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Abstract

Essentially every interaction on the Internet is preceded by at least one DNS res-

olution; therefore, the security and privacy of the DNS resolution process directly

impact all entities that rely on this process. This thesis pursues five objectives

regarding the security and privacy of DNS resolution.

First, a comprehensive threat model of the DNS resolution process is developed

to systematically identify existing threats. Based on this, a set of security and

privacy properties intended to mitigate these threats effectively is defined. Second,

these properties are used to construct a comparative evaluation framework, by which

11 previously proposed secure DNS schemes are evaluated to assess their security,

privacy, and availability guarantees.

Third, after analyzing the weaknesses of these pre-existing schemes, a novel se-

cure DNS scheme, DNSSEC+, is proposed and designed to enhance the security and

privacy of interactions between recursive resolvers and authoritative nameservers.

DNSSEC+ aims to provide stronger security and privacy properties than previously

proposed schemes in this stage while maintaining comparable performance overhead.

Fourth, to examine whether the performance of DNSSEC+ may impact potential

adoption and its practical deployment, we developed a prototype implementation

of DNSSEC+ and carried out a comparative performance evaluation versus other

secure DNS schemes. Finally, to establish confidence in its security and privacy

properties, a symbolic model of DNSSEC+ is developed, and its properties are

formally verified.
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Chapter 1

Introduction

The Domain Name System (DNS) [119, 120] was introduced in 1987 with the pri-

mary goal of translating human-readable domain names into numerical Internet

Protocol (IP) addresses. Although DNS was originally proposed as a decentral-

ized and scalable solution intended to be able to accommodate the growth of the

Internet, security and privacy were not among the goals of Vanilla DNS (the orig-

inal design) [119, 120]. As a result, attackers have exploited the lack of security

and privacy in Vanilla DNS, mounting attacks such as surveillance and information

gathering [63, 70], web censorship [16], and injecting false DNS responses that lead

to DNS cache poisoning [74, 98]. These attacks can compromise the security and pri-

vacy of the hundreds of billions of DNS queries resolved over the Internet each day.1

Additionally, the absence of adequate security measures in DNS has jeopardized the

security and privacy of other protocols and ecosystems built upon it [43], includ-

ing the Internet of Things (IoT) ecosystem [10], the domain validation process [30],

Network Time Protocol (NTP) [95], and applications such as email [43].

For more than three decades, researchers have focused on addressing the secu-

rity and privacy weaknesses of Vanilla DNS in an effort to mitigate both active and

passive DNS-resolution-related attacks. The majority of the proposed solutions aim

to augment Vanilla DNS by adding security or privacy properties [11, 46, 80, 86].

These improvements generally provide security and privacy properties in specific

sections of the DNS resolution process (e.g., DNS-over-TLS [86] between stub and

recursive resolvers), while leaving other parts (e.g., recursive resolver to nameserver

interactions) vulnerable. Moreover, several of these (e.g., DNSCurve [46] and DNS

Security Extensions (DNSSEC) [34]) encounter deployment challenges that hinder

their widespread adoption. Some other solutions aim to provide alternative name

systems that require fundamental modifications to the currently established name

system (e.g., GNU Name System (GNS) [167] and NameCoin [97]). The limited

adoption of schemes requiring fundamental changes to the existing DNS infrastruc-

ture can be attributed to several factors. These include the impracticality of im-

plementing radical modifications to the deployed DNS infrastructure, the lack of

1https://vercara.com/resources/2023-dns-traffic-and-trends-analysis
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Chapter 1. Introduction

incremental deployability and backward compatibility of such schemes, and the re-

luctance of current Internet infrastructure providers to adopt untested approaches

and abandon the well-established and operational Vanilla DNS [97, 167]. Therefore,

rather than fundamentally modifying the DNS resolution process, augmenting its

security and privacy properties presents a more feasible approach to improving the

overall security of DNS resolution.

Most of the proposed security enhancements to DNS focus on the last mile,

i.e., the interactions between clients and recursive resolvers [48, 80, 86, 89]. Some of

these schemes, such as DNS-over-TLS (DoT) [86] and DNS-over-HTTPS (DoH) [80]

have been adopted and endorsed by industry stakeholders, such as those who control

major web browsers [32] and operating systems.2 Only a few schemes, for example

DNSSEC [11] and DNSCurve [25, 46], have been proposed to secure the communi-

cation between recursive resolvers and Authoritative nameservers (ANSes). None

of these has been widely adopted [34, 168]; thus, the majority of the interactions

between recursive resolvers and ANSes remain vulnerable to active (e.g., cache poi-

soning) and passive (e.g., surveillance) attacks.

In order to investigate the security and privacy of secure DNS schemes that

have been proposed to augment DNS resolution process, one approach is to analyze

existing DNS security surveys and related literature. However, these tend to either

focus on specific threats, such as DNS-based botnet evasion [113] and DNS-based

data exfiltration [125], or provide a broad overview of the entire DNS infrastructure,

as in the surveys by Khormali et al. [99] and Zou et al. [177]. As a result, while

offering valuable insights into specific attacks and broad DNS-related issues, their

primary objective is not to provide a comprehensive evaluation of the threats to the

DNS resolution process or the advantages and limitations of the schemes proposed

to augment its security and privacy.

In this thesis, we conduct a comprehensive survey of schemes designed to enhance

the security and privacy of the DNS resolution process. Through a systematic

analysis, we identify and categorize the security, privacy, and availability threats

associated with this process and develop a detailed threat model to elucidate the

threats of the DNS resolution process.

Based on the identified threats, we then define a set of properties that we argue

2https://techcommunity.microsoft.com/t5/networking-blog/

windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229

14
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1.1 Thesis Scope

are essential to the DNS resolution process to effectively mitigate the security and

privacy threats of this process. These properties serve as the foundation for develop-

ing a framework to analyze the properties of proposed schemes aimed at enhancing

the security and privacy of the DNS resolution process and are intended to help

the advancement of future designs. We then use this framework to comparatively

evaluate the properties offered by 11 previously proposed DNS schemes designed to

enhance the security and privacy of the DNS resolution process.

After identifying the threats and required properties of the DNS resolution pro-

cess and conducting this comparative evaluation, we propose a novel DNS scheme,

DNSSEC+, designed to augment the real-time security and privacy of interactions

between recursive resolvers and ANSes within the DNS resolution process. Next, we

implement a prototype of DNSSEC+, and evaluate its performance in comparison

to existing schemes, including DNSSEC [11, 12, 13] and TLS-based [86] schemes.

Our evaluation indicates that DNSSEC+ has performance comparable to most pre-

viously proposed schemes in terms of total resolution latency and CPU utilization,

and significantly outperforms DoT in these metrics.

Finally, we developed a symbolic model of DNSSEC+ in the Tamarin protocol

verifier syntax. Under standard assumptions, the model is used to formally verify

the security and privacy properties of the DNS resolution process with the root

zone when using DNSSEC+, which is then extended to the subordinate zones. Ad-

ditionally, the impact of key and entity compromises on the security and privacy

properties of DNSSEC+ is formally analyzed, providing insights on the robustness

of DNSSEC+ under various threat scenarios.

1.1 Thesis Scope

The operation of the DNS infrastructure on the Internet depends on multiple entities

and processes, including name resolution, domain registration, and transfer of zone

files. Our primary focus in this thesis is the name resolution process, which involves

a set of interactions between DNS resolvers (stub and recursive) and nameservers

through which a client resolves a query to its corresponding DNS record. In this

section, we define the scope of the research areas explored in this thesis by explicitly

defining the subjects and aspects included within its scope and the ones that fall

outside scope.

15



1.1 Thesis Scope

1.1.1 A Systematic Evaluation of DNS Resolution Process

Since the primary focus of Chapter 3 is the name resolution process, this chapter

aims to identify the security and privacy threats associated with this process while

excluding domain registration procedures, zone transfers, and host-based attacks.

Domain registration refers to the process by which a domain registrant acquires own-

ership of a specific domain by licensing an available domain from a registrar. Zone

transfer is the mechanism through which a zone file (data) is copied from one name

server to another. Host-based attacks range from a host compromised by malware

(e.g., a recursive resolver) to manipulations carried out by a malicious insider. For

example, in host-based attacks, an adversary can change OS configurations such as

the Hosts.txt file, primary DNS server (e.g., modify network configuration files),

or IP/domain-name associations on the DNS caches or databases to falsify DNS

resolution. Another example of a host-based attack that targets the authenticity of

network configuration on a client involves using a malicious Dynamic Host Configu-

ration Protocol (DHCP) server to configure bogus DNS servers on a client’s machine

or orchestrate false responses to the client queries. All such host-based attacks are

excluded from the scope of our systematic analysis in Chapter 3.

Following the identification and extraction of threats within the DNS resolution

process, a comprehensive threat model is developed in Section 3.1. This model can

be used as an objective tool by industry stakeholders and researchers for evaluating

the security strengths and weaknesses of their deployed DNS resolution process and

proposed secure DNS schemes, respectively. After developing a threat model, the

identified threats are employed to define security, privacy, and availability properties

that a DNS scheme can offer to mitigate them. The focus of this part is explicitly

limited to security, privacy, and availability properties, while usability and deploy-

ability properties fall outside the scope of Section 3.2.

Next, we develop a comprehensive and objective evaluation framework using the

properties defined in Section 3.2. The scope of the properties evaluated by this

framework is limited to the threats and properties from Sections 3.1 and 3.2. This

framework is then applied to assess the security and privacy properties provided by a

number of previously proposed secure DNS schemes. Since the identified threats and

properties are derived from the lack of security and privacy in the name resolution

process of Vanilla DNS, the evaluation framework focuses on schemes designed to

augment security or privacy of this process. Schemes that introduce radical changes

16
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to the DNS resolution process (e.g., Namecoin [97]) are not suitable for evaluation

using this framework and have therefore been excluded from this assessment.

