
Binding Social Identity with Email Address and

Automating Email Certificate Issuance

by

Reza Samanfar

A thesis submitted in partial fulfillment of the requirements for the degree of

Master in Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario, Canada

June 2020

Copyright c© by Reza Samanfar, 2020

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the Thesis

Binding Social Identity with Email Address and Automating

Email Certificate Issuance

Submitted by Reza Samanfar

in partial fulfilment of the requirements for the degree of

Master of Computer Science

Dr. Paul C. van Oorschot

Carleton University

2020

ii

Abstract

End-to-end encrypted secure email remains a largely unsolved problem, from an adop-

tion and deployment viewpoint. In this thesis, we propose a solution that can address

two of the main challenges. Our solution involves: 1) Automated issuance and dis-

tribution of public-key certificates for use in email applications; 2) a means to make

public keys of one user accessible to other users, in a manner that allows a cross-

check of their authenticity. We use Keybase, a publicly accessible key database and

key trust protocol, to bind a user’s social identities to their email addresses. This

enables other users to manually verify the social identity of their intended recipient

in order to gain trust in their public keys. We also make use of ACME protocol used

by an organization called Let’s Encrypt for automated certificate issuance.

iii

Acknowledgments

I would like to express my gratitude for my supervisor, Dr. Paul van Oorschot, for

his guidance and valuable feedback that made this thesis possible and his support,

that kept me going forward throughout my degree. I would also like to thank my

family for their unconditional support.

Further acknowledgements are due to my colleagues Hemant Gupta and Christo-

pher Bellman for their illuminating comments and feedback, and to Tshepo Kgeng-

wenyane for their work on ACME Pebble test server and their feedback.

Also, I would like to thank Dr. David Barrera and Dr. David Knox for their

valuable and illuminating comments.

iv

Table of Contents

Abstract iii

Acknowledgments iv

Table of Contents v

List of Figures ix

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Problem Statement . 3

1.4 Design Requirements . 5

1.5 Contributions . 7

1.6 Thesis Overview . 8

2 Background and related work 10

2.1 Public Key Infrastructure (PKI) . 10

2.1.1 Public key cryptography . 10

2.1.2 Digital signatures . 11

2.1.3 Certificates and Certificate Authorities (CAs) 11

2.2 Email security . 12

v

2.3 S/MIME and PGP . 13

2.4 Keybase . 13

2.4.1 Keys on Keybase . 14

2.4.2 Accessing device-specific keys and password change 15

2.4.3 Signature chain (sigchain) . 17

2.4.4 Is Keybase a trusted server? 24

2.4.5 Keybase’s goal . 29

2.4.6 Following on Keybase . 31

2.4.7 Registering on Keybase . 32

2.5 ACME protocol . 35

2.5.1 Let’s Encrypt . 35

2.5.2 ACME . 36

2.6 Bitcoin background . 38

2.6.1 What is Bitcoin? . 39

2.6.2 Block chain . 40

2.6.3 Interaction with Bitcoin blockchain for verification on Keybase 40

2.7 Related work . 43

3 Threat model and requirements 45

3.1 Keybase threat model . 45

3.1.1 DDos attacks against Keybase servers 46

3.1.2 Keybase server compromise 46

3.1.3 Defence mechanisms for defending against server corruption . 47

3.2 ACME Threat Model . 47

3.2.1 Authorizations on ACME . 49

3.2.2 Denial-of-Service attacks . 53

3.2.3 Request Forgery . 54

vi

3.2.4 Certificate issuance policy . 54

3.2.5 Replay protection . 55

3.3 Our Design’s threat model . 55

3.3.1 Middle-person attacks . 56

3.3.2 Server-side threats . 56

3.3.3 Client-side threats . 58

3.3.4 Impersonation attacks . 58

3.3.5 User account compromise . 59

4 Design and Proof of Concept 60

4.1 ACME Server . 62

4.1.1 Protocol for interacting with ACME server 62

4.1.2 Challenges from ACME server 63

4.1.3 ACME Test-Server . 65

4.1.4 Required changes for the ACME client 73

4.2 Sending Encrypted Email Between Two Parties 75

5 Security analysis 81

5.1 Middle-person attacks . 81

5.2 Server-side attacks . 83

5.3 Client-side attacks . 84

5.4 Impersonation attacks . 85

5.5 Account compromise . 86

6 Comparative Analysis and Conclusion 88

6.1 Comparison of secure email solutions 88

6.1.1 Target users . 90

6.1.2 Certificate Format . 90

vii

6.1.3 Software download requirements 91

6.1.4 Difficulty of certificate acquisition 91

6.1.5 Acquiring correspondents’ certificates 92

6.1.6 Ease of gaining trust . 93

6.2 Limitations and Future work . 94

6.3 Conclusion . 97

List of References 98

viii

List of Figures

1.1 All the entities involved in our proposed design 7

2.1 A sample Merkle tree structure . 26

2.2 Process of validating a Merkle tree’s root pushed to the Bitcoin blockchain 27

2.3 A sample posted Keybase proof on Facebook 34

2.4 Social media account binding process 35

3.1 Communications Channels Used by ACME 48

3.2 Middle-person Attack on validation channel 51

4.1 Interaction with ACME server . 64

4.2 The components of our design. This picture is a copy of Figure 1.1 . 66

4.3 A sample sign up page for our ACME server 67

4.4 A self-signed certificate generated by OpenSSH for the ACME server 73

4.5 Mail exchange between Alice and Bob 78

4.6 Account setting page for Microsoft Outlook 2016 79

6.1 Comparison of alternative secure email solutions 89

ix

Chapter 1

Introduction

1.1 Introduction

Electronic mail has been a primary means of communications between peers and

within corporations for many years. As Philip Zimmermann, the creator of PGP pro-

tocol, says “It’s personal. It’s private. And it’s no one’s business but yours. You may

be planning a political campaign, discussing your taxes, or having a secret romance.

Or you may be communicating with a political dissident in a repressive country.

Whatever it is, you don’t want your private electronic mail (email) or confidential

documents read by anyone else”1. Ensuring privacy, however, requires email to be

encrypted due to the fact that sensitive and personal data is otherwise transmitted in

cleartext over the internet by emails. Encryption protects the contents of email from

being accessed by adversaries and third parties other than their intended recipient.

Most secure email products use public key cryptography in which each user has

a pair of public-private keys. Within public key infrastructure, users can share their

public keys with other users to enable others to send them encrypted emails. Also,

they can use their signing private keys to sign over the emails they themselves send

to other users, to provide both data integrity and data origin assurances.

1Part of the Original 1991 PGP User’s Guide (last updated in 1999)

1

2

Today, many email service providers such as Google and Microsoft support en-

cryption for emails that are sent through their servers; however, this is different from

what might be required. Encrypting email on transport layer means that email is

encrypted from each one server to another along the route, but on the other hand,

end-to-end encryption for email means that the email is encrypted on the sender’s

device and will only be decrypted on the receiver’s device (encryption and decryption

is done on the end devices only). This does not allow service providers such as Google

to read the contents of the email.

There are many secure email products. Most are based on either PGP [46] or

S/MIME [39]. Usability is among the challenges preventing users from adopting these

products [45], [8], [36]. In this thesis, we propose a design to improve the security

of email communications in comparison to existing secure email products. We also

argue that our design improves some of the shortcomings of aforementioned products

from the usability perspective. This is because our design automates some parts of

the certificate issuance and it does not rely on any particular mail client to operate.

These advantages could increase the adoption of secure email, and thus improving

the security of the email ecosystem as a whole.

1.2 Motivation

Email, by default transmitted unencrypted as cleartext, is susceptible to passive net-

work eavesdropping and active network attacks. Encrypted email tools have tradi-

tionally faced usability challenges. These challenges have negative effects on adop-

tion of secure email even among communities that desire secure communication (e.g.

lawyers) [24]. Today, most emails are not end-to-end encrypted and use of email

encryption is typically driven by strong motivations that are present in their envi-

ronment. For enterprises, secure email products based on S/MIME are being used,

3

while for non-enterprise users PGP has been popular. PGP’s lack of adoption and

severe usability issues largely revolve around its key management. S/MIME on the

other hand requires trusting an authority to enable trust on issued certificates and

is usually used in organizations with a dedicated IT team. Email certificates are

public-key certificates which carry, as components, public keys that have correspond-

ing private keys. A user’s signing private keys are used for signing email messages,

while encryption public keys are used for encrypting symmetric keys which are then

in turn used for encrypting the content of email messages. Signature on emails can

help the recipients verify that the email is not altered while in transit and encryption

is for preventing eavesdropping by third parties.

Being able to automate some processes of issuing S/MIME certificates in a way

that it does not require a dedicated IT team, and being able to tie users’ public keys

that are within their certificate with their social identities, can reduce human errors

or mitigate some attacks that may result in exchanging messages with someone other

than the user’s intended recipient.

1.3 Problem Statement

Existing secure email solutions are mainly based on S/MIME and PGP. Typical

product solutions and free implementations built around each of these technologies

have their drawbacks. The drawbacks that we focus on in this thesis are directly

related to managing and trusting public key certificates.

S/MIME users often work within an organization that has its own internal Certi-

fication Authority (CA). This means that users from outside that organization who

do not have that CA’s public key as a trust anchor within their own client software

have no easy, reliable way of acquiring and validating certificates signed by that CA.

On the other hand, PGP users typically prefer to avoid relying on CAs for trust

4

in public keys of end-users. Instead they use the so-called PGP web-of-trust, which

in essence means using manual methods for exchanging and trusting the public keys

of other users. As a result, PGP suffers from key distribution and key revocation

problems. The key distribution problems often result in PGP users uploading their

public keys to various PGP public key servers, or using out of band communications

to gain trust in their correspondents’ public keys.

The problems that this thesis addresses are within the categories below:

• Users acquiring their own email certificates

• Users renewing their own email certificates

• Users acquiring the email certificates of email correspondents

• Users establishing trust in acquired certificates of email correspondents includ-

ing upon certificate renewals

• Impersonation threats for email (i.e., abuses related to fraudulent or untrust-

worthy certificates)

In this design, our goal is to facilitate the email certificate acquisition process

and make it a service that is globally available to users with a variety of technical

backgrounds. By following the footsteps of Lets Encrypt this service would ideally

be free of charge so a wider range of users can adopt this secure email practice. This

applies to both acquiring a certificate for the first time and, to the certificate renewal

process as required on a periodic basis. By our design, while many actions must be

performed at the first instance of certificate issuance (i.e. registration processes and

social media bindings), fewer are required to renew a certificate.

Our design proposes to bind users’ social media identities to their email certifi-

cates. We create a link between a user’s email address, their social media identities

5

and, their public keys. This will require cross-checks by both the CA that issues email

certificates during the certification process, and manual cross-checks by end-users at

later stages. We believe that this approach will add protection against current imper-

sonation threats in secure email. To achieve this goal we need to have a safe method

of email certificate distribution amongst email correspondents, which should be eas-

ier than present methods, while reducing the need of out-of-band communications

amongst email correspondents.

1.4 Design Requirements

We now present our design requirements.

1. A mechanism to facilitate X.509v3 email certificate acquisition of a user’s own

certificates, and those of correspondents

2. A cryptographically sound link between social identities and public keys of email

correspondents by using identical key pairs to verify social media accounts and

prove the ownership of the keys

3. A means for establishing trust in public key certificates of email partners by

manual cross-check of social identities by users at the first encounter with a

certificate or after renewal of previously trusted certificates

4. A mechanism to make email certificates available to email correspondents

5. Facilitating a certificate renewal process requiring no tremendous user effort

6. Providing protection against email impersonation attacks

7. Protecting against Keybase and ACME server compromise, by relying on cross-

checks between design components

6

Within this design, we present a modification of the ACME protocol to automate

some parts of the email certificate issuance. The goal is to enable users to acquire

their own email certificates with greater ease, and to bind a user’s social identities,

public keys and, email address all together. This connection is formed by a series of

cryptographic challenges presented in the Keybase and ACME registration processes

that with some cross-checks in the registration phase, leads to a sound bond between

the three elements mentioned above. Users will be required to manually cross-check

the social identity of their email correspondents when presented with new certificates.

This will allow confidence in the authenticity of the certificates, i.e., they hold the

legitimate public keys of the correspondent that they are trying to communicate with.

If performed correctly, these cross-checks provide protection against email certificate

impersonation attacks.

To simplify our design, we suggest that our email certificates be made publicly

available by incorporating them into Keybase’s file system. This however is not a

design requirement; valid certificates acquired from other sources can also be trusted

based on the cross-checks within our design. By our design, certificate renewal is

also semi-automated in the sense that many of the initial actions needed to acquire

a certificate for the first time are eliminated. This could convince secure email users

to continue using this practice if the renewal process does not require a tremendous

effort.

While within this design we introduce two main components (Keybase and

ACME), we believe that a server compromise in one of the servers would have much

smaller impact on the user compared to a secure email user that relies solely on a

single trusted server. This is due to the cross-checks between Keybase and ACME

in the certificate issuance process. Use of X.509 v3 certificates and importing them

into mail clients is not one of our design requirements, although we note that many

current email clients already support, by various means, importing and using these

7

certificates.

1.5 Contributions

Our main contribution is proposing a design that can bind users’ social identities,

their public keys, and their email addresses all together enabling other users to verify

the sender of the email through social media and the authenticity of the received

email. Binding a user’s social identity with their public keys is done by Keybase, and

automating parts of issuing email certificates (binding the keys to an email address

stated within the certificate) is done by modification of the ACME protocol discussed

in Section 4.1.3 [4]. Figure 1.1 shows all the involved parties in our proposed design

along with all the required interactions that are shown by arrows between entities.

Figure 1.1: All the entities involved in our proposed design

8

For two users to exchange encrypted and signed emails between each other based

on this design they each need to have an account on a social media platform that is

supported by Keybase. They are required to register an account and prove ownership

of their social media accounts on Keybase over various steps discussed in Section

2.4.7. Then, they would each register an account with the ACME server and proceed

to complete the actions required to receive two email certificates (one for encryption

and one for signing). The steps for acquiring an email certificate are discussed in

Section 4.1. In order to interact with Keybase and ACME, users will need to install

Keybase and ACME clients on their systems. At the end, in order to store other

user’s certificates and to send and receive signed and encrypted emails they would

need to have email clients with S/MIME support on their system.

We also present a threat model for our design, and provide arguments supporting

the claim that our proposed solution improves email security over existing secure email

products. We show that binding a user’s social identity with their email address

can help mitigate some of the threats which involve a human error or a targeted

attack. We argue that integrating this binding while reducing interactions required

to obtain and renew a certificate, improves security and makes certificate issuance

more accessible for users of widely varying technical backgrounds.

1.6 Thesis Overview

The remainder of this thesis is structured as follows. Chapter 2 explains background

concepts of email security followed by introductions to Keybase in Section 2.4, ACME

protocol in Section 2.5, and Bitcoin blockchain in Section 2.6 to help readers follow the

verification process introduced in Keybase section. Chapter 3 discusses threat models

for Keybase, ACME, and our design as a whole. Chapter 4 presents our proposed

design for binding users’ public keys, email addresses, and social identities. Details of

9

the changes required to present a proof of concept is also discussed. Chapter 5 returns

to the threat model discussed in Chapter 3 and discusses how our proposed design

addresses each of the threats. Chapter 6 discusses a comparison between currently

available alternate secure email solutions, concludes with a discussion of the benefits

and limitations of our design, and future work.

Chapter 2

Background and related work

In this chapter, we go over fundamental concepts that are related to email security,

followed by an introduction to Keybase and the ACME protocol. In Section 2.7,

related work and the differences between our work and similar related works are

emphasized.

The fundamental concepts include an overview of Public Key Infrastructure and

digital certificate, email security, Pretty Good Privacy (PGP), and Secure/Multipur-

pose Internet Mail Extensions (S/MIME). Keybase is discussed and its key security

and sigchain structure is explained. This is followed by an overview of the ACME

protocol. Section 2.6 provides an introduction to Bitcoin block chain and how to

interact with it to perform verification is included.

2.1 Public Key Infrastructure (PKI)

In this section we discuss Public Key cryptography and related topics.

2.1.1 Public key cryptography

Public key cryptography, or asymmetric cryptography, is a form of cryptography in

which there is a pair of keys for encryption and decryption. The key pair includes

10

11

a public key and a private key. As the name suggests, the public key can be shared

publicly with other users. They can encrypt data using that key and the user who

holds the corresponding private key (hopefully the only user who must keep it secret),

can decrypt the data [44].

2.1.2 Digital signatures

Digital signatures may be attached to the messages sent and they can be verified with

the public key of the user signing the message. Based on the assumption that only the

signing user has the private signing key and the assumption that the corresponding

public/private key pair actually belong to that specific user, other users can have

confidence that the message originated from that user (data origin authentication).

Due to the fact that the signature of the message depends on the message itself (user

signs the hash of the message with his private signing key), users that verify the

signature have some assurance that the message has not been tampered with (data

integrity). Another property of digital signatures is non-repudiation. Due to the data

origin evidence, it is hard for a party to deny signing a message when he has done so

using his private signing key that corresponds to his authenticated public key [44].

2.1.3 Certificates and Certificate Authorities (CAs)

Users who are encrypting data with the public key of their intended recipient have

to make sure that the public key actually belongs to the person they are sending the

data to. In this scenario, digital certificates can be helpful.

