithm proposed earlier by only Morris and Pratt [59]. This algo-

rithm’s pre-computation creates an array with information about how the keyword

matches against shifts of itself [25]. For example knowing we have matched exactly

r characters somewhere in the input allows us to determine that certain shifts are

invalid; thus, avoiding the shifts that the naive brute force algorithm executes only

to then fail at a subsequent match attempt [25].

3.3. Knuth-Morris-Pratt Algorithm 28

Algorithm 3.2 Karp-Rabin Single-Keyword Matching Algorithm

1: procedure Karp Rabin(x, m, y, n, q, a)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length
. y ← array of n bytes representing the text input
. n ← integer representing the text length
. q ← integer value of prime number to use for simple fingerprinting
. a ← integer representing the alphabet length (256 for our purposes)

2: h ← am−1 mod q . Used in fingerprint calculation
3: p ← 0 . Keyword fingerprint
4: t0 ← 0 . Fingerprint of sliding window over text input

5: for i = 1 → m do . Pre-computation
6: p ← (a ∗ p + x[i]) mod q . Calculate keyword fingerprint
7: t0 ← (a ∗ t0 + y[i]) mod q . Calculate initial fingerprint
8: end for

9: for s = 0 → n − m do . Matching
10: if p = ts then . Fingerprints match
11: if x[1...m] = y[s + 1...s + m] then . Confirm match
12: output s
13: end if

14: end if

15: if s < n − m then

16: ts+1 ← (a(ts − y[s + 1] ∗ h) + y[s + m + 1]) mod q . Update t
17: end if

18: end for

19: end procedure

3.4. Boyer-Moore Algorithm 29

As a concrete example let us say the keyword pattern x = ababaca and we have

just matched 5 characters in y starting at position i only to find a mismatch for the

character c at position i + 5. The naive shift of the brute force algorithm would

shift the pattern by one position, but of course it would fail because the character

b at y[i + 1] would not even match the first character of the keyword x. The KMP

algorithm knows what the appropriate shift should be, and may shift over multiple

positions without missing any potential matches. The trick to doing this correctly is

in the pre-computation step where the prefix function for the keyword is built into

an array. If we define xr as the first r characters of x that have been matched at any

point, the prefix function array table at position r (table[r]) contains the length of

the longest prefix of x that is a proper suffix of xr. Using this information the shift

to the next position is always possible to calculate as (the current position) + (the

number of matched characters before the mismatch (r)) - (table[r]) [25].

Algorithm 3.3 below shows the KMP algorithm and the pre-computation step of

how the prefix function array (table) is created in time and with memory space O(m).

In the worst case the matching phase of the KMP algorithm executes 2n−1 character

comparisons [16].

3.4 Boyer-Moore Algorithm

The review of the Boyer-Moore [14] algorithm is an important contribution herein

not only because it is generally a popular choice, but it also inspired aspects of the

Commentz-Walter [23] algorithm and others that we review in the next Chapter. The

suffix-based idea used by the Boyer-Moore algorithm is considered as the most well-

known and efficient, yet still basic, keyword pattern matching algorithm in general.

More specifically, it is very efficient given a large alphabet which we have to cope

3.4. Boyer-Moore Algorithm 30

Algorithm 3.3 Knuth-Morris-Pratt Single-Keyword Matching Algorithm

1: procedure KMP(x, m, y, n)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length
. y ← array of n bytes representing the text input
. n ← integer representing the text length

2: table ←Compute Prefix KMP(x, m) . Pre-Computation
3: q ← 0
4: for i = 1 → n do . Matching
5: while q > 0 and x[q + 1] 6= y[i] do

6: q ← table[q]
7: end while

8: if x[q + 1] = y[i] then

9: q ← q + 1
10: end if

11: if q = m then

12: output i − m
13: q ← table[q]
14: end if

15: end for

16: end procedure

17: procedure Compute Prefix KMP(x, m)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length

18: table ← newArray[m + 1] . Prefix Shift Table
19: table[1] ← 0
20: k ← 0
21: for q = 2 → m do

22: while k > 0 and x[k + 1] 6= x[q] do

23: k ← table[k]
24: end while

25: if x[k + 1] = x[q] then

26: k ← k + 1
27: end if

28: table[q] ← k
29: end for

30: return table
31: end procedure

3.4. Boyer-Moore Algorithm 31

with herein since we assume any 8-bit pattern is a valid character. We do present

other more complex and less well-known algorithms that outperform this algorithm

subsequently.

Although the idea of a large alphabet is subjective, in string matching 256 is fairly

large and what is of importance here is that as the size of the alphabet (number of

characters in the alphabet) grows so does the potential for larger shifts. This algo-

rithm searches from left to right over the input, but performs character comparisons

within its sliding window of size m in reverse order (right to left). It uses two pre-

computed functions on the keyword which help it run in time as fast as O(n/m) (the

best case) by skipping over parts of the input that are not necessary to check during

matching.

The first and simpler pre-computation step done by the Boyer-Moore algorithm

is the creation of the bad character shift table (see Algorithm 3.4). This table is

essentially an array indexed by all characters in the alphabet storing integers that

represent how far the algorithm may shift upon a mismatch. At all characters indices

not in the keyword a value equal to the keyword’s length is stored since (keeping in

mind the reverse order comparison) if a character in the input is encountered that

does not appear in the keyword we can shift entirely past it as in the example below

(steps 1 through 3). All table positions of characters present in the keyword store the

distance from the right most character in the keyword. Therefore, if the character

a started the keyword and did not appear anywhere else in the keyword then the

bad character shift table’s (call it bctable) value at position a bctable[a] would be

m − 1 (as seen in Step 0 below). When the character does exist in the keyword this

bad character shift allows the algorithm to immediately realign the keyword’s right

most appearance of the character that was mismatched to the character that caused

the mismatch in the input (see step 4 in the example below). Because this kind

3.4. Boyer-Moore Algorithm 32

of realignment could potentially result in a negative shift in some situations there

is another more complex pre-computed function which is also looked up at match

time and the maximum value returned from both functions is used. We look at this

second pre-computed function next, which in the example below would lastly align

the keyword under the letters algorithm in the input whereby a match is found (not

shown in the example).

Example:

Input: example with the boyer-moore algorithm

Keyword: algorithm

Step 0. The shift values for the characters present in the keyword (all other

characters have value 9):

algorithm

876543210

Step 1. First the w in the input is mismatched with the m in the keyword.

|

example with the boyer-moore algorithm

algorithm

|

Step 2. Now the pattern can be shifted by 9 which corresponds to the value 9 in the

table at index w. Next the b in the input is mismatched with the m in the keyword.

|

example with the boyer-moore algorithm

algorithm

|

3.4. Boyer-Moore Algorithm 33

Step 3. The pattern can be shifted by 9 which corresponds to the value 9 in the

table at index b. Next the r in the input is mismatched with the m in the keyword.

|

example with the boyer-moore algorithm

algorithm

|

Step 4. The pattern can be shifted by 4 which corresponds to the value 4 in the

table at index r.

|

example with the boyer-moore algorithm

algorithm

|

Algorithm 3.4 Boyer-Moore Bad Character Shift Pre-computation Algorithm

1: procedure Compute Bad Character Shifts BM(x, m)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length

2: alphabet size ← 256
3: table ← newArray[alphabet size] . Bad Character Shift Table

4: for i = 0 → alphabet size − 1 do

5: table[i] ← m
6: end for

7: for i = 0 → m − 1 do

8: table[x[i]] ← m − i − 1
9: end for

10: return table
11: end procedure

3.4. Boyer-Moore Algorithm 34

The second pre-computation step done by the Boyer-Moore algorithm is the cre-

ation of the good suffix shift table (see Algorithm 3.5). This table is stored in an array

of size m+1. Similar to the KMP algorithm this part of the Boyer-Moore algorithm’s

pre-computation creates an array with information about how the keyword matches

against shifts of itself. The good suffix shift table contains values that provide one of

two forms of shifting [16].

As an example let us say a mismatch occurs between the character x[i] = a of the

keyword and the character y[j+i] = b of the input during an attempt at position j (of

the keyword sliding window), and let u = x[i+1...m−1] = y[j+i+1...j+m−1] which

is the part already matched. The good suffix shift consists in aligning the segment u

with its rightmost occurrence in x that is preceded by a character different from x[i]

which was the mismatched character (see Figure 3.1 part i) [16]. If there exists no

such segment then the second form of the shift consists in aligning the longest suffix

v of u with a matching prefix of x (see Figure 3.1 part ii) [16].

u

u

u

b

a

c

y

x

x

shift

u

u

b

a

y

x

vx

shift

i) The good suffix shift, re-occurs preceded by a character different from .u c a

ii) The good suffix shift, only a suffix of re-occurs inu x

Figure 3.1: Boyer-Moore algorithm’s good suffix shift examples [16]

3.4. Boyer-Moore Algorithm 35

Algorithm 3.5 Boyer-Moore Good Suffix Shift Pre-computation Algorithm

1: procedure Compute Good Suffix Shifts BM(x, m)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length

2: table ← newArray[m] . Good Suffix Shift Table
3: suf table ← newArray[m] . Temporary Suffix Information Array
4: suf table[m − 1] ← m
5: g ← m − 1
6: j ← 0
7: for i = m − 2 → 0 do . Building suf table
8: if i > g and suf table[i + m − 1 − j] < i − g then

9: suf table[i] ← suf table[i + m − 1 − j]
10: else

11: if i < g then

12: g ← i
13: end if

14: j ← i
15: while g ≥ 0 and x[g] = x[g + m − 1 − j] do

16: g ← g − 1
17: end while

18: suf table[i] ← j − g
19: end if

20: end for

21: for i = 0 → m do . Building table
22: table[i] = m
23: end for

24: j ← 0
25: for i = m − 1 → −1 do

26: if i = −1 or suf table[i] = i + 1 then

27: while j < m − 1 − i do

28: if table[j] = m then

29: table[j] ← m − 1 − i
30: end if

31: j ← j + 1
32: end while

33: end if

34: end for

35: for i = 0 → m − 2 do

36: table[m − 1 − suf table[i]] ← m − 1 − i
37: end for

38: return table
39: end procedure

3.4. Boyer-Moore Algorithm 36

Finally, the Boyer-Moore matching algorithm (see Algorithm 3.6) itself performs

very well on average thanks to spending O(m+ size of alphabet) in pre-computation.

With a large size alphabet this algorithm is frequently expected to make large shifts

of length m bypassing large sections of the input. In the best case a running time

of O(n/m) can be achieved as mentioned above, but in the worst case performance

is still quadratic or O(nm) [63] with a periodic pattern (one having repeated cycles).

With a non-periodic pattern as the worst case, Cole proved that there are at most

3n character comparisons [22]. Finally, memory requirements of the entire algorithm

are O(m+ size of alphabet) bytes because of the two arrays computed by the two

pre-computation functions.

Although the Boyer-Moore algorithm is very fast in practice, there have been

numerous improvements made to it. The first notable improvement was made by

Horspool [46]. Horspool’s variant simplifies the Boyer-Moore algorithm greatly while

also making it faster in general. Horspool noted the bad character shift was usually

the longest shift and considered a modification that allows us to omit the second more

complex shift table. Horspool’s algorithm works as follows [63].

Upon each move of the sliding window to position i we compare the rightmost

character in x (x[m − 1]) against y[i + m − 1] (call it a). Assuming they match, we

check right to left against the keyword until we find the whole keyword or we find a

mismatch at some text character. Subsequently, regardless of a match or mismatch,

we shift the window according to the next occurrence of a in x. Pseudocode for what is

commonly called the Boyer-Moore-Horspool (BMH) algorithm is given in Algorithm

3.7.

Lastly, many more new suffix-based string matching algorithms have been pro-

posed that follow-up on the ideas of Boyer and Moore. Notably, Sunday’s slight

variant [81] of Horspool’s algorithm performs shifts of even longer distances safely by

3.4. Boyer-Moore Algorithm 37

Algorithm 3.6 Boyer-Moore Single-Keyword Matching Algorithm

1: procedure BM(x, m, y, n)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length
. y ← array of n bytes representing the text input
. n ← integer representing the text length

. good table ← array of m elements – see Algorithm 3.5

. bad table ← array of 256 elements – see Algorithm 3.4

. Pre-Computation
2: good table ←Compute Good Suffix Shifts BM(x, m)
3: bad table ←Compute Bad Character Shifts BM(x, m)
4: j ← 0

5: while j ≤ n − m do . Matching
6: i ← m − 1
7: while i ≥ 0 and x[i] = y[i + j] do

8: i ← i − 1
9: end while

10: if i < 0 then

11: output j
12: j ← j + good table[0]
13: else

14: j ← j + MAX(good table[i], bad table[y[i + j]] − m + 1 + i)
15: end if

16: end while

17: end procedure

3.4. Boyer-Moore Algorithm 38

Algorithm 3.7 Boyer-Moore-Horspool Single-Keyword Matching Algorithm

1: procedure BMH(x, m, y, n)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length
. y ← array of n bytes representing the text input
. n ← integer representing the text length

2: alphabet size ← 256 . Pre-computation
3: table ← newArray[alphabet size] . Horspool Shift Table

4: for i = 0 → alphabet size − 1 do

5: table[i] ← m
6: end for

7: for j = 0 → m − 1 do

8: table[x[j]] ← m − j − 1
9: end for

10: i ← 0 . Matching
11: while i ≤ n − m do

12: j ← m − 1
13: while j > 0 and x[j] = y[i + j] do

14: j ← j − 1
15: end while

16: if j = 0 then

17: output i
18: end if

19: i ← i + table[y[i + m − 1]] . Shift
20: end while

21: end procedure

3.5. Backward Oracle Matching Algorithm 39

only changing the shift to i ← i + table[y[i + m]]. In theory this results in a faster

algorithm; however, in practice the Horspool variant beats the Sunday variant due

to a lower number of memory references [63]. Furthermore, variants such as that of

Galil [40] exist that bound the worst-case running time of these algorithms to O(n)

while suffering only slightly on the average.

3.5 Backward Oracle Matching Algorithm

Before we introduce the Backward Oracle Matching (BOM) algorithm [3, 4, 5] we in-

troduce a few concepts as prerequisites to understanding the algorithm itself. Firstly,

we introduce the idea of factor-based string matching which leads to average optimal

running times, assuming that the characters of the text are independent and occur

with equal probability [63]. A factor of a word is any substring of the word. This

term is used to mean substring herein when discussing factor oracles. If we have a

structure to tell us all factors of a keyword then we can use it as follows to match the

keyword in searches.

Suppose that we read backward a factor u of the keyword, and that we mismatch

on the next character a in the input text. That is, by using our structure as de-

scribed above, we know au is definitely not a factor of the keyword. We may shift

our window safely past the occurrence of a in the text [63]. Two such data struc-

tures can be created that recognize the set of factors for a word. Namely, they are

directed acyclic word graphs (DAWGs or suffix automata) and factor oracles (factor

automata). DAWGs, albeit more complex and timely to construct, were used first for

string matching in the Backward DAWG Matching (BDM) algorithm [29], and subse-

quently in the Backward Non-deterministic DAWG Matching (BNDM) algorithm [62]

which is a bit-parallel and improved version of BDM. Factor oracles were proposed

3.5. Backward Oracle Matching Algorithm 40

in string matching with the realization that to shift the window in the factor search

as described, it suffices to know that au is not a factor of the keyword. Previous

approaches focused on identifying u as a factor of the keyword. We continue the

explanation of the BOM algorithm after first explaining factor oracles.

A factor oracle is an automaton data structure proposed by Allauzen et al. [3]

to catalog all of the factors of a word. Other data structures exist that do the same

thing differently such as a suffix trie or a suffix automaton (DAWG) [30]. Figure 3.2

shows an example comparing the three such types of data structures.

a b b c

b

c

b c

c

0 1 2 3 4

5 6 7

9 8

i) Suffix Trie

a b b c

1 3 40 2

b c
c

iii) Factor Oracle

Data structures of the string abbc

ii) Suffix Automaton

a b b c

1 2 3 40

5

bb

c

Figure 3.2: Three data structures that hold all factors of a word

The factor oracle is a special type of deterministic automaton that specifies every

state as an accepting state. This means, starting from the initial state and at every

state, it accepts only a factor (substring) of the word it is built upon. That is, it

contains transitions to recognize factors of the keyword it is built upon. During the

input of a word into the factor oracle automaton, if at any given state a transition of

a certain character is not defined, then the word being input cannot exist as a factor

of the keyword. Note that a factor oracle may also sometimes accept factors that

are not present in the keyword upon which it is built [3]. The factor oracle is the

data structure used in the BOM algorithm and is built using the keyword x. It holds

that the factor oracle will always have m + 1 states and have between m and 2m− 1

3.5. Backward Oracle Matching Algorithm 41

transitions [3]. For example, for the strings aaaa (best case) and aaab (worst case)

the oracle would have m and 2m − 1 transitions respectively.

There are many ways to construct a factor oracle for a keyword x; however, we

will present the algorithm from Allauzen et al. [4] in Algorithm 3.8. Other algorithms

that are not as useful in practice, but that help to understand factor oracles better

are given in [19]. Algorithm 3.8 also uses an array S for a supply function over the

nodes. The supply function specifies the end of the first repet(i) where repet(i) is

the longest suffix of the first i characters of x (x[0]...x[i − 1]) that appears at least

twice. The construction of the factor oracle is the only pre-computation necessary for

the BOM algorithm, and it has a linear (in m) running time and uses linear (in m)

memory which is of course kept throughout the matching phase as well. Figure 3.3

shows an example of the steps of building a factor oracle one character at a time as

performed by Algorithm 3.8.

To apply the factor oracle in a pattern matching algorithm is straightforward.

The algorithm consists of the same rules as the earlier proposed Backward DAWG

Matching algorithm [29, 30] except with the factor oracle in place of the DAWG or

suffix automaton. The BOM algorithm is very fast in practice for long patterns—so

larger shifts are possible—and even works well for small alphabets. On the average

(over all possible inputs, albeit worse for worst-case inputs) its running time is thought

to be optimal [4]. The matching phase of the BOM algorithm uses the oracle of the

reversed keyword x. The search for a match proceeds right to left within a window

that is shifted left to right (as in the Boyer-Moore algorithm [14]). The search from

right to left stops when the characters scanned from y are no longer recognized by the

oracle as a factor, meaning it is certainly not a factor of the reversed pattern [3]. If

the matching stopped because of a mismatch at some character y[i] then the window

can safely shift to the left entirely past y[i] and start scanning again. Algorithm 3.9

3.5. Backward Oracle Matching Algorithm 42

Algorithm 3.8 Factor Oracle Construction Algorithm

1: procedure Construct Factor Oracle(x, m)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length

2: Create oracle . Factor oracle automaton
3: Create state0 of oracle
4: S ← new Array[m] . Initialize elements to 0
5: S[0] ← −1 . Supply function of initial state is undefined
6: k ← S[0]

7: for i = 1 → m do

8: Create statei of oracle
9: Add new transition from statei−1 to statei with label x[i − 1]

10: k ← S[i − 1]
11: while k > −1 and there is no transition from statek with label x[i − 1]

do

12: Add new transition from statek to statei with label x[i − 1]
13: k ← S[k]
14: end while

15: if k = −1 then

16: S[i] ← 0
17: else

18: S[i] ← state index of wherever statek leads to with transition x[i − 1]
19: end if

20: end for

21: return oracle
22: end procedure

3.5. Backward Oracle Matching Algorithm 43

i) (0) = -1
(1) = 0

S
S

a
0 1

ii) (2) = 0S

a b
10 2

b

iii) (3) = 2S

a b
10 2

b

3
b a b

10 2

b

3
b

4
b

iv) (4) = 3S

vii) (7) = 2S

a b
10 2

b
3

b
4

b
5

a

a

a

6

a

7
a b

v) (5) = 1S

a b
10 2

b
3

b
4

b
5

a

a

a

vi) (6) = 1S

a b
10 2

b
3

b
4

b
5

a

a

a

6

a

a

transition

Supply Function

Figure 3.3: Iterations in the construction of a factor oracle for the word abbbaab

gives the pseudocode for the Backward Oracle Matching algorithm, and Figure 3.4

depicts the matching phase as described.

As mentioned on the average the BOM algorithm is optimal and thus sublinear

in n [18] (see Chapter 4 for the meaning of sublinear herein). However, in the worst

case the BOM algorithm has quadratic behaviour or more specifically has an O(nm)

running time. Allauzen et al. [4] show how to avoid this worst-case running time

by their implementation of TurboBOM, an algorithm that scans using a combination

of both the KMP algorithm [51] (detailed in Section 3.3) and the BOM algorithm.

Namely, in a given window of length m the KMP algorithm scans forward first up

to a critical point (usually less than half the window length), and then the BOM

algorithm takes over, which of course provides for larger shifts. In addition to factor

oracles, Allauzen et al. present the idea of suffix oracles and the Backward Suffix

3.5. Backward Oracle Matching Algorithm 44

Algorithm 3.9 Backward Oracle Matching Single-Keyword Matching Algorithm

1: procedure BOM(x, m, y, n)
. Input:
. x ← array of m bytes representing the keyword
. m ← integer representing the keyword length
. y ← array of n bytes representing the text input
. n ← integer representing the text length

2: xR ← reverse(x) . reverse keyword
3: oracle ← Construct Factor Oracle(xR, m) . Pre-Computation

4: for i = 0 → n − m do . Matching
5: curState ← state0 of oracle
6: j ← m
7: while curState exists do

8: curState ← take transition labeled y[i + j] from curState
9: j ← j − 1

10: end while

11: if j = 0 then

12: output i − m + 1
13: j ← 1
14: end if

15: i ← i + j
16: end for

17: end procedure

3.5. Backward Oracle Matching Algorithm 45

i) Mismatch occurs at position while searchingi

ii) New search starts with window shifted past i

uby

i

x

uby

i

uax

Figure 3.4: The matching phase of the Backward Oracle Matching algorithm

Oracle Matching (BSOM) algorithm [4] which is similar and not shown here. In

suffix oracles the only terminal states are those that recognize a suffix of the word

upon which they are built. That is, a state s of a suffix oracle is terminal if and only

if there is a path labeled by a suffix of the word from the initial state leading to s

[4]. Figure 3.5 shows an example of a suffix oracle. Lastly, Allauzen and Raffinot

[6] extend the BOM and BSOM algorithms to multiple-keyword pattern matching

algorithms which we examine later (see section 4.5).

transition

Supply Functiona b
10

b
3

b
4

b
5

a

a

a

6

a

7
a b

2

Figure 3.5: Example of a suffix oracle for the string abbbaab

3.6. Chapter Summary 46

3.6 Chapter Summary

In this chapter we presented a small sample of the state of the art in single-keyword

pattern matching algorithms. In particular, we examined single-keyword pattern

matching algorithms which inspired many extensions and techniques that are used

in searching for multiple patterns in multiple-keyword pattern matching. In the next

chapter we present several multiple-keyword pattern matching approaches from a

generic standpoint. As in this chapter, for all the algorithms we give pseudocode that

should easily be adaptable into a programming language.

Chapter 4

Multiple-Keyword Pattern

Matching Algorithms

The pattern matching algorithms pertaining to the general keyword pattern matching

problem are the ones of particular interest in this thesis. In this chapter we examine

some of the proposed algorithms to solve this problem. Cleophas et al. [18] have

presented a comprehensive taxonomy and toolkit of pattern matching algorithms that

updates and collects the past works of Watson and Zwaan [89, 90]. That taxonomy

will give the reader a much more complete idea of what is available in terms pattern

matching algorithms, and how the different basic types and variations of algorithms

have arisen. This section will only go over explanations and pseudocode of certain

representative algorithms to match multiple keywords. Of course the set of algorithms

that solve this problem is growing all the time and slight variations of the algorithms

do exist; however, we try to present the algorithms herein as generally as possible

and without any attunement to a programming language.

We use the same naming conventions and inspect the same criteria as the previous

chapter. The difference in this section is that we have multiple keywords and multiple

47

48

keyword lengths. We choose to represent these as the array x [0...p-1] of size p storing

the keywords (which are byte arrays themselves) and the array m[0...p-1] of size p

storing the integer values representing the lengths of the keywords. Thus the byte

array representing some keyword in x and position i has length m[i] (x [i][0...m[i]-1]).

The sum of the lengths of all keywords will be M. The input text byte array is still

named y and has length n. Noted again is that in our pseudocode for the pattern

matching algorithms presented in this thesis, we use the convention of outputting

all the indexes of the character (byte) in y that matches the leftmost character in a

keyword from the keyword set.

In the last chapter the Boyer-Moore [14] and BOM [3, 4, 5] algorithms introduce

the notion of sublinear running times which we continue to use as a term for certain

algorithms in this chapter. We use the term “sublinear” as has been seen in analyzing

average-case behaviour in a good deal of modern string matching literature [5, 14, 18,

63, 90]. That is, the number of symbol comparisons is sublinear (less than linear) in

the length of the input string. Note that this usage of the “sublinear” term is not

strictly in agreement with most authoritative sources on asymptotic notation (i.e.

Big-Oh, etc.) where a sublinear running time typically indicates o(n). Typically a

string matching algorithm herein said to have a sublinear average running time will

on average run in cn steps, where c is 1/d and d > 1. The constant d is usually the

length of the keyword (m in single-keyword algorithms) or the length of the shortest

keyword (in multiple-keyword algorithms), but formally o(n) describes a function f

where if f(n) is o(g(n)), then 0 ≤ f(n) < c ∗ g(n) for all constants c > 0. Because

this must hold true for all values of c, the algorithms herein cannot be said to be o(n)

because for some c the definition is violated.

4.1. Aho-Corasick Algorithm 49

4.1 Aho-Corasick Algorithm

There are many approaches to recognizing patterns that involve using finite automata

(also referred to as finite state machines). The Aho-Corasick (hereafter AC) algorithm

[2] is one such classic algorithm. This algorithm also shares characteristics with the

Knuth-Morris-Pratt [51] algorithm described in Section 3.3 [23, 25]. The idea is that a

finite automaton is constructed using the set of keywords during the pre-computation

phase of the algorithm and the matching involves the automaton scanning the input

text string reading every character in y exactly once and taking constant time for

each read of a character.

It is essential to first understand finite automata theory (which we do not cover

here) to understand the AC algorithm’s description. The notation we use for the AC

automaton is a 7-tuple (Q, q0, A, Σ, g, f, o), where:

• Q is a finite set of states,

• q0 ∈ Q is the start (initial) state,

• A ⊆ Q and is the set of accepting states,

• Σ is the input alphabet accepted,

• g is a function from Q x Σ into Q, called the good (or goto) transition function,

• f is a function from Q into Q, called the fail (or failure) transition function,

and

• o is a function from Q into Q, called the output function.

If the automaton is in a state q and reads input character (byte) a, it moves

(transitions) to state g(q, a) if defined otherwise it moves to state f (q). Also if the

4.1. Aho-Corasick Algorithm 50

automaton is in a state q, and q belongs to the set A then q is said to be an accepting

state. Function o, the output function, returns whether or not any state q ∈ A.

Aho and Corasick’s original algorithm uses a function called output to test this and

furthermore returns the keyword matched at the accepting state. The AC algorithm’s

automaton is such that a transition into an accepting state indicates a match of one

or more keywords. The pseudocode for the matching phase of the algorithm is given

below (see Algorithm 4.1). Further pseudocode of the construction of g, f and output

are given in the original paper [2].

Algorithm 4.1 Aho-Corasick Multiple-Keyword Matching Algorithm

1: procedure AC(y, n, q0)
. Input:
. y ← array of n bytes representing the text input
. n ← integer representing the text length
. q0 ← initial state

2: state ← q0

3: for i = 1 → n do . Matching
4: while g(state, y[i]) = fail do . while g(state, y[i]) is undefined
5: state ← f(state) . use the failure function
6: end while

7: state ← g(state, y[i])
8: if o(state) 6= ∅ then

9: output i . This an accepting state, i.e. state ∈ A
10: end if

11: end for

12: end procedure

The AC algorithm uses a refinement of a trie (keyword tree) to store the set

of keywords in a string matching special automaton. Figure 4.1 below shows the

difference between a normal trie and an AC automaton. In the automaton g(q, a),

represented by a solid edge, shows the state entered from current state q by matching

character (byte) a; thus, edge (q, g(q, a)) is labeled by a (if there are multiple

matching characters at a state there are multiple edges). Also f (q), represented by a

4.2. Commentz-Walter Algorithm 51

dashed edge, shows the state entered when the input character a does not match (no

g(q, a) is defined). If the dashed edge would simply point to the initial state it is not

shown.

Building the AC automaton takes running time linear in the sum of the lengths

of all keywords. This involves constructing the keyword tree for the set of keywords

and then converting the tree to an automaton by defining the functions g and f and

labeling states in A with the keyword(s) matched. The space or memory requirements

of the AC algorithm can be taken directly from the automaton built during the pre-

computation because it is the only structure used in matching. Unfortunately the

space can be quite large depending on the alphabet and keyword set. In the worst

case it would be O(M ∗ |Σ|) where |Σ| is the size of the alphabet Σ.

Once the automaton is built the matching is straightforward and involves simply

stepping through the input characters one at a time and changing the state of the

automaton—which happens in constant time. At every step we check if there’s a

match by seeing if the current state is an accepting state. Using this simple function-

ality the AC matcher always operates in O(n) running time.

4.2 Commentz-Walter Algorithm

Commentz-Walter [23] achieved creating a mesh of both the Aho-Corasick [2] multiple-

keyword pattern matching algorithm which has a running time linear in n and the

Boyer-Moore [14] single-keyword pattern matching algorithm which runs in time sub-

linear in n on average. The resulting multiple-keyword pattern matching algorithm

matches multiple patterns simultaneously using a trie-like structure similar to Aho

and Corasick, and using skips or shifts (i.e. filtering) similar to Boyer and Moore.