1.1.2 Proposing and Evaluating an Enhanced DNS Scheme

After identifying threats to the DNS resolution process and defining required prop-

erties to mitigate the threats in Chapter 3, in Chapter 4, DNSSEC+ is proposed as

an enhanced DNS scheme that aims to augment the security and privacy between

recursive resolvers and nameservers. The initial scope of DNSSEC+ is delimited

to the communication between recursive resolvers and nameservers, and DNSSEC+

alone does not secure the entire DNS resolution process. In Chapter 7, we briefly

discuss how to use DNSSEC+ with different Public Key Infrastructures (PKIs) to

secure communication between clients and recursive resolvers separately to secure

the remaining part of the DNS resolution process. The underlying rationale is that

DNS resolution is a two-stage process, with each stage executed separately and

requiring distinct security and privacy properties. Furthermore, comprehensive so-

lutions that require fundamental changes to the original two-stage DNS resolution

process or significant modifications to the existing name system architecture often

encounter substantial barriers to widespread adoption [38, 97, 167].

Throughout the design of DNSSEC+, while the primary objectives were to en-

hance security and privacy, secondary considerations, such as avoiding barriers to

deployment and minimizing performance degradation that could affect end-user ex-

perience, which were not the focus of the systematic analysis in Chapter 3, were

also taken into account. In Chapter 5, a prototype of DNSSEC+ was developed

as a proof of concept. This also enabled performance evaluation and comparative

assessment with the previously proposed secure DNS schemes. While the proto-

type accurately demonstrates the functionality of DNSSEC+ and provides valuable

insights into its performance, it is intended mainly for proof-of-concept and for eval-

uation purposes and would require further development for deployment in live DNS

environments.

1.1.3 Formal Analysis of DNSSEC+

In Chapter 6, we proceed with the formal verification of the security and privacy

properties defined for DNSSEC+. The primary objective of formal verification tools
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is to generate proofs that verify these properties for all possible protocol behaviors

of the defined symbolic model. For this purpose, we use the Tamarin prover [117],

a symbolic formal verification tool, with the results thereby contingent on the tool’s

capabilities, inherent limitations, and the specified adversary model. In symbolic

verification, cryptographic primitives are assumed to be idealized, error-free con-

structs that cannot be compromised, making the soundness of the generated proofs

contingent on the security of the cryptographic primitives that instantiate the de-

sign. Furthermore, as DNSSEC+ is designed to secure interaction between recursive

resolvers and ANSes, the formal verification confirms the specified properties strictly

within this scope of the communication. As a further limitation, formal verification

tools may have inherent or undiscovered flaws, which can also affect the reliability

of the generated proofs, and discovering them is beyond the scope of this thesis.

1.2 Motivation

Essentially all Internet users, mobile phones [5], IoT devices [10], and embedded

systems connected to the Internet rely on DNS for name resolution before initiating

communication with their intended services. Therefore, security or privacy weak-

nesses of the DNS resolution process can compromise the security and privacy of all

these Internet-connected entities. The long-standing absence of adequate security

and privacy properties in the DNS resolution process and the lack of a systematic

threat model motivate our development of a comprehensive threat model for the

DNS resolution process. Our aim is to elucidate security and privacy vulnerabili-

ties that can be exploited within the DNS resolution process by passive and active

adversaries.

Since the introduction of Vanilla DNS [119, 120], various security extensions [11,

12, 13] and enhancements [25, 48, 80, 86] have been proposed to augment the se-

curity and privacy of the DNS resolution process. Each of these proposed schemes

provides a set of security and privacy properties in a part of DNS resolution pro-

cess. However, to our knowledge, there has previously been no objective method

for evaluating the provided properties by these schemes. This suggests a need for

a systematization of existing knowledge on DNS security to elucidate the security

strengths and weaknesses of the proposed schemes and improve future secure DNS

scheme designs and motivates the development of a framework for systematically
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evaluating the security of previously proposed DNS schemes. We hope that it is

also of use in evaluating future DNS designs.

Upon investigating existing secure DNS schemes proposed to enhance the secu-

rity of interactions between recursive resolvers and ANSes, we observe that none

of these has achieved widespread adoption over the Internet. For example, while

DNSSEC, introduced nearly twenty years ago, has been predominantly accepted

by the root and Top-level Domains (TLDs), Chung et al. [34] reported that, as of

2017, only 1% of domains had implemented DNSSEC, with significant mismanage-

ment observed in their deployments. Additionally, recent deployment statistics for

DNSSEC indicate that less than 4% of domains within the .com TLD have imple-

mented DNSSEC signatures in 2025.3 Moreover, DNSSEC only provides message

authentication in this stage of DNS resolution process, without providing additional

security or privacy properties. DNSCurve [25, 46], a promising alternative to se-

cure the same stage of the DNS resolution process as DNSSEC, has to date failed

to achieve adoption at the root level due to security concerns related to its key

management method and PKI [145, 168].

Thus, the lack of a widely adopted secure DNS scheme in this stage of DNS reso-

lution process indicates the need for a secure DNS scheme for secure DNS resolution.

This motivates our design and proposal of DNSSEC+, a novel secure DNS scheme

between recursive resolvers and ANSes, aiming to augment the security and privacy

of DNS resolution while maintaining a comparable performance to that of less secure

DNS schemes. By introducing a secure DNS scheme in Stage 2, we aim to protect

the DNS resolution path, thereby enabling clients to securely obtain the correct IP

address of their intended service points. While DNS is necessary for correct address

resolution, it is not sufficient on its own for end-to-end secure communication of

clients with their intended service points. Additional mechanisms such as secure

routing protocols and infrastructures like the web PKI and TLS are required to

ensure both the integrity of packet delivery and the confidentiality of subsequent

client-service interactions. Therefore, secure DNS resolution is an essential com-

ponent in achieving the end goal of enabling a client to interact with its intended

service endpoint.

In the design of complex security protocols, subtle flaws may exist that compro-

mise the security and privacy properties intended by those protocols. For example,

3https://www.statdns.com/ (January 2025)
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17 years after the introduction of the Needham-Schroeder protocol [128], Lowe [108]

discovered a previously undetected attack that had been inherent in the protocol

since its initial proposal. Thus, a formal analysis of security protocols helps us build

confidence that they meet the properties asserted in protocol specifications for given

assumptions regarding the adversary. In this thesis, following the design and proto-

type implementation of DNSSEC+, we conduct a formal verification of the security

and privacy properties in Chapter 6. Using the Tamarin Prover, we establish these

properties over a symbolic model of DNSSEC+.

1.3 Research Questions

The primary research questions addressed in this thesis are as follows.

RQ1. What are the primary security and privacy threats facing the DNS

resolution process; and, what security, privacy, and availability properties are

sufficient to effectively mitigate these threats?

RQ2. What type of evaluation framework could be developed to objectively

evaluate the security and privacy of both existing and future DNS schemes

designed to enhance the security or privacy of the DNS resolution process?

RQ3. How can an enhanced Stage 2 DNS resolution scheme be designed

and developed to augment the security and privacy in Stage 2 of the DNS

resolution process?

1.4 Contributions

The main contributions of this thesis address the aforementioned research questions

and can be categorized into four main areas, as outlined below.

Threat Modeling (Sections 3.1 and 3.2): Through a systematic informal anal-

ysis of the DNS resolution process, we develop a comprehensive threat model

and attack taxonomy of existing network-based threats within this process.

In this model, we classify the threats into three primary categories: security,

privacy, and availability. We then define 14 security and privacy properties

that we assert as requirements to mitigate the identified threats.
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Evaluation Framework (Section 3.3): The properties that we assert as require-

ments serve as our foundation for the development of a framework for system-

atic evaluation of secure DNS schemes. The result is an objective framework

for evaluating the security, privacy, and availability properties of schemes pro-

posed to enhance the DNS resolution process. This framework is then used to

evaluate 11 schemes surveyed in our literature review.

Proposal and Design of DNSSEC+ (Chapter 4): Following the evaluation of

previously proposed DNS schemes and learning from their benefits and short-

comings, we design and propose DNSSEC+, an enhanced secure DNS scheme

to augment the interactions between recursive resolvers and ANSes. This pro-

poses a novel solution for the issue of long-term private key replication on

nameserver instances in the DNS context, which is a similar problem to the

delegation problem in TLS. Additionally, we specify key distribution methods

and a trust model suitable for the specific requirements of the zones within the

DNS hierarchy. Our scheme aims to augment real-time security and privacy

properties that mitigate the identified threats for this stage of DNS resolution.

Evaluation and Formal Verification (Chapters 5 and 6): We implement a pro-

totype of DNSSEC+ and evaluate its performance metrics in comparison with

those of the other secure DNS schemes. Subsequently, we develop a sym-

bolic model of DNSSEC+, formally define its security and privacy properties,

and use the Tamarin Prover [117], to formally verify these properties. We

then incorporate the compromise of cryptographic keys and involved entities

in DNSSEC+ into the symbolic model to analyze and demonstrate the impact

of such compromises on the modeled security and privacy properties.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents background

on the DNS resolution process and secure delegation of authorization; a comprehen-

sive literature review of the techniques and schemes proposed since the introduction

of Vanilla DNS to enhance the security and privacy of the DNS resolution pro-

cess; and an overview of the symbolic modeling of secure protocols and the formal

definition of their security and privacy properties in the Tamarin protocol verifier.
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Chapter 3 provides a comprehensive threat model and attack taxonomy of the

DNS resolution process. Based on the identified threats, we propose security and

privacy properties aimed at mitigating these threats, and using the defined proper-

ties, develop an objective evaluation framework for comparative evaluation of secure

DNS schemes. This framework is then employed to comparatively evaluate 11 DNS

schemes that have been proposed to enhance the DNS resolution process by aug-

menting its security or privacy properties.

In Chapter 4, we propose and explain the design goals of DNSSEC+, our new

DNS scheme that augments real-time security and privacy in the interaction be-

tween resolvers and ANSes. Chapter 5 discusses a prototype implementation of this

scheme and evaluates its performance in terms of time efficiency and CPU utiliza-

tion, comparing it against other existing secure DNS schemes.

