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Abstract

Although Instant Messaging (IM) services are quite mature and very popular as

an instant way of communication over the Internet, they have received barely any

attention from the security research community. We provide a survey on security

features and threats to existing IM networks and discuss how currently available

systems fail to provide adequate security in light of existing threats.

Despite important differences distinguishing IM from other Internet applications,

no protocols have been designed to adequately deal with the unique security issues

of IM. We present the Instant Messaging Key Exchange (IMKE) protocol as a step

towards secure IM. IMKE is designed to provide security in the present Internet

threat model. It is intended to be embedded in (as a small change to) popular IM

protocols, not to function as another independent messaging protocol. A discussion

of realistic threats to IM and a related analysis of IMKE using a BAN (Burrows-

Abadi-Needham)-like [30] logic is also provided. An implementation of IMKE using

the open-source Jabber protocol is provided as well.
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Chapter 1

Introduction and Overview of

Instant Messaging

This chapter provides a brief introduction to Instant Messaging (IM), outlines what

motivates our research, scope, contributions and how the rest of this thesis is orga-

nized. An overview of IM protocols and features is also given.

1.1 Introduction

IM is a communication service over the Internet that enables individuals to exchange

text messages and track the availability of a list of users in near real-time. IM sys-

tems have roots in UNIX applications (e.g. talk and write), in which users on the

same server can exchange text-messages in a conversation mode but cannot track

availability. IM usage gradually increased with the early implementations of the MIT

Project Athena Zephyr notification system [36], Internet Relay Chat (IRC, started at

the University of Oulu in Finland; see [123, 79]), and the introduction of the buddy

list feature to track users’ availability in AOL Instant Messenger (AIM) [3]. How-

1
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ever, the recent rise in popularity of consumer IM services has been phenomenal (e.g.

see [89]). Starting as a casual application, mainly used by young adults and college

students, IM systems now connect even naval operations (over 300 US Navy warships

are connected via an IM service) and various customer services [33].

There are many public domain IM services. The most popular include AIM [3],

ICQ [66], MSN Messenger (Windows Messenger in Windows XP) [102], and Yahoo!

Messenger (YIM) [188]. We focus on these messaging networks and their default

clients.1 There are also many third-party2 clients that interact on these networks. We

discuss both the third-party and default clients in terms of the security risks associated

with them. The basic protocols currently used in public IM systems are open to many

security threats (see Chapter 3 and 4). Security techniques, e.g. TLS/SSL connections

or digital certificates, used in corporate IM systems are inadequate to address these

threats (see below).

Motivation.

IM differs from many other Internet applications because of its near real-time nature

of user interactions, e.g. online presence notification and instant messages. Conse-

quently, many security mechanisms designed for other Internet applications (e.g. web

browser, email) are inadequate for IM. Despite the immense popularity of IM sys-

tems (both in the consumer and business world), security issues related to IM have

largely been ignored by the security research community. To our knowledge, there

exists no complete security protocol suite in the literature specifically tailored for

password-based IM systems.

1By default clients we mean the IM clients provided by public IM service providers (e.g. MSN
Messenger).

2By third-party clients we refer to clients (e.g. Gaim [125], Trillian [32], IMSecure [192]) which
interact with the existing major IM networks, and security-enhanced IM products (e.g. Yahoo!
Business Messenger [187]).
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The current Internet Threat Model [139, p.1] (including the SSL model) assumes

a vulnerable communication link with trusted end-points. However, the assumption

of secure end-points may undermine software security, as the present Internet envi-

ronment is infested with malicious software compromising a large number of machines

at any given point of time. A Sept. 2004 survey [118] projected that about 91 percent

of PCs are infected with spyware programs (see also [151, 150]); so the assumption

of secure end-points is no longer a useful practical model for general Internet users.

Also, the SSL model secures connections between two entities, whereas most IM con-

nections involve three parties – two users and one server. Because of this limited

threat model, SSL-based solutions appear inadequate for securing IM. IM security is

discussed in this thesis with respect to an extended threat model (see Section 6.1.1)

which takes (not necessarily trusted) end-points into consideration.

Some of the security threats to IM are similar to those for email, for example,

misleading web links (often used to “phish” [34] for passwords and other tokens

for identity theft) and malcode execution from received files. Anti-virus tools to

protect email from such threats are quite mature and relatively effective. For email,

such tools can be implemented at the gateway level, as monitoring email traffic is

essentially straightforward. For IM, the use of non-standard proprietary protocols

and decentralized peer-to-peer (P2P) file transfer makes it difficult to monitor IM

traffic at the gateway level. Hence, incorporating similar protection mechanisms as

used for email appears to be more difficult, and they provide at best limited protection

against IM threats.

We highlight threats to IM to create greater public awareness of the danger of

using present IM systems, and to improve security in the long term (although in the

short term this may increase the risk of these threats becoming reality). We seek to

help lay the foundation to advance research in the area of secure IM, as a first step
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towards improving security of IM systems.

Contributions.

We provide a comprehensive survey [99] of threats to IM, especially the threats posed

by IM worms. Existing security mechanisms for IM as well as strategies to contain

IM worms are discussed. We propose a new protocol, the Instant Messaging Key

Exchange (IMKE) protocol, for securing public IM, and techniques to restrict IM

worms’ propagation [100]. IMKE enables mutual strong authentication (for definition

see Table 5.3) between users and an IM server, using a memorable password (e.g. like

EKE [16]) and a known server’s public key. IMKE provides security (authentication,

confidentiality and integrity) for client-server and client-client IM connections with

repudiation (for definition see Table 5.3). Although pairs of users generally share no

secret between themselves, IMKE enables secure and private communications among

users through a trusted IM server, without revealing the contents of users’ messages

to the server.

An analysis of the protocol in terms of security and performance is provided

(although it is not a full proof of the security of IMKE). We also discuss how IMKE

avoids some recently devised attacks on Password Authentication and Key Exchange

(PAKE) protocols in addition to classic ones. IMKE may be implemented using

any well-known public key cryptosystem (e.g. RSA, ElGamal, Rabin) that supports

encryption. In contrast, the majority of the proposed PAKE protocols are based on

the Diffie-Hellman (DH)-based key agreement; nevertheless, there are known attacks

which exploit the structure of the parameters in the DH-based key agreement (e.g.

[28, 88, 178, 90, 4, 191]). For a secure implementation of IMKE, general requirements

for secure choice of public key parameters must be fulfilled (e.g. see [4]); however,
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we argue that IMKE may not require any additional special constraints (unlike e.g.

SNAPI [96]) for a safe protocol run.

We have implemented a prototype of IMKE as a part of this research using the

Jabber open-source IM protocol [148, 149]. Although implementing IMKE requires

changing both the IM server and the IM client, we show how IMKE may be integrated

with public IM protocols without requiring a large implementation effort.

Although IMKE has been designed as a secure protocol specifically for IM, it may

provide an alternative to the patented EKE, and other two- and three-party strong

PAKE protocols beyond IM; a major architectural difference is that we use the known

public key of the IM server.

Scope.

Some vendors provide IM services for mobile devices. The Short Messaging System

(SMS) was created as part of the Global System for Mobile (GSM) Communications

Phase 1 standard. IM in mobile devices, SMS, IRC, group chat, and chat rooms (see

Section 1.2 for definitions) are beyond the scope of this thesis.

IM systems with message logging on the server side is a required feature at some

organizations (e.g. financial firms for regulatory reasons, such as the Sarbanes-Oxley

Act [176]). The idea of mobile IM, introduced by Issacs et al. [71], is establishing a

foothold on major messaging systems; AIM supports login from multiple devices at

a time to enhance user mobility. These features, although useful, are out of scope of

this thesis.

Our main focus is the (one-to-one) PC-to-PC messaging, which is the dominating

feature of all IM systems. IM services mainly targeting corporate users, such as Yahoo!

Business Messenger, are not fully analyzed in this thesis (in part because complete

documentation of security features in these products is not publicly available). As the
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default IM clients discussed here are mainly Windows based, Windows is generally

implied to be the underlying operating system (OS) when another is not explicitly

mentioned.

Security and privacy issues related to IM can be categorized as technical and social.

Technical threats arise from inherent system design and implementation bugs. Social

issues include: divulging sensitive information to strangers or competitors using IM,

impacts of IM on personal relationship and workplace, etc. We deal only with the

technical issues of IM (keeping usability in context).

Outline.

The rest of the thesis is organized as follows. Section 1.2 summarizes the basic proto-

cols used in mainstream IM systems. Chapter 2 briefly reviews related work regarding

IM security and well-known PAKE protocols. Privacy and security features of current

IM services and third-party IM security solutions are also briefly discussed in Chapter

2, along with weaknesses of third-party solutions. A comparison of IMKE with other

secure IM implementations is also provided. Chapter 3 briefly discusses the most sig-

nificant security threats to IM. Threats from IM worms are discussed in Chapter 4,

where we also provide an outline of the topology of IM contacts’ networks for better

understanding of IM worms’ characteristics, and introduce techniques complemen-

tary to IMKE to restrict IM worms’ propagation. We propose the IMKE protocol

for authentication and communications (client-server and client-client) to secure IM

network connections in Chapter 5. Chapter 6 provides our IM threat model and a

security and (analytical) performance analysis of IMKE. Implementation details of

IMKE in Jabber are provided in Chapter 7. Chapter 8 discusses future work and

conclusions of this thesis.
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1.2 Basics of IM Protocols and Features

This section provides a review of public IM protocols, communication models, and

common IM features. To facilitate further discussion, we provide a few IM-related

definitions in Table 1.1.

Descriptions of the protocols used by the major IM networks are available on

the Internet. The remainder of this section contains a brief architectural overview

of popular IM networks. Reverse-engineered details of the AIM, YIM and MSN

protocols are available on many web sites (e.g. [48, 179, 108]).

Common features supported in most IM clients include: contact lists; block

lists; instant text messages (one-to-one, multi-user); presence information; availabil-

ity (available, away, busy etc.); email; sending and receiving files, URLs; audio and

video chat; sharing external applications (e.g. web browser); online games; setting

permission levels for different types of users (e.g. contact list, everyone); and message

archiving.

Most communications in IM systems are client-server based, where each user

shares a secret, user-chosen (often weak) password with the IM server. A client

normally sends the password hash to the server for authentication. Messages among

users are also typically relayed through the server (mainly to avoid firewall issues).

However, purely P2P communications also occur in some situations (e.g. audio/video

chat, file transfer). Most IM communications occur over TCP; however, UDP is some-

times used for P2P connections. Also, SSL is used in some corporate IM services (e.g.

Reuters Messaging [140]) and during the authentication phase of the currently avail-

able MSN protocol.

Different widely used IM clients cannot communicate with each other, mainly

because of their proprietary and incompatible protocols. The Jabber IM protocol has
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online user A user successfully logged in to an IM server.

presence Presence information reveals whether or not a user is
logged in to an IM server.

availability/user mode Availability information reveals a user’s willingness (e.g.
“busy”, “do not disturb”) to send/receive messages, or
status (e.g. “away”, “on the phone”).

contact/buddy list The list of user IDs whose presence and availability a user
has currently subscribed to.

block list The list of user IDs explicitly barred from getting the cur-
rent user’s presence and availability information; listed
users also cannot send any messages to the current user.

allow list The list of user IDs allowed to send messages to the cur-
rent user and which can track the user’s presence and
availability information.

one-to-one chat A user sends or receives messages from another user, gen-
erally through the IM server.

group chat More than two users exchange messages at a time. Users
form a virtual “group”, generally which is short-lived.
Users in a group chat are usually closely related.

chat room A virtual room, generally consisting of many users who
exchange instant messages on some closely related topics.

IM user A human user of an IM service.

IM client A (software) program that enables a human user to use
an IM service.

IM server A (software) program that enables IM clients to access
IM features in an IM service.

IRC A client-server based multi-user messaging system of
large networks. Users meet on “channels” (rooms/vir-
tual places, usually with a certain topic of conversation)
for group or personal messaging.

Table 1.1: IM-related definitions
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been designed so that IM servers run by different organizations can communicate.

The Jabber Software Foundation3 initially developed the Jabber protocol which has

evolved in open-source communities. The Internet Engineering Task Force4 (IETF)

has approved the base Jabber protocol – also known as the Extensible Messaging and

Presence Protocol (XMPP) [148, 149] – as a standard IM protocol. Jabber is based

on a set of XML streaming protocols and uses a distributed client-server architecture

like email. Anyone can run a Jabber server which can communicate with other Jabber

servers using the standard Jabber protocol. Therefore, Jabber users can communicate

with any other online Jabber user irrespective of the servers’ location or management.

While an IM server appears to be a single entity to a client, it may be a group of

servers controlled by a single IM service provider (e.g. AOL), or a collection of servers

from independent IM service providers (e.g. Jabber). If user A wants to communicate

with user B, both must log into the same IM service. Messages from A to B will be

delivered by the server depending on B’s privacy settings. For direct communications

between A and B, the server provides the necessary information (e.g. network address)

to each party. Figure 1.1 shows the standard IM communications model for single

(centralized) and multiple (distributed) servers.

3http://www.jabber.org/
4http://www.ietf.org/
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Client−Server Communications

Client−Client (Direct) Communications

Client−Client (Server−mediated) Communications
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Client A Client B
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Client A

B’s contact list

Client B

Single (Centralized) IM Server Model

Server 1

Multiple (Distributed) IM Server Model

A’s contact list

B’s contact listA’s contact list

Figure 1.1: IM communications models



Chapter 2

Related Work on IM and Password

Authentication

This chapter is a survey of the existing literature on IM and well-known IM security

products. However, instead of Human Computer Interaction (HCI) or feature related

issues, we focus on security risks of IM. As IM is a password-based system, and

our proposed Instant Messaging Key Exchange (IMKE) protocol (see Chapter 5) is

essentially a Password Authentication and Key Exchange (PAKE) protocol in part,

we provide an overview of well-known PAKE protocols. A comparison of security and

usability features of IMKE with selected secure IM implementations is also provided.

2.1 IM and IM Security

Much work (albeit mostly unrelated to security) has been done on IM and presence

awareness systems in academia, mainly by HCI and Computer Supported Coopera-

tive Work (CSCW) research groups. Several IM applications – e.g. Hubbub [72] (a

sound-enhanced IM), KIM (Kinetic typography-based IM) [19], IMVis [114] (which

11
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uses pictures and video snapshots to visualize contacts), and Threaded Chat [154]

– have been designed to augment functionalities and to analyze usage. The Unified

Messaging System [181] emerged from the pervasive computing idea that combines

email, IM, newsgroups, SMS, paging etc. into one system. Many researchers have

explored the effects of IM in the workplace. A study by Issacs et al. [73] found that

62% of IM conversations in the workplace were work related. Handel and Herbsleb

[57] reported similar results (69% of recorded instant messages were work related).

These results suggest positive contributions of IM in the workplace, although other

researchers (e.g. [59, 182]) have expressed concerns of IM being used as a tool for

gossiping or goofing off.

Ghavam et al. [49] presented approaches to integrating ad hoc communications

into an enterprise framework through the use of secure group services and presence

information. The goal of their framework is to enable and manage automatic and

pervasive access to a set of secure communication services among users, by using

Common Open Policy Service (COPS), Session Initiation Protocol (SIP) [147], and

the TLS protocol. Godefroid et al. [51] proposed a framework that uses an automated

verification approach to ensure conformance of complex dynamic presence awareness

policies.

Related to IM security, a modified Diffie-Hellman protocol suitable to IM has been

designed by Kikuchi et al. [82], primarily intended to secure message confidentiality

against IM servers. It does not deal with the client-server authentication and also has

limitations similar to the IMSecure [192] solution as discussed in Section 2.2. The

security company Symantec provides reports (e.g. [61, 60]) on IM protocols, worms,

threats and firewall issues. A web resource on the security analysis of Cerulean

Studios’ Trillian application is also available [110]. Informal discussions of security

problems related to public IM in the enterprise environment are also available (e.g.
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see Frase [47] re: some solutions using well-defined security policies and anti-virus

tools).

���� ������	 

IM protocol standardization efforts are ongoing in the IETF com-

munity in three main working groups: Instant Messaging and Presence Protocol

(IMPP),1 SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)

[31], and Extensible Messaging and Presence Protocol (XMPP, based on the Jabber

IM protocol) [148, 149]. Several Internet-Drafts and Request For Comments (RFC)

have been compiled by these groups. A comparative study on IM protocols including

SIMPLE and XMPP is available due to Debbabi and Rahman [35]. Also, a Jabber

white paper [74] compares the SIMPLE and XMPP protocols.

XMPP includes a method to protect an XML stream2 from tampering and eaves-

dropping. XMPP can use the TLS protocol for stream encryption, along with a

STARTTLS extension modeled after similar extensions proposed for the IMAP and

POP3 protocols as described in RFC 2595 [116]. The Simple Authentication and Se-

curity Layer (SASL [115]) is proposed as a method for adding authentication support

in XMPP. Note that, we use the terms XMPP and Jabber interchangeably throughout

this thesis.

Security protocols and mechanisms for SIP are quite standardized. However, no

specific security protocols have been developed focusing on SIMPLE. Mechanisms

for authentication, end-to-end protection, replay and denial of service (DoS) attack

prevention for SIMPLE rely on TLS and S/MIME (Secure/Multipurpose Internet

Mail Extensions) protocols. Details of these security mechanisms are described in

several RFCs (e.g. [31, 147, 146]).

An IETF proposed IM protocol standard, if adopted by the major IM vendors, will

allow interoperability between IM services – i.e. users from different IM services will be

1http://www.ietf.org/proceedings/03mar/111.htm
2A container for the exchange of XML elements between any two entities over a network.
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able to communicate using a common messaging platform. So far, such an adoption

is far from reality, mainly due to financial implications of the network effects3 of IM

[46].