Digital certificates are data structures that bind an identity to a public key. The

essential fields in digital certificates are subject name, the public key that is known to

be associated with that subject name, and the signature of the third party that has

issued the certificate (the signature is over all the fields within the certificate). That

12

third party is called a Certificate Authority (CA), and to trust the signature of the

CA over a certificate means having confidence that the CA has verified the legitimate

association of the identity named on the “subject name” field with the public key

indicated in the certificate. This requires the CA to perform a verification process

prior to issuing a certificate for an entity. There are various methods of verification

in which CAs pose challenges to entities requesting a certificate. These challenges are

to provide evidence of ownership of the private key that is claimed to be owned by

the entity and also evidence that the requesting party has a legitimate claim to the

asserted identity or subject name. To trust a certificate, relying parties should verify

the signature of the CA over the certificate. This requires having certified knowledge

of the mentioned CA’s public key. In the web applications, the public keys of these

CAs are hard-coded into well-known web browsers (as self-signed certificates provided

by the browser vendors). These CA’s are also called trust anchors [44].

2.2 Email security

Secure email aims to provide three security properties: confidentiality, integrity and

data origin authentication. Email should be encrypted so that only the sender and

the intended recipient possess the means to access the contents. Use of authenticated

encryption or digital signatures allows detection if the contents are altered. Within

the public key infrastructure, each user has a pair of public-private encryption keys

and public-private signing keys. The public part of the key can be advertised to

other users, but the private part should only remain known to owner of the key pair.

One user being able to digitally sign data enables other users to verify the origin by

checking the signing party’s signature with the signing party’s public key. Assuming

that each party knows the public key of the other one and exchanged emails are

encrypted and signed, we can achieve confidentiality and integrity. In other words,

13

the receiver of an email can have confidence that the email was encrypted such that no

adversary could have had access to the clear text while it was being transmitted, and

by checking the signature on the email, they can detect if the contents of email were

altered. The digital signature also provides data origin authentication, i.e., confidence

in who the originator of the email was with the same assumption of certified public

keys.

2.3 S/MIME and PGP

S/MIME1 [39] and PGP2 [46] are two systems that enable secure email. Both allow

encryption and decryption of data, plus digital signatures and signature verification

for data origin authentication. They allow users to sign, verify signatures, encrypt,

and decrypt data transmitted over the internet.

PGP users directly exchange public keys with each other, and each user must

choose which keys to trust and the duration of that trust is up to them. With

S/MIME, parties rely on mutually trusted third parties (Certification Authorities).

The CAs issue public key certificates as explained in Section 2.1.3. S/MIME will be

our main focus.

2.4 Keybase

Keybase is a publicly-auditable directory of keys and identity proofs [24] [17]. The

main function of Keybase is to store their users’ public keys in a manner that allows

other users to trust the keys. Keybase also provides cloud storage for users, and

users can upload and store any type of file on their storage in the Keybase file system

1Secure/Multipurpose Internet Mail Extensions
2Pretty Good Privacy

14

(KBFS)3. In mid 2017, Keybase introduced Keybase Teams. This allows a group of

users under a single name to share a private folder for storing their files and have

their own chat channels. This functionality is similar to programs such as Slack4.

Keybase also offers client software that can be installed on users’ devices, matching

the functionalities of the website interface. In addition, it provides secure end-to-end

encrypted chat and easy access to the KBFS.

Keybase enables users to cryptographically bind their public key to their social

media accounts. The steps of registration and account binding are discussed in Section

2.4.7. Every user has their public keys on their Keybase profile (usually the main PGP

key that is created in the sign up process but, users can add more keys if they wish.),

a list of devices that are associated with their account, and a list of social media

accounts that are verifiable using Keybase as being associated with the account.

2.4.1 Keys on Keybase

When Alice joins Keybase, she can either generate a key pair with the Keybase client

or import an existing key pair of her own. The public and private keys are denoted KA

and kA, respectively. The first such pair that Alice registers is called Alice’s eldest

key pair. It is the first among many keys that will be called siblings (sibkeys and

subkeys) as detailed in section 2.4.6.

Each time that Alice uses a different device that she intends to be used to interact

with Keybase, there are two per-device key pairs generated by the Keybase client in-

stalled on Alice’s device: a signing key pair called “sibkey” and an encryption key pair

called “subkey”. The keys are produced based on elliptic curve cryptography (ECC) in

which operations are over sets of defined points on an elliptic curve. This offers com-

putational efficiency over integer factorization cryptography [44]. “Curve25519” is an

3https://keybase.io/blog/kbfs
4https://slack.com/

15

elliptic curve that offers 123 bits of security and is used in elliptic curve Diffie-Hellman

key agreement. Ed25519 is Edwards-curve Digital Signature Algorithm (EdDSA) us-

ing Curve25519. The process for generating keys on Alices’s i th device is [16,37]:

1. An Ed25519 signature key pair (SA
i, sA

i) is randomly generated by Keybase

client consisting of a 32-byte public key and a 64-byte private key. These are

the new sibkeys.

2. A Curve25519 encryption key pair (NA
i, nA

i) is generated that are both 32-byte

strings. These are the new subkeys.

3. SA
i is signed with a valid sibling key (or the eldest key on Alice’s first device) and

the new key can sign the delegated key as well. The sibkey signature alongside

the public key itself then is pushed to Alice’s signature chain as a statement

(explained in Section 2.4.3).

4. NA
i is signed with sA

i and this subkey signature, alongside the public key itself,

is pushed to Alice’s signature chain as a statement.

5. The private keys sA
i and nA

i are stored locally on the device i.

2.4.2 Accessing device-specific keys and password change

Each of the user’s device-specific keys are stored in a password protected manner on

its associated local devices [16]. The user would need to provide his Keybase password

in order to decrypt his locally stored device-specific private keys. However, if the user

decides to change his password, there should be a way to access the encrypted and

locally stored keys with the new password on all the devices (even the devices that

were offline during the password change). Keybase uses a server-aided protocol to

ensure that the password change will be reflected on all of the user’s devices [16].

16

In this protocol, Keybase uses a server-side mask for decrypting device-specific

keys. This mask is updated after a password change. This updated mask will enable

the user’s other devices to decrypt their locally stored keys with the new password

instead of the old password. This mask is provided by the Keybase server in the

decryption process and user’s device keys are stored locally at all times and are not

exposed to the Keybase server even in the encrypted form [16].

Bob, a Keybase user with the password PB, makes use of this protocol to encrypt

and decrypt his device-specific keys as shown in the following steps [16]:

1. Keybase client on Bob’s device d, generates a new random secret key kd
B (sym-

metric), and encrypts device-specific keys (stored locally on device d) with it.

The client computes:

sdB = kdB ⊕ cB (2.1)

Here cB= Scrypt (PB) is a symmetric key derived using the password-based key

derivation function Scrypt designed to thwart brute force attacks with memory

complexity [32,33].

2. The client then sends sdB to the server, which stores it in a data structure

associated with device d.

For encryption and decryption on device d for Bob, the steps below will be per-

formed [16]:

1. Bob needs to authenticate himself to the server and, Bob’s client computes cB=

Scrypt (PB).

2. The client retrieves sdB for device d from Keybase server and computes kd
B =

sdB ⊕ cB.

17

3. Then Bob’s client can encrypt or decrypt his device-specific private keys us-

ing kd
B and “NaCl’s SecretBox” [5, 6, 41]. NaCl Secretbox is a package that

uses XSalsa20 cipher and Poly1305 message authentication code to encrypt and

authenticate small messages [40].

In the event of a password update, Bob should be able to encrypt and decrypt

all of his device-specific keys with the new password. In order to do so, Bob needs

to perfom some actions, explained below, while changing his password from PB to

P’B [16].

The client computes both cB= Scrypt (PB) and c’B= Scrypt (P’B) in order to

compute δ = cB ⊕ c’B which needs to be sent to the Keybase server. On the Keybase

server s’B is computed where: s’B = sdB ⊕ δ is computed for all of Bob’s devices.

The sever stores s’B, replacing all sB for all of Bob’s devices. Now if Bob tries to use

the new password from another device that was offline during password change, the

server will provide the new sB (that is s’B) instead of the device’s old sB and the steps

would be identical to the steps shown above for encryption and decryption on device

d [16].

2.4.3 Signature chain (sigchain)

There is a public signature chain for every Keybase account called sigchain. Sigchain

is a verifiable list of ordered statements that indicate the changes made to the account

over time [20]. Every user’s sigchain is stored on Keybase’s servers. When a user adds

a key, connects a social media account, or “follows” another user, their Keybase client

signs a new statement which is called a “link” and embeds the link (with the signature

included in it) into their sigchain (creating a new statement and appending to user’s

current sigchain). Each of these links are signed by one of the users’s keys described

in Section 2.4.1. Each link has a sequence number and the hash of the previous link

18

in the sigchain (hash over the entire link). The use of this hashed sequence number

prevents a dishonest Keybase server from creating or omitting links without making

the entire sigchain invalid. A full link statement with some fields removed is shown

below. This can help the readers understand the key values that are stored in each

statement of Keybase sigchains.

1 {
2 "status ":
3 {
4 "code":0,
5 "name ":"OK",
6 },
7
8 "sigs":
9 [

10 {
11 "seqno":1,
12 "payload_hash ":" cf1f5993b254029132690594f95
13 12 ee6fc49340fc347234fe4000b95e162bb18",
14 "merkle_seqno ":2742703 ,
15 "sig_id ":" c145cf3c44d8d8d3898f2098e3e2103
16 9c95effb7e92e22351fbeb0724eedbb630f",
17 "sig_id_short ":" wUXPPETY2NOJjyCY4 -IQOcle_7fpLiI1H76w",
18 "kid ":"0120 f92d63fe30bdc2702bce66ccf5cf5
19 180 b850af8e12e50620c5b0944ffa8a5e9e0a",
20 "sig":" hKRib2R5hqhkZXRhY2hlCpHR5c ... kea3s5UGr+w
21 UPPaK1wirbov6o08iBKN0YWfNAgKndmVyc2lvbgE =",
22 "payload_json ":"{\" body \":{\" device \":{\" id \":\"330044 a21db4ad

... \",\"kid \":\"0120 f92d63fe30bdc270ull ,\" seqno \":1 ,\" tag
\":\" signature \"}",

23
24 "sig_type ":1,
25 "ctime ":1526405128 ,
26 "etime ":2030981128 ,
27 "rtime":null ,
28 "eldest_seqno ":0,
29 "sig_status ":0,
30 "prev":null ,
31 "is_eldest ":1,
32 "fingerprint ":"",
33 }
34],
35 }

Listing 2.1: A full link statement with some fields removed

All Keybase users’ sigchains are publicly available (both within their own Keybase

profile and through the Keybase API) and any user can verify the cryptographic

validity of the signatures on them using Keybase’s API (that finds the user’s public

key from their sigchain) or by using a web browser. Users can add or remove their

19

own sibkeys by adding new links to their existing sigchain, and any of user’s sibkeys

can be used to sign links [20]. To be valid, a link must be verifiable based on the valid

user’s keys at that particular point in time (and the time that the link statement

has been generated is “ctime” field in the link). Thus, if the old sibkeys were to be

revoked, old links remain valid if they were signed by keys that were valid at that

point in time and the signed statements were legitimate (although the keys may be

revoked afterwards and new statements with revoked keys are not valid). This means

that revoking one particular key pair will not have an effect on a user’s other keys,

previously signed identity proofs, and the snapshots that other users following this

user, have.

To see if a Keybase account is valid and to find the keys that are currently valid

for that account, a Keybase client needs to receive the Merkle tree (described further

in Section 2.4.4) from the Keybase server. In that Merkle tree, the last statement of

all the Keybase users are present. When the Keybase client finds the last statement

of the sigchain of the account that its trying to validate, it assumes that the key

that are specified on the last statement is a sibkey. Then the client moves from one

statement to the previous statement based on the sequence number of the links in

the sigchain (from the last statement to the first statement). While navigating from

one statement to the other, the Keybase client verifies the signature on each of the

statements based on the valid keys (sibkeys) that it has already encountered. In

the process the Keybase client keeps track of all the valid sibkeys and takes into the

account the effect of other links on those sibkeys (if the key was revoked afterwards

or a new key has been added) [20]. The listing 2.2 that is shown below, is the first

statement of a user’s sigchain. All the statement types and related fields are explained

in the following paragraphs.

1 {

20

2 "body": {
3 "device ": {
4 "id": "330044 a21db4ad9c20f8e86849323218",
5 "kid": "0120 f92d63fe30bdc2702bce66cc
6 f5cf5180b850af8e12e50620c5b0944ffa8a5e9e0a",
7 "name": "Mobile Device",
8 "status ": 1,
9 "type": "mobile"

10 },
11 "key": {
12 "host": "keybase.io",
13 "kid": "0120 f92d63fe30bdc2702bce66ccf5
14 cf5180b850af8e12e50620c5b0944ffa8a5e9e0a",
15 "uid": "4 a35d1e3eb7a1542babcad5035458719",
16 "username ": "samanfar"
17 },
18 "merkle_root ": {
19 "ctime": 1526405127 ,
20 "hash": "833871618 c3a0827e83d832d79afb03eca3
21 ab3cbe8b0623612062091b094c8b3c755d5f033b074
22 52 aec2adbfeb2359c0330cf95487b8f4b993183c7f96bbe7c0",
23 "hash_meta ": "09 a1a7649d1e425fb03f2f74c6d1bca50e0055375d46ad
24 6fc7c0e7443e53cca5",
25 "seqno": 2742702
26 },
27 "type": "eldest",
28 "version ": 1
29 },
30 "client ": {
31 "name": "keybase.io go client",
32 "version ": "1.0.47"
33 },
34 "ctime ": 1526405128 ,
35 "expire_in ": 504576000 ,
36 "prev": null ,
37 "seqno ": 1,
38 "tag": "signature"
39 }

Listing 2.2: The first statement of a user’s sigchain

There are various types of links (statements) in a sigchain as they are listed

below. We are going to describe each of these links based on the official description

on Keybase’s documentation [20]:

1. Eldest statement: It holds the first key for the account and the signing key

for the link becomes the first sibkey. It is the first statement in a Keybase user’s

sigchain (unless there has been an account reset by the user). This type of links

is specified by the “type”: “eldest” in the body of the statement.

2. sibkey statement: It is a statement that adds a new sibkey to the account.

21

This type of links is specified by the “type”: “sibkey” in the body of the state-

ment.

3. subkey statement: It is a statement that adds a subkey to the account.

subkeys are used for encryption only. This type of links is specified by the

“type”: “subkey” in the body of the statement.

4. revoke statement: It is a statement that removes a key from the list of the

account’s valid keys. This is done by removing the key from the list of Key-IDs

(kids). Removing a key however, does not affect the validity of the statements

that were signed using this key (each link has the information of the keys that

are used for signing it). After revocation, these keys can no longer sign new

statements. This mean when Keybase clients of other users are navigating this

user’s sigchain, they should remove these keys from the list of the valid keys

while coming across a revoke statement. This is all done by the Keybase client

and users do not need to remember which keys are revoked. This type of links

is specified by the “type”: “revoke” in the body of the statement.

5. PGP update statement: It is a statement for updating the PGP key for the

account and replacing it with a new one (which may result in adding or removing

subkeys etc. to the account). This is because Keybase currently only supports

PGP and there is no support for S/MIME. This type of links is specified by the

“type”: “pgp update” in the body of the statement.

Currently, Keybase client only lets users generate a PGP key pair. Because

both PGP and S/MIME use similar algorithms to generate public and private

keys (such as RSA [35]), it is possible to extract those keys from the generated

PGP key block on Keybase and use them in a S/MIME certificate. A theoretical

example is using The Monkeysphere Project5 to extract the public and private

5http://web.monkeysphere.info

22

keys from a PGP key block and using them to get an X.509 certificate. This is

yet another challenge from a usability point of view, but this problem can be

solved by enabling support for key types other than PGP keys within Keybase,

or including this functionality within the ACME client. In this way, the ACME

client would receive user’s PGP keys and extract public keys from the PGP

blocks. But, private keys should be extracted locally. In this thesis, in order to

demonstrate the benefits of this design, we assume that both keys on Keybase

and ACME client are the same type (S/MIME).

6. Web service binding: It is a statement that indicates the ownership of a

certain “username” on a website “domain” (a supported social media page or

a supported account). When the proof has been posted for the first time, the

server looks for the proof and verifies the signature on that post. If it was

verified, the server keeps the address of that post to help the Keybase clients

for further checks. The Keybase client also checks that proof for itself and

verifies if the signature on that post is valid. This type of links is specified by

the “type”: “web service binding” in the body of the statement.

7. track and untrack statement: Tracking statement is making a snapshot

(more information for tracking can be found in Section 2.4.6) of another users

identity that is provided by the Keybase server. This can be used by a users

other devices to trust the same user without the need to manually verify the

user again (however, the Keybase client will perform the checks anytime that

it is needed). This type of links is specified by the “type”: “track” in the body

of the statement. However, if a user stops following another user, a untrack

statement is required. This statement makes all of the user’s devices to not

trust the snapshot that they already have and check the other users identity

proofs and present them to the user whenever the user is interacting with them.

23

This type of links is specified by the “type”: “untrack” in the body of the

statement.

8. cryptocurrency statement: Is a statement for advertising a cryptocurrency

address. This type of links is specified by the “type”: “cryptocurrency” in the

body of the statement.