Chapter 6 develops a symbolic model of DNSSEC+, along with its defined se-

curity and privacy properties, using the Tamarin prover’s syntax [117]. We then

formally prove that these properties hold for all the possible behaviors of the proto-

col in the defined model. Additionally, we model the compromise of involved entities

and cryptographic keys within DNSSEC+ to analyze their impact on the security

and privacy properties of the protocol.

In Chapter 7, we review the research questions addressed within this thesis,

discuss the open research challenges, propose potential future research directions,

and present concluding remarks.

1.6 Related Publications

Chapters 2 and 3 contain material that is currently being prepared for submission

as a Systematization of Knowledge (SoK) paper [94].

� Ali Sadeghi Jahromi, AbdelRahman Abdou, Paul C. van Oorschot. “SoK:

An evaluation framework for secure DNS schemes”

The content of Chapters 4 and 5 has been submitted for publication in a con-

ference and is currently undergoing peer review. A preprint of the work is available

on arXiv [92].

� Ali Sadeghi Jahromi, AbdelRahman Abdou, Paul C. van Oorschot.
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“DNSSEC+: An enhanced DNS scheme motivated by benefits and pitfalls of

DNSSEC”, Aug 2024. Technical report available at: https://arxiv.org/

abs/2408.00968

The work presented in Chapter 6 has been submitted to a conference for publi-

cation and is currently under peer review [93].

� Ali Sadeghi Jahromi, AbdelRahman Abdou, Paul C. van Oorschot. “For-

mal security analysis of DNSSEC+”
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Chapter 2

Literature Review and Context

This chapter begins by presenting the required background on DNS infrastructure

and the DNS resolution process. Subsequently, we explain the PKI and trust model

concepts, which are used as foundations for augmenting security and privacy of the

DNS resolution process. Following this, the chapter provides a summary and a re-

view of the provided properties by secure DNS schemes that have been proposed

to enhance the security of DNS resolution in different stages, along with simpler

techniques aimed at improving the security and privacy of DNS resolution. We then

provide a brief overview of a few related schemes that require fundamental changes

to the existing DNS infrastructure. Next, the chapter reviews the delegation of au-

thorization and various delegation methods employed in different Internet protocols.

Finally, we provide an overview of symbolic analysis and the process by which formal

verification of security protocols can be carried out using the Tamarin prover.

2.1 Domain Name System

The DNS was designed as a distributed naming system to replace the static HOSTS.txt

file, with the objective of ensuring consistency and scalability [119, 120]. To resolve

a DNS record, a DNS resolver typically engages in a sequential interaction with the

nameservers within the DNS hierarchy in order to obtain the final response. As

illustrated in the right-hand part of Figure 2.1, the naming system is organized in

a reverse-tree structure, consisting of hierarchical zones beginning from the root.

Each zone typically has two (primary and secondary) or more ANSes responsible

for storing the DNS records within the authoritative scope of that zone and serving

the incoming queries. The hierarchy of DNS starts from the root zone at the apex

through the Top Level Domains (TLDs) (e.g., .com), Second Level Domains (SLDs),

and other subordinate zones. The DNS resolution starts when an application on a

client (e.g., web browser) issues a DNS query, and the query is passed on to the

stub resolver of the client. The stub resolver then forwards the query to a recursive

resolver (Step 1 ). Then, in Steps 2 through n-1, the recursive resolver traverses the

DNS hierarchy and queries ANSes of the zones until it obtains the IPv4 address (if
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an A record was requested) associated with the queried domain name or receives an

error. Eventually, the recursive resolver sends back the final response to the client

(Step n).

Recursive 
Resolver

Stage 2

Root

TLDs

SLDs

1 4

5n

Client
(stub resolver)

Stage 1

ISP

ASes ASes

Figure 2.1: Complete DNS resolution process (divided into two stages): Pre-
recursive-resolver (Stage-1) and post-recursive-resolver (Stage-2).

Herein, the communication between the client and recursive resolver is defined

as Stage 1, and the communication between the recursive resolver and ANSes as

Stage 2. The recursive resolver in a name resolution process can reside in the client’s

local network, be part of the Internet Service Provider (ISP), or be a remote public

recursive resolver (e.g., Cloudflare’s recursive resolver at 1.1.1.1). As illustrated in

Figure 2.1, in this thesis we assume that the client is configured to use a remote

(public) recursive resolver. Thus, the client’s local network, ISP, and other Au-

tonomous Systems (ASes) reside as intermediate entities between the client and the

recursive resolver. The paths to the remote resolvers contain the local network and

ISP as the intermediate entities. Additionally, the path to these remote resolvers

passes through ASes other than the ISP between the stub- and recursive-resolver.1

Moreover, due to the reliability and lower costs of public resolvers, their use by users

and applications has increased over time [122, 139].

2.1.1 Extension Mechanisms for DNS

Extension Mechanisms for DNS (EDNS) [41] was introduced as a standard to ex-

pand the functionality of the DNS protocol while ensuring backward compatibility.

1The case of a remote resolver is considered the most difficult case from a defensive perspective,
as it has a larger attack surface compared to the two other scenarios (i.e., local or ISP resolvers).
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Initially proposed in RFC 2671 [165] and later updated to RFC 6891 [41], EDNS

addresses the limitations of Vanilla DNS [119, 120], specifically the fixed maximum

response size of 512 bytes for UDP responses. In Vanilla DNS [119], messages exceed-

ing this limit were truncated and needed to be re-transmitted over TCP, which posed

challenges for use cases requiring larger response sizes, such as DNSSEC [11, 12, 13]

and other protocols that require large DNS records.

EDNS enables the transmission of larger responses over UDP, with support for

sizes up to 4096 bytes, reducing the need for TCP fallback and improving perfor-

mance. Additionally, EDNS introduced extended message header fields and label

types, enabling the inclusion of new options and flags. These extensions enabled

adding advanced features in DNS, including DNSSEC for response authentication,

the Client Subnet extension for network-proximity-based query resolution [36] (see

Section 2.1.2), and DNS Cookies for mitigating off-path spoofed responses [57].

2.1.2 EDNS Client Subnet

Typically, ANSes only see the recursive resolvers’ IP addresses, instead of clients’.

Content Delivery Networks (CDNs) aim to minimize latency by connecting clients

to the closest CDN edge servers. The functionality of CDNs requires access to a

client’s IP address in order to provide the IP address of the closest CDN edge server

to the respective client. EDNS Client Subnet (ECS) is a DNS extension that facili-

tates including a client’s IP address or subnet inside the DNS queries [36]. Although

the specification of ECS suggests truncating IPv4 and IPv6 to 24 and 56 bits, re-

spectively, to protect clients’ privacy, this is not specified as a requirement of the

protocol, and clients can send their 32/128-bit IPv4/v6 addresses alongside their

queries [36]. Additionally, even if truncation of a client’s IP address is applied, /24

IPv4 or /56 IPv6 addresses still often reveal client-related information (e.g., coun-

try, city, or organization). Thus, a scheme that truncates ECS may still disclose

client-related information that can be used by attackers (e.g., for selective cache

poisoning [101] or censorship at country- or organization-level).

If a client includes ECS in queries, when an ECS-supporting intermediate recur-

sive resolver receives a DNS query, it will forward the ECS as part of its queries

to all the traversed ANSes. Therefore, all ANSes from the root and TLDs, down

to the name server that is authoritative for the domain name, can view the ECS

in the resolver’s queries. As a result, the client’s IP address, and consequently its

26



2.1 Domain Name System

geographic location, will be disclosed to the queried ANSes.

2.1.3 Surveys on DNS Security

An early security survey of DNS was done in 2005 by Ollmann [130], in which he

studied six attack vector categories that can target five entity groups in the DNS

infrastructure to carry out pharming. pharming is an attack that involves injecting

false responses into DNS queries (we provide a detailed discussion and categoriza-

tion of pharming techniques in Section 3.1). In contrast to our systematic evaluation

(Section 3.1), which focuses on an extensive threat model of DNS resolution pro-

cess, Ollmann’s work focuses on the attack vectors that specifically enable pharming.

Zou et al. [177] conducted a relatively short survey with DNS threats categorized into

five groups, and then compared eight alternative DNS schemes and DNS enhance-

ment proposals that can address the threats. In contrast, our systematic evaluation

in Chapter 3 develops a more comprehensive threat model that specifically focuses

on network-related threats of DNS resolution, which includes replay attacks, DNS-

based censorship, and other attack categories and instances. Additionally, their

evaluation of surveyed schemes had only three parameters related to security and

privacy aspects, while our evaluation focuses on security, privacy, and availability

properties of DNS schemes with 14 parameters.

The security vulnerabilities and deployability obstacles of DNSSEC have been

thoroughly analyzed and demonstrated in several research contributions [25, 34,

37]. Anagnostopoulos et al. [6] conducted a detailed investigation and comparison

of security, deployability, and performance of two Stage 2 DNS schemes, namely

DNSSEC and DNSCurve. Compared to our work in Chapter 3, which focuses on

the weaknesses and required properties in the entire name resolution path, these

studies focus on a limited number of schemes with scheme-specific threat models.

For example, as they focus on Stage 2 schemes, they exclude Stage 1 threats and

the DoS attacks other than reflection amplification.

In another comprehensive survey, Khormali et al. [99] studied DNS threats and

vulnerabilities, DNS research methods, and the impact of DNS entities’ (i.e., clients,

resolvers, name servers, and hosting providers) security on the DNS ecosystem.

Their approach is identifying broad threats and vulnerabilities by surveying previous

literature. In contrast, in our work, we define our threat model with a specific

focus on network-based threats, attack instances, and techniques, and then use the
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threat model as a foundation to evaluate threats and vulnerabilities of previously

proposed schemes that augment security or privacy of the DNS resolution process.

For example, we cover replay attacks and traffic correlation attacks that can be

used to infer queried domain names in our threat model, while these attacks are not

among their investigated threats.