Commentz-Walter also noted that the quadratic (O(nm)) worst-case running time

4.2. Commentz-Walter Algorithm 52

h e r s

i
s

h e

s

1 4

3

2

i) A keyword tree for = {"hers", "his", "she", "he"}x

h e r s

i
s

h e

s

9

7

5

{he} {hers}

{his}

{he, she}

0 1 2 8

6

43

ii) An Aho-Corasick finite automaton for = {"hers", "his", "she", "he"}
Dashed: fail transitions; those not shown lead to 0

x

q

Figure 4.1: An example of a trie versus an Aho-Corasick automaton.

behaviour of the Boyer-Moore algorithm could be improved upon to be linear in n as

shown in the work of Galil [40]. As such, Commentz-Walter derived two different al-

gorithms called B and B1 which have quadratic (O(n * max{m[0], m[1], ..., m[p−1]}))

and linear (O(n)) worst-case running times respectively. Algorithm B is the main work

of the simpler of Commentz-Walter’s literature [23] and has a simpler pre-computation

phase than B1. Furthermore, B1 takes more memory during the pre-computation and

search than B by remembering the input text bytes that were already scanned [23].

4.2. Commentz-Walter Algorithm 53

Details of B1 are available in Commentz-Walter’s lengthier report [24]. Both al-

gorithms maintain a pre-computation phase that is linear in the total length of all

keywords or O(M), and both achieve slightly sublinear (in n) matching-phase running

times on average [23] which could be as good as O(n / min{m[0], m[1], ..., m[p−1]}) in

the best case. Algorithm B will be described first starting with the functions created

during the pre-computation phase.

The pre-computation phase of algorithm B starts by creating a basic trie data

structure using the reversed keywords. Each trie node v, except the root node, is

labeled with a character (byte) from a keyword. For a brief background on the trie

data structure see [23]. A simple diagram of a trie data structure is given in Figure 4.2

below as it differs slightly from the concept presented by the Aho-Corasick trie and

classic trie used in Figure 4.1. The next step of the pre-computation is the creation

of four functions called out, shift1, shift2, and char.

h e r s

i s

h es

Figure 4.2: An example of a basic Commentz-Walter style trie for x ={“hers”, “his”,
“she”, “he” }

The out function receives a trie node v and returns whether or not the path to

the root from node v represents a keyword. If so, out returns the keyword. Otherwise

it returns nothing (the empty set is denoted ∅), and the path from v to the root is

simply a proper suffix of one or more keywords in the keyword array x.

4.2. Commentz-Walter Algorithm 54

For the construction of functions shift1 and shift2 we first define two sets, d,

and w over the nodes in the trie, excluding the root node [23].

• d(v) represents the depth of node v in the trie. That is, the number of nodes—

including v—between v and the root node.

• w(v) represents the word made from the concatenation of the node labels from

the root to node v.

• set1(v) = { v′; w(v) is a proper suffix of w(v′) }.

• set2(v) = { v′; v′ is an element of set1(v) and out(v′) 6= ∅ }.

Essentially set1(v) indicates the set of all nodes at a deeper level in the trie than

node v whose paths down from the root also end in w(v). set2(v) is the set of all

nodes in set1(v) that also mark the beginning of a path to the root such that the

path represents a keyword from the keyword array x.

Now, where wmin is the length of the shortest keyword, for each node, functions

shift1 and shift2 are defined by [23]:

• If v is the root node then shift1(v) = 1 and shift2(v) = wmin, otherwise

• shift1(v) = min{ wmin, { k; k = d(v′) − d(v) } }, where v′ is an element of

set1(v), and

• shift2(v) = min{ shift2(parent node of v), { k; k = d(v′) − d(v) } }, where

v′ is an element of set2(v).

Finally, we define function char over the values of the accepted alphabet [23]:

• char(a) = min{ wmin + 1, d(v) }, where v is a node with label a.

4.2. Commentz-Walter Algorithm 55

a b

c

c

cc

b

b

b

a

a

a

a

a

a c

1,3

1,2

3,2

2,3

2,2 3,1

1,1

1,3

3,1

3,13,1

3,2

3,2

3,2

3,2

3,2

1,2

root

and point to nodes of set1(v)

point to nodes of set2(v)

Figure 4.3: Commentz-Walter style trie with sets and shift functions for keyword set
{“cacbaa”, “acb”, “aba”, “acbab”, “ccbab”,}

Figure 4.3 is an example showing the relationships of the two sets as well as the

values of the two shift functions on the nodes of a trie made by this algorithm.

The matching phase of the Commentz-Walter algorithm B is based on a combina-

tion of ideas from the Aho-Corasick trie and the Boyer-Moore right-to-left matching.

The algorithm can be thought of as aligning the trie root under y[wmin + 1] in the

input text and scanning from right to left, and shifting the whole trie right upon

detecting a mismatch. The details of the matching phase of Commentz-Walter’s

4.2. Commentz-Walter Algorithm 56

algorithm B are given in pseudocode format in Algorithm 4.2 below.

Algorithm 4.2 Commentz-Walter Multiple-Keyword Matching Algorithm B

1: procedure CW(y, n, m, p, root)
. Input:
. y ← array of n bytes representing the text input
. n ← integer representing the text length
. m ← array of keyword lengths
. p ← number of keywords
. root ← root node of the trie

2: v ← root . The current node
3: i ←min{m[0], m[1], ..., m[p − 1]} . i points to the current position in y
4: j ← 0 . j indicates depth of the current node v

5: while i ≤ n do . Matching

6: while v has child v′ labeled y[i − j] do

7: v ← v′

8: j ← j + 1
9: if out(v) 6= ∅ then

10: output i − j . Path from v to root matches y[i − j] to y[i]
11: end if

12: end while

. Shifting
13: i ← i+ min { shift2(v), max { shift1(v), char(y[i− j]) − j − 1 } }
14: j ← 0

15: end while

16: end procedure

In Commentz-Walter’s algorithm B some substrings of the input text y are scanned

over and over in the worst case which leads to the quadratic behaviour of the running

time during the matching phase [24]. In algorithm B1 [24] we have the exact same

trie as for algorithm B; however, in order to reduce the worst case matching phase

running time to linear in n, we use a stack that remembers the characters of the input

that have just been scanned. The size of the stack could, in theory, grow as large as

n, the length of y, but fortunately only the last wmax (where wmax is the length of

4.2. Commentz-Walter Algorithm 57

the longest keyword in x) entries of the stack are needed. This means the memory or

space requirement during matching is still proportional to the keyword set or M in

particular.

Keeping in mind that we always scan right to left and we shift left to right,

we realize that characters or substrings of y are getting scanned more than once in

algorithm B. Algorithm B1 eliminates this. Namely, if we are currently scanning y

at some position i, then the root of the trie could be thought of as positioned on its

side under y[i + 1]. Let’s assume that in the inner while loop of Algorithm 4.2 j > 0

at some point and a mismatch occurs (see Figure 4.4 part i). The loop then ends and

we know that j characters were matched. Let’s call the current node in the trie q. At

this point a shift takes place which can be thought of as moving the trie to the right.

Let’s call the distance of the shift s. Now the current position becomes i′ = i + s and

the root of the trie lies under y[i′ + 1]. Let j′ denote the variable j after the shift.

Let’s assume that subsequent to the shift of distance s we match s characters,

thus at some point j′ = s and we denote the current node r. Now i′ − j′ = i and

the next j characters to the left in y have already been compared against the trie

before the shift took place (see Figure 4.4 part ii). What algorithm B1 effectively

does to bypass re-comparing against those j characters is that it remembers them

using the stack. Let’s assume that the algorithm kept going and re-compared against

the following j characters. At that point the current node v in the trie would not

be node q; however, it is important to understand that v would be in set1(q). That

is, w(q) is a proper suffix of w(v). Node v may be in the set1 collection of many

other nodes in the trie as well, but let’s assume that the difference in depth between

q and v is the minimal difference of depth as compared to all the other nodes that

may have v in their set1 collections. Commentz-Walter [24] designates this important

subset of set1(q) as set1′(q), where for any member node t of set1′(q), w(q) is the

4.2. Commentz-Walter Algorithm 58

y
ii j- +1

root

j

q

i) Before the shift

ii) After the shift, is retrieved from the stackq

y
ii j- +1

j

r rootv

q

j' = s

i'i' j'- +1

w(q) w(v)
v set '(q)

is the maximal proper suffix of
and is in 1

Figure 4.4: Commentz-Walter algorithm B1

maximal proper suffix of w(t) compared to other nodes that contain t in their set1

set. Thus, in this instance v ∈ set1′(q). Note that a comparable subset of set2 exists

for all nodes called set2′ where the nodes in set2′ are always nodes t where out(t) 6= ∅.

Commentz-Walter also notes that if v and q were in an Aho-Corasick style trie, that

f(v) = q, where f is the Aho-Corasick failure function. Figure 4.5 is an example

showing the relationships of the two new sets (compare with Figure 4.3).

The way that Algorithm B1 overcomes re-comparing against the j characters as

described above is that i (or a pointer to y[i]) and a pointer to node q would be in one

item on the stack. Algorithm B1 would have put this information on the stack prior to

4.2. Commentz-Walter Algorithm 59

Commentz-Walter trie structure for keyword set: { cacbaa, acb, aba, acbab, ccbab }

a b

c

c

cc

b

b

b

a

a

a

a

a

a c

1,3

1,2

3,2

2,3

2,2 3,1

1,1

1,3

3,1

3,13,1

3,2

3,2

3,2

3,2

3,2

1,2

root

all arrows point to nodes of set1(v)

point to nodes of set2(v)and

and point to nodes of set1'(v)

point to nodes of set2'(v)

Figure 4.5: Commentz-Walter style trie with new sets for algorithm B1

the original shift of course. Note that this information from the stack is not enough.

Additionally, a where1 function is calculated in the pre-computation that allows

algorithm B1 to skip over the j characters. This function would take the current node

in the trie (in this case node r) and the node pointed to by the item on the stack and

indicate (return) that the algorithm may skip over j characters and move the current

node to node v which is a descendant of node r. Commentz-Walter [24] provide the

details of how this function is calculated. Furthermore, the scenario is still more

4.3. Wu-Manber Algorithm 60

complicated than described because there could be multiple keywords that match on

the path skipped from r to v, and alternatively the where1 function could return

∅ indicating that no node like v exists as a descendant from r. These cases are all

handled by algorithm B1, although it requires a rather complicated pre-computation

phase and a slightly more complicated matching phase. Commentz-Walter also shows

how to improve the pre-computation of algorithm B1 in an algorithm called B2 [24];

confessedly, the average matching phase performance suffers slightly.

In conclusion, for our purposes in regards to the variegated set of Commentz-

Walter algorithms, since the running-time of the pre-computation is trivial, the B1

algorithm is the best choice all around, though avowably very complex in order to

achieve this running time.

4.3 Wu-Manber Algorithm

Wu and Manber created the UNIX tool agrep [91] to search for many patterns in

files. In doing so they created a new algorithm to search for multiple patterns si-

multaneously [92]. They claim and demonstrate that their tool is substantially faster

than both the UNIX tools egrep and fgrep. fgrep initially used the Aho-Corasick [2]

algorithm, and subsequently it was upgraded to use a modified Commentz-Walter

[23] algorithm [92, 45]. agrep is shown to match tens of thousands of patterns faster

than both other tools [92].

Like the Commentz-Walter algorithm, this algorithm borrows the idea of skipping

over parts of the text input using a skip table just as the Boyer-Moore [14] algorithm

does to achieve a sublinear running time while matching patterns. The design of the

algorithm concentrates on typical natural language searches rather than on worst-case

behaviour [92].

4.3. Wu-Manber Algorithm 61

This algorithm uses three tables built during the pre-computation phase: a SHIFT

table, a HASH table, and a PREFIX table. The SHIFT table is similar to the Boyer-

Moore bad character skip table, and the other two tables are only used when the

SHIFT table indicates not to shift—with a shift value of zero—because there’s a

potential match at the current position under examination in the input. As with the

Boyer-Moore shifting, the size of the shift is limited to the length of the pattern and

in this case, the length of the minimum length pattern (call it minlen). Therefore,

short patterns in the keyword set inherently make this algorithm less efficient [92].

A unique trait of this algorithm is that it looks at blocks of text instead of single

characters at a time. Denoting again by M the sum of the keyword lengths and c

the size of the alphabet, then the block length B is optimized for running time and

space when B = logc2M (in practice B = 2 or 3 is recommended by Wu and Manber)

[92]. The SHIFT table values determine the shift based on the last B bytes rather

than just one. A hash function is used to map blocks to an integer used as an index

into the SHIFT table. The total possible space required for this is O(cB). For our

alphabet we have a SHIFT table of 256B or 65, 536 elements when B = 2.

Let A = a1, a2, ..., aB be the B bytes in the text input y that we are currently

scanning. There are two cases [92]:

1. A does not appear as a substring in any keyword (pattern) of x. In this case,

we can clearly shift minlen - B + 1 bytes in the text input. SHIFT[hash(A)]

= minlen - B + 1.

2. A appears in some keywords of x. In this case, we find the rightmost occurrence

of A in any of the keywords; let’s assume that A ends at position q of x [k] and

that A does not end at any position greater than q in any other keyword of x.

Then SHIFT[hash(A)] = minlen - q.

4.3. Wu-Manber Algorithm 62

So essentially to construct the SHIFT table all values in SHIFT are initially set to

minlen - B + 1. Subsequently going through all keywords in x we map each possible

substring of size B (aj−B+1 ... aj) into SHIFT, and set the corresponding value to

the minimum of its current value and minlen - j [92]. The running time to compute

the SHIFT table is O(BM) or if we count setting all elements of SHIFT, again, there

are cB many. Wu and Manber also discuss the possibility of compressing the SHIFT

table when larger values of B are used by mapping different strings into the same

entry—using the hash function—as long as the value in the table is the minimum of

all of the exact shift values for the different strings. This would cause the algorithm

to sometimes shift less than what it could do; however, this would not cause matches

to be missed. Compressing the SHIFT table is a classic space-time tradeoff.

The index into the SHIFT table is also the index into the HASH table. When

SHIFT[i] = 0 we look at HASH[i] which contains a pointer pt to a list of pointers

to the keywords sorted by the hash values of the last B bytes. To find the end of

the list of pointers we keep incrementing the pointer until it is equal to the value in

HASH[i + 1] (because the whole list is sorted according to the hash values). As a

result of this all keywords with the same suffix of length B bytes will map to the same

entry in the HASH table. The number of elements in the HASH table needs only to

be as large as the number of times SHIFT[i] = 0 over all values i. In the worst case

it could be large, but in practice this does and should not happen given the control

over the keyword set.

There could potentially be many entries in the list of pointers to keywords at a

particular HASH entry. This is where the PREFIX table is useful instead of going

through all of the keywords at the entry. The PREFIX table contains the mapping of

all keywords’ first B′ characters (B′ = 2 is the recommended value to use). Thus, the

PREFIX table needs O(cB′

) space (cB′

many elements). So the HASH table not only

4.3. Wu-Manber Algorithm 63

contains, for each suffix, the list of all patterns with this suffix, but also hash values

of their prefixes. Although Wu and Manber describe taking the hash of the prefix,

it is actually the B′ characters that are minlen bytes to the left of the end of the

keywords. It would only truly be the prefix for keywords of size minlen. When the

algorithm is in the matching phase the corresponding hash of the prefix in the text

input is calculated (by reading minlen bytes to the left), and it can be used to filter

keywords whose suffix is the same but whose prefix is different in the list of pointers.

Wu and Manber claim this to be effective because of an assumption that very few

keywords share the same prefix and suffix [92].

Although the pre-computation phase is slightly complex to build these three tables

it is shown to be done quickly in practice in Wu and Manber’s original implementation

which is available in the C programming language. The space efficiency is directly

represented in the tables and depends largely on the choice of B and the keyword set.

The larger values of B mean that more entries will be present in the SHIFT table;

however, it is optionally compressible as mentioned above. In addition to the three

tables described, a PAT POINT table stores the keywords, as does our array x with

p elements described at the beginning of the chapter. PAT POINT is indexed by the

same pointers retrieved from the HASH table that serve as indexes into the PREFIX

table.

The main matching phase of the algorithm is referred to by Wu and Manber as

the scanning stage. It proceeds in four steps as follows:

1. Compute a hash value h based on the current B characters of the text (e.g.

y[i − B + 1] ... y[i]).

2. If SHIFT[h] > 0, shift the text by this value and return to step 1; otherwise, go

to step 3.

4.4. Fan-Su Algorithm 64

3. Compute the hash value of the prefix of the text (by reading minlen bytes to

the left); call it text prefix.

4. Check for each pt, where HASH[h] ≤ pt < HASH[h + 1], whether PREFIX[pt]

= text prefix. When they are equal, check the actual keyword (given by

PAT POINT[pt] in the list of pointers) against the text directly and output

matches.

The pseudocode below (see Algorithm 4.3) is given for the matching phase of

the Wu-Manber algorithm; although, the algorithm is highly dependant on parts of

the C programming language. Some of the details of the hash functions below are

hidden, but can easily be found in the mgrep.c file of the agrep package available from

ftp://ftp.cs.arizona.edu/agrep.

The analysis of the expected running-time complexity of the main matching phase

is shown by Wu and Manber to be slightly less than linear in n, the length of the

input text. This analysis assumes both an input text and keywords that are random

byte strings with uniform distribution [92].

4.4 Fan-Su Algorithm

The Fan-Su [35] algorithm is a combination of the Aho-Corasick [2] and Boyer-Moore

[14] algorithms. Similar to the AC algorithm, this algorithm matches using a de-

terministic finite state machine or automaton (DFSM or DFSA) with differences

inspired by the Boyer-Moore algorithm’s ability to skip over portions of the input

where a match is impossible. Fan and Su describe three main differences between a

normal DFSA matching approach (the AC algorithm) and their proposed algorithm

as follows [35]:

4.4. Fan-Su Algorithm 65

Algorithm 4.3 Wu and Manber Multiple-Keyword Matching Algorithm

1: procedure WM(y, n, B, B′, SHIFT, HASH, PREFIX, PAT POINT)
. Input:
. y ← array of n bytes representing the text input
. B ← integer representing the suffix block length
. B′ ← integer representing the prefix block length
. SHIFT ← SHIFT table (see description above)
. HASH ← HASH table (see description above)
. PREFIX ← PREFIX table (see description above)
. PAT POINT ← table of pointers to keywords (like our x it has m keywords)

2: m ← min {length of all keywords} . minlen
3: i ← m − 1
4: while i ≤ n do . Matching
5: h ← hash(y[i−B + 1], ..., y[i]) . hash over B bytes back from index i in y
6: shift ← SHIFT [h]
7: if shift = 0 then . Suffix block matches
8: text prefix ← hash(y[i − m + 1], ..., y[i − m + 1 + B′])
9: p ← HASH [h] . a C style pointer

10: p end ← HASH [h + 1] . a C style pointer
11: while p < p end do

12: if text prefix = PREFIX[p] then . Prefix matches
13: px ← PAT POINT [p] . Pointer to the current keyword
14: len ← length of px . Length of current keyword
15: j ← 0 . Count of matched characters
16: while j < len and y[i− len + 1 + j] = px[j] do

17: j ← j + 1
18: end while

19: if j ≥ len then

20: output i − len + 1
21: end if

22: end if

23: p ← p + 1
24: end while

25: i ← i + 1 . Shift only by one place
26: else

27: i ← i + shift . Skip part of the text
28: end if

29: end while

30: end procedure

4.4. Fan-Su Algorithm 66

1. They call their state transition function the goto function which essentially

determines the structure of the DFSA. The difference they implement is that

in the pre-computation this function and, thus, the DFSA are created from the

set of reversed keywords. In the matching phase of the algorithm all keywords

are matched from their rightmost characters.

2. Just as the Boyer-Moore and Wu-Manber [92] algorithms do, this algorithm

shifts the input past impossible matches while limiting the size of the shift

to the length of the minimum length keyword (call it minlen). During the

matching phase the first character retrieved is the minlenth character. The

algorithm searches backward from there until a transition to the start state is

indicated by the goto function.

3. When the goto function indicates a transition from the start state to itself, the

skip1 table (see discussion below) is consulted to determine which character in

the input we will compare to next. Essentially the shift that can be performed

is similar to the shift indicated by the Boyer-Moore bad character skip table.

Otherwise, when the goto function indicates a transition from a state other

than the start state to the start state, the skip2 table (see discussion below) is

consulted to determine the appropriate shift.

It should be clear how to construct the goto function given the description of the

AC algorithm above. Furthermore, Fan and Su also use a function called output that

receives a state as a parameter and returns the set of matching keywords associated

with the state. This is a function similar to the A set of accepting states and the

Aho-Corasick output function.

The pseudocode for the matching algorithm is given in Algorithm 4.4. The only

remaining part of the algorithm is the pre-computation involving the generation of

4.4. Fan-Su Algorithm 67

Algorithm 4.4 Fan and Su Multiple-Keyword Matching Algorithm

1: procedure FS(y, n, q0)
. Input:
. y ← array of n bytes representing the text input
. n ← integer representing the text length
. q0 ← initial state

2: i ← min {length of all keywords} . minlen
3: state ← q0

4: while i ≤ n do . Matching
5: if goto(state, y[i]) = q0 then

6: if state = q0 then . From the start state to itself
7: i ← i + skip1(y[i])
8: else . From another state to the start state
9: i ← i + skip2(state, y[i])

10: state ← q0

11: end if

12: else

13: state ← goto(state, y[i]) . Transition to another state
14: if output(state) 6= ∅ then

15: output i
16: end if

17: end if

18: end while

19: end procedure

4.4. Fan-Su Algorithm 68

the skip tables. The rather lengthy pseudocode for their generation is included in

Fan and Su’s original paper [35]. Our discussion here only details the steps needed

for their generation. The skip1 table is straightforward to compute and involves two

steps as follows:

1. For each character c in the alphabet set skip1[c] = minlen.

2. For the j th character of the i th keyword patterni, set skip1[patterni[j]] to the

lesser of its current value and the length of patterni - j.

The skip1 table resembles the Boyer-Moore bad character shift table. Similarly

the skip2 table resembles the Boyer-Moore good suffix shift table, and as such its

generation is much more convoluted.

When the skip2 table is being consulted it is because the next state is the start

state, but the current state is not the start state. This indicates that there was a

partial match for some number of characters. Let us call the partial match u and

the number of characters matched (the length of u) depth(u). Fan and Su describe

the purpose of the skip2 table to be to shift through the input such that one of two

possible cases is satisfied as follows [35]:

1. The input will align after the shift with the next rightmost reoccurrence of u in

a certain keyword.

2. The input will align after the shift such that the longest prefix of a certain

keyword will align with a suffix of u in the input.

Constructing skip2 can be done with the help of the DFSA’s structure which in

this algorithm’s case is the goto function and the failure function or the equivalent of f

in the Aho-Corasick algorithm. The skip2 table can be generated using the following

three steps [35]:

4.4. Fan-Su Algorithm 69

1. For every combination of pairs of states t and characters c set the value of

skip2(t, c) = depth(t) + minlen, where depth(t) is the depth of the state in the

trie and, hence, the length of the string t.

2. For every state t, state s, and character c such that f (t) = s (f is the failure

function) set skip2(t, c) to the lesser of its current value and depth(t) - depth(s)

+ depth(s) (i.e. just depth(t)).

3. Each character c and final or accepting state t indicates a match of the keyword

v. To find the longest prefix of v such that it is a suffix of u for each state s in

the goto graph where state s indicates a match of the keyword u, then if f (t) =

r (f is the failure function) set skip2(s, c) to the lesser of its current value and

depth(t) + depth(s) - depth(r).

With both skip1 and skip2 tables built, rather than looking up the shift value in

those tables during the matching phase, Fan and Su decided to encode the skip tables

shift values into the state transition table in a fashion as follows so that no additional

access to the skip tables is necessary upon a mismatch:

1. The state transition table is indexed by current state s and input character c.

2. Each entry in the state transition table consists of a tuple containing an indicator

field and a data field which is interpreted differently depending on the indicator

which can be a 1 or a 0.

3. If the indicator is set to 1 the data field is occupied by the state number of the

next state that can be reached on input character c.

4. If the indicator is set to 0 then:

4.4. Fan-Su Algorithm 70

(a) If s is the start state (usually state 0) then the data field is occupied by

skip1(c).

(b) If s is the not start state (usually state 0) then the data field is occupied

by skip2(s, c).

Interpreting the state transition table during matching is now the only real differ-

ence in Fan and Su’s DFSA algorithm. To summarize, when an entry in the table is

read using current state s and character c from the input, the next state is indicated

by the second item in the tuple and the shift is -1 or one character leftward in the

input string if the first item in the tuple is a 1 (i.e. a match of the character has

occurred, we move leftward as in the Boyer-Moore algorithm, and we transition to the

next state effectively with the goto function or the g function of the Aho-Corasick

algorithm); otherwise, the next state is the start state and the shift in the input

string is rightward and indicated by the second item in the tuple. Note that upon a

mismatched character that is not in any of the keywords, the first item in the tuple

will always turn out to be a 0.

The complexity analysis of the algorithm’s pre-computation shows that more work

is done than simply constructing the goto and failure (f) functions as is done in the

AC algorithm, but these processes are at least as involved, meaning that the time

required to construct those functions is linearly bounded by the total length of all

keywords [35]. Constructing the skip1 table takes time linear in the total length of

all keywords plus (+) the size of the alphabet [35]. Usually the sum of the keywords’

lengths will be the dominant factor here. Constructing the skip2 table takes the most

time and is the dominant part of the pre-computation taking time linearly bounded

by the number of keywords, times (∗) the total length of all keywords, and times

(∗) the size of the alphabet [35]. Unfortunately this is rather lengthy, but Fan and

4.4. Fan-Su Algorithm 71

Su describe the process to be done rapidly because they did not measure the pre-

computation time for more than ten keywords. Their assumption states that real

applications need only to match a few keywords at the same time—which differs from

that of Wu and Manber, who set out to handle keyword sets of sizes in the thousands.

The final memory requirements of the algorithm are represented mainly by the

tuple encoded state transition table which is linearly bounded by the number of states

times (∗) the size of the alphabet. The number of states will always be less than the

total length of all keywords, but it is essentially linearly bounded by it. Thus, the

memory or space requirements are finally concluded to be linearly bounded by the

total length of all keywords times (∗) the size of the alphabet which can be rather

large as is the case in the Aho-Corasick algorithm.

The running-time analysis of the matching phase of the algorithm is similar to

that of the Boyer-Moore algorithm. In the best case a shift of minlen is performed

every time giving a running time bounded by the length of the input text n divided

by minlen or O(n / minlen). Knuth showed that the worst case for the Boyer-Moore

single-keyword pattern matching algorithm was essentially quadratic or proportional

to the length of the keyword times the length of the input text [51]. Similarly, in

the worst case, the Fan-Su algorithm shows quadratic behaviour [35], and the worst-

case running time would be proportional to the input text length n times (∗) the

total length of all patterns M. Like many others, Fan and Su were mostly concerned

with the average case because the worst case is assumed to be rare in practice. To

analyze the average-case running time a probabilistic model is used [35]—as for the

Boyer-Moore algorithm. The average-case running time is bounded by the length of

the input text n times (∗) the ratio R between the cost of discovering the mismatch

and the distance to shift the rightward upon finding the mismatch. The details of the

probabilistic model to calculate the expected value of this ratio R are given in the

4.5. Set Backward Oracle Matching Algorithm 72

algorithm’s original paper, and examining it here is beyond the scope of this thesis.

Fan and Su examine three scenarios for the expected value of R as follows [35]:

1. For a random alphabetic input text R is expected to be less than 0.2.

2. For an English input text R is expected to be less than 0.4.

3. For a random binary input text R is expected to be greater than 1.0.

Interpreting this means that for an English text approximately only 40% of the

characters in the input text need to be examined during the matching phase. Fan

and Su also show the results of their experimentation which essentially determine

that R and thus the running time grows as the number of keywords increases, but

diminishes slightly as the keywords’ lengths increase. Lastly, because R is large for

random binary input texts, matching binary patterns using this algorithm is not

recommended [35].

4.5 Set Backward Oracle Matching Algorithm

The Set Backward Oracle Matching (SBOM) algorithm [6, 63] is the extension of the

Backward Oracle Matching (BOM) algorithm [3, 63] to multiple keywords (see Section

3.5 for for a review of factors and oracles), with the factor oracle constructed for a set

of words instead of just one word. The running time and space of the pre-computation

phase of the algorithm, which creates the factor oracle, is linear in M , the sum of the

keyword lengths. Unlike many pattern matching algorithms—especially for multiple

keywords—this algorithm claims to work well for all kinds and sizes of alphabets and

for various ranges of p, the number of keywords [6]. Experimental comparisons [6]

show the new tool Ogrep [6] containing the SBOM algorithm consistently and signif-

icantly outperforming GNU’s fgrep and Wu and Manber’s agrep [91]. Experimental

4.5. Set Backward Oracle Matching Algorithm 73

maps displayed in graphs [63] show more specifically that SBOM does better than

the Wu-Manber algorithm for small alphabet sizes in general. SBOM is also better

than Wu-Manber for all alphabet sizes with keyword set sizes of 1000 and greater,

but only for keyword sets with the shortest pattern of length 20 to 25 or greater.

To understand SBOM fully we first look at constructing a factor oracle for a set

of words. The first main step to constructing a factor oracle from a set of words is

to create a trie (keyword tree) out of the set of words. The form the trie takes for

this algorithm is that of the Aho-Corasick trie where the links are transitions for the

automata and the links are labeled—not the nodes. There are at most M + 1 nodes,

but typically fewer because common prefixes are usually found in some keywords,

thus, reducing the size of the trie. Besides the transitions that are created from the

trie itself we create additional transitions called external transitions. There can be at

most M many of such external transitions.

