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Abstract

Unrestricted information flows are a key security weakness of current web design. Cross-site script-

ing, cross-site request forgery, and other attacks typically require that information be sent or retrieved

from arbitrary, often malicious, web servers. In this paper we propose Same Origin Mutual Approval

(SOMA), a new policy for controlling information flows that prevents common web vulnerabilities.

By requiring site operators to specify approved external domains for sending or receiving information,

and by requiring those external domains to also approve interactions, we prevent page content from

being retrieved from malicious servers and sensitive information from being communicated to an at-

tacker. SOMA is compatible with current web applications and is incrementally deployable, providing

immediate benefits for clients and servers that implement it. SOMA has an overhead of one additional

HTTP request per domain accessed and can be implemented with minimal effort by application and web

browser developers. To evaluate our proposal, we have developed a Firefox SOMA add-on, licensed

under the GNU GPL.

Keywords: Web security, JavaScript, same origin policy, cross-site scripting, cross-site request forgery,

cross-domain information flow

1 Introduction

Current web pages are more than collections of static information: they are a synthesis of code and data

often provided by multiple sources that are assembled and run in the browser. Users generally trust the

web sites they visit; however, external content may be untrusted, untrustworthy, or even malicious. Such

malicious inclusions can initiate drive-by downloads [23], misuse a user’s credentials [13], or even initiate

distributed denial-of-service attacks [20].

One common thread in these scenarios is that the browser must communicate with web servers that

normally wouldn’t be contacted. Those servers may be controlled by an attacker, may be victims, or may be

unwitting participants; whatever the case, information should not be flowing between the user’s web browser

and these sites.

In this paper, we propose a policy for constraining communications and inclusions in web pages. This

policy, which we call Same Origin Mutual Approval (SOMA), requires the browser to check that both the

owner of the page and the third party content provider approve of the inclusion before any communication

is allowed (including adding anything to a page). This “tightening” of same origin policy prevents attackers
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from loading malicious content from arbitrary web sites and restricts their ability to communicate sensitive

information. While attacks such as cross-site scripting are still possible, with SOMA they must be mounted

from domains trusted by the originating domain. Because attackers have much less control over this small

subset than they do over other arbitrary hosts on the Internet, SOMA can prevent the exploitation of a wide

range of vulnerabilities in web applications.

In addition to being effective, SOMA is also a practical proposal. To participate in SOMA, browsers

have to make minimal code changes and web sites must create small, simple policy files. Sites and browsers

participating in SOMA can see benefits immediately, while non-participating sites and browsers continue to

function as normal. These characteristics facilitate incremental deployment, something that is essential for

any change to Internet infrastructure.

We have implemented SOMA as an extension for Mozilla Firefox 2, one that can be run in any regular

installation of the Firefox browser. In testing with this browser and simulated SOMApolicy files for over 500

main pages on different sites, we have found no compatibility issues with current web sites. The policy files

for these sites have been, with only a few exceptions, extremely easy to create and cause no compatibility

issues. Simulated attacks are also appropriately blocked. To retrieve policy files, SOMA requires an extra

web request per new domain visited. As we explain in Section 5, such overhead is minimal in practice. For

these reasons, we argue that SOMA is a practical, easy to adopt, and effective proposal for improving the

security of the modern web.

The remainder of this paper proceeds as follows. Section 2 gives background on current web security

rules and attacks on modern web pages. Section 3 details the proposed Same Origin Mutual Approval

design, which we then evaluate in Section 4. Our prototype and the results of testing in the browser are

described in Section 5. We discuss some alternative JavaScript security proposals and other related work in

Section 6. Section 7 concludes.

2 Background and Motivation

Web browsers are programs that regularly engage in extensive cross-domain communication. In the course

of a user viewing a web page, they will retrieve images from one server, advertisements from another, and

post a user’s responses to a third. In this way the browser serves as a dynamic, cross-domain communica-

tions nexus. While such promiscuity may be permissible when combining static data, to maintain security,

restrictions must be placed upon executable content.

JavaScript has two main security features that limit the potential damage of malicious scripts; the sand-

box and the same origin policy. The sandbox prevents JavaScript code from affecting the underlying system

(assuming there are no bugs in the implementation) or other web browser instances (including other tabs).

Each page is contained within its own sandbox instance. The same origin policy [28] helps to define what

can be manipulated within this sandbox and how sandboxed code can communicate with the outside world.

The same origin policy is designed to prevent documents or scripts loaded from one “origin” from getting,

or setting properties of, content loaded from a different origin (with a special case involving subdomains).

The origin is defined as the protocol, port, and host from which the content originated. While scripts from

different origins are not allowed to access each other’s source, the functions in one script can be called from

another script in the same page even if the two scripts are from different domains. JavaScript code has

different access restrictions depending on the type of content being loaded. For example, it can fetch (make

a request for) HTML, but it can only read and modify the information it gets as a result if the HTML falls

within the same origin. These restrictions are summarized in Table 1.