Among other DNS-related surveys that focus on specific threats and defense

approaches. Torabi et al. [160] investigated systems designed to passively monitor

and analyze (e.g., using ML models) DNS traffic to detect DNS-related threats

(e.g., fast-flux domains, malicious domains). They also proposed their own DNS

monitoring system that detects malicious DNS-related behaviors at a near real-

time speed. Zhauniarovich et al. [175] conducted a comprehensive survey analyzing

malicious domain detection methods, highlighting their differences and similarities.

Lu et al. [110] surveyed a number of secure Stage 1 schemes and investigated the

adoption rates and performance overhead of DoT [86] and DoH [80] over the Internet.

Several studies explore DNS abuse by botnets for intra-botnet communication,

evading detection, or data exfiltration. Lyu et al. [112] surveyed encryption-based

DNS schemes, as well as the misuse of encrypted DNS schemes by botnets for com-

mand and control (C&C) communication and data exfiltration. Additionally, they

surveyed encrypted DNS traffic classification techniques for DNS traffic isolation

and classification of malicious DNS traffic. Using DNS for evading detection through

DNS-based fast-flux was studied by Mahmoud et al. [113]. In order to evade the

detection of botnet C&C domains, botnets often employ Domain Generation Algo-

rithms (DGAs) to generate a large number of random domain names, subsequently

employing a part of these domains for their C&C operations. Researchers have an-

alyzed the use of DGAs by botnets [134] and developed systems (e.g., Notos [8] and

Pleiades [9]) for detecting such maliciously generated domains. The abuse of DNS

for evading detection and facilitating intra-botnet communications falls out of the

scope of our systematic evaluation in Chapter 3.

2.1.4 Public-Key Infrastructure and Trust Model

Similar to other secure Internet protocols, such as HTTPS (web) or S/MIME (email),

there is a need for a PKI in a secure DNS scheme to establish a structured system

for ensuring security or privacy of DNS queries and responses. In the secure DNS

context, a PKI can be defined as a set of technologies, entities, policies, and proce-
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dures according to which the public keys are managed and used by DNS software.

Managing keys can include creation, distribution, usage, and revocation of pub-

lic keys that are used within a DNS scheme. As part of PKI for a DNS scheme

in Stage 2, we define a trust model by which DNS resolver applications recognize

public keys of ANSes as valid (trusted; valid trust anchors) and then employ those

keys as defined by the DNS scheme specification to cryptographically protect trans-

mitted DNS messages. For example, the web trust model can be represented as

a “forest of hierarchical trees,” wherein each tree depicts a CA distinct from the

others [161]. Similarly, in Stage 1, the stub resolvers of the secure DNS schemes

must establish trust in the public keys of the recursive resolvers they use by relying

on a trust model. Additionally, secure DNS schemes in Stage 1 must rely on a PKI

to cryptographically protect or verify transmitted DNS messages. Some secure DNS

schemes, including DoT [86] and DoH [80], rely on pre-existing PKIs [91], such as the

web PKI, whereas others, such as DNSSEC, introduce a dedicated PKI specifically

designed for the DNS context.

2.2 Initial Review and Analysis of Secure DNS

Schemes

Various DNS schemes have been proposed to enhance the security or privacy of

the DNS resolution process. Some are designed to enhance DNS security in Stage 1,

while others are intended for Stage 2, and a subset provide security in both stages. In

this section, we provide a comprehensive survey of the proposed DNS schemes aimed

at providing security or privacy in Stage 1 followed by the schemes that enhance

Stage 2. Additionally, we review partial techniques that are not comprehensive or

fully-developed schemes but are enhancements to address specific security or privacy

weaknesses of Vanilla DNS.

Secure DNS Schemes in Stage 1: The following DNS schemes are proposed

to augment security or privacy of the communication between stub resolvers and

recursive resolvers (i.e., Stage 1).
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Figure 2.2: DNSCrypt*V3: Using authenticated encryption in Stage 1, alongside
the use of relay servers to enhance client privacy against resolvers.

2.2.1 (Stage 1) DNSCrypt*V3:

DNSCrypt was introduced as an open-source solution aimed at enhancing the secu-

rity and privacy of DNS messages in Stage 1 [47, 48]. However, the lack of standard-

ization has impeded the adoption of DNSCrypt. Regular DNS queries and responses

in Stage 1 are transmitted as authenticated and encrypted messages through imple-

mented software on clients (e.g., dnscrypt-proxy)2 and recursive resolvers (e.g., dns-

crypt-wrapper).3 DNSCrypt uses Elliptic Curve Cryptography (ECC) for establish-

ing symmetric keys and transferring the authenticated ciphertext of queries and

responses at the application layer.

As Figure 2.2 shows, in Steps 1 and 2, the client queries a DNSCrypt resolver

for its certificates. DNSCrypt does not rely on the Internet’s PKI, and the client

must know the resolver’s name and signing public key to verify the certificates and

authenticate the resolver [47]. A recursive resolver’s public key and its other prop-

erties, such as IP address, port number, and provider name, are encoded in the form

of DNS stamps and embedded in the client-side software. DNSCrypt certificates

are encoded as TXT DNS records, and have a specific structure as described in its

specification [47]. The resolver returns one or more signed certificates as response

(Steps 3 and 4), and the client verifies the certificates using a previously distributed

public key of the resolver.

The client picks the valid certificate with the highest serial number among the

supported ones. Then, the client uses the public key and other cryptographic param-

2https://github.com/DNSCrypt/dnscrypt-proxy
3https://github.com/cofyc/dnscrypt-wrapper
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eters from the selected certificate to generate an authenticated and encrypted query

based on NaCl cryptographic library [24], then sends the query alongside its own

public key to the resolver (Steps 5 and 6). The resolver decrypts the received query,

traverses the DNS hierarchy to obtain the response, and then sends an encrypted

and authenticated response back to the client (Steps 7 and 8).

In DNSCrypt version 3, sending anonymized queries is added to the protocol.

As Figure 2.2 shows, DNSCrypt uses an intermediate relay server between the client

and recursive resolver to hide the IP address of the client from the resolver [48].

As a result, the relay server does not have access to the queried domain name, and

the recursive resolver does not have access to the client’s IP address, ensuring the

client’s privacy and anonymity with a low overhead [48].

In practice, a list of public relay servers is maintained by community volunteers.4

If the owner of the relay is the same as the owner of the resolver (or if they col-

lude), this one-layer anonymization technique is compromised [147]. Also, if ECS is

included in the client’s DNS queries, the anonymization provided by this method is

rendered ineffective.

The key exchange in DNSCrypt is performed using Curve25519 ECC and hSalsa20

hash function [47]. The Salsa20 or ChaCha20 stream cipher is used with Poly1305 for

authenticated encryption and transferring messages with confidentiality, integrity,

and authenticity [47]. Additionally, DNSCrypt requires a 24-byte nonce as part

of the authenticated ciphertexts, which can provide anti-replay means by adding

uniqueness to DNS messages. To increase privacy by obfuscating packet sizes,

DNSCrypt uses ISO/IEC 7816-4 format for padding DNS messages to a multi-

ple of 64 bytes prior to encryption [47]. DNSCrypt runs over port 443, both TCP

and UDP. However, due to its distinguishable characteristics, DNSCrypt’s traffic is

not completely merged with the web [131]. Therefore, the traffic of DNSCrypt can

simply get isolated by analysis of its distinguishable characteristics [131].

By employing Poly1305 message authentication code, DNSCrypt mitigates false

response injections in Stage 1. Using different keys per client-resolver communica-

tion prevents replay of messages among clients, and the nonces included per message

mitigate replay of an old message in the same session to the same client. Analogous

to other Stage 1 schemes, for DNSCrypt, we assume that a simple padding scheme

with encryption cannot resist traffic analysis attacks and an adversary is able to

4https://github.com/DNSCrypt/dnscrypt-resolvers/blob/master/v3/relays.md
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obtain the domain names of the web pages a user visits (e.g., using ML-based tech-

niques [150]). Hence, DNSCrypt only partially mitigates eavesdropping attacks. As

a result, with an additional effort, censoring agents in Stage 1 can obtain the queried

domain name by traffic analysis and censor based on the payload content. Thus,

DNSCrypt is only partially resilient against payload-based censorship techniques.

The default port number for DNSCrypt is 443. Blocking access to only the DNS

servers via port 443 blocking is not possible (would disrupt all HTTPS connections).

However, isolating [131] and blocking access to DNSCrypt resolvers is feasible by

its traffic characteristics; thus, DNSCrypt traffic is not concealed, and its traffic

and servers can be easily identified. DNSCrypt is not resilient against DoS attacks

targeting resolvers, as if a DNSCrypt resolver supports the UDP transport protocol

(recommended in the specification), an adversary can send spoofed requests and

force the resolver to expend computing resources to resolve arbitrary DNS requests.

Intermediate relay servers, positioned between clients and recursive resolvers, serve

to hide client IP addresses from recursive resolvers. This mechanism is effective

when other methods, such as ECS (see Section 2.1.2), do not expose the client’s IP

address to the resolver.

The PKI in DNSCrypt uses X.509 certificates received from the resolvers. How-

ever, it does not fully depend on web PKI Certificate Authorities (CAs). Instead, it

utilizes DNS stamps, which are transmitted through Out-of-Band (OOB) channels

to validate resolver certificates.

2.2.2 (Stage 1) Strict DNS-over-TLS (DoT)

: Resolver’s certificate

: Secured TLS session

TCP/853: TLS handshake

Root

Client
(Stub-resolver) ANS

Recursive
resolver

DNS messages

Figure 2.3: DoT: Sending DNS queries over TLS in Stage 1.