�����
�������� ��		����� 

Following the real world scenario of off-the-record

(OTR) conversations (e.g. only two persons talking in a closed room without any hid-

den tape recorder), Borisov et al. [22] proposed the “off-the-record communication” in

2004. The OTR communication model is designed to achieve perfect forward secrecy

[133] and repudiability . (A protocol for off-the-record email [58] was introduced and

implemented by AT&T in 2001.) For IM, Borisov et al. designed the “Off-the-record

messaging” protocol which provides authentication and confidentiality of messages,

and claims that when an IM conversation is over, no one, including the communi-

cating parties, can produce a record of the messages exchanged. Users authenticate

themselves by their known (published beforehand), long-term public keys (for digital

signatures only). The Diffie-Hellman (DH) key agreement protocol is used to establish

an encryption key and a MAC (Message Authentication Code) key. Every message

is encrypted with a different encryption key. HMAC [84] is used to provide message

authentication. Users only sign their initial DH public keys. This protocol has been

implemented for the open-source Gaim [125] IM client as a plug-in. Certain aspects of

this protocol result in characteristics which may be perceived as shortcomings. These

include:

1. It requires users to possess long-term signature keys. For casual IM users,

understanding and maintaining signature keys may not be practical (see Section

2.2.2 for more impacts of having a long-term public key).

3A service in which the value of a customer depends on the number of total customers using that
service.
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2. As the encryption and MAC key negotiation is a continuous process for the

OTR messaging protocol, it may not be suitable for bulk data transfer between

IM users (e.g. file transfer, audio/video chat).

3. Determined users can save the text messages they receive in OTR, and thereby

keep a record of past conversations. Users may modify the available source

code to keep track of the encrypted messages along with the stream of generated

encryption keys; or, plaintext messages may be recorded when they are displayed

in users’ IM clients.

2.2 Existing Security Mechanisms

In this section, we list available security and privacy techniques in popular (default)

IM clients, and summarize security features of well-known third-party IM solutions.

Limitations of third-party and corporate IM solutions are also briefly discussed.

2.2.1 Security and Privacy Features in Default Clients

Recent versions of all major IM clients include an option to employ anti-virus software

which can be launched automatically on every IM file download. An authorization

option can be turned on so that explicit consent (though not cryptographically pro-

tected) of user A is required before A can be added to another user B’s contact

list. The same option is available for selecting who (users from A’s contact list or

everyone) can see user A’s online status, and who can send messages and files to A.

However, as “add-contact request” and “response” messages are transferred without

any cryptographic protection, these messages are easy to spoof. In ICQ, a user can

choose an option to select specific contacts who can see his/her online status even

when the user is in invisible (logged in, but appearing offline to others) mode. ICQ
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and YIM clients are equipped with word filters to replace or remove unwanted words

from incoming text messages.

An ICQ client may ask a user to enter the login password every time the user wants

to modify user-details, security and privacy permissions, and preferences settings.

However, users need to turn on this feature explicitly after installation. ICQ has an

option to accept/decline text-messages with URLs from everyone or only from those

in a user’s contact list.

IM clients are generally notified (by their IM server) when a new version of the

client software is available with new features or security fixes, but users may choose

not to upgrade, and generally software vendors allow older versions for backward com-

patibility. However, in October 2003, Microsoft introduced SSL-based authentication

for MSN Messenger and disallowed login unless users updated their clients to the

latest version. Another useful feature that all major IM vendors now provide is the

protection against automated account creation by using CAPTCHA (completely au-

tomated public Turing test to tell computers and humans apart) [169]. This prevents

software bots (i.e. automated programs) from signing up for an unlimited number of

accounts, e.g. for use in sending unwanted messages to legitimate IM users.

2.2.2 Third-Party Solutions

Several IM products claim to be secure, although there is a lack of documentation

about what is protected and what is not in these products. Our discussion is mainly

based on available web resources, users’ guides and help files (from software instal-

lation). The solutions are divided into the following categories: (1) SSL/TLS-based

enterprise products; (2) anti-virus, firewall and IM gateway solutions; (3) public key

based client-only solutions; and (4) independent secure IM protocols. Examples of
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these categories are given below. We also briefly discuss security limitations of these

products.

SSL/TLS-based Enterprise Products.

Yahoo! Business Messenger and Reuters Messaging protect instant messages using

128-bit SSL encryption. Using SSL-based solutions for public IM service, while a

step forward in terms of security, has three major drawbacks:

1. limited threat model (see Section 1.1);

2. overhead for deployment at server-side (protocol is resource intensive and slow);

and

3. messages may not be private when they go through a server, i.e. the server may

view any encrypted message [82].

However, this last characteristic is desirable for message logging, albeit not when

users value privacy to the extent that they prefer not to disclose their conversations

to service providers.

Anti-virus, Firewall and IM Gateway Solutions.

Norton AntiVirus [159] comes with an IM plug-in for automatic scanning of in-

coming files. Also common anti-virus software can check any executable file before

launching. However, anti-virus protections for IM currently guard against only known

(or otherwise detectable) malware in file transfers. They cannot provide message (text

or data) security (authentication, confidentiality, integrity) or protect against URL

exploitations used for phishing.

The ZoneAlarm [193] personal firewall has a feature called ID Lock. This fea-

ture only protects user-configurable sensitive information like bank and credit card
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numbers, home address, SIN (Social Insurance Number) etc. from being divulged in

instant-message or email texts.

IM Manager [68] is an application-level proxy server for managing IM usage in an

enterprise network. It also scans IM messages for malicious URLs and file transfer

requests.

Public Key Based Client-only Solutions.

Here we analyze selected solutions that require installing security components (client

software plug-ins) complementary to the default IM clients.

AIM clients can use a personal digital certificate to enhance authentication, in-

tegrity and confidentiality of text messaging.4 GPG [127]-based Gaim-e [126] is an-

other encryption plug-in for the popular cross-platform, multi-protocol (e.g. MSN,

AOL, Yahoo!, Jabber) Gaim [125] IM client; the existence of long-term GPG public

keys (distributed a priori) is assumed. Although solutions based on digital certificates

(or trusted public keys) provide a high level of security, these solutions may be viewed

as expensive (e.g. buying a digital certificate from VeriSign) for public domain users,

and typically put the burden of certificate distribution, verification, expiry, renewal,

revocation etc. on end-users. Furthermore, these solutions restrict users’ mobility be-

cause users are required to carry the long-term certificates (and corresponding private

keys).

IMSecure [192] provides encryption for popular IM services (e.g. AIM, MSN, Ya-

hoo!). It may be installed with the default IM clients. During first-login, IMsecure

generates a self-signed digital certificate for each of the user’s IM accounts. Cer-

tificates are exchanged between two IMSecure clients while the users initiate an IM

4http://www.verisign.com/support/class1/secureaol.html
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conversation. Public keys from digital certificates are used to establish the encryption

key for an IM session. Trillian [32] provides similar security for AIM/ICQ users.

IMSecure and Trillian’s solutions provide integrity and confidentiality, but not

authentication. In these systems, instant messages are confidential between two users

— in the sense that decrypting messages intercepted during transmission is compu-

tationally infeasible. However, such systems provide no protection against malware

implanted in users’ systems actively interacting with IM connections. An attack sce-

nario is depicted in Figure 2.1. Also, control communications from IM clients to

the IM server are not encrypted, even in the case of security sensitive information

exchanged between clients and the server (e.g. contact list, presence, availability).

Another disadvantage of IMSecure is that it must be installed (along with the default

IM clients) in each system that a user wants to use for secure messaging as well as

the intended recipients.

Attack Program

IMSecure
Unprotected Messages

IM Client

(to/from the IM server)

(to/from other users)

Plaintext Messages

Encrypted Messages

M
o

d
if

ie
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User System

Figure 2.1: Weaknesses of the IMSecure model
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Independent Secure IM Protocols.

Only a few secure IM protocols have been developed in practice. However, these

protocols do not appear to have been peer-reviewed in an academic sense. They also

require a new IM client and server – i.e. they are not designed to be integrated with

popular IM protocols.

The Secure Internet Live Conferencing (SILC) protocol was proposed by Pekka

Riikonen in 1997 (see white paper [141] and Internet-Drafts [142, 143]) for securing

IRC and IM systems. The SILC Key Exchange (SKE) protocol is based on the DH key

agreement and its functionality is derived from several other key exchange protocols.

The SILC Connection Authentication Protocol (using a passphrase or public key) runs

after a successful execution of the SKE protocol. This separation of key exchange

and authentication may cause SKE to fail against a man-in-the-middle attack when

the public key or certificate received during the SKE protocol is not verified. For a

safe execution of SKE, users need to possess long-term public keys or certificates.

iGo Incognito [70] asserts itself to be an IM facility designed with cryptograph-

ically strong security. During login, a message encrypted with the server’s public key

is sent from a client to the server containing a user’s identification parameters (e.g.

user ID, password). Upon verification, a random 128-bit session key is established

between a client and the server. To send a text message to a user, the sender gen-

erates a random one-time key. The sender encrypts the message with this key using

AES [113]. The encrypted message is forwarded to the recipient along with the key

encrypted under the recipient’s public key. As the messages are relayed through the

server, they are also encrypted using the shared key with the server. A client’s pri-

vate key is stored encrypted on the local hard drive under a user-chosen pass-phrase.

Also, all user messages are digitally signed, corroborating who the sender is. However,

due to the lack of available documentation, we have not attempted to independently
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confirm these security properties.

2.3 Comparison of IMKE with other IM Imple-

mentations

In this section, we compare our IMKE implementation (see Chapter 7) with selected

other secure IM implementations. The metrics of our comparison are:

� Strong PAKE (whether the authentication mechanism is a strong password

protocol; see Table 5.3 for definition);

� C-C Message Protection (whether the client-to-client message authentication

and encryption are supported);

� C-S Message Protection (whether the client-to-server message authentication

and encryption are supported);

� Mobility (whether users can log in to the IM server with only a memorable

password);

� Repudiation (whether users can repudiate a message);

� No Client Change (whether the requirement of any extra client-side software

other than the IM client is avoided, or whether the IM client can be used

unmodified); and

� No Server Change (whether the requirement of any changes to the IM server is

avoided).

We compare SSL/TLS based enterprise IM clients (e.g. Reuters Messaging), AIM

using client certificates, IMSecure/Trillian (self-signed certificates), Off-the-Record

(OTR) Messaging (requires long-term signature keys), GPG-based Gaim-e, and SILC
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with IMKE. No documentation was found for Gaim-e except its open-source imple-

mentation. We do not include iGo Incognito in our comparison for the lack of docu-

mentation. Table 2.1 summarizes the comparison of IM implementations.

Strong
PAKE

C-C
Message
Protection

C-S
Message
Protection

Mobility Repudiation No
Client
Change

No
Server
Change

SSL/TLS X X X X X

AIM Cert. X X X

IMSecure X X X

OTR X X X

Gaim-e X X X

SILC depends∗ X depends∗

IMKE X X X X X

∗SILC supports client-to-client message authentication and encryption, and repudiation, depend-
ing on client settings.

Table 2.1: Comparison of IM implementations

From the above discussion, the distinguishing features of IMKE are the following:

1. It is the only IM protocol to support strong PAKE although all IM protocols

rely on passwords.

2. It secures client-client and client-server messages.

3. Although it requires changes in both the client and server software, the users

do not need to maintain or carry any long-term public keys or certificates.

4. IMKE is not a messaging protocol. It does not specify anything beyond security

attributes of an IM protocol. We argue that IMKE can be embedded into

existing IM protocols without breaking the underlying messaging structures.

This claim is supported by our implementation (Chapter 7), which offers an

example of embedding IMKE with the XML-based Jabber protocol.
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2.4 Password Authentication

In this section, we focus on work directly related to PAKE protocols (i.e. strong

password protocols), providing a historical perspective and selected recent work on

this area. More discussion on the relationship of IMKE with well-established two-

and three-party protocols are provided in Section 5.1.

The idea of securing poorly-chosen passwords from offline guessing attacks was

first introduced by Lomas et al. [92] in 1989, specifically by using a known server

public key. Bellovin and Merritt [16] proposed the seminal EKE (Encrypted Key

Exchange) protocol in 1992 (see also U.S. patent [17]) – the first strong password

protocol without the requirement of a known server public key. In 1993, Gong et al.

[53] refined the earlier proposal of Lomas et al. [92] and proposed a strong password

protocol that does not require a known server public key. Since then, many strong

password protocols have been proposed (see [75] for a comprehensive list), all using

public key cryptosystems. Halevi and Krawczyk [56] provide formal arguments of the

notion that public key tools are unavoidable in designing secure password protocols.

The relatively short history of PAKE protocols is not untarnished, however; many

flaws in novel (and sometimes “proven”) proposals have been discovered.

Most of the EKE variants encrypt a dynamic public key using a password; this

makes many EKE implementations vulnerable to a special form of dictionary attacks,

called the partition attack (see Section 5.1). To prevent such attacks, Lucks [93]

proposed OKE (Open Key Exchange) in 1997 which does not encrypt the public

key. Protected-OKE is a variant of Lucks’ solution to deal with the special case

of the RSA public key system. In 2000, MacKenzie et al. [96] presented an attack

on the Protected-OKE and a solution (the SNAPI protocol) to fix it. Although, as

noted by Zhang [190], SNAPI is the only PAKE protocol based on RSA that has
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not yet been broken, it requires a prime public exponent e larger than the RSA

modulus n; thus SNAPI increases the cost of the RSA public key encryption. Zhang

[190] introduced PEKEP (Password Enabled Key Exchange Protocol) to avoid this

limitation of SNAPI.

Jablon [76] proposed the Simple Password Exponential Key Exchange (SPEKE)

protocol, which is closely related to the Diffie-Hellman Encrypted Key Exchange (DH-

EKE [16]). The main idea of SPEKE is to involve the password in computing the base

used in the standard DH key agreement. Although SPEKE was “proven” to be secure

[95], recently Zhang [189] showed that the fully-constrained SPEKE is susceptible to

password guessing attacks when passwords are natural numbers less than or equal to

a positive integer N , e.g. Personal Identification Numbers (PINs); an adversary can

test multiple candidate passwords in a single impersonation attack.

AMP (Authentication and key agreement via Memorable Password) and EPA

(Efficient Password-based protocol for Authenticated key exchange) protocols have

been proposed by Kwon [85, 86] and Hwang et al. [65] respectively. These protocols

have been designed to achieve good efficiency in addition to other strong password

protocol attributes. Wan and Wang [191] showed that the password can be fully

disclosed from AMP and EPA protocols by an attack based on the small factors of

the order of a large group Z
∗

p; the fundamental reason for this vulnerability, as Wan

and Wang stated, is that the server applies its random secret exponent on an unknown

received number which may be malicious.

Many password-verifier based PAKE protocols (e.g. A-EKE [15], SRP [185]) have

been designed where the server stores only an image (verifier) of the client password

to minimize the impact when the password-verifier file is exposed. However, the

disclosure of the password-verifier file allows feasible brute force searching attacks on

passwords [185]. Generally, verifier-based PAKE protocols require more computation
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than their plaintext variants; Boyd and Mathuria [24, p.248] note this feature as “not

necessarily a significant advantage”. Nevertheless, AMP [85] and EPA+ [65] have

been designed to withstand dictionary attacks even when a server’s password-verifier

file is compromised using an additional secure storage device.

The IEEE P1363 Working Group has a study group entirely focused on strong

password protocols. SRP, SPEKE, SNAPI, AMP etc. are among the submissions that

this group will evaluate for eventual standardization (see the latest draft [67] from

this group).



Chapter 3

Security Threats to IM

This chapter lists the most significant threats to public IM systems. The list is

constructed from known attack forms, and IM protocol and implementation flaws

that may allow future attacks. Detailed descriptions of IM exploits are available

in many web resources (e.g. [61, 60, 160, 43]). One objective of compiling this list

is to acquire insight to aid in designing a robust security protocol for IM systems.

We discuss IM worms in greater detail in Chapter 4 due to their importance and

complexity. Threats considered in our Instant Messaging Key Exchange (IMKE)

protocol are summarized in Section 5.2.1.

3.1 General Threats

This section discusses threats to IM which are common in many Internet-based ap-

plications.

26
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Insecure Connections.

Perhaps the greatest threat to IM networks lies in their open, insecure connections

(see Figure 1.1 for IM communications models). IM connections are susceptible to

being taken over during client-server, client-client and intra-server (especially in the

distributed IM model) communications. Once authenticated during the login time, all

these connections deploy little (sequence number or transaction identifier, which can

be easily spoofed) or no security measures at all. Hence almost all popular IM connec-

tions lack authentication (except in the login message), confidentiality and integrity.

This opens the door to many other security vulnerabilities including impersonation,

denial of service (DoS), man-in-the-middle, replay, etc. For example, even if a user

chooses to receive messages only from the users in his/her contact list, it is possible

to inundate the user with unwanted messages; all the attacker needs to accomplish

this is to capture (e.g. see [77, 14]) an open (TCP) connection with one of the user’s

contacts.

Denial of Service (DoS).

DoS attacks can be launched in many different ways. Some may simply crash the

messaging client repeatedly. Attackers may use the client to process CPU and/or

memory intensive work that will lead to an unresponsive or crashed system. DoS at-

tacks can also be launched against the IM server (e.g. accepting new clients, providing

services to online clients), and the network bandwidth.