Any script included onto a page inherits the origin of that page. This means that if a page from http:
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Content Permissions

Type Fetch Read Modify Execute

Images YES SO SO NO

HTML YES SO SO NO

JavaScript YES SO YES YES

Styles YES SO YES NO

Audio/Video YES Plugin Dependant NO

Table 1: Current restrictions on JavaScript access to other content (permissions denoted SO are dictated by

the Same Origin Policy)

//example.com includes a script from advertiser.com, this script is considered to have the origin

http://example.com. This allows the script to modify the web page from example.com. It is

important to note that many scripts, including scripts dealing with embedding advertisements, require this

ability. The script cannot subsequently read or manipulate content originating from advertiser.com

directly; it can only read and manipulate content from example.com, or content which has inherited that

origin.

While the sandbox and same origin policy protect the host and prevent many types of network communi-

cation, opportunities for recursive script inclusion, unrestricted outbound communication, cross-site request

forgery, and cross-site scripting allow considerable scope for security vulnerabilities. We explore each of

these issues below.

2.1 Recursive script inclusion

The same origin policy states that scripts can read or modify any part of a page with a matching origin. This

includes allowing scripts to add additional script tags to the document. These new scripts are then loaded

into the page, and also gain read and modify access to any content coming from the origin.

A page creator could choose to include content only from sources they deem trustworthy, but this does

not mean that all content included will be directly from those sources. Any script loaded from a “trustwor-

thy” domain can subsequently load content from any domain. Unfortunately, trust is not transitive, even if

JavaScript treats it that way. Besides the risk of an intentionally malicious script loading additional, danger-

ous code, there is also the accidental risk of a “trustworthy” domain inadvertently loading malicious content.

Even well-known, legitimate advertising services have been tricked into distributing malicious code [29, 25].

2.2 Unrestricted outbound communication

While the same origin policy restricts how content from another domain can be used, it does not stop any

content from other domains from being requested and loaded into the origin site. These requests for content

can be abused to send information out to any arbitrary domain.

One common attack involves cookie-stealing. A script reads cookie information from the user’s browser

and uses it as part of the URL of a request. This request could be for something innocuous, such as an extra

image, as shown in Figure 1.

Such cookie information could then be used by the remote server to gain access to the user’s session,

or to get other information about the user. Any information that can be read from the document could be

sent out in a similar manner, including credit card information, personal emails, or username and password
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var image = new Image();

image.src= ’http://attacker.com/log.php?cookie=’

+ encodeURIComponent(document.cookie);

Figure 1: Simple cookie-stealing JavaScript code which sends data to attacker.com

pairs. Even if a user does not hit “submit” on a form, any information they enter can be read by JavaScript

and potentially retransmitted.

2.3 Cross-site request forgery (XSRF or CSRF)

The information theft techniques described in the previous section can be used to launch a cross-site request

forgery (XSRF or CSRF) attack [5]. Some URLs, when requested, cause an action to be performed on the

web server: a post is made, a friend is added, a vote is cast. Providing easy links for these actions is very

useful for the web developer who may want to include them in a menu or elsewhere on the page. What

happens, however, if one of these links is used as the URL for an image? Even though nothing has been

clicked, that action will still be performed on behalf of the logged-in user because the URL is requested

when the browser attempts to get the supposed image. Cross-site request forgery occurs when the user visits

a web page which accesses a URL that performs an action (using that user’s privileges) on another web page

(even if the user never sees the URL being loaded).

2.4 Cross-site scripting (XSS)

While no precise definition of cross-site scripting seems to be universally accepted, the core concept behind

cross-site scripting (XSS) is that of a security exploit in which an attacker inserts code onto a page returned

by an unsuspecting web server [1, 2]. This code may be stored or reflected, it may contain JavaScript or just

HTML, and it may use third party sites as sources or rely only upon the resources of the targeted server. With

such ambiguity, it is possible to have a cross-site scripting attack which neither uses scripting nor is cross-

site. Typically, however, XSS attacks involve JavaScript code engaging in cross-domain communication

with malicious web servers.

Code injection for cross-site scripting usually occurs because user-inputted data is not sufficiently san-

itized before being stored and/or displayed to other users. Although the existence of such vulnerabilities

is not a flaw in the same origin policy, per se, the same origin policy does allow the injected code access

to content of the originating site. Specifically, it can then steal information associated with that domain or

perform actions on behalf of the user.

Some existing proposals to address cross-site scripting and other JavaScript security issues are described

in greater detail in Sections 6. Here we note that no current proposal targets the cross-domain communica-

tion involved in most JavaScript exploits.

3 SOMA Design

The Same Origin Mutual Approval (SOMA) policy aims to tighten the same origin policy so that it can

better handle exploits as discussed in Section 2, including cross-site scripting and cross-site request forgery.

SOMA requires that both the origin web site and the site providing included content approve of the request

before the browser allows any external content to be fetched for a page. Adding these extra checks gives site
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Content Permissions

Type Fetch Read Modify Execute

Images SOMA SO SO NO

HTML SOMA SO SO NO

JavaScript SOMA SO YES YES

Styles SOMA SO YES NO

Audio/Video SOMA Plugin Dependant NO

Table 2: Restrictions on JavaScript access to other content with SOMA (permissions denoted SO are dictated

by the long-standing same origin policy)

operators much more control over what gets included into or from their sites. These changes are shown in

Table 2. While the differences (relative to Table 1) are all in the Fetch column, a “fetch” can also be used to

leak (send out) information such as cookies, as discussed earlier.

A key idea behind SOMA is that security policy should be decided by site operators, who have a vested

interest in doing it correctly and the knowledge necessary to create secure policies, rather than end users.