DoT was proposed to securely transfer DNS messages in Stage 1 using Transport

Layer Security (TLS) [86, 176]. Figure 2.3 depicts DoT’s working procedure. A client
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initiates a TLS handshake over TCP port 853 with a DoT resolver and verifies the

resolver’s certificate using the web PKI trust anchors [91] (similar to the PKI used by

browsers for TLS) or trust anchors from an OOB channel. Trust anchors might vary

based on stub resolver configurations or the client’s operating system [136]. Similar

to HTTPS, DoT uses X.509 certificates to bind the public key of resolvers to their

owner. Relying on the web PKI exposes DoT to inherit PKI-related vulnerabilities

(e.g., compromised CAs), as well as security weaknesses within any external trust

anchors upon which it relies (when using OOB channels). After completion of the

TLS handshake, the client and resolver use a secure TLS session with a shared

secret to transfer DNS messages [86]. DoT provides two privacy modes: strict and

opportunistic. In the opportunistic privacy mode, when DoT is supported by both

ends but the resolver is not trusted by the client, the client uses DoT to encrypt

queries, ensuring confidentiality and privacy without requiring authentication or

trust in the resolver [86]. If DoT is not supported, the client falls back to Vanilla

DNS. In the strict mode, successful authentication and encryption are mandatory

to resolve a domain name. In the presence of an active attacker, the opportunistic

mode may mislead clients about the provided security due to the possibility of

downgrading to insecure Vanilla DNS.

When DoT is used with persistent TLS connections, it adds negligible latency

compared to Vanilla DNS [110]. However, when connections are reused, the in-

creased number of open connections can exhaust the resolver resources. Regarding

anonymity, DoT does not provide any means to hide the client’s IP address from

resolvers. The TLS-based entity and message authentication offer resilience against

false response injection attacks. Freshly generated session keys per handshake pre-

vent replay from one session to the next, while per-record nonces prevent replay

of messages within the same session, hence DoT is resilient against resolver replay

attacks.

DoT suggests using the EDNS(0) padding option to pad the DNS messages with

a variable number of octets (e.g., filled with 0x00) and make them more resilient

against traffic analysis and side-channel leaks in Stage 1. However, recent literature

shows that encryption and padding techniques in DoT are not strong enough to

resist ML-based traffic analysis, which can reveal the domain name visited by a

user [85, 150]. As a result, the web pages visited by users will be revealed or

classified, and name resolution can be censored based on that information. Thus,
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DoT is not completely resilient against eavesdropping as the queried domain names

can be inferred from the encrypted traffic and this information can be used for

domain-name based censorship. The accuracy and effectiveness of such attacks vary

based on the trained models and selected traffic features.

TCP prevents spoofed queries from being processed at the application layer with-

out completing the handshake at the transport layer. Additionally, several mitiga-

tion measures have been proposed to improve the resistance of TCP to SYN flooding

attacks [60]. Therefore, DoT provides means for mitigating DoS attacks targeting

resolvers. However, DoT servers can be identified and subjected to censorship if

they use the designated port number (853). Additionally, DoT messages are distin-

guishable based on their port number and thus can be censored completely. The

majority of DoT resolvers on the Internet rely on and benefit from the established

web PKI [91]. Consequently, their certificates are issued by web CAs, which employ

standard cryptographic fields and log the certificates in Certificate Transparency

(CT) logs [91].

2.2.3 (Stage 1) DNS-over-HTTPS (DoH)

TCP/443: TLS handshake

HTTP
request/response

: Resolver’s certificate

: Secured TLS session
Root

ANS

Recursive
resolver

Client
(Stub-resolver)

Figure 2.4: DoH: Sending DNS queries over HTTPS using URIs and HTTP meth-
ods.

DoH encodes DNS messages as HTTP requests/responses and sends them over

TLS using the format specified by HTTP Uniform Resource Identifier (URI) tem-

plates (e.g., https://dns.server.com/dns-query?) [80]. As DoH works on top of TLS,

it provides many of the same properties as strict DoT in Stage 1.

The domain names of recursive resolvers are associated with their public keys

through X.509 certificates often issued by the CAs of the web PKI. As such, similar

to DoT, DoH inherits any limitations and vulnerabilities of the web PKI and trust
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anchors (e.g., web PKI CAs or private CAs) upon which it is dependent. However,

unlike DoT, DoH does not support an opportunistic mode, meaning it does not fall

back to an unencrypted connection when certificate validation fails. If certificate

validation fails, name resolution fails. Thus, due to the absence of opportunistic

privacy mode in DoH, resolvers must be explicitly authenticated. Moreover, Lu et

al. [110] did not identify any DoH resolvers with invalid certificates in their mea-

surements, as opportunistic privacy mode is not applicable in DoH when certificates

are invalid. Also, DoH uses the same port (443) as HTTPS, merging DNS traffic

with web traffic, and its traffic is thus less distinguishable [80, 110]. However, based

on traffic characteristics, isolating DoH traffic from other web traffic is feasible, but

it requires additional effort, and the accuracy of traffic isolation relies on various

factors such as trained Machine Learning (ML) models and selected features [163].

Similar to DNSCrypt conducting traffic analysis on DoH traffic is costly for

intermediate entities, as they need to initially separate the DoH traffic from the

web before employing traffic analysis techniques on the isolated DoH traffic. Thus,

DoH traffic is partially concealed, and traffic analysis of DoH is not straightforward.

Similarly, distinguishing and censoring DoH servers requires specific methods to

differentiate DoH servers from general HTTP servers. Due to its integration with

the HTTPS protocol, DoH exhibits partial resistance to server censorship.

DoH specification suggests HTTP/2 compression, in addition to EDNS(0) DNS

padding, to enhance the privacy of transmitted messages and make DoH traffic

robust against traffic analysis and side-channel leaks [80, 116]. However, similar to

DoT, Siby et al. [150] showed that simple padding schemes do not make a scheme

resilient to ML-based traffic analysis attacks, but it makes traffic analysis more

costly and less accurate. As DoH works on top of TLS, its remaining properties are

similar to those of DoT.

2.2.4 (Stage 1) Strict DNS-over-QUIC (DoQ)

DoQ uses the QUIC transport-layer protocol [90, 159] and has been proposed as a

general-purpose solution to enhance the security and efficiency of the DNS name res-

olution process in both stages, and zone transfers [89].5 As Figure 2.5 illustrates, the

DoQ workflow is similar to DoT with a faster handshake in DoQ by combining TCP

5The scope herein is Stage 1 use of DoQ.

35



2.2 Initial Review and Analysis of Secure DNS Schemes

: Resolver’s certificate

: Secured QUIC session

UDP/853: QUIC handshake

Root

ANS

Recursive
resolver

Client
(Stub-resolver)

DNS messages

Figure 2.5: DoQ: Sending DNS over QUIC transport protocol.

and TLS handshakes in a single QUIC handshake. DoQ improves name resolution

performance and solves some known issues in TCP (e.g., head-of-line-blocking [28])

and UDP (e.g., IP fragmentation [74]). In 2022, over 1200 DoQ resolvers were dis-

covered over the Internet [102]. DoQ uses the designated port UDP/853; thus, its

traffic can be distinguished, and access to DoQ servers can be blocked. However,

the specification also recommends that using port UDP/443 can be beneficial by

merging DoQ traffic with HTTP/3, and thus prevent port-based blocking [89].

DoQ provides similar security properties, usage profiles, and resolver authenti-

cation methods to DoT [49, 89]. Similarly to DoT, herein we analyze DoQ with the

strict usage profile.

As the specification recommends, EDNS(0) padding or QUIC packet padding

must be used prior to encryption of messages to mitigate traffic analysis attacks [89].

Padding at the QUIC packet level is preferred over EDNS(0) padding, as it provides

better performance with the same level of protection [89]. To the best of our knowl-

edge, there is no study of traffic analysis attacks to reveal the queried domain names

in DoQ. However, for web traffic, QUIC padding does not eliminate fingerprinting

attacks, and other application-layer defenses (e.g., injecting cover traffic) are shown

to be more effective [149].

Similar to DoT and DoH, we assume that with simple padding strategies, DoQ

is presumed vulnerable to traffic analysis attacks despite the use of basic padding

techniques. Such attacks can expose queried domain names, meaning the confi-

dentiality provided by DoQ is incomplete. Moreover, the use of a designated port

number makes DoQ traffic identifiable, reducing its capacity to fully conceal DNS

communications. Consequently, DoQ messages and servers are not entirely resistant

to censorship. The remaining properties of DoQ remain similar to those of DoT.
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2.2.5 (Stage 1) DNS-over-DTLS (DoDTLS)

: Resolver’s certificate
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UDP/853: DTLS handshake
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(Stub-resolver)

DNS messages

Figure 2.6: DoDTLS: Sending DNS over DTLS transport protocol.

As proposed in Request For Comments (RFC) 8094, DoDTLS uses Datagram

Transport Layer Security (DTLS) to secure Stage 1 DNS messages [140]. DoDTLS

uses UDP with port 853 to address head-of-line blocking and provide improved

performance compared to DoT. DTLS has comparable security properties to TLS,

with one of the primary differences being the handshake, which in DTLS contains

extra header fields, cookies, and retransmission timers for error handling and DoS

attack prevention [142]. DoDTLS authentication mechanisms are similar to those

of DoT; hence, it has the same PKI vulnerabilities and challenges as DoT.

Similar to DoT, EDNS(0) padding could be implemented in DoDTLS. However,

encryption and simple padding schemes do not significantly improve the privacy of

the visited domains in TLS-based alternatives [150]. To the best of our knowledge,

there are no real-world implementations of DoDTLS. Here, we assume that the sim-

ilar padding scheme to DoT is not resilient to traffic analysis attacks, and thus does

not provide complete confidentiality. A client must complete the DTLS handshake

with the recursive resolver before sending a DNS query in the strict DoDTLS pri-

vacy profile. Consequently, the query is not processed at the application layer on

the recursive resolver prior to the completion of the handshake. Thus, this method

is resistant to DoS attacks and provides resilience against DoS attacks targeting

DoDTLS resolvers. The remaining properties of DoDTLS are the same as DoT.