The construction of the factor oracle uses a function called the supply function

S—as in the BOM algorithm—which for some state q we identify another state k as

its supply state [6]. We denote this S(q) = k. If a state q does not have a supply

state then S(q) = ∅. Furthermore, to calculate the supply state for a state q we must

have first computed the supply states for all states which correspond to nodes at all

levels between q and the initial state or root node, and thus, we calculate the supply

function for states (nodes) in a breadth-first traversal on the oracle under construction

(trie). Where I is the initial state (root node), we start by defining S(I) ← ∅. Next

we proceed in a breadth-first traversal over the states of the oracle following these

steps [63]:

1. For current state q, initialize the variable k ← S(parent(q)), where parent(q)

represents the parent state (node) of q in the oracle (trie).

4.5. Set Backward Oracle Matching Algorithm 74

2. Initialize the variable σ ← (label of the transition from parent(q) to q).

3. If k = ∅, then S(q) ← I.

4. If k 6= ∅ and there is no transition from state k labeled by σ, then build a

transition from state k to state q labeled by σ. Set k ← S(k) and return to step

3 above.

5. If k 6= ∅ and there is a transition from state k labeled by σ leading directly to

a state s, then S(q) ← s and we are done processing state q.

The worst-case time complexity of constructing a factor oracle on a set of keywords

is O(M) [63]. We give its pseudocode in Algorithm 4.5. Navarro and Raffinot [63]

give the details of the Construct Trie subroutine which are omitted here. The

implied difference (see Algorithm 4.5) in the our Construct Trie subroutine is

that in the construction of the trie all states corresponding to an entire keyword in x

are marked as terminal. This includes at least all leaves in the trie.

This is not strictly all the pre-computation necessary for the SBOM algorithm.

The SBOM algorithm uses Construct Factor Oracle Multi as a subroutine

to construct the factor oracle in time O(p ∗ lmin), where lmin is the length of the

shortest keyword and p is the number of keywords in x. The subroutine is not

exactly used as described, but the approach is fairly close. The SBOM algorithm

creates a factor oracle from the reverse prefixes of length lmin of the keywords in

x. Furthermore, every terminal state q (leaf in the trie) also holds a set F (q) of the

indexes to which whole keywords in x they correspond. In our pre-computation call

to Construct Factor Oracle Multi in Algorithm 4.6 we note that we assume

these changes in Algorithm 4.5.

The matching phase of the SBOM algorithm, therefore, uses a sliding window of

length lmin to scan the text input y. In this window we read right to left the longest

4.5. Set Backward Oracle Matching Algorithm 75

Algorithm 4.5 Factor Oracle Construction Algorithm From a Keyword Set

1: procedure Construct Factor Oracle Multi(x, m, p)
. Input:
. x ← array of p keywords
. m ← array of p integers that are the keyword lengths
. p ← integer representing the number of elements in x and m

2: oracle ← Construct Trie(x, m, p) . Details Omitted
. Marks all states corresponding to an entire keyword in x as terminal (all
leaves)

3: I ← oracle root
4: S[I] ← ∅ . Array S stores supply function values

5: for all states q ∈ oracle (q 6= I) in a breadth first transversal do

6: k ← S[parent(q)] . parent(q) is q’s parent in the trie
7: σ ← label on transition from state k to q
8: while k 6= ∅ and (there is no transition from k to q labeled σ) do

9: Create transition from k to q with label σ
10: k ← S[k]
11: end while

12: if k = ∅ then

13: S[q] ← I
14: else

15: S[q] ← state index of wherever k leads to with transition σ
16: end if

17: end for

18: return oracle
19: end procedure

4.5. Set Backward Oracle Matching Algorithm 76

suffix that labels a path from the initial state [63]. One of two cases may occur as

follows [63].

1. We mismatch at some point on a character a in the input y, and we safely shift

the window to align the left side just past a in y.

2. We reach the beginning of the window successfully and the factor oracle is

in some state q. Because rarely q may be associated with a factor that is not

present in any keyword, we double check that we have actually read the reversed

prefix of the keywords in F (q). If we have actually read the reversed prefix of

the keywords in F (q), we verify each possible occurrence of a keyword match

by comparing each keyword in F (q) against the input y.

The worst-case time complexity of the SBOM algorithm is O(n ∗ M) which is

quite bad, but on average it performs sublinearly in n [63]. We give its pseudocode

in Algorithm 4.6.

Allauzen and Raffinot [6] extend Set Backward Oracle Matching to also use suffix

oracles whereby longer shifts are achieved; however, the construction of suffix oracles

is more complicated and not discussed here. Their approach to string matching

using suffix oracles is called Set Backward Suffix Oracle Matching (SBSOM). Of

more interest for our applications is bounding the worst-case time on both these

algorithms to be linear in n. This is achieved [6] by combining the Aho-Corasick

algorithm [2] (see Section 4.1) with either SBOM or SBSOM. The respective resulting

algorithms are called MultiBOM and MultiBSOM. Just as SBOM and SBSOM are

the multiple-keyword counterparts to the single-keyword algorithms BOM and BSOM

(see Section 3.5), MultiBOM and MultiBSOM are multiple-keyword counterparts to

the single-keyword linear-running-time TurboBOM and TurboBSOM algorithms (see

Section 3.5). To actually achieve the linear worst-case running time, we begin each

4.5. Set Backward Oracle Matching Algorithm 77

Algorithm 4.6 Set BOM Multiple-Keyword Matching Algorithm

1: procedure SBOM(x, m, p, y, n)
. Input:
. x ← array of p keywords
. m ← array of p integers that are the keyword lengths
. p ← integer representing number of elements in x and m
. y ← array of n bytes representing the text input
. n ← integer representing the length of y

2: oracle ← Construct Factor Oracle Multi(x, m, p) . Pre-computation
3: lmin ← min{m[0], m[1], ..., m[p − 1]} . Min. keyword length
4: I ← oracle root

5: i ← 0 . Matching
6: while i ≤ n − lmin do

7: q ← I
8: j ← lmin − 1
9: while j ≥ 0 and q 6= ∅ do

10: q ← state reached from q by transition labelled y[i + j]
11: j ← j − 1
12: end while

13: if q 6= ∅ and j = −1 then

14: if y[i]...y[i + lmin − 1] is a prefix in a keyword of F (q) then

15: Check for matches in keywords of F (q) against y and output

matches
16: j ← 0
17: end if

18: end if

19: i ← i + j + 1 . Shift
20: end while

21: end procedure

4.6. Chapter Summary 78

search through the sliding window by searching forward (left to right) using the AC

algorithm. The backward search, using the oracle to find a mismatch, proceeds up to

some point where the AC search stopped. Details on this algorithm are not complete

in references used herein because they focus on SBOM primarily and not on the

bounding the worst case; however, we provide further details about MultiBOM in

Section 7.2 where we rename MultiBOM to MBOM after some modifications and

elucidation. Because MultiBOM and MultiBSOM (and our MBOM) use the AC

algorithm in this forward searching fashion the characters (bytes) of y are read at

most once by each sub-algorithm (the AC pass and the backward pass with the

oracle) for a total of at most 2n reads [6]. For the best performance the transitions

for the factor oracle and AC automaton (trie) should be available in constant time;

although, this typically involves using more memory.

4.6 Chapter Summary

Above we have covered a select few of the algorithms that offer solutions to the

general keyword matching problem discussed at the beginning of this chapter. We

have presented the algorithms in a fashion intended to be easy to understand along

with background (see Chapter 3), diagrams, and pseudocode. This serves as both a

state-of-the-art detailed survey, and provides necessary context for what follows in

the remainder of this thesis.

The Aho-Corasick [2] algorithm is a classic solution which has been used in many

applications and as a core element of other pattern matching algorithms. It is useful

because of its worst-case running time which is linear in n, just as the Knuth-Morris-

Pratt algorithm [51] is for matching a single keyword in a text. The Commentz-

Walter [23] algorithm seems to be the first multiple-pattern matching algorithm that

4.6. Chapter Summary 79

successfully achieved a sublinear average running time thanks to the application of

the filtering idea from Boyer and Moore [14] where parts of the text are skipped.

As there exists a Horspool variant [46] which simplifies the Boyer-Moore algorithm,

we note that [63] presents a set-based Horspool algorithm simpler than Commentz-

Walter algorithm; although, it is only efficient for keyword sets with few keywords

and with large alphabets.

More algorithms do exist and they are worth briefly mentioning here. The idea

of bit-parallelism, semi-numerical techniques (as used in Karp-Rabin [49]), and low

level bit-wise operations to manipulate the text and patterns are sometimes used in

multiple-pattern matching algorithms for their low level operations speed and suit-

ability to the problem of approximate pattern matching.

Kim and Kim [50] present such a solution with good experimental results that

outperform Wu and Manber’s agrep [91]. Unfortunately, as with many algorithms it

is not suited to a wide range of applications. Their is based on a compact encoding

scheme which is best used with small alphabets. In practice, any bit configuration of

a byte gives an alphabet of size 256 which is not encodable in a compact manner (it

requires of course 8 bits per byte or symbol in the alphabet). Although not discussed

by Kim and Kim [50], this is significant as their experimental results are achieved

using small alphabets like that of an English text and a DNA sequence which both

contain alphabets encodable into less than 8 bits (e.g. DNA sequences use only 4

symbols or two bits per symbol).

Prior to Kim and Kim’s algorithm, Baeza-Yates and Gonnet created the popular

Shift-OR algorithm [12] primarily to match single keywords which they extended

to handle don’t care symbols, classes of characters, and multiple patterns as well.

This algorithm works well for short keywords especially, and although it does not

skip any part of the text, it may outperform sublinear algorithms with small pattern

4.6. Chapter Summary 80

sets and patterns of short lengths due in part to its suitability for fast and simple

implementation with rapidly executable bit operations.

Navarro and Raffinot have also studied and implemented bit-parallel approaches

to suffix automata [61, 62]. The tool nrgrep [61] is based on the bit-parallel sim-

ulation of a non-deterministic suffix automaton. Bit-parallelism in string matching

algorithms is often associated with complex pattern matching (such as regular expres-

sions) and approximate string matching as is the case with nrgrep [61]. Unfortunately,

bit-parallel approaches with automata are harder to extend to the multiple-pattern

matching problem.

Baeza-Yates and Navarro more recently have concluded in their extensive study

of string matching algorithms [11] that with respect to the multiple-pattern matching

problem, in general, bit-parallelism solutions like the Multiple Shift-And algorithm

[12] are not as useful or extendable as the ideas and approaches of automata and

filtering (skipping over text that is not present in any keyword). One would expect

this to be an authoritative conclusion given that Baeza-Yates and Navarro were both

pioneers and experts in the area of using bit-parallelism in string matching [12, 62].

Navarro and Raffinot [63] reiterate this conclusion for any size keyword set that is

not small.

More recent developments in string matching have started to use extensions of

automata such as directed acyclic word graphs (DAWGs or suffix automata) [29, 30],

factor oracles [3, 5], and suffix oracles [4, 5]. Of the multiple-keyword matching

variety are the DAWG-Match algorithm [27], the Multiple Backward DAWG Match-

ing (MultiBDM) algorithm [69], the Multiple Backward Non-deterministic DAWG

Matching (MultiBNDM) algorithm [62]—which also uses bit parallelism and is the

most recent of them—and the Set Backward DAWG Matching (SBDM) algorithm

[30] which is average-case optimal while maintaining a worst-case linear running time

4.6. Chapter Summary 81

[11]. In practice, the Set Backward Oracle Matching (SBOM) and Set Backward

Suffix Oracle Matching (SBSOM) algorithms [6] are simpler and faster [11, 63] while

still extendible to have optimal linear running times in the worst case [6] as shown

above. Moreover, they use substantially less memory [63].

Lastly, more discussion on single- and multiple-keyword string matching solutions

can be found in other resources [9, 10, 11, 28, 63, 30]. In the next chapter (Chapter 5)

we will see which specific characteristics are desirable and acceptable for the pattern

matching algorithm of a NIDS.

Chapter 5

Pattern Matching for NIDS

Signatures

Matching patterns in a NIDS is a problem more specialized than the general keyword

matching problem described in Chapter 4. In this chapter we will look at this problem

and what specific requirements make it so particular. Furthermore, we will re-examine

the candidate algorithms presented in Chapter 4 to indicate which specific needs

they fulfill, and in turn, prescribe algorithms that could be helpful for those wishing

to create the best possible pattern matching solution in a NIDS. In the context of

signature matching in a NIDS the signature database corresponds to the keyword set

and the network packets which the system scans correspond to the text input for a

pattern matching algorithm.

5.1 Algorithm Requirements

Regarding modern developments and proposals on NIDSs, numerous studies reveal

several important idiosyncrasies that NIDSs must address in order to accomplish their

82

5.1. Algorithm Requirements 83

signature matching goals. To better understand NIDSs and to make educated choices

for the signature matching engine of NIDSs and similar applications, we examine

these requirements in turn.

5.1.1 Searching for Multiple Patterns Simultaneously

Perhaps the most basic requirement for general purpose signature matching is an

ability to match multiple patterns quickly to the point where it effectively happens

simultaneously. This is due to the fact that signature matching in a NIDS typically

requires matching a very large number of signatures. Thus, there is indeed a key-

word set of size greater than one, suggesting a multiple-keyword pattern matching

algorithm. Single-keyword pattern matching algorithms are in general better-known

and understood to most; however, in this domain they are of no direct use, as serially

searching the input text for keywords one at a time is far less efficient.

5.1.2 Searching for Large Sets of Patterns

When presented with the task of intrusion detection we note that the number of

known intrusions is growing and is almost surely to continue to do so. This growth

was observed in the past in the rapid expansion of the size of the signature database

for the Snort NIDS. Tuck et al. [86] display a graph of the growth of the Snort rule

database, indicating the database nearly tripled between the years of 2001 and 2004.

In 2006 the Snort signature database comes with approximately 6000 rules. Custom

rules may be also defined further expanding the size of the database. Also a single

rule may contain multiple signatures (patterns to search for). However, often many

signatures are disabled in tailoring to the individual deployment needs, resulting in

the opposite effect.

5.1. Algorithm Requirements 84

Furthermore, depending on the NIDS there may be multiple keyword sets used,

depending on the particular input. This is also a phenomenon present in the Snort

groups of rules (see Chapter 2). It is certainly probable that some groups are quite

large and some quite small. This means that it is possible that one algorithm may

not work for all sizes of groups. It is normal that as the keyword set (group) size

increases we see a decrease in the performance of pattern matching algorithms, and

different algorithms scale differently. There are, in general, more algorithms that

work well on small keyword sets than large keyword sets, but algorithms suited for

matching using a large keyword set might not be as well suited when dealing with

a small keyword set. Thus, a NIDS may use more than one algorithm if applicable

to its implementation. Lastly, we note that small keyword set sizes suggest that the

algorithm may run with fewer cache misses in practice.

Nonetheless, as just one example, Snort demonstrates how a NIDS can contain

a large database of signatures. This of course translates to the requirement for the

support of a large keyword set.

5.1.3 Searching With a Large Alphabet Size

Because network packets have no restrictions on what kind of data they carry, NIDSs’

input and signatures have no restrictions on the alphabet. In short, any byte of input

can contain any of the 256 possible values, and hence we are dealing with an alphabet

of size 256.

With respect to most string matching literature this is a large alphabet. Typ-

ical alphabet sizes considered in string matching literature are: 4, for DNA/RNA

sequences; 52, for the English dictionary; or 128 for ASCII. NIDSs, however, may be

used to search for binary patterns in network packets resulting in requiring them to

work on a larger alphabet of size 256. Many string matching algorithms designed to

5.1. Algorithm Requirements 85

work well with small alphabets are, thus, not at all suitable for NIDSs. While Navarro

and Raffinot [63] demonstrate the effect of changing the alphabet size for different

multiple-pattern matching algorithms, their experimental results, shown as various

maps, do not include alphabets larger than 64. Nonetheless, we are able to get an

idea of some algorithms unlikely to work well for large alphabets. Alas, overall, more

algorithms are suited to small alphabets than to an alphabet of size 256. One possible

way of coping with this inherent large alphabet size is to consider only 4 bits at a

time instead of 81. To our knowledge this is an unexplored method of shrinking the

alphabet down to 16 symbols for NIDSs. Doing so may improve the performance of

certain pattern matching algorithms, but we leave this research area for future work.

5.1.4 Searching With a Wide Range of Keyword Lengths

The lengths of the individual keywords within a keyword set can have great con-

sequences on the performance and memory requirements of an algorithm used for

matching. A requirement of a NIDS matching signatures is that the algorithm used

must be capable of handling patterns of various lengths. Typically this is not a

problem for multiple-keyword string matching algorithms until the length of a single

keyword in the set gets very small (1 – 3 characters). This, of course, is a serious

concern for the algorithms that perform best when the length of the shortest key-

word in the set is not very small. Filtering-inspired algorithms that skip over parts

of the input search data can only ever shift their windows by this minimum length.

Of course this becomes most problematic if there is a keyword of length one in the

set. Almost always these filtering inspired algorithms work best with a minimum

keyword length that is quite large as to increase the window’s shift distance because

the longer shift distances is how they achieve their sublinear running times on the

1This idea was suggested by P. Morin.

5.1. Algorithm Requirements 86

average. Unfortunately, filtering style algorithms are only as good as their weakest

link; they cannot shift further than the length of the shortest keyword in the set.

For the Snort NIDS, Tuck et al. [86] display a graph of the distribution of the

lengths of unique keywords found in an older Snort database. It indicated that indeed

there are some keywords with lengths one and two, although most keywords have

lengths between 4 and 15. This indicates that to date, known attack patterns are

generally short. Because these short keywords are known a priori it would certainly

be best to try to take them out of the signature database or else extend them to be

longer with content before or after them if possible when the length of the shortest

keyword has any impact on the algorithm being used.

5.1.5 An Algorithm Designed for the Average and Worst

Cases

Because NIDSs detect and sometimes stop attacks, attackers would naturally like to

break them in some way so their real attacks can go unnoticed. For this reason NIDS

are typically and intentionally targeted by attackers for denial of service attacks to

try to cause the system running the NIDS’s sensor to overload and begin dropping

packets. One such recently discovered manner to take down a system is through an

algorithmic complexity attack [31].

An algorithmic complexity attack is an attack whereby denial of service is possible

without the traditional overwhelming flood of inputs typically considered necessary.

Instead of the overpowering flood of general input that causes the capitulation of the

system to the point that it is useless, an algorithmic attacker crafts the input such

that the worst-case system behaviour is unremittingly invoked again and again. Using

this technique can often have devastating effects on systems that are unprepared for

5.1. Algorithm Requirements 87

this even without vast amounts of input. Depending on the algorithms present in a

given system and how much they are relied upon, it may be that hardly any input

of this specially crafted nature is necessary in order to assemble a successful attack.

Awareness and prevention is the best defense against these attacks.

For algorithmic complexity attacks to be possible and practical for attackers, they

must have two things: knowledge of the underlying algorithms in the system (and

possibly the architecture as well), and the ability to manipulate at least some influ-

ential parts of the input. Almost all systems take input from a source that can be

manipulated, some more than others. Knowledge of the algorithms and data struc-

tures in a system may be something harder to achieve or guess at unless the code for

the system is readily available such as it is for open-source software projects.

In systems connected to a network, attackers can often easily mount an algorithmic

complexity attack because they can send any amount of any kind of traffic they wish.

It is important to understand that although this traffic may attempt to invoke the

worst-case behaviour for a system, the traffic does not need to look malicious in any

way. In fact, there is usually no way of telling if it is legitimate or not. NIDSs are

particularly susceptible to this and their sensors are purposely made to face attack

traffic in hopes of detecting attacks. This is often traffic from sources like the Internet

that cannot be controlled by the owners of the system. This means that potential

attackers most often have the ability to manipulate their input to the NIDS to a

large extent. Furthermore, and to make matters worse, a few popular NIDSs are

indeed open-source software, and for the rest we generally don’t recommend security

through obscurity for kinds of systems like a NIDS where it is likely going to be

targeted for attacks. That is to say, relying on the fact that an attacker can’t guess,

reverse engineer or otherwise obtain knowledge of the system’s details is generally a

bad assumption to make for a NIDS.

5.1. Algorithm Requirements 88

Snort and Bro are two open-source NIDSs that have already been seen as suscepti-

ble to algorithmic complexity attacks. The renewed interest in these attacks is largely

due to the research of Crosby and Wallach [31], in which they demonstrate bringing

down the Bro NIDS. Specifically, they attack Bro with a specially crafted stream of

network packets at a rate of 16 Kbps and cause the system running Bro to begin

dropping approximately 70% of all traffic going to it. Obviously for a NIDS, whose

goal it is to detect attacks, dropping traffic is unacceptable. This attack demonstrates

the severe threat of the algorithmic complexity attacks with very little traffic at all

given that the line rates targeted for most NIDSs are now between a thousand and

one hundred thousand times greater than that which was needed to topple the Bro

NIDS. Tuck et al. [86] also describe in less detail an attack against Snort’s Wu-

Manber algorithm variation for its default pattern matching algorithm. Recently,

more algorithmic complexity attacks have been investigated in non-IDS applications

[39].

In summary, not just the pattern matching algorithm, but all algorithms, data

structures, and architecture should be well engineered in a NIDS to prevent attackers

from invoking ongoing worst-case behaviours. The best way to do this is designing

with the average- and worst-case running time and memory complexities in mind for

all of the mechanisms employed in the NIDS. We note, however, that of all algorithms

it is usually the pattern matching algorithm of the signature matching engine that is

crucial to NIDS performance. In systems such as Snort, approximately 70% to 80% of

the NIDS’s processing time is consumed by the signature engine’s pattern matching

algorithm [86].

5.2. Candidate Algorithms to Fulfill Requirements 89

5.1.6 Extended Searching Characteristics

The problem of extended string matching as described by Navarro and Raffinot [63]

involves searching for keywords with special characteristics beyond what the exact

(general) keyword matching problem considers. This is a more sophisticated kind of

searching between the problems of simple string matching (considered herein until

now) and matching regular expressions which are the most complex pattern types of

all to match. The extensions typically seen in general are: case insensitivity, don’t care

symbols, wildcards, classes of characters, bounded length gaps, optional characters,

and repeatable characters.

In NIDSs for signature matching, case insensitivity is often a requirement, but is

almost always an easy feature to add to an algorithm that doesn’t provide for case

insensitivity already. Other extensions are not common enough to call a requirement

for pattern matching algorithms in a NIDS; however, certain specialized systems may

benefit from having certain kinds of pattern extensions mentioned here.

5.2 Candidate Algorithms to Fulfill Requirements

In this section we look at the multiple-keyword pattern matching algorithms pre-

sented in Chapter 4 and the requirements as described in Section 5.1. Based on the

requirements set forth for a NIDS, we compare and contrast the algorithms in Table

5.1 and provide explanations of the data in the table below.

The Aho-Corasick (AC) algorithm [2] works well in general except that we rate it

poorly on its ability to handle large alphabets and large keyword sets. This is due to

the fact that the memory it requires to perform well in these cases is exceedingly large.

Typically, the fastest access for state transitions comes from the implementation of

5.2. Candidate Algorithms to Fulfill Requirements 90

AC CW-B CW-B1 WM FS SBOM MultiBOM

Linear worst-case running time X X X

Sublinear running time on average X X X X X X

Supports many keyword lengths X

Supports a large alphabet X X X

Supports a large keyword set X X X

Simple to understand & implement X X X

Table 5.1: Table of algorithms’ fulfillment for NIDS desirable features

a table that can be on the order of (size of the alphabet * total number of states).

Because the AC state machine is essentially built from a trie the number of states is

often large as well, up to O(M) is the worst case. Despite this the AC algorithm is

widely used for its simplicity in many contexts and many applications don’t require

a large alphabet. Moreover, the AC algorithm is currently being used in NIDSs

such as Snort; albeit, with a lot of enhancements such as table compression that

reduce the memory usage of the algorithm. This brings us to the last and important

fact regarding the running time complexity of the AC algorithm. Its linear bound

on the worst-case running time makes it a suitable algorithm for NIDSs, and when

a NIDS is under attack this is undoubtedly important. However, there have been

numerous attempts to speed up Snort’s performance using other algorithms like the

Wu-Manber algorithm [92] where a better average-case solution was achieved. There

is high demand for this because of the push to bring NIDSs like Snort to handle gigabit

network speeds and beyond. The trouble with such an idea is that tweaking Snort

or any NIDS to be able to handle those speeds without being able to handle worst-

case scenarios under those speeds may not benefit the NIDS users and puts them at

serious risk. For the time being it seems that the AC algorithm’s steadfast running

time is dependable for NIDSs which is crucial when under attack. Another recent

development in multiple-pattern matching is using the AC algorithm as a component

within another primary algorithm to bound the whole worst-case running time. This

5.2. Candidate Algorithms to Fulfill Requirements 91

is something we feel hasn’t yet gotten any attention in the NIDS pattern matching

research.

The Commentz-Walter (CW-B and CW-B1) algorithms [23] are the same in all

respects except in its worst-case running time. Typically research surrounding the

Commentz-Walter algorithms refers to only one algorithm which is assumed implic-

itly to be the simpler algorithm B. In fact, most research does not even reference

Commentz-Walter’s work in the original technical report which is where we have

found the only explanation of the B1 algorithm even though it is described to be

the better of the two algorithms in all respects with the exception of its additional

difficulty to understand and complexity to implement. The B1 algorithm may in fact

be very useful to NIDS research given its worst-case running time complexity is linear

in the input length.

The weak points of both Commentz-Walter algorithms are the algorithms’ heavy

memory usage. In particular algorithm B1 trades off better performance while con-

suming even more memory. We rate the Commentz-Walter algorithms poorly with

respect to handling a wide range of keyword lengths due to its reduced performance as

the size of the minimum length keyword decreases. We note that this is the case with

all algorithms that use a suffix-based searching approach that proceeds backward

within a window. However, this same approach buys these algorithms a sublinear

running time in the average case. Finally, both algorithms do take up more memory

than the AC algorithm; large keyword sets tend to use a lot of memory which may be

a concern in some cases. In addition, although we do not focus on pre-computation

complexities, we note that CW-B1 has substantial time and space overhead during

pre-computation.

The Wu-Manber (WM) algorithm [92] as mentioned above has been used in Snort

in the past for its fast sublinear average-case speed, however it performs badly under

5.2. Candidate Algorithms to Fulfill Requirements 92

an algorithmic complexity attack and has a quadratic (in n) worst-case running time.

Furthermore, its performance becomes poor with a large variance in the keyword

sizes, especially as keywords become very small since it uses a suffix-based approach

where shifts are limited to the size of the shortest keyword. In most other respects

WM is excellent, handling a large alphabet size, though with quite a bit of memory.

Although, Wu and Manber describe how to easily compress the space usage without

sacrificing too much performance. Also, WM was designed to be able to handle mas-

sive keyword sets, and it does so very well. Lastly, we rank WM as marginal to poor

with respect to its ability to be implemented from scratch. Generally, most research

implementations take code from the source of Wu and Manber’s freely available agrep

[91] tool. Still, the code is quite convoluted and the many tables and hash functions

used, along with its dependence on C programming structures like pointers, make the

algorithm harder to understand overall.

The Fan-Su (FS) algorithm [35], as detailed in Section 4.4, performs badly on

random binary data which implies a large alphabet, and it has a quadratic running

time complexity in the worst case. This makes it a poor choice for NIDSs. Never-

theless, it is fast on the average and its implementation is a fairly easy extension of

the AC algorithm. Because FS also uses a suffix-based approach, its ability to deal

with small patterns decreases performance. As a final point, FS does not deal well

with large keyword sets for matching, taking up more memory than the Aho-Corasick

algorithm, as well as causing pre-computation to be quite lengthy [35].

The Set Backward Oracle Matching (SBOM) algorithm [5, 63] fulfills many of

the requirements and some partially which we will explain. Firstly, on average the

SBOM algorithm is often the fastest in practice (along with the WM algorithm) for

typical string matching applications. It is markedly the simplest of all algorithms

to implement; although, it is not as widely known as other algorithms because it

5.3. Chapter Summary 93

is more recent. Also the oracle it constructs will use less memory than the Aho-

Corasick trie because it is built on reversed keywords truncated to the minimum of all

keyword lengths. This results in the SBOM algorithm being comparatively excellent

for large keyword sets, and progressively better for large alphabets as the minimum

keyword length increases and as the keyword set size increases. Unfortunately, one

weak point is that this algorithm is factor-based, and performs searches backward

within a window like the suffix-based algorithms meaning that it does not handle

keyword sets well if they contain very small keywords. Another weak point of the

SBOM algorithm is its worst-case running time is very bad. However, the enhanced

version, MultiBOM [5] which uses AC as a sub-component, successfully introduces

a linear bound on the worst-case performance. As mentioned above, MultiBOM has

not yet received attention in NIDS research. Although it is still slower than SBOM

in practice, MultiBOM’s average-case performance is sublinear and much faster than

AC alone. One stumbling block of MultiBOM, shared by SBOM, is its ability to

handle small keyword lengths.

5.3 Chapter Summary

In this chapter we presented the state of the art in pattern matching algorithms for

use within a signature matching engine of a NIDS. We reviewed the topic of pattern

matching within the context of NIDSs by identifying and discussing the requirements

that such a signature matching engine has and how certain algorithms fulfill those

requirements. Finally, we compared and contrasted the multiple-pattern matching

algorithms from Chapter 4. Although there is no all-around perfect choice, in our

discussion we explained how suitable each algorithm is in a NIDSs such as Snort.