Having said that, we cannot expect site operators to create complex policies—their time and resources are

limited. Thus SOMAworks at a level of granularity that is both easy to understand and specify, that of DNS

domains and URLs.

3.1 Threat Model

We assume that site administrators have the ability to create and control top-level URLs (static files or

scripts) and that web browsers will follow the instructions specified at these locations precisely. In contrast,

we do assume that the attacker controls arbitrary web servers and some of the content on legitimate servers

(but not their policy files or their server software). Our goal is to prevent a web browser from communicating

with a malicious web server when a legitimate web site is accessed, even if the content on that site or its

partners has been compromised.

These assumptions mean that we do not address situations where an attacker compromises a web server

to change policy files, compromises a web browser to circumvent policy checks, or performs intruder-in-

the-middle attacks to intercept and modify communications. Further, we do not address the problem of users

visiting malicious web sites directly, say as part of a phishing attack. While these are all important types of

attacks, by focusing on the problem of unapproved communication we can create a simple, practical solution

that addresses the security concerns we described in Section 2. Mechanisms to address these other threats

largely complement rather than overlap with the protections of SOMA (see Section 6).

3.2 Manifest files

The first part of SOMA we discuss is the manifest file, which contains a list of domains which the origin

domain wishes to allow included content. This idea is similar to the manifests provided in Tahoma [7]. This

manifest file is always stored in the root directory and will have the name soma-manifest.

For example, the manifest file for maps.google.comwould be found at http://maps.google.

com/soma-manifest and might appear similar to Figure 2. If this file was set, the browser will enforce

that only content from those locations could be embedded in a page coming from maps.google.com.

Note that each location definition includes protocol, domain and optionally port (the default one for the
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protocol is used if none is specified), so that origins are defined the same way as they are in the current same

origin policy.

http://maps.l.google.com

http://www.google.com

http://mt0.google.com

http://mt1.google.com

http://mt2.google.com

http://mt3.google.com

Figure 2: Sample manifest for maps.google.com

If the origin A has a manifest that contains B, we denote this using A`B. This symbol is chosen as a

visual way to indicate that A is the origin (the outer cup) and B is a content provider web site for that origin

(the inner circle). Similarly, if A’s manifest does not include C , we denote that as AˆC . If AˆC then

the then browser will not allow anything in the pages from A to contact the domain C , thus code, images,

iframes, or any other content will not be loaded from C .

By convention, it is not necessary to include the origin domain itself in the manifest file as inclusions

from the origin are assumed to be allowed.

3.3 Approval files

The approval files provide the other side of the mutual approval by allowing domains to indicate sites which

are allowed to include content from them. SOMA approval files are similar in function to Adobe Flash’s

crossdomain.xml [4] but differs in that it is not a single static file containing information about all

approved domains. Instead, it is a script that provides a YES/NO response given a domain as input.

We use a script to prevent easy disclosure of the list of approved domains, since such a list could be

used by an attacker (e.g. to determine which sites could be used in a XSRF attack or to determine business

relationships). Attackers could still generate such a list by constantly querying soma-approval, but if

they knew a list of domains to guess, they could just as easily visit those domains and see if they included any

content from the target content provider. In addition, the smaller size of the approval responses containing

simple YES/NO answers may provide a modest performance increase on the client side relative to the cost

of loading a complete list of approved sites (especially for highly connected sites such as ad servers).

To indicate that A.com is allowed to load content from B.org, B.org needs to provide a script with the file-

name

/soma-approvalwhich returns YESwhen invoked through http://B.org/soma-approval?d=

A.com. Negative responses can be indicated in a similar manner with the text of NO. If a negative response

is received, then the browser refuses to load any content from B.org into a page from A.com. If no file with

the name soma-approval exists, then we assume a default permissive behavior, described in greater

detail in Section 3.6.

To reject all approval requests, soma-approval need only be a static file containing the string NO.

Similarly, a static soma-approvalwith the word NO suffices to approve all requests.

An alternative proposal that avoids the need for a script involves allowing soma-approval to be a

directory containing files for the allowed domains. Unfortunately, in order to handle our default permissive

behavior, we would now require two requests: one to see if the soma-approval directory exists and another

to see if the domain-specific file exists. Since most of the overhead of SOMA lies in the network requests

(as shown in Section 5), we believe the better choice is to require a script.
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<?php

$site_policy = array(

’A.com’ => ’YES’,

’C.net’ => ’YES’);

if (isset($site_policy[$_GET[’d’]])) {

print $site_policy[$_GET[’d’]];

} else {

print ’NO’;

}

?>

Figure 3: Simple soma-approval script written in PHP

A sample soma-approval script, written in PHP, is shown in Figure 3. This script uses an array to

store policy information at the top of the file then outputs the policy as requested, defaulting to NO if no

policy has been defined. In this example, A.com and C.net are the only approved domains.

The symbols used for denoting approval are similar to those used for denoting inclusion in the manifest.

If B approves of content from its site being included into a page with origin A we show this using B´A.

Again, since B is the content provider it is connected to the small inner circle, and the origin A is connected

to the outer cup. If B does not approve of another domain C , this is denoted using B˜C . If B˜C then the

browser will refuse to allow the page from C to contact B in any way. No scripts, images, iframes or other

content from B will be loaded for the web page at C .