2.2.6 (Stage 1) DNS-over-Tor (DoTor)

DoTor can be implemented in different ways, such as a hidden resolver or a regular

public resolver over the Internet queried through Tor network. In April 2018, Cloud-
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Figure 2.7: DNS-over-Tor: Based on Cloudflare’s hidden resolver structure [144].

flare implemented a hidden resolver for DoTor [144].6 Tor is vulnerable to a variety

of attacks [69, 124, 135, 171]. One example is traffic correlation, where incoming

and exit traffic of the Tor network can be analyzed to deanonymize clients [69, 124].

Bad relays [135] are another problem which can perform different types of manipu-

lation, redirection, or eavesdropping to damage anonymity or manipulate a client’s

traffic [135, 171].

DoTor resolver can be implemented as a ‘.onion’ service that can mitigate specific

Tor correlation attacks, such as DefecTor [69] attack, where the adversaries analyze

the exit relay name resolution for correlation attacks [144]. By using a ‘.onion’ (hid-

den) recursive resolver, no name resolution takes place at the exit nodes. Instead,

a Distributed Hash Table (DHT) lookup occurs within the Tor network, which mit-

igates the DefecTor attack, a technique that can reveal the recursive resolver used

by a client [69].

Figure 2.7 illustrates the DoTor working procedure. First, the client establishes

a secure session with the hidden resolver through the onion routers, including a

rendezvous point [52]. TLS is used to establish authenticated encrypted sessions

between the nodes. Then, the DNS traffic gets encrypted with the established keys

and is sent through the Tor network to the hidden resolver. The entry node to the

Tor network that the client directly communicates with is called Guard-relay. Upon

receiving a query, the hidden resolver traverses the hierarchy of DNS using Vanilla

DNS and sends back the response through the secured session to the client.

DoTor hides DNS messages using layers of encryption, enhancing the client’s

privacy from the recursive resolver and Stage 1 intermediate entities [52]. As a

result, ISPs are unable to identify DNS traffic or correlate it with other traffic in or-

der to reveal requested domain names. Additionally, Siby et al. [150] demonstrated

6Cloudflare’s DoTor resolver supports DoT, DoH, and Vanilla-DNS over Tor.
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that compared to DoT or DoH, DoTor is a more resilient scheme against ML-based

traffic analysis attacks that reveal the pages visited by users. However, layers of

encryption and TLS communications between relays can significantly increase the

time and size overhead compared to alternatives, and Tor naturally sacrifices la-

tency for security and anonymity. Depending on the user/application, the security

benefits of sending DNS messages over Tor can outweigh the overhead that DoTor

causes [123]. The hidden resolvers have some degree of protection against DoS at-

tacks as they are placed behind the Tor network, benefiting from the distributed

and load-balanced network. Thus, DoTor hidden resolvers are resilient against DoS

attacks. Additionally, as Tor only supports TCP for internal communication, Tor

nodes can implement SYN cookies and rate-limiting to mitigate DoS attacks.7

Among the schemes reviewed, DoTor is the only scheme offering complete con-

fidentiality by encapsulating messages within encrypted, fixed-size Tor cells [150].

This approach effectively renders DNS traffic indistinguishable, ensuring confiden-

tiality and concealing DNS traffic. Furthermore, no specific port number has been

assigned to Tor communication, thus port 443 can be used to combine Tor with

web traffic. Tor intermediate nodes hide a client’s IP address from the recursive

resolver, providing anonymity for the client by hiding its IP address. Additionally,

using short-term ephemeral keys in Tor circuit communications mitigates replay at-

tacks between different sessions. Also, TLS per-record nonces can mitigate replay

of messages in the same session—so DoTor resolutions are resilient against replay

attacks.

Although censoring governments cannot directly censor the recursive resolvers

in DoTor, they can restrict access to the resolvers by blocking all Tor-related traffic

(e.g., using deep packet inspection to detect Tor-related traffic or blocking access

to Tor-Related nodes) [1]. As DoTor relies on the Tor network as its underlying

protocol, its resolvers are susceptible to censorship through measures targeting Tor

itself. Cloudflare removes all included ECS from DNS queries [147], and thus in this

implementation, DoTor also hides client IP addresses from both resolvers and the

entities in Stage 2.
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Figure 2.8: Oblivious DNS: Adding confidentiality and anonymity to DNS mes-
sages [147].

2.2.7 (Stage 1) Oblivious DNS (ODNS)

Schmitt et al. [147] proposed ODNS to add confidentiality and preserve clients’

privacy from recursive resolvers by decoupling a client’s IP address from the queried

domain name, while resulting in a negligible page load-time overhead. An ODNS

nameserver will not have access to a client’s IP address, and intermediate entities

in Stage 1 including the recursive resolver, which acts as a relay in Stage 1, will

not have access to the client’s queried domain name. The encrypted DNS query is

forwarded by the recursive resolver to the ODNS nameserver (ODNS-NS), which is

responsible for decrypting the query and traversing the DNS hierarchy to obtain the

response.

Before name resolution starts, to get ODNS-NS’s public key Pk, a client must

send a special query to the recursive resolver, and the recursive resolver uses the

anycast address to receive the nearest ODNS-NS’s public key included in the EDNS

extensions of the response message. Initially, the client obtains the public key of

the ODNS-NS. Then, as Figure 2.8 illustrates, the client encrypts domain name in

the DNS query with a symmetric key K, and then encrypts K with Pk [147]. The

query and the encrypted symmetric key ‘{K}Pk
’ are sent to the recursive resolver,

which passes the DNS query to the ODNS-NS. The ODNS-NS that receives the

query observes the recursive resolver’s IP address (which acts as a relay) as the

source IP address of the query. At this point, the ODNS-NS traverses the hierarchy

7https://support.torproject.org/abuse/
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of the DNS to resolve the queried domain name, encrypts the final response with

the client’s symmetric key K, and sends it back to the client [147].

In Stage 1, the intermediate entities between the client and recursive resolver can

see the client’s IP address but not the plaintext query, and the entities between the

recursive resolver and ODNS-NS neither know the query nor the client’s IP address.

ODNS removes ECS from the DNS queries in the stub resolvers to preserve client’s

privacy [147]. Thus, even if the client adds its IP address to the queries in the ECS,

an ideal ODNS stub resolver forwards the query without it. In this case, ODNS

completely hides the clients identity in Stage 2 by removing ECS and also hides

client IP addresses from the ODNS-NS using a one-layer proxy. However, as ODNS

is proposed for Stage 1, it does not offer any additional properties beyond hiding

client IP address (by removing ECS) in Stage 2. As the integrity and availability

of DNS requests are not among the goals of ODNS, it does not provide related

properties to these goals.

2.2.8 (Stage 1) CGA-TSIG
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Figure 2.9: CGA-TSIGe: Enhancing name resolution by encrypting queries and
encrypting and signing responses.

Cryptographically Generated Addresses (CGA) [19] and Transaction Signature

(TSIG) [59] are the two fundamental components of the CGA-TSIG protocol. CGAs

are a specific type of IPv6 addresses, whose interface identifiers (last 64 bits) are

derived by hashing a signing public key along with other parameters. This type

of address generation establishes a binding between the IPv6 address and a public

signature key, allowing recipients to independently compute the hash and verify the
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binding between the IP address and the public key. As outlined in its specifications,

CGA operates without reliance on external PKI or CAs. Originally, CGAs were

proposed to secure messages within the Secure Neighbor Discovery (SEND) protocol

by signing messages with signature keys linked to IPv6 addresses, thus providing

message authentication.

TSIG, the second component of CGA-TSIG, provides authentication for DNS

processes, including dynamic updates, zone transfers, and recursive resolver re-

sponses. It employs a shared key and a keyed hash function to provide both authenti-

cation and message integrity. However, TSIG’s specification requires that the shared

key be distributed via an OOB mechanism, without defining a specific method for

this key exchange.

The integration of CGA and TSIG in CGA-TSIG enables a mechanism for the

authentication and secure transfer of DNS messages. By linking public keys to IP

addresses through CGAs and utilizing them within the TSIG protocol, CGA-TSIG

achieves a specific type of “authentication.” Specifically, authentication here refers

to the recipient’s ability to verify that a public key is bound to a specific IP address.

While this is sufficient for providing security in the IP-layer protocols (e.g., SEND),

it does not provide means for verifying identity of the entity behind the IP address,

which is required in application-layer protocols like DNS [31]. In the context of DNS,

additional mechanisms are needed for clients to ensure the resolvers they query are

operated by their trusted entities (e.g., Cloudflare).

As demonstrated in Figure 2.9, name resolution in CGA-TSIG begins with the

client querying the resolver to obtain its public key (Step 1). Upon receiving the

resolver’s public key and its associated signature (Step 2), the client verifies the

binding between the public key and the resolver’s IP address. Subsequently, the

client generates a symmetric key, encrypts it with the resolver’s public key, and

encrypts the DNS message with the generated symmetric key. Then, the client

sends the encrypted key along and the encrypted query with a hash of the message

for integrity (Step 3). The resolver decrypts the symmetric key using its private

key, processes the query, and checks its integrity. After obtaining the response by

querying the DNS hierarchy, the resolver encrypts the response with the symmetric

key from the query, signs the encrypted message, and sends it to the client (Step 4).

The client decrypts the response using the symmetric key and verifies the included

signature.
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Although CGA-TSIGe provides message authentication and confidentiality to

DNS resolution in Stage 1, the authentication is limited to verifying the binding

between the IP address and public signing key that was used for generating the IP

address, which is insufficient in the DNS context. This limitation highlights the

need for additional mechanisms to trust the entity behind a resolver’s IP address

(e.g., CAs in the web PKI or other PKI).

Secure DNS Schemes in Stage 2: Aside from schemes that to enhance

Stage 1, in this part, we provide a detailed survey of two schemes that have been

proposed to enhance the security or privacy of Stage 2.