Flooding with unwanted messages is particularly easy when users choose to receive

messages from everyone. However, IM clients generally support user blocking. A

victim can block the attacker’s account ID easily; however, attackers may get through

this barrier by using many compromised accounts simultaneously.
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Impersonation.

Attackers may impersonate valid users in at least two different ways. If a user’s

password is captured, attackers can use automated scripts to impersonate the user to

his/her contacts. Alternatively, attackers can seize client-to-server connections (e.g.

by spoofing sequence numbers). A connection may be taken over right after a user

logs in, when a user initiates a connection with a peer or when a user gets disconnected

unexpectedly (e.g. by DoS attacks). The server will keep the connection(s) open for

some time until the keep-alive rate (i.e. messages that are transferred in a certain

time-interval to notify a connection’s availability) is violated. Attackers can take

advantage of this time out to capture the connection to the server.

As none of the popular IM services protect their connections with encryption, it

is quite easy to impersonate any connection via man-in-the-middle attacks (see e.g.

[60]).

DNS Spoofing to Setup Rogue IM Servers.

Malicious programs (e.g. QHosts-11) can modify the TCP/IP settings in a victim’s

system to point to a different DNS server. Malicious hackers can set up an IM server

and use DNS spoofing so that victims’ systems connect to the rogue server instead of

the legitimate one. IM clients presently have no way to verify whether they are talking

to legitimate servers. Servers generally verify a client’s identity by checking the user

ID and password hash. This client-side-only authentication mechanism is vulnerable

to (IM) man-in-the-middle attacks where a malicious server may pose as the legitimate

server. Attacks such as account-related information collection, eavesdropping, and

impersonation are possible if an IM server is spoofed to end-users.

1http://securityresponse.symantec.com/avcenter/venc/data/trojan.qhosts.html
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3.2 Threats Resulting from IM Features

IM clients provide users many useful features (e.g. file transfer, application sharing)

in addition to the basic text-messaging capability. In this section, we list threats

originating from specific IM features.

File Transfer.

Worms can easily propagate through IM networks using the file transfer feature.

Generally, users are unsuspecting when receiving a file from a known contact. Worms

commonly exploit this behavior by impersonating the sender. Also, IM file transfers

carrying malware penetrate firewalls more easily than email attachments. This is

due to the difficulty in distinguishing IM traffic at the gateway, and IM vendors’ use

of proprietary protocols [60]. Like email address books, IM worms can use a user’s

online contact list as a propagation vector; however, unlike offline and slow email

propagation, IM contacts provide instant victims for fast spreading.

YIM has an option to open a file automatically after downloading. This can help

spread malcode with less user intervention. In ICQ, users can choose to automatically

accept all incoming file transfer requests.

With the latest IM clients, users can set up automatic virus scanning for incoming

files. However, anti-virus tools generally scan only a small subset of all possible file

types. For example, a media file (e.g. an MPEG file) may contain a specially crafted

data sequence that may crash a user’s media player or install a backdoor program. In

fact, for the Real Media [168] and JPEG [97] files, these threats are already a reality.

As most anti-virus tools are not generally used to scan data files (e.g. media or image

files), the widespread use of software such as Windows Media Player may become a

potential source of attacks.
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Due to their importance, IM worms are discussed in Chapter 4 in greater detail.

Plaintext Registry and Message Archiving.

There are security related settings in IM clients. Knowledgeable users can set these

options according to their needs. IM clients save several of these settings in the

Windows registry. Any technically inclined Windows user can read registry values,

and users with administrative power can modify those as well.

Some security related IM settings saved in the registry are: encrypted password;

user ID; whether to scan incoming files for viruses; anti-virus software path; whether

permission is required to be added in someone’s contact list; who may contact the user

(only from the contact list or everyone); whether to share files with others; shared

directory path; and whether to ask for a password when changing security related

settings.

MSN Messenger even stores a user’s contact list, block list and allow list in the

registry in a human-readable format. Attackers can use malware to modify or collect

these settings with little effort. Modifying the registry entries may help the intruder

bypass some security options like file transfer permission, add contact authorization

etc. By collecting user IDs and encrypted passwords, attackers can take control

of user accounts. Also, the plaintext password can be easily recovered (due to the

encryption process used) from the encrypted password stored in the registry using

tools e.g. AIMPR [44].

IM clients generally allow message archiving. User conversations are saved in a

plaintext format in a predictable system location. The revelation of these messages

can be damaging (loss of message confidentiality) for corporate and home users.
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Insecure Default Settings.

As is common in many software products, default security settings in IM clients are

often at the low end of the client’s security capability. Most IM clients allow anyone

from the same IM service to contact (send text messages, files etc.) a user by default.

Allowing message reception from everyone opens the door to a new vector of nuisance

– spim – i.e. spam sent via IM systems. This option may be restricted to allow only

entries from a user’s contact list, because IM users do not communicate with strangers

often [55]. Also, the default IM file download location in a user’s machine may be

exploited to run malcode e.g. as in the ICQ scm file vulnerability [152].

In ICQ, the default setting for the contact list authorization is “All users may

add me to their Contact List and see my Online / Offline status”. Clearly this is

not a prudent security setting for many users. Permission for viewing a user’s shared

directory is set to “Only users from my Contact List” by default in ICQ. However,

this does not provide meaningful security when “add contact” authorization is not

required.

Sharing IM Features with Other Applications.

The MSN Messenger contact list and other features are available from applications

such as the Microsoft Outlook Express email client and web-based Hotmail email

service (when launched from the Internet Explorer (IE) browser). Microsoft has also

published IM APIs for application developers for a custom integration of IM features

with any software product. Microsoft’s Live Communication Server (LCS) [104] inte-

grates MSN, AIM and Yahoo! public IM services with Microsoft Office programs to

enhance real-time collaboration in an enterprise.
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Yahoo! also provides developers with programmable objects like Yahoo! Audio

Conferencing and Yahoo! Webcam Upload/Viewer. AIM Express (an AIM client with

minimal features) is implemented as an applet for the Java platform that runs in web

browsers to support better user mobility. As IM capabilities are being integrated with

many different applications, security risks are increasing for both the IM services and

host applications; a security breach in an IM service can affect applications integrating

IM features, and vice versa. This significantly increases attack opportunities for

malcode writers (see Section 4.1).

Malicious Hyperlinks.

Links to web pages containing malicious content can be sent within normal instant

messages. ICQ has an option to accept or reject messages with hyperlinks (although

the default setting is to accept URL messages from all). In AIM, a user can create

hyperlinks wherein the visible text is completely unrelated to the underlying web link.

This can easily mislead any user receiving a hyperlink having an innocent visible text

to visit a web site corresponding to a deceitful link. Also, malicious hyperlinks can

vector users to phishing web sites (see e.g. [5, 119]).

URI (Universal Resource Identifier) Handlers.

YIM and AIM clients install custom URI handlers ymsgr and aim respectively. These

URIs can help in writing useful scripts to be processed by applications such as Mi-

crosoft IE, Netscape Navigator, Mozilla Firefox, Microsoft Outlook, or the Win-

dows command shell. A URI can be sent by another YIM or AIM user in an IM

text-message or HTML email message. Users also can embed these URI links to

their web pages. Web browsers and command shells can be used to launch AIM
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or YIM to process these URIs. For example, if a YIM user executes the URI

ymsgr:addfriend?mybuddy from IE (e.g. by clicking a hyperlink), the YIM client

will be launched (if it is not already running), and the user will be prompted to add

mybuddy to his/her contact list.

The lack of bounds checking in parameters of these protocols has allowed malicious

hackers to launch various buffer overflow attacks (e.g. [175]). The program paths

of YIM/AIM clients responsible for processing ymsgr/aim URIs are stored in the

Windows registry. By changing such a registry entry to any malicious program,

attackers can launch that program when these URIs are invoked. Also, scripts written

using these URIs open a new front for automated attacks.



Chapter 4

IM Worms, Analysis and

Countermeasures

IM worms are worms that spread in IM networks, by exploiting the features and

vulnerabilities of IM clients and protocols. We use a broad definition of worms by

Kienzle and Elder [81]: “A worm is malicious code (standalone or file-infecting) that

propagates over a network, with or without human assistance”.

It is well-known that IM worms are on the rise. The first IM worm made news in

August 2001 (see e.g. [177]). Since then, IM networks have slowly become potential

breeding grounds for spreading worms. As of March 2005, they are being reported

so often (see e.g. [167]) that major public IM vendors (including Microsoft, AOL and

Yahoo!) have formed an IM Threat Center [69] to track the latest IM and P2P worms

and vulnerabilities. A malware evolution analysis [54] for the first quarter of 2005

reports that email worms are on the decline due to improved anti-virus products; in

contrast, IM worms are becoming common.

Due to the prevalence of scanning- and email-worms, security researchers have

employed large efforts to understand and restrict the propagation of those worms

34
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[156, 151, 136]. Although the war is far from being won, improved defensive techniques

are making it increasingly difficult for worm writers. On the other hand, there appears

to be very little published research detailing efforts to understand and contain the

spread of IM worms.

In this chapter, we provide an overview of selected IM worms and vulnerabilities,

and summarize major replication mechanisms for IM worms. Distinguishing features

that make IM networks susceptible to fast-propagating worms are also discussed.

We briefly discuss theoretical characteristics of IM networks to understand worms’

behavior in such networks. A critical review of existing mechanisms to address IM

worms (e.g. virus-throttling for IM [184]) is provided. We propose two new techniques

to restrict the spread of IM worms. We also provide the results of a three and a half

years user study of IM text messaging and file transfer frequency in a moderate-size

public IM network – the largest such study to date – which is of independent interest,

but also supports in part the usability claim of our proposed new techniques. Note

that, the techniques we outline here are aimed to restrict IM worms’ propagation;

we propose our secure IM protocol (IMKE) in Chapter 5 to reduce other IM threats.

The results in this chapter largely appeared in WORM 2005 [100].

4.1 Analysis of Selected IM Worms and Vulnera-

bilities

In this section, we briefly analyze a few IM worms.1 We begin by mentioning a few IM

worms and noting their distinguished characteristics. Then we list a few IM clients’

vulnerabilities (exploitable IM features or implementation bugs) which could be used

1Details are available on many security web sites (e.g. [54, 160, 171]), or via search engines (e.g.
Google).
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to write more damaging and faster spreading IM worms. From our discussion, we

identify the most common propagation mechanisms of IM worms.

Examples of IM Worms.

1. The W32.Choke (June 2001) worm [164] hooks to MSN Messenger, and when a

user initiates an IM conversation with an infected host, the worm sends a text

message along with an invitation to download a file (which turns out to be the

worm-file) from the infected host.

2. The W95.SoFunny (July 2001) worm [166] spreads as a file attachment using

AIM. It steals AIM login information, and emails the user ID and password to

the worm author. It runs as a service process in Windows systems to hide itself

from the Windows Task Manager.

3. The JS Menger (Feb. 2002) worm [170] appears as a message in MSN Messenger

with the URL of a web site hosting the worm code. It exploits a vulnerability

in the Microsoft Internet Explorer (IE) browser.

4. Different variants of the Bropia/Kelvir (Jan. – Feb. 2005) worms attempt to

spread to all online contacts as a file using MSN Messenger. Bropia-M [163]

disables several system processes in a compromised host, including Windows

System Configuration Utility, Registry Editor and Task Manager. Bropia-F

[173] disables debugging tools in an infected system, and installs a variant of

the Agobot/Spybot worm [172], opening a backdoor on infected systems. The

Agobot worm propagates by exploiting many known vulnerabilities e.g. SQL

server buffer overflow, IIS (Internet Information Services) or WebDAV (Web-

based Distributed Authoring and Versioning) vulnerabilities, and can be used

to log keystrokes and relay spam.
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5. Several Serflog variants (Mar. 2005, e.g. Serflog.A [165]) spread via MSN

Messenger (as a URL) or P2P file-sharing networks (e.g. eMule2). It terminates

anti-virus and other well-known system and security processes, and modifies the

system’s HOSTS file to block access to well-known security web sites.

Most IM worms install backdoor programs to further exploit infected hosts. How-

ever, to date such worms generally have not carried any damaging payload other than

the replication engine. Social engineering techniques are typically used to convince

users to accept a worm file transfer or visit a malicious URL link.

Examples of Client Vulnerabilities.

Numerous vulnerabilities have been uncovered in popular IM clients. These are draw-

ing the attention of IM service providers and security communities who recognize

that worm writers could easily exploit these vulnerabilities to write more damaging

IM worms.

As an example, buffer overflows were discovered (and subsequently fixed) in the

past in AIM and YIM clients (see e.g. [60, 161, 120]). In a recent (May 2005) buffer

overflow attack on YIM, attackers could delete files from an infected host [122]. The

ICQ sound scheme file location vulnerability [152] could be exploited to place ma-

licious content on a user’s machine. This could allow attackers to run a malicious

script in the compromised machine exploiting a known IE vulnerability. The Bizex

worm [162] exploited this vulnerability to spread in the ICQ network.

While most known client vulnerabilities require user-actions to exploit a host, the

recent (Feb. 2005) MSN Messenger PNG (Portable Network Graphics) vulnerability

(see e.g. [106]) could have been exploited to spread a worm without any additional

2http://sourceforge.net/projects/emule/
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user-interaction. MSN Messenger uses the PNG format to enable the “Display Pic-

ture” feature (which shows a small picture of a contact in a chat window). The picture

data is sent to a user whenever the user wants to send text messages to a contact

even though the recipient’s image may not be displayed in the sender’s chat window

(depending on the sender’s IM client settings). Therefore, disabling this feature in

an MSN Messenger client could not prevent the exploitation. Microsoft fixed this

vulnerability and forced users to update the IM client; users who did not upgrade

were unable to log in to the MSN Messenger service.

Similar to the PNG vulnerability, the MSN Messenger GIF image processing vul-

nerability (April 2005) could lead to remote code execution [107]. This vulnerability

can be exploited by sending a maliciously crafted emoticon (i.e. emotional icons in

text messages) or display picture to an online MSN Messenger client. Microsoft sub-

sequently updated the IM client software to fix this bug.

IM Worm Replication Mechanisms.

From the above discussion, the following are evidently among the most popular mech-

anisms for propagation of IM worms.

1. Malicious file transfer (requires user-action).

2. Malicious URL in a text message (requires user-action).

3. Exploitation of implementation bugs in IM clients (may or may not require

user-action).

4. Exploitation of vulnerabilities in operating systems or commonly used software

applications (may or may not require user-action).

It follows that mechanisms for limiting the spread of IM worms (see Section 4.4)

should take into account these vectors.
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4.2 Distinguishing Features of IM Networks

We now list four major reasons that IM networks are particularly vulnerable to a

worm attack.

A) Popular and Connected.

Public IM networks connect millions of users. According to Microsoft, MSN Mes-

senger has 130 million customers as of July 2004 [105]. As more users continue to

move to high-speed Internet connections, more remain online for extended periods of

time [22]. Therefore, the set of online IM users forms a larger and larger network as

time passes with one consequence being that the number of potential victims possibly

outnumbers any known worm-outbreaks to date.

B) Instant Hit-List.

IM contact lists enable users to track the presence status of their contacts. To a worm,

an online contact list provides an instant hit-list [156] – a list of users vulnerable

(with a very high probability) to the worm from an infected host. Most IM users are

connected through a homogeneous platform (i.e. the same operating system and IM

client), which increases the success ratio of the hit-list. For example, online users in

the contact list of an MSN Messenger client are mostly connected in the MSN IM

service using the default MSN Messenger client on Windows. Users can access the

MSN IM service from Mac (using the MSN Messenger for Mac [103]) or Linux (using

e.g. aMSN [124]) machines. In present reality, however, the number of users accessing

the MSN IM service using clients other than the MSN Messenger in Windows is

negligible.
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To achieve a very rapid initial rate of infection (i.e. getting off the ground), a

hit-list of vulnerable machines is required [156]. A worm writer could build a hit-list

by scanning the whole Internet for vulnerable hosts before releasing a worm in the

wild. By the time the worm hits the Internet, however, the hit-list may be stale, at

least in part; some machines from the hit-list might be turned off, or some might be

patched against the targeted vulnerability. In contrast, an IM contact list offers a

worm writer a reliable hit-list “for free” (i.e. without spending any time to build it).

A simulation performed by Symantec [61] (with relatively conservative assump-

tions) shows that 500,000 machines can be infected with an IM worm in approximately

30 seconds. At least in theory, IM worms could out-perform email- and scanning-

worms, which are typically limited by their ability to find vulnerable hosts across the

entire Internet. IM worms would most likely be spread by using TCP connections

(as IM connections are mostly TCP), and would thereby be limited by the network

latency. Nevertheless, due to the inherent availability of a highly accurate hit-list, IM

worms can spread at a high rate.

C) Reduced User-Interaction Time.

Despite numerous security measures, email remains one of today’s most effective

worm propagation vectors [81]. This is despite the fact that an email worm, sent as an

attachment, is not assured of reaching an intended destination address (e.g. the target

email address may be invalid) or of immediate user-action (e.g. the target user may

check email only occasionally). In contrast, as noted above, an IM worm gets a largely

accurate instant hit-list from an infected user’s online contact list. A file transfer

request or a URL sent to an online contact results, with high probability, in an instant

user-action (despite some online IM users being away from their machine). Thus,

reduced user-interaction time for propagation of worms is expected in IM networks.



4.3. Topology of the Network formed by IM Contacts 41

D) Increasing IM Integration in Popular Applications.