It is important to note that B´A is not the same as, nor does it necessarily imply, that A`B. It is

possible for one party to allow the inclusion and the other to refuse. Content is only loaded if both parties

agree (i.e. (A`C) ∧ (C´A)).

3.4 Content inclusions

Figure 4 illustrates inclusions currently allowed within the same origin policy. The web page itself indicates

the content it needs, be it images, text or JavaScript code. The web browser retrieves this content and builds

the page using it. It is important to note that it is the web page (running in the web browser) and not the web

server that indicates the content, as scripts that are executed on the page may request additional content.

The additional constraints added by SOMA are illustrated in Figure 5. Rather than allowing all inclu-

sions as requested by the web page, the modified browser checks first to see if both the page’s web server

and the external content’s web server approve of each other. In Figure 5, web server A is the source of the

web page to be displayed. A has a manifest that indicates that it approves of including content from both

B and C (A`B and A`C). When the browser is asked to include content from B in the page from A, it

makes a request to B to determine if B´A (B approves of A incorporating its content). In the example,

B approves and its content is included on the page (since (A`B) ∧ (B´A)). Also in the example, C’s
content is not included because C˜A (C returns NO in response to a request for /soma-approval).D’s

content is not included because AˆD (D is not listed in A’s manifest). C returning C˜A prevents pages

from A accessing content from C in any way (including embedding content or performing cross-site request

attacks). AˆD prevents web pages from A interacting with D in any way.
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Web Server A

Web Server B

Web Server C

Web Server D

Web Browser

Web Page

Figure 4: Inclusions allowed by the same origin policy

Web Server A

Web Server B

Web Server C

Web Server D

Web Browser

Web Page

Manifest:

A`B,

A`C B´A

C˜A C˜A

D´A

AˆD

Figure 5: Inclusions allowed within the same origin mutual approval policy

In the example, A’s web pages are trying to use content without C’s approval 1, or A’s web pages

may be attempting a cross-site request forgery against C . In either case, the browser does not allow the

communication.

In the case of content inclusions from D, the page is trying to include content but the manifest for A

does not include D. The content from D is thus not loaded and not included (the web browser never checks

to see if D would have granted approval or not). In this fashion SOMA prevents information from being

1Such inclusions may be considered stealing, either of the content itself or of the bandwidth needed to load the content.
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sent to or received from an untrusted server.

3.5 Process of approval

The process the browser goes through when fetching content is described in Figure 6. First, the web browser

gets the page from server A. In parallel, the browser retrieves the manifest file from server A using the same

protocol (i.e. if the page is served over HTTPS, then the manifest will be retrieved over HTTPS as well). In

this example, the web page requires content from web server C , so the browser first checks to see if C is in

A’s manifest. If AˆC , then the content is not loaded. If A`C , then the browser verifies C’s reciprocal

approval by checking the /soma-approval details on C (again using the same protocol as the pending

content request). If C˜A then the browser again refuses to load the content. If C´A then the browser gets

any necessary content from C and inserts it into the web page.

Originating

Web Server

A

Web Browser

B

Remote 

Web Server

C

1. Request page

2. Return page

3. Request manifest

(/soma-manifest)

4. Return Manifest

(assume A`C is

in the manifest)

5. Check

/soma-approval

(does C´A?)

6. Return YES or

NO (YES

⇒ C´A,

NO⇒ C˜A)

7. Request content

8. Return content

If A wants to

include content

from C

Figure 6: The mutual approval procedure
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3.6 Compatibility with existing sites

In order to avoid breaking current web pages, SOMA defaults to a permissive mode if the manifest or

approval files do not exist. These defaults reflect current web page behavior where all inclusions are allowed.

1. If the soma-manifestfile does not exist on the origin, all inclusions are considered to be permitted

by the origin site.

2. If the content provider has no soma-approvalfile, then any site is allowed to include content from

this provider. In other words, the default soma-approval is YES if no file exists.

Note that these checks are independent, i.e., the lack of a soma-manifest does not prevent the

loading of a soma-approval file and vice-versa.

4 Design Evaluation

4.1 Security Benefits

SOMA constrains JavaScript’s ability to communicate by limiting it to mutually approved domains. Since

many attacks rely upon JavaScript’s ability to communicate with arbitrary domains, this curtails many types

of exploitive activity in web browsers. Whereas currently any web server can be used to host malicious

JavaScript or to receive stolen information, the list of potential attackers is narrowed significantly, either to

insiders at the web site in question, or to one of its approved partners. As we explain below, this change

would provide substantial additional protection in practice.

One key factor making SOMA a feasible defense is that the costs of implementation and operation are

borne by those parties who stand the most to benefit and who are most suited to bear its costs. It also helps

those who wish more control over what sites embed their content.

4.1.1 Recursive Script Inclusion

Script inclusion is only allowed from mutually approved domains. Therefore, if a script is included recur-

sively, it still needs to come from a mutually approved domain, regardless of which domain included it. The

use of the manifest to constrain inclusions means that attackers will no longer be able to store attack code

on external domains unless they are in the manifest and mutually approved. Many current attacks rely on

the ability to store code externally [24], therefore SOMA will force attackers to use new attack strategies.