Chapter 6

Software Solutions That Have

Been Proposed

In this chapter we look at various solutions proposed in the recent research of others.

Of particular interest are the solutions pertaining to the Snort NIDS and other NIDSs

where signature matching comprises an important part of the processing time. Al-

most all modern research ascertains the importance of the multiple-keyword pattern

matching algorithms used in a NIDS’s signature matching engine. Although NIDS

engineers may have elucubrated excellent signature matching engines over years of

development, in testing, NIDSs such as Snort still reveal that pattern matching is

often the most expensive and lengthy process they perform.

In this thesis we are only considering solutions that have been proposed that are

software-based; however, hardware-based solutions are also currently being proposed

and progressively becoming more realizable with the decrease in costs of hardware

like memory. Nevertheless, at the present time we believe software solutions to be of

broader interest and greater practicability. We begin our investigation of proposed so-

lutions by examining research that led to the use of multiple-keyword pattern match-

94

6.1. The First Multiple-Keyword Pattern Matching Solutions for Snort95

ing algorithms in Snort, and then follow with a moderately detailed examination of

the pattern matching options available in the current version of Snort. Subsequently,

we introduce a couple of proposals that offer new benefits to Snort.

6.1 The First Multiple-Keyword Pattern Match-

ing Solutions for Snort

Before version 2.0, Snort simply used the Boyer-Moore [14] single-keyword pattern

matching algorithm to search for signature content in many passes over the input

packets. Some of the first research into applying multiple-keyword pattern matching

algorithms was done by Fisk and Varghese [37], who proposed the use of the Aho-

Corasick [2] algorithm and a new algorithm they named the Set-wise Boyer-Moore-

Horspool (SBMH) algorithm. In this section we briefly look at their algorithm and

research which probably significantly impacted Snort (hence its changes in version 2.0)

and other applications like it such as virus scanning, firewalls, content distribution

networks, layer-7 switches, and other NIDSs. Because at the time of their research

Snort didn’t use a multiple-keyword pattern matching approach, the results of adding

AC and SBMH to Snort gave a massive boost to Snort’s processing speed. Because

AC has already been introduced herein (see Section 4.1), we begin by introducing

SBMH.

The Boyer-Moore-Horspool (BMH) algorithm, Horspool’s [46] variant of the Boyer-

Moore algorithm (see Section 3.4 for details), is a well-known algorithm for single-

keyword string matching that uses a suffix-based search approach. Although the

Commentz-Walter (CW) [23] algorithm (see Section 4.2) did multiple-keyword string

matching in sublinear time in the average case, the solution is rather complex. Fisk

and Varghese propose SBMH which uses simplified ideas similar to CW and BMH.

6.1. The First Multiple-Keyword Pattern Matching Solutions for Snort96

The algorithm begins by constructing a trie using the reversed keywords. SBMH then

builds a set-wise equivalent of the shift table (from BMH) by effectively using all the

keywords’ tables and taking the most conservative value for the final table of the

whole keyword set. That is, the shift value for some input character (byte) c in the

skip table is the minimum of all the values from all the individual keywords’ tables at

the same index for character c. This conservative use of the minimum of all the values

is necessary to avoid skipping over potential matches. However, it also implies that

the algorithm is limited to shifts no greater than the length of the shortest keyword

in the set. This algorithm was later further explained with pseudocode by Navarro

and Raffinot [63] as an alternative to the Commentz-Walter’s B algorithm variant.

Because of its suffix-based search approach, SBMH achieves sublinear search time

on average; albeit, with worst-case running time O(n * the length of the longest

keyword). Unfortunately, SBMH was not tested in Snort with specifically worst-

case crafted packets, but rather with high workload packets [37]. Fisk and Varghese’s

experimental results showed that AC and SBMH performed far better than the single-

keyword string matching approach used in Snort. Indeed, using the multiple-keyword

string matching algorithms they suggested provided far more scalable solutions than

that implemented at the time. Based on their experimental observations, Fisk and

Varghese’s final suggestions were to use Boyer-Moore on rule groups (see Chapter 2)

of size 1, to use the new SBMH for rule groups of size 2 to 100, and for all other

cases to use Aho-Corasick. Lastly, we also note that Coit et al. [20] did very similar

research to that of Fisk and Varghese around the same time, suggesting the move

to multiple-keyword string matching algorithms for the signature matching engine in

Snort.

6.2. Current Solutions in Snort 2.6 97

6.2 Current Solutions in Snort 2.6

Originally, Snort had no multiple-keyword pattern matching algorithm at all, using

only the single-keyword Boyer-Moore [14] algorithm to search for signature patterns.

Of course this made Snort very slow, and the developers quickly realized better so-

lutions were available. In version 2.0 of Snort basic Aho-Corasick [2] (a multiple-

keyword pattern matching algorithm) and the SFK Search algorithm (described be-

low) were added to vastly improve the performance. Finally, version 2.2 of Snort

included more pattern matching algorithms as configuration options of the signature

matching engine. Those options remain the same in version 2.61and are as follows:

1. AC-Std is the basic Aho-Corasick algorithm that was included in version 2.0.

This is the default option in Snort 2.6.

2. AC-Full is an optimized Aho-Corasick algorithm that uses a full matrix state

transition table.

3. AC-Sparse is an optimized Aho-Corasick algorithm that uses a sparse matrix

state transition table.

4. AC-Banded is an optimized Aho-Corasick algorithm that uses a banded matrix

state transition table.

5. AC-Sparse-Banded is an optimized Aho-Corasick algorithm that uses a sparse-

banded matrix state transition table.

6. Modified Wu-Manber (MWM) is an algorithm derived from Wu-Manber

[92].

1At the time of this writing, Snort is still in beta version 2.6 (RC2); although, in the final 2.6
release, no changes are expected to be made to the algorithms discussed herein.

6.2. Current Solutions in Snort 2.6 98

7. Low-Mem Trie (also called SFK Search from version 2.0) is a low-memory

alternative that builds a trie from the keyword set and effectively performs a

Boyer-Moore style bad character shift search through the input until a possible

match is found, whereupon a slower search using the trie is performed.

All of the above options except the first and the last are new additions as of

version 2.2. They are used on rule groups which are essentially groups based first on

protocol (TCP, UDP, ICMP or other IP) and subsequently source and destination

ports if applicable (for TCP and UDP). Every rule group will thus have keyword

sets or what can be thought of as a set of patterns. In Snort, the algorithms have

integrated support to handle case insensitivity if needed, and the ability to test for

the absence of patterns in packets as well. Both of these extensions are fairly trivial

to add.

Each rule group stores its own preprocessed keyword set; thus it should be possible

to use different search algorithm options from the list above for different rule groups.

However, currently all groups get assigned the same algorithm option. This is an area

we suggest for potential improvement in the future (see our AUTO option in Chapter

7). Certainly separate keyword sets may have diverse characteristics, and thus, have

dissimilar requirements for algorithms. In fact, the MWM option accounts for this

by adjusting its approach based on the size of the keyword set.

The Modified Wu-Manber (MWM) option actually uses multiple passes of a single-

keyword string matching algorithm when the keyword set is of size four or less. The

algorithm used is the Horspool [46] variant of Boyer-Moore (see Section 3.4). When

there are at least five keywords in the set a multiple-keyword string matching algo-

rithm is used that resembles Wu-Manber. The original Wu-Manber algorithm (recall

from Section 4.3) uses a table called SHIFT that holds appropriate shifts for every

possible two bytes (two was the standard Wu-Manber block length). This SHIFT

6.2. Current Solutions in Snort 2.6 99

table resembles a Boyer-Moore bad character shift table and in Snort’s MWM this

(bad character shift table) is its name. Unlike the original Wu-Manber, MWM may

use a block length of one or two bytes as its indices into the tables it uses.

Furthermore, MWM implements another shift table, the bad word shift table,

which is optionally usable in addition to the bad character shift table; it is hard-

coded to be used when the shortest keyword length is greater than one. If the shortest

keyword length is one then neither of the shift tables are used, and a shift of length one

is always performed followed by a lookup into the prefix table just as the Wu-Manber

algorithm does as its third step (see Section 4.3).

MWM also implements a pattern-match tracking mechanism using extra memory

that Snort is usually configured to keep anyhow. Although we have not seen results

showing the benefits of this, it is documented with its implementation that it helps

MWM’s worst-case behaviour. Unfortunately, configuring Snort to use the MWM

option is potentially unsafe because all the algorithms used in the MWM option

have quadratic worst-case behaviour. This means they are particularly susceptible to

algorithmic complexity attacks (see Section 5.1.5).

AC-Full is the probably the best NIDS option involving Aho-Corasick, as it uses

a full matrix state transition table; thus, it has the least performance overhead in

determining the next state upon the triggering of the state machine’s transitions. It

uses more memory than the other newly added options, but at about one quarter to

one half that of the AC-Std option. It provides for up to 216 states. Markedly, it is the

fastest AC option in practice [65], as well as being the fastest overall that provides

a linear bounded worst-case running time under situations such as an algorithmic

complexity attack.

Unless the slight increase in the memory usage is of concern, we feel that AC-Full

is currently the best option to safely use in a Snort NIDS, especially if it is used

6.3. Piranha 100

inline in the network where it can drop packets as an intrusion prevention system.

Furthermore, we feel that where memory is a concern, configuration of one of the

other new Aho-Corasick options is the best way to go. Even so, it does not take

a great deal of intuition to believe that memory will become less of a concern and

algorithmic attacks will become increasingly frequent on NIDSs, requiring them to

work as quickly as possible. Although the lower memory options improve caching

performance in benchmark tests, it does not help when the algorithms are used in

Snort. Snort source code comments indicate that unfortunately, after a pattern match

test has been performed Snort moves on to doing so many other things that once it

returns to do another pattern match test the cache is voided.

In an application such as a NIDS, saving memory only to cause slower processing

seems imprudent given that the goal of a NIDS is performance high enough that all

packets get inspected. Otherwise, packets may get dropped from the frame buffer

due to overflows during peak times of overwhelming traffic floods (caused by denial

of service attacks for example).

6.3 Piranha

Piranha [8] is an enhancement made to Snort’s signature matching engine in the form

of a new algorithm entirely. It is quite simple to understand, based on the observation

that if the rarest substring of a pattern does not appear, then neither will the whole

pattern [8]. The algorithm works on rule groups which is how Snort groups keywords

or patterns into sets.

The implementation of Piranha uses four-byte (or 32-bit byte aligned) substrings

because they fit easily into a four-byte integer. The algorithm finds all the substrings

of all patterns and associates only one substring to each keyword from the set. The

6.3. Piranha 101

substring from the keyword that will represent the keyword is always the rarest sub-

string overall (the substring that appears the least in all of the keywords). After

this straightforward pre-computation there are a set of substrings that are searched

for in the input (packet headers and payloads) instead of searching directly for the

keywords. However, certain substrings may represent more than one keyword from

the set. In fact, the substrings are used as an index into a hash table that stores

a list of keywords at each index. If when searching packets the four-byte window is

scanned and a non-empty list is found in the hash table, this means that a substring

is matched in the input and one of two possible cases will occur. Firstly, it could

be a false positive or what Antonatos et al. [8] call a collision. This is determined

by the failure of the test for the second case. Secondly, there may be a match of a

represented keyword. To establish if one of the whole keywords that the substring

represents is present in the input, the list of keywords stored under the substring

in the hash table is searched for a match. Instead of directly doing a comparison

between each keyword and the corresponding section of the input in the packet, Pi-

ranha first checks the last two bytes of the keyword (the suffix) to see if they match

the two corresponding bytes in the input. This two-byte suffix check seems to allay

many of the collisions by resolving them faster than doing something like a memcmp

operation in the C programming language.

The two-byte suffix check conflicts with the advice of Wu and Manber [92]. They

argue that in the English language, for example, identical suffixes are more common

than prefixes, motivating their use of a prefix check by means of their PREFIX table

where the first two bytes were used to further reduce collisions from their SHIFT table.

There is apparently no absolute no right or wrong here—it completely depends on

the keywords and the input data. However, we note that a fixed algorithm is easily

attackable via an algorithmic complexity attack. Therefore, we suggest that instead

6.3. Piranha 102

of fixing the algorithm to constantly check one end or a certain position that it be

randomized to some extent. This prevents an attack from knowing how the algorithm

will behave even if the attacker has access to the source code.

Another place that Piranha may be improved in regards to its security is in the

selection of the substrings to represent keywords. For a keyword of length m, there

will be m − 4 + 1 four byte substrings. Of all the substrings it is very possible that

more than one tie as the rarest overall. Antonatos et al. [8] provide an example that

demonstrates choosing the last of the substrings that tie as rarest. This would mean

the keywords would usually get represented by substrings close to their end and that

the substring may possibly be a suffix. This is an imprudent choice given that Piranha

already tests the last two bytes (suffix) of the keyword and the corresponding input.

A trivial improvement to this would be to choose the first of all substrings that tie

as the rarest overall. But, in this case, addressing this potential problem by choosing

another fixed option still leaves the algorithm open to attack by specially crafted

input. A safer option would be to randomize the choice of substring amongst the

rarest options. It is unclear if such a change would grow the size of the Piranha hash

table in a way that would affect performance on average due to missed opportunity

for caching. However, using some of the second to rarest possible substrings may be

an option to keep the size of the table small by putting more than one keyword in

the list at each hash table index.

The performance of Piranha in Snort version 2.2 fares very well in the test cases

presented by Antonatos et al. [8]. The algorithm was mainly tested against Modified

Wu-Manber for performance and showed a 10% - 23% improvement. With respect to

memory requirements it was compared with Modified Wu-Manber, Low-Mem Trie,

AC-Banded, an unspecified AC variant (AC-Std or AC-Full), and the two compressed

Aho-Corasick inspired algorithms from the research of Tuck et al. [86]. To process

6.3. Piranha 103

the full Snort rule set Piranha consumed 37MB of memory while the other algorithms

used 45MB, 14MB, 96MB, 140MB, 20MB and 15MB respectively. However, Piranha

was also the fastest option in terms of performance while processing the rule set

(preprocessing).

Piranha was also examined and compared for its ability to handle attack traffic

although the authors did not use exact worst cases so the results are not conclusive.

In fact, it is not trivial to generate worst-case traffic especially considering that every

algorithm has a unique worst case. The traffic that was tested was designed to be

hard for Piranha and the other algorithms to process, rather than being specifically

targeted towards Piranha’s exact worst case or that of any particular algorithm.

It may be that the traffic that is crafted to give the worst case for one algorithm is

actually a good case for another. Thus, algorithms need to be designed to handle their

worst-case scenarios well. Furthermore, the best and fairest attack-like comparison

of algorithms’ performance can only be done by comparing the actual worst cases

for the individual algorithms. In the attack cases presented, Piranha was the fastest

in two of the three cases. In the case where it was not the fastest the unspecified

AC algorithm from Snort was the fastest. To exploit Piranha the worst case would

likely contain traffic that causes as many collisions as possible. Ideally, an attacker

would like to squeeze as many collisions as possible into one packet while maximizing

the time it takes Piranha to identify each substring match as a false positive. This

was not maximized in the Piranha worst-case tests the way an attacker would likely

maximize the workoad through maliciously crafted input. However, using some of

the randomization techniques mentioned above may indeed help to mitigate some of

the slowing effects that Piranha exhibits under an attack. In fact, the idea of the

randomization is to make the algorithmic complexity attack near impossible because

the attacker would not know the substrings and other information needed to craft

6.4. Deterministic Memory Efficient String Matching 104

worst-case traffic. In closing, we point out one side-effect of Piranha’s approach is

that it can not handle keywords smaller than four bytes in length.

6.4 Deterministic Memory Efficient String Match-

ing

Tuck et al. [86] propose a strategy for deterministic memory efficient string matching

that is a set of two additional string matching algorithms aimed for deployment within

Snort, either in software or hardware. A nice trait of the algorithms is that they are

deterministic, implying that their worst cases are bounded. In particular, they are

linearly bounded in the size of the input they search through. The second algorithm

presented builds on the first for even better memory efficiency.

Both algorithms are built on top of the basic non-optimized Aho-Corasick [2]

algorithm. They can be thought of as variants of AC and as such we refer to them as

AC-Bitmap and AC-Path. They use compression ideas from the strategies employed

in IP address lookups on routers or other network devices. They also remark that

both the IP lookup problem and string matching problem are alike in the sense that

they are both longest prefix problems. The particular part of IP lookup algorithms

that they take their compression ideas from is the Eatherton algorithm [34]. Use of

these strategies makes AC-Bitmap and AC-Path particularly suitable for hardware—

although this is not our focus—given that many network devices use the operations

in the Eatherton algorithm, and as such network processors are optimized to perform

some of the needed operations quickly. We begin by examining the simpler AC-

Bitmap algorithm.

In the non-optimized AC automaton every state has 256 next state pointers and a

failure pointer; this can be compressed to a bitmap—viewed as a bit-lookup table—of

6.4. Deterministic Memory Efficient String Matching 105

256 bits with the regular failure pointer and a next state pointer. The number 256

corresponds to the alphabet size. The bitmap of course indicates whether or not a

transition to the next state is valid by setting the appropriate bits in the bitmap

during pre-computation. Because there may be more than one actual next state, a

single next state pointer is insufficient. When searching if the bitmap indicates that

the transition for the input byte is valid then the next state is set to be where the

next state pointer points to plus the popcount from the bitmap at the bit checked.

The popcount refers to the number of bits set (to 1) in the bitmap before the bit that

was checked. For example, if the bitmap was 10101001... and we check the fifth

bit from the left—corresponding to an input byte of 0x04, the fifth character in our

alphabet—we see that it is set; therefore, the popcount is 2 because there are two

bits set to 1 before (to the left of) the fifth bit. Using this popcount result pointer

arithmetic is performed on the next state pointer to increment it by two which will

point to the real next state. In this way the next state pointer is not really a pointer

to the next state, but it is a base pointer to the space in memory where a list of all

the state data structures is stored. Lastly, if the checked bit in the bitmap is not

set (i.e. is 0) then we would simply follow the failure pointer, and set the next state

equal to the state pointed to by it.

Where the regular size of a state in optimized AC is over 1KB, the structure for

the states in the AC-Bitmap algorithm takes only 44 bytes [86]. This vastly decreased

memory requirement improves cache behaviour as well as makes it feasible to store

the entire automaton in fast SRAM in hardware implementations. The memory

savings of AC-Bitmap come at the cost of checking a bit in a bitmap and potentially

performing a popcount. The popcount is quite expensive on normal processors not

designed for this. To minimize the work Tuck et al. [86] keep running sums of every 32

bits in the bitmap, but a single popcount on up to 31 bits is still needed. Moreover,

6.4. Deterministic Memory Efficient String Matching 106

this costs a little bit of extra memory to maintain the sums. Naturally, it is not

obligated to maintain sums every 32 bits if the memory savings are necessary, and on

the contrary it could just as easily switch to running sums every 16 or even 8 bits for

better performance and use more memory.

The AC-Path algorithm is built on top of AC-Bitmap, and thus, provides even

further compression to minimize the memory requirement. It is based on the obser-

vation that the Aho-Corasick automaton, like a trie, is often dense near the root and

sparse near the leafs or final states. It often has a single chain of states to a final

state. Although Tuck et al. [86] were inspired by the Eatherton algorithm, the idea of

path compression in tries is much older. A well-known path compressed trie that has

a similar style to the AC-Path automaton is the PATRICIA trie (or PATRICIA tree)

[60]. Furthermore, there is a large body of work done on the idea of trie compression

because it is well known that standard tries have many nodes with only one child

[47, 56, 38, 48, 64].

The AC-Path algorithm further compresses the size of the automaton by reducing

the number of states. Because this algorithm builds on the previous one, it remains

a requirement that the structures of all the states are the same size so that the

pointer arithmetic may work properly. Normally, each state recognizes only one valid

character from the input; however, the reduction in number of states happens by

effectively adding more than one byte inside a state meaning that a state is not the

result of matching a single byte but a string of bytes. For example, instead of a path in

the automaton that matches the string ABCD with four states (one state per character)

the AC-Path compression converts this path of states into one state that matches the

entire string. The added overhead in processing time for the AC-Path algorithm now

comes from the fact that each of the four separate states in uncompressed format

had each of their own failure pointers. This must now be accounted for in the single

6.4. Deterministic Memory Efficient String Matching 107

compressed state. Furthermore, when transitioning to a state via a failure transition

it may now end up at a compressed state where a prefix of the string it represents

is already matched, and therefore, it needs to somehow make a failure transition

pointer capable of pointing to a location within the string of the state it points to.

In practice Tuck et al. [86] report that AC-Path achieves an additional compression

of about 2.5 times over AC-Bitmap, which already achieves a compression of about

25 times over the optimized AC automaton in Snort (the Aho-Corasick variant is not

given although we believe it is likely the AC-Full variant).

Memory savings motivate this choice of algorithm for any application of Snort

concerned with memory. The experimental results show that on average the Modified

Wu-Manber option of Snort performs the fastest followed by an unspecified AC variant

(we assume AC-Full) which performs about 30% to 45% slower depending on the

processor. AC-Bitmap and AC-Path are respectively about 4% and 6% slower than

the AC variant, which seems like a small price to pay for the memory savings. In the

synthetic worst-case traffic test the AC variant performed the fastest having close to

the same processing speed as its average case. AC-Bitmap and AC-Path seemed to

slow down a little, being both approximately 10% to 30% slower than the Snort AC

variant. The Modified Wu-Manber algorithm was easily exploited in its quadratic

worst-case nature and performed approximately 500% (or more) slower than the AC

variant depending on the processor.

Prior to the proposal of AC-Bitmap and AC-Path, the memory consumed by

algorithms amenable to hardware was too great to be feasible. However, now with this

low memory approach an implementation in hardware is possible, and further work

has been done on porting the Aho-Corasick algorithm to hardware [83]. Furthermore,

these algorithms offer excellent alternatives to the AC-Sparse and AC-Sparse-Banded

options within Snort. Although no direct comparison between AC-Bitmap, AC-Path,

6.5. Chapter Summary 108

AC-Sparse, and AC-Sparse-Banded has been done, we believe that AC-Bitmap and

AC-Path will outperform both Snort options as well as consume even less memory

based on the experimental results presented in Tuck et al. [86].

6.5 Chapter Summary

In this chapter we focused on Snort by presenting background on Snort and the current

version’s approaches. Moreover, we present a couple recent approaches that aim to

improve Snort’s performance and memory usage. In Chapter 7 we observe how the

various algorithm choices compare as we also present our own approaches and look

intensively into implementing algorithms in Snort’s signature matching engine.

Chapter 7

Implementing and Comparing

Pattern Matching Algorithms for

Snort

This chapter aims to present our observations about Snort, and specifically, its ex-

isting pattern matching approaches and the new approaches we add to it. Several

pattern matching algorithms are implemented within Snort already for the purpose of

providing configuration time options to the NIDS administrator with respect to the

search method. That is, Snort may be configured to use a particular algorithm when

searching the packet payloads for the patterns contained in its signatures. We have

implemented, and furthermore, herein introduce a few new options. In addition to

adding new algorithm options inside Snort, an important contribution of this chap-

ter is our discussion and comparison of the existing algorithm options within Snort.

Throughout this thesis, it is our goal to provide an unbiased comparison of the work

that has been done for use in Snort and other NIDSs. In this chapter we also discuss

our findings regarding unexplored pattern matching avenues that we believe to be

109

7.1. Algorithms Applicable For Snort 110

useful to pursue further for both researchers in the NIDS field, and potentially for

eventual use in NIDSs.

Section 7.1 combines the discussions on the algorithms analyzed in Chapter 5 with

the current options available in Snort from Chapter 6 and provides an introduction

to our research and findings about the new and existing algorithm options that are

most relevant for implementation comparisons in Snort. Section 7.2 introduces the

new pattern matching approaches that we have implemented for use in Snort which

as mentioned in Section 4.5 is a modification of an existing algorithm. Section 7.3

compares the pattern matching algorithm options available in Snort our modified

version of Snort. This includes a comparison of the apposite algorithms identified in

Section 7.1 as well as the new options covered in Section 7.2.

7.1 Algorithms Applicable For Snort

We note from Table 5.1 and Section 5.2 that no one algorithm is ideal for all of the

cases that a NIDS such as Snort must handle. Nevertheless, Snort works around this

problem by allowing trade-offs in various areas. It is becoming generally accepted that

for a NIDS, any pattern matching algorithm whose worst-case characteristics are not

linearly bounded to the size of the search input are ruled out of consideration, as

NIDSs can easily fall prey to algorithmic complexity attacks if they have poor worst-

case behaviour. For this reason, although Snort provides an option to use the Modified

Wu-Manber algorithm (see Section 6.2), we do not examine it further in this thesis.

Though it remains an option in Snort, in our views, in adversarial environments its

use should be discontinued entirely. Analogously, we do not consider any algorithms

with super-linear worst-case running times or memory consumption.

Besides the aforementioned, the other algorithms that we do not examine are

7.1. Algorithms Applicable For Snort 111

those in Snort that are experimental. Namely, the AC-Sparse and AC-Sparsebands

algorithms that are already available in Snort occasionally do not pick up all matches

that they should in packet payloads. These algorithms have yet to be perfected by

the engineers working on Snort.

Lastly, we do not implement the Commentz-Walter B1 algorithm for use specifi-

cally in Snort despite it providing a linear worst-case running time. There are several

reasons for this. First, upon close examination the algorithm does not meet several

other important requirements or desirable features for a NIDS (see Section 5.2). Sec-

ondly, the implementation of the algorithm is dauntingly complex—as it is already

complex enough in theory—and to our knowledge there is no implementation of the

algorithm available. Although, the Commentz-Walter B algorithm, which is even less

suitable, is widely used in computer applications. In summary, we believe that other

algorithms can provide all the benefits and more.

The algorithms that we do pursue as viable options in Snort are the AC-Std,

AC-Full, and AC-Banded options. As discussed in Section 6.2 regarding the current

version of Snort, we expect the AC-Full algorithm to perform best among these op-

tions. To these options already available in Snort, we add three new options. Two

of these options named MBOM and MBOM2 are based on the existing Multiple

Backward Oracle Matching (MultiBOM) algorithm [6] (see Section 4.5 where we in-

troduce SBOM and MultiBOM). We discuss our implementation of these in Section

7.2. The third option, AUTO, that we introduce is a new kind of approach within

Snort because it uses multiple algorithms. Recall that in Snort patterns are grouped

by certain characteristics of the rules (signatures) they come from. Only one of these

groups are searched for matches per packet received by Snort. Currently, all search

method options configure Snort to use the same algorithm on all groups. We propose

an approach that first establishes the groups of patterns, then determines which algo-

7.2. Adding the New Algorithms 112

rithm is best—performance-wise—to use for that group. Specifically, we experiment

with using the algorithm from the AC-Full option where the length of the shortest

pattern in the group is less than three bytes. In fact, this is most of the groups. For

all other groups, we use the algorithm from the new MBOM option. We believe that,

in theory, this is the best approach to address the issue discussed at the start of this

section of having no one perfect algorithms for all situations. Section 7.3 shows our

implementation and test results in practice.

The current release of Snort has 4096 rules enabled by default; this is what we use

for testing. In the preprocessing phase Snort forms 197 pattern groups from these

signatures’ patterns of which there are 16674. In the AUTO option, 16 groups of the

197 have a shortest pattern length of three or more; therefore, they use the algorithm

from the MBOM option. Of the 16674 total patterns, 59 patterns fall into these 16

groups.

7.2 Adding the New Algorithms

Inside of Snort we propose and implement three additional search method options

(pattern matching algorithms), the main one called MBOM coming from the name

of the algorithm it is based on: Multiple Backward Oracle Matching (previously

shortened as MultiBOM) [6]. Allauzen et al. [6] first proposed MultiBOM—albeit,

without giving its details—in their literature on a related algorithm, Set Backward

Oracle Matching (SBOM). SBOM and MultiBOM were first reviewed in this thesis

in Section 4.5, although MultiBOM less so. Herein, we give the details of the imple-

mentation of our MBOM algorithm (our modification of MultiBOM for use in Snort);

also, we no longer distinguish between MBOM and MultiBOM. To our knowledge

this is the first published detailed description of any kind on the MBOM algorithm,

7.2. Adding the New Algorithms 113

as previous literature [6] did not provide its details, but rather the details for SBOM.

As indicated in Section 4.5, MBOM uses two data structures in its search: an Aho-

Corasick [2] trie or state machine and a factor oracle. Both structures are built from

the entire set of keywords. The AC state machine is built as normal, but the factor

oracle is built from the set of reversed patterns1. The construction method for the

factor oracle is the same as the method given in Section 4.5, but the reversed patterns

are used. To build the AC state machine we use the functions available through the

AC-Std option in Snort. All of the actual patterns are only stored once with the AC

state machine, as the AC state machine will be the structure that actually identifies

the matches.

In Snort everything takes place on the pattern group (see Section 2.3.3) level and

the life cycle of a pattern group proceeds as follows for preparing any given search

method:

• The pattern group is initialized by creating an empty structure to hold the

patterns in the group along with the extra variables necessary for the algorithm.

This is done through a call to a function whose name ends in “New”, such as

“mbomNew” for example.

• Each pattern to belong to the group is added to the group by the rule classifier

(see Section 2.3.3) through successive function calls. This function name usually

ends in “AddPattern”, such as “mbomAddPattern”.

• The pre-computation for the search algorithm is done once in a single call to a

function whose name ends in “Compile”, such as “mbomCompile”.

• At this point searching is permitted, through calls to a function whose name

1We discovered building it from the set of strings of length equal to the shortest pattern (as the
SBOM algorithm does) is not acceptable, as some matches in the text could be missed.