IM features are being integrated with many popular applications to meet the desire of

IM users to share ideas and information instantly. For example, the MSN Messenger

contact list is accessible from the Microsoft Outlook Express email client; Microsoft’s

Live Communication Server (LCS) [104] integrates MSN, AIM and YIM public IM

services with Microsoft Office programs to enhance real-time collaboration in an en-

terprise. Greater integration increases usability, although the chance of IM-integrated

applications being used by many users unknowingly or unwillingly increases as well. A

security vulnerability in an IM protocol or client can exploit applications integrating

IM features, and vice versa.

Although IM is just another Internet based application, the distinguishing features

as listed above make IM networks particularly vulnerable to a fast-spreading worm.

4.3 Topology of the Network formed by IM Con-

tacts

We now provide an overview of the network of IM contacts. Understanding the

topology of such complex networks is necessary to obtain a better understanding of

the rapidity of the spread of a worm in an IM network. This may, as well, help in

devising novel ways to prevent or contain such an epidemic.

Paul Erdös and Alfréd Rényi introduced the ER (Erdös-Rényi) Random Graph

Model in 1959 to analyze complex networks which are evident in communications

and life sciences. ER networks (also known as random networks) are formed by

nodes with randomly placed links, with most nodes having an approximately equal

number of links. In the late 1990s, however, empirical network data (e.g. from the
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World Wide Web [2]) suggested that a common property of many complex real-

world networks is that node linkages follow the power-law distribution3 instead of

the Poisson distribution of random networks. Barabási and Bonabeau [7] coined the

term scale free (SF) to model the topology of such complex networks. The SF model

originates (see [6]) from the following two mechanisms: networks grow continuously

by the addition of new nodes, and new nodes attach preferentially to more highly

connected nodes. This model accommodates the existence of hubs or clusters (i.e. a

few nodes with a very high number of links, while most nodes have a few connections

only) in real networks. SF architectures (e.g. WWW, Internet routers) are found

to be highly resistant to accidental (i.e. random) failures, though very vulnerable to

targeted attacks. Also, all viruses, even those that are weakly contagious, will spread

and persist in a SF system. Consequently, once introduced, computer viruses are very

difficult to completely remove from the Internet (see [134, 7]).

A general observation in human social structures is that some friends of a given

person are typically friends themselves. Contacts in a user’s IM contact list also

exhibit this feature; i.e. if user A has users B, C, D in her contact list, B will have

C and/or D in his contact list with a high probability. Smith [155] analyzed the

topology of the network formed by IM contacts, and found the network to follow the

SF model. He studied a Jabber IM network of 50,158 nodes (young adult users) with

nearly 500,000 links (contacts). The diameter of the network was only 4.35; i.e. any

two users in the network studied were separated by only 4 to 5 users on average.

While IM networks may exhibit the SF model’s properties in reality, the following

aspect of IM worms may complicate such a model. From any infected user, a worm’s

spread may not be limited by the number of online contacts of that user; an IM

worm may successfully guess IM contacts, at least for large public IM services (see

3i.e. the probability that any node of the network is connected to k other nodes is proportional
to k−γ , where γ ranges between 2 and 3.
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shortcomings of virus throttling in Section 4.4.1 for further discussion). In fact, each

node can potentially become a hub, thereby dramatically increasing the number of

hubs in the SF model. This may result in the failure of virus halting measures designed

for SF networks (e.g. [38]) that aim to restore a finite epidemic threshold by patching

most of the hubs in an infected network.

4.4 Measures for Limiting IM Worm Epidemics

In this section we analyze mechanisms found in the existing literature that are pro-

posed to limit IM worm-outbreaks. We also outline techniques complementary to

IMKE, our proposed secure IM protocol, to effectively restrict worms in IM networks.

4.4.1 Existing Techniques and Remarks Thereon

An overview of existing techniques, as well as their shortcomings, is given below.

A) Temporary Server Shutdown.

All IM connections go through or are initiated by an IM server. A typical (but

effective) solution that takes advantage of this centralized structure to stop an IM

worm-outbreak is the following [61]: shutdown the IM server, manually analyze the

worm and build a client patch; then force update when users attempt to login as

the IM server comes alive again. For example, in April 2005, Reuters Messaging

was shut down for several hours to stop an IM worm spread (e.g. [121]). Obviously,

this is not a user-friendly solution. Moreover, as it has already been observed, IM

worms may enable the propagation of other worms exploiting known (and generally

ubiquitous) vulnerabilities in infected systems, and spread via traditional mechanisms
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such as email attachment. Therefore, shutting down the IM server may not effectively

contain an IM worm epidemic.

B) Temporarily Disabling the Most-Connected Users.

Exploiting the scale-free nature of IM contacts, Smith [155] proposed the following

measure to contain a worm outbreak: disconnect the most-connected users (deter-

mined by the size of contact lists), which may effectively increase the network’s diam-

eter, and thereby slow down the spread and allow time to build and apply a patch.

It has been shown by Smith, however, that disabling the top 10% connected users in

the IM network still would leave 90% of the remaining network connected although

the network’s diameter has increased almost twofold. Note that Smith’s study derives

users’ connectivity from the total number of contacts, not from the number of online

contacts (which may vary significantly); of course, an IM server can easily also track

the most-connected online users.

C) Virus Throttling for IM.

To limit the propagation of fast worms, Williamson [183] introduced a general throt-

tling mechanism based on the observation that worm-spreading network traffic is

significantly different than normal traffic on many Internet protocols (e.g. TCP/IP,

email). Generally, IM users interact with a slowly varying subset of contacts while

IM worms send messages to all the online contacts in a user’s contact list. The idea

behind virus throttling for IM, as proposed by Williamson and Parry [184], is to limit

the rate at which users can interact with their contacts in a way that impedes a

worm-spread (even for unknown, zero-day worms) without noticeable impacts on IM

users.
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In essence, the throttling mechanism for IM is

as follows. A short recent history list or working set of contacts for each user is

maintained. This is the list of contacts that a user has recently interacted with. The

mechanism attempts to ensure no more than one message is sent to a new contact (a

user from the contact list who is not in the working set) per time period; see Figure

4.1. Every time a user attempts to send a message to a contact, the recipient’s user

ID (‘h’ in Figure 4.1) is compared with the working set. If it is in the set, the message

is sent immediately; otherwise, the message is placed on a delay queue for sending

later. The delay queue and working set are updated regularly. If a client’s delay queue

length exceeds a predefined threshold, all messages from that client are blocked and

the user is asked to confirm the legitimacy of the queued messages, assuming an

attempted worm-spread. It is suggested that the mechanism be implemented at the

IM server, because the IM server processes or initiates all user-messages, and users

would not be able to bypass the server.
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Figure 4.1: Throttle algorithm for IM [184]
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Williamson and Parry collected IM usage data from the Jabber
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server deployed at Hewlett-Packard. Contact lists of 710 corporate users and 39,740

messages from 223 senders in a 72 day period were analyzed. Setting a working set

size to five resulted in less than 10% of messages being placed in the delay queue for

most of the users. Although setting the allowed rate at around one new contact per

minute appears more user-friendly, to restrict a worm-spread effectively, Williamson

and Parry suggested the allowed rate to be one new contact per day. In either case,

some messages will escape before the throttle mechanism is applied. Also from the

collected data, the network formed by IM contacts was shown to be scale-free. The

hubs of this network (i.e. users with large contact lists) appear to release the fewest

messages before being blocked when the throttle is applied. This property apparently

provides evidence that the throttling mechanism may effectively restrict IM worms.

�
���������	

Throttling for IM may help stop IM worms to some extent, and

appears to be one of the few technical mechanisms proposed to date. Thus it provides

an important benchmark for comparison. However, we note the following limitations.

1. Allowing only one new contact/day may be too restrictive for IM users (home

or enterprise). If users need to confirm the legitimacy of messages often, the

throttling mechanism may find little acceptance in IM communities.

2. Delaying a message temporarily (e.g. a minute) is not what IM users expect in

an IM environment; the whole point of using IM is being instant.

3. It is assumed in throttling that IM worms’ propagation vector will be limited

to users’ online contact lists, because IM worms can guess new contacts with

only a very low probability. For example, in AIM a user ID consists of (case-

insensitive) alphabetic characters and digits, and the maximum allowed length

is 16; i.e. AIM supports approximately 3616 different user IDs, so randomly

guessing a user ID correctly would appear to have a very low probability. In

reality, however, only a small (typically predictable) fraction of the user ID
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space is used. For example, any dictionary word or common name guessed as

a user ID has a significantly higher than random chance of being correct. The

large number of users in public IM networks makes such guessing of correct user

IDs easier. Also, a large number of online user IDs can easily be obtained, for

example, through the chat-room feature (e.g. YIM chat-rooms).

4. A user must confirm the legitimacy of messages when that user’s delay queue

threshold is exceeded. A worm may be able to do that on behalf of the user,

and thereby compromise the throttling mechanism.

5. The size of IM usage data analyzed by Williamson and Parry is quite small, and

appears to be unrepresentative of active IM usage. For example, their study’s

average of less than 2.5 messages per user per day appears to largely fall short

of the number of messages in real IM practice (our study in Section 4.4.3 shows

that in a mid-size public IM network, on average a user sends 334 text-messages

per day). Also, the network of IM contacts formed by only 710 users does not

likely represent the characteristics of a public IM network with millions of users.

6. Throttling does not deal with group-chat or chat-room situations, where a user

sends a message to multiple recipients concurrently.

7. Implementing the throttling mechanism, as suggested, requires per-online-user

state memory at the server (e.g. working set, delay queue).

We have discussed several limitations of available techniques designed to limit IM

worm-outbreaks. We briefly propose containment strategies in the next subsection to

avoid most of these shortcomings.

4.4.2 New Proposals

In this section, we briefly suggest two mechanisms (complementary to IMKE) to

further reduce the propagation of IM worms, and to do so in a more user friendly
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manner. While these mechanisms may appear to be straight-forward, we record them

nonetheless, as an early contribution to the scant literature in this research area.

Our discussion in Section 4.1 suggests that file transfer and URLs in text messages

are two major vectors for malware propagation in IM networks. It is apparent that,

if we can restrict automatically generated file transfer requests and text messages

with malicious URLs, the propagation of IM worms can be significantly delayed. In

essence, our new proposals aim to control these two vectors. We assume that all

IM text messages and file transfer requests (not necessarily the file data) are relayed

through the IM server – which is generally true in current public IM connections

(recall Section 1.2).

In Section 4.4.1, we listed the limitations of the virus-throttling mechanism for IM.

Nevertheless, we believe that such a mechanism can do little while working on top of

an insecure IM protocol. Similarly, a secure IM protocol alone is unlikely to eliminate

the possibility of IM worms because IM worms may take advantage of implementation

bugs of a secure IM client. A two-step method – a throttling mechanism as well as a

secure IM protocol, e.g. IMKE – appears more effective to us against IM worms. Here

we propose the following techniques which are derived from the throttling mechanism

or similar to it in spirit, and which we recommend be deployed with IMKE or a

similarly-featured protocol.

1. Only use a throttling mechanism to limit file transfers and messages containing

URLs. We believe this will be as effective as the proposal of Williamson and

Parry [184] in most cases with less impact on users, due to the general obser-

vation that IM users send file transfer requests (e.g. see Section 4.4.3) or text

messages with URLs only occasionally. In other words, we propose that the

throttling mechanism be applied only to file transfer requests and URL mes-

sages, instead of on all new connection requests. Now normal text messages
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(the most frequently used feature of IM) will not be delayed, and there is no

threshold at which users must confirm the legitimacy of text messages. Instead,

URL messages and file transfer requests may be delayed, and in the case of

file transfer, the usability impact is further minimized due to the fact that a

file transfer is generally not instant (even for a small size file). When sending

a file transfer request or URL message to multiple users at a time (e.g. in a

group-chat), the sender needs to confirm the authenticity of the request (to the

server or a selected recipient) only once.

2. Challenge senders of a file transfer request or URL message with a (e.g. visual)

CAPTCHA (Completely Automated Public Turing test to tell Computers and

Humans Apart) [169] generated by the IM server or the recipient’s client. This

will not affect usability much, if as noted above, these features are used infre-

quently. CAPTCHA tests are computer generated, easy for humans to solve

but difficult for machines, and the probability of guessing the answer correctly

is low. Answering a CAPTCHA correctly increases the chance of the sender

being a human user, rather than an IM worm trying to automatically propa-

gate using the sender’s user ID. IM users are no stranger to these tests as while

registering for an IM account, all major public IM vendors challenge users with

CAPTCHA tests to stop automated account acquisition by software bots (e.g.

by spammers).

To expand the latter technique, we note the following. Some users may send more

files than others. Challenging such users for each file transfer with a CAPTCHA

is less user-friendly than desired, and may be avoided by using secure cookies in a

manner similar to Pinkas and Sander [137]. Assume that user A wants to send a file

to user B, and both are logged in to the same IM server S. When A sends her file

transfer request to B through S, S challenges A using a CAPTCHA. If A successfully
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responds to the challenge, then S forwards A’s request to send the file to B; S also

sends a secure cookie (i.e. data encrypted symmetrically under a key known only to

the server) to A, and A stores that cookie to the local system. The cookie will expire

after a certain interval, e.g. 12 hours. If A sends more files to B, or any other user

before the expiry of the cookie, S will not challenge B. If A wants to send a file to

multiple recipients at a time (e.g. while in a group chat), A will be challenged by S

only once.

To reduce the load of generating a large number of CAPTCHAs by the IM server,

the recipient’s IM client can be used instead to generate the challenge CAPTCHA

sent to the originator, as user machines (e.g. personal computers) are generally under-

utilized.

4.4.3 User Study on Per-User Frequency of IM Text Mes-

saging and File Transfer

Here we summarize our findings for text messaging and file transfer statistics in

an IM service, from a new IM user study which we believe should be of independent

interest. Usability issues related to our proposals (of Section 4.4.2) are also examined.

Although it is generally believed that the number of file transfer (FT) requests in an

IM network is far less than the number of text-messages (TM), we found no real

data supporting this belief in the literature. Therefore we carried out an independent

study to quantify the file transfer usage in a reasonable-size IM network.

We used (with permission) data collected from the Eyeball Chat [45] service for a

period of three and a half years (Sept. 2001 to April 2005). The data used contained

only collective statistics that do not violate privacy of Eyeball’s users. While the

primary focus of this service is to enable live video conversation over the Internet,
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it nevertheless supports text messaging and file transfer. In total, 17.84 million FT

requests and 3.2 billion TMs were tracked. The average number of FT, TM and online

users over 15-minute periods is given in Table 4.1. The number of online users in the

table is the average of the maximum and minimum online users in the 15-minute

intervals. Table 4.2 shows that the ratio of FT to IM is quite low (i.e. one FT per

181 TM, on average). Also, per 24-hour period, an online user in this dataset sent

334 text-messages, and 1.84 file transfers on average.

Feature Avg. Number

File Transfer (FT) 143

Text Message (TM) 25953

Online Users 7459

Table 4.1: Average file transfer, text messages, and online users over 15-minute in-
tervals

Ratio Value

FT/TM 0.0055

FT/user/day 1.84

TM/user/day 334.03

Table 4.2: Comparison of file transfer (FT) and text message (TM) usage

From this it is apparent that IM users (at least in this dataset) infrequently transfer

files, although it is a useful feature of IM. Hence throttling file transfers or challenging

the initiator (sender) of a file transfer with a CAPTCHA would appear to be practical.

As one of our proposals involves the use of a CAPTCHA for improved defense against

IM worms, the security of such tests must be taken into account, as another ongoing

arms race is that between the designers, and attackers, of CAPTCHAs (e.g. [109]).



4.4. Measures for Limiting IM Worm Epidemics 52

Our proposed mechanisms may be applied to limit automatic URL propagation

as well. However, the usability impacts for CAPTCHA-protected URL messages are

not known, because of the unavailability of such usage data.



Chapter 5

IMKE: Instant Messaging Key

Exchange

The shortcomings and security risks of public and business IM protocols, as discussed

in the previous chapters, highlight the need of a secure IM protocol. The techniques

outlined in Chapter 4 to restrict the propagation of IM worms improve IM security

only in part. To complement those techniques, and to reduce other IM threats (recall

Chapter 3), a secure IM protocol is essential. In this chapter, we present a new

protocol called Instant Messaging Key Exchange (IMKE) – which we propose as an

efficient protocol for strong authentication and “secure” communications (see Table

5.3 for definitions) in IM systems. IMKE may be used as a Password Authentication

and Key Exchange (PAKE) protocol, and in server-mediated P2P communications.

We explain what motivates our protocol as well as the differences between IMKE and

PAKE protocols. Protocol goals and the threats IMKE is designed to counter are

also discussed. A security analysis of IMKE is provided in Chapter 6.

53
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5.1 Motivations for IMKE

In this section, we discuss the motivations for IMKE, and similarities and differences

of IMKE with existing two- and three-party PAKE protocols.

IM authentication is password-based, and there are many PAKE protocols for

strong authentication. One possibility is to use such a well-known protocol; the

advantage is that well-known protocols have generally been peer-reviewed and scru-

tinized. Some are also supported by security “proofs”, although such a proof does

not necessarily guarantee security; see Koblitz and Menezes [83] for an interesting

analysis of “provable security”.

A pluggable security protocol – implemented in a third-party client software add-

on module that does not require any changes in popular IM clients and servers –

could easily be deployed at the client-end. Even though security needs are increasing,

it would be difficult to convince major IM vendors to replace their IM clients and

servers. Therefore many initiatives (see Section 2.2.2) have been taken to make IM

secure using pluggable security protocols. Limitations of these solutions are discussed

in previous chapters. A new, light weight protocol which can easily be embedded into

existing IM protocols (by the IM service providers, changing both the IM client and

server) seems practical to achieve security without limiting usability and requiring a

large implementation effort. We propose IMKE to achieve such objectives and avoid

limitations (e.g. the requirement of long term user public keys, insecure client-server

connections) of pluggable solutions.