9. per user key statement: It is a statement for adding or rotating (revoking a

“PUK”, creating a new one, and sharing that with all of a user’s devices) two

per-user signing and encryption keys. With the introduction of teams on Key-

base, they introduce a new type of key. The Per-User Key (PUK) which is used

for signing and encrypting messages and files within a team. The public part of

each user’s PUK is encrypted for all of other team members using their public

PUK. The private per-user key is encrypted for all of a user’s active devices so

the user can interact with the team from all of his active devices. The public

PUK is also advertised in the user’s signature chain. When a user adds a new

device, a private PUK is encrypted for the new device. When the user revokes

a device, a new PUK is generated, all of user’s registered devices get the new

private PUK. The generation number starts at one and increments whenever

the per-user keys are rotated, typically after a device revocation (a device revo-

cation happens when a user removes one of the previously verified devices from

his list) [19]. This type of links is specified by the “type”: “per user key” in the

body of the statement.

It is noteworthy that the “type” mentioned in “device” section on line 9 of Listing

2.2 is different from the type of the statement which is shown on line 26 of the same

listing. The first “type” indicates the type of the device that is creating the link, and

the second “type” indicates the type of the link that is being created.

As it is shown in the listing 2.2, a statement has many fields. There are many

24

fields that are repeated in all types of the links. We will discuss these common fields

in details below based on the official Keybase documentation [20].

All the information that is regarding a link type is encapsulated in body of Key-

base statements. Body usually includes information about the link type, as it was

mentioned in the link types above, the device that is creating the link and the infor-

mation about the key that is signing the statement. One of the other fields includes

information about the Keybase client that is creating the link which is encapsulated

in the client field [20].

There are other important information regarding the time of the link creation and

the expiry date of the statement. These are indicated in the ctime and expire in

fields respectively.

As we need to navigate the sigchain there is need for two main components to

be included in all of the statements. These are seqno and prev. Each link in the

sigchain has a sequence number that is include in the “seqno” field. If the sequence

number was 0, the statement would be considered the first link in the user’s sigchain.

“prev” on the other hand, holds the hash of the previous link in the user’s sigchain.

This is required when a Keybase client is navigating from the last statement to the

first statement in a user’s sigchain [20]. Another field that is within all the statements

is merkle root. It encapsulates information regarding the time of the creation of

the Merkle tree when the statement was created and it also includes the sequence

number and the hash of the root of that Merkle tree [20].

2.4.4 Is Keybase a trusted server?

Our assumption is that Keybase is acting as an honest server. In the rest of this doc-

ument, we treat Keybase as a trusted server. There are methods to check Keybase’s

honesty through manual checks, and if Keybase was not honest, it would become

evident. Being honest means that Keybase has not deleted or removed any links that

25

users have posted on their sigchains and has not refused any request by a user to add

new links to their sigchains.

Keybase users can, by using command line to interact with Keybase, check if Key-

base has been honest by interacting with Bitcoin blockchain and performing manual

decryption procedures and checks as follows: They can write their own scripts (for

example, using Python) that check the expenditures on Bitcoin blockchain, open

json files, compute and verify hashes, and connect to Keybase API. Assuming that

some users perform these checks implies that if Keybase acts as a dishonest server,

these users will be notified and alert others about the error in the Keybase server’s

integrity [15].

To enable users to verify that Keybase has remained honest, Keybase pushes the

hash of its latest global Merkle tree’s root to the Bitcoin blockchain (more details

about Bitcoin blockchain and working with it can be found in Section 2.6). This

Merkle tree has the most recent statement of the sigchains of Keybase users as leaves

(each time that any user signs a link, the Merkle tree is updated and pushed to the

Blockchain). The leaf nodes include the length of a user’s sigchain, the hash of the

payload of his latest statement, and the hash of his signature on the latest statement.

The length is calculated based on the “seqno” (line 36 in listing 2.2) of the latest

statement [15]. The hash of the payload is shown in line 12 of listing 2.1 and the

signature on it is shown in line 20.

In a Merkle tree such as Figure 2.1, every leaf node is labeled with the hash of

a data block (here the data blocks are the most recent statements of each user’s

sigchain), and every non-leaf node contains the hash of its child nodes. This means

any changes to the tree (adding new statements to any sigchain) will affect the tree’s

root. Keybase’s Merkle tree is like the tree in Figure 2.1, but each of the data blocks

are for a single Keybase user and contain a full statement (user’s latest statement).

Keybase’s Merkle root is regularly pushed into the Bitcoin blockchain. Whenever a

26

user adds a link to their sigchain, the Merkle tree is updated and the new Merkle root

is calculated, signed by Keybase, and pushed to the blockchain. This means that any

user can consult the blockchain to find the most recent Merkle tree root pushed to

the blockchain in order to verify Keybase’s honesty.

We use the following notations to explain how Keybase posts the root of its Merkle

tree to the Bitcoin blockchain and how users can attempt to verify Keybase’s honesty:

Figure 2.1: A sample Merkle tree structure. In Keybase’s Merkle tree, the latest
statements of the sigchains of each Keybase user are the leaves.

• H is the hash function

• Sk is signing with key k

• X is the value pushed to the bitcoin block chain

Here is the process in which Keybase pushes a hash to blockchain [15]:

27

Figure 2.2: Process of validating a Merkle tree’s root pushed to the Bitcoin
blockchain. User is the person trying to verify the honesty of Keybase using vari-
ous tools to interact with Bitcoin blockchain and to compute hashes and other data.
X=H(Sk(M)) from Equation 2.2. The user’s client recovered the value X in step 3 in
Section 2.6.3 based on the process in Keybase documentation [15]

28

1. Calculate M, the hash at the root of the Merkle tree (top hash at Figure 2.1)

2. Sign M with k, where k is Keybase’s private key and K is its public key

3. Compute the hash X of this signature and push it to the block chain

X = H(Sk(M))) (2.2)

In order to push each X to the blockchain, Keybase has to spend a small amount

of bitcoin each time. Keybase sends that small amount to an address and that address

is going to be used for verification purposes. From hereon we call Keybase the sender

of the bitcoin, and X, the address of the receiver of that bitcoin [15].

For users to verify the validity of Keybase’s root block (an example is showed

in Section 2.6.3), users can find the latest expenditure from Keybase’s address on

bitcoin block chain. Then, they can get the receiver’s address (X) and treat it as

a hex-encoded hash value. X is calculated as shown in Equation 2.2. Users can

search Keybase servers (through its API) for the root block corresponding with X,

and Keybase will return the M (a sample root block is shown on Figure 2.1) and

Sk(M). Then X the hash of Keybase’s signature on M should match the value X

retrieved from the blockchain. After verifying that, users can verify the signature

Sk(M) on that root block (Keybase’s public key is advertised on their website and

the private part is kept offline 6). This is a standard PGP signature created using

Keybase’s key k. If the signature is valid, users can navigate the Merkle tree from top

to bottom to find the leaf node which is the latest statement of a particular Keybase

user [15]. The process is shown in Figure 2.2.

1 {
2 "merkle_root ": {
3 "ctime": 1526405127 ,
4 "hash": "83387161879 afb03ab ...3 cbe8f96bbe7c0",
5 "hash_meta ": "09 a1a762f74c6d1bca5 ...0 e0046ad6fc7",
6 "seqno": 2742702
7 }

6Available on https://keybase.io/docs/server security/our merkle key

29

8 }

Listing 2.3: A sample Merkle tree root field in a sigchain including the hash value,
the sequence number of the root block, the time of creation in ctime format, and
meta data of the hash. This code block is part of Keybase API’s response

Users can navigate from the latest link in a user’s sigchain and move link by

link to the oldest link on the sigchain to see if any links are missing, and thus the

integrity of sigchain is verified. As mentioned before, each link has the signed hash

value of its previous link which provides integrity while navigating the sigchain. This

is because, while navigating, the Keybase client checks the hash in the “prev” field

with the “payload hash” of the previous link to see if it matches and it also verifies

the signatures while doing so. The actual steps for performing these checks by users

are demonstrated in Section 2.6.3 [15].

2.4.5 Keybase’s goal

Keybase’s goal is to make public keys available in a way that users can trust them

without any back channel communication [23]. By this, we mean that one user should

be able to obtain a trustworthy copy of another user’s public key, and know it’s the

correct key, without the need for an out-of-band communication. This is a difficult

service to provide, given servers might become compromised or make an attempt to

lie about a key. Keybase client—whether it is one provided by Keybase itself or a

client that has been developed by someone else — should not simply trust the validity

of statements asserted by the server. When the reply from Keybase server indicates

that “this public key is for Facebook user @r.samanfar”, there should be a means

to independently verify the validity of the statement. For this reason, Keybase was

designed such that any cryptographic interaction with a Keybase user named Reza

follows these steps [23]:

30

1. The server provides information regarding Reza. This includes: Keybase user-

name, account public key (PGP public key), the account handles for bound

social media, links to the actual proofs for bound social media (stored as posts

on those social media accounts).

2. User’s client proceeds to verify Reza’s identity proofs (see Section 2.4.7.)

3. User performs a manual review of Reza’s usernames (visiting Reza’s social net-

work profile).

So, first, the Keybase client queries the Keybase server regarding Reza’s identity.

Keybase server, provides a response with all its information about “Reza”. The

user’s Keybase client does not simply trust the server’s response. Keybase server has

claimed that specified Keybase user Reza and @r.samanfar (for example his Facebook

account handle) are actually the same entity. The question remains “is it true?” In

step 2, the client perform his own checks. This can be done with the link that the

server included in the response. For example in the case of Facebook, to convince the

Keybase client, the post on Facebook must be a signed statement that is claimed to

be from Reza on Keybase [23]. In other words, the Keybase client provides assurance

to the user that “Reza” has access to 3 things:

1. His Keybase account

2. His Facebook account

3. The private key corresponding to the public key mentioned in the first step 1.

Now the user proceeds to review the verified usernames, i.e. to check if it is Reza,

their intended recipient.

31

2.4.6 Following on Keybase

As mentioned in Section 2.4.5, in order to interact with a user, the first step is to ask

Keybase server for some information about that particular user. This enables others

to trust the Keybase server and be confident that advertised user is actually their

intended user. While other users may switch between devices or add new devices

to their trusted devices on their Keybase account, performing these steps every time

may be overwhelming. “Following” is Keybase’s solution to this problem. Following

on Keybase means that the user’s Keybase client takes a “snapshot” of another user’s

identity and signs that snapshot with the user’s (follower) private key [23].

Taking a snapshot means that after going through those three steps, Keybase

client signs the data with user’s private key (specifically, the data from step 1 in

Section 2.4.5, along with some extra information about the client’s review of the

other user such as the user that has taken the snapshot, the time of the snapshot,

the time in which the identity proofs were posted on social media, and the hash of

the link that has been posted) [23].

The client then posts the snapshot to the Keybase server. This does not mean

that user’s Keybase client will not perform further checks but, rather means that

whenever a new device is used by the user, the Keybase server can provide user’s own

signed snapshot of the user that they have followed. User’s own signature on that

snapshot would verify the integrity of the snapshot itself [23].

If the user’s Keybase client perform a check and the status of the intended user’s

sigchain did not match with the snapshot (i.e., the Facebook post on that user’s

social media page disappears), the client would notify the user of that change. Due

to the fact that these snapshots are stored on the Keybase server and the contents

of these snapshots are identical to each other (because the account hadn’t changed,

i.e., no revocation or no new proof addition or removal), users that want to follow

32

other users with a high number of followers can rest assured that the account that

they are trying to follow has kept its integrity over a span of time due to the fact

that those snapshots were taken at different times by different users. Keybase keeps

the snapshots, and if they were not valid anymore, they would be removed by the

following user’s client [23].

It is important to keep in mind that this is not a web of trust. Web of trust is

a decentralized trust model in PGP. In a web of trust users will trust another user

based on decision of other users. We do not trust another user’s keys or account

status based on decision of other users. A new follower’s client can verify Reza’s

identity proofs (see Section 2.4.7), even if no one else was following Reza. Although,

as the number of Reza’s followers grow, the confidence in the fact that the account

has not been compromised over a span of time also grows. As mentioned above, an

older follower statement is more valuable than a new one. It is hard for an adversary

to maintain control of all of a user’s accounts over a long period of time because the

user himself or his friends would notice the compromise at some point [23].

2.4.7 Registering on Keybase

A user that wishes to register on Keybase is required to have a working email address

and to have an account on one of the social media platforms that Keybase supports.

Then, they should install the Keybase client software on their system (downloadable

through Keybase’s website).

Protocol (Detailed Steps for Registering on Keybase)

For a user to start the registration process on Keybase website, they should follow

the steps (the steps are created by following the instructions appointed to the user

while registering):

33

1. Visiting Keybase.io website and completing the Registration form on the web-

site.

2. Downloading Keybase client software from the link provided on the website and

installing it on their device.

3. Logging in the client software with the credentials that are used in the registra-

tion process.

4. The Keybase client software generates two public-private key pairs for signing

and encryption. The user could upload their own public key through the client.

5. User will specify one of their social media account handles supported by Key-

base. Keybase performs verification process on the specified account.

6. User will receive a challenge from Keybase (which the client signs using user’s

signing private key). The signed response needs to be posted on the previously-

mentioned social media account.

7. User will be prompted to sign in to their social media account and post the

signed response with a public visibility setting (the posting procedure may vary

based on different social media platforms).

8. User will prompt Keybase client to verify the posted challenge on that social

media (a sample is shown in Figure 2.3) and the client asks Keybase server to

verify the challenge.

9. If Keybase server can find the post on the social media and the signature on

that can be validated, the challenge is completed and that social media account

will be added to user’s Keybase profile page by Keybase server.

34

Figure 2.3: A sample posted Keybase proof on Facebook with public visibility
setting. The name of the account and some parts regarding the identity of this post’s
owner have been blacked out.

Messages

In the messages shown in Figure 2.4, “Request” is the initial request that user sends

to Keybase in order to indicate a specific social media account handle that they want

to be associated with. “Challenge” is a challenge that Keybase server presents to

user’s Keybase client. “Signed challenge” is the challenge signed by Keybase client

using user’s signing keys and being posted on the social media account. If the post

process was successful user lets Keybase know that the posting process is complete,

sending a “Post complete” message. Verification of the challenge is the process where

Keybase checks the social media for that specific signed challenge. If the post was

found and Keybase verifies the signature on that is valid, it signals the user that the

the account is verified and that account is added to their Keybase profile page.

35

Figure 2.4: Social media account binding process. Social Media Platform will be
involved in the validation process over Validation channel with ACME. Figure based
on steps on page 32.

2.5 ACME protocol

2.5.1 Let’s Encrypt

Let’s Encrypt7 has increased the adoption of HTTPS by providing an easy and fully

automatic process for getting a trusted TLS certificate for web servers. These certifi-

cates are domain validated (DV) and are issued free of charge. Before Let’s Encrypt,

a typical user experience for acquiring a DV certificate for a particular web domain

would be [4]:

1. Generating a PKCS#10 Certificate Signing Request (CSR) [42].

2. Copying the Certificate Signing Request to a CA web page

3. Proving the ownership of the domain - for which the DV certificate is requested-

by any of these means:

7https://letsencrypt.org/

36

(a) Responding to a challenge from the CA which is typically a challenge

placed on a specific directory of the web server.

(b) Putting a challenge posed by the CA in a DNS record of the specified

domain.

(c) Receive a challenge posed by the CA via email (the email address should

be domain administered and within the domain) and responding to CA’s

email.

4. Downloading the certificate after issuance and installing it on the web server.

Besides CSR part, the rest of the procedure is ad-hoc and it is based on human

interactions with the CA that is performed differently from a published and imple-

mented automated protocol. Informal usability tests conducted by authors of ACME

suggests that webmasters often require 1-3 hour to obtain and install a certificate on

their domains. However ACME protocol can change this situation [4].

2.5.2 ACME

ACME or “Automatic Certificate Management Environment” is a protocol that is

currently being used to automate the interaction between CAs and web servers. It is

based on the exchanging of JSON-formatted8 messages over HTTPS. ACME has been

standardized by IETF [4]. It has been designed by ISRG (Internet Security Research

Group) and it was initially used by Let’s Encrypt, a non-profit certificate authority

run by the same group. The process of certificate issuance in ACME , i.e., in the case

of a traditional CA that issues domain-validated certificates, is similar to a traditional

CA [9]. User creates an account and requests a certificate for a specific domain (in

our scenario it will be an email address instead of a domain). If the process completed

8JavaScript Object Notation

37

successfully (explained in detail in Section 4.1) a certificate for user’s email address

will be issued. After creating an account, the steps required to obtain a certificate

are:

1. Submission of a certificate issuance order.

2. Proving control of the identifiers indicated in the certificate issuance order (email

address).

3. Finalizing with submission of a CSR (Certificate Signing Request).

4. Awaiting issuance and downloading the certificate through ACME client.

Based on the identifier (the email address in our design), ACME poses challenges

for users to prove ownership of the email address and the private key at the same

time. ACME allows any user with an announced public key that has registered an

account with ACME to request a certificate for any identifier, but will only grant the

request after proper verification. In our design, ACME server produces a “nonce”

and encrypts it with users public key and sends that to the indicated email address.

The user, by accessing the email message and decrypting it, proves the ownership

of the account, and by signing that challenge and sending it back to ACME server

(by copying that message and sending it through ACME client software) provides

evidence of ownership of the key (details of the design are in Chapter 4). ACME

server verifies the signature on that nonce using users public key and, if it verifies,

proceeds with certificate issuance. Since ACME is currently being used to issue DV

certificates, there are various client software available to interact with an ACME

server. Currently, none of those clients provide a graphical user interface and this

may have a negative effect on usability of our proposed design. However, this can be

addressed by adding GUI support to ACME clients.