2.2.9 (Stage 2) DNSSEC

A decade after proposal of DNS RFCs [119, 120], the initial version of DNSSEC

was standardized [58] and later updated to its current version defined in RFCs

4033-4035 [11, 12, 13]. DNSSEC was designed to enhance Vanilla DNS by adding

authenticated denial of existence, message authentication, and integrity properties.

DNSSEC adds security properties to the resource records of DNS zones by using four

primary resource records, namely Resource Record Signature (RRSIG), DNSKEY,

Delegation Signer (DS), and NextSECure (NSEC) records.

As illustrated in Figure 2.10, DNSSEC adds two public-private key pairs to

each zone, which are referred to as Key Signing Key (KSK) and Zone Signing Key

(ZSK), published as DNSKEY records. ZSK is used to sign all the resource records

sets (RRSets) in a zone (black arrows in Figure 2.10), except for DNSKEY RRSet.

On the other hand, KSK is used exclusively for signing the DNSKEY RRSet (red

arrows). RRsets are a collection of DNS records with the same name, class, and

types, but potentially different data values [13]. DNSSEC signs each RRSet to ensure

the authenticity and integrity of all records within the set, preventing attackers from

modifying or removing individual records. DNSSEC uses DS records to establish

a secure trust relationship between a parent zone and a child zone in the DNS

hierarchy. Each DNS zone, except for the root, generates a cryptographic hash of

its public KSK along with additional metadata, which is sent to the parent zone to

be published as a DS record. Similar to other RRSets in a zone, the DS record in a

parent zone is signed with its ZSK.

Since no zones are above the root, the root zone’s public KSK is defined as a trust

anchor and embedded in DNSSEC-validating resolvers. Using the root zone’s public
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Figure 2.10: An overview of DNSSEC records and chain of trust (H())

KSK, a validating resolver can validate the root zone’s ZSK. The resolver can then

validate the DS records of the TLDs in the root using the public ZSK of the root zone.

The DS records contain the cryptographic hash of the public KSK associated with

the child zones (e.g., .com). Subsequently, when the validating resolver obtains the

DNSKEY of the child zone, the resolver verifies its consistency with the DS record

that it obtained from the parent zone. The child zone’s KSK is then used to validate

the public ZSK of the child zone (i.e., validating DNSKEY). This iterative process

continues until the resolver reaches the name server authoritative for the requested

DNS record, and validates the requested resource record using the ZSK associated

with the final zone. Finally, the response is transmitted to the client entity that

initially sent a query to the recursive resolver.

DNSSEC is typically implemented and used in Stage 2 of the name resolution pro-

cess, and the stub-to-recursive communication in Stage 1 remains unsecured. Stub

resolvers in DNSSEC are often configured as non-validating and security-aware stub

resolvers. The term “security-aware” denotes that the stub resolver understands

DNSSEC-related bits, extensions, and records [11]. “Non-validating” indicates that
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these stub resolvers do not completely validate DNSSEC record signatures. Instead,

they rely on one or more recursive resolvers to perform the resource record valida-

tion [11]. Thus, the communication channel between stub and recursive resolvers

must be secured separately, and the recursive resolver must be relied on to provide

correct responses.

Regarding caching DNSKeys, similar to other original DNS records, DNSKEYs

also have a Time To Live (TTL) field, which is a 32-bit value that determines the

duration for which these keys should be cached on the resolvers. While caching the

DNSKEYs of DNSSEC-protected zones for short durations provides more flexibility

and responsiveness to key compromise situations, short-time caching periods impose

additional computational and bandwidth load on ANSes and resolvers. In addition,

short-time caching for the zone keys increases the name resolution times, as the

keys expire from DNS caches more rapidly, and resolvers need to traverse the DNS

hierarchy to obtain the keys of the intended zone for authenticating DNS responses.

On the other hand, long caching durations for the zone keys result in a lack of flexi-

bility in the key compromise situations. However, larger TTL values for DNSKEYs

improve the name resolution performance, as the keys are queried less frequently as

their presence in the resolver caches is more likely. Taking both sides into account,

the caching time should neither be excessively long to mitigate the damage of key

compromise situations, nor very short to minimize the name resolution delay.
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Figure 2.11: DNSSEC: Providing message authentication using digital signatures
in Stage 2.

Figure 2.11 illustrates the process of name resolution in DNSSEC using a non-

validating security-aware stub resolver. The client sends a DNS query to a validat-
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ing security-aware recursive resolver. Subsequently, the recursive resolver traverses

the DNS hierarchy, fetching DNS records along with DNSKEYs, DS records, and

RRSIGs, which are used for validating the DNSSEC response, per Figure 2.10. Fi-

nally, the recursive resolver retrieves the requested resource record from the ANS of

its zone and verifies the response. Upon successful validation, the recursive resolver

caches the response and sends it to the client with Authenticated Data (AD) bit set.

Traffic Amplification in DNSSEC: DNSSEC uses UDP as transport layer

protocol with EDNS (see Section 2.1.1) [41], which enables transmitting DNS re-

sponses larger than the original DNS maximum response size (512 bytes) over UDP.

These design choices alongside the added signatures and keys in DNSSEC responses,

enable reflection amplification attacks with significant amplification factors up to

100× [25, 162]. Thus, attackers can exploit DNSSEC to amplify the traffic in Dis-

tributed Denial of Service (DDoS) attacks by sending queries that produce large

responses directed at targeted destinations [37, 162].

Unsigned Records: In DNS, non-authoritative delegating records within a

zone are those that delegate authority to another DNS zone (e.g., NS or glue

records), without providing authoritative responses for the delegated zone. In

DNSSEC, non-authoritative delegating records within DNSSEC-protected zones

are not signed. Specifically, glue and NS resource records of child zones are not

part of the authoritative DNS data secured in the parent zones. Thus, these non-

authoritative records in the parent zones are transferred unsigned [11, 75], and these

unsigned records are not protected by DNSSEC. The injection and caching of these

unsigned records in a validating recursive resolver can result in DNSSEC valida-

tion failure, potentially causing disruptions in the resolution of DNS queries when

attempting to access legitimate nameservers. Additionally, in instances where the

recursive resolver falls back to Vanilla DNS or accepts unathenticated responses,

these unsigned records can result in false responses and downgrade attacks [75].

Authenticated Denial of Existence in DNSSEC: Aside from message au-

thentication, DNSSEC adds another property, known as authenticated denial of ex-

istence. When a resource record does not exist within a zone in Vanilla DNS, the

authoritative name server returns an NXDOMAIN (Non-Existent Domain) response.

However, a single authenticated NXDOMAIN resource record in a DNSSEC-signed

zone could be injected as a response to all queries to a zone and thereby disrupt the

availability of legitimate zone records. To address this problem, DNSSEC introduced
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NSEC resource records. When a resolver queries for a non-existent record in a zone,

NSEC records return the name before and the name after the non-existent queried

domain name as a signed response. Consider a zone such as example.com, which

contains alice.example.com and charlie.example.com subdomains. When a re-

solver queries bob.example.com from a name server of this zone, the authoritative

name server returns the following record:

alice.example.com. NSEC charlie.example.com. A RRSIG NSEC

This signed NSEC record indicates that there is no bob.example.com subdomain,

and the name before it is alice, and the name after it is charlie.

Due to design of NSEC records, they generate an alphabetically-ordered chain

of existing records within a zone. This enables a zone walking or zone enumeration

attack, whereby an attacker can iteratively query all of the existing NSEC records

in a zone to discover all of the domain names included within that zone. Although

DNS zone contents are not inherently secret, zone contents can reveal valuable

information about the targeted domain (e.g., existing servers or applications) as

a part of reconnaissance phase in an attack.

NSEC3 [14] was proposed to address this zone enumeration vulnerability in the

original NSEC design. The original NSEC uses plaintext resource record names in

NSEC records, NSEC3 aims to mitigate zone enumeration attacks by using cryp-

tographic hashes to obscure the resource record names used in NSEC3 records.

Furthermore, NSEC3 employs random salt values and iterative hashing, to miti-

gate pre-computed and offline guessing attacks that aim to discover NSEC3 records.

When a client queries for a non-existent domain in a zone, NSEC3 responds by pro-

viding two cryptographic hashes of two resource record names between which the

hash of the queried name is placed. NSEC3 significantly increases the difficulty of

zone enumeration, but remains vulnerable to offline-guessing attacks.

NSEC5 [67] was proposed to prevent offline guessing attacks on hashed resource

record names in NSEC3. Instead of using cryptographic hash functions as above,

NSEC5 employs a Verifiable Random Function (VRF). In NSEC5, a VRF is consid-

ered as a public-key variant of the hash function, which accepts a resource record

name and a private key (VRF key) as inputs and generates a corresponding NSEC5

proof [166]. A client with access to the corresponding VRF public key of the zone

can validate the obtained NSEC5 records; however, without the VRF private key,

an entity is unable to generate NSEC5 records and perform offline guessing attacks.
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Stale Records: Another limitation in DNSSEC is the presence of signed and

unexpired but stale resource records. DNSSEC RRSIGs have an expiry window,

determined by their Inception and Expiration fields. Stale records in DNSSEC

come to existence when a signed resource record exists, and before its expiration

(the time in the Expiration field has not yet been reached), a new resource record

with identical name but different data fields gets signed. Although the resource

record has been updated and a new, valid resource record is now available, the stale

resource record is signed and has a valid and unexpired signature. Stale resource

records in DNSSEC are susceptible to replay, enabling stale/false response injection.

Replaying resource records can also be exploited to misdirect clients to non-optimal

CDN nodes [71]. The absence of real-time (fresh) signatures in DNSSEC enables

replay of stale records in DNSSEC.