7.2. Adding the New Algorithms 114

ends in “Search”, such as “mbomSearch”. In Snort this is where the bulk of

the processing happens as this function is typically used for every packet that

passes through the NIDS.

• To terminate the life of the pattern group and free all memory associated with

it, a function whose name ends in “Free” is called, such as “mbomFree”. This

is only done when the Snort process terminates.

We define the memory used by an algorithm option to be the memory still allocated

after the compile function is finished and before the free function is called. During

the search phase of an algorithm—in the search function—there are also usually some

variables declared in memory on the stack, but this is typically a very small amount

that we do not count. Most of the memory allocation is done in the function calls

to add the patterns to each pattern group and in the compile function where the

structures used in the search are built.

For MBOM, the pattern adding function simply passes along the pattern to the

AC state machine by in turn invoking its pattern adding function. Furthermore, it

maintains the minimum of all pattern lengths. In the compiling function the factor

oracle is built using all of the patterns, which at that point, are all stored in the AC

state machine. The C code for these functions can be found in Appendix A.

The MBOM search function called mbomSearch, is given in C code in Appendix

A as well as in pseudocode below. The search is performed in a window of length

equal to the length of the shortest pattern in the group. Within the search we keep a

marker called the critical position that points to the character to the right of where

the scanning with the AC state machine stopped; this starts at position 0. The search

first starts by scanning right to left using the factor oracle (which can be substituted

for a DAWG). The search is stopped when either we have scanned all the characters

7.2. Adding the New Algorithms 115

back to the critical position, or there is a mismatch. A mismatch occurs when there

is no valid transition in the factor oracle because the substring scanned thus far is

not a substring of any pattern. On a mismatch, we reset the current state of the AC

state machine to the initial state and the critical position to point to the character to

the right of the mismatched character. If there was no mismatch the critical position

stays the same. Either way the search then proceeds scanning with the AC state

machine.

The current character scanned is always the one at the critical position; therefore,

after every character scanned by the AC state machine the critical position is moved

to the right by one. In this way, the scanning of the AC state machine always proceeds

left to right. This scanning is stopped one of two ways. Either the scanning reaches

the end of the search text input, or the critical position moves past the right side of

the window while the length of the longest prefix matched in the AC state machine

is less than the window length. That is, provided the AC state machine has matched

a pattern or pattern prefix at least the length of the window length the scan may

continue past the right edge of the window up until a character is reached whereby

the state machine’s state no longer identifies a prefix longer than the window length.

The length of the longest prefix matched by the state machine is given by the depth

of the current state, or in other terms, the length of the path back to the initial state.

After the AC state machine has stopped scanning, the window is shifted such

that the left side aligns to the critical position less the length of the longest prefix

matched in the AC state machine. After the shift, the cycle starts again by scanning

with the factor oracle. Of course when the window passes the end of the text input to

search, the search is finished. Matches are identified throughout the scanning with the

AC state machine by checking for a terminal state after every transition (character

scanned). In Snort the search is performed within an uppercase search text; thus, if a

7.2. Adding the New Algorithms 116

match is identified for a pattern that is not case insensitive we also check the proper

case pattern against the proper case text input.

The MBOM search algorithm presented here achieves a sublinear running time on

average because the AC state machine does not have to scan every character of the

input text. Characters in the input search text can be entirely skipped over every

time the factor oracle scanning does not reach the critical position before stopping

(when a mismatch occurs). The longer the window length the more probable it is that

more characters are skipped over by running into a mismatch with the factor oracle.

Furthermore, even in the worst case this search algorithm never scans any character

more than twice (once by the oracle and once by the AC state machine). Thus, we

achieve a sublinear running time on average while maintaining the important linear

time worst-case bound on running time. We define the average case to be independent

equiprobable characters in the text input to search. We outline this search algorithm

in pseudocode in Algorithm 7.1.

In order to enable the best performance in the MBOM search option, the nodes

of the factor oracle contain an array of 256 pointers to other possible nodes in the

oracle. This number is due to the size of the alphabet we are forced to use. The

array of pointers allows for fast constant time branching or transitioning within the

factor oracle much the same way the AC-Std state machine does. This method is the

best option for running time performance and simplicity, but can consume significant

memory references if the size of the factor oracle gets too large. Each node or state

within the oracle contains 1024 bytes just for these pointers.

Eliminating some of the memory consumption will most likely lead to a perfor-

mance hit; we have explored one option in the implementation of the MBOM2, a

variation of MBOM in which nodes are only represented by 16-bit integers (i.e. as

numbers between 0 and 216 − 1). To implement the transitions, and thus, create the

7.2. Adding the New Algorithms 117

Algorithm 7.1 Multiple BOM Multiple-Keyword Matching Algorithm

1: procedure MBOM Search(y, n)
. Input:
. y ← array of n bytes representing the text input
. n ← integer representing the text length
. Assume access to the oracle & AC state machine (ACSM) (preprocessing)
. oracle next and acsm next are transition functions
. is terminal is equivalent to the AC output function o (see Section 4.1)

2: min ← length of shortest pattern (in pattern group) . Also window size
3: critpos ← 0
4: i ← 0
5: j ← 0
6: while i < n − min + 1 and critpos < n do

. Search in the factor oracle until hitting a mismatch:
7: j ← i + min − 1
8: current ← oracle initial state

9: while j ≥ critpos and (current ← oracle next(current, y[j])) 6= ∅ do

10: j ← j − 1
11: end while

12: if j ≥ critpos then . If it didn’t make it all the way to the critpos
13: state ← AC initial state . Reset ACSM
14: critpos ← j + 1
15: end if

. Search in the AC state machine:
16: while critpos < n and (critpos < i + min or depth(state) ≥ min) do

17: state ← acsm next(state, y[critpos]) . Scan a character
18: critpos ← critpos + 1

19: if is terminal(state) then . If there are matches at this state
. Output location that matches start in y

20: For each match: output critpos – length of pattern matched
21: end if

22: end while

23: i ← critpos – depth(state) . Shift

24: end while

25: end procedure

7.2. Adding the New Algorithms 118

oracle structure in MBOM2, we use a hashtable for the whole structure to cut down

on the memory wasted by the MBOM option in the arrays of pointers kept by every

node. The keys used in the hashtable are pairs of a state number and a character

from the alphabet, and the values stored in the hashtable are state numbers alone. In

the hashtable a key—a state number and a character—maps to another state number

to represent a transition from the state in the key to the other state. This saves

memory by only allocating memory for transitions that exist in the factor oracle. In

this MBOM2 option the size of the state is consequently variable, and depends on

the number of transitions it has leaving it. The memory consumption of the factor

oracle is now equal to the memory consumption of the hashtable, which should be

greatly reduced. The trade-off is that our branching or transitioning is now depen-

dant on the speed of a hashtable lookup. Although hashtable lookups are constant

time on average in theory, in practice one should expect a decrease in performance

(compared to the MBOM branching) because of the key hashing and possibly go-

ing through a list of entries in a hashtable bucket. We do not go into detail with

respect to hashtables in this thesis. The actual hashtable’s code was taken from

Clark [17], who makes this implementation available under a BSD license available

at http://www.cl.cam.ac.uk/c̃wc22/hashtable/. The code for the MBOM2 option is

also given in Appendix A.

Other variations of the MBOM option that would save memory could potentially

use one hashtable per node. Also it is possible to save memory in the leaf nodes

(states) in the trie that becomes the factor oracle by not allocating an array of point-

ers or a hashtable for those nodes unless they have transitions from them. Other

options for storing the transitions would be in linked lists or for faster access (but

more complex choice) we could use balanced trees or skip-lists. We do not explore

these options in this thesis as we believe that hashtables should give the fastest

7.2. Adding the New Algorithms 119

transition (branching) speed compared the other options mentioned above. Further

improvements suggested for our MBOM algorithm are given in Section 8.3.

The last search method option that we created in Snort is called AUTO. The

AUTO option implements no pattern matching algorithm on its own, but rather uses

the ones from the other Snort options. The purpose of the AUTO option is to address

the problem introduced in Chapter 5 of there being no one algorithm to best suit all

situations. The variance in the pattern groups is one aspect that is problematic, yet

it can be addressed; hence, our implementation of the AUTO option. In Snort all

pattern groups currently get assigned the same search method from the configured

option, but using our AUTO option we change this. During preprocessing we add

all patterns to a pattern group structure appropriate for the AC-Full algorithm, but

at the compile function call to assemble the pattern matching structures the pattern

group is examined. In particular, we look at the length of the shortest pattern, and

if it exceeds two then the pattern group is compiled for the MBOM option, otherwise

it is compiled for the AC-Full option. Thus, the AUTO option decides intelligently

on a pattern group-by-group basis whether or not the MBOM or AC-Full algorithm

would usually work best for pattern matching using the keyword set held in the

pattern group. We expect that for keyword sets where the shortest length pattern is

three or more that the MBOM algorithm will be able to process the input sublinearly

by skipping over parts of the input; accordingly, the AUTO uses MBOM for pattern

groups where the length of the shortest keyword above two. As mentioned previously,

longer lengths of the shortest pattern translate to larger potential window shifts in

the MBOM algorithm; thus, on average as the length grows, so does the speed of

the MBOM algorithm. For cases where the shortest pattern length is one or two,

it is senseless to use the MBOM algorithm because skipping over parts of the input

text becomes impossible—and there is slight overhead to using the factor oracle in

7.3. Evaluating Our Algorithms In Snort 120

addition to a AC state machine; thus, in these cases (pattern groups) we choose the

fastest AC algorithm, AC-Full, being that AC is best suited to this case.

Under constant worst-case conditions both algorithms are linearly bounded, but in

practice the MBOM algorithm would be slightly slower because of the slight overhead

to using the factor oracle in addition to a AC state machine, as mentioned above. In

the common case where large window shifts in MBOM result in skipping parts of the

input text, the overhead should easily be more than compensated for by this sublinear

behaviour, resulting in MBOM outperforming all linear behaving AC algorithms. By

combining the MBOM and AC-Full algorithms in this way into AUTO, we expect

that AUTO should be the most sensible and the fastest option in practice most of

the time.

7.3 Evaluating Our Algorithms In Snort

The experimentation that compares all the Snort options including the new options

is performed with two test files that contain traffic captures from the Shmoo group’s

Capture the Capture the Flag project [85]. In this section we compare memory

usage amongst the options as well as the performance in processing the tcpdump-

style (PCAP) [55] network traffic files. The performance measurement is taken with

respect to the search time only. Therefore, the duration of the preprocessing and

post-processing is not taken into account. Furthermore, we turned off all traffic

preprocessors in Snort except for the flow preprocessor as to focus the running-time

results specifically on the search algorithms. Our results are documented in Table 7.1

and Table 7.2.

Firstly, the Orange and Red times come from the test files used which were or-

ange.cctf.tar.gz and red.cctf.tar.gz. These are the traffic captures from the orange

7.3. Evaluating Our Algorithms In Snort 121

and red teams from the DEFCON 10 conference’s Capture The Flag competition.

Although The Shmoo Group provides these tarballs containing multiple PCAP data

files, we used the mergecap tool that comes with tcpdump to merge the data files

into single data files of the network traffic captures. The red team’s data capture was

42.3 MB, and the orange team’s totaled 365.1 MB.

Secondly, we ran our test processing files generating no alerts (using “snort -A

none ...”) to maximize speed and avoid measuring times unrelated to the pattern

matching algorithms. The time results in the tables below are the average times after

50 executions. Furthermore, the testing was done on two separate modern machines

for comparison and results verification purposes:

• Machine 1 (from Table 7.1) was a Pentium4 2.8 GHz, 1 GB RAM, SATA HD

that reads at 150 MB/s, Fedora 2 Linux 2.6.8

• Machine 2 (from Table 7.2) was a Pentium4 2.4 GHz, 1 GB RAM, SCSI HD

that reads at 320 MB/s, Debian Linux 2.6.8

Search Method Orange Time (sec) Red Time (sec) Memory Usage (KB)

AC-Banded 9.50091637 1.28260256 37,845.03
AC-Standard 8.81949943 1.2242112 157,967.03

AC-Full 8.3009172 1.21818092 80,317.42
Auto 8.2276888 1.22182818 81,348.35

MBOM 12.43954745 1.40906625 247,358.81
MBOM2 27.20387846 2.29741921 163,126.28

Table 7.1: Average results for Snort search methods on machine 1

Our results in practice are generally unsurprising compared to our theoretical ex-

pectations. The MBOM options are built on top of the AC-Standard implementation,

and hence consume the same amount of memory for their Aho-Corasick [2] state ma-

chine alone. The remainder of the memory is what was actually consumed for the

factor oracle. This is only a very small amount for the MBOM2 option as expected

7.3. Evaluating Our Algorithms In Snort 122

Search Method Orange Time (sec) Red Time (sec) Memory Usage (KB)

AC-Banded 8.41199482 1.25546272 37,845.03
AC-Standard 12.54950718 1.35974246 157,967.03

AC-Full 7.38273514 1.22266912 80,317.42
Auto 7.41804276 1.19416742 81,348.35

MBOM 13.83654648 1.41934164 247,358.81
MBOM2 27.54345626 2.23155244 163,126.28

Table 7.2: Average results for Snort search methods on machine 2

because it uses a hashtable. Both options should be, and are, slightly slower than

the AC options because the shortest pattern length is one for most of the pattern

groups. This means that the search window is reduced to a length of one, and thus,

skipping parts of the search text, and accordingly, achieving a sublinear running time

becomes impossible. The running time for the MBOM option, nonetheless, shows

in both tables that the overhead—over the AC-Standard option—is fairly minimal.

This is especially true given that for the MBOM and MBOM2 results the window

size was often one in many pattern groups—due to a shortest keyword of length one

in many pattern groups—which is the worst case for the MBOM algorithm. With

further improvements (see Section 8.3) the MBOM option overhead could be lessened,

making performance better.

In regards to the MBOM2 option, although the memory savings are good, it is

quite slow. This is due to the chosen hashtable’s hash function for hashing the keys.

It may be too slow, and not sufficiently good enough to the point where it is causing

collisions. The hash function specifically, needs more experimentation done on it

to find the point where it is complex enough to avoid many bucket collisions while

still being as fast as possible in terms of its machine instructions. Further hashtable

analysis is not pursued herein as it is left for future work, but we have an idea of the

memory savings when implementing an automaton (in this case a factor oracle) using

a hashtable.

7.3. Evaluating Our Algorithms In Snort 123

Between the Aho-Corasick variants, the AC-Full option is consistently the best

option for performance, and the AC-Banded offers good memory compression of over

50 percent while sacrificing only a little bit of that performance. We conclude that the

AC-Standard option should no longer be used given that it consumes more memory

than the other variants, and performs the worst on average on one of the test machines.

The difference in the AC-Standard times between machines could be due to more

(better) caching on the newer 2.8 GHz processor of machine 1. That is, it is better

able to handle the larger memory load of the AC-Standard method.

If software-based NIDS deployers will see running time performance as a greater

benefit than small memory consumption—as is often the case—we conclude that the

AC-Full and AUTO options are the best choices. Naturally they run very close in

performance because the AUTO option is actually using the AC-Full method for

pattern groups when their shortest patterns are of length one or two. This represents

181 of the 197 pattern groups. Because the times for AUTO run quite close to those

of AC-Full, for the MBOM usage of the other 16 groups, we see that the MBOM

method is approximately the same speed as the AC-Full method (in two cases AUTO

is slightly faster and in two cases slightly slower). With further improvements to

MBOM as mentioned above it should clearly outperform AC-Full where it is used

which is unfortunately not in many pattern groups.

In conclusion, this data set together with our implementations, suggest that the

MBOM algorithm has as much merit in NIDSs as does the Aho-Corasick algorithm

provided it is used with appropriate keyword sets. The key in this case was identifying

that different algorithms fit different cases, and within Snort this means its pattern

groups (that hold the keyword sets).

We learned that in the worst case MBOM performs very well even though it is

not quite as good as the AC variants, and on average MBOM could be faster than

7.4. Chapter Summary 124

the Aho-Corasick methods so long as the window size is large enough which is why

we have chosen a length of three. Lastly, we believe that the approach we use in

AUTO is a serious contender in pattern matching algorithms for the general class of

software-based NIDSs.

7.4 Chapter Summary

In this chapter we examined the search method options in Snort that we believe to

be the best for finding pattern matching in the context of a NIDS. Our contributions

include adding three options which showcase a kind of pattern matching algorithm

previously unseen in Snort and in any NIDS to our knowledge. Furthermore, we

detailed the implementation of the MBOM search method option and algorithm, and

we give an in-depth explanation of it in pseudocode and C code (in Appendix A).

Finally, we presented an enlightening comparison of the introduced search method

options along with the best existing options already present in Snort.

Chapter 8

Further Discussion and Concluding

Remarks

8.1 Pattern Matching Algorithms in Other Secu-

rity Applications

Multiple-pattern matching is widely used in many other applications such as virus

detection, spam detection, content scanning, and filtering. In this section we briefly

touch on a couple of such computer security related applications.

8.1.1 Antivirus Software

Perhaps the most renowned security application is antivirus software. First-generation

virus string scanning—which may be the most obvious and simple virus detection

method—is handled quite similarly to what we see in a NIDS like Snort [82]. String

scanning uses an extracted sequence of bytes (string) from a virus that is unlikely

to appear in clean (non-virus) programs or files [82]. This string is used as a virus

125

8.1. Pattern Matching Algorithms in Other Security Applications 126

signature the same way extracted sequences of bytes from network packets code for a

signature in a Snort detection rule. Virus signatures are organized into databases as

are NIDS signatures. Indeed, the databases can contain thousands of signatures just

as Snort’s does. Given the long-term existence of antivirus software it is noteworthy

to contrast how antivirus software performs its scanning. Certainly, antivirus software

uses more advanced techniques than string scanning for detection, but nevertheless,

string scanning remains a heavily used and powerful technique [82].

Fast scanning using plain single-keyword pattern matching algorithms such as the

Boyer-Moore algorithm [14] are evidently not fast enough for antivirus software [82].

What is more, some software may support the use of single- and multiple-character

wildcards in their signatures, and consequently, they demand more sophisticated algo-

rithms. Although, using wildcards causes a performance penalty. Hashing and the use

of lookup tables—not so different than in Wu-Manber [92]—have been implemented

by many antivirus researchers as a method that speeds up string scanning algorithms

[82, 1, 70]. Typically these algorithms use 16-bit or 32-bit words as an index into

the hashtable. Other techniques include the use of bookmarks or check bytes, top-

and-tail scanning, and entry-point and fixed-point scanning [82], but some of these

techniques are not portable to NIDS when the whole payload must be searched, as

is customary. One interesting concept here is coding an expected location or skip

offset along with the signature as Matrawy et al. combine a pattern and location

[57]. Naturally the difficulty with searching at a fixed or calculated offset is that in

network traffic, packet manipulation can throw off the detection if the attacker can

move the malicious pieces around within the payload.

While some antivirus software does use hashing-based algorithms, there are others

such as ClamAntiVirus (ClamAV) [52] that do, indeed, use the Aho-Corasick algo-

rithm [2]. In fact, its implementation is much the same as that of the AC-Std search

8.1. Pattern Matching Algorithms in Other Security Applications 127

method in Snort, using a trie structure with a 256-element lookup array [58]. Given

the newer implementations of the Aho-Corasick algorithm in Snort and the research

on further optimizations for the algorithm in NIDSs, we expect that the open-source

antivirus project researchers will quickly harness the benefits in algorithm optimiza-

tions, if they have not already. At least in the published works of the open-source and

academic communities antivirus pattern matching research can potentially be useful

to NIDS researchers and vice-versa. As well, AVFS [58], a true on-access antivirus

system, was also able to achieve speeding up the pattern matching within the Cla-

mAV search engine because it reduces a factor in its performance to logarithmic from

linear in the number of patterns to search for. The issue of scalability for the antivirus

pattern matching algorithms is just as important as for signature-based NIDS pattern

matching algorithms. In fact, there are many more ClamAV virus signatures than

there are Snort signatures.

Lastly, Salmela et al. [73] offer further suggestions to improve search algorithms’

performance in antivirus and intrusion detection systems. They present new meth-

ods that improve algorithm performance in their tests by, in effect, creating a larger

alphabet by grouping bytes together and looking at 16-bit or 32-bit words as al-

phabet characters. This is quite clever using the sublinear style algorithms that

they have chosen because it creates more mismatches, and hence, more and larger

shifts. Unfortunately, as we have seen in this thesis, these kinds of pattern matching

algorithms—and others—also raise other concerns; one such important factor is the

length of the minimum size pattern. In general, the smaller this length is, the worse

the performance and memory consumption is. Therefore, we feel this approach would

not work well when the minimum length pattern in the pattern set is already small

which is, for example, often the case in Snort’s pattern groups.

8.1. Pattern Matching Algorithms in Other Security Applications 128

8.1.2 Spam Detection Software

Some spam e-mail filters, like SpamAssassin [44], use pattern matching with signa-

tures, but most do so in a very different way than a virus scanner or a NIDS. For

example, in a NIDS if a signature is matched, then a certain associated action is taken,

but when a spam signature is matched, often the rule associated with the signature

just affects of the spam score of the message. The difference here is that a false posi-

tive spam identification for an e-mail message is taken more seriously (depending on

the context). Thus, spam detection software, such as the well-known SpamAssassin

[44], uses a score-tally approach to flag spam. Only after passing through the scoring

phase where spam-like patterns are matched is the message marked definitively as

spam or valid e-mail.

Most anti-spam software programs do not document what algorithms they use

for pattern matching, but upon analysis of open-source software there are many that

still use single-keyword pattern matching algorithms. We conjecture that the reasons

for this could be that e-mail processing latency does not have the same high-speed

processing demands compared to network traffic processing in NIDSs. Moreover,

due to the score-tally approach used by some anti-spam applications there are fewer

rule updates to the rule database, meaning that the number of rules scales much

slower than in virus or NIDS signature databases. In summary, we believe that even

if there are low performance demands on spam software, certain spam applications

could benefit by pursuing some of the pattern matching research from the NIDS

community (and others).

Lastly, the rule filtering method is not the only detection method employed.

Namely, statistical filters that perform Bayesian-style probabilistic classification [42,

79] are also very popular in this genre of application.

8.2. Pattern Matching in Hardware 129

8.2 Pattern Matching in Hardware

As NIDS interest has grown wider there has been a substantial amount of work to

migrate signature matching engines to hardware. Most of the work in this area seems

as if it has been inspired from the software-based signature detection engine of Snort.

To this effect, there have been several new architectures proposed along with mod-

ifications to the existing algorithm that Snort started using back in version 2.0, that is,

the Aho-Corasick style multiple-pattern matching algorithm. The Aho-Corasick pat-

tern matching algorithm lends itself well to trial hardware implementations because

it is the only deterministic algorithm of its kind, which is of utmost importance for

algorithms implemented in hardware. However, a difficulty faced when implementing

this algorithm in hardware is finding an architecture to represent the Aho-Corasick

state machine with a small amount of memory. There can often be a large number

of transitions in one of these state machines. This is due to many factors like the

variance in patterns and their lengths, and the large size of the alphabet to deal with.

For example, a single-character pattern can cause all states to have a transition to

it. Modifications like bitmap and path compression (see Section 3.4.4) [86] to the

Aho-Corasick state machine have been seen to drastically reduce the space needed to

represent it. Another hardware implementation that even further reduced the size of

the state machine was achieved implementing transitions as prioritized rules that can

contain wildcards [87].

Many hardware trial implementations also borrow ideas from the well-studied so-

lutions for fast Internet protocol (IP) address lookup on routers. Because the state

transitions can be kept in a table in hardware, searching for the correct transition

to follow can be achieved quickly using previously developed techniques in hard-

ware structures like: ternary content addressable memory (TCAM) [93], field pro-

8.3. Future Work in the MBOM Snort Options 130

grammable gate arrays (FPGA) [33, 87], and custom solutions in application specific

integrated circuits (ASIC) [83, 87]. In these hardware solutions the processing speed

of the system as a whole is tied chiefly to the speed of these technologies’ ability to

find the correct transition, follow it, and process any pattern matches associated with

the new state. Recent experimental results for FPGA implementations targeted for

NIDS have been able to process input streams at speeds well into the low multiple

gigabits per second (Gbps) area, with calculations to escalate those processing speeds

above 20 Gbps for ASIC implementations [87].

Another issue hardware-based NIDSs face is the update process of the signature

database. Some hardware solutions have facilitated pattern updates while the NIDS

is running. Software-based NIDSs like Snort and Bro [67, 66] have not implemented

this. This may be because enabling this extra feature is probably more important for

hardware devices where a total system reload or reboot may be more expensive than

restarting the Snort daemon for example.

8.3 Future Work in the MBOM Snort Options

One point of interest for both the MBOM and MBOM2 search method options for

Snort that we implemented is that the Aho-Corasick [2] state machine and algorithm

that is used within them comes from the AC-Std option. The AC-Std option is the

oldest implementation of the Aho-Corasick algorithm and state machine within Snort,

and it consumes slightly more memory than the newer AC-Full option. The AC-Full

option also outperforms the AC-Std implementation by a small margin in our experi-

mentation. The distinguishing difference in the AC-Full option is the implementation

of a matrix as the state table [65]. Furthermore, the matrix state table format allows

for further compression; a working example of this is implemented in the AC-Banded

8.4. Concluding Remarks 131

option. One can picture this state transition matrix by thinking of the rows as current

states, the columns as transition events (this is next input character from the input

text to the matching algorithm), and the contents of each cell in the matrix as the

next state. We expect a considerable improvement in memory usage and possibly

performance should the new MBOM options be implemented using the AC-Full state

machine in place of using the one from AC-Std. The visible disadvantage of this is

that the AC-Full pattern matching code is more obscure, and hence, possibly not the

best first option for a good understanding of the MBOM implementation. However,

as a next step we foresee that using the new AC-Full state machine is likely a better

choice. Moreover, it is also possible to implement the factor oracle using a similar

matrix. Given the improvement of AC-Full over AC-Std this may indeed improve per-

formance or memory consumption with respect to the factor oracle used in MBOM.

Given that our AUTO option uses the MBOM algorithm, these suggestions would

also improve the performance and memory usage for AUTO, which is our fastest and

one of our recommended options.

8.4 Concluding Remarks

We have presented an array of existing multiple-pattern matching algorithms and

explored their characteristics. We have also provided background, pseudocode, and

clear explanations of the algorithms. In particular, we pursue research and eluci-

date the MBOM algorithm. To our knowledge, it is not explained completely—or

in English—in other literature and available code. Furthermore, although the Aho-

Corasisk [2] algorithm is used directly in NIDS algorithms, its consideration as a

sub-component to another algorithm, such as MBOM, is a novel contribution within

the NIDS community.

8.4. Concluding Remarks 132

Another algorithm that we investigate in our research is the Commentz-Walter

[23, 24] B1 algorithm. Again, to our knowledge, this algorithm has not received

much attention at all in general—despite its ability to outperform the simpler B

variant. Its consideration within past NIDS research is especially lacking given its

linearly bounded worst-case running time. The B1 algorithm has apparently not been

considered in NIDS literature to our knowledge, since all references to Commentz-

Walter discuss the B variant—usually by implication of non-linearly bounded worst-

case behaviour—instead of distinguishing the B variant.

In presenting all the algorithms and their characteristics we also compare and

contrast the algorithms in general, and also with a focus on the context of signature

matching in NIDSs. By examining the requirements for NIDSs like Snort we have re-

vealed which of the available traits provided by multiple-pattern matching algorithms

are most desired and which algorithms are indeed suited to fulfill the requirements.

In doing so, we discussed and summarized that very few existing pattern matching

approaches are actually appropriate for NIDSs.

Covering this broad range of pattern matching algorithms we discovered that the

previously untested approach implemented in our MBOM search option for Snort is

quite suitable for certain cases in software-based NIDS signature matching engines.

Our AUTO option takes advantage of this fact and makes case-by-case decisions on

which algorithm to use given the pattern group in Snort’s signature matching engine.

In Snort, we showed that this algorithm has merit in the cases when it is used on

pattern groups where the shortest pattern length is not too small. Specifically, our

AUTO algorithm shows promise because it was able to outperform all other Snort

options in half of our test cases.

Appendix A

Modifications to Snort

This appendix covers the modifications made to Snort version 2.6 for the introduction

of the MBOM, MBOM2, and AUTO search method options. In addition to the C code

and details documented herein, a source code package that accompanies this thesis

work is available from ftp://jameskelly.net/mcs/. The package contains not only

the modified version of Snort 2.6, but also the testing scripts and tcpdump files used in

the comparison experimentation from Section 7.3. Finally, the accompanying source

code package also includes the modified make files that are not included here.

A.1 Adding the New Search Method Options

In this section we document the code changes to allow for the insertion of the new

search methods. In addition, the mpse.c file was completely reworked to enable the

AUTO option which makes an intelligent decision about what is the best algorithm

on a pattern group-by-group basis. Using the global AUTO option as the search

method changes pattern groups with the shortest pattern of length less than three

to use the AC-Full option on that pattern group. For all other pattern groups the

133

A.1. Adding the New Search Method Options 134

AUTO option switches to use the MBOM option.