38

All of the ACME functions are accomplished by the client software. As the ACME

client acts as an HTTPS client, it sends a series of messages to the ACME server

(acting as a HTTPS server) that are HTTPS requests and include a JSON message.

While performing HTTP validations (process of validation over a HTTP connection

where ACME server tries to validate a challenge posted on a web server) over vali-

dation channel, ACME server also acts as an HTTP server besides being a HTTPS

server [4]. Requests that do not have a empty body, have their payload encapsulated

within a JWS 9 [14]. This means that requests without this body format and simple

GET requests will not be authenticated. Since the server has received a malformed

request, it would return error 405 “Method Not Allowed” and would specify the type

as “malformed” [4].

For protecting ACME server’s resources from replay attacks, a mechanism has

been put in place. As mentioned above, the ACME server produces and keeps track

of its nonces. These nonces are used in all of the signed requests (mandatory) that

are being transferred between the client and the server.

Since ACME protocol can be used to automate the process of issuing X.509 cer-

tificates, we claim that with minor changes on the existing client and server software

(Pebble10 which is a test ACME server provided by Let’s Encrypt11), they can be

modified to issue email certificates and perform verification. Our proposed method

for doing so is discussed on Section 4.1.

2.6 Bitcoin background

We mentioned earlier that users can consult Bitcoin blockchain in order to verify

that sigchains of Keybase users have maintained their integrity. These users can

9JSON Web Signature
10A miniature version of Boulder, Pebble is a small ACME test server
11https://github.com/letsencrypt/pebble

39

consult Bitcoin blockchain in order to retrieve the hash of Keybase’s signed Merkle

tree’s root that has been pushed into the Bitcoin blockchain. From there, they can

navigate through the Merkle tree and find the latest statement on sigchain of any

particular user that they are trying to check. The steps for this process is shown in

Figure 2.2.

In this section, Bitcoin is introduced and some sample code for performing afore-

mentioned checks have been included.

2.6.1 What is Bitcoin?

Bitcoin is a decentralized digital currency and it is an example of a cryptocurrency.

Cryptocurrencies inherit some characteristics of traditional currencies but they use

mathematical proofs based on cryptography as a means of verification. One of the

key features of Bitcoin is that it is not administered by a single entity and it does

not rely on any central bank. The monetary units (called bitcoin) can be transferred

from any user to another user within a peer-to-peer Bitcoin network. This eliminates

the need for presence of a mediator [31] [2].

Bitcoin was proposed by a software developer named “Satoshi Nakamoto” in 2008.

His goal was to introduce a payment system that became an electronic means of

exchange independent from any central authority. bitcoins (the token) needed to

be transferred in a secure manner and the transactions needed to be verifiable and

unchangeable [7].

To avoid confusion, we clarify the differences between bitcoin (the token) and

Bitcoin (the network and protocol). “bitcoin” is a binary object that represents

ownership of a virtual unit of value. “Bitcoin” refers to a distributed network that

acts as a registry that maintains records of all bitcoin balances.

40

2.6.2 Block chain

For maintaining a public distributed registry as mentioned in the Section 2.6.1, we

need to have a distributed database that keeps track of all digital events and transac-

tions that have occurred. This distributed database is blockchain and the events and

transactions are shared among parties that participate in maintaining this database.

Every transaction has a record that can be verified. In order to verify a transaction,

consensus of a majority of the participating parties is required. Once a transaction

record enters the blockchain, it will remain unchanged and can not be deleted af-

terwards. Despite the fact that Bitcoin is the most famous example that utilizes

blockchain, its uses are not limited to cryptocurrency and financial applications [10].

The blockchain mechanism used by Bitcoin provides a digital system in which

occurrence of a digital event can be recorded. All the participating parties can rely

on the fact that the record can not be tampered with and will not be lost. Having

this distributed system that is always based on the agreement of the majority of

the participating parties, has helped many applications to publish their records to

the blockchain in order to enable other users to verify the records and to provide

transparency with their users. Users could trust in the records based on the fact that

they are confirmed by the consensus of the digital entities that are in this distributed

system [7,30].

2.6.3 Interaction with Bitcoin blockchain for verification on

Keybase

These are the steps taken in the verification process mentioned in Section 2.4.4 (the

code that is shown below is in Python) and these codes are replicates from the code

demonstrated in Keybase’s official documentation on their website [15].

In order to follow the steps mentioned in Section 2.4.4 we need to find the address

41

that Keybase has sent a small amount of bitcoin to. We know the address that

Keybase is sending the bitcoin from is12:

"1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz"

In order to find the receiver’s address, we would consult the “blockchain.info” and

give Keybase’s address as an argument as shown in line 14. We find the receiver’s

address as it would be the receiver address in line 15 of the code listing 2.4. If we

would print the value of the receiver address at February 20, 2020 at 19:37 it would

be : “17t2qANeNzJS9hzLoYER7Un6mz6RaPdFYq”

We then decode it with ”base58” and convert it to a hex-encode hash value in

line 16. Now we need to pass the ”receiver address hash” to the Keybase API and

request the matching root block of a Merkle tree as it is showing in line 23 of listing

2.4. We then receive the corresponding Merkle tree’s root and put it in a variable in

line 24.

When we receive the value for root, we look for the ”sig” field that is the signature

of the hash of the Merkle trees root block. This value should match with the value

that we found in “receiver address hash”. If they match we can be sure that the

hash of that signature that Keybase is claiming to have is correct and is correctly

published to the blockchain. After getting the root we can use a “username” to query

the Keybase API to receive the user data corresponding to username specified in the

line 31. In order to do so, we give the Keybase API the root hash and we get the

actual root block as it is shown in line 36. Now we can start to descend from the root

to the leaf node we have to keep in mind that the path from the root to a user’s leaf

node starts with the node that is indexed with the first character of that user’s user

id. The next node would be indexed with the first two characters of that user’s user

id and with this pattern we would reach the leaf node corresponding to that user as

12This address in mentioned in Keybase official documentation website and the expenditures are
followed from https://www.blockchain.com/btc/address/1HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz

42

it is shown in the lines 41 to 49. If the last statement matches the last statement

on our sigchain, we can have confidence that Keybase is pushing the sigchains to the

blockchain with honesty.

1 # Finding the latest Keybase insertion
2 # into Bicoin blockchain
3 #--
4 import re # Regular expression operations
5 import base58
6 from bs4 import BeautifulSoup
7 import json # to enable working with json files
8 from base64 import b64decode # for decoding a Base64 encoded

string
9 from urllib import request # to enable working with urls

10 from binascii import hexlify # to convert binary data to hex -
encoded

11 from hashlib import sha512 , sha256
12 #--
13 Keybase_address = "1 HUCBSJeHnkhzrVKVjaVmWg2QtZS1mdfaz" #This is

Keybase ’s wallet address
14 url = "https :// blockchain.info/address /%s?format=json" % (

Keybase_address)
15 receiver_address = json.load(request.urlopen(url))[’txs ’][0][’

out ’][0][’addr ’]
16 #The line above gives us the address that Keybase has sent the

bitcoin to
17 receiver_address_hash= base58.b58decode_check(receiver_address).

hex()
18 receiver_address_hash = ’38482

d2daf98ee6c04b2e2fd32981de6e78a3b60 ’
19 # receiver_address_hash = ’38482

d2daf98ee6c04b2e2fd32981de6e78a3b60 ’ was used
20 # in the Keybase documentation for Monday 14 Jul 2014 as an

example
21 #The line above converts it to a hex -encoded hash value
22 #-----------------------------
23 keybase_api = "https :// keybase.io/_/api /1.0"
24 url= "%s/merkle/root.json?hash160 =%s" % (keybase_api ,

receiver_address_hash)
25 root = json.load(request.urlopen(url))
26 # looking for the root block matching with the value we found

for receiver_address_hash
27 # looking for the ’hash160 ’ value that should match the value we

found in receiver_address_hash
28 #--
29 username = "samanfar"
30 url = "%s/user/lookup.json?username =%s" % (keybase_api , username

)
31 user_id= json.load(request.urlopen(url))[’them ’][’id ’]
32 #user_id was "4 a35d1e3eb7a1542babcad5035458719"
33 root_hash = ’c6f881691c7a5126d5334c8fd9af2d240025e34cd5c6618ac6
34 dae0737abad20354104df6c2c8ebbbc 4970

aedf3a92bdb42d20441d639309a8f7d375c80f7bf09 ’
35 #root hash can be found when we receive the root on line 24
36 url = "%s/merkle/block.json?hash=%s" % (keybase_api , root_hash)
37 block = json.load(request.urlopen(url))
38 block = json.dumps(block) #converting block to string
39 #This gives us the root block of the cooresponding root hash

43

40 #with data regarding username =" samanfar"
41 #--
42 for i in range(1,len(user_id)):
43 temp = json.loads(block)
44 pfx = user_id [0:i]
45 next = temp.get(pfx)
46 if next == None:
47 break
48 url = "%s/merkle/block.json?hash=%s" % (keybase_api , next)
49 block = json.load(request.urlopen(url))[’block ’]
50 data = temp[user_id][1]
51 print(data)

Listing 2.4: - Code is adopted from Keybase official website [15]

With these steps, a user can consult the Bitcoin blockchain and retrieve the afor-

mentioned user data and check if the latest statements on sigchains of Keybase users

are actually the same as the ones that are retrieved from Keybase server (ssumming

that the value that Keybase wrote to blockchain was the correct value). This pre-

vents Keybase from discarding new link statements to sigchains undetected due to

the fact that the latest statement in a user’s sigchain will not match the one that can

be retrieved from Bitcoin blockchain.

In this section we have covered some fundamental concepts regarding the compo-

nents that are being used in our proposed design in Chapter 4.

2.7 Related work

Lerner et al. [24] have pursued the same goals that we aim to achieve, making end-

to-end encrypted email accessible for users by proposing a solution to address key

management issue. They developed a prototype mail client that makes use of Keybase

to enable users to send encrypted email. Users input their recipient’s Keybase account

handle (or search for them using their names or supported social media accounts)

alongside their email address. Their client, called Confidante, then shows them their

recipient’s Keybase account within a drop down menu and users are required to

manually verify the Keybase account of their recipients by clicking on them.

44

Our design differs from Confidante in three aspects:

1. We do not require a new mail client, but rather enable users to send end-to-end

encrypted email to their recipients by configuring and using any mail client that

supports X.509v3 certificates. Hence, both parties need not use the same mail

client or a specific platform. For our test purposes, as mentioned in Chapter 4,

we have used Microsoft Outlook mail client.

2. We use standard, self-signed X.509v3 certificates that have user’s Keybase ac-

count handle embedded in the “Subject Alternate Name” field. This binds a

user’s public key, email address, and social identity all together.

3. We rely on a manual check of the recipient’s Keybase profile by the user either on

the first time that they either download the certificate/have received it from any

other channel or while a certificate renewal happens (e.g., attachment from an

email). Our users can save those certificates within their mail clients (assuming

that the mail clients support saving certificates) and will not need to check their

recipient’s Keybase profile unless the certificate is detected by the mail client

to be invalid either because of a change or a revocation.

Chapter 3

Threat model and requirements

In this chapter we describe the threat model and requirements. Our proposed design

consists of two main parts. The first part is Keybase, which is being used to bind

users’ social identities with their public keys. The second part is ACME, that is being

used to automate the certificate issuance which binds users’ email addresses to their

public keys. Our threat model consists of three main parts:

1. threats concerning interaction with Keybase.

2. threats concerning interaction with ACME .

3. threats that may arise while these two entities are interacting in our model.

The remainder of this chapter is as follows. Section 3.1 discusses Keybase’s threat

model, followed by ACME’s threat model in Section 3.2. Section 3.3 presents our

design’s threat model.

3.1 Keybase threat model

Based on Keybase’s documentations on their website, Keybase has identified and

addressed some attack types that can threaten its integrity. Keybase documentation

45

46

states that DDos attacks targeting their servers ,and attacks that would target their

server-side code resulting in the compromised server sending corrupted data to the

legitimate Keybase clients could be vectors of attack against Keybase [21]. They also

point out that a compromised Keybase client could be another threat. However, this

could be achieved by corrupting Keybase servers to distribute the corrupted clients

to the users [21].

We discuss each of these threats in the following section.

3.1.1 DDos attacks against Keybase servers

DDos attacks are a concern for many web servers and online service providers nowa-

days. In these types of attacks, attackers target web servers and exploit their limited

connectivity resources to cripple their online services [12] [11]. As for Keybase servers,

if the Keybase clients can not reach the Keybase server to retrieve the sigchains of

the other Keybase users, verification process that is performed by the Keybase client

and the validity of the statements in other user’s sigchains can not be verified [21].

However, DDos attacks along with all other network-based attacks (such as DNS

flooding, DNS hijacking and etc.) against Keybase server is out of our scope in this

thesis.

3.1.2 Keybase server compromise

This kind of attack aims to prevent legitimate clients from retrieving sigchains of other

honest users [21]. In this kind of attack if the server code and its signing keys are

compromised, the corrupted server can manipulate the legitimate data or manufacture

corrupted data. The legitimate Keybase clients that receive the corrupted data from

the presumably legitimate Keybase server would perform the verification on false

data [21]. This will be discussed in more details in Server-side threats, in Section

47

3.3.2.

3.1.3 Defence mechanisms for defending against server cor-

ruption

Keybase claims that a feature in Keybase’s sigchain design and with the help of

third parties that observe the status of Keybase’s Merkle root pushed to the Bitcoin

blockchain it can defend against server compromise threats.

In the design of sigchain, each of the statements have a sequence number. It is

crucial to keep in mind that these sequence numbers should be incremented by one

each time that there is a new statement being added to a specific sigchain and none

of the statements will be removed from the sigchain (by design) at any point in time.

In other words even for removing a key or a device the statement is not just simply

removed from the sigchain but a revocation statement is added to the sigchain [21].

Also as discussed in Section 2.4.4, Keybase frequently updates its Merkle tree and

pushes a value to the Bitcoin blockchain in order to enable third parties to perform

validation and verification on the integrity of the Merkle tree that Keybase keeps.

This implies that regardless of the source of the data that the Keybase client has

acquired, as long as the data is signed using Keybase’s signing key and the Merkle

tree that its hash has been posted to the Bitcoin blockchain is identical to the acquired

Merkle tree, the client can trust it [21].

3.2 ACME Threat Model

ACME, falls into the Internet threat model. Best current practices for the inter-

net community are discussed in RFC 3552 [34]. Consulting RFC 3552, we use the

following partitioning and divide them into three main categories: Confidentiality,

Data Integrity, and Peer Entity Authentication. The ACME RFC (RFC 8555) also

48

follows these principles and addresses security issues in its security consideration sec-

tion. These security issues will be discussed in this section exactly as they have been

pointed out by McCarney [27].

While discussing ACME, the RFC 8555 has analyzed ACME server’s communi-

cation with other hosts on the Internet in two different channels as shown below:

• An ACME channel: ACME HTTPS requests are exchanged within this channel.

• A validation channel: In this channel ACME server transfers requests in order

to validate a client, and seeks to verify a client’s control of a specific identifier (in

this thesis, user’s email address and Keybase account handle bound together).

]

Figure 3.1: Communications Channels Used by ACME. ACME channel mostly
consists of inbound HTTPS connections towards the ACME server, and the valida-
tion channel is outbound connections such as HTTP and DNS requests that involve
demonstrating control of DNS-related resources for validation purposes. The picture
is adopted from RFC 8555

Threats against ACME can target each of these channels. However, due to the

differences between these channels the attacks would be different. ACME channel

is used for communication between the ACME server and the ACME client. The

communication on this channel is inbound HTTPS connections that the ACME client

makes towards the ACME server [4]. On the other hand, the Validation channel is

a channel in which the ACME server performs validation on client’s control over a

specified identifier. These communications are the HTTP connections made from the

ACME server (outbound) or in some cases DNS requests [4]. It is noteworthy that

security concerns are not always independent from the other channel. Although the

49

RFC 8555 claims that ACME’s goal is to be secure about active and passive attackers

on each of those channels but when an attacker can have control on both channels at

the same time some concerns may arise [4].

3.2.1 Authorizations on ACME

Anyone that needs authorization from the ACME server can attempt to send an au-

thorization request for an identifier of their choosing to ACME servers (in this thesis,

an email address or Keybase account handle are both identifiers). They then receive

challenges from ACME server that they need to complete in order to be authorized

for the specified identifiers. This is done by account and key registration, followed by

sending a “new-order” request with the registered account key [4]. ACME has put

in place two challenges for authorization, and the intent is that these challenges can

only be completed by someone who [4]:

1. is in possession of the private key that corresponds to the registered account

key pair on the ACME server; and

2. has control over the specified identifier (i.e., an email address in this thesis)

There should be a bond between the validation responses and the registered ac-

count key pair in order to avoid attacks in which a middle-person tries to target

ACME HTTPS requests (on validation channel) and advertise an account key of

his choosing instead of legitimate user’s key [27]. Such attacks can be mounted as

follows [4] (Figure 3.2):

1. Legitimate user (legitimate owner of the identifier specified) registers a key pair

(A) for the account.

2. Middle-person registers key pair (B) for an account.

50

3. Legitimate user sends a new order request that is signed using their key (A)

4. Middle-person intercepts the legitimate user’s request and substitutes it with

the same new-order request for user’s identifier, signed using his account key

(B).

5. Middle-person forwards challenges posed by ACME server to the legitimate

user.