In summary, the design of IMKE has been inspired by following facts:

1. Existing IM security solutions are inadequate to address IM threats;

2. A pluggable IM security protocol can provide only limited security;

3. Well-known PAKE protocols do not directly fit into the IM communications

model (see below); and
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4. A minimal security protocol, which can conveniently be embedded into popular

IM protocols without breaking the underlying messaging structures, is essential

for a greater integration.

5.1.1 Relationship of IMKE to Two- and Three-Party Pro-

tocols

IM is essentially a three-party system – the IM server’s main role is to enable trusted

communications between users. In traditional models, the requirement of a third-

party is considered a disadvantage and even when a third-party is present, it is often

considered as a disinterested party [12]. In contrast, many of the present Internet

communications (e.g. web browsing, email) involve a server – a trusted but not so

disinterested party. Especially in an IM environment, the IM server plays an active

role in users’ communications. Therefore we take advantage of the presence of an

active IM server in IMKE, e.g. by using the server as a trusted public key distribution

center for clients.

Another major difference of IMKE with other three-party systems (e.g. GLNS

[92, 53], 3PKD [12], key translation centers [101, p.547]) is that, although the IM

server in IMKE helps establish a secure session between two clients, the server does

not know the session key shared between the communicating parties. This is a de-

sirable property for consumer IM networks; users may want their conversations to

be inaccessible to the IM server even though they must trust the server for login,

sharing user-profile, forwarding presence information etc. Also, in most of these

three-party protocols, a user must send some protocol messages directly to the other

party. Because establishing direct P2P connections may not be possible in many

network settings (e.g. due to firewalls), we cannot use these three-party protocols
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without modifications.

In a typical three-party case, two users start a session (authenticating themselves

to the trusted server, and each receiving a server-generated session key) only when

they need to communicate. The IM scenario is a bit different in the following way:

users authenticate themselves only when they login to the IM server; then users

initiate sessions with other online users whenever they wish to. Logging in to the IM

server does not necessarily follow IM sessions (e.g. text-messaging, file transfer).

The two-party PAKE protocols that use a known server public key (e.g. Halevi-

Krawczyk [56], Kwon-Song [87]) have similarities with IMKE. These protocols, as

well as two-party password-only authentication and key exchange protocols (e.g. SRP

[185, 186], AuthA [13], PAK [26]) may be transformed into a three-party protocol in

the following way [24, p.267]: run two two-party protocols between the server and

each of the communicating principals; then use the established secure channels to

distribute session keys or any other communication primitives e.g. public keys among

users, thereby providing the communicating users a secure channel. However, we

are interested in the best possible practical protocols, and thus seek a more efficient

protocol, as these solutions may require up to three extra messages per protocol run

– one for sending a client’s public key to the server and two for verifying the public

key.

5.1.2 Relationship of IMKE to EKE and Similar Protocols

IMKE has similarities in setup and goals with many PAKE protocols related to or

inspired by EKE [16], especially with those that use a known server public key. Boyd

and Mathuria [24, p.276–281] provide a concise overview of password-based protocols

using a server public key. We now highlight some of these similarities and differences of



5.1. Motivations for IMKE 57

IMKE with other well-known protocols. In comparing IMKE with EKE-like protocols,

we only consider the PAKE phase of IMKE (see Section 5.3).

The basic idea of the EKE solution is the following. Alice (A) generates a random

public/private key pair and sends the public key to Sam (S) encrypted using a shared

password P (or a function of P ) as the key in a symmetric cryptosystem. Using P ,

S decrypts the received ciphertext and obtains A’s public key. Then S encrypts

a random secret R using A’s public key and then again using P , and sends the

resulting ciphertext to A. A recovers R, using both her own private key and the

shared password. A session key is then derived from R using standard techniques.

An effective way to break many implementations of EKE is the partition attack [16,

25, 190] (also known as the e-residue attack): a special class of the dictionary attack,

where an adversary tries to partition the password-space into feasible and infeasible

sets by using information gathered (passively, from the wire) from a protocol run; the

correct password may be recovered from the feasible set of passwords in logarithmic

time after observing a limited number of valid protocol runs. If the plaintext has any

redundancy, or lies in a constrained space, then a partition attack on the password

(used as the key to encrypt the plaintext) can be mounted by collecting the resulting

ciphertext from several valid protocol runs. As a public key usually contains distinct

redundancy, many implementations of EKE (mainly RSA-EKE, although other EKE

implementations are not fully immune) are susceptible to this attack (e.g. [135, 25]).

As noted by Patel [135], attacks against RSA-EKE are feasible – for a dictionary of size

one million, only 18 successful EKE sessions (on average) leak enough information to

crack a password. Patel also stated that RSA-EKE can be broken irrespective of RSA

parameters, but DH-EKE and ElGamal-EKE can only be attacked if related security

parameters are not verified (e.g. g is not a generator). Also, in EKE implementations

some parameters must be sent in the clear (depending on the public key cryptosystem
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being used). For example, in RSA-EKE, the modulus n must be sent in the clear to

minimize threats from partition attacks. IMKE implementations do not require any

such restrictions.

In IMKE, each message ensures the identity of the sender – a client or a server

does not reply blindly. In contrast, for example, in EKE (as described above), S

decrypts the first message from A using P and obtains A’s public key. As noted by

the EKE authors [16], it is not always practical to test the validity of a public key.

Hence, in EKE, after the first message, S has no idea who is at the other end of

the communication line. This type of blind reply sometimes enables an attacker to

conveniently extract artifacts related to a user’s password from the server.

In EKE and its variants, the user-chosen (often weak) password is used as an en-

cryption key. As noted by Halevi and Krawczyk [56], one major difficulty in designing

PAKE protocols is the assumption that the underlying crytosystems remain secure

even when we use low-entropy passwords as cryptographic keys. Gong et al. [53] dis-

cuss how padding and verifiable plaintext issues can open a protocol to a variety of

attacks when passwords are used as cryptographic keys. IMKE avoids this problem

by not using the password as a cryptographic key.

The main idea behind our IMKE protocol is the following. We seek to break the

number theoretic relationships between a public key and a password, mainly to avoid

known and unknown security issues in this regard. IMKE uses a known server public

key to encrypt a random (session) key (e.g. 128 bits) and uses that key to encrypt

the (weak) user-password and the user’s dynamic public key. This enables IMKE to

avoid the partition attack because to discover redundancy in a public key, now the

attacker must search for the correct session key which is generated from a large key

space instead of the relatively small password space. Also, as clients’ public keys are

generated dynamically for every login attempt, users do not need to maintain any
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long-term public keys.

5.2 Setup for IMKE

In this section, we discuss threats considered in IMKE. We list the notation and

terminology used, the end user goals, and long- and short-term secrets for IMKE.

5.2.1 Threats Considered in IMKE

Table 5.1 summarizes the most significant IM threats and whether a threat is ad-

dressed by IMKE. We defer a more concrete discussion of the IM threat model to

Section 6.1.1. Details of these threats are discussed in Chapter 3 and 4.

Threats Addressed by IMKE

Insecure connection X

Limiting denial of service (DoS) X

Replay of messages X

Impersonation of IM users Xa

Limiting the propagation of IM worms Partial b

DNS spoofing to setup rogue IM servers X

Insecure default settings on IM clients 7

Sharing IM features with other applications 7

URI handlers (aim, ymsgr) 7

Plaintext registry and archived messages 7

aAssuming no theft of users’ passwords, including e.g. through the use of keyloggers.
bFor worms which propagate through automated file transfers and URLs within messages. IMKE

helps techniques outlined in Section 4.4.2 to be more effective by securing IM connections.

Table 5.1: Threats to IM and those addressed by IMKE



5.2. Setup for IMKE 60

The network messages in an IM system may be categorized as control (e.g. login)

and data (e.g. text, status) messages. IM connections generally involve a client and

a server, or two clients. Most IM threats arise from these connections being easily

compromised. Our goal is to provide confidentiality, authentication and integrity

protection for all IM data messages. The security related goal of availability is beyond

the scope of our work. DoS attacks against IM clients or the server are not fully

addressed by IMKE. However, the server and clients can attempt to limit the extent

of these attacks by dropping any connection that fails to meet authentication and

integrity goals. An attacker may replay captured messages (from an ongoing session

or older sessions) to clients or the IM server. Replay attacks are also detected in

IMKE.

An attacker can capture a user’s password using a keylogger, i.e. a program or

hardware device specialized in (secretly) recording keystrokes. Very few, if any, secu-

rity guarantees can be provided in environments susceptible to keyloggers. However,

threats from keyloggers are not insignificant (e.g. see [158, 117]). Also, attackers

may collect passwords using social engineering techniques (e.g. [63, 131]), or mali-

cious software that scans memory (or the Windows registry). Impersonation using

a stolen/compromised password cannot generally be prevented in password-only sys-

tems as a password is the only piece of secret shared between a user and the IM

server. However, impersonation attacks based on compromised connections can be

prevented by securing IM connections.

Automated file transfer requests and hyperlinks initiated by IM worms can be

limited by applying techniques outlined in Section 4.4.2. Automated propagation of

hyperlinks for other malicious purposes e.g. phishing is also restricted by those tech-

niques. IMKE complements those techniques by securing IM connections. However,
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malicious files or hyperlinks manually sent from other users (knowingly or unknow-

ingly) are not addressed by IMKE or the techniques limiting IM worm propagation.

An attacker may spoof DNS entries in a user machine (the local DNS cache) to

redirect all communications to a rogue IM server. IMKE prevents this attack from

being successful by authenticating the IM server to the users by using a shared secret

(password), and verifying the known server public key (online).

Default settings can be dangerous, if not set appropriately. Sharing IM features

with other applications increases user-interactivity; nevertheless, it introduces signif-

icant security risks. Custom URI handlers may open up new methods of scriptable

attacks on IM systems. Plaintext registry values and archived messages may expose

security sensitive information to malicious programs. IMKE provides no protocol

level protection against these attacks.

5.2.2 Notation, Goals and Secrets

In this section, we specify the end-user goals (Table 5.2), and the required secrets

as well as the notation and terminology (Table 5.3) used in IMKE. Fulfilling the

end-user goals corresponds to the threats we consider in Table 5.1. We outline how

IMKE achieves goal G1 through G4, and G8 in Section 6.1. The discussion of IMKE

protocol messages in Section 5.3 shows how the protocol establishes goal G5 and helps

against replay and DoS attacks (goal G6 and G7).

A password (user-chosen, generally assumed to be weak) is shared between an IM

server and a user. This is the only long-term secret for users and they choose their

initial passwords during the IM account setup (using a out-of-band method). A user

may change the password whenever he/she wishes to do so. The server stores original

passwords. The other long-term secret is the IM server’s private key (for decryption).

A server public key generally remains valid for a long time (a year or more), and a
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G1. Assurance of server’s and clients’ identities to the communicating parties
without exposing clients’ passwords to offline dictionary attacks.

G2. Secure communications∗ between a client and the IM server.

G3. Secure communications for messages flowing directly between clients (cf. G5).

G4. Forward secrecy and repudiation.∗

G5. End-to-end security∗ for messages that are relayed through the IM server.

G6. Detection of replay attacks on clients and the IM server.

G7. Limit scopes and consequences of DoS attacks on clients and the IM server.

G8. Limit the propagation of IM worms.

∗See Table 5.3 for definitions.

Table 5.2: End-user goals in IMKE

key renewal is done by a client-update, i.e. by sending users the updated key when

they attempt to log in. Clients’ private keys (for decryption), session keys, and MAC

keys are the short-term secrets in IMKE.

5.3 The IMKE Protocol

We describe the IMKE protocol in three phases: the password authentication and

key exchange, client-server, and client-client communications. We assume that IM

clients are installed with the digital certificate of the IM server (or the certificate is

embedded in IM clients). We discuss the IMKE protocol messages as the protocol

is described below; we defer a more specific security analysis of IMKE messages to

Section 6.1.2.
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A, B Two IM users (Alice and Bob respectively).

S The IM server.

IDA User ID of A (unique within the IM service domain).

P Password shared by A and S (i.e., P = PAS).

RA Random number generated by A.

{data}K Symmetric (secret-key) encryption of data using key K.

{data}K−1 Symmetric (secret-key) decryption of data using key K.

{data}EA
Asymmetric (public-key) encryption of data using A’s public key
KUA.

{data}DA
Asymmetric (public-key) decryption of data using A’s private key
KRA.

X, Y Concatenation of X and Y .

Ks
AS Symmetric session (encryption/decryption) key shared by A and S.

Km
AS Symmetric MAC key shared by A and S.

[X]AS MAC output of data X under key Km
AS.

“Strong” pass-
word protocol

An attacker eavesdropping on the authentication exchanges or im-
personating either end of the protocol should not be able to obtain
enough information to mount a successful offline dictionary attack
even if a relatively weak password is used in the protocol [76].

Secure communi-
cations

Communications where authentication, integrity and confidentiality
are achieved.

End-to-end secu-
rity

Securing messages cryptographically across all points between an
originating user and the intended recipient.

Repudiation A way to ensure that the sender of a message can (later) deny having
sent the message. This is important for casual conversations in IM
[22].

Forward secrecy The property that the compromise of long-term keys used in a pro-
tocol does not compromise any session keys established before the
compromise of the long-term key.

Table 5.3: Notation and terminology used in IMKE
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5.3.1 Password Authentication and Key Exchange (PAKE)

The goals that a client and a server achieve in this phase are: authenticate each other

using the shared password P in a way that is resistant to offline dictionary attacks;

establish a secret session key; and transport a verified dynamic public key from a

client to the server. The login process between client A and server S proceeds as

follows:

1. Client A generates a dynamic public/private key pair (KUA, KRA), and a

random symmetric key KAS, and then encrypts KAS with the server’s public

key. The server’s public key is verified online, using e.g. the public password

method proposed by Halevi and Krawczyk [56], whereby users verify the hash of

the server public key represented in plain English words. Assume for now that

fi denotes a one-way cryptographic hash function (see further discussion below).

A also calculates her password function f1(P ) and symmetrically encrypts KUA

and f1(P ) using the session key:1

A → S : IDA, {KAS}ES
, {KUA, f1(P )}KAS

(5.1)

2. S decrypts KAS by using its private key, and uses KAS to retrieve KUA and

f1(P ). S also independently calculates f1(P ) from A’s shared password P (S

looks up P using IDA). S drops the session if its locally calculated f1(P )

and the corresponding value received from message (5.1) mismatch. Otherwise,

S responds with a function of P , f2(P ) encrypted with KAS, and a random

challenge RS encrypted with A’s public key:

1To achieve better privacy, instead of sending IDA in the clear, it might be encrypted using KAS

with minor extra cost. As noted by Halevi and Krawczyk [56], this kind of user identity protection
may be important for remote authentication of mobile users.
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A ← S : {RS}EA
, {f2(P )}KAS

(5.2)

3. A decrypts RS, calculates f2(P ) independently and compares it with the corre-

sponding value received from message (5.2) and disconnects if the two quantities

are unequal. Otherwise, A responds with f3(RS):

A → S : f3(RS) (5.3)

4. S independently calculates f3(RS) and compares it with the quantity received

in message (5.3). If they mismatch, S disconnects; otherwise, both A and

S calculate the session key (encryption key) Ks
AS and MAC key Km

AS in the

following way:

Ks
AS = f4(KAS, RS), Km

AS = f5(RS, KAS) (5.4)

S now indicates A a successful IM client login using a message of the form (5.8).

A and S also zero out KAS and RS from the program memory. This way we

avoid using authentication artifacts as session keys in later communications;

this is desirable for achieving forward secrecy (see Section 6.1). Nonetheless,

fully zeroing-out (i.e. erasing or forgetting) a memory-resident secret is not a

trivial task in reality [39].

������	

The functions f1 and f2 must differ; otherwise, if an attacker can replace

KUS in A’s system (assuming the client machine is compromised, and the server

public key is improperly2 verified), he can deceive A without knowing P , i.e. the

attacker can make A readily believe that she is communicating with the legitimate IM

2For example, in the public password method [56], a user may approve a wrong sequence of
English words by mistake.
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server. Nevertheless, even when f1 and f2 differ, replacing KUS with the attacker’s

public key in a user’s machine enables an offline dictionary attack on P . Having

different f1 and f2 makes the attacker’s active participation in the protocol harder.

Note that, the strength of IMKE does not depend on the secrecy of functions fi.

RS and KAS must be large enough (e.g. 128-bit) to withstand an exhaustive search.

A must encrypt the dynamically generated public key (KUA) while sending it to the

server in message (5.1). Otherwise the following attack may succeed. Suppose an

adversary generates a new private-public key pair and is able to replace KUA with

the fraudulent public key in message (5.1); this enables the adversary to decrypt RS

in message (5.2) and send a correct reply to S in message (5.3). Hence, IMKE requires

the secrecy of A’s public key in the PAKE phase. This use of secret “public keys” is

different than a common public-key system. Privacy of public keys has been studied

extensively by Bellare et al. [9]. Public keys have been used in this way elsewhere

(e.g. [20, 62]).

If message (5.1) is replayed to a server by an attacker, the attacker cannot decrypt

message (5.2) without knowing A’s private key and KAS. If message (5.2) is replayed

to A by an attacker in a separate run of the protocol, A will refuse to reply to S with

message (5.3) as she will fail to decrypt f2(P ) (A randomly generates KAS in each

run of the protocol). After A has successfully logged in to the server, A receives only

messages of type (5.8) from S. Therefore, if message (5.2) is replayed to A after she

logs in, A can readily detect the replay, and discard that message.