Expired Zone: DNSSEC RRSIGs have a fixed expiry window and DNSSEC-

protected zones must renew these signatures before the Expiration time. Failing

to renew DNSSEC signatures results in zone records becoming invalid, rendering

responses unacceptable to DNSSEC-validating resolvers. Zone records would thus

become unreachable to clients that use validating resolvers. Expired zone records

that result in DNSSEC validation failures are not only prevalent in smaller zones

but have also been frequently observed within TLDs.8

2.2.10 (Stage 2) DNSCurve

DNSCurve [25, 46] was proposed in 2009 as a high-speed ECC-based approach to

enhance security and privacy of Vanilla DNS in Stage 2. DNSCurve was devel-

oped as an alternative to DNSSEC, aiming to resolve the security, privacy, and

amplification problems associated with DNSSEC. This scheme employs authenti-

cated encryption, using the keys established through Curve25519 ECC functions, to

secure transmission of DNS messages within Stage 2. The public keys of ANSes are

encoded (using Base32) and prepended (as a subdomain) to the domain names of

ANSes (e.g., “uz5jm. . . 235c1.dnscurve.org”). These public keys are 54 bytes long,

including a hard-coded string ‘uz5’, added at the beginning, indicating support of

DNSCurve by an ANS.

As Figure 2.12 illustrates, Stage 1 communication in DNSCurve remains unse-

8https://ianix.com/pub/dnssec-outages.html
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: NS + public key (e.g., uz5j…t35c1.dnscurve.org.)

: Authenticated ciphertext of query/response

: Recursive resolver’s public key and a nonce

Figure 2.12: DNSCurve: Using authenticated encryption in Stage 2.

cured. Unlike DNSSEC, which uses the AD bit to indicate signature verification

to clients in Stage 1, DNSCurve does not provide any explicit signaling to clients

in Stage 1—clients must rely on the recursive resolver and ANSes to correctly im-

plement and use DNSCurve [6]. However, in Stage 2, when the recursive resolver

queries the name servers (i.e., NS records) of ‘dnscurve.org’ from its parent zone

(org.) name server (Step 1), the TLD (org.) name server returns the NS records

of ‘dnscurve.org’ (Step 2). The NS records of ‘dnscurve.org’ start with the en-

coded public key indicated by the ‘uz5’ hard-coded string (e.g., ‘uz5j. . . t35c1’ in

Figure 2.12). The recursive resolver uses the name server’s public key and its own

private key to generate a shared secret used with a unique nonce to encrypt a DNS

query and generate a Message Authentication Code (MAC) [24, 46]. Afterwards, the

resolver sends the encrypted query with its public key and the nonce to the name-

server of ‘dnscurve.org’ (Step 3). The name server generates the same key stream

using its private key, resolver’s public key, and the nonce. Subsequently, the name-

server decrypts and verifies the query, generates an authenticated and encrypted

response, and sends it back to the recursive resolver (Step 4). In the final step,

the recursive resolver decrypts the received response and verifies the MAC of the

received response, stores the response in its cache, and sends it back to the client.

As demonstrated, DNSCurve establishes a secure link between a recursive re-

solver and an ANS. Instead of associating long-term secrets with each zone as

DNS records, in DNSCurve, the long-term keys are associated with name servers.

DNSCurve uses Curve25519 to generate public key pairs and establish shared se-

crets [24]. Then, a per-packet nonce is used along with the established secret to

generate a key stream. The key stream is then used in the Salsa20 stream cipher to
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encrypt DNS messages. Additionally, the same key stream is used with the Poly1305

MAC algorithm to provide message authentication. Due to the absence of multi-

ple signatures and key records in DNSCurve, responses are smaller than DNSSEC.

Moreover, responses in DNSCurve are often limited to 512 bytes prior to encryp-

tion [46]. If a response exceeds this limit, it is truncated, and the client must retry

over TCP [46]. Consequently, adversaries cannot use DNSCurve infrastructure for

reflection amplification attacks.

Unlike DNSSEC, there is no need for additional resource records in DNSCurve.

All messages in DNSCurve, including the NXDOMAIN responses, are uniquely en-

crypted and authenticated in real-time using the generated key stream with a per-

packet nonce. Thus, DNSCurve does not employ NSEC records to provide authen-

ticated denial of existence and is not vulnerable to NSEC-based zone enumeration

attacks. Besides, as different recursive resolvers and ANSes generate different shared

secrets, responses to one resolver cannot be replayed to another. Also, due to the

used per-packet nonce in generating stream key, an old message cannot be replayed

to the same recursive resolver.

Similar to DNSSEC, in DNSCurve, Stage 1 must be secured separately. Also,

in DNSCurve, resolvers do not signal clients regarding the use of DNSCurve in

Stage 2 [6]. Therefore, even if Stage 1 is secured, clients do not have means to know

that the name resolution was protected by DNSCurve in Stage 2. In order to employ

real-time authenticated encryption, DNSCurve requires private keys to be present on

the nameservers of a zone. Therefore, when anycast is implemented by a zone owner

for load balancing and enhancing performance, the private key must be present on all

nameserver instances to facilitate online cryptographic operations [145]. The anycast

instances are distributed across distinct geographical locations and administered in

different regions, which the zone owner may not completely trust (e.g., the root

zone [168]). Consequently, vulnerabilities of anycast server instances will impact

the duplicated private key on said servers.

Aside from the replication of long-term secrets on nameserver instances and the

absence of appropriate key distribution mechanisms to distribute keys among the

nameserver instances in DNSCurve, the public keys of DNSCurve are prepended (as

noted earlier) as a subdomain to the nameserver names. Consequently, recursive

resolvers typically obtain the nameserver keys from the nameserver of the parent

zone. The nameserver records will be obtained with confidentiality and authenticity
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only if the parent zones up to the root zone have also implemented DNSCurve and

DNSCurve public keys have been retrieved authentically. Therefore, it is necessary

to incorporate a DNSSEC-like trust anchor in the root zone and resolver software

for DNSCurve to ensure secure communication with the root nameservers, securely

obtain NS records and public keys of subordinate nameserver in the DNS hierarchy,

and thereby, protect transmitted DNS messages. The absence of a clearly defined

trust model and chain of trust, by which the resolvers can trust the keys of name-

servers in DNSCurve, is another problem of this scheme [145].

In order to have a DNSSEC-like trust anchor in DNSCurve, the root nameservers

are required to include their public keys in the recursive resolvers and replicate their

private keys on all of the nameserver instances for live cryptographic operations.

ICANN, the entity responsible for maintaining the root zone, opted against repli-

cating DNSCurve private keys across all nameserver instances to avoid the risks

associated with replicating private keys on nameserver instances [168]. On the other

hand, the root zone has adopted DNSSEC, leveraging pre-signed resource records,

which eliminates the need to duplicate private keys across nameserver instances

within the root zone.

2.2.11 DNS Enhancements Requiring Modest Changes

Here we review techniques and simple schemes that have been proposed to address

security or privacy issues of DNS resolution through the use of relatively minor

infrastructure modifications.

QName Minimization

Although it is not necessary, recursive resolvers typically send the full QName

(i.e., the queried domain name such as www.example.com) to ANSes as they tra-

verse the DNS hierarchy. Therefore, the ANSes can gather information about the

queried domain names from resolvers, and sometimes ECS is also included in those

queries, which can leak client-related information. QName minimization [27] aims

to reduce the amount of information sent to upstream nameservers. Therefore, as

a recursive resolver traverses the hierarchy of the DNS to resolve a domain name,

it includes only the necessary part of the QName in a query. For example, when a

recursive resolver is resolving ‘www.example.com’, it queries the root name servers
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with only ‘.com’ as the QName instead of the complete domain name.

Increasing Entropy Against Off-path Attackers

Since Kaminsky [98] demonstrated the vulnerability of recursive resolvers to off-path

cache poisoning, various enhancements have been proposed to increase the entropy in

DNS responses, thereby reducing the probability of adversaries successfully injecting

false responses. The increased entropy hinders an off-path adversary from injecting a

false response that is accepted as if generated by a legitimate name server. However,

in-line adversaries with access to DNS queries and responses can still observe the

randomized fields and inject false responses.

As a part of DNS header, Transaction Identifier (TXID) is a 16-bit value chosen

by clients and typically generated randomly to match DNS queries and responses.

Since the amount of entropy that was added by TXID to DNS responses was not suf-

ficient to prevent the Kaminsky attack, Daniel J. Bernstein [88] initially introduced

and implemented source port randomization in djbdns.9 Source port randomization

in DNS queries introduces another 16-bit entropy to DNS responses that an off-path

attacker must guess correctly and use in a false response to be accepted. Neverthe-

less, source port randomization is not effective in scenarios where a recursive resolver

that issues a query is behind a firewall, or in cases of Network Address Translation or

Port Address Translation (NAT/PAT), which modifies the source port number into

a predictable value that can be guessed by off-path adversaries [133]. Additionally,

researchers have demonstrated that network side-channels can be used to infer the

value of randomized source port values in DNS queries, which renders the entropy

introduced by source port randomization ineffective [114].

In addition to TXID and source port randomization, Dagon et al. [42] proposed

enhancing DNS security by incorporating case randomization in queried domain

names, i.e., mixing uppercase and lowercase letters. This increases the entropy

of DNS responses, making cache poisoning attacks more challenging for off-path

adversaries. However, since this technique only modifies the queried domain name,

the entropy introduced is limited by the length of the domain name. To increase

the entropy of DNS responses by altering queried domain names independent of

the length of domain names, Predisci et al. [133] proposed Wildcard SECure DNS

(WSEC DNS). WSEC DNS does not require software changes on the server side but

9http://cr.yp.to/djbdns.html
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requires adding specific TXT and CNAME wildcard records to the zone files to indicate

support of WSEC and to operate. When a recursive resolver generates a query to

a WSEC-enabled name server, it appends a random string to the queried domain

name and formats the query in a specific way so that the name server can process

it correctly without the added random string.

Since on-path adversaries have access to the included randomness in DNS queries

and responses, these randomness-based solutions are effective only against off-path

adversaries. Moreover, researchers have demonstrated attacks by off-path adver-

saries that infer or bypass the random values included in DNS messages. For ex-

ample, Herzberg et al. [73] introduced a technique for predicting the source ports

of queries of resolvers behind a Network Address Translation (