6. The user responds to the validation challenge.

7. ACME server proceeds to validate the response and verifies the response pro-

vided by the legitimate user as shown in Figure 3.1 (this can be checking a DNS

record for a TLS web server, or some other methods).

8. Due to the fact that these challenges were regarding a response that was signed

using account key (B), ACME server authorizes account key B (the middle-

person) as the legitimate registered key instead of account key A (the legitimate

owner of the identifier). This results in issuing a certificate for the middle-

person’s identifier with key B.

As noted in step 6, the user needs to provide a validation response to ACME

server. For TLS web certificates, these could be posting a challenge on a specific

DNS directory, or some alternative methods. This scenario would be different if the

identifier was an email address and the response that the user provided required email

owner’s signature on it. As discussed in Chapter 5, this is one of the reasons that, in

our proposed design, some attacks based on these methods are mitigated.

All of the challenges that are posed to the user in the standard ACME process,

are validation queries made by the server that need to be signed with user’s private

key for proving key ownership and control over the specified identifier at the same

51

]

Figure 3.2: Middle-person Attack on validation channel without Account Key Bind-
ing showing the steps 1-8. Redrawn from RFC 8555.

time. Proving the ownership of the key and the identifier is done over validation

channel with in validation response step. The main point of this challenge regarding

identifiers is requiring the client to perform such an action that can be performed

only by the legitimate owner of that identifier can perform. Some examples of these

challenges are [27], [4]:

• HTTP: Putting some files under the “.well-known” directory1 of a web server

that host’s the specified domain.

• DNS: Providing DNS resource records for the specified domain.

• Email: signing over a received challenge (by email) and sending that to the

server (this may involve using ACME clients to send that response)

1/.well-known is a URI prefix in a website for well-known locations that is defined by IETF

52

Attacks are not the only source of violations in these assumptions. Misconfigura-

tion (on servers) also can lead to a violation. As an example, a user can falsely “prove”

ownership of a web server that has not been configured correctly. If the server allows

other users (not only the administrators) to write entries to .well-known directories,

any user can prove the ownership of the server, responding to the HTTP challenge

that was mentioned above [27]. However, in case of email addresses as identifiers,

this concern would not be applicable unless the user in any way gives the access to

his email address to another entity so the entity can also access the contents of the

messages sent to that email address in order to try to prove the ownership on that

email address.

This issue is close to an issue with hosting providers. Those who use hosting

providers are at risk because if the hosting server is compromised by an attacker, the

attacker can request the ACME server for certificate issuance and they would succeed

based on the fact that they have access to the hosted domain [4].

An attacker that is a middle-person on the ACME channel needs to also convince

the validation server that he has control over a specific identifier. This can be at-

tempted through validation channel and the requests are bound with the keys that

are advertised to ACME server over key registration phase. Thus, it is not possible

for that attacker to validate the identifier with the key that he has chosen. In other

words, a passive middle-person on the validation channel, or any attacker (active or

passive) performing middle-person on ACME channel, can not proceed to the cer-

tificate issuance since it can not pass the validation challenges with the key of his

choosing [4]. A passive middle-person on the verification channel can only reply the

responses that are being transmitted over the channel, provided that, by design, those

responses are bound to the keys that are registered—they can not be used for any

other purpose [4].

On the other hand, an active middle-person on the verification channel can pursue

53

normal ACME transactions and prove the ownership of the identifier with his own

key as it was mentioned above regarding users that are using public hosting providers

and has outsourced their DNS or web service operations. In order for a middle-person

attack to succeed, the middle-person is required to act as an active attacker on both

channels [27], [4].

RFC 8555 also mentions that another point that attackers can target is exist-

ing vulnerabilities in Internet routing protocols (e.g., RFC7132 discusses classes of

threats against path security in routing) and attempting middle-person attacks over

the validation channel. These kinds of attacks usually depend on the position of the

attacker in the route to the server. As it is quite difficult for attackers to maintain

control over various locations of the route, they are usually localized. These threats

can be mitigated if the ACME server tries to perform DNS and HTTP queries through

various routes, and any inconsistencies could result in detection [27], [4].

Since ACME is a protocol for managing certificates that performs key-identifier

binding, the goal is to ensure that bindings are correct and only authorized entities

are capable of managing certificates. This can be divided into two main objectives [4]:

1. Authorization over an identifier should only be possible by an entity that legit-

imately controls the identifier.

2. An account should never use another accounts key authorization

3.2.2 Denial-of-Service attacks

Denial-of-service (DoS) attacks are beyond our scope in this thesis. However, due to

the fact that ACME protocols operate over HTTPS, rate limiting for TCP and HTTP-

based connections should be put in place [4]. An example mentioned in the RFC 8555

is that an attacker may cause ACME server to send many outgoing connections (for

the purpose of the validation) to a victim domain. This can be done by sending

54

ACME server repeated authorization requests for that victim domain which could

cause the domain to suffer insufficient resources [4].

3.2.3 Request Forgery

As mentioned in Section 3.2.1, ACME server performs an HTTP request to domains

for HTTP validation challenge purposes. This can be used by an attacker to force

ACME server to perform an HTTP request to a domain that the attacker has spec-

ified. The validation process starts with a HTTP GET request from ACME server

to the specified domain. Any ACME client is capable of making a query to a specific

domain name using ACME server. It is known that some ACME implementations

include some information gathered from the response from the validation server. This

enables an adversary to get some information from his target web server even though

that domain may have been inaccessible for him directly. This is called Server-Side

Request Forgery (SSRF). The only limit to these kinds of attacks is that the attacker

can only specify the target URL and has no control over the path that ACME server

takes to perform the HTTP request [27], [4].

3.2.4 Certificate issuance policy

Checking if an entity has control over an identifier isn’t the only check that is required

before issuing a certificate for an identifier. There are various other checks that

ACME server as a CA must perform before proceeding to certificate issuance [4].

Most of these additional checks mentioned in the RFC 8555 are regarding issuance

of certificates for web domain. Some of the examples are checking if the clients have

agreed to subscriber agreements or checking various constraints regarding the web

domains such as the domain name including “*” in their leftmost label [4]. However,

in our case, most of these check would not be applicable and simple checks such as

55

the user agreements, the identifier (email address) being valid, or not being from the

domains that have been banned would simply suffice.

3.2.5 Replay protection

ACME servers make uses of nonces to protect against replay attacks. This is done

by adding an obligatory nonce to all ACME POST requests and the signed responses

from the clients must, by design, include that nonce within them. The list of used

nonces are kept with the server which allows comparing the nonces within the requests

with the ones that server has issued [4]. All of the JSON Web Signature (JWS)

received from ACME clients should have the nonce in their protected header encoded

according to the Base64 URL encoding2 [14]. The method used for creating and

comparing nonces is up to the ACME server, as we have our own method in Chapter

??. ACME server transfers the nonces to the clients by an HTTP header field called

“Replay-Nonce”. This header field is required in both the successful and unsuccessful

responses to POST requests [4].

3.3 Our Design’s threat model

Both Keybase and ACME protocol have their own threat models and have aimed to

eliminate various threats. The assumed threats for our design based on the threat

model of its key components (Keybase and ACME) are categorized as follows:

(A) middle-person attacks

(B) server-side threats (both Keybase and ACME)

(C) client-side threats (both Keybase and ACME)

2It is described in section 2 of RFC 7515

56

(D) impersonation attacks

(E) adversary controlling user’s accounts

For each of these categories, three main parts of our threat model mentioned in

Chapter 3 will be considered. DDoS attacks against Keybase or ACME servers are

beyond our scope. We denote threats with “T” and will address the effects of our

proposed design on these threats in Chapter 5.

3.3.1 Middle-person attacks

T1: Middle-person attacks over ACME channel and the Validation Channel,

shown in Figure 3.1.

T2: A middle-person attack over the communication channel between Keybase

client and Keybase servers during initial registration with ACME and later

communications.

3.3.2 Server-side threats

T3: An advanced attacker showing Alice’s and Bob’s clients different Keybase

Merkle roots that are signed.

The attacker must fork the Merkle root and must always keep these forks. This

fork can not be merged with the legitimate Merkle root since the inconsistency would

allow detection by the users who communicate out-of-band and the duplicate roots

would become obvious [21].

A server that has been compromised can either continue to be honest and avoid

detection, or it could try to provide corrupt data that can be detected by users. A

server that is controlled by an attacker can [21]:

57

1. Ignore updates to users’ sigchains or try to rollback a specific user’s sigchain.

2. Performing a fake key update and adding signatures to the end of a user’s

signature chain.

3. Maintain different site states of Keybase and providing these different versions

to different users.

For checking Keybase server’s honesty, Keybase clients are of a great importance.

These clients always check the integrity of users’ sigchains and, in the event of a

rollback, these clients can detect the malicious act and prove Keybase server’s dis-

honesty [21]. While Reza is following Alice, if there was a malicious roll back on

Alice’s sigchain or the integrity of Alice’s sigchain was compromised (either by server

compromise or Alice being compromised), Reza’s client would alert him about the

situation. The clients do this by constantly checking the Merkle tree root is being

published by Keybase and crosschecking that with known sigchains. If the checks

were completed, clients would proceed to sign proofs and these proofs would act as

reference for other checks in the future. This means that Keybase clients play a

crucial role in safety of the Keybase environment, and their integrity is critical [21].

Keybase has put in place several methods to increase the safety and integrity of

its clients. The first one is that they have an open API and they refer to their open

source client as a reference client. They have allowed software developers to create

their own clients in the language of their choosing that can interact with their open

API. Second, all the updates to Keybase client is signed by Keybase’s private key

and they claim that the key is kept offline to reduce the chance of key compromise.

This allows users to not just trust the security of their download over HTTPS, but to

trust the downloaded client based on the integrity of Keybase’s signature on it [21].

It is noteworthy that users who are not using the Keybase client, and are instead

opting for the Keybase web client, do not benefit from these assurances and are

58

vulnerable to server compromise. However, as mentioned before, if there were enough

users that were using Keybase’s clients, they could detect the server misbehaviour or

compromise and alert other users [21].

Also on the ACME side, the compromise of the server would be one of threats. The

adversary will try to compromise the server and try to issue an incorrect certificate

with the public key of the adversary instead of the public key of the legitimate user.

T4: ACME server compromise resulting in issuance of false certificates, signing

false values for their Merkle root, and sending a false root value to the Bitcoin

blockchain.

T5: Keybase server compromise.

3.3.3 Client-side threats

Both Keybase and ACME have client software that must be installed on a user’s

device. Keybase does have an official client software, which is open-source with

updates signed by Keybase. ACME does not have an official client software, but

a few recommended unofficial ones. ACME does not take responsibility for those

clients and recommends caution while downloading and using them to interact with

an ACME server.

T6: User installing a malicious Keybase client.

T7: User installing a malicious ACME client.

3.3.4 Impersonation attacks

An adversary may try to impersonate a legitimate user by creating social media

accounts that resemble the legitimate user’s accounts, or attempt to impersonate the

59

legitimate user to either Keybase or ACME server.

T8: Attacker impersonating a legitimate user to interact with Keybase.

T9: Attacker impersonating a legitimate user to interact with ACME server.

T10: Attacker impersonating a legitimate user by creating fake social media

accounts.

3.3.5 User account compromise

Adversaries may gain access to user’s accounts by password compromise or other

means. These adversaries may gain access to a user’s email account, Keybase account,

social media accounts, or all of these at the same time. Alternatively, they can try

to infiltrate one of victim’s devices and attempt to send and receive email from that

device, or look for the private key stored locally. Further, they could try to add their

own device to the list of the victim’s devices on Keybase.

T11: Attacker gaining password access to a user’s email address.

T12: Attacker gaining password access to a user’s Keybase account.

T13: Attacker gaining password access to a user’s social media accounts.

T14: Attacker gaining physical access to a user’s devices either by possession

or by using client-side malware.

In Chapter 5 we argue that these attacks are addressed by our design and the

attacker needs to gain access to multiple components at the same time (email account,

Keybase account, user’s registered devices) to undermine the system.

Chapter 4

Design and Proof of Concept

In this chapter, we discuss the mechanism of our design. We describe the required

actions and assumptions. It will be followed by a discussion on a proof of concept to

demonstrate the feasibility of our proposed design; aiming to emphasize the changes

that are required to enable an ACME server and an ACME client to interact with

Keybase in order to issue email certificates for users.

Keybase interactions with the user are done through the Keybase client software.

The user completes the aforementioned registration process with Keybase (Section

2.4.7) and puts two keys on their profile. One of them to be used in the encryption

certificate, and the other one to be used in the signing certificate. For this proposed

design, the functionality of Keybase client does not need to change except for enabling

it to work with S/MIME instead of PGP as mention on page 21. The changes required

to the ACME test server are located in Section 4.1.3. In Section 4.1.4, we proceed

to discuss the changes required in an ACME client to interact with the test server.

In Section 4.2, we demonstrate the process of two parties sending an email to each

other. Figures 4.2 and 4.5 will be the main references for following the steps and to

show all the interactions between the components of our proposed design.

The required actions for a user to take in the specific order are:

1. User needs to register on Keybase and perform the verification process on a

60

61

supported social medium.

2. User needs to interact with ACME server to obtain certificates.

3. User needs to upload their acquired certificates to their Keybase public folder

to be accessible by other Keybase users.

4. User needs to download a recipient’s certificates (for each party they wish to

send or receive email from) from that recipient’s Keybase profile (within their

public folder) and manually verify that the social media accounts listed in the

Keybase profile referred to by each certificate match the user’s personal knowl-

edge upon cross-checking these social media accounts of that recipient in real

time.

5. User needs to integrate his own acquired certificates and his recipient’s certifi-

cates with his mail client.

Three main assumptions should be taken into account:

1. Users should have a working email address connected through a secure channel.

2. Users should be active on at least one of the social media platforms supported

by Keybase to enable Keybase to perform verification on that social media

account.

3. Both key pairs used on Keybase and ACME should be the same key formats

(e.g., S/MIME).

Any user that wants to send or receive email from another user securely (as shown

in Figure 4.5), is required to have two clients installed on their system: a Keybase

client, to register on Keybase and interact with it; and an ACME client, to interact

with the ACME server in order to perform account registration, perform validation

62

process, acquire a certificate, and have certificate management (i.e., renewing an

expired certificate).

4.1 ACME Server

The objective of the ACME protocol is to automate the process of obtaining and

managing certificate with very little human intervention. This is done using the

ACME client on user’s device acting as a certificate management agent. As it was

mentioned in Chapter 2, most ACME servers currently issue domain-validated (DV)

web certificates. However, with a small change to the server and client-side code, they

can issue X.509 email certificates as well. ACME server receives an email address

instead of a valid domain. ACME server will identify the user with their email

address. The first time the client software interacts with the ACME server, the client

proceeds to create fresh pairs of public-private keys or lets users reuse the keys that

they already have in the existing ACME server that is commercially used, one signing

key pair is generated for DV certificate issuance but in our design we will discuss that

we need two key pairs for signing and encryption. ACME client advertises the user’s

public keys to the server, and in the process the user is required to prove to the ACME

server that it controls the email address and has the private keys corresponding to the

advertised public keys. Since the user has previously generated two pair of keys for

their Keybase account, it is crucial that they use the same keys in this process. This

can be done by exporting the previously generated key pairs from Keybase client and

importing them into the ACME client.

4.1.1 Protocol for interacting with ACME server

The protocol for interacting with ACME server is:

1. The client software sends a request to ACME server including the email address,

63

user’s signing and encryption public keys, and the Keybase account handle of

the user.

2. The ACME server receives the request, creates a nonce, encrypts the nonce with

user’s public encryption key and sends it to the specified email address.

3. User proves ownership of the email address by being able to access the email

sent to that address.

4. User receives the encrypted nonce and copies it the ACME client.

5. The client software decrypts the nonce using user’s private decryption key, signs

the nonce with user’s signing private key and sends it to the ACME server,

which checks the signed nonce using the signature public key provided by the

user (for one of the certificates using ACME client) to see if the challenge is

satisfied. If the signature was valid, the ACME client checks if the public keys

on the specified Keybase account handle are the same public keys that are

presented by ACME client. If both public keys are identical, the ACME client

is authorized to perform certificate management for that email address.

6. The ACME server then sees the key pair used as “authorized key pair”, and

any request signed with that private key is accepted as validly representing the

corresponding user.

7. Two certificates will be issued by the ACME server (one for signature public

key, and one for the encryption public key) and downloaded through the ACME

client.

4.1.2 Challenges from ACME server

The challenge from ACME server has three main aspects.

64

Figure 4.1: Interaction with ACME server

1. The challenge is proving the ownership over the specified email address, since

the user needs to have access to the email account and open the mail sent by

ACME .

2. It is proving the ownership of the private keys corresponding with the public

keys that are presented to ACME server.

3. Since the public keys in the Keybase account and the public keys authorized

by ACME server are identical, evidence of ownership of the Keybase account is

provided as well.

65

Step 3 is based on Keybase registration process by which user has proven own-

ership of his public and private keys to Keybase. Also, due to the assumption that

public keys are unique, no other user has the same key pair.

After a successful authorization process and completion of the challenges, certifi-

cate requests, renewing, and revoking certificates are done by the ACME client to

issue certificate management messages and sign them with the authorized key pair.