The duration of the session key (Ks
AS) should be set carefully. This is important

for clients in an always-connected mode, wherein clients stay logged in to the IM

service for a long period of time (e.g. days or weeks). A new session key should be

negotiated after a certain period (e.g. a couple of hours) depending on the expected

security level and size of the session key (e.g. a shorter period for 64-bit keys than
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128-bit keys) to reduce consequences from cryptographic (e.g. brute-force) attacks

on the key. To do so, A and S exchange two random values KAS1 and RS1 in the

following way and generate the new session key and MAC key as before. Either A or

S can begin the key renewal process. The initiator must stop sending any messages

before the new keys are established.

A → S : {{KAS1}ES
}Ks

AS
, [{KAS1}ES

]AS (5.5)

A ← S : {{RS1}EA
}Ks

AS
, [{RS1}EA

]AS (5.6)

5.3.2 Client-Server Communications

After authentication, a client and server communicate mainly for the following pur-

poses:

1. the server sends a user’s contact list, block list, profile, saved settings;

2. the client sends privacy (e.g. blocked user ID) and mode information (e.g. avail-

able, away, busy);

3. the client requests to communicate with other users (e.g. adding contacts, text

messaging);

4. the server responds to the client’s request regarding other users; and

5. the client sends keep-alive messages (recall Section 3.1) at a pre-negotiated rate.

To send some data, ClientDataA, to the server S, a client encrypts the data

using the previously derived session key, Ks
AS. The client also calculates the MAC

for ClientDataA and sends:

A → S : {ClientDataA}Ks

AS
, [ClientDataA]AS (5.7)
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S decrypts ClientDataA using Ks
AS and also verifies the corresponding MAC.

This provides authentication, confidentiality and integrity for the client’s data to the

server. To send ServerData to A, S uses the following message:

A ← S : {ServerData}Ks

AS
, [ServerData]AS (5.8)

A decrypts ServerData and verifies the corresponding MAC.

5.3.3 Client-Client Communications (Direct and Relayed)

Client to client IM communications happen mainly for the following purposes: server

mediated/relayed messages; and bulk data transfer (e.g. file transfer, audio/video

chat). Two communicating clients must get each other’s public key from the server.

Then the clients establish a session key known only to them. If A wants to send

ClientDataA to B, she first sends her request to communicate with B to the server

S (using message (5.7)), and then the messages below follow:

1. A and B receive the other party’s current dynamic public key from S (cf. mes-

sage (5.8)):

A ← S : {KUB, IDB}Ks

AS
, [KUB, IDB]AS (5.9)

B ← S : {KUA, IDA}Ks

BS
, [KUA, IDA]BS (5.10)

Note that B and S authenticate each other and derive Ks
BS and Km

BS in the

analogous way described above for A.
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2. A generates a symmetric key, KAB and verifies it using a challenge-response

method:

A → B : {KAB}EB
, {RA}KAB

(5.11)

A ← B : {RB}EA
, {f6(RA)}KAB

(5.12)

A → B : f7(RA, RB) (5.13)

Then A and B derive the session key Ks
AB and MAC key Km

AB in the following

way:

Ks
AB = f8(KAB, RB), Km

AB = f9(RB, KAB) (5.14)

A and B also zero out ephemeral values RA, RB and KAB from the program

memory.

3. Now, A sends ClientDataA to B:

A → B : {ClientDataA}Ks

AB
, [ClientDataA]AB (5.15)

������	

Although client-to-client connection setup messages (5.11–5.13) can be

exchanged directly between A and B, we suggest they be relayed through the server

using messages (5.7, 5.8), – i.e. with the additional encryption and MAC – to reduce

threats from DoS attacks on clients. However, while relaying the setup messages, a

malicious IM server can launch a typical man-in-the-middle attack [80, p.167–169]

in the following way. When A notifies S that she wants to communicate with B, S

generates a public key pair for B and distributes the rogue public key to A, and vice-

versa. Now S can impersonate A to B and vice-versa, and thereby view or modify

messages exchanged between the users. Apparently, if users exchange the connection

setup messages directly, this attack could be avoided; but, if A and B get each other’s
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network address for direct communication from S (which is the most usual case), then

this attack is still possible. The attack is made possible by the facts that, (1) users

do not share any secret between them, and (2) they do not use any authenticated

(long-term) public key. Note that, this is an active attack where the server needs to

participate in a protocol run online.

In general, IM accounts are anonymous, i.e. users can get an IM account without

giving any identifying information to the server.3 Therefore, the motivation to launch

the man-in-the-middle attack against random users appears less rewarding for the

server. In a public IM service, if the server launches this attack against all users,

the attack may easily be exposed, only if a pair of users attempt to verify their

(dynamically generated) public keys through e.g. a web site or another IM service.

Complex methods, e.g. the interlock protocol [145], may also be considered to expose

an intruding IM server. However, in IMKE, we trust the server to relay the correct

client public keys – as it appears less likely for the server to be able to continue

such attacks without being noticed. An area of potentially interesting future research

could be how to reduce the trust assumptions required on the server, and yet still

have an efficient relaying protocol.

Message (5.15) is used to send ClientDataA directly from A to B. For relaying

data through the server, the same message type can be used. As these messages are

encrypted with Ks
AB, which is shared only between A and B, S cannot decrypt them.

Hence, goal G5 is apparently satisfied.

If message (5.11) is replayed to B by an adversary, the adversary gains no useful

information from B’s reply in message (5.12). In messages (5.7), (5.8) and (5.15), the

receiver retrieves data and verifies the associated MAC. The first parameter of these

3From the IP address of a particular user, the server may be able to retrieve the user’s location
in many cases (e.g. [132]), and thereby associate an IM account to some (albeit indirect) identifying
attributes of a real-world user.
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messages provides data confidentiality and the second part ensures data integrity and

data origin authentication. The second part limits DoS attacks (goal G7): if one

party fails to verify the MAC, it ignores or drops that connection. DoS attacks are

also discussed in Section 6.1.3. To detect replay attacks (goal G6), ClientDataA

and ServerData are appended/prepended with time-stamps or sequence numbers,

with appropriate checks by the receiver (e.g. see [101, p.417–418] and our IMKE

implementation in Chapter 7). Freshly generated session keys and clients’ public

keys help in detecting replays from earlier protocol runs.

If two clients communicate for a long time (in a session), they may re-negotiate a

session key (and a MAC key) in a similar way as described for the client-server key

renewal (recall Section 5.3.1).



Chapter 6

Security and Performance Analysis

of IMKE

We analyze security and performance issues related to IMKE and provide an informal

threat model for IMKE. The performance comparison with similar PAKE protocols

provided in this chapter is analytical. See Chapter 7 for results on the empirical

execution performance of IMKE.

6.1 Security Analysis

In this section, we provide a partial BAN-like (Burrows-Abadi-Needham [30]) analysis

intended to provide a baseline of confidence in the security of IMKE. The setup for

our analysis, and other security properties of IMKE are also discussed. A full BAN

logic analysis would be a reasonable next step. While BAN analysis is somewhat

informal in certain aspects and is well-known to have shortcomings [50, 23], it is

nonetheless helpful in explaining the reasonings behind security beliefs of protocol

designers, and often leads to security flaws being uncovered. However, a more rigorous

72
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security analysis as well as a “proof” of security of IMKE using alternate (non-

BAN) techniques (e.g. see Bellare-Rogaway [11]; but also Koblitz and Menezes [83]

for limitations of “provable security”) would be preferable to provide supplementary

confidence, and is the subject of future work. We thus consider the analysis in this

thesis to be a first step.

6.1.1 Setup for the Analysis

Table 6.1 lists definitions used in the IMKE analysis (borrowed in part from Burrows

et al. [30]). Table 6.2 lists the technical sub-goals of IMKE which are, although

idealized, more concrete and specific than the end-user goals (recall Table 5.2), and

are of the type which can be verified from a BAN analysis point of view. The analysis

in Section 6.1.2 shows how IMKE achieves the technical sub-goals, and leading to the

end-user goals G1, G2, G3, G4 and G8. We also provide the operational assumptions

(Table 6.3), and an informal IM threat model for IMKE. Table 6.4 summarizes the

IMKE protocol messages to facilitate our discussion.

A believes X User A behaves as if X is true.

A once said X User A at some past time sent a message including X.

X is fresh A message X is said to be fresh if (with very high probability)
it has not been sent in a message at any time before the current
protocol execution.

A controls X User A is an authority on X (she has jurisdiction over X) and
should be trusted on this matter.

Table 6.1: BAN-like definitions used in the IMKE analysis
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T1. A and S show evidence that they know the shared (secret) password P .a

T2. A believes that she is communicating (in real-time) with another party that
knows S’s private key.

T3. S believes that it is communicating (in real-time) with another party that
knows A’s private key.

T4. A believes that she is communicating (in real-time) with another party that
knows B’s private key.

T5. B believes that he is communicating (in real-time) with another party that
knows A’s private key.

T6. A and S believe that they share a (secret) session key and a MAC key.

T7. A and B believe that they share a (secret) session key and a MAC key.

aSee assumption A1 in Table 6.3; this goal is fulfilled when both parties demonstrate knowledge
of the pre-established password P .

Table 6.2: Technical sub-goals of IMKE

IM Threat Model.

A threat model (e.g. Bishop [18, p.498]; see also [98]) identifies the threats a system

is designed to counter, the nature of relevant classes of attackers (including their ex-

pected attack approaches and resources, e.g. techniques, tools, computational power,

geographic access), as well as other environmental assumptions and conditions. Our

IM threat model is not what would typically be expected of a formalized (academic)

threat model, but it nonetheless provides a practically useful and clear definition of

what types of attacks we intend that IMKE provides protection against. Table 6.5

lists the assumptions in our IM threat model.

We provide a few additional comments related to Table 6.5. Modern operating

systems provide reasonable protection for process-memory spaces; yet, accessing a

process’s memory from the context of a compromised privileged (root or administra-

tor) process is not difficult (e.g. [8]). Zeroing out memory-resident secrets is not easy
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A1. Each IM user shares a user-chosen password only with the legitimate IM
server (e.g. established a priori using out-of-band methods), and the pass-
word is not stored long-term on the user machine.

A2. The IM server’s valid, authentic public key is known to all parties.

A3. Each party controls the private key for each public key pair they generate,
i.e. the private key is not known or available to other parties.

A4. IMKE clients use fresh keys and challenge values where specified by the
protocol, e.g. they do not intentionally reuse old values.

A5. The IM server relays clients’ public keys correctly (i.e. without any modifi-
cations).

Table 6.3: Operational assumptions of IMKE

(see item 4 in Section 5.3.1) as well. Threats from keyloggers are also significant (see

Section 5.2.1). Malicious programs can be used to control a large number of machines

in a high-speed Internet environment. The availability of such a powerful computing

platform increases attackers ability to challenge cryptographic primitives. Therefore,

meeting the threat model assumptions in reality is not trivial. Nonetheless, these

challenges are faced by many security protocols in practice.

6.1.2 Analysis of IMKE Messages

We analyze IMKE messages and their possible implications in different phases of the

protocol run. Refer to the earlier protocol description (Section 5.3) for the actions

each party takes upon receiving a message. We start by analyzing message a1 (recall

the message labels in Table 6.4). Upon successful verification of f1(P ) by S, the

locally calculated f1(P ) by S is the same as the f1(P ) retrieved from a1. Message a1

thus implies the following.

1. A believes that KAS and KUA are fresh, as they are freshly generated by herself.
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Phases Message
Labels

Messages

Authentication and
Key Exchange

a1 A → S : IDA, {KAS}ES
, {KUA, f1(P )}KAS

a2 A ← S : {RS}EA
, {f2(P )}KAS

a3 A → S : f3(RS)

Public Key Distribution
b1 A ← S : {KUB, IDB}Ks

AS
, [KUB, IDB]AS

b2 B ← S : {KUA, IDA}Ks

BS
, [KUA, IDA]BS

Session Key Transport

c1 A → B : {KAB}EB
, {RA}KAB

c2 A ← B : {RB}EA
, {f6(RA)}KAB

c3 A → B : f7(RA, RB)

Table 6.4: Summary of IMKE messages (see Table 5.3 for notation)

2. Before the protocol run, S knows that it shares P with A. Here, S gains

the evidence that the keys KAS and KUA which message a1 links to P , were

generated by and associated with A. Hence, S believes the identity of A, which

partially satisfies goal T1.

3. S believes that A once said that KAS and KUA are fresh.

4. S believes that A has a valid copy of its public key KUS.

The successful verification of message a2 means that the locally calculated f2(P )

by A is the same as the f2(P ) decrypted from a2. This implies the following.

1. A believes that S knows P , thus satisfying goal T1.

2. Knowing the private key KRS enables S to decrypt KAS and KUA in message

a1. S encrypts f2(P ) using KAS; hence, the successful verification of f2(P ) by

A implies that A is communicating (in the current protocol run) with a party

that knows S’s private key, thus satisfying goal T2.

3. A believes that the current message a2 is fresh as KUA is fresh; this provides

assurance to A that the current protocol run is not a replay.
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M1. The IM client software is trusted. By trusted we mean the IM client software
has not been tampered with and the underlying operating system protects the
IM client’s memory space (RAM and virtual memory) from other programs
(including malicious programs). This assumption is required as ephemeral
secret keys are stored in the program memory.

M2. Communications between IM servers are secure using e.g. encryption and
message authentication. IMKE does not provide security for server-to-server
messaging.

M3. Software and hardware keyloggers are not installed.

M4. Clients’ keys (public/private and symmetric) stay only in program memory
which are zeroed out upon terminating the program.

M5. The server public key stored in client machines is verified at each login
attempt (using e.g. the public password method proposed by Halevi and
Krawczyk [56]).

M6. Underlying communication channels need not be secure; attackers are as-
sumed capable of viewing, altering, inserting and deleting any bitstream
transferred from IM clients or servers.

M7. A user’s computing/communication device need not be secure, in the follow-
ing sense: attackers can put any malcode in the system or change system’s
settings (e.g. registry and DNS entries), provided that assumptions A2 (see
Table 6.3), M1, M3 and M5 are met.

M8. We consider realistic attackers [56] who can exhaustively search over a pass-
word dictionary (e.g. 264 computational steps) but cannot defeat (in a rea-
sonable amount of time) the cryptographic primitives (e.g. 280 computational
steps) used in the protocol.

Table 6.5: IM threat model assumptions
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4. A believes that S once said that RS is fresh in the current protocol run.

The successful verification of message a3 by S means that the locally calculated

f3(RS) by S is the same as received in a3. This and the login success response from

S to A imply the following.

1. S receives the evidence that A knows her private key KRA, otherwise A could

not decrypt RS in message a2. Hence, goal T3 is established.

2. The current message a3 is fresh as RS is fresh; this guarantees S that the current

protocol run is not a replay.

3. In message a2, A retrieves RS using her dynamic private key for the current

protocol run. At this point only S has a copy of A’s public key. Therefore from

the login success message, A believes that S possesses a valid copy of A’s public

key KUA.

4. As both A and S derive the session key Ks
AS and MAC key Km

AS from their

ephemeral shared secrets (KAS and RS), goal T6 is achieved.

From messages b1 and b2, A and B get each other’s public keys from S securely.

In message b1, A receives the public key of B (KUB) encrypted under the shared

key Ks
AS providing confidentiality of KUB. Also, the MAC in message b1 provides

integrity of KUB. Message b2 provides similar guarantees to B for A’s public key.

The successful verification of all of messages c1, c2 and c3 (see Section 5.3.3) allows

the following informal line of reasoning.

1. A believes that she shares KAB with B, as only B could decrypt RA in c1 and

respond with a function of RA in c2.

2. B believes that he shares KAB with A, because only A knows KRA which is

necessary to recover RB for use in message c3, and the chain of messages links

RB with RA, and RA back to KAB.
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3. A and B achieve some assurance of freshness through the random challenges

RA and RB respectively.

4. A and B receive each other’s public keys securely from a trusted source S (in

messages b1 and b2). The successful verification of message c2 provides the

evidence to A that B knows the private key corresponding to B’s public key

which A received earlier from S, thus satisfying goal T4. Message c3, when

verified, provides the similar evidence to B, thus satisfying goal T5.

5. A and B derive the session key Ks
AB and the MAC key Km

AB from their ephemeral

shared secrets (KAB and RB), thus goal T7 is achieved.

We now provide informal reasonings regarding how end-users’ goals G1, G2, G3,

G4 and G8 (recall Table 5.2) are satisfied. We argue that in our PAKE phase, it is

computationally infeasible to launch offline dictionary attacks on password P (assum-

ing our assumptions in Table 6.5 and 6.3 are not violated). To recover plaintext f1(P )

from message a1, an attacker apparently has to guess KAS, which is computationally

infeasible if KAS is generated from a large key space (e.g. 128-bit or more). Another

way to recover plaintext f1(P ) is to learn KAS by guessing the server’s private key.

Brute-force attacks on KAS or KRS appear to be computationally infeasible if the

key length is chosen appropriately. To recover plaintext f2(P ) from message a2, an

attacker must guess KAS, which is infeasible. This apparently makes P resistant to

presently known offline dictionary attacks. As goal T1 is fulfilled in messages a1 and

a2 without exposing P to offline dictionary attacks, IMKE achieves goal G1. Goal

T6 establishes that A and S achieve confidentiality, and integrity (with authentica-

tion) using the secret session key Ks
AS and the MAC key Km

AS respectively. Technical

sub-goal T6, along with G1, now satisfies goal G2.