4.1.2 Unrestricted outbound communication

Outbound communication under SOMA is controlled so that (explicit) information can only flow to and

from mutually approved partners. Thus, attacker who wish to get information from a page now cannot

have the browser send it to any arbitrary web server. This change blocks many existing cookie-stealing and

similar information theft attacks, forcing attackers to compromise an approved partner in order to get such

information.

While SOMA provides no protection against local covert communications channels, it does protect

against most timing attacks based upon cached content [11], simply because with SOMA the attacker’s

website will in general not be approved by the victim’s for content inclusion.
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4.1.3 Cross-site request forgery

Cross-site request forgery attacks occur when a malicious web site causes a URL to be loaded from another,

victim web site. SOMA dictates that URLs can only be loaded if a site has been mutually approved, which

means that sites are only vulnerable to cross-site request forgery from sites on their approval lists. Specif-

ically, the approval files limit the possible attack vectors for a cross-site request forgery attack, while the

manifest file ensures that an origin site cannot be used in an attack on another arbitrary site.

SOMA thus allows a new approach to protect web applications from cross-site request forgery. Any

page which performs an action when loaded could be placed on a subdomain (by the server operator) which

grants approval only to trusted domains, such as those they control. This change would limit attacks to cases

where the user has been fooled into clicking on a link. It is unlikely that sites will need to grant external

access to action-causing scripts: even voting sites, which generally want to make it easy for people to vote

from an external domain with just a click, usually include some sort of click-through to prevent vote fraud.

SOMA also leaks less information to sites than the current Referer HTML header (which is also

sometimes used to prevent cross-site request forgery [22]). Because the Referer header contains the

complete URL (and not just the domain), sensitive information can currently be leaked [19]. Many have

already realized the privacy concerns related to the RefererURL and have implemented measures to block

or change this header [35, 30]. These proposals also prevent current cross-site request forgery detection

attempts; however, they do not conflict with SOMA.

4.1.4 Cross-site scripting

SOMA blocks the “cross” part of cross-site scripting, since information can no longer be loaded from or

sent to external, unapproved domains. This change forces attackers to either compromise the targeted origin

host or one of its mutually approved partners, or to inject their entire attack code into the web page, thereby

increasing their chances of detection. In fact, since the code needed to mount many attacks is of significant

size (e.g., setting appropriate style attributes as camouflage), when combined with SOMA, simple length

restrictions already in place on some user content may be sufficient to prevent many attacks.

Even if attack code manages to load, its communication channels are limited. Many attacks require

that information such as credit card numbers be sent to the attacker for later use, but this will no longer be

possible with SOMA. Other attacks require the user to load dangerous content hosted externally, and these

would also fail.

Thus, while some forms of cross-site scripting attacks remain viable, they are limited to attacks on

the existing page that do not require communication through the browser to other non-approved domains.

For example, it is not possible to steal cookies if there is no way to send the cookie information out to the

attacker. It is possible that the site itself could provide the way (for example, cookies could be emailed out of

a compromised webmail client or posted on a blog). Or, the attacker could instead choose to deface the page,

since this attack requires the script only to modify the page. However, without the cross-site component, the

remaining attacks are just single site code injection attacks, not cross-site attacks.

4.1.5 Bandwidth stealing

SOMA allows content providers more control over who uses their content. Thus SOMA offers a new way

to prevent “bandwidth theft” where someone is including images or other content from a (non-consenting)

content provider into their page using a direct link to the original file. Existing techniques usually require

11



the web server to verify the HTTP referer header, which can be problematic (as discussed in Section 4.1.3).

SOMA provides a technique to do the verification in the browser, not relying on HTTP referer.

Also known as hotlinking or inline linking, bandwidth theft is used maliciously by phishing sites, but

may also be used unintentionally by people who do not know better. Regardless of the intent, this can still

be damaging. While the content provider is paying hosting costs associated with serving up that file, it may

be pulled in by, for example, a very popular blog or aggregate site that would generate a huge number of

additional views. At the extreme, this could result in the content provider exceeding their bandwidth cap

and being charged extra hosting fees or having their site shut down.

Many smaller sites would rather their content be used only by them for visitors to their site, and SOMA

allows them to specify this and have browsers enforce this behavior. Bandwidth theft is often performed by

people who are simply unaware that this is inappropriate behavior [6], and SOMA can address this since

doing the wrong thing will simply not work.

4.2 Incremental Deployment

SOMA is designed to gracefully handle sites which are unaware of SOMA or have not yet been configured.

More specifically, if the soma-manifest and/or soma-approval files do not exist (or do not contain

SOMA specific identifying strings), the browser defaults to current permissive behavior, that is, assumes

that inclusions are allowed. Thus, a SOMA-enabled browser can run on current web pages without any

difference in behavior.

If only the origin site has a soma-manifest, then SOMA still provides partial security coverage,

enforcing the policy that is defined in the soma-manifest. If the origin site does not have a manifest file,

but the content provider gives approval information through soma-approval then the policy defined by

the content provider is enforced.

In order to verify that files returned in response to requests for soma-manifestand soma-approval

are related to SOMA, we stipulate that the first line of the soma-manifest file must contain SOMA

Manifest and the soma-approval file must contain only the word YES or NO. This is necessary since

many websites return a generic page even when the request has not been found, and this must not be confused

with intentional responses to SOMA requests.