4.1.3 ACME Test-Server

The test server is based on “Pebble”1 which is a miniature version of the actual ACME

server. Pebble is for testing purposes only. The code used for this implementation has

been modified in Java by Tshepo Kgengwenyane 2 and myself. The changes required

to make use of our proposed design, in an ACME server fit into two main categories:

• changes in validation process

• changes in certificate issuance process

Changes in validation process

Currently, Let’s Encrypt ACME servers perform verification challenges using two

methods [4]:

• HTTP-01 challenge: It is one of the most common methods in which, the

ACME server provides a token to the ACME client. The ACME client then

proceeds to put a file under “.well-known” directory of the user’s website. The

file has the token and a finger print of the user’s account key. The ACME server

then queries the web server to see the response [4].

1https://github.com/letsencrypt/pebble
2https://github.com/Poerilla/

66

Figure 4.2: The components of our design. This picture is a copy of Figure 1.1

• DNS-01 challenge: In this challenge the user’s ACME client receives a token

from the ACME server and is required to create a text that is based on the

received token and the finger print of the user’s account key. The ACME client

then puts it as a DNS record at ” acme-challenge.<DOMAIN NAME> ”. The

ACME server then queries the DNS server to find the record [4].

In order to accomplish verification for email addresses, we introduce another

method of authentication. In this authentication method, called “email-challenge”,

the ACME client needs to have other information about the user (instead of the do-

main name). The ACME server needs to receive the user’s name, email address, and

user’s Keybase account handle in addition to the account key finger print (hash of

the public keys that the user has given the ACME client in the registration process,

67

discussed in Section 4.1.4) that is used in the other methods as well.

We have developed a modified version of an ACME server for the users to create

an account with, and have used “Gmail API”3 to enable our ACME server to send

and receive email to interact with the users that are signing up to our server. There

is a simple interface web interface designed, as shown in Figure 4.3. Users input

their email address, and are required to create a password for their account with our

server. Users are also asked for their Keybase account handle to be added to their

data. Their data then is saved in a database for future logins (to their ACME account)

by the users. This process can be integrated with the ACME client, in which the user

can complete the sign up process and input the required data within the ACME

client. But in our tests, we have used a web interface to demonstrate a user’s sign up

process, and we have populated the database manually for test purposes, as shown

in the Listing 4.1. The server needs to interact with an ACME client that supports

the new verification method (email-challenge). The changes required for the ACME

client are discussed in Section 4.1.4.

In the code block, we have put the email address as the value in line 11 that

will be our “Subject Name”. The following lines (from 16 to 45) are the information

about the issuer of the certificate (our ACME server) that we have provided for our

own test purposes. We note that lines 5, 19, 25, 31, 38, 45 are hard-coded, whereas

in a functioning prototype, these would be inputs from another source.

Figure 4.3: A sample sign up page for our ACME server.

3https://developers.google.com/gmail/api

68

1 // Subject Name
2 certificate.subject.typesAndValues.push(
3 new pkijs.AttributeTypeAndValue ({
4 type: "2.5.4.6" , // Country name
5 value: new asn1js.PrintableString ({ value: "CA" })
6 })
7);
8 certificate.subject.typesAndValues.push(
9 new pkijs.AttributeTypeAndValue ({

10 type: "2.5.4.3" , // Common name
11 value: new asn1js.PrintableString ({ value: userData.email })
12 })
13);
14
15 // Issuer
16 certificate.issuer.typesAndValues.push(
17 new pkijs.AttributeTypeAndValue ({
18 type: "2.5.4.6" , // Country name
19 value: new asn1js.PrintableString ({ value: "CA" })
20 })
21);
22 certificate.issuer.typesAndValues.push(
23 new pkijs.AttributeTypeAndValue ({
24 type: "2.5.4.3" , // Common name
25 value: new asn1js.PrintableString ({ value: "CCSL" })
26 })
27);
28 certificate.issuer.typesAndValues.push(
29 new pkijs.AttributeTypeAndValue ({
30 type: "2.5.8.1" , // State
31 value: new asn1js.PrintableString ({ value: "ON" })
32 })
33);
34 certificate.issuer.typesAndValues.push(
35 new pkijs.AttributeTypeAndValue ({
36 type: "2.5.4.10" , // Organization
37 value: new asn1js.PrintableString ({
38 value: "Carleton Computer Security Lab"
39 })
40 })
41);
42 certificate.issuer.typesAndValues.push(
43 new pkijs.AttributeTypeAndValue ({
44 type: "2.5.4.7" , // Locality
45 value: new asn1js.PrintableString ({ value: "Ottawa South" })
46 })
47);

Listing 4.1: Adding the required fields for a certificate for our ACME server with
our own hard-coded data.

After creating an account and providing an email address, users are required

to provide the signing and encryption public keys that they have on their Keybase

profiles. This can be done through the ACME client by which users can advertise

69

their public keys (encryption and signing keys) to be associated with their ACME

account. However, in our tests, key advertisement has been performed manually due

to the difficulties mentioned in Chapter 4, page 60. After signing up, users then

will need to prove the ownership of their email address. There are plenty of ways to

proceed with the verification.

However, in our design, we have made use of the basic principle of the verification

process in the two challenge types mentioned above. The ACME server generates

a random nonce as a token and uses user’s public encryption key to encrypt that

nonce. Then, the ACME server sends it to the user’s email address. The user checks

their email address and copies the encrypted nonce included in the email’s body to

their ACME client. Then the ACME client decrypts the nonce locally using user’s

private encryption key and signs the nonce with user’s private signing key on the local

machine and sends that string to the ACME server. For this connection, ACME server

acts as a HTTPS server and the ACME client acts as a HTTPS client. The ACME

server checks the received string. If the signed string matches the token and the

signature on that verifies, this validates to the ACME server the email address based

on the fact that the user had access to that email address to receive an email from

that ACME server and, and also confirms the ownership of the private encryption

key used to decrypt the nonce and the private signing key, used to sign the message.

Now that the ownership of the email account has been verified, the ACME client

needs to verify if the keys that were advertised by the user in the ACME sign up

process are identical to the keys that are advertised on the Keybase account handle

mentioned by the user in the ACME registration phase. After verification of user’s

email address and key pairs, the ACME server makes a query through Keybase’s

API, specifying the account handle that the user has advertised. The Keybase API

responds with the sigchain of the user that the ACME account has queried. The

ACME client receives the response from the Keybase API and parses the text in

70

order to find the account handle. If the account handle in the response is identical

to the account handle that the ACME server has queried, it means that the ACME

server has received the right sigchain. The account handle can be found in line 18

in Listing 4.2. After parsing, since a user may have many keys on their Keybase

account, the ACME client makes a list of all the finger prints of the public keys that

are on the sigchain as one of them is shown in the code block in Listing 4.2 in line 25.

The code block in the listing is one of the statements (links) of a Keybase account’s

sigchain in a JSON format as it is shown below:

1 {
2 "seqno":8,
3 "payload_hash ":" b6ba46a2519a697128db3271e70d71ba87dbf4dd
4 7df02e2d0deb8b12e0ba411b",
5 "merkle_seqno ":2743121 ,
6 "sig_id ":"225 e4c52414d207ad3a0e16c0336a351db0e61e77fa649
7 107366 a24ab1595ce60f",
8 "sig_id_short ":" Il5MUkFNIHrToOFsAzajUdsOYed_pkkQc2ai",
9 "kid ":"012055 ab14b5bdf7e527fcf53683add21d8fa9aa2ead5cc18

10 6f8858ea886954a2a0e0a",
11 "sig":" hKRib2RZNjODM9hZFxuNakJtT1RKa05qTm1 aVE13W
12 W1Sak1qY3dNbUpqWlRZMlkyTm1OV05tTZXJzaW9uAQ ==",
13 "payload_json ":
14 "{\" body \":
15 {\"key\":
16 {\" eldest_kid \":
17 \"0120 f92d63fe30bdc2702bce66ccf5cf5180b850af8e12e5
18 0620 c5b0944ffa8a5e9e0a \",
19 \"host \":\" keybase.io\",
20 \"kid \":\"012055 ab14b5bdf7e527fcf53683add21d8fa9aa2
21 ead5cc186f8858ea886954a2a0e0a \",
22 \"uid \":\"4 a35d1e3eb7a1542babcad5035458719 \",
23 \" username \":\" samanfar \"},
24 \" merkle_root \":
25 {\" ctime \":1526406245 ,
26 \"hash \":\" ceac80890c5ea850dd83ed361fca192739865ae
27 954 ebd805f6dee95cd7078e35ad90392caf9a9af8b6cd4
28 15 c086e071bbf2a89cae0ed9e7b2334ac610278fd4f \",
29 \" hash_meta \":\" b9c09fa304b6612ae20a34c70e067a6c34
30 15 ef3962601d96b63c860eef392b62 \",
31 \"seqno \":2743119} ,
32 \" sibkey \":{\" fingerprint \":\"

c19f0091eec033eb7190f9ee17b0cb2be05f4e18 \",
33 \" full_hash \":\" d92ef85ed123fd34ddc5577e71d392f0c9
34 57 c30508ca6a97a5a394151286f18d \",
35 \" key_id \":\"17 B0CB2BE05F4E18 \",
36 \"kid \":\"01014 a029a0645ada750aa8d3e4e3b7d7a1bbbe2
37 1ac2b6ed60dac1c2951ffd70a8c20a \",

71

38 \" reverse_sig \":\"-----BEGIN PGP MESSAGE -----
YjhlYzd5fzCyxiAtkQ4GU0SSK EiPY8+
yqMTw7VWkjh26PoowgkK0I2hLikMjE02CIo =\\n=URSE\\n
-----END PGP MESSAGE -----\\n\"},

39 \"type \":\" sibkey \",\" version \":1} ,\" client \":{\"
name \":\" keybase.io go client \",\" version
\":\"1.0.48\"} ,\" ctime \":1526406282 ,\" expire_in
\":504576000 ,

40 \"prev \":\"5077394 b3669c86aa5034b8ec7ed3aefd55becb
41 3241121 d4dcb723890f35c987 \",
42 \"seqno \":8,
43 \"tag \":\" signature \"}",
44
45 "sig_type ":1,
46 "sig_version ":1,
47 "ctime ":1526406282 ,
48 "etime ":2030982282 ,
49 "rtime":null ,
50 "eldest_seqno ":1,
51 "sig_status ":0,
52 "prev ":"5077394

b3669c86aa5034b8ec7ed3aefd55becb3241121d4dcb723890f35c987",
53 "proof_id ":null ,
54 "version ":null ,
55 "is_eldest ":0,
56 "fingerprint ":"",
57 }

Listing 4.2: Part of the response from the Keybase API that has the statement in
which a user has added a PGP key to their account

The server finds all the “key ids” (a key id is the finger print of the key shown in

line 25). If the key fingerprints of both keys that the user has advertised to the ACME

server in the ACME registration phase are found in the list of the key fingerprints

from user’s sigchain, the ACME server can verify that the user has ownership of

the Keybase account based on three assumptions. First, the user has proven the

ownership of the private keys previously in the ACME registration process. Second,

the user has proven the ownership of those keys to Keybase while interacting with

Keybase. Third, the assumption is that the user is the only person with access to

those private keys and he hasn’t shared them with any third party.

We have used the skip-validation option of the Pebble server which is enabled by

using the code below in the Pebble server [18]:

PEBBLE_VA_ALWAYS_VALID=1

72

This is because our ACME server doesn’t accept PGP keys as mentioned in Chap-

ter 2 on Page 21. In order to simplify our testing, we have skipped the validation

and put in the validated keys manually in our ACME server. Although this did not

allow us to fully run a test on ACME and Keybase API interaction but assuming

that the keys on the Keybase account and the keys presented to the ACME server

on the ACME registration phase are the same and the verification process has been

successful helped us to proceed with the remainder of the test and issuing a sample

certificate for an email address since, this is a functionality test and it is not a security

test.

Changes in certificate issuance process

ACME Pebble is designed to issue TLS domain validated certificates. However, in

order to enable it to issue email certificates we have changed some of the parameters

required to issue a certificate.

• putting a user’s email address in the “subject name” field of the certificate.

• adding the user’s Keybase account handle to the “Subject Alternate Name”

field of the certificate.

After the verification process and based on the manually-entered data as a user’s

information, the ACME server proceeds to issue a certificate with the aforementioned

conditions and proceeds to sign the certificate with its private signing key. The server

certificate and private key were generated using “OpenSSH”4. As you may have

seen in Figure 4.4, we have acquired a certificate for our server and we assume that

our server’s public key is recognized by the relying parties email client software. As

discussed in Chapter 4, email client users should know the public key of the ACME

server issuing the email certificate that others must rely on. This can be accomplished

4https://www.openssh.com/

73

either by advertising this key through the ACME certificate server’s website or by the

ACME server becoming a trust anchor that mail clients would add to their databases.

Figure 4.4: A self-signed certificate generated by OpenSSH for the ACME server

4.1.4 Required changes for the ACME client

In order to interact with the ACME server, ACME clients should be programmed to

use corresponding verification methods. As we have changed the verification method

in our ACME server, there are a few changes that are needed from the client-side.

There are many clients that are recommended on Let’s Encrypt’s website but there

is no official client endorsed by Let’s Encrypt. It is mentioned on their website that:

“The ACME clients below are offered by third parties. Let’s Encrypt does not control

or review third party clients and cannot make any guarantees about their safety or

74

reliability.”5. In our tests we have not modified any ACME client, and we have

manually input the data (hard-coded) to the ACME server in order to pursue the

verification process by the server as mentioned above. However, the changes required

to an ACME client are:

• changes in validation process

• changes in user input

• changes in interacting with users system

As an example, for clients that are written in Python, there is a python library

that has implemented a class called, ACME validation challenge class [25]. This class

is the implementation of the challenges accepted by ACME in RFC 8555 [4], as it is

shown below:

class acme.challenges.DNS01(**arguments)

This is for a DNS01 challenge mentioned in Section 4.1.3 which is defined in the

“acme-python” documentation [25]. To change an ACME client to work with our

proposed design, a new email-challenge should be added to the acme-python library if

the preferred language was Python. Then, the client can be modified as we mentioned

in Section 4.1.3 to accept this kind of challenge instead of HTTP and DNS challenges.

There is a need to modify the user input in the ACME client. The ACME client

should require a user to input other information such as their email address, Keybase

account handle. These would be sent to the ACME server in order to proceed with

the certificate issuance process.

Due to the fact that most of the ACME clients are developed to acquire a TLS DV

certificate for websites, they are required to interact with web service software (i.e.,

5https://letsencrypt.org/docs/client-options/

75

Apache) on the user’s machine. These requirements should be removed and instead,

these clients should present the challenges generated by the ACME server to the user

and the user can copy the output to the email that should be sent to the ACME

server (mentioned in Section 4.1.3).

Other certificate management functionalities of the ACME client (e.g., renewing

the expired certificate) should change due to the fact that the ACME client should

notify the user about the new certificates so the user can upload the new ones in their

Keybase file system. We have not made these changes as part of the work described

in this thesis.

4.2 Sending Encrypted Email Between Two Par-

ties

Assuming that user has a valid account on Keybase and has obtained two email

certificates via ACME (one for encryption and one for signing), we now explain the

steps involved for an end-to-end encrypted email exchange between the user and

another user with the same conditions. Two parties are named Alice and Bob, and

Alice intends to send Bob an email. Another assumption is that Alice can identify

Bob’s social media accounts on Bob’s Keybase profile and verify that the owner of

those social media accounts is Bob (this is what we mean by “manual verification”).

For this scenario to work, the sender (Alice) needs to have receiver’s (Bob) certificate

in order to encrypt email with Bob’s public key.

Keybase is acting as a key directory that doesn’t require users to trust in the

directory itself (described in Section 2). By using Keybase file system (KBFS), users

can host their certificates on their Keybase profile. All Keybase users have a public

and private folder on their account which can be used to upload files for public use

76

in their public folder, or for private use in their private folder. Users can access other

Keybase users’ public folder from their Keybase client or through Keybase website.

A user must either know the other user’s Keybase account handle or one of their

supported social media usernames to be able to search for their Keybase profile and

visit their public folders, either from their Keybase clients or through the website.

Through the Keybase design by which all of the files on every user’s KBFS is signed

by users private key, if Alice is downloading Bob’s certificates from Bob’s KBFS, she

has some assurance that the certificates are signed and uploaded by Bob himself.

This is because all uploads to KBFS are signed on the Keybase client side. Alice’s

Keybase client is designed to check Bob’s signature based on Bob’s public key on his

profile, while trying to download his certificates. In this scenario, we assume that

both Alice and Bob have uploaded their email certificates on their Keybase profile

under their public folders. The steps for Alice to send Bob an encrypted and signed

email are shown below and in Figure 4.5

1. Alice registers an account on Keybase server. She proves ownership of at least

one of her social media accounts to Keybase and creates two key pairs on her

Keybase profile.

2. Alice Registers an account on ACME server and proceeds to acquire two cer-

tificates from ACME server (for signing and encryption purposes).

3. Alice’s ACME client downloads the issued certificates from ACME server.

4. Alice uploads her certificates to her public folder on her Keybase profile (taking

advantage of Keybase Filesystem mentioned on page 13). It is noteworthy that

steps 1-4 should be performed by Bob as well in the same order. However, they

are not illustrated in the figure.

5. Alice looks for Bob’s Keybase profile on her Keybase client or on Keybase

77

website, either by searching for Bob’s Keybase account handle or by searching

Bob’s known social media account handles that are bound with his Keybase

account.

6. Alice proceeds to download Bob’s email certificates (one for encryption and one

for signing) from his Keybase public folder using her Keybase client or through

the website. She saves the certificates within her mail client’s saved certificates

(the procedure of saving may vary through different mail clients but the client

should have the ACME server as one of its trust anchors).