Changes to Snort source file fpcreate.c:

/*
** fpcreate.c (snippet)
**
** Search method is set using “config detect: search-method ac | mwm | auto | etc. . .”
*/
int fpSetDetectSearchMethod(char * method)
{

LogMessage("Detection:\n");

if(!strcasecmp(method,"ac-std")) 10

{
fpDetect.search method = MPSE AC ;
LogMessage(" Search-Method = AC-Std\n");
return 0;

}
if(!strcasecmp(method,"ac"))
{

fpDetect.search method = MPSE ACF ;
LogMessage(" Search-Method = AC-Full\n");
return 0; 20

}
if(!strcasecmp(method,"acs"))
{

fpDetect.search method = MPSE ACS ;
LogMessage(" Search-Method = AC-Sparse\n");
return 0;

}
if(!strcasecmp(method,"ac-banded"))
{

fpDetect.search method = MPSE ACB ; 30

LogMessage(" Search-Method = AC-Banded\n");
return 0;

}
if(!strcasecmp(method,"ac-sparsebands"))
{

fpDetect.search method = MPSE ACSB ;
LogMessage(" Search-Method = AC-Sparse-Bands\n");
return 0;

}
40

if(!strcasecmp(method,"mwm"))
{

fpDetect.search method = MPSE MWM ;
LogMessage(" Search-Method = Modified Wu-Manber\n");
return 0;

}

A.1. Adding the New Search Method Options 135

if(!strcasecmp(method,"lowmem"))
{

fpDetect.search method = MPSE LOWMEM ; 50

LogMessage(" Search-Method = Low-Mem Trie\n");
return 0;

}

if(!strcasecmp(method,"mbom"))
{

fpDetect.search method = MPSE MBOM ;
LogMessage(" Search-Method = Multiple Backwards Oracle Matching\n");
return 0;

} 60

if(!strcasecmp(method,"mbom2"))
{

fpDetect.search method = MPSE MBOM2 ;
LogMessage(" Search-Method = Multiple Backwards Oracle Matching v2\n");
return 0;

}

if(!strcasecmp(method,"auto"))
{ 70

fpDetect.search method = MPSE AUTO ;
LogMessage(" Search-Method = Automatic (Smart Mode)\n");
return 0;

}
return 1;

}

Changes to Snort source file sfutil/mpse.h:

/*
** mpse.h
**
** Multi-Pattern Search Engine
**
*/

#ifndef MPSE H
#define MPSE H

10

#ifdef HAVE CONFIG H
#include "config.h"

#endif

#include "bitop.h"

A.1. Adding the New Search Method Options 136

/*
* Move these defines to a generic Win32/Unix compatability file,
* there must be one somewhere. . .
*/ 20

#ifndef CDECL
#define CDECL
#endif

#ifndef INLINE
#define INLINE inline

#endif

#ifndef UINT64
#define UINT64 unsigned long long 30

#endif

/*
* Pattern Matching Methods
*
* Added: MBOM and MBOM2
* Fixed: AUTO which was previously useless
*/
#define MPSE MWM 1 40

#define MPSE AC 2
#define MPSE KTBM 3
#define MPSE LOWMEM 4
#define MPSE AUTO 5
#define MPSE ACF 6
#define MPSE ACS 7
#define MPSE ACB 8
#define MPSE ACSB 9
#define MPSE MBOM 10
#define MPSE MBOM2 11 50

/*
** PROTOTYPES
*/
void * mpseNew(int method);

void mpseFree(void * pv);

int mpseAddPattern(void * pv, void * P, int m, unsigned noCase,
unsigned offset, unsigned depth, void * ID, int IID); 60

void mpseLargeShifts(void * pv, int flag);

int mpsePrepPatterns(void * pv);

void mpseSetRuleMask(void *pv, BITOP * rm);

A.1. Adding the New Search Method Options 137

int mpseSearch(void * pv, unsigned char * T, int n,
int (*action) (void * id, int index, void * data), void * data);

70

UINT64 mpseGetPatByteCount();

void mpseResetByteCount();

int mpsePrintDetail(void * obj);

int mpsePrintSummary();

#endif

Changes to Snort source file sfutil/mpse.c:

/*
** mpse.c
**
** An abstracted interface to the Multi-Pattern Matching routines,
** thats why we’re passing ’void *’ objects around.
**
*/

#ifdef HAVE CONFIG H
#include "config.h" 10

#endif

#include "bitop.h"

#include "mwm.h"

#include "acsmx.h"

#include "acsmx2.h"

#include "sfksearch.h"

#include "mbom.h"

#include "mbom2.h"

#include "mpse.h" 20

#include "profiler.h"

#ifdef PERF PROFILING
#include "snort.h"

PreprocStats mpsePerfStats;
#endif

// NEW: these two must correspond
#define AUTO DEFAULT MPSE ACF 30

#define AUTO DEFAULT AC ACF FULL

static UINT64 s bcnt=0;

A.1. Adding the New Search Method Options 138

typedef struct mpse struct {

int method;
void * obj;

40

}MPSE;

void * mpseNew(int method)
{

MPSE * p;

p = (MPSE*)malloc(sizeof(MPSE));
if(!p) return NULL;

p−>method=method; 50

p−>obj =NULL;
s bcnt =0;

switch(method)
{

case MPSE MWM:
p−>obj = mwmNew();
return (void*)p;

case MPSE AC:
p−>obj = acsmNew(); 60

return (void*)p;
case MPSE AUTO:

p−>obj = acsmNew2();
if(p−>obj)acsmSelectFormat2((ACSM STRUCT2*)p−>obj,AUTO DEFAULT AC);
return (void*)p;

case MPSE ACF:
p−>obj = acsmNew2();
if(p−>obj)acsmSelectFormat2((ACSM STRUCT2*)p−>obj,ACF FULL);
return (void*)p;

case MPSE ACS: 70

p−>obj = acsmNew2();
if(p−>obj)acsmSelectFormat2((ACSM STRUCT2*)p−>obj,ACF SPARSE);
return (void*)p;

case MPSE ACB:
p−>obj = acsmNew2();
if(p−>obj)acsmSelectFormat2((ACSM STRUCT2*)p−>obj,ACF BANDED);
return (void*)p;

case MPSE ACSB:
p−>obj = acsmNew2();
if(p−>obj)acsmSelectFormat2((ACSM STRUCT2*)p−>obj,ACF SPARSEBANDS); 80

return (void*)p;
case MPSE KTBM:
case MPSE LOWMEM:

p−>obj = KTrieNew();
return (void*)p;

case MPSE MBOM:

A.1. Adding the New Search Method Options 139

p−>obj = mbomNew();
return (void*)p;

case MPSE MBOM2:
p−>obj = mbomNew2(); 90

return (void*)p;
default:

return 0;
}

}

void mpseFree(void * pvoid)
{

MPSE * p = (MPSE*)pvoid; 100

switch(p−>method)
{

case MPSE AC:
if(p−>obj)acsmFree(p−>obj);
free(p);
return;

case MPSE ACF:
case MPSE ACS:
case MPSE ACB: 110

case MPSE ACSB:
if(p−>obj)acsmFree2(p−>obj);
free(p);
return;

case MPSE MWM:
if(p−>obj)mwmFree(p−>obj);
free(p);
return;

case MPSE KTBM:
case MPSE LOWMEM: 120

return; //no free? − JK
case MPSE MBOM:

if(p−>obj) mbomFree((MBOM STRUCT *)p−>obj);
free(p);
return;

case MPSE MBOM2:
if(p−>obj) mbomFree2((MBOM STRUCT2 *)p−>obj);
free(p);
return;

case MPSE AUTO: 130

// Shouldn’t get here if compiled mpsePrepPatterns must be called

// Because method is always reset to something else after compile

free(p);

return;

default:

return;

}

A.1. Adding the New Search Method Options 140

}

int mpseAddPattern(void * pvoid, void * P, int m, 140

unsigned noCase, unsigned offset, unsigned depth, void* ID, int IID)

{
MPSE * p = (MPSE*)pvoid;

switch(p->method)

{
case MPSE_AC:

return acsmAddPattern((ACSM_STRUCT*)p->obj, (unsigned char *)P, m,

noCase, offset, depth, ID, IID);

case MPSE_ACF: 150

case MPSE_ACS:

case MPSE_ACB:

case MPSE_ACSB:

case MPSE_AUTO:

return acsmAddPattern2((ACSM_STRUCT2*)p->obj, (unsigned char *)P, m,

noCase, offset, depth, ID, IID);

case MPSE_MWM:

return mwmAddPatternEx(p->obj, (unsigned char *)P, m,

noCase, offset, depth, (void*)ID, IID);

case MPSE_KTBM: 160

case MPSE_LOWMEM:

return KTrieAddPattern((KTRIE_STRUCT *)p->obj, (unsigned char *)P, m,

noCase, ID);

case MPSE_MBOM:

return mbomAddPattern((MBOM_STRUCT *)p->obj, (unsigned char *)P, m,

noCase, offset, depth, (void*)ID, IID);

case MPSE_MBOM2:

return mbomAddPattern2((MBOM_STRUCT2 *)p->obj, (unsigned char *)P, m,

noCase, offset, depth, (void*)ID, IID);

default: 170

return -1;

break;

}
}

void mpseLargeShifts (void * pvoid, int flag)

{
MPSE * p = (MPSE*)pvoid;

switch(p->method) 180

{
case MPSE_MWM:

mwmLargeShifts(p->obj, flag);

break;

default:

return;

}
}

A.1. Adding the New Search Method Options 141

// uncomment to use mbom2 in function below: 190

// #define AUTO_MAX_STATES 8192

int mpsePrepPatterns(void * pvoid)

{
MPSE * p = (MPSE *)pvoid;

ACSM_STRUCT2 * acsm = NULL;

MBOM_STRUCT * mbom = NULL;

ACSM_PATTERN2 * plist = NULL;

#ifdef AUTO_MAX_STATES 200

MBOM_STRUCT2 * mbom2 = NULL;

#endif

switch(p->method)

{
case MPSE_AC:

return acsmCompile((ACSM_STRUCT*)p->obj);

case MPSE_ACF:

case MPSE_ACS:

case MPSE_ACB: 210

case MPSE_ACSB:

return acsmCompile2((ACSM_STRUCT2*)p->obj);

case MPSE_MWM:

return mwmPrepPatterns(p->obj);

case MPSE_KTBM:

case MPSE_LOWMEM:

return KTrieCompile((KTRIE_STRUCT *)p->obj);

case MPSE_MBOM:

return mbomCompile((MBOM_STRUCT *)p->obj);

case MPSE_MBOM2: 220

return mbomCompile2((MBOM_STRUCT2 *)p->obj);

case MPSE_AUTO:

acsm = (ACSM_STRUCT2*)p->obj;

if(acsm != NULL) {
if(acsm->minLen > 2) { // shortest pattern is length 3 or above

#ifdef AUTO_MAX_STATES

// use mbom because it’s faster on avg
if(acsm−>acsmNumStates > AUTO MAX STATES) {

// use mbom2 to save mem 230

mbom2 = p−>obj = mbomNew2();
p−>method = MPSE MBOM2;
// move patterns into new struct

for (plist = acsm−>acsmPatterns; plist != NULL; plist = plist−>next) {
mbomAddPattern2(mbom2, plist−>casepatrn, plist−>n, plist−>nocase,

plist−>offset, plist−>depth, plist−>id, plist−>iid);
}
acsmFree2(acsm);
return mbomCompile2(mbom2);

A.1. Adding the New Search Method Options 142

} 240

#else

// otherwise use normal mbom
mbom = p−>obj = mbomNew();
p−>method = MPSE MBOM;
// move patterns into new struct

for (plist = acsm−>acsmPatterns; plist != NULL; plist = plist−>next) {
mbomAddPattern(mbom, plist−>casepatrn, plist−>n, plist−>nocase,

plist−>offset, plist−>depth, plist−>id, plist−>iid);
}
acsmFree2(acsm); 250

return mbomCompile(mbom);
#endif

}
else {

p−>method = AUTO DEFAULT; // go on using the ACSM
return acsmCompile2(acsm);

}
} 260

default:
return 1;

}
}

void mpseSetRuleMask(void * pvoid, BITOP * rm)
{

MPSE * p = (MPSE*)pvoid;

switch(p−>method) 270

{
case MPSE MWM:

mwmSetRuleMask(p−>obj, rm);
break;

default:
return ;

break;
}

} 280

int mpsePrintDetail(void * pvoid)
{

MPSE * p = (MPSE*)pvoid;

switch(p−>method)
{

case MPSE AC:
return acsmPrintDetailInfo((ACSM STRUCT*) p−>obj);

case MPSE ACF: 290

A.1. Adding the New Search Method Options 143

case MPSE ACS:
case MPSE ACB:
case MPSE ACSB:
return acsmPrintDetailInfo2((ACSM STRUCT2*) p−>obj);

case MPSE MWM:
return 0;

case MPSE LOWMEM:
return 0;

case MPSE MBOM:
mbomPrintDetailInfo((MBOM STRUCT *)p−>obj); break; 300

case MPSE MBOM2:
mbomPrintDetailInfo2((MBOM STRUCT2 *)p−>obj); break;

default:
return 1;

}

return 0;
}

int mpsePrintSummary(void * pvoid) 310

{
acsmPrintSummaryInfo();
acsmPrintSummaryInfo2();
mbomPrintSummaryInfo();
mbomPrintSummaryInfo2();
return 0;

}

int mpseSearch(void * pvoid, unsigned char * T, int n,
int (*action)(void*id, int index, void *data), void * data) 320

{
MPSE * p = (MPSE*)pvoid;
int ret;
PROFILE VARS;

s bcnt += n;

switch(p−>method)
{

case MPSE AC: 330

PREPROC PROFILE START(mpsePerfStats);
ret = acsmSearch((ACSM STRUCT*) p−>obj, T, n, action, data);
PREPROC PROFILE END(mpsePerfStats);
return ret;

case MPSE ACF:
case MPSE ACS:
case MPSE ACB:
case MPSE ACSB:

PREPROC PROFILE START(mpsePerfStats); 340

ret = acsmSearch2((ACSM STRUCT2*) p−>obj, T, n, action, data);

A.1. Adding the New Search Method Options 144

PREPROC PROFILE END(mpsePerfStats);
return ret;

case MPSE MWM:
PREPROC PROFILE START(mpsePerfStats);
ret = mwmSearch(p−>obj, T, n, action, data);
PREPROC PROFILE END(mpsePerfStats);
return ret;

350

case MPSE LOWMEM:
PREPROC PROFILE START(mpsePerfStats);
ret = KTrieSearch((KTRIE STRUCT *)p−>obj, T, n, action, data);
PREPROC PROFILE END(mpsePerfStats);
return ret;

case MPSE MBOM:
PREPROC PROFILE START(mpsePerfStats);
ret = mbomSearch((MBOM STRUCT *)p−>obj, T, n, action, data);
PREPROC PROFILE END(mpsePerfStats); 360

return ret;

case MPSE MBOM2:
PREPROC PROFILE START(mpsePerfStats);
ret = mbomSearch2((MBOM STRUCT2 *)p−>obj, T, n, action, data);
PREPROC PROFILE END(mpsePerfStats);
return ret;

case MPSE AUTO:
// should never happen 370

default:
//PREPROC PROFILE START(mpsePerfStats); // take out −JK
return 1;

}
}

UINT64 mpseGetPatByteCount()
{ 380

return s bcnt;
}

void mpseResetByteCount()
{

s bcnt = 0;
}

A.2. The MBOM Option 145

A.2 The MBOM Option

The MBOM search method option is the Snort implementation of the Multiple Back-

ward Oracle Matching (MultiBOM) algorithm [6] which we introduced at the end of

Section 4.5. The details of the MBOM along with pseudocode for the search function

are given in Section 7.2.

New Snort source file sfutil/mbom.h:

/*
** MBOM.H (MultiBOM - or Multi Backwards Oracle Matching)
**
** Version 1.0
*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

10

#include "acsmx.h"

#ifndef MBOM H
#define MBOM H

#ifdef WIN32

#ifdef inline

#undef inline

#endif 20

#define inline inline

#endif

/*
* DEFINES and Typedef’s
*/
#define ALPHABET SIZE 256

30

#define MBOM VERBOSE 1
#define MBOM NON VERBOSE 0

#ifndef MBOM EASYTYPES
#define MBOM EASYTYPES

typedef unsigned int uint32 t;
typedef unsigned short uint16 t;

A.2. The MBOM Option 146

typedef unsigned char uint8 t;
40

enum {
MBOM ORACLE, // keep first (0) entry default
MBOM DAWG,

};

#endif

/* A state/node in a DAWG/Oracle/Trie */
50

typedef struct mbom node {
/* allocate 256 pointers to other nodes for constant time branching in the automaton */

struct mbom node * next states[ALPHABET SIZE];
struct mbom node * supply state;

/* 256 bit table where 1s = extended transition at same index in next states */
/* If next states[i] != NULL and 0 == bit i in the table is 0 then this node
* owns the node at next states[i] and is responsible for deleting it */

60

uint8 t extendedTransitions[ALPHABET SIZE / 8];
uint16 t id;

} MBOM NODE; /* SIZE: 1038 B (actual memory consumption depends on compiler settings) */

/*
* MultiBOM Matcher Struct - one per group of pattterns
*/
typedef struct { 70

ACSM STRUCT * acsm; /* an Aho-Corasick Std state machine */
MBOM NODE * initialState; /* root node */
uint32 t mbomSize; /* number of states/nodes */
uint32 t mbomNumTrans; /* number of transitions */
uint32 t mbomNumPatterns; /* number of patterns in the list */
uint8 t mbomFormat; /* the automaton format either an Oracle or a DAWG */
uint16 t minLen; /* length of the shortest pattern */
uint16 t matches;

80

}MBOM STRUCT;

/*
* Prototypes
*/

MBOM STRUCT * mbomNew();

int mbomAddPattern(MBOM STRUCT * mbom, unsigned char * pat, int n,

A.2. The MBOM Option 147

int nocase, int offset, int depth, void * id, int iid); 90

int mbomCompile(MBOM STRUCT * mbom);

int mbomSearch(MBOM STRUCT * mbom, unsigned char * T, int n,
int (*Match)(void * id, int index, void * data), void * data);

void mbomFree(MBOM STRUCT * mbom);

int mbomSelectFormat(MBOM STRUCT * mbom, int format);
100

void mbomSetVerbose(int n);

void mbomPrintDetailInfo(MBOM STRUCT * mbom);

void mbomPrintSummaryInfo();

#endif

New Snort source file sfutil/mbom.c:

/*
** Id
**
** mbom.c
**
** Multi-Pattern Search Engine
**
** MultiBOM - or Multi Backwards Oracle Matching
**
** Version 1.0 10

**
** Copyright (C) 2006 James Kelly jamesjameskelly.net
**
** Reference: (Original MultiBOM proposal) − IN FRENCH
** C. Allauzen and M. Raffinot. Oracle des facteurs d’un ensemble de mots.

** Technical Report IGM 99-11, Institut Gaspard Monge, Universite de

** Marne-la-Vallee, France, 1999.

**

** Reference: (BEST REFERENCE FOR SBOM and how to build a factor oracle)

** G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings, 20

** Practical On-line Search Algorithms for Texts and Biological Sequences.

** Cambridge University Press, Cambridge, UK, 2002

**

** Reference: (BEST REFERENCE FOR MultiBDM)

** M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

** Pages 140-143 -Example in book has a mistake in it; one pattern is not matched-

**

** Reference:

** M. Raffinot. On the multi backward DAWG matching algorithm (MultiBDM). In

A.2. The MBOM Option 148

** R. Baeza-Yates, editor, WSP’97: Proceedings of the 4th South American Work− 30

** shop on String Processing, pages 149{165, Valparaiso, Chile, Nov. 1997.
** Carleton University Press.
**
** Version 1.0 Notes − James Kelly:
**
** 1) Finds all occurrences of all patterns within a text.
**
** 2) Currently supports only the use of a factor oracle; however, MultiDAWG
** uses the same approach with a DAWG (Directed Acyclic Word Graph)
** 40

** 3) MBOM is an implementation of MultiBOM from first reference. It
** is for use in Snort and uses Snort’s standard version of its

** Aho-Corasick state machine (acsmx.h/c).

**

** 4) MBOM doesn’t take much extra memory compared to Snort’s standard

** Aho-Corasick state machine pattern matcher; however, the running time

** will greatly be *enhanced* (faster) because MBOM is average case

** (and worst case) optimal. That is, it’s sublinear (wrt text length)
** on average and linear (wrt text length) in the worst case. The
** average case is defined as only indepedent equiprobable characters 50

** appearing in the search text. The MBOM algorithm executes at most
** 2n inspections of search text characters where the search text
** length is n.
**
** 5) MBOM uses a window size of length equal to the minimum length
** pattern. Therefore, shifts are limited by this window size.
** Thus, it is not/hardly worth using the MBOM algorithm unless
** the minimum length pattern is at least of length 3. Note that
** for those cases the Aho−Corasick algorithm would be faster.
** 60

**
*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "mbom.h" 70

//#define DEBUG MBOM

/*
* facilitates: memory checks
*/
#define MEMASSERT(p,s) if(!p){printf("MBOM-No Memory: %s!\n",s);exit(0);}

/*
* Keep this for stats: 80

A.2. The MBOM Option 149

*/
static int max memory = 0;

/*
* toggle verbose for all instances of MBOM
*/
static int s verbose = MBOM NON VERBOSE;

/*
* Keep this summary for stats: 90

*/
typedef struct mbom summary s
{

unsigned num states;
unsigned num transitions;
unsigned num patterns;
unsigned num groups;

}mbom summary t;
100

static mbom summary t summary={0,0,0,0};

/* QUEUE STUFF:
* A Queue is needed to do a breadth-first traversal
* of our trie to make a factor oracle.
*/

/*
* Simple QUEUE NODE 110

*/
typedef struct qnode
{

MBOM NODE * node; //data
uint8 t character; //data
MBOM NODE * parent; //data
struct qnode *next;

}
QNODE;

120

/*
* Simple QUEUE Structure
*/
typedef struct queue
{

QNODE * head, *tail;
int count;

}
QUEUE;

130

/*

A.2. The MBOM Option 150

* Initialize the queue
*/
static void

queue init (QUEUE * s)
{

s−>head = s−>tail = 0;
s−>count= 0;

}
140

/*
* Add Tail Item to queue (FiFo/LiLo)
*/
static void queue add (QUEUE * s, MBOM NODE * node,

MBOM NODE * parent, uint8 t character)
{

QNODE * q;

if (!s−>head)
{ 150

// don’t count this in summary it will be deleted (it’s tmp only)
// a queue is never kept during the search only used for

// precomputation/preprocessing purposes.
q = s−>tail = s−>head = (QNODE *) malloc (sizeof (QNODE));
MEMASSERT (q, "queue_add");
q−>node = node;
q−>parent = parent;
q−>character = character;
q−>next = NULL;

} 160

else

{
q = (QNODE *) malloc (sizeof (QNODE)); //don’t count this in summary

q->node = node;

q->parent = parent;

q->character = character;

q->next = NULL;

s->tail->next = q;

s->tail = q;

} 170

s->count++;

}

/*

* Remove Head Item from queue

*/

static void queue_remove (QUEUE * s, MBOM_NODE ** node,

MBOM_NODE ** parent, uint8_t * character)

{ 180

void * data;

QNODE * q;

A.2. The MBOM Option 151

data = NULL;

if (s->head)

{
q = s->head;

*node = q->node;

*parent = q->parent; 190

*character = q->character;

s->head = s->head->next;

s->count--;

if(!s->head)

{
s->tail = NULL;

s->count = 0;

}
free (q); 200

}
}

/*

* Return items in the queue

*/

static int

queue_count (QUEUE * s)

{
return s->count; 210

}

/*

* Free the queue

*/

static void

queue_free (QUEUE * s)

{
QNODE * q; 220

while (s->head)

{
q = s->head;

s->head = q->next;

s->count--;

free (q);

if(!s->head) {
s->tail = NULL; 230

s->count = 0;

}
}

A.2. The MBOM Option 152

}

/* MBOM STUFF */

/*

* Case Translation Table 240

*/

static unsigned char xlatcase[256];

/*

* Init Case Translation Table

*/

static void init_xlatcase()

{
int i;

for (i = 0; i < 256; i++) 250

{
xlatcase[i] = toupper(i);

}
}

/*

* measure memory allocations

*/

static void * MBOM_MALLOC (uint32_t size)

{ 260

void * p;

p = malloc (size);

if (p) {
max_memory += size;

}
return p;

}

/*

* measure memory deallocations 270

*/

static void MBOM_FREE (void * p, uint32_t size)

{
if (p) {
free (p);

max_memory -= size;

}
}

/* 280

* toggle between verbose mode on/off with 1/0

*/

void mbomSetVerbose(int n)

{

A.2. The MBOM Option 153

s_verbose = n;

}

/*

* Select the desired storage mode

*/ 290

int mbomSelectFormat(MBOM_STRUCT * mbom, int format)

{
switch(format)

{
case MBOM_ORACLE:

case MBOM_DAWG:

mbom->mbomFormat = MBOM_ORACLE; // only support this currently

break;

default:

return -1; //doesn’t even matter right now (only one version coded) 300

}

return 0;
}

/*
* Create a new MultiBOM Matcher struct
*/
MBOM STRUCT * mbomNew()
{ 310

MBOM STRUCT * p;

init xlatcase();

p = (MBOM STRUCT *) MBOM MALLOC(sizeof (MBOM STRUCT));
MEMASSERT (p, "mbomNew");
memset (p, 0, sizeof (MBOM STRUCT));

p−>acsm = acsmNew();
MEMASSERT (p−>acsm, "mbomNew (acsm)"); 320

++(summary.num groups);

return p;
}

/*
* Add a pattern to the list of patterns for this instance
*/
int mbomAddPattern(MBOM STRUCT * mbom, unsigned char * pat, int n, int nocase, 330

int offset, int depth, void * id, int iid)
{

if(n <= 0) {
printf("Illegal pattern length found of: %d\n", n);
exit(0);

A.2. The MBOM Option 154

}

if(mbom−>minLen == 0 | | mbom−>minLen > n) {
mbom−>minLen = n; // keep track of the length of the shortest pattern

} 340

acsmAddPattern(mbom−>acsm, pat, n, nocase, offset, depth, id, iid);
++(mbom−>mbomNumPatterns);
++(summary.num patterns);
return 0;

}

#ifdef DEBUG MBOM
/*
* Prints out the factor oracle structure: 350

*
* This prints out the F.O. the same way as v2.0
* for comparison purposes (they should be the same)
*/
static void printMbom(MBOM STRUCT * mbom)
{

QUEUE q;
int j;
MBOM NODE * current, * parent;
uint8 t currentCharacter; 360

printf("\nMBOM structure:\n");

/* use queue to facilitate a breadth first traversal over the node/states
* of the trie to print them */

queue init(&q);

for(j = 0; j < ALPHABET SIZE; ++j) {
if(mbom−>initialState−>next states[j] != NULL) {

// enqueue the node itself, its parent, and the character between them on the transition 370

queue add(&q, mbom−>initialState−>next states[j], mbom−>initialState, j);
printf("t(%d,%x) = %d\n", mbom−>initialState−>id, j,

mbom−>initialState−>next states[j]−>id);
}

}

while(queue count(&q)) {

queue remove(&q, ¤t, &parent, ¤tCharacter);
380

/* Enqueue all children nodes of current */
for(j = 0; j < ALPHABET SIZE; ++j) {

if(current−>next states[j] != NULL) {
// enqueue the node itself, its parent, and the character between them on the transition
queue add(&q, current−>next states[j], current, j);

printf("t(%d,%x) = %d\n", current−>id, j, current−>next states[j]−>id);

A.2. The MBOM Option 155

}
}

}
390

queue free(&q);
printf("\n");

}
#endif

/*
* Helper used by the function below it (mbomCompile)
*/
static MBOM NODE * newMbomState()
{ 400

MBOM NODE * node;

node = (MBOM NODE *) MBOM MALLOC(sizeof(MBOM NODE));
MEMASSERT (node, "newMbomState");
memset(node, 0, sizeof(MBOM NODE)); // zero values are defaults and all pointers are NULL

return node;
}

/* 410

* Helper fnc used by mbomCompile
* Sets a bit to 1 in the table
*/

static void setBit(uint8 t * bitTable, uint8 t index)
{

uint8 t j = 0;
uint8 t bitPos = index % 8; // is the place of the bit to set in the (index/8)th byte
uint8 t bitMask = 1;

for(j = 0; j < bitPos; ++j) { 420

bitMask <<= 1;
}

bitTable[index / 8] |= bitMask; // set bit
}

/*
* Helper fnc used by deleteMbomNode and in turn mbomFree
* Returns 1 if bit is set to 1 in table otherwise 0
*/ 430

static uint8 t getBit(uint8 t * bitTable, uint8 t index)
{

uint8 t j = 0;
uint8 t bitPos = index % 8; // is the place of the bit to set in the (index/8)th byte
uint8 t bitMask = 1;

for(j = 0; j < bitPos; ++j) {

A.2. The MBOM Option 156

bitMask <<= 1;
}

440

if((bitTable[index / 8] & bitMask) == 0) { // get bit
return 0;

}
return 1;

}

/*
* Compile (Construct) the automaton to be used for this pattern matcher
*
* Currently this function always builds a factor oracle, 450

* but a DAWG could also be used
*
* The resulting factor oracle recognizes at least all of the factors
* of the pattern set P. It’s construction time should be O(|P|) (linear).
*
* For instructions on how to build this see the algorithm references/notes above
*/
int mbomCompile(MBOM STRUCT * mbom)
{

int j; 460

ACSM PATTERN * plist;
MBOM NODE * current, * new, * parent;
uint8 t currentCharacter;
QUEUE q; // temp for Breadth−First Traversal

/* Create Trie: */
/* ———— */

mbom−>initialState = newMbomState(); // Initial State
++(mbom−>mbomSize); 470

mbom−>initialState−>id = mbom−>mbomSize;

for (plist = mbom−>acsm−>acsmPatterns; plist != NULL; plist = plist−>next) {
current = mbom−>initialState;
j = plist−>n − 1; //start at the end of the patttern because we’re entering it reversed

while(j >= 0 && current->next_states[plist->patrn[j]] != NULL) {
current = current->next_states[plist->patrn[j]];

--j;