The full benefits of SOMA are available when origins and content providers both provide SOMA-related

files, but the design is such that it is possible for either side to start providing files without needing extensive

coordination to ensure that both are provided at the same time. In other words, incremental deployment is

possible. In addition, even if one site refuses to provide policy files for whatever reason, others can still

obtain lesser security guarantees. Moreover, the support of SOMA at servers need not be synchronized with

deployment of SOMA at browsers.

A more security-oriented default policy would be possible, with SOMA assuming a NO response if the

manifest or approval files are not found by the browser. This could potentially provide additional security

even on sites which do not provide policy, as well as encouraging sites which do not have policies to set

them. However, it would break almost all existing web pages, almost surely preventing the adoption of

SOMA. The permissive default was chosen to reflect current browser behavior and to make it easier for

SOMA to be deployed.

4.3 Deployment Costs

The browser, the origin sites, and content inclusion provider sites all bear the costs in deploying SOMA.

Note that unlike some solutions which rely heavily upon user knowledge (e.g. the NoScript add-on for
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Mozilla Firefox [21]), SOMA requires no additional effort on the part of the user browsing the web site.

Instead, policies are set by server operators, who are expected have more information about what constitutes

good policy for their sites.

4.3.1 Deployment in the browser

The SOMA policy is enforced by the web browser, so changes are required within web browsers. We have

created a prototype add-on for Mozilla Firefox 2 as discussed in greater detail in Section 5.

4.3.2 Deployment on origin sites

Each origin site which wishes to benefit from the protections of SOMAneeds to provide a soma-manifest

file. This is a text file which contains a list of content-providing sites from which the origin wishes to in-

clude content. As mentioned earlier, these content providers are specified by domain name, protocol and

(optionally) port.

This list can be determined by looking at pages on the site and compiling a list of content providers. This

could be automated using a web crawler, or done by an admin who is willing to set policy. (It is possible

that sites will wish to set more restrictive policy than the site’s current behavior.) We examined the main

page on popular sites to determine the approximate complexity of manifests required, and these results are

detailed in Section 5.5.2.

4.3.3 Deployment on content provider sites

Content providers wishing to take advantage of SOMA need to provide either a file or script which can

handle requests to soma-approval. The time needed to create this policy script depends heavily upon

the needs of the site in question, and may range from a simple yes-to-all or no-to-all to more complex

policies based upon client relationships. Fortunately, simple policies are likely to be desired by smaller sites

(which are unlikely to have the resources to create complex policies), and complex policies are likely to be

required only by sites who have the necessary expertise.

Many sites will not wish to be external content providers and their needs will be easily served by a

soma-approval file that just contains NO. Such a configuration will be common on smaller sites such

as personal blogs. It will also be common on high-security sites such as banks, who want to be especially

careful to avoid XSRF and having their images used by phishing sites. Phishing sites will have to copy over

images, facilitating legal action over copyright violations.

Other sites may wish to be content providers to everyone. Sites such as Flickr and YouTube that wish

to allow all users to include content will probably want to have a simple YES policy. This is most easily

achieved by simply not hosting a soma-approval file (as this is the default), or by creating one that

contains the word YES.

The sites requiring the most configuration are those who want to allow some content inclusions rather

than all or none. For example, advertisers might want to provide code to sites displaying their ads. The list

of domains that need to be approved is already maintained, as this is part of their client list. This database

could then be queried to generate the approval list. Or a company with several web applications might want

to keep them on separate domains but still allow interaction between them. Again, the necessary inclusions

will be known in advance and necessary policy could be created by a system administrator or web developer.

For an evaluation of the performance impact of SOMA, see Section 5.5.3.
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4.4 Limitations

SOMA is designed to improve the same origin policy by imposing further constraints upon external inclu-

sions and thus external communications. As such, it does not prevent attacks that do not require external

communications or external code inclusions. Note that in current attack code, outside communication is

frequently used [24].

SOMA does not stop attacks to or from mutually approved partners. In order to avoid these attacks, it

would be necessary to impose finer-grained control or additional separation between components. This sort

of protection can be provided by the mashup solutions described in Section 6, albeit at the cost of extensive

and often complex web site modifications.

SOMA cannot stop attacks on the origin where the entire attack code is injected, if no outside com-

munication is needed for the attack. This could be web page defacement, same-site request forgery, or

sandbox-breaking attacks intended for the user’s machine. Some complex attacks might be stopped by size

restrictions on uploaded content. More subtle attacks might need to be caught by heuristics used to detect

cross-site scripting. Some of these solutions are described in Section 6.

SOMA cannot stop attacks from malicious servers not including content from remote domains. These

would include phishing attacks where the legitimate server is not involved.

5 Prototype

5.1 Description

In order to test SOMA, we created an add-on for Mozilla Firefox 2.0. It can be installed in an unmodified

installation of Mozilla Firefox the same way as any other add-on: the user clicks an installation link and is

prompted to confirm the install. If they click the install button, the add-on is installed and begins to function

after a browser restart.

The SOMA add-on provides a component that does the necessary verification of the soma-manifest

and soma-approval files before content is loaded.

Since it is not possible to insert policy files onto sites over which we had no control, we used a proxy

server to simulate the presence of manifest and approval files on popular sites.