7. She then proceeds to use her local email client to send a signed and encrypted

email to Bob. The email client will attach, to the email, Alice’s own email

public key certificates.

8. Bob receives Alice’s email. His client finds Alice’s certificates attached. The

mail client checks the validity of the CA’s (ACME server’s) signature on the

certificates. This relies on the mail client having the ACME CA public key

as a trust anchor. If the certificates are valid, the mail client proceeds to

decrypt the email. Bob needs to open Alice’s attached email certificates within

his mail client (Bob will need Alice’s encryption certificate for sending her an

encrypted email later). Bob should find Alice’s Keybase account handle in

Subject Alternative Name field. Bob proceeds to copy the Keybase account

handle he found within the certificates into a browser address bar or a Keybase

client and visit it. If Bob visits the profile and can identify the account owner

Alice knowing her social media accounts, he can gain confidence that this email

is originated from Alice herself. Then, he adds Alice’s certificates to his mail

client’s saved certificates.

9. Bob can encrypt a message using Alice’s encryption public key, sign the message

78

Figure 4.5: Mail exchange between Alice and Bob explaining steps above

using his own signature private key, and send the encrypted, signed message to

Alice’s email address. Alice will receive a signed and encrypted email from Bob,

and since she had previously saved Bob’s certificates, the mail client verifies the

signature and decrypts the email (we haven’t tested an email exchange on a

specific mail client but, most mail clients such as Microsoft Outlook have the

ability to perform these procedures already).

79

Figure 4.6: Account setting page for Microsoft Outlook 2016 (version: 16.0.4954)
for encrypting and signing an email.

Our assumption is that both Alice and Bob have completed steps 1-4 at the time

that they wish to exchange encrypted and signed emails with each other. As shown in

the steps above, step 5 eliminates the need for checking a recipient’s Keybase profile

every time that a mail is received. Alice and Bob need to verify their recipients by

manually checking their Keybase profile once (the first time, for each specific far-end

party) while receiving or downloading their certificates. After saving those certificates

to their mail clients there is no need to check their Keybase profile until the certificates

are expired or revoked. So step 5 must be repeated, for each correspondent Bob, when

Bob gets a new certificate (i.e., on certificate renewal).

80

When a user is trying to sign and encrypt an email within their mail clients, there

are options by which the user can specify the certificates that he wants for signing

and encrypting. As shown in the Figure 4.6, there are two fields within the Microsoft

Outlook mail client that enables a user to specify the certificates to be used.

In this chapter, we have proposed a design that makes use of Keybase and an

ACME server as its main components. We have discussed the steps needed for in-

teracting with each of those components and the steps for exchanging encrypted and

signed emails between two parties. We have also argued that to make our design pos-

sible, Keybase is required to have S/MIME support mentioned on page 21. The major

changes on ACME side are adding the functionality to ACME server (and client) to

perform validation checks for an email address and adding user’s Keybase account

handle to the issued certificate. Having a mail client with support of S/MIME, includ-

ing a usable graphical user interface for users to easily import email certificates each

time they interact with a new recipient, is required. Including social media account

cross-checking capabilities when any recipient’s email certificates are updated is also

important. This could improve the usability of this design due to the fact that this

would be more user-friendly than manually opening a user’s certificate and copying

the Keybase account handle for cross-checking purposes. Also, the mail clients should

have the ACME server as a trust anchor. In the next chapter we will analyze our

design based on the threat model that has been pointed out in Chapter 3.

Chapter 5

Security analysis

In this chapter, we discuss how our proposed design mitigates threats present in

today’s email ecosystem, and the threats that were mentioned in Chapter 3, where

attack types were categorised into 5 main groups. Middle-person attacks are discussed

in Section 5.1 followed by server-side attacks in Section 5.2. Then, client-side attacks

and impersonation attacks are discussed in Sections 5.3 and 5.4 respectively. Account

compromise is discussed in Section 5.5.

5.1 Middle-person attacks

While performing a middle-person attack, some adversaries may try to intercept and

tamper with data during the Keybase registration process. They could attempt to

introduce their own keys instead of a legitimate user’s keys to Keybase, and to do

the same in the registration process with ACME server over ACME communication

channel. The registration process between the user and Keybase server is performed

with an authentic Keybase client (downloaded from Keybase website and signed by

Keybase) on a user’s machine in an encrypted manner, and the assumption that

public and private key pairs are created on the same machine (the private key is not

transmitted to the server). The attacker will be detected due to the fact that his

81

82

introduced keys will not match the keys that the Keybase client uses to sign and post

proofs for user’s social media account.

On the second stage, when the user is registered on Keybase and is trying to

interact with an ACME server, ACME server sends an email to the user’s email

address that includes a nonce that is encrypted with the users public key (that are

both advertised to ACME server by the ACME client). By being able to decrypt the

nonce, user proves the ownership of the corresponding private key. Also, when the

user sends the signed nonce to the ACME server, ACME server checks the signature

and verifies the ownership of the private signing key of the user. In this design, the

middle-person attack can not succeed for two reasons. First, the communication is

done over an encrypted channel between an ACME client and an ACME server; and

second, the same public key which is registered on Keybase is advertised to the ACME

server with the corresponding Keybase account handle. ACME server would check if

both keys (advertised by the user and the one on the Keybase profile) match. Thus,

a middle-person attack would fail since the attacker can not change the public keys

on a user’s Keybase profile, and the ACME server would refuse to issue a certificate

if the keys did not match. It is noteworthy that a middle-person attacker may try

to disrupt or intercept the set-up of an encryption session between an ACME client

and the ACME server, but due to the second reason, unless an active attacker can

be present on both ACME channel and ACME validation channel, the public key

substitution would fail. These show that the design protects against T1 regarding a

middle-person attack over ACME channels and T2 regarding a middle-person attack

over the communication channel between the Keybase server and the Keybase client.

83

5.2 Server-side attacks

Although Keybase and ACME claim that they have mechanisms in place to be re-

silient against denial of service attacks, we assume that these types of attack are out

of scope along with various other network-related types of attack.

A compromise within Keybase server or ACME server could be attempted. First,

a compromise on Keybase server can not lead to removing and altering users’ sigchains

in an undetected manner [21]. This is due to the fact that Keybase is pushing all of

the sigchains (discussed in Section 2.4) to the blockchain; we believe this would make

it impossible for a single adversary to alter data without being detected. However,

a compromise on the Keybase server may enable an attacker to obtain the keys that

are stored on the server.

Users have the option to upload their private keys to the Keybase server in order

to gain access to them from any device that they associate with their account. Private

keys are stored on the local device in a password-protected manner. The keys are

“TripleSec” encrypted on the client side [22]. TripleSec is a simple encryption library

that uses “Salsa 20” and “AES” algorithms for encryption. Also, TripleSec uses

“Scrypt”1 for key derivation, and it claims to defend the encrypted data against

password cracking and rainbow table attacks. This is in a case that the encrypted

keys from a user’s device (or from Keybase server should the user choose to upload

their private keys to the server in an encrypted format) were stolen and an attacker

tries to mount offline password cracking attack on them [43]. If the user chooses to

upload his encrypted private keys to the Keybase server, the security of those solely

rely on the security of the server and the strength of TripleSec. However, if the user

chooses not to publish their private keys to the server, this addresses T5 regarding a

compromise on Keybase servers.

1http://www.tarsnap.com/scrypt.html

84

On the ACME side, an adversary may compromise the server and issue an incorrect

certificate with the public key of the adversary instead of the legitimate user. In our

proposed design, a user is asked to perform a manual check in the beginning of an

email communication. This is done by visiting the Keybase account indicated in the

certificate (Keybase account handle is within the certificate) and the public key stated

on the Keybase account. Both keys in the certificate, and the Keybase account should

be identical. User would notice the inconsistency, would know that the ACME server

has been compromised, and the certificate is invalid. We believe that this addresses

T4 regarding ACME server compromise.

Regarding T3, Keybase documentation indicates that in a quite sophisticated

attack, the attacker can show two different clients two different versions (forks) of

Merkle roots. However, we assume that the users that are communicating out-of-

band, will discover the inconsistency. In this kind of attack, the attacker can never

merge the different versions or he would get caught [21], [26].

5.3 Client-side attacks

Another attack vector may be the client agents that a user installs on their local

machine to interact with Keybase and ACME server. An attacker may try to deceive

the user to install a client that is not genuine. This could lead to compromise of a

user’s private keys. Let’s Encrypt states that they do not guarantee the safety of

the clients that have been released by third parties [13]. They do recommend a few

choices such as “CertBot”. This brings us to a point where we have to assume safety

of the installed ACME client-side agents. However, if the issue is addressed and a

verification method of the client-side software is put into place (such as signing the

packages or checking the hashes and fingerprints of the install packages) this can be

resolved [13].

85

As for Keybase, they offer a few security measures to protect the integrity of their

client software. First, they have an open API, and their client code is open source

which brings in the benefits of open source software alongside the fact that users may

try to create their own clients if desired. Second, all of the changes and updates

on their client software is signed (by Keybase’s private key which its corresponding

public key is available on their website) and they have an update mechanism that

downloads new clients without trusting HTTPS, but just trusting the integrity of

their signature (Keybase claims that the private key is kept offline which prevents

it from being compromised in case their server was under attack from a malicious

party). In summary, users are vulnerable to T7 (user installing a malicious ACME

client) but there are some countermeasures to mitigate T6 (user installing a malicious

Keybase client) if a user has verified their installation of Keybase client.

5.4 Impersonation attacks

An attacker may try to create a new identity on a social media platform and pursue

the legitimate registration process for Keybase and ACME. This would grant him a

Keybase account and a valid certificate issued by ACME server. The issued certificate

would include the Keybase account handle of the attacker and the Keybase account

of the attacker would be bound to his social media account. However, trying to trick

other users to trust a newly created account pretending to be a legitimate user should

fail when users manually check the Keybase profile and realize it is different from their

intended user’s profile based on their previous knowledge of their intended user’s social

media handles. This mitigates T10 in which an attacker tries to impersonate a user

and acquire a certificate from ACME.

On the other hand, since the legitimate user is the owner of the public-private key

pairs used in the registration process, an adversary trying to impersonate a legitimate

86

user to ACME server that doesn’t have the legitimate user’s private key will fail to

complete the process with the ACME server, and in a case that they try to substitute

their own public key with the legitimate user’s public key in ACME registration

process, it will be inconsistent with the public keys on user’s Keybase profile. Thus,

T8 (impersonation while interacting with Keybase) and T9 (impersonation while

interacting with ACME) are mitigated.

5.5 Account compromise

In the case that an adversary gains access to a user’s social media accounts, the

attacker can remove the posted proofs on the legitimate user’s social media (Section

2.4.7). As mentioned in Section 2.4.5, Keybase clients perform regular checks on

sigchains of users that the legitimate user is trying to interact with. If the proofs

were missing from the social media accounts, the Keybase server would not be able to

provide the Keybase client a link to the proofs posted on them. While the client would

not be able to check the proofs, it would alert the user. This could result in other

users not being able to identify that Keybase user through that social media account,

but it will not affect the integrity of the public-private key pair and everything related

to it. This, addresses T13 in which the attacker gains access to a user’s social media

accounts.

If the adversary gains control of a user’s Keybase profile, they can only start using

it from a list of registered devices that are associated with that Keybase account. This

will prevent adversaries from making changes to a Keybase profile from a system that

has not been associated with that Keybase account. This addresses T12. However,

if the adversary gains control over a Keybase account from one of the devices that is

associated with that Keybase account, the attacker can remove all of the legitimate

user’s social media proofs. This would render the proofs no longer valid when another

87

user’s Keybase client tries to verify the user’s sigchain. In the worst case scenario,

if the user has backed up his private keys to the Keybase server, and those keys

are stored in a password-protected manner, the adversary can request to download

the private keys by using user’s compromised Keybase password. This means an

adversary mounting T13 and T14 together can defeat our proposed method. We

therefore recommend users not to back up their private keys to Keybase server but

rather store them locally on their devices in a password protected manner. This

would prevent the compromise of private keys even in a case that an adversary has

gained access to their Keybase account. Also, the attacker can remove the legitimate

user’s keys from their profile and add new keys to their account that can be used to

request new certificates from the ACME server. This would require an attacker to

have access to user’s email address as well. This is because ACME requires email

communication in order to issue a certificate for an email address. However, due

to device compromise, if the user has saved his email credentials to the device, and

the device compromise basically results in the email account compromise as well, the

attacker can request new certificates with newly introduced keys.

However, if the user loses control of his Keybase profile, other users are prevented

from verifying that user by looking for his social media accounts. An attacker who

gains access to a user’s email account, can not read and send emails because to do so,

they would need the legitimate user’s private key stored on the user’s devices. This

addresses T11 in which an attacker gains access to a user’s email address.

In this chapter, we addressed all the threats that were previously mentioned in

Chapter 3. We have shown that many of the threats can be mitigated based on our

proposed design and for some types of attacks that pose a threat to our design, we

have seen that physical access to a user’s devices and account compromise should

happen simultaneously. In the next chapter we discuss limitations of our design,

followed by conclusion and future work sections.

Chapter 6

Comparative Analysis and Conclusion

In this chapter, we present a comparison between the alternative secure email solu-

tions and our proposed design. Then, we discuss the limitations that are present in

our proposed design, and we go over the key points that were presented in this thesis.

We mention the possible future work that can be pursued based on our proposed

design, and we draw a conclusion on the benefits of adopting our design that aims to

improve the security aspect of today’s email ecosystem.

6.1 Comparison of secure email solutions

As shown in Figure 6.1, we compare alternative secure email solutions with each other

on six categories. Within this comparison, we present our subjective opinion about

the ease of performing tasks, giving ratings of: Easy, Medium and, Hard. The chosen

alternative secure email solutions alongside our proposed design are manly PGP (with

Enigmail chosen as an example candidate) and, S/MIME for both enterprise users

and individuals. We also want to include Confidante that also makes use of Keybase

in its design [24]. At the end we will have a brief discussion on the state of security

of these solutions in comparison to our design.

The discussed categories are:

88

89

Figure 6.1: Comparison of alternative secure email solutions

1. Targeted users of each of the solutions (i.e. individuals, employees, closed

groups)

2. The format of certification that each of these solutions use

3. The requirements for download and installation of the required client software

4. The difficulty of certificate acquisition process

5. The difficulty of acquiring other correspondents certificates in order to initiate

secure email communications with them

6. Possibility and difficulty of gaining trust on the acquired certificates (trusting

other correspondents certificates).

90

6.1.1 Target users

Our proposed design targets individuals from a variety of technical backgrounds. The

goal is to enable every email user to use secure email without a tremendous effort nor

with a considerable technical background. PGP also targets individuals and is more

usable while working within small and closed groups. We have divided S/MIME users

into two main groups: S/MIME for enterprise users and S/MIME for individuals.

The users that are working within an organization that communicate within the

organization or within closed groups that have a shared certificate authority fit in the

first category. The users that acquire an email certificate from one of the available

certificate authorities themselves and are not bound to an organization fit into the

second group. We aim to eliminate the localization of organization based S/MIME

users and make our design a globally accessible service. In case of Confidante, the

target users are individuals and small groups that use Keybase and Confidante mail

client for their email communications.

6.1.2 Certificate Format

Both individual and organization-based S/MIME users receive X.509 v3 certificates

that are issued by their trusted certificate authorities. In our design we use the

same certificates with addition of taking advantage of additional fields within the

certificate. As mentioned in Chapter 4, we embed users’ Keybase account handles in

the SAN field of the issued certificates. PGP users create PGP keys and distribute

them amongst their correspondents. Confidante makes use of PGP keys as well. The

keys used for Confidante are the same keys that are registered on a user’s Keybase

account. We have chosen S/MIME certificates over PGP for its popularity and the

existing infrastructure and support amongs many service provider (the differences

between S/MIME and PGP are discussed in Chapter 2 Section 2.3).

91

6.1.3 Software download requirements

In our design we require users to install both Keybase and ACME client software

on their system. Although installation of these client software does not differ from

any other simple software installation, this could be considered as a notable effort

in comparison with S/MIME. Specifically, organization-based S/MIME users have

the easiest process in this area since, a dedicated IT team is usually responsible to

provide and install the requirements for them. PGP users have various options to

choose from. However, we have chosen Enigmail which is one of the most popular

PGP secure email solutions. Enigmail is a mail client extension that is installed

on either Mozilla Thunderbird or Postbox email clients. Enigmail users also need

to have GnuPG installed on their system (minimum version currently required is

2.0.14)1. Individual S/MIME users need to acquire their certificates from any of

the certificate authorities that commercially provide email certificates on the internet

(some of which are in charge of creating users’ public and private keys and sending

them to users themselves).

Confidante on the other hand is a mail client itself. Users are required to install

the mail client that currently works with Gmail accounts and required users to have

a Keybase account (requiring users to install Keybase client) as well. This poses a

limitation on other users that prefer other mail clients or are using other mail service

providers than Google.

6.1.4 Difficulty of certificate acquisition

Acquiring a certificate while using S/MIME is considered to be quite easy for

organization-based users. They usually do not have to perform any tasks and the

IT team is usually in charge of issuance and renewal. For individuals that want to

1stated on https://enigmail.net/

92

acquire a certificate from certificate authorities, there are many services available by

which they can fill the required forms and purchase a certificate. The difficulty of

this process depends on the CA that the users have chosen for certificate acquisition

and some accompanying factors. Thus a medium difficulty (with some uncertainty)

has been assigned. PGP users, need to install proper software (mentioned in software

download requirements section above) and create their keys within their installed

software. Depending on the software they are using, some of them may require above

average technical background knowledge to properly create the keys within the soft-

ware. Since Confidante is using the keys available on users’ Keybase profiles, users do

not need to perform any specific tasks to acquire a certificate. In our design however,

we have two registration processes that are required. Although we understand that

these processes may require some user effort, none of the processes are different from

daily tasks that users with average technical backgrounds can perform on a daily

basis.