} 480

while(j >= 0) {
current = (current->next_states[plist->patrn[j]] = newMbomState());

--j;

++(mbom->mbomNumTrans); // Add Transition

++(mbom->mbomSize); // Add State

current->id = mbom->mbomSize;

}

A.2. The MBOM Option 157

}
490

/* Build Factor Oracle From Trie: */

/* ------------------------------ */

/* We need to create external transitions with a breadth first traversal */

// use queue to facilitate a breadth first traversal over the node/states

// of the trie to make the factor oracle

queue_init(&q);

500

for(j = 0; j < ALPHABET_SIZE; ++j) {
if(mbom->initialState->next_states[j] != NULL) {
// enqueue the node itself, its parent

// and the character between them on the transition

queue_add(&q, mbom->initialState->next_states[j], mbom->initialState, j);

}
}

while(queue_count(&q)) {
510

queue_remove(&q, ¤t, &parent, ¤tCharacter);

/* Process current node */

// new moves ("up") towards the root/initialState

new = parent->supply_state;

while(new != NULL && new->next_states[currentCharacter] == NULL) {

// Add an external transition 520

new->next_states[currentCharacter] = current;

++(mbom->mbomNumTrans); // Add Transition

// set bit in bit table to indicate this is an extended transition

setBit(new->extendedTransitions, currentCharacter);

new = new->supply_state;

}

if(new != NULL) { 530

current->supply_state = new->next_states[currentCharacter];

}
else {
current->supply_state = mbom->initialState;

}

/* Enqueue all children nodes of current */

for(j = 0; j < ALPHABET_SIZE; ++j) {
if(current->next_states[j] != NULL) {

A.2. The MBOM Option 158

// enqueue the node itself, its parent 540

// and the character between them on the transition

queue_add(&q, current->next_states[j], current, j);

}
}

}

queue_free(&q);

/* Tell the ACSM to compile itself too */

/* ----------------------------------- */ 550

acsmCompile(mbom->acsm);

/* Accrue Summary State Stats */

summary.num_states += mbom->mbomSize;

summary.num_transitions += mbom->mbomNumTrans;

#ifdef DEBUG_MBOM

printMbom(mbom);

mbomPrintDetailInfo(mbom);

#endif 560

return 0;

}

/** Tc is declared once outside of this function is a pointer

** into all converted uppercase text characters/bytes

**/

#define MBOM_MAX_TEXT 65536

static unsigned char Tc[MBOM_MAX_TEXT]; // should be more than enough space for snort

570

/*

* Search Function

*/

int mbomSearch(MBOM_STRUCT * mbom, unsigned char *Tx, int n,

int (*Match) (void * id, int index, void *data),

void *data)

{
int nfound = 0; /* num of patterns found */

int min = mbom->minLen; // minimal length of patterns (also the window size)

int i = 0; // i is the position of the window on the text 580

int critpos = 0; // position of the input head of the ACSM

int j = 0; // tmp (may go to -1 tmply)

int end = n - min + 1; // last valid i + 1

int windowEnd = min - 1;

MBOM_NODE * current = NULL;

int state = 0; /* ACSM current state*/

ACSM_PATTERN * mlist; /* tmp list of patterns at a terminal state */

ACSM_STATETABLE * states = mbom->acsm->acsmStateTable;

590

A.2. The MBOM Option 159

// Tc is declared once outside of this function is a pointer

// into all converted uppercase text characters/bytes

if(n > MBOM_MAX_TEXT) {
printf("mbom Search unperformed because text was too long");

exit(0);

}

// Case conversion of text

for (j = 0; j < n; ++j) { 600

Tc[j] = xlatcase[Tx[j]];

}

while(i < end && critpos < n) {

// Here’s the ACSM has scanned up to but not including Tc[critpos]
// We scan with the oracle back to and including Tc[critpos]

j = i + windowEnd; // last char in window
current = mbom−>initialState; 610

// Search for factor mismatch in the oracle/dawg:

while(j >= critpos && (current = current−>next states[Tc[j]]) != NULL) {
−−j;

}

if(j >= critpos) { //if it didn’t make it all the way to the critpos

state = 0; // reset ACSM

critpos = j + 1; 620

}

// Search with ACSM between indexes critpos "up to" n-1:

while(critpos < n && (critpos < i + min | | states[state].depth >= min)) {

state = states[state].NextState[Tc[critpos]]; // scan one character

++critpos;

if(states[state].MatchList != NULL) { // if this state is terminal 630

/* Go through the patterns that match at this state */

for(mlist=states[state].MatchList; mlist != NULL; mlist = mlist->next) {

/* j = location that match starts in Tx */

j = critpos - (uint16_t)mlist->n;

/* obviously faster for patterns that are case insensitive */

if(mlist->nocase) { 640

++nfound; ++(mbom->matches);

A.2. The MBOM Option 160

if(Match (mlist->id, j, data))

return nfound;

}
else {
if(memcmp(mlist->casepatrn, Tx + j, mlist->n) == 0) {
++nfound; ++(mbom->matches);

if(Match (mlist->id, j, data))

return nfound;

650

}
}

} //end for

} //end if

} //end while

/* shift by critpos - length of longest prefix matched */

i = critpos - states[state].depth; // SHIFT WINDOW

} 660

return nfound;

}

/*

* Helper fnc used by mbomFree

* Free node (recursive helper)

*/

static void deleteMbomNode(MBOM_NODE * node)

{
int j; 670

if(node == NULL) {
return;

}

/* delete all children */

for(j = 0; j < ALPHABET_SIZE; ++j) {
// check that it is not an extended transition

// if it is then it "belongs" to another MBOM_NODE

if(node->next_states[j] != NULL && (getBit(node->extendedTransitions, j) == 0)) { 680

deleteMbomNode(node->next_states[j]);

}
}

/* delete node */

MBOM_FREE(node, sizeof (MBOM_NODE));

}

/*

* Free all memory 690

*/

void mbomFree(MBOM_STRUCT * mbom)

A.2. The MBOM Option 161

{
deleteMbomNode(mbom->initialState); // deletes all states and transitions

acsmFree(mbom->acsm); // deletes the ACSM

MBOM_FREE(mbom, sizeof (MBOM_STRUCT));

--(summary.num_groups); 700

}

static int ins_num = 0;

/*

* Prints information about a mbom matcher instance

*/

void mbomPrintDetailInfo(MBOM_STRUCT * mbom)

{ 710

char * sf[]= {"Factor Oracle", "DAWG (Directed Acyclic Word Graph)"};

printf("+--[Pattern Matcher:Multi Backward Oracle Matching (MultiBOM)");

printf(" Instance Info]------\n");

printf("| Instance Number : %u\n", ++ins_num);

printf("| Alphabet Size : %u Chars\n", ALPHABET_SIZE);

printf("| Size of State : %u bytes\n", (int)(sizeof(MBOM_NODE)));

printf("| Storage Format : %s\n", sf[mbom->mbomFormat]);

printf("| Shortest Pat Len : %u\n", (unsigned int)mbom->minLen);

printf("| Num States : %u\n", (unsigned int)mbom->mbomSize); 720

printf("| Num Transitions : %u\n", (unsigned int)mbom->mbomNumTrans);

printf("| Num Patterns : %u\n", (unsigned int)mbom->mbomNumPatterns);

printf("| State Density : %.1f%%\n",

100.0*(double)mbom->mbomNumTrans/(mbom->mbomSize * ALPHABET_SIZE));

printf("| All MBOMs’ Memory: %.2fKbytes\n", (float)max_memory/1024);

printf("+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−−−\n\n");
printf("+−−−−−−−−−−−−−−−−−−");
printf(" AHO−CORASICK STATE MACHINE INFO FOLLOWS: "); 730

printf("−−−−−−−−−−−−−−−−−−−−−\n\n");

acsmPrintDetailInfo(mbom->acsm);

}

/*

* Global sumary of all mbom info and all state machines built during this run

*/

void mbomPrintSummaryInfo()

{ 740

// this IF is for mpsePrintSummary (which doesn’t check which method is in use)

if(summary.num_states > 0) {
printf("+−−[Pattern Matcher:Multi Backward Oracle Matching (MultiBOM)");

A.2. The MBOM Option 162

printf(" Overall Summary]−−−−\n");
printf("| Alphabet Size : %u Chars\n",ALPHABET_SIZE);
printf("| Size of State : %u bytes\n",(int)(sizeof(MBOM_NODE)));
printf("| Num States : %u\n",summary.num_states);
printf("| Num Transitions : %u\n",summary.num_transitions);
printf("| Num Groups : %u\n",summary.num_groups);
printf("| Num Patterns : %u\n",summary.num_patterns); 750

printf("| State Density : %.1f%%\n",
100.0*(double)summary.num_transitions / (summary.num_states * ALPHABET_SIZE));

printf("| Memory Usage : %.2fKbytes\n", (float)max_memory/1024);

printf("+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−\n\n");
printf("+−−−−−−−−−−−−−−−−−");
printf(" AHO−CORASICK STATE MACHINE SUMMARY FOLLOWS: ");
printf("−−−−−−−−−−−−−−−−−−−\n\n");

760

acsmPrintSummaryInfo();

}
}

//#define MBOM_MAIN

#ifdef MBOM_MAIN

770

#include <time.h>

/*

* Text Data Buffer

*/

unsigned char text[2048];

/*

* A Match is found

*/ 780

int MatchFound (void* id, int index, void *data)

{
printf("MATCH:%s\n", (char *) id);

return 0;

}

/*

* MAIN (for testing purposes)

*/

int main (int argc, char **argv) 790

{
int i, nc, nocase = 0;

MBOM_STRUCT * mbom;

char * p;

A.2. The MBOM Option 163

clock_t start, stop;

if (argc < 3) {
fprintf (stderr,"\nUsage: %s search−text pattern +pattern. . . [flags]\n",argv[0]);
fprintf (stderr," flags: −nocase −verbose\n");
fprintf (stderr," use a + in front of pattern for single case insensitive pattern\n\n"); 800

exit (0);

}

mbom = mbomNew();

if(!mbom) {
printf("mbom−no memory\n");
fflush(stdout);

exit(0);

} 810

if(s_verbose) {
printf("Parsing Parameters. . .\n");
fflush(stdout);

}

strcpy (text, argv[1]);

for(i = 1; i < argc; ++i) {
820

if(strcmp(argv[i], "−nocase") == 0) {
nocase = 1;

}
if(strcmp (argv[i], "−verbose") == 0) {
s_verbose = MBOM_VERBOSE;

}
}

for (i = 2; i < argc; ++i) {
if (argv[i][0] == ’-’) /* a switch */ 830

continue;

p = argv[i];

if (*p == ’+’) {
nc=1;

++p;

}
else {

nc = nocase; 840

}

mbomAddPattern(mbom, p, strlen(p), nc, 0, 0, (void*)p, i - 2);

}

A.3. The MBOM2 Option 164

if(s_verbose) { printf("Patterns added\n"); fflush(stdout); }

start = clock();

mbomCompile(mbom);

stop = clock(); 850

if(s_verbose) {
printf("Patterns compiled in (%f seconds)\n", ((double)(stop-start))/CLOCKS_PER_SEC);

fflush(stdout);

mbomPrintDetailInfo(mbom);

printf("\n");
mbomPrintSummaryInfo();

printf("\nSearching text. . .\n");
fflush(stdout);

} 860

start = clock();

mbomSearch(mbom, text, strlen(text), MatchFound, (void *)0);

stop = clock();

if(s_verbose)

printf ("Done search in (%f seconds)\n", ((double)(stop-start))/CLOCKS_PER_SEC);

mbomFree(mbom);

870

if(s_verbose) printf ("Done cleaning\n");

return 0;

}
#endif /* include main program */

A.3 The MBOM2 Option

The MBOM2 search method option is the implementation of the same algorithms

as in the MBOM option (see Section A.2); however, using a hashtable as discussed

in Section 7.2. The implementation of the standard hashtable is not documented

here. It is in entirely new files included with the source code package available from

ftp://jameskelly.net/mcs/.

New Snort source file sfutil/mbom2.h:

/*
** MBOM.H (MultiBOM - or Multi Backwards Oracle Matching)

A.3. The MBOM2 Option 165

**
** Version 2.0
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

10

#include "acsmx.h"

#include "hashtable.h"

#ifndef MBOM2 H
#define MBOM2 H

#ifdef WIN32

#ifdef inline

#undef inline 20

#endif

#define inline inline

#endif

/*
* DEFINES and Typedef’s
*/
#define ALPHABET SIZE 256 30

#define MBOM ROOT 1

#define MBOM VERBOSE 1
#define MBOM NON VERBOSE 0

#ifndef MBOM EASYTYPES
#define MBOM EASYTYPES

typedef unsigned int uint32 t; 40

typedef unsigned short uint16 t;
typedef unsigned char uint8 t;

enum {
MBOM ORACLE, // keep first (0) entry default
MBOM DAWG,

};

#endif

50

typedef struct hashtable HASHTABLE;

typedef uint16 t MBOM STATE;

A.3. The MBOM2 Option 166

/* A state/node in a DAWG/Oracle/Trie */

typedef struct {
MBOM STATE from state;
uint8 t character;

} MBOM KEY; 60

// MBOM VALUE is just a MBOM STATE as next state

/*
* MultiBOM Matcher Struct - one per group of pattterns
*/

typedef struct {
/* instead of allocating 256 pointers to other nodes for constant time
* branching in the automaton we use a hashtable */ 70

HASHTABLE * transitions;
ACSM STRUCT * acsm; /* an Aho-Corasick Std state machine */

uint32 t mbomSize; /* number of states/nodes */
uint32 t mbomNumTrans; /* number of transitions */
uint32 t mbomNumPatterns; /* number of patterns in the list */
uint8 t mbomFormat; /* the automaton format either an Oracle or a DAWG */
uint16 t minLen; /* length of the shortest pattern */

80

}MBOM STRUCT2;

/*
* Prototypes
*/

MBOM STRUCT2 * mbomNew2();

int mbomAddPattern2(MBOM STRUCT2 * mbom, unsigned char * pat, int n,
int nocase, int offset, int depth, void * id, int iid); 90

int mbomCompile2(MBOM STRUCT2 * mbom);

int mbomSearch2(MBOM STRUCT2 * mbom, unsigned char * T, int n,
int (*Match)(void * id, int index, void * data), void * data);

void mbomFree2(MBOM STRUCT2 * mbom);

int mbomSelectFormat2(MBOM STRUCT2 * mbom, int format);
100

void mbomSetVerbose2(int n);

void mbomPrintDetailInfo2(MBOM STRUCT2 * mbom);

A.3. The MBOM2 Option 167

void mbomPrintSummaryInfo2();

// make these available for the hashtable memory tracking:

void * MBOM MALLOC2(uint32 t size);
110

void * MBOM REALLOC2(void * p, uint32 t new size, uint32 t difference);

void MBOM FREE2(void * p, uint32 t size);

#endif

New Snort source file sfutil/mbom2.c:

/*
** Id
**
** mbom2.c
**
** Multi-Pattern Search Engine
**
** MultiBOM - or Multi Backwards Oracle Matching
**
** Version 2.0 10

**
** Copyright (C) 2006 James Kelly jamesjameskelly.net
**
** Reference: (Original MultiBOM proposal) − IN FRENCH
** C. Allauzen and M. Raffinot. Oracle des facteurs d’un ensemble de mots.

** Technical Report IGM 99-11, Institut Gaspard Monge, Universite de

** Marne-la-Vallee, France, 1999.

**

** Reference: (BEST REFERENCE FOR SBOM and how to build a factor oracle)

** G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings, 20

** Practical On-line Search Algorithms for Texts and Biological Sequences.

** Cambridge University Press, Cambridge, UK, 2002

**

** Reference: (BEST REFERENCE FOR MultiBDM)

** M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

** Pages 140-143 *Example in book has a mistake in it; one pattern is not matched*

**

** Reference:

** M. Raffinot. On the multi backward DAWG matching algorithm (MultiBDM). In

** R. Baeza-Yates, editor, WSP’97: Proceedings of the 4th South American Work− 30

** shop on String Processing, pages 149{165, Valparaiso, Chile, Nov. 1997.
** Carleton University Press.
**
** Version 1.0 Notes − James Kelly:
**
** 1) Finds all occurrences of all patterns within a text.

A.3. The MBOM2 Option 168

**
** 2) Currently supports only the use of a factor oracle; however, MultiDAWG
** uses the same approach with a DAWG (Directed Acyclic Word Graph)
** 40

** 3) MBOM is an implementation of MultiBOM from first reference. It
** is for use in Snort and uses Snort’s standard version of its

** Aho-Corasick state machine (acsmx.h/c).

**

** 4) MBOM doesn’t take much extra memory compared to Snort’s standard

** Aho-Corasick state machine pattern matcher; however, the running time

** will greatly be *enhanced* (faster) because MBOM is average case

** and worst case optimal. That is, it’s sublinear (wrt text length)
** on average and linear (wrt text length) in the worst case. The
** average case is defined as only indepedent equiprobable characters 50

** appearing in the search text. The MBOM algorithm executes at most
** 2n inspections of search text characters where the search text
** length is n.
**
** 5) MBOM uses a window size of length equal to the minimum length
** pattern. Therefore, shifts are limited by this window size.
** Thus, it is not/hardly worth using the MBOM algorithm unless
** the minimum length pattern is at least of length 3. Note that
** for those cases the Aho−Corasick algorithm would be faster.
** 60

** New Version 2.0 Notes − James Kelly:
**
** 1) This version uses a hashtable and there is no trie or nodes. It is
** all virtual in the hashtable which of course saves a lot (tons) of
** memory. For comparison for the Snort default rule DB MBOM v1.0
** would take 14331.21 KB of memory + 157366.49 KB for the Aho−Corasick
** State Machine − ACSM), but MBOM v2.0 takes 548.70Kbytes + the same
** for the ACSM. In the memory usage of the factor oracle there’s a

** difference of 26:1 (ratio)!

** 70

** 2) Still only supports only the use of a factor oracle; however, MultiDAWG

** uses the same approach with a DAWG (Directed Acyclic Word Graph).

**

** 3) States in the factor oracle are represented by a uint16_t therefore we

** are limited to 2^16 states. That should be plenty considering the factor

** oracle’s depth is cut off at the length of the shortest pattern. It should
** be easy to change it to a uint32 t if needed, but of course this will
** increase memory cost per state as well.
**
** 4) The hashtable holds a state id and character as a key, and another state 80

** id as the value. The character is the label on the transition between the
** two states.
**
** 5) MBOM v1.0 stored the supply state in the NODE which meant it was kept around
** after pre−computation, but it actually isn’t needed. In this version the

** memory to hold the supply function (supply states) is only allocated during

** precomputation (the compile routine). Before the search phase it is deleted.

A.3. The MBOM2 Option 169

**

**

*/ 90

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "mbom2.h"

//#define DEBUG_MBOM2

100

/*

* facilitates: memory checks

*/

#define MEMASSERT(p,s) if(!p){printf("MBOM-No Memory: %s!\n",s);exit(0);}

/*

* Keep this for stats:

*/

static int max_memory = 0;

110

/*

* toggle verbose for all instances of MBOM2

*/

static int s_verbose = MBOM_NON_VERBOSE;

/*

* Keep this summary for stats:

*/

typedef struct mbom_summary_s

{ 120

unsigned num_states;

unsigned num_transitions;

unsigned num_patterns;

unsigned num_groups;

} mbom_summary_t;

static mbom_summary_t summary={0,0,0,0};

130

/* QUEUE STUFF:

* A Queue is needed to do a breadth-first traversal

* of our trie to make a factor oracle.

*/

/*

* Simple QUEUE NODE

*/

A.3. The MBOM2 Option 170

typedef struct _qnode

{ 140

MBOM_STATE * state; //data

MBOM_KEY * parent; //data

struct _qnode *next;

} QNODE;

/*

* Simple QUEUE Structure

*/

typedef struct _queue

{ 150

QNODE * head, *tail;

int count;

} QUEUE;

/*

* Initialize the queue

*/

static void

queue_init (QUEUE * s)

{ 160

s->head = s->tail = 0;

s->count= 0;

}

/*

* Add Tail Item to queue (FiFo/LiLo)

*/

static void queue_add (QUEUE * s, MBOM_STATE * state, MBOM_KEY * parent)

{
QNODE * q; 170

if (!s->head)

{
// don’t count this in summary it will be deleted (it’s tmp only)

// a queue is never kept during the search only used for

// precomputation/preprocessing purposes.

q = s->tail = s->head = (QNODE *)malloc(sizeof (QNODE));

MEMASSERT (q, "queue_add");

q->state = state;

q->parent = parent; 180

q->next = NULL;

}
else

{
q = (QNODE *) malloc (sizeof (QNODE)); //don’t count this in summary
q−>state = state;
q−>parent = parent;
q−>next = NULL;
s−>tail−>next = q;

A.3. The MBOM2 Option 171

s−>tail = q; 190

}
++(s−>count);

}

/*
* Remove Head Item from queue
*/
static void queue remove (QUEUE * s, MBOM STATE ** state, MBOM KEY ** parent)
{ 200

void * data;
QNODE * q;

data = NULL;

if (s−>head)
{

q = s−>head;
*state = q−>state;
*parent = q−>parent; 210

s−>head = s−>head−>next;
−−(s−>count);

if(!s−>head)
{

s−>tail = NULL;
s−>count = 0;

}
free (q);

} 220

}

/*
* Return # of items in the queue
*/
static int

queue count (QUEUE * s)
{

return s−>count;
} 230

/*
* Free the queue
*/
static void

queue free (QUEUE * s)
{

QNODE * q;
240

A.3. The MBOM2 Option 172

while (s−>head)
{

q = s−>head;
s−>head = q−>next;
s−>count−−;
free (q);

if(!s−>head) {
s−>tail = NULL;
s−>count = 0; 250

}
}

}

/** HASHTABLE STUFF **/

DEFINE HASHTABLE INSERT(insert node, MBOM KEY, MBOM STATE);
DEFINE HASHTABLE SEARCH(get node, MBOM KEY, MBOM STATE);
DEFINE HASHTABLE REMOVE(remove node, MBOM KEY, MBOM STATE);

260

/*
* Returns the hash value of a key:
*/

static unsigned int

hashFromKey(void *ky)
{

MBOM KEY * k = (MBOM KEY *)ky;
//uint32 t i = k−>from state;
//uint32 t j = k−>character; 270

//return (i ^ j); // (fastest)
return (((k−>from state << 7) | (k−>from state >> 5)) ^ k−>character); // (faster)
//return (((i << 7) | (i >> 5)) ^ j) + (i * 17) + (j * 4901); //4901 = 13*29 (good)

}

/*
* Check equality between two keys:
*
* DO NOT USE return (0 == memcmp(k1, k2, sizeof(MBOM KEY))) in this function 280

* unless you have checked the sizeof value for the key
*
* Our key is actually 3B but sizeof(MBOM KEY) returns 4B !!
* this is due to structure field packaging in gcc which screws it up big time
* because sometimes get node would return NULL when it shouldn’t
*
*/
static int

equalKeys(void *k1, void *k2)
{ 290

MBOM KEY * kk1 = (MBOM KEY *)k1, * kk2 = (MBOM KEY *)k2;

A.3. The MBOM2 Option 173

return (kk1−>from state == kk2−>from state && kk1−>character == kk2−>character);
}

/* MBOM STUFF */

/*
* Case Translation Table
*/ 300

static unsigned char xlatcase[256];

/*
* Init Case Translation Table
*/
static void init xlatcase()
{

int i;
for (i = 0; i < 256; i++)
{ 310

xlatcase[i] = toupper(i);
}

}

#ifndef MBOM MEM STATS
#define MBOM MEM STATS
/*
* measure memory allocations
*/
void * MBOM MALLOC2 (uint32 t size) 320

{
void * p;
p = malloc (size);
if (p) {

max memory += size;
}
return p;

}

/* 330

* measure memory reallocations
* (only used by the hashtable in special circumstances where low on mem)
*/
void * MBOM REALLOC2 (void * p, uint32 t new size, uint32 t difference)
{

realloc (p, new size);
if (p) {

max memory += difference;
}
return p; 340

}

A.3. The MBOM2 Option 174

/*
* measure memory deallocations
*/
void MBOM FREE2 (void * p, uint32 t size)
{

if (p) {
free (p);
max memory −= size; 350

}
}
#endif

/*
* toggle between verbose mode on/off with 1/0
*/
void mbomSetVerbose2(int n)
{

s verbose = n; 360

}

/*
* Select the desired storage mode
*/
int mbomSelectFormat2(MBOM STRUCT2 * mbom, int format)
{

switch(format)
{

case MBOM ORACLE: 370

case MBOM DAWG:
mbom−>mbomFormat = MBOM ORACLE; // only support this currently
break;

default:
return −1; //doesn’t even matter right now (only one version coded)

}

return 0;

}
380

/*

* Create a new MultiBOM Matcher struct

*/

MBOM_STRUCT2 * mbomNew2()

{
MBOM_STRUCT2 * mbom;

init_xlatcase();

mbom = (MBOM_STRUCT2 *) MBOM_MALLOC2(sizeof (MBOM_STRUCT2)); 390

MEMASSERT (mbom, "mbomNew");

memset (mbom, 0, sizeof (MBOM_STRUCT2));

A.3. The MBOM2 Option 175

mbom->transitions = create_hashtable(16, hashFromKey, equalKeys);

MEMASSERT (mbom->transitions, "mbomNew (HT)");

mbom->acsm = acsmNew();

MEMASSERT (mbom->acsm, "mbomNew (acsm)");

++(summary.num_groups); 400

return mbom;

}

/*

* Add a pattern to the list of patterns for this instance

*/

int mbomAddPattern2(MBOM_STRUCT2 * mbom, unsigned char * pat, int n, int nocase,

int offset, int depth, void * id, int iid)

{ 410

if(n <= 0) {
printf("Illegal pattern length found of: %d\n", n);

exit(0);

}

if(mbom->minLen == 0 | | mbom->minLen > n) {
mbom->minLen = n; // keep track of the length of the shortest pattern

}

acsmAddPattern(mbom->acsm, pat, n, nocase, offset, depth, id, iid); 420

++(mbom->mbomNumPatterns);

++(summary.num_patterns);

return 0;

}

#ifdef DEBUG_MBOM2

/*

* Prints out the factor oracle structure:

*

* This prints out the F.O. the same way as v1.0 430

* for comparison purposes (they should be the same)

*/

static void printMbom2(MBOM_STRUCT2 * mbom)

{
QUEUE q;

MBOM_STATE * next_state;

MBOM_KEY tmpKey, * key;

int j;

printf("\nMBOM structure:\n"); 440

/* use queue to facilitate a breadth first traversal over the node/states

* of the trie to print them */

queue_init(&q);

A.3. The MBOM2 Option 176

tmpKey.from_state = MBOM_ROOT;

for(j = 0; j < ALPHABET_SIZE; ++j) {
tmpKey.character = j;

450

if((next_state = get_node(mbom->transitions, &tmpKey)) != NULL) {
//key = (MBOM_KEY *)malloc(sizeof(MBOM_KEY));

//key->character = j;

//key->from_state = MBOM_ROOT;

queue_add(&q, next_state, NULL);

printf("t(%d,%x) = %d\n", MBOM_ROOT, j, *next_state);

}
}

while(queue_count(&q)) { 460

queue_remove(&q, &next_state, &key);

tmpKey.from_state = *next_state;

for(j = 0; j < ALPHABET_SIZE; ++j) {
tmpKey.character = j;

if((next_state = get_node(mbom->transitions, &tmpKey)) != NULL) {
queue_add(&q, next_state, NULL);

printf("t(%d,%x) = %d\n", tmpKey.from_state, j, *next_state);

} 470

}
}

queue_free(&q);

printf("\n");

}
#endif

/*

* Compile (Construct) the automaton to be used for this pattern matcher 480

*

* Currently this function always builds a factor oracle,

* but a DAWG could also be used

*

* The resulting factor oracle recognizes at least all of the factors

* of the pattern set P. It’s construction time should be O(|P|) (linear).
*
* For instructions on how to build this see the algorithm references/notes above
*/
int mbomCompile2(MBOM STRUCT2 * mbom) 490

{
int j;
ACSM PATTERN * plist;
MBOM STATE current = 0, * cur = NULL, * next state = NULL; // states
QUEUE q; // temp for Breadth−First Traversal

A.3. The MBOM2 Option 177

MBOM KEY * key, tmpKey, * parent;
MBOM STATE * supplyFnc; /* Only used in precomputation */

/* Create Trie: */
/* ———— */ 500

++(mbom−>mbomSize); // Initial State

for (plist = mbom−>acsm−>acsmPatterns; plist != NULL; plist = plist−>next) {
current = MBOM ROOT; // Initial State
j = plist−>n − 1; //start at the end of the patttern because we’re entering it reversed

tmpKey.from_state = current;

tmpKey.character = plist->patrn[j];

510

while(j >= 0 && (next_state = get_node(mbom->transitions, &tmpKey)) != NULL) {
tmpKey.from_state = current = *next_state;

tmpKey.character = plist->patrn[--j];

}

while(j >= 0) {
key = (MBOM_KEY *)MBOM_MALLOC2(sizeof(MBOM_KEY));

MEMASSERT(key, "mbomCompile K");

key->from_state = current;

key->character = plist->patrn[j]; 520

next_state = (MBOM_STATE *)MBOM_MALLOC2(sizeof(MBOM_STATE));

MEMASSERT(next_state, "mbomCompile V");

*next_state = ++(mbom->mbomSize); // Add State

++(mbom->mbomNumTrans); // Add Transition

insert_node(mbom->transitions, key, next_state);

current = *next_state;

--j;