A and B do not authenticate each other directly. They trust the other party’s

identity as they receive each other’s public key from S and trust S on the authenticity
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of those public keys. Thus fulfilling sub-goals T4, T5 and T7 provides A and B a

way to communicate securely and satisfies goal G3.

Message authentication between A and B is achieved by MACs, instead of digital

signatures. The same session and MAC keys are shared between A and B, which

provide confidentiality and authentication of the messages exchanged between the

users. Any message created by A can also be created by B. Therefore the sender

of a message can repudiate generating and sending the message. Clients’ public keys

are also temporary, hence binding an IM identity with the real user is technically im-

possible. The confidentiality of communications channels between users is protected

by session keys generated from random nonces, instead of users’ long-term secrets;

so, the exposure of long-term secrets does not compromise past session keys. Thus

repudiation and forward secrecy (goal G4) of users’ messages are achieved (for more

discussion on forward secrecy, see “Exposure of Secrets” below).

By applying techniques described in Section 4.4.2 with the secure IM connections

(goal G2 and G3), we can significantly limit the propagation of IM worms, and thus

satisfy goal G8.

Hence we have provided informal sketches of how end-user goals G1, G2, G3, G4

and G8 are established.

6.1.3 Other Security Attributes of IMKE

Below we discuss a few more security attributes of IMKE. These properties make

IMKE resistant to several recently devised attacks on security protocols.

Chaining of Messages.

In the PAKE phase, messages a1 and a2 are cryptographically linked by KUA, and

messages a2 and a3 are cryptographically linked by RS. Moreover, both KUA and



6.1. Security Analysis 81

RS are dynamically generated in each protocol run. According to Diffie et al. [40]

this kind of the chaining of protocol messages may prevent replay and interleaving at-

tacks. Abadi and Needham [1] also recommend sufficient connection between protocol

messages.

DoS Attacks.

Significant denial of service (DoS) attacks are generally easier to launch against an

IM server than IM clients as the server is required to interact with many clients. In

the PAKE phase of IMKE, the server can verify the identity of a user from the first

authentication message (a1) it receives from the user (recall Section 6.1.2). Therefore

the server can terminate connection attempts from non-legitimate (perhaps malicious)

users after processing only message a1. Because the IM server does not wait (thereby

avoids allocating memory) on any non-legitimate user, IMKE helps the IM server in

limiting DoS attacks that exhaust the server’s memory.

However, a potential DoS attack against the server’s computing resources and

memory is the following: an attacker captures message a1 from a successful protocol

run and sends numerous copies of a1 to the IM server. Because these messages are

valid (although stale), the server replies with a2; the attacker is unable to reply with

a3 and eventually after a time-out period the connection is dropped by the server,

but the server has already spent resources in processing those replayed a1 messages.

This attack is more significant when launched in a distributed manner using many

valid a1 messages collected from different users or separate protocol runs of the same

user.

Additional known techniques, e.g. puzzles [27], may be used to mitigate DoS

threats on IM servers. In general, however, many DoS attacks are likely to exist, and

hard to defend against.
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Insider-Assisted Attacks.

If either of A or B is a rogue user1 participating in IMKE, we need to guard against

the following type of attack: A or B learns the password of the other party, and the

session keys that they share with other users (except Ks
AB). In IMKE, users never

receive a protocol message containing any element related to other users’ passwords

or session keys; thus, IMKE avoids these insider-assisted attacks even when IMKE

assumptions are violated by malicious users.

Exposure of Secrets.

IMKE provides forward secrecy (see Table 5.3 for definition) as the disclosure of

a client-server password (long-term secret keying material) does not compromise the

secrecy of the exchanged session keys from protocol runs (using that password) before

the exposure. Exposure of the IM server’s long term private key allows an attacker to

launch offline dictionary attacks on f1(P ) although the attacker cannot compromise

the session key or readily impersonate S. If the session key Ks
AS between A and

S is exposed, an attacker cannot learn P . However, the disclosure of an ephemeral

key KAS (which is supposed to be zeroed out from the program memory after the

PAKE phase) enables an offline dictionary attack on f1(P ). Although the disclosure

of A’s dynamic private key (which exists in the program memory as long as A remains

logged in2) enables an attacker to reply correctly in message a3, IMKE still provides

forward secrecy.

When both the IM server’s long term private key and a user’s dynamic private key

are exposed, an attacker can calculate the session key from the collected messages of

1For example, someone who, maliciously or naively, exposes his/her dynamic private key, the
client-server password, or the shared session/MAC keys.

2Private keys may easily be extracted from memory as Shamir and van Someren [153] outlined, if
the operating system allows reading the entire memory space by any program. However, we assume
that such an operation is not allowed; see assumption M1 in Section 6.1.1.
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a successful protocol run; in this case, the notion of forward secrecy breaks (for the

targeted session).

Denning-Sacco Attack.

The Denning-Sacco attack [37] involves an intruder who attempts to find P or imper-

sonate A to S (or vice-versa) using a compromised session key Ks
AS. We have already

explained above why the exposure of Ks
AS does not allow a dictionary attack on P .

Because Ks
AS is not used in the PAKE phase, knowledge of Ks

AS does not help to

impersonate as A to S or vice-versa. Although we use Ks
AS in the key renewal phase

between A and S, the exposure of Ks
AS does not enable an attacker to start a key

renewal phase. This is because we encrypt the random quantities in a key renewal

phase also with the public key of the other party.

Many-to-Many Guessing Attack.

Kwon [86] recently (Sept. 2004) described the many-to-many guessing attack which

can be mounted on every three-pass PAKE protocol, if a protocol is not designed

and implemented carefully. In this concurrent online guessing attack, an attacker

exploits the wait time of the server for the third message (which Kwon assumes to

be originated from the client) to verify many password guesses in a small amount

of time. Although the PAKE phase of IMKE is a three-pass protocol, IMKE is not

vulnerable to this attack because the IM server verifies a client’s identity from the

very first authentication message.

Undetectable Online Password Guessing Attack.

Ding and Horster [41] introduced the undetectable online password guessing attack

against three-party protocols that are known to resist offline guessing attacks. Here, in
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an online transaction, an attacker verifies the correctness of his/her guessed password

without revealing enough information to the server (verification authority), and hence

avoids detection. Ding and Horster illustrated these attacks on some variations of the

LGNS protocol (e.g. [174, 52]). In IMKE, the IM server responds only to fresh requests

whose authenticity the server can verify; hence, IMKE conforms to the requirements

of Ding and Horster, and thereby avoids this attack.

6.2 Performance Analysis (Analytical)

In this section, we provide an analytical performance review of IMKE. Also, we

provide a rough comparison of a modified version of the PAKE phase of IMKE with

a few other PAKE protocols.

In a PAKE protocol run, generally the public key operations dominate the proto-

col’s execution performance. We summarize the key generation, public and symmetric

key operations of IMKE (the PAKE phase) in Table 6.6.

Client Server

generation 1 random number and 1 PK-pair 1 random number

public key 1 encryption and 1 decryption 1 encryption and 1 decryption

symmetric key 1 encryption and 1 decryption 1 encryption and 1 decryption

Table 6.6: Cryptographic operations required by IMKE in the PAKE phase

We do not expect the computation expense of public key operations to be an

issue as the data being encrypted in IMKE using public keys is always small random

numbers (e.g. 128-bit), which may fit into one block of any public key cryptosystem.

In contrast, data being encrypted in many PAKE protocols (e.g. variants of LGNS

[174, 52]; Halevi-Krawczyk [56]) using public keys may not always fit into one block;
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so in actual implementations, these protocols may require multiple public key encryp-

tions (and subsequent decryptions). After the PAKE phase, most of the cryptographic

operations in IMKE require only symmetric key operations which are generally very

efficient. Also, only clients generate the dynamic public keys in IMKE, saving the

server from the cost of these operations (generating public keys may be expensive,

e.g. in RSA). Evidence suggests that these cryptographic operations should not un-

dermine the instant nature of IM as they are implemented and studied elsewhere (e.g.

[82, 192]). More concrete cost-efficiency characteristics of IMKE are available from

our implementation (see Chapter 7).

To use IMKE as a generic PAKE protocol, clients do not need to send dynamic

public keys to the IM server (or to be subsequently verified by the server). In a

modified IMKE protocol, a client might perform one public key encryption and the

server one public key decryption. A modified PAKE phase of IMKE is given below.

However, we have not analyzed this modified protocol for security properties.

A → S : IDA, {KAS}ES
, {f1(P )}KAS

(6.1)

A ← S : {RS, f2(P )}KAS
(6.2)

A → S : f3(RS) (6.3)

Note that, the modified IMKE protocol does not provide forward secrecy. For

comparison, we consider the version of Halevi-Krawczyk protocol [56] that provides

mutual authentication without forward secrecy (given below in simplified form). As-

sume that MACK(X) is the MAC of X under key K.
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A ← S : RS, KUS (6.4)

A → S : IDA, RS, {KAS, f1(P, RS, KAS, IDA, IDS)}ES
(6.5)

A ← S : MACKAS
(RS, IDS, IDA) (6.6)

Another similar protocol3 is the basic Kwon-Song two-party protocol [87]. All

these protocols require one public key encryption and one decryption. However, each

public key operation may require multiple steps depending on the data block size.

Data encrypted (or decrypted) in the Halevi-Krawczyk and Kwon-Song protocols may

exceed the block size, which will increase the cost of the public key operations. As

noted earlier, IMKE always performs public key operations only on random quantities

which appear to fit in a single block size for all public key cryptosystems.

3i.e. a protocol that provides mutual authentication, using a known public key, but does not
provide forward secrecy. Forward secrecy can be added to such a protocol by incorporating a Diffie-
Hellman exchange.



Chapter 7

Implementation of IMKE

We have implemented IMKE using the open source Jabber1 server and client on the

Linux operating system. We chose jabberd2 [128] as our Jabber server platform and

Gaim [125] as our Jabber IM client. We used OpenSSL [130] for our general purpose

cryptography library and MySQL [129] for database support.

One reason for choosing the Jabber (XMPP) protocol for our target implemen-

tation is its openness. Another reason is that Jabber supports the SASL (Simple

Authentication and Security Layer) [111] protocol, which can accommodate a wide-

range of authentication protocols. We simply added IMKE as another mechanism for

authentication and key exchange while keeping the existing Jabber mechanisms (e.g.

PLAIN, DIGEST-MD5) available. As Jabber is a distributed IM service (Jabber servers

are controlled by different organizations; see Section 1.2), we see Jabber as the most

natural platform to deploy IMKE incrementally.

In this chapter, we discuss cryptosystems and parameters that we used in the

IMKE implementation. The authentication message flow of the IMKE-enabled Jab-

ber protocol is listed, and deployment and usability issues of IMKE are discussed.

1http://www.jabber.org

87
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Empirical measures for performance analysis are calculated. Lessons learned from

the implementation process are listed as well.

7.1 Protocol Specification

This section outlines the implementation choices that we made while integrating

IMKE with Jabber. Choices for the cryptographic library, public/symmetric cryp-

tosystems, cryptographic hash functions, and the source of randomness are discussed.

Table 7.1 summarizes cryptosystems and parameters for the implementation of

IMKE using OpenSSL. IMKE requires a long-term public key for the IM server and

a dynamically generated public key for each client in every login attempt. The server

public key may need to remain valid for years; however, a client’s public key may

live from only a few seconds to a few days, depending on how long a user remains

connected per login. Therefore, the server public-key size should be a standard one

and the client public key can be relatively small in size. We chose 2048-bit and

1024-bit RSA public keys for the IM server and IM clients respectively.

We used hash functions in a double-hashing mode; i.e. the output of a hash func-

tion is again used as input to the hash function to reduce any possibility of length

extension attacks [64, 94]. For random nonce and key generation, we used the crypto-

graphically secure pseudo-random number generator (PRNG) built in the OpenSSL

library. We seeded the OpenSSL PRNG with 1024 bytes from the /dev/urandom

file. Although /dev/random is a better source of randomness than /dev/urandom –

at least theoretically [91] – we used /dev/urandom to seed the OpenSSL PRNG for

better responsiveness.

The EME-OAEP padding (defined in PKCS #1 v2.0 [78]) was used for the RSA

encryption and decryption. While generating RSA keys, we used 65537 as the public
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exponent (e). We also enabled the RSA blinding in OpenSSL to prevent timing attacks

[29] before performing any RSA-key operations. We do the base64 [21] encoding (and

appropriate decoding) of all binary messages (e.g. encryption outputs) to conform

with the Jabber specifications; however, the base64 encoding increases the outgoing

message size by about 33%. We encode the lengths of different fields in a message

by converting each field’s integer length into characters (2 bytes). The receiver of a

message checks whether the length of the received message conforms to the sum of

encoded field-lengths. A connection is dropped if the length-encoding differs.

Public key encryption RSA [78] 1024/2048-bit key

Symmetric encryption AES-128 [113] (CBC mode)

Hash functions SHA-1 [112], RIPEMD-160 [138] (160-bit output)

MAC functions HMAC [84] using SHA-1

Source of randomness /dev/urandom

Table 7.1: Cryptosystems and parameters for the IMKE implementation

We used SHA-1 for f1, f3, f4, f6, f8 and RIPEMD-160 for f2, f5, f7, f9 (see Section

5.3) and all the hash functions give 20-byte (160-bit) output. We assume each client

has an authentic copy of the server’s RSA public key (nS, eS) extracted from a

local file. Before a client starts the authentication phase, the server sends the list

of supported SASL mechanisms. Our modified Jabber server offers IMKE along with

the existing mechanisms. The IMKE-enabled Gaim client chooses IMKE by default

and follows the authentication messages as described in Section 7.2. However, we

introduced a command line option (xmpp) to force the client to use the standard

XMPP authentication (e.g. DIGEST-MD5). Assuming user A’s RSA public key is

(nA, eA), the IMKE PAKE phase (recall Section 5.3.1) is instantiated in the following

way.
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A → S : IDA, {KAS}ES
, {nA, eA, f1(P )}KAS

(7.1)

A ← S : {RS}EA
, {f2(P )}KAS

(7.2)

A → S : f3(RS) (7.3)

We use a 4-byte sequence number with every message to foil replay attacks. After

authentication, both the client and the server maintain a pair of “send-sequence” and

“receive-sequence” numbers. The send-sequence is incremented before sending a mes-

sage and the receive-sequence is incremented after successfully receiving a message.

If the sequence number in an incoming message mismatches with the local receive-

sequence, the receiver (a client or server) of that message will disconnect. The first

two bytes of the RIPEMD-160 hash output of the client-server MAC key (Km
AS) are used

to initialize the send- and receive-sequence. The send-sequence number is prepended

with the ClientDataA and the ServerData in messages (5.7) and (5.8).

If A wants to communicate with B (e.g. A opens a window to send a text message

or a file), A sends a special init message to S (using message (5.7)). Then S forwards

this message to B appending A’s RSA public key to it (using message (5.8)). B ex-

tracts A’s public key and responds with another init message to S which S forwards

to A appending B’s RSA public key to it. Then, A and B exchange messages (5.11,

5.12 and 5.13) through the server and generate the session key and the MAC key.2

A and B also initialize a pair of send- and receive-sequence numbers using the first

two bytes of the RIPEMD-160 hash output of the shared MAC key (Km
AB). In fact,

A will maintain a separate pair of send- and receive-sequence for each of her com-

2Note that, although relaying client-to-client connection setup messages through the server is
not recommended to avoid man-in-the-middle attack from a malicious server, here we relay those
messages through the server for the sake of simplicity of our implementation.
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municating peers. If the sequence number in an incoming message contradicts with

the local receive-sequence, the receiver (A or B) of that message will get a warning

message from the IM client, and may decide to continue the session or not. How-

ever, in the case of a MAC mismatch for a message – in client-server or client-client

communications – the connection is discontinued.

Message Encryption.

All client-server and client-client messages follow the original Jabber specifications.

After the authentication phase, IMKE encrypts all outgoing messages, including

the formatting information of a message. Text messages between peers are relayed

through the server. A client encrypts the original text of an instant message (sending

to another client through the server) using the shared key with the recipient of that

message. However, information required by the server to interpret and forward an

instant message to the recipient are encrypted by the key shared between the server

and the sender. So a text message is effectively encrypted twice – once by the shared-

key with the recipient, and again by the shared-key with the server. Although this

multiple encryption could be avoided by allowing minor changes in the Jabber mes-

saging format, we accept this relatively minor inefficiency to comply with the Jabber

protocol. As symmetric encryption is quite fast, the effect of multiple encryptions

is barely noticed in reality, especially for applications involving heavy use of user

interfaces. Multiple encryptions are not required for the direct P2P file data transfer.

As noted in Table 7.1, we used AES in the CBC mode for symmetric encryption.

We used the CBC mode for its desirable security properties (e.g. see [101, p.228–233]

and [42] for more on encryption modes). However, in AES-CBC, as every message

(client-server or client-client) is encrypted with the same IV (Initialization Vector)

and the same shared key, identical cipher blocks could result when the same plaintext
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message is encrypted. For example, the keep-alive message, “\t” is sent from a

client to a server once in every minute in a default setting. This could potentially

lead to replay attacks and help cryptanalysis in discovering the encryption key. To

result in different cipher blocks even when sending the same plaintext, we prefix the

send-sequence number to each plaintext message before encryption.

7.2 IMKE Authentication Message Flow in Jabber

In this section, we list the actual messages exchanged between a server and client in a

successful authentication attempt to aid the understanding of how IMKE is embedded

in the Jabber protocol. We kept the stream initialization messages for the Jabber

protocol unchanged. For an example run of the original Jabber protocol, see the

protocol RFC ([148, p.31–33]).