6.1.5 Acquiring correspondents’ certificates

We believe that any of the mentioned solutions that do not require an out of band

communication can easily handle this aspect of secure email communication. This

means PGP users and Individual S/MIME users require a means to communicate with

their correspondents to enable them to establish a secure email communication. These

users need to have their certificates available in some form of online key directories

to enable other users to find their public keys. However, we believe that this is a

shortcoming that limits other users to easily acquire their intended recipients public

keys. Alternatively, a preliminary email exchange with the keys attached can solve

this issue. Other solutions that rely on a jointly trusted certificate authority can

handle this aspect more easily. Organization-based S/MIME users will typically have

a CA configured in their mail clients and usually are not required to perform any tasks

93

except for an occasional search for their recipients certificates within the organization

certificate directory. Confidante users also use Keybase to find their intended recipient

and the mail client itself acquires their PGP keys from their Keybase profile. In our

proposed design we take advantage of Keybase file system; by requiring users to

upload their certificates to their Keybase profile’s public directory we enable other

users to acquire their recipients certificates by searching Keybase for their profile and

downloading their certificates after they are found.

6.1.6 Ease of gaining trust

Amongst organization-based S/MIME users the trust is based on the certificate au-

thority used by the organization to acquire certificates for its users. This certification

authority may or may not be embedded as a trust anchor in client software of other

users outside that organization. Other individual S/MIME users that acquire their

certificates from available certificate authorities and PGP users can not assure other

correspondents about their identity unless an out-of-band communication occurs or

unless their client software is configured to trust the same certification authority. This

means that while the S/MIME certificate could be valid for a particular email address

presumably belonging to a particular user, or a PGP key belonging to a particular

user may seem trustworthy, it is difficult for users to determine if these email addresses

or certificates actually belong to the intended user. Confidante, relies on Keybase re-

quires users to also select the Keybase account handle of their correspondents while

trying to compose an email. This can help users gain confidence in the identity of the

correspondents. In our design, by binding users certificates, email address, and their

social identities together, we present a method to the users to gain confidence in the

identity of the certificate holders by cross-checking their social identities. However,

these cross-checks make the difficulty level of gaining trust medium for Confidante

and “Medium to Difficult” for our proposed design based on the cross-check process

94

of our design.

Based on the comparison above, we believe that our design takes advantage of the

global support and existing infrastructure of S/MIME X.509 v3 certificates enabling

a variety of users that use diverse mail provider services and mail clients to acquire

email certificates with not much more than medium difficulty. Having benefits of

S/MIME and not being limited to an organization while, being able to bind those

certificates to social identities, reduces the chance of human error (i.e. sending an

email to another person with a name similarity) and targeted impersonation attacks.

Support for periodic certificate renewal that is within the technical capabilities of

typical users would encourage them to adopt this practice and not use their keys

for a prolonged period (many PGP users update their keys only rarely if at all).

Also as mentioned in Chapter 5, we show that while having ACME and Keybase as

two components and through cross checks between them, many of the middle-person

attacks are prevented.

6.2 Limitations and Future work

A number of challenges remain in this proposed design.

There are no graphical-user-interface-enabled clients for ACME at the moment.

There is need for a usable graphical ACME client that can be installed on a user’s

device. It would be more convenient for typical users if that client had a graphical

user interface and all the functionality of the currently available ACME clients (in a

user friendly manner the same way that Keybase’s client software is).

Keybase currently only allows uploading PGP key pairs on their platform, and our

design, requires a direct match between the public key presented on a user’s Keybase

profile and the public key presented to the ACME server. This challenge, can be

handled either by enabling a new feature in Keybase, that allows user’s to upload

95

different kind of public keys, or by integrating a mechanism within the ACME client

to extract the public and private keys that are in a PGP public and private key block.

Another problem that already exists (although it has been mitigated significantly by

filtering) is spam email. Achieving end-to-end encrypted secure email may pose some

challenges to limiting spam email [8](although this is not limited to our design but

to all secure email solutions).

Currently ACME servers follow a 90 day certificate renewal policy. ACME TLS

(web server) certificates are being renewed automatically. However, in our proposed

design there is need for human interaction while acquiring email certificates. Users

need to log into their email accounts and retrieve an email sent by ACME server. They

also need to upload those certificates to their Keybase file system in order to make

them available to other users. This can be an obstacle from a usability perspective.

As one possible solution for renewal, the ACME client could be granted access

to the users email account by providing it with user’s email account credentials.

This can automate the process of receiving emails from the ACME server and the

process of the email certificate issuance. Then the ACME client can present the new

certificates to the user so they can upload those certificates to their Keybase profile

through the Keybase client installed on their system. However, connecting the ACME

client to user’s email account can pose new threats to our proposed design due to the

possibility that compromise in the ACME client could lead to compromise of user’s

email account. A security analysis of this matter would also be required.

As another item to consider, the users that receive a signed and encrypted email

from another user for the first time need to manually check the sender’s Keybase

account handle and visit their profile. This means that they have to open the email

certificate within their email clients and to find the sender’s Keybase account handle

in the SAN field of the certificate. They need to copy that account handle into a

web browser address bar or within their Keybase client to visit the sender’s Keybase

96

profile and check the connected social media accounts to that Keybase account based

on their prior knowledge of the sender’s social identities. Renewing the certificates

every 90 days requires the users that receive emails encrypted and signed with new

certificates to perform this manual check every 90 days. This may become a significant

usability obstacle, and a disincentive for users to adopt our proposal.

We argue that automating the manual check, would defeat a major goal of our

design which is the manual check of the involved parties’ social identities. However,

if the renewed certificates used the old public-private key pairs and the senders email

address is unchanged, automatic acceptance of the renewed certificates based on the

public key and email address combination may be possible. This could prolong the

time intervals required to perform a manual check by the receiver of the email to a

point that the key pairs for the sender’s certificates have been changed. However, the

idea of reusing key pairs in automated certificate renewal requires additional security

scrutiny, as a major reason for short (e.g., 90 day) certificate lifetimes is to limit the

damage if private keys are compromised, and as a simpler solution than traditional

certificate revocation solutions [44]. The effects of reusing the old keys of the expired

certificates and the optimal time for renewing the keys for the certificates from a

security point of view for our design could be one of the topics that can be addressed

as future work.

Although combination of cross-checking with a users social media accounts with

their email certificates has a positive impact on the security of email exchanges be-

tween two parties, it is evident that the impact of this design on usability may be

more than we initially anticipated. We have stated that the manual check performed

by the users are crucial to ensure the security of the email communications within

this design, but this manual check alongside the initial steps (registering on Keybase

and ACME and installing their client software) may be too complicated for ordinary

users. As maintaining a balance between security and usability has always been a

97

challenge, this negative impact on usability may discourage users from adopting this

design.

For these reasons, a usability study on our proposed method would be useful, as

well as a more complete and rigorous security analysis of this design. Together, these

may increase the chances of adoption of this design by large organizations and by

regular users with less advanced technical capabilities.

Also, turning our proof of concept into a functional prototype remains to be done.

Developing an ACME client based on the new authorization challenge and adding a

graphical user interface to the ACME client can yield valuable information both on

deployability and usability of our design.

6.3 Conclusion

In this thesis, we have combined Keybase to bind a public key with a user’s social

identity with the use of ACME protocol to partially automate the process of issuing

email certificates. We have discussed how registering on Keybase and embedding that

Keybase account handle in an issued email certificate can lead to binding a user’s email

address, public key, and their social media accounts together. This binding aims to

improve security of end-to-end encrypted email ecosystem, as argued in Chapter 5,

and to reduce the attack surface on encrypted email users such that the attacker

needs to gain control of a user’s actual devices, Keybase account, and email account

at the same time in order to undermine the entire system. We also argue that many

forms of middle-person attacks are addressed by this design. Our intention is that this

design will also improve key management issues and the certificate issuance process

by partially automating various aspects of certificate acquisition and renewal.

List of References

[1] C. Adams and S. Lloyd. Understanding Public-Key Infrastructure (2nd

edition). Addison-Wesley, 2002.

[2] Andreas M. Antonopoulos, Mastering Bitcoin: Unlocking Digital

Cryptocurrencies, O’Reilly , Dec 2014

[3] Erinn Atwater, Cecylia Bocovich, Urs Hengartner, Ed Lank, Ian Goldberg,

“Leading Johnny to Water: Designing for Usability and Trust”, USENIX

Symposium on Usable Privacy and Security, 20 pages, 2015.

[4] R. Barned, J. Hoffman-Andrews, D. McCarney, J. Kasten, Automatic

Certificate Management Environment (ACME), IETF RFC 8555, March 2019.

[5] Daniel J. Bernstein, Tanja Lange, Peter Schwabe, NaCl: Networking and

Cryptography library, http://nacl.cr.yp.to/index.html, visited on February

2020.

[6] Daniel J. Bernstein, Tanja Lange, Peter Schwabe, “The security impact of a

new cryptographic library”. Pages 159 - 176 in Proceedings of LatinCrypt 2012,

edited by Alejandro Hevia and Gregory Neven, Lecture Notes in Computer

Science 7533, Springer, 2012.

[7] Bitcoin, Bitcoin wiki, https://en.bitcoin.it/wiki/Main Page, visited February

2020.

[8] J. Clark, P.C. van Oorschot, S. Ruoti, K. Seamons, D. Zappala, Securing

Email, arXiv pre-print, Cornell University Library, 20 Apr 2018.

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk, “Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List

(CRL) Profile”, RFC 5280, May 2008.

98

99

[10] Michael Crosby, Nachiappan, Pradan Pattanayak, Sanjeev Verma, Vignesh

Kalvanaraman, “BlockChain Technology: Beyond Bitcoin”, Applied Innovation

Review, Issue No. 2, June 2016.

[11] Lee Garber, “Denial-of-Service Attacks Rip the Internet”, Computer magazine,

pp. 12-17, vol. 33, April 2000.

[12] Alefiya Hussain, John Heidemann, Christos Papadopoulos, “ A Framework for

Classifying Denial of Service Attacks”, Proceedings of the 2003 Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications , SIGCOMM’03, Pages 99-110, August 2003.

[13] Internet Security Research Group, ACME Client Implementations,

https://letsencrypt.org/docs/client-options/, visited on February 2020.

[14] M. Jones, J. Bradley, N. Sakimura, “JSON Web Signature (JWS)”, RFC 7515,

May 2015.

[15] Keybase, Inc., Keybase is now writing to the Bitcoin blockchain,

https://keybase.io/docs/server security/merkle root in bitcoin blockchain,

Keybase official documentation, Visited February 2020.

[16] Keybase, Inc., Keybase Local Key Security,

https://keybase.io/docs/crypto/local-key-security, Keybase Official

documentation, Visited October, 2019.

[17] Keybase, Inc., Keybase overview and documentation,

https://keybase.io/docs/server security, Keybase Official documentation,

Visited October, 2019.

[18] Keybase, Inc., Keybase Pebbl., https://github.com/letsencrypt/pebble/

blob/master/README.md, visited November 2019.

[19] Keybase, Inc., Keybase Per-User Keys, https://keybase.io/docs/teams/puk,

Keybase Official documentation, Visited October, 2019.

[20] Keybase, Inc., Keybase Sigchain, https://keybase.io/docs/sigchain, Keybase

Official documentation, Visited October, 2019.

[21] Keybase, Inc., Server Security, https://keybase.io/docs/server security,

Keybase official documentation, Visited February 2020.

100

[22] Keybase, Inc., TripleSec, https://keybase.io/triplesec, Keybase official

documentation, Visited February 2020.

[23] Keybase, Inc., Understanding following (previously called “tracking”),

https://keybase.io/docs/server security/following, Keybase Official

documentation, Visited October, 2019.

[24] Ada Lerner, Eric Zeng, Franziska Roesner, “Confidante: Usable Encrypted

Email A Case Study With Lawyers and Journalists”, IEEE European

Symposium on Security & Privacy, 2017.

[25] Let’s Encrypt Project Revision,

https://acme-python.readthedocs.io/en/stable/, ACME-Python

documentation, visited November 2019.

[26] David Mazieres, Dennis Shasha,“Building secure file systems out of Byzantine

storage”, NYU computer science department technical report TR2002 826, May

2002.

[27] D. McCarney, Tour of the Automatic Certificate Management Environment

(ACME), Internet Protocol Journal, Jun 2017.

[28] M. Mealling, L. Masinter, T. Hardie, G. Klyn,“An IETF URN Sub-namespace

for Registered Protocol Parameters”, IETF RFC 3553, June 2003.

[29] K. Moriarty, Ed., J. Jonsson, B. Kaliski, A. Rusch, PKCS #1: RSA

Cryptography Specifications Version 2.2, IETF RFC 8017, November 2016.

[30] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System,

Unreviewed paper, October 31, 2008.

[31] Narayanan et al., Bitcoin and cryptocurrency technologies: A comprehensive

introduction, Princeton University Press, 2016

[32] Colin Percival,“Stronger key derivation via sequential memory-hard functions”,

http://www.tarsnap.com/scrypt/scrypt.pdf.

[33] C. Percival, S. Josefsson, “The scrypt Password-Based Key Derivation

Function”, RFC 7914, August 2016.

[34] E. Rescorla, B. Korver, “Guidelines for Writing RFC Text on Security

Considerations”, RFC 3552, July 2003.

101

[35] Rivest Ronald L., Adi Shamir, Leonard M. Adleman, “Cryptographic

communications system and method”, Patent Office, Patent US4405829A,

December 14, 1977.

[36] Ruoti, S., Andersen, J. , Zappala, D., Seamons, K., “Why Johnny still Can’t

Encrypt: Evaluating the Usability of a Modern PGP Client, ArXiv, 2015.

[37] Saltpack, “Saltpack Binary Encryption Format [version 2]”,

https://saltpack.org/encryption-format-v2, Visited June 2020.

[38] Q. Sceitle, T. Chung, J.Hiller, O. Gasser, J. Naab, R. van Rijswijk-Deji, O.

Hohlfeld, R. Holz, D. Choffnes, A. Mislove, G. Carle, “ A First Look at

Certificate Authority Authorization (CAA)”, ACM SIGCOMM Computer

Communication Review, Volume 48 Issue 2, April 2018.

[39] J. Schaad, B. Ramsdell, S. Turner, “Secure/Multipurpose Internet Mail

Extensions (S/MIME) Version 4.0 Message Specification”, RFC 8551, April

2019.

[40] The Go Authors, Secretbox package, https://godoc.org/golang.org/x/crypto

/nacl/secretbox, visited on February 2020.

[41] The Go Authors, Secret-key authenticated encryption: crypto secretbox,

http://nacl.cr.yp.to/secretbox.html, visited on February 2020.

[42] S. Turner, “The application/pkcs10 Media Type”, RFC 5967, August 2010.

[43] Filippo Valsorda, On Keybase.IO and encrypted private key uploading,

https://blog.filippo.io/on-keybase-dot-io-and-encrypted-private-key-sharing/,

visited on February 2020.

[44] Paul C. van Oorschot, Computer Security and the Internet: Tools and Jewels,

Springer, 2019.

[45] A. Whitten and J. D. Tygar, “Why Johnny can’t encrypt: A usability

evaluation of PGP 5.0”, USENIX Security, 1999

[46] P. R. Zimmermann. The Official PGP Users Guide. MIT Press, 1995.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	 Introduction
	Introduction
	Motivation
	Problem Statement
	Design Requirements
	Contributions
	Thesis Overview

	 Background and related work
	Public Key Infrastructure (PKI)
	Public key cryptography
	Digital signatures
	Certificates and Certificate Authorities (CAs)

	Email security
	S/MIME and PGP
	Keybase
	Keys on Keybase
	Accessing device-specific keys and password change
	Signature chain (sigchain)
	Is Keybase a trusted server?
	Keybase's goal
	Following on Keybase
	Registering on Keybase

	ACME protocol
	 Let's Encrypt
	ACME

	Bitcoin background
	What is Bitcoin?
	Block chain
	Interaction with Bitcoin blockchain for verification on Keybase

	Related work

	 Threat model and requirements
	Keybase threat model
	DDos attacks against Keybase servers
	Keybase server compromise
	Defence mechanisms for defending against server corruption

	ACME Threat Model
	Authorizations on ACME
	Denial-of-Service attacks
	Request Forgery
	Certificate issuance policy
	Replay protection

	Our Design's threat model
	Middle-person attacks
	Server-side threats
	Client-side threats
	Impersonation attacks
	User account compromise

	 Design and Proof of Concept
	ACME Server
	Protocol for interacting with ACME server
	Challenges from ACME server
	ACME Test-Server
	Required changes for the ACME client

	Sending Encrypted Email Between Two Parties

	 Security analysis
	Middle-person attacks
	Server-side attacks
	Client-side attacks
	Impersonation attacks
	Account compromise

	 Comparative Analysis and Conclusion
	Comparison of secure email solutions
	Target users
	Certificate Format
	Software download requirements
	Difficulty of certificate acquisition
	Acquiring correspondents' certificates
	Ease of gaining trust

	Limitations and Future work
	Conclusion

	List of References