5.2 Performance

The primary overhead in running SOMA is due to the additional latency introduced by having to request

a soma-manifest or soma-approval from each domain referenced on a web page. While these

responses can be cached (like other web requests), the initial load time for a page is increased by the time

required to complete these requests. Because the manifest can be loaded in parallel with the origin page

(subsequent requests can not be sent until the browser has received and parsed the origin page anyway),

we do not believe manifest load times will affect total page load times. Because soma-approval files

must retrieved before contacting other servers, however, overhead in requesting them will increase page load

times.

Because sites do not currently implement SOMA, we estimate SOMA’s overhead using observed web

request times. First, we determined the average HTTP request round-trip time for each of 40 representative

web sites2 on a per-domain basis using PageStats [9]. We used this per-domain average as a proxy for the

time to retrieve a soma-approval from a given domain. Then, to calculate page load times using SOMA,

2Our representative sample included banks, news sites, web e-mail, e-commerce, social networking, and less popular sites.
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we increase the time to request all content from each accessed domain by the soma-approval request

estimate for that domain. The time of the last response from any domain then serves as our final page load

time.

After running our test 30 times on 40 different web pages, we found that the average additional network

latency overhead due to SOMA increased page load time from 2.9 to 3.3 seconds (or 13.28%) on non-cached

page loads. On cached page loads, our overhead is negligible (since soma-approval is cached). We note

that this increase in latency is due to network latency and not CPU usage. If we assume that 58% of page

loads are revisits [32], the average network latency overhead of SOMA drops to 5.58%.

Because soma-approval responses are extremely small (see Section 5.5.3), they should be faster to

retrieve than the average round-trip time estimate used in our experiments. Thus, these values should be

seen as a worst-case scenario; in practice, we expect SOMA’s overhead to be significantly less.

5.3 Compatibility with Existing Web pages

To test compatibility with existing web pages, the global top 45 sites as ranked by Alexa [3] were visited

in the browser with and without the SOMA add-on. No SOMA compatibility issues were detected in these

tests. In addition, one author ran the SOMA add-on for 2 weeks while doing regular browsing, and no SOMA

incompatibilities were observed. These results were expected, as SOMAwas designed for compatibility and

incremental deployment.

5.4 Attacks

In order to verify that SOMA actively blocks information leakage, cross-site request forgery, cross-site

scripting, and content stealing, we created examples of these attacks. We specifically tested the following

attacks with the SOMA add-on:

1. A GET request for an image on another web site (testing both GET based XSRF as well as content

stealing).

2. A POST request to a page on another web site done through JavaScript (testing POST based XSRF).

3. An iframe inclusion from another web site (testing iframe injection based XSS).

4. Sending either a cookie or personal information to another web site (testing information leakage).

5. A script inclusion from another web site (testing XSS injection).

All attacks were hosted at domain A and used domain B as the other domain involved. All attacks were

successful without SOMA and we found that with SOMA either a manifest at domain A not listing B or a

soma-approval at domain B which returned NO for domain A prevented the attacks.

5.5 Deployment Costs

5.5.1 Browser: SOMA Add-on

The SOMA add-on, when prepared into the standard XPI package format used by Mozilla Firefox, is 7kB.

Uncompressed, the entire add-on is 25kB. The component which does the actual SOMA mutual approval

process is 21kB; the rest is installation files and chrome so that the browser provides a visual indication that

the add-on is loaded.
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5.5.2 Origin sites: Manifest files

To determine approximate sizes for manifests, we used the PageStats add-on [9] to load the home page for

the global top 500 sites as reported by Alexa [3] and examined the resulting log, which contains information

about each request that was made. On average, each site requested content from 5.45 domains other than

the one being loaded, with a standard deviation of 5.3. The maximum number of content providers was 32

and the minimum was 0 (for sites that only load from their own domain).

Of course, a site’s home page may not be representative of its entire contents. So, as a further test

we traversed large sections of a major news site and determined that the number of domains needed in the

manifest was approximately 45; this value was close to the 33 needed for the site’s home page.

Given the remarkable diversity of the Internet, there probably exist sites today that would require ex-

tremely large manifest files. This cursory survey, however, gives evidence that manifests for common sites

would be relatively small.

5.5.3 Content provider sites: Approval files

Approvals result in tiny amounts of data being transferred: either a YES or NO response (around 4 bytes of

data) plus any necessary headers.

Using data from the top 500 Alexa sites [3], we examined 3244 cases in which a content provider served

data to an origin site. The average request size was 10459 bytes. Because many content providers are

serving up large video, however, the standard deviation was fairly large: 118197 bytes. The median of 2528

bytes is much lower than the average. However, even this smaller median dwarfs the 4 bytes required for

a soma-approval response. As such, we feel it safe to say that the additional network load on content

providers due to SOMA is negligible compared to the data they are already providing to a given origin site.

6 Related Work

Web-based execution environments have all been built with the understanding that unfettered remote code

execution is extremely dangerous. SSL and TLS can protect communication privacy, integrity, and au-

thenticity; code signing [27, 31] can prevent the execution of unauthorized code; neither, however, protect

against the execution of malicious code within the browser. Java [8] was the first web execution environment

to employ an execution sandbox [34] and the same origin policy for restricting network communication.

Subsequent systems for executing code within a browser, including JavaScript, have largely followed the

model as originally embodied in Java applets.