} 530

}

/* Build Factor Oracle From Trie: */

/* ------------------------------ */

/* We need to create external transitions with a breadth first traversal */

// don’t count this memory because it will deleted after during this fnc
supplyFnc = malloc((mbom−>mbomSize + 1) * sizeof(MBOM STATE));
// supply fnc 0 = NULL/NOTHING 540

memset(supplyFnc, 0, (mbom−>mbomSize + 1) * sizeof(MBOM STATE));

// use queue to facilitate a breadth first traversal over the
// node/states of the trie to make the factor oracle
queue init(&q);

A.3. The MBOM2 Option 178

tmpKey.from state = MBOM ROOT;
for(j = 0; j < ALPHABET SIZE; ++j) {

tmpKey.character = j;
550

if((next state = get node(mbom−>transitions, &tmpKey)) != NULL) {
parent = (MBOM KEY *)malloc(sizeof(MBOM KEY));
parent−>character = tmpKey.character;
parent−>from state = tmpKey.from state;
queue add(&q, next state, parent);

}
}

while(queue count(&q)) {
560

queue remove(&q, &cur, &parent);

// Process current node
// tmpKey.from state moves ("up") towards the root/initialState

tmpKey.from state = supplyFnc[parent−>from state];
tmpKey.character = parent−>character;

while(tmpKey.from state != 0 && get node(mbom−>transitions, &tmpKey) == NULL) {
570

// Add an external transition
key = (MBOM KEY *)MBOM MALLOC2(sizeof(MBOM KEY));
MEMASSERT(key, "mbomCompile K2");
key−>character = tmpKey.character;
key−>from state = tmpKey.from state;

next state = (MBOM STATE *)MBOM MALLOC2(sizeof(MBOM STATE));
MEMASSERT(next state, "mbomCompile V2");
*next state = *cur;

580

insert node(mbom−>transitions, key, next state);
++(mbom−>mbomNumTrans); // Add Transition

tmpKey.from state = supplyFnc[tmpKey.from state];
}

if(tmpKey.from state != 0) {
next state = get node(mbom−>transitions, &tmpKey);
supplyFnc[*cur] = *next state;

} 590

else {
supplyFnc[*cur] = MBOM ROOT;

}

free(parent); // no longer needed (tmp only)

/* Enqueue all children nodes of current */

A.3. The MBOM2 Option 179

tmpKey.from state = *cur;
for(j = 0; j < ALPHABET SIZE; ++j) {

tmpKey.character = j; 600

if((next state = get node(mbom−>transitions, &tmpKey)) != NULL) {
parent = (MBOM KEY *)malloc(sizeof(MBOM KEY));
parent−>character = tmpKey.character;
parent−>from state = tmpKey.from state;
queue add(&q, next state, parent);

}
}

}

queue free(&q); 610

free(supplyFnc); // wasn’t counted in memory usage

/* Tell the ACSM to compile itself too */

/* ----------------------------------- */

acsmCompile(mbom->acsm);

/* Accrue Summary State Stats */

summary.num_states += mbom->mbomSize;

summary.num_transitions += mbom->mbomNumTrans;

620

#ifdef DEBUG_MBOM2

printMbom2(mbom);

mbomPrintDetailInfo2(mbom);

#endif

return 0;

}

630

/** Tc is declared once outside of this function is a pointer

** into all converted uppercase text characters/bytes

**/

#define MBOM_MAX_TEXT 65536

static unsigned char Tc[MBOM_MAX_TEXT]; // should be more than enough space for snort

/*

* Search Function

*/

int mbomSearch2(MBOM_STRUCT2 * mbom, unsigned char *Tx, int n, 640

int (*Match) (void * id, int index, void *data),

void *data)

{
int nfound = 0; /* num of patterns found */

int min = mbom->minLen; // minimal length of patterns (also the window size)

int i = 0; // i is the position of the window on the text

int critpos = 0; // position of the input head of the ACSM

int j = 0; // tmp

A.3. The MBOM2 Option 180

int end = n - min + 1; // last valid i + 1

int windowEnd = min - 1; 650

MBOM_STATE current = 0;

MBOM_STATE * tmp = 0;

HASHTABLE * trans = mbom->transitions;

MBOM_KEY tmpKey;

int state = 0; /* ACSM current state*/

ACSM_PATTERN * mlist; /* tmp list of patterns at a terminal state */

ACSM_STATETABLE * states = mbom->acsm->acsmStateTable;

// Tc is declared once outside of this function is a pointer 660

// into all converted uppercase text characters/bytes

if(n > MBOM_MAX_TEXT) {
printf("mbom Search unperformed because text was too long");

exit(0);

}

// Case conversion of text

for (j = 0; j < n; ++j) { 670

Tc[j] = xlatcase[Tx[j]];

}

while(i < end && critpos < n) {

// Here’s the ACSM has scanned up to but not including Tc[critpos]
// We scan with the oracle back to and including Tc[critpos]

j = i + windowEnd;
current = MBOM ROOT; 680

// Search for factor mismatch in the oracle/dawg:
tmpKey.character = Tc[j];
tmpKey.from state = current;
tmp = get node(trans, &tmpKey);

while(j >= critpos && tmp != NULL) {
−−j;
tmpKey.character = Tc[j];
tmpKey.from state = *tmp; // new current 690

tmp = get node(trans, &tmpKey);
}

if(tmp == NULL) { //if it didn’t make it all the way to the critpos

state = 0; // reset ACSM

critpos = j + 1;

}

// Search with ACSM between indexes critpos to n-1:

A.3. The MBOM2 Option 181

700

while(critpos < n && (critpos < i + min | | states[state].depth >= min)) {

state = states[state].NextState[Tc[critpos]]; // scan one character

++critpos;

if(states[state].MatchList != NULL) { // if this state is terminal

/* Go through the patterns that match at this state */

for(mlist=states[state].MatchList; mlist != NULL; mlist = mlist->next) { 710

/* j = location that match starts in Tx */

j = critpos - mlist->n;

/* obviously faster for patterns that are case insensitive */

if(mlist->nocase) {
++nfound;

if(Match (mlist->id, j, data))

return nfound;

} 720

else {
if(memcmp(mlist->casepatrn, Tx + j, mlist->n) == 0) {
++nfound;

if(Match (mlist->id, j, data))

return nfound;

}
}

} //end for

} //end if 730

} //end while

/* shift by critpos - length of longest prefix matched */

i = critpos - states[state].depth; // SHIFT WINDOW

}

return nfound;

}

740

/*

* Free all memory

*/

void mbomFree2(MBOM_STRUCT2 * mbom)

{
hashtable_destroy(mbom->transitions, 1); // deletes all states and transitions

acsmFree(mbom->acsm); // deletes the ACSM

MBOM_FREE2(mbom, sizeof(MBOM_STRUCT2)); 750

A.3. The MBOM2 Option 182

--(summary.num_groups);

}

/*

* Prints information about a mbom matcher instance

*/

void mbomPrintDetailInfo2(MBOM_STRUCT2 * mbom)

{
char * sf[]= {"Factor Oracle", "DAWG (Directed Acyclic Word Graph)"}; 760

printf("+--[Pattern Matcher:Multi Backward Oracle Matching (MultiBOM)");

printf(" Instance Info]------\n");

printf("| Alphabet Size : %u Chars\n", ALPHABET_SIZE);

printf("| Size of State : %u bytes\n", (int)(sizeof(MBOM_STATE)));

printf("| Storage Format : %s\n", sf[mbom->mbomFormat]);

printf("| Shortest Pat Len : %u\n", (unsigned int)mbom->minLen);

printf("| Num States : %u\n", (unsigned int)mbom->mbomSize);

printf("| Num Transitions : %u\n", (unsigned int)mbom->mbomNumTrans);

printf("| Num Patterns : %u\n", (unsigned int)mbom->mbomNumPatterns); 770

printf("| State Density : %.1f%%\n",

100.0*(double)mbom->mbomNumTrans/(mbom->mbomSize * ALPHABET_SIZE));

printf("| All MBOMs’ Memory: %.2fKbytes\n", (float)max_memory/1024);

printf("+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−−−\n\n");
printf("+−−−−−−−−−−−−−−−−−−");
printf(" AHO−CORASICK STATE MACHINE INFO FOLLOWS: ");
printf("−−−−−−−−−−−−−−−−−−−−−\n\n");

780

acsmPrintDetailInfo(mbom->acsm);

}

/*

* Global sumary of all mbom info and all state machines built during this run

*/

void mbomPrintSummaryInfo2()

{
// this IF is for mpsePrintSummary (which doesn’t check which method is in use)

if(summary.num_states > 0) { 790

printf("+−−[Pattern Matcher:Multi Backward Oracle Matching (MultiBOM)");
printf(" Overall Summary]−−−−\n");
printf("| Alphabet Size : %u Chars\n",ALPHABET_SIZE);
printf("| Size of State : %u bytes\n",(int)(sizeof(MBOM_STATE)));
printf("| Num States : %u\n",summary.num_states);
printf("| Num Transitions : %u\n",summary.num_transitions);
printf("| Num Groups : %u\n",summary.num_groups);
printf("| Num Patterns : %u\n",summary.num_patterns);
printf("| State Density : %.1f%%\n",
100.0*(double)summary.num_transitions / (summary.num_states * ALPHABET_SIZE)); 800

printf("| Memory Usage : %.2fKbytes\n", (float)max_memory/1024);

A.3. The MBOM2 Option 183

printf("+−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
printf("−−−−−−−−−−−−−−−−−−−\n\n");
printf("+−−−−−−−−−−−−−−−−−");
printf(" AHO−CORASICK STATE MACHINE SUMMARY FOLLOWS: ");
printf("−−−−−−−−−−−−−−−−−−−\n\n");

acsmPrintSummaryInfo();

} 810

}

//#define MBOM2_MAIN

#ifdef MBOM2_MAIN

#include <time.h>

820

/*

* Text Data Buffer

*/

unsigned char text[2048];

/*

* A Match is found

*/

int MatchFound (void* id, int index, void *data)

{ 830

printf("MATCH:%s\n", (char *) id);

return 0;

}

/*

* MAIN (for testing purposes)

*/

int main (int argc, char **argv)

{
int i, nc, nocase = 0; 840

MBOM_STRUCT2 * mbom;

char * p;

clock_t start, stop;

if (argc < 3) {
fprintf (stderr,"\nUsage: %s search−text pattern +pattern. . . [flags]\n",argv[0]);
fprintf (stderr," flags: −nocase −verbose\n");
fprintf (stderr," use a + in front of pattern for single case insensitive pattern\n\n");
exit (0);

} 850

mbom = mbomNew2();

A.3. The MBOM2 Option 184

if(!mbom) {
printf("mbom−no memory\n");
exit(0);

}

if(s_verbose) {
printf("Parsing Parameters. . .\n"); 860

}

strcpy (text, argv[1]);

for(i = 1; i < argc; ++i) {

if(strcmp(argv[i], "−nocase") == 0) {
nocase = 1;

}
if(strcmp (argv[i], "−verbose") == 0) { 870

s_verbose = MBOM_VERBOSE;

}
}

for (i = 2; i < argc; ++i) {
if (argv[i][0] == ’-’) /* a switch */

continue;

p = argv[i];

880

if (*p == ’+’) {
nc=1;

++p;

}
else {

nc = nocase;

}

mbomAddPattern2(mbom, p, strlen(p), nc, 0, 0, (void*)p, i - 2);

} 890

if(s_verbose) printf("Patterns added\n");

start = clock();

mbomCompile2(mbom);

stop = clock();

if(s_verbose) {
printf("Patterns compiled in (%f seconds)\n", ((double)(stop-start))/CLOCKS_PER_SEC);

mbomPrintDetailInfo2(mbom); 900

printf("\n");
mbomPrintSummaryInfo2();

printf("\nSearching text. . .\n");

A.4. Changes to the AC-Std Option 185

}

start = clock();

mbomSearch2(mbom, text, strlen(text), MatchFound, (void *)0);

stop = clock();

if(s_verbose) 910

printf ("Done search in (%f seconds)\n", ((double)(stop-start))/CLOCKS_PER_SEC);

mbomFree2(mbom);

if(s_verbose) printf ("Done cleaning\n");

return 0;

}

#endif /* include main program */ 920

A.4 Changes to the AC-Std Option

There was only a minor change made to the implementation of the AC-Std option in

order to keep track of the minimum length pattern added to the group as well as the

depth of every state in the Aho-Corasick state machine. We do not include the source

code files here because the changes are minor and simple and the files are lengthy.

Bibliography

[1] VET Anti-virus, Nov 2005. http://www.vet.com.au.

[2] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic

search. Communications of the ACM, 18(6):333–340, 1975.

[3] C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: A new structure for

pattern matching. In J. Pavelka, G. Tel, and M. Bartosek, editors, SOFSEM’99,

Theory and Practice of Informatics (Brno, 1999), volume 1725 of Lecture Notes

in Computer Science, pages 291–306. Springer-Verlag, 1999. In Proceedings of the

26th Seminar on Current Trends in Theory and Practice of Informatics, Milovy,

Czech Republic, November 1999.

[4] C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle, suffix oracle. Tech-

nical Report IGM 99-08, Institut Gaspard Monge, Université de Marne-la-Vallée,

France, 1999.

[5] C. Allauzen, M. Crochemore, and M. Raffinot. Oracle des facteurs, oracle des

suffixes. Technical Report IGM 99-08, Institut Gaspard Monge, Université de

Marne-la-Vallée, France, 1999.

186

BIBLIOGRAPHY 187

[6] C. Allauzen and M. Raffinot. Oracle des facteurs d’un ensemble de mots. Techni-

cal Report IGM 99-11, Institut Gaspard Monge, Université de Marne-la-Vallée,

France, 1999.

[7] J. P. Anderson. Computer security threat monitoring and surveillance. Technical

report, J. P. Anderson Co., Fort Washington, PA, USA, 1980.

[8] S. Antonatos, M. Polychronakis, P. Akritidis, K. G. Anagnostakis, and E. P.

Markatos. Piranha: Fast and memory-efficient pattern matching for intrusion

detection. In Proceedings 20th IFIP International Information Security Confer-

ence (SEC 2005), May 2005.

[9] A. Apostolico and M. Crochemore. String pattern matching for a deluge survival

kit. Handbook of massive data sets, pages 151–194, 2002.

[10] A. Apostolico and Z. Galil. Pattern Matching Algorithms. Oxford University

Press, New York, USA, 1997.

[11] R. Baeza-Yates and G. Navarro. Text Searching: Theory and Practice. Springer,

Berlin, Germany, 2004.

[12] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In

SIGIR ’89: Proceedings of the 12th annual international ACM SIGIR conference

on research and development in information retrieval, pages 168–175, New York,

NY, USA, 1989. ACM Press.

[13] M. Bishop. Computer Security: Art and Science. Addison-Wesley Professional,

New York, NY, USA, 2002.

[14] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications

of the ACM, 20(10):762–772, 1977.

BIBLIOGRAPHY 188

[15] A. Z. Broder. Some applications of Rabin’s fingerprinting method. In Sequences

II: Methods in Communications, Security, and Computer Science, pages 143–152.

Springer-Verlag, 1993.

[16] C. Charras and T. Lecroq. Exact string matching algorithms – Animations in

Java. Electronic Publication, Laboratoire d’Informatique de Rouen a l’Universite

de Rouen, Facultdes Sciences et des Techniques. Jan. 1997. http://www-igm.

univ-mlv.fr/~lecroq/string/index.html.

[17] C. Clark. C hash table – source code for a hash table data structure in C, Mar

2006. Computer Laboratory of the University of Cambridge. http://www.cl.

cam.ac.uk/~cwc22/hashtable/.

[18] L. Cleophas, B. W. Watson, and G. Zwaan. A new taxonomy of sublinear key-

word pattern matching algorithms. Technical Report CS-TR 04-07, Department

of Mathematics and Computer Science, Technische Universiteit Eindhoven, Mar

2004.

[19] L. Cleophas, G. Zwaan, and B. W. Watson. Constructing factor oracles. Tech-

nical Report CS TR 04-01, Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, Jan. 2004.

[20] C. J. Coit, S. Staniford, and J. McAlerney. Towards faster string matching for

intrusion detection or exceeding the speed of Snort. In 2nd DARPA Information

Survivability Conference and Exposition (DISCEX II), June 2001.

[21] E. Cole, R. L. Krutz, and J. Conley. Network Security Bible. John Wiley & Sons,

Inc., New York, NY, USA, 2005.

[22] R. Cole. Tight bounds on the complexity of the Boyer-Moore string matching

algorithm. In SODA ’91: Proceedings of the Second Annual ACM-SIAM Sym-

BIBLIOGRAPHY 189

posium on Discrete Algorithms, pages 224–233, Philadelphia, PA, USA, 1991.

Society for Industrial and Applied Mathematics.

[23] B. Commentz-Walter. A string matching algorithm fast on the average. In

Proceedings of the 6th Colloquium on Automata, Languages and Programming,

pages 118–132, London, UK, 1979. Springer-Verlag.

[24] B. Commentz-Walter. A string matching algorithm fast on the average. Technical

Report 79.09.007, IBM Heidelberg Scientific Center, 1979.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company,

2002.

[26] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-

gle, Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive detection and

prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security

Conference, pages 63–78, San Antonio, Texas, Jan. 1998.

[27] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,

W. Plandowski, and W. Rytter. Fast practical multi-pattern matching. Technical

Report 93-03, Institut Gaspard Monge, Université de Marne-la-Vallée, France,

1993.

[28] M. Crochemore, C. Hancart, and T. Lecroq. Algorithmique du texte. Vuibert,

2001.

[29] M. Crochemore, T. Lecroq, A. Czumaj, L. Gasieniec, S. Jarominek,

W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.

In STACS ’92: Proceedings of the 9th Annual Symposium on Theoretical Aspects

BIBLIOGRAPHY 190

of Computer Science, volume 577 of Lecture Notes in Computer Science, pages

589–600, London, UK, 1992. Springer-Verlag.

[30] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[31] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic complexity

attacks. In 12th USENIX Security Symposium, pages 29–44, Aug. 2003.

[32] D. E. Denning. An intrusion-detection model. IEEE Transactions on Software

Engineering, 13(2):222–232, 1987.

[33] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep packet

inspection using parallel bloom filters. In Hot Interconnects, pages 44–51, Stan-

ford, CA, USA, Aug. 2003.

[34] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hardware/software

IP lookups with incremental updates. SIGCOMM Computer Communication

Review, 34(2):97–122, 2004.

[35] J.-J. Fan and K.-Y. Su. An efficient algorithm for matching multiple patterns.

IEEE Transactions on Knowledge and Data Engineering, 5(2):339–351, 1993.

[36] M. Fisk and G. Varghese. Applying fast string matching to intrusion detection.

Technical Report in preparation, successor to UCSD TR CS2001-0670, University

of California at San Diego, La Jolla, CA, USA, 2001.

[37] M. Fisk and G. Varghese. Fast content-based packet handling for intrusion de-

tection. Technical Report CS2001-0670, University of California at San Diego,

La Jolla, CA, USA, 2001.

[38] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

BIBLIOGRAPHY 191

[39] A. Gal, C. W. Probst, and M. Franz. Average case vs. worst case – margins of

safety in system design. In New Security Paradigms Workshop (NSPW 2005),

Lake Arrowhead, CA, USA, 2005.

[40] Z. Galil. On improving the worst case running time of the Boyer-Moore string

matching algorithm. Communications of the ACM, 22(9):505–508, Sept. 1979.

[41] F. Gong. Deciphering detection techniques: Part II anomaly-based intrusion

detection. Mar 2003. http://www.mcafee.com/us/local_content/white_

papers/wp_ddt_anomaly.pdf.

[42] J. Graham-Cumming. The POPFile Website, Mar 2006. http://popfile.

sourceforge.net//.

[43] M. Gregg. CISSP Exam Cram 2. Que, New York, NY, USA, 2005.

[44] T. A. Group. The SpamAssassin Website, Nov 2005. http://spamassassin.

apache.org/.

[45] M. Haertel. Gnugrep-2.0. Usenet archive comp.sources.reviewed, 3, July 1993.

[46] R. N. Horspool. Practical fast searching in strings. Software Practice and Expe-

rience, 10(6):501–506, 1980.

[47] J. ichi Aoe, K. Morimoto, and T. Sato. An efficient implementation of trie

structures. Software Practice & Experience, 22(9):695–721, 1992.

[48] J.-P. Iivonen, S. Nilsson, and M. Tikkanen. An experimental study of compres-

sion methods for functional tries. Workshop on Algorithmic Aspects of Advanced

Programming Languages (WAAAPL’99), Part of PLI’99, 19(7), 1999.

BIBLIOGRAPHY 192

[49] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.

IBM Journal of Research and Development, 31(2):249–260, Mar 1987.

[50] S. Kim and Y. Kim. A fast multiple string-pattern matching algorithm. In Proc.

of 17th AoM/IAoM Conference on Computer Science, Aug. 1999.

[51] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.

SIAM Journal on Computing, 6(2):323–350, June 1977.

[52] T. Kojm. The Clam AntiVirus Website, Nov 2005. http://www.clamav.net/.

[53] J. Koziol. Intrusion Detection with Snort (1st Edition). SAMS, May 2003.

[54] B. Laing and J. Alderson. How-to guide – Implementing a network-based intru-

sion detection system. 2000. http://www.snort.org/docs/iss-placement.

pdf.

[55] Libpcap. Tcpdump/libpcap, Nov 2005. The Tcpdump Group. http://www.

tcpdump.org.

[56] K. Maly. Compressed tries. Communications of the ACM, 19(7):409–415, 1976.

[57] A. Matrawy, P. C. van Oorschot, and A. Somayaji. Mitigating network denial-of-

service through diversity-based traffic management. In Applied Cryptography and

Network Security: Third International Conference, ACNS 2005, volume 3541 of

Lecture Notes in Computer Science, pages 104–121, New York, USA, Jun 2005.

Springer.

[58] Y. Miretskiy, A. Das, C. Wright, and E. Zadok. Avfs: An on-access anti-virus

file system. In 13th USENIX Security Symposium, pages 73–88, San Diego, CA,

USA, Aug. 2004.

BIBLIOGRAPHY 193

[59] J. H. Morris and V. R. Pratt. A linear pattern-matching algorithm. Technical

Report TR 40, University of California, Berkley, CA, USA, 1970.

[60] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded

in alphanumeric. Journal of the ACM, 15(4):514–534, 1968.

[61] G. Navarro. NR-grep: a fast and flexible pattern-matching tool. Software –

Practice and Experience, 31(13):1265–1312, 2001.

[62] G. Navarro and M. Raffinot. Fast and flexible string matching by combining

bit-parallelism and suffix automata. ACM Journal of Experimental Algorithms

(JEA), 5(4), 2000.

[63] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings, Practical On-

line Search Algorithms for Texts and Biological Sequences. Cambridge University

Press, Cambridge, UK, 2002.

[64] S. Nilsson and M. Tikkanen. Implementing a dynamic compressed trie. In

K. Mehlhorn, editor, The Second Workshop on Algorithm Engineering (WAE

’98), pages 25–36, Max-Planck-Institut fr Informatik, Saarbrcken, Germany,

1998. Chapman & Hall, Ltd.

[65] M. Norton. Optimizing pattern matching for intrusion detection. Sep 2004. http:

//www.sourcefire.com/products/downloads/secured/sf_OPMforID.pdf.

[66] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer

Networks, 31(23–24):2435–2463, 1999.

[67] V. Paxson. The Bro Website, Nov 2005. http://bro-ids.org.

[68] M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-

81, Harvard Aiken Computation Laboratory, 1981.

BIBLIOGRAPHY 194

[69] M. Raffinot. On the multi backward DAWG matching algorithm (MultiBDM). In

R. Baeza-Yates, editor, WSP’97: Proceedings of the 4th South American Work-

shop on String Processing, pages 149–165, Valparaiso, Chile, Nov. 1997. Carleton

University Press.

[70] R. Riordan. Polysearch: An extremely fast parallel search algorithm. In Fifth In-

ternational Computer Virus and Security Conference, pages 631–640, New York,

NY, USA, 1992.

[71] R. Rivest. The MD5 Message-Digest Algorithm, RFC 1321, Apr. 1992.

[72] M. Roesch. Snort - lightweight intrusion detection for networks. In LISA ’99:

Proceedings of the 13th USENIX conference on System administration, pages

229–238, Berkeley, CA, USA, 1999. USENIX Association.

[73] L. Salmela, J. Tarhio, and J. Kytoki. Multi-pattern string matching with q-

grams. To appear in ACM Journal of Experimental Algorithmics (JEA), 2006.

[74] R. Sekar, T. F. Bowen, and M. E. Segal. On preventing intrusions by process

behavior monitoring. In Proceedings of the Workshop on Intrusion Detection and

Network Monitoring, pages 29–40, Berkeley, CA, USA, 1999. USENIX Associa-

tion.

[75] A. Somayaji and S. Forest. Automated response using system-call delays. In 9th

Usenix Security Syposium, pages 185–197, Aug. 2000.

[76] Sourcefire. Snort 2.0 detection revisited. Apr 2004. http://www.sourcefire.

com/products/downloads/secured/sf_snort20_detection_rvstd.pdf.

[77] Sourcefire. The Snort Website, Nov 2005. http://www.snort.org.

[78] Sourcefire Inc. The Sourcefire Website, Nov 2005. http://www.sourcefire.com.

BIBLIOGRAPHY 195

[79] SpamBayes. The SpamBayes Website, Mar 2006. http://spambayes.

sourceforge.net/index.html/.

[80] M. Strebe. Network Security Foundations: Technology Fundamentals for IT

Success. Sybex, New York, NY, USA, 2004.

[81] D. Sunday. A very fast substring search algorithm. Communications of the ACM,

33(8):132–142, 1990.

[82] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley

Professional, New York, NY, USA, 2005.

[83] L. Tan and T. Sherwood. A high throughput string matching architecture for in-

trusion detection and prevention. In ISCA ’05: Proceedings of the 32nd Annual

International Symposium on Computer Architecture, pages 112–122, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[84] M. Tenase. The great ids debate: Signature analysis versus protocol analysis.

Infocus, Feb 2003. http://www.securityfocus.com/infocus/1663.

[85] The Shmoo Group. The Shmoo Group Website, Nov 2005. http://www.shmoo.

com.

[86] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-

efficient string matching algorithms for intrusion detection. In Proceedings of the

IEEE Infocom Conference, pages 333–340. IEEE, Mar. 2004.

[87] J. van Lunteren and T. Engbersen. High-performance pattern-matching engine

for intrusion detection - a new approach for fast programmable accelerators. In

Hot Chips 17, Palo Alto, CA, USA, 2005. Stanford University.

BIBLIOGRAPHY 196

[88] B. Watson. The performance of single-keyword and multiple-keyword pattern

matching algorithms. Technical Report CS TR 94-19, Department of Computing

Science, Eindhoven University of Technology, 1994.

[89] B. W. Watson and L. Cleophas. Spare parts: a C++ toolkit for string pattern

recognition. Software Practice and Experience, 34(7):697–710, 2004.

[90] B. W. Watson and G. Zwaan. A taxonomy of sublinear multiple keyword pattern

matching algorithms. Science of Computer Programming, 27(2):85–118, 1996.

[91] S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In

Proceedings USENIX Winter 1992 Technical Conference, pages 153–162, San

Francisco, CA, 1992.

[92] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical

Report TR-94-17, Department of Computer Science. Chung-Cheng University,

1994.

[93] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit rate packet pattern-matching

using tcam. In ICNP ’04: Proceedings of the Network Protocols, 12th IEEE

International Conference on (ICNP’04), pages 174–183, Washington, DC, USA,

2004. IEEE Computer Society.

	Abstract
	Acknowledgements
	Glossary of Acronyms
	Introduction and Overview
	Background on Intrusion Detection Systems
	Passive versus Reactive IDSs
	Misuse-based versus Anomaly-based IDSs
	Host-based versus Network-based IDSs
	Traits of Signature-based and Network-based IDSs
	Deploying a Signature-based NIDS
	Architecture of a Signature-based NIDS

	Chapter Summary

	Single-Keyword Pattern Matching Algorithms
	Brute Force Algorithm
	Karp-Rabin Algorithm
	Knuth-Morris-Pratt Algorithm
	Boyer-Moore Algorithm
	Backward Oracle Matching Algorithm
	Chapter Summary

	Multiple-Keyword Pattern Matching Algorithms
	Aho-Corasick Algorithm
	Commentz-Walter Algorithm
	Wu-Manber Algorithm
	Fan-Su Algorithm
	Set Backward Oracle Matching Algorithm
	Chapter Summary

	Pattern Matching for NIDS Signatures
	Algorithm Requirements
	Searching for Multiple Patterns Simultaneously
	Searching for Large Sets of Patterns
	Searching With a Large Alphabet Size
	Searching With a Wide Range of Keyword Lengths
	An Algorithm Designed for the Average and Worst Cases
	Extended Searching Characteristics

	Candidate Algorithms to Fulfill Requirements
	Chapter Summary

	Software Solutions That Have Been Proposed
	The First Multiple-Keyword Pattern Matching Solutions for Snort
	Current Solutions in Snort 2.6
	Piranha
	Deterministic Memory Efficient String Matching
	Chapter Summary

	Implementing and Comparing Pattern Matching Algorithms for Snort
	Algorithms Applicable For Snort
	Adding the New Algorithms
	Evaluating Our Algorithms In Snort
	Chapter Summary

	Further Discussion and Concluding Remarks
	Pattern Matching Algorithms in Other Security Applications
	Antivirus Software
	Spam Detection Software

	Pattern Matching in Hardware
	Future Work in the MBOM Snort Options
	Concluding Remarks

	Modifications to Snort
	Adding the New Search Method Options
	The MBOM Option
	The MBOM2 Option
	Changes to the AC-Std Option