1. The client sends its XML version to the server (ludlum).

<?xml version=‘1.0’ ?>

2. The client initiates a stream to the server.

<stream:stream to=‘ludlum’ xmlns=‘jabber:client’

xmlns:stream=‘http://etherx.jabber.org/streams’ version=‘1.0’>

3. The server responds with a stream tag and the available authentication mech-
anisms to the client.

<?xml version=‘1.0’?>

<stream:stream xmlns:stream=‘http://etherx.jabber.org/streams’

xmlns=‘jabber:client’ from=‘ludlum’ version=‘1.0’

id=‘vztr2pacd9rbuycr08arg69wkna5kyxgyr70hhdu’>

<stream:features xmlns:stream=‘http://etherx.jabber.org/streams’>

<mechanisms xmlns=‘urn:ietf:params:xml:ns:xmpp-sasl’>

<mechanism>DIGEST-MD5</mechanism>

<mechanism>PLAIN</mechanism>
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<mechanism>IMKE</mechanism>

</mechanisms>

</stream:features>

4. The client chooses IMKE and sends the base64 encoded message (5.1).

<auth xmlns=‘urn:ietf:params:xml:ns:xmpp-sasl’ mechanism=‘IMKE’>

[base64 encoded message]

</auth>

5. The server responds with the base64 encoded message (5.2) as a challenge

message.

<challenge xmlns=‘urn:ietf:params:xml:ns:xmpp-sasl’>

[base64 encoded message]

</challenge>

6. The client responds to the challenge with the base64 encoded message (5.3).

<response xmlns=‘urn:ietf:params:xml:ns:xmpp-sasl’>

[base64 encoded message]

</response>

7. The server informs the client of a successful login.

<success xmlns=‘urn:ietf:params:xml:ns:xmpp-sasl’/>

8. The client initiates a new stream to the server.

<stream:stream to=‘ludlum’ xmlns=‘jabber:client’

xmlns:stream=‘http://etherx.jabber.org/streams’

version=‘1.0’>

9. The responds by sending a stream to the client.

<?xml version=‘1.0’?><stream:stream

xmlns:stream=‘http://etherx.jabber.org/streams’

xmlns=‘jabber:client’ from=‘ludlum’ version=‘1.0’

id=‘q46l3ic3qnu7t44esekcchsb90bqhol8trtwa601’>
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7.3 Empirical Performance, Usability, and Deploy-

ment

In this section, we discuss the empirical performance analysis, usability, and incre-

mental deployment issues of IMKE.

Empirical Performance Analysis.

We tested the performance of IMKE in two different settings. By separating the

IMKE implementation-specific code (both for the server and the client), we made a

performance test client from that code to measure running time of the protocol. The

actual running time of the protocol as in the ordinary Gaim client was also measured.

The IMKE-enabled Jabber server was run on an IBM xSeries 345 server and the

Gaim clients, as well as the test clients, were run from IBM IntelliStation M Pro

workstations under Linux; Table 7.2 provides the specific configuration of our test

setup.

The execution time of the PAKE phase (messages a1, a2 and a3; see Table 7.33)

and the client-to-client communication key setup phase (messages c1, c2 and c3) were

measured by the test client (excluding latency). We were interested in these phases

as they require expensive public key operations. We ran both phases 1000 times

each and took the average running time. Table 7.4 lists the execution time of IMKE

messages in milliseconds (msec). The execution time of the PAKE phase is divided

into the time spent by the client and server in Table 7.5.

The login time, the client-to-client encryption and MAC key setup time, and

the file transfer data rate (using 4096-byte block size in a 100Mbps LAN) in the

Gaim client were measured for IMKE and XMPP (DIGEST-MD5 authentication)

3Here we repeat Table 6.4 for convenience.
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Server
(IBM xSeries 345)

Workstation
(IBM IntelliStation M Pro)

Processor 1 x Intel Xeon 
CPU 2.40GHz

1 x Intel Pentium 4
CPU 2.80GHz

L2 Cache 512KB 512KB

System bus 400MHz 533MHz

Memory 1GB PC2100 DDR-SDRAM 1GB PC2100 DDR-SDRAM

Chipset ServerWorks
Grand Champion LE

Intel E7205

Network adapter Intel 82546EB Broadcom BCM5702X

Operating system Linux version 2.6.8.1 Linux version 2.6.8.1

Table 7.2: Test setup: machine configuration

and compared in Table 7.6. The clients were run manually (around 20 times) for

each of the IMKE and XMPP protocols and measures were taken. The login time

includes executing all the steps in the XMPP authentication (see Section 7.2), plus

getting the contact list (containing only three entries) from the IM server. The client-

to-client key setup phase includes the public key distribution (messages b1 and b2)

time by the server as well as the actual key setup time (messages c1, c2 and c3). In

this phase, both the clients (communication initiator and responder) required almost

equal time, and in Table 7.6, we list the time required for the initiator.

The client-client or client-server message encryption and decryption, including the

generation and verification of MAC and sequence number, take negligible time as they

require only symmetric key operations. Our test client encrypts at 7.2MB/sec and

decrypts at 4.6MB/sec (using 100-byte block size).
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Phases Message
Labels

Messages

Authentication and
Key Exchange

a1 A → S : IDA, {KAS}ES
, {KUA, f1(P )}KAS

a2 A ← S : {RS}EA
, {f2(P )}KAS

a3 A → S : f3(RS)

Public Key Distribution
b1 A ← S : {KUB, IDB}Ks

AS
, [KUB, IDB]AS

b2 B ← S : {KUA, IDA}Ks

BS
, [KUA, IDA]BS

Session Key Transport

c1 A → B : {KAB}EB
, {RA}KAB

c2 A ← B : {RB}EA
, {f6(RA)}KAB

c3 A → B : f7(RA, RB)

Table 7.3: Summary of IMKE messages (repeated)

Usability Issues.

Our IMKE-Gaim client does not support “Remember password”. We removed this

option from the Gaim user-interface because malware can use a stored password

(from a predictable disk location) to impersonate the user. Therefore, a user must

(manually) input the password on every login attempt.

The PAKE phase of IMKE is more computationally intensive than the regular

XMPP authentication. An IMKE client needs one public key pair generation, one

public key encryption (with an RSA 2048-bit key) and one public key decryption

(with an RSA 1024-bit key). In contrast, an XMPP client requires to compute only

an MD5 [144] hash. Table 7.6 shows the IMKE PAKE phase takes almost twice as

much time as the XMPP authentication. However, as the IMKE authentication takes

less than half a second, a user barely notices any difference.

When a user initiates an IM session (e.g. text-messaging) with another user by

opening a chat window, XMPP requires no extra step. In contrast, the client public

key distribution and client-to-client key setup phases take place in IMKE before any
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Operation Performed By Time (msec)

a1 (generation) Client 175.98

a1 (processing) and
a2 (generation)

Server 25.66

a2 (processing) and
a3 (generation)

Client 4.27

a3 (processing) Server 0.06

C-C key setup
(c1, c2, and c3)

Two clients 9.13

Table 7.4: Message execution time (in milliseconds) of IMKE (test client)

Client Time Server Time Total

msec 180.25 25.72 205.99

% 87.5 12.5 100

Table 7.5: Division of the PAKE phase execution time (test client)

real communications occur (text-message or file transfer) between users. The client-

to-client key setup is a three-step phase which performs computationally expensive

public key operations (see Section 5.3.3). However, both these phases require only 73

msec (see Table 7.6) of the chat initiator’s time, i.e. a user can initiate more than 13

conversations per second. Also, it takes time to display the chat window by the OS,

and users need time to stroke the keyboard after opening a chat window. Therefore,

users do not notice any delay while starting a conversation or a file transfer. The

Login
(msec)

C-C key setup
(msec)

File transfer
(MB/sec)

XMPP 212 – 5.67

IMKE 393 73 5.57

Table 7.6: Comparison of the XMPP and IMKE Gaim implementations
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file transfer data rate for IMKE and XMPP is comparable as in Table 7.6, and we

only allow a file transfer between two IMKE users after they have completed the

client-to-client key setup phase.

Other than typing the password on every login, IMKE users do not experience any

other differences in our implementation. In the case of deploying IMKE incremen-

tally, IMKE users are notified when they communicate with non-IMKE users (“Not

Encrypted” in the chat window title; a lock/unlock icon, or another user friendly

visual feedback, may be more appropriate). The IMKE user-status (whether a user is

IMKE-enabled or not) is sent for every online contact in a user’s contact list. A user-

info window shows the protocol used by that user: “Jabber with IMKE” or “Jabber

without IMKE”.

We have not implemented any online verification method for the server public key.

These techniques (e.g. the public password [56] method) may impose an extra step

to the users while logging in. Methods introduced by Pinkas and Sander [137] (see

also [157]) can reduce such usability drawbacks by using a secure cookie.

Incremental Deployment.

To achieve better security, it is always desirable to have all users of a system using

its latest version. However, in reality it is a difficult goal to satisfy; especially for

IM systems – strict enforcement may deter casual users. Our implementation of

IMKE in the Jabber protocol can coexist with mainstream Jabber implementations.

The IMKE-enabled Jabber server handles IMKE clients as well as standard Jabber

clients. Also communications (e.g. text-messaging, file transfer) between IMKE and

standard Jabber users are possible. The communication channel between an IMKE

client and the IMKE-enabled Jabber server is encrypted, while the communication

channel between a standard Jabber client and the IMKE-enabled Jabber server is
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plaintext. So messages from an IMKE user to a standard Jabber user are encrypted

for one client-to-server leg of the client-server-client two-leg trip. However, direct P2P

data transfer (e.g. file transfer) between an IMKE user to a standard Jabber user is

completely plaintext.

7.4 Lessons Learned

This section discusses the lessons we learned from integrating IMKE with Jabber. It

provides insights on how IMKE may be practically embedded in public IM systems.

To increase efficiency, it is always desired that an authentication protocol would

use the minimum number of messages (generally two to four) to achieve the proto-

col’s goals. As it is evident in the XMPP implementation, real-life protocols take

significantly more steps (see Section 7.2) and still provide a usable performance. An

online server public key verification method can easily be implemented by using the

extra steps in XMPP. For example, Halevi and Krawczyk’s [56] method for verifying

a server public key by plain English words (public password) can be implemented

using the message where the IM server sends available authentication mechanisms

to IM clients (i.e. message 3 in Section 7.2). Online server public key verification

reduces the threat of a malicious program changing a user’s local DNS cache, or the

IM server’s locally stored (in a user’s machine) public key.

Our implementation used a fixed set of cryptosystems and parameters (see Ta-

ble 7.1). Piggybacking onto existing XMPP messages, the support for negotiating

public/symmetric key encryption systems as well as MAC functions can be provided

to the communicating parties (client-server or client-client) without introducing any

extra message.
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In the PAKE phase of IMKE, both the server and a client perform one public

key encryption and decryption each; in addition, the client generates a public key

per login. It is well-known that the RSA public key generation is significantly more

expensive than RSA encryption/decryption operations. Table 7.5 shows that the IM

server does only 12.5% of the computation required in the PAKE phase. This is

desirable for a typical IM setup, because the server must handle a large number of

users (with limited resources) while users’ machines generally remain under-utilized.

However, when using IM from a (computationally) low-powered hand-held device, a

public key cryptosystem with cheap key generation (e.g. ElGamal) would be more

appropriate.

Using sequence numbers in the AES encryption is required to stop replay at-

tacks as well as to reduce cryptanalysis of identical cipher blocks resulting from the

same plaintext messages (see Section 7.1). We could use AES-CTR (AES in the

Counter mode; see [42]) to get different cipher blocks when sending the same plain-

text message. However, the OpenSSL (version 0.9.7e) that we used does not directly

implement4 AES-CTR, and AES-CBC with sequence number appears well-suited and

more efficient than AES-CTR in IMKE.

4There is an OpenSSL-based AES-CTR implementation by Viega et al. [180, p.189-192].



Chapter 8

Conclusions and Future Work

In this chapter, we summarize the risks associated with using public IM systems,

and the notable features of our proposed Instant Messaging Key Exchange (IMKE)

protocol for IM. Possible improvements of IMKE, which are subject to future work,

are also discussed.

Risks from IM Systems.

We have presented a survey of threats to public IM systems. IM exploits and vul-

nerabilities are currently making the headlines of many technical news magazines.

Nevertheless, the number of IM users is rapidly increasing as well as the range of

IM features. IM now offers reasonable quality audio and video, and is being used

as a platform for online games. These features are attracting more new users, and

encouraging the existing users to spend more time on IM. The power of IM is slowly

being recognized in the business world, leading to a high penetration rate of public

IM services in corporate settings. For home users, IM means instant communica-

tion, and for business users, IM makes instant collaboration a reality. The sustained

growth of IM networks is bound to attract an increasing number of malcode writers

101
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and phishers. A worm spread in IM networks may have significant impacts on other

Internet services because of the large number of end-users connected by IM networks.

Surprisingly, as our survey shows, there has not been much academic research on the

potential threats to IM. This might be attributed to the misconceptions that IM is

used only by young-adults, and that it is largely used for gossiping or goofing off (e.g.

[59, 182]).

As noted earlier, relying solely on SSL-based solutions (the most common secu-

rity attribute of corporate IM systems) for security in a public IM service has major

limitations. For example, the SSL model allows viewing plaintext messages of users’

conversations at the IM server, and assumes users’ machines are completely trusted.

Even for business IM users, SSL cannot address existing IM threats, simply because

SSL is designed to address a different threat model. Several client-side (security)

software plug-ins have been designed for public IM services with little improved pro-

tection against real risks.

Remarks on IMKE.

Here we review the noteworthy features of IMKE.

Although most public IM protocols are insecure, IM service providers are reluctant

to change their IM protocols to address security issues. We attribute this inertia to

two basic reasons – the security risks from IM are not well-understood, and service

providers are unwilling to abandon a mature IM protocol in use. Therefore, we

proposed IMKE – a lightweight and efficient security protocol – to enhance IM security

and to reduce IM security risks without introducing major incompatibilities with

existing IM protocols. Our implementation with the standard Jabber IM protocol

provides evidence that IMKE can be incrementally integrated in public IM protocols

without a large implementation effort.
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A significant number of machines connected to the Internet are infected with

malicious programs. To address this new reality, we took a step forward in the IMKE

design – we designed IMKE to work even in a malicious environment with realistic

restrictions (recall Table 6.3 and 6.5). Only a few existing Password Authentication

and Key Exchange (PAKE) protocols address the problem of running a protocol in the

presence of malicious programs (e.g. [185, 10]). We argue that with the prevalence

of malware in end-user machines, network protocol designers must consider design

choices to mitigate risks due to such malicious programs.

IMKE enables private and secure communications between two users who share

no authentication tokens, mediated by a server on the Internet. The session key used

for message encryption in IMKE is derived from short-lived fresh secrets, instead

of any long-term secrets. This provides the confidence of forward secrecy to IMKE

users. IMKE allows authentication of exchanged messages between two parties, and

the sender is able to repudiate a message. Note that, repudiability of instant messages

in a (real-life) conversation-style public IM environment is critical [22]. Also, IMKE

users require no hardware tokens or long-term user public keys to log in to the IM

server. The protocol provides strong authentication by using a memorable password

and a long-term server public key. IMKE may be used to enable private and secure

communications in many server-mediated three-party systems.

Future Work.

Group-chat and chat-room (recall Table 1.1 for definitions) are heavily used features in

IM. A future version of IMKE would ideally accommodate these features. Introducing

methods to ensure human-in-the-loop during login, e.g. challenging with a CAPTCHA

[169], can stop automated impersonation using stolen/compromised user name and

password. However, deploying such a method for IM networks may put an enormous
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load on IM servers with millions of online users. Measures as outlined by Pinkas

and Sander [137] (see also [157]) can help minimize the load on servers. Our IMKE

implementation would ideally provide this feature, as well as an online server public

key verification method (e.g. public password [56]) in the future.

We have measured the empirical running time for IMKE-enabled Gaim [125]

clients. However, the complementary techniques that we proposed in Section 4.4.2

have not been implemented and tested; doing so may help in understanding the ef-

fectiveness of those techniques as well as their usability impacts in reality.

While we described our protocol in Section 5.3, we also discussed security caveats

of the protocol. In Chapter 6 we theoretically analyzed IMKE, using a BAN-like

technique. Although informal, our analysis is quite extensive, and provides baseline

reasonings of confidence in IMKE. Nonetheless, a full analysis using BAN or simi-

lar formal analysis tools, as well as a “proof” of security of IMKE using non-BAN

techniques would offer increased confidence in IMKE.

Concluding Remarks.

We have explored the security issues related to public IM services, proposed a secu-

rity protocol for IM called IMKE, and two complementary user-friendly techniques

to restrict the propagation of IM worms. We also embedded IMKE in the Jabber

protocol and measured the execution performance. This allowed us to evaluate the

feasibility of integrating IMKE with a popular IM protocol; the implementation effort

required was moderate.

Designing a secure IM system requires serious consideration of typical end-users

who use it as a casual system without being aware of the underlying threats (indeed,

most users never want to be aware of the dangers of underlying software system). An

overly restrictive model (i.e. with negative human interface aspects) may deter IM
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users, having adverse effects, e.g. users may move to a less secure model or it may even

harm the spontaneity of IM. Nonetheless, we strongly believe that security issues in

IM require greater attention from the security research community, lest IM becomes

as big a security problem as email, which remains the number one breeding ground

for worms, despite ubiquitous security measures [81]. Our survey of IM threats, the

proposed security protocol, and the implementation of the protocol help to further

research on IM security.
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