While there has been considerable work on mitigating the failures of language-based sandboxing [17]

and on sandboxing other, less trusted code such as browser plugins and helper applications [12], only re-

cently have researchers begun addressing the limitations of sandboxing and same origin policy with respect

to JavaScript applications.

Many researchers have attempted to detect and block malicious JavaScript. Some have proposed to

instrument JavaScript automatically to detect known vulnerabilities [26], while others have proposed to filter

JavaScript to prevent XSS [18] and XSRF [16] attacks. Another approach has been to perform dynamic taint

tracking (combined with static analysis) to detect the information flows associated with XSS attacks [33].

Instead of attempting to detect dangerous JavaScript code behavior before it can compromise user data,

SOMA prevents the unauthorized cross-domain information flows using site-specific policies.

Recently several researchers have focused on the problem of web mashups. Mashups are composite

JavaScript-based web applications that draw functionality and content from multiple sources. To make
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mashups work within the confines of same origin policy, remote content must either be separated into sep-

arate iframes or all code must be loaded into the same execution context. The former solution is in general

too restrictive while the latter is too permissive; mashup solutions are designed to bridge this gap. Two

pioneering works in this space are Subspace [15] and MashupOS [14].

SOMA prevents the creation of mashups using unauthorized code, i.e., in order for a mashup to work

with SOMA, every web site involved in it must explicitly allow participation. While such restrictions may

inhibit the creation of novel, third party mashup applications, they also prevent attackers from creating

malicious mashups (e.g., combinations of a legitimate bank’s login page and a malicious login box). Given

the state of security on the modern web, we believe such a trade-off is beneficial and, moreover, necessary.

While the general problem of unauthorized information flow is a classic problem in computer security

[10], little attention has been paid in the research community to the problems of unauthorized cross-domain

information flow in web applications beyond the strictures of same origin policy—this, despite the fact that

XSS and XSRF attacks very heavily rely upon such unauthorized flows. Of course, the web was originally

designed to make it easy to embed content from arbitrary sources. With SOMA, we are simply advocating

that any such inclusions should be approved by both parties.

While SOMA is a novel proposal, we based the design of soma-approval and soma-manifeston

existing systems. The soma-approvalmechanism was inspired by the crossdomain.xml [4] mecha-

nism of Flash. External content may be included Flash applications only from servers with a crossdomain.

xml file [4] that lists the Flash applications’ originating server. Because the response logic behind a

soma-approval request can be arbitrarily complex, we have chosen to specify that it be a server-side

script rather than an XML file that must be parsed by a web browser.

The soma-manifestfile was inspired by Tahoma [7], an experimental VM-based system for securing

web applications. Tahoma allows users to download virtual machine images from arbitrary servers. To

prevent these virtual machines from contacting unauthorized servers (e.g., when a virtual machine has been

compromised), Tahoma requires every VM image to include a manifest specifying what remote sites that

VM may communicate with.

Note that by themselves Flash’s crossdomain.xml and Tahoma’s server manifest do not provide

the type of protection provided by SOMA. With Flash, a malicious content provider can always specify a

crossdomain.xml file that would allow a compromised Flash program to send sensitive information

to the attacker. With Tahoma, a malicious origin server can specify a manifest that would cause a user’s

browser to send data to an arbitrary web site, thus causing a denial-of-service attack or worse. By including

both mechanisms, we address the limitations of each.

7 Discussion and Conclusion

Most JavaScript-based attacks require that compromised web pages communicate with attacker-controlled

web servers. Here we propose an extension to same origin policy—the same origin mutual approval (SOMA)

policy—which restricts cross-domain communication to a web page’s originating server and other servers

that mutually approve of the cross-site communication. By preventing inappropriate or unauthorized cross-

domain communication, attacks such as cross-site scripting and cross-site request forgery can be blocked.

The SOMA architecture’s benefits versus other JavaScript defenses include: 1) it is incrementally de-

ployable with incremental benefit; 2) it imposes no configuration or usage burden on end users; 3) the

required changes in browser functionality and server configuration affect those who have the most reason

to be concerned about security, namely the administrators of sensitive web servers and web browser devel-

opers; 4) these changes are easy to understand, simple to implement technically, and efficient in execution;
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and 5) it gives server operators a chance to specify what sites can interact with their content. While SOMA

does not prevent attackers from injecting JavaScript code, with SOMA such code cannot leak information

to attackers without going through an approved server.

We believe that SOMA represents a reasonable and practical compromise between benefits (increased

security) and costs (adoption pain). Perhaps more significantly, our proposal of the SOMA architecture

highlights that the ability to create web pages using arbitrary remote resources is a key enabling factor

in web security exploits (including some techniques used in phishing). While other JavaScript defenses

will no doubt arise, we believe that among the contributions of this paper are a focus on the underlying

problem, namely, deficiencies in the JavaScript same origin policy, and the identification of several important

characteristics of a viable solution.

It is easy to dismiss any proposal requiring changes to web infrastructure; however, there is precedence

for wide scale changes to improve security. Indeed, much as open email relays had to be restricted to

mitigate spam, we believe that arbitrary content inclusions must be restricted to mitigate cross-site scripting

and cross-site request forgery attacks. We hope this insight helps clarify the threats that must be considered

when creating next-generation web technologies and other Internet-based distributed applications.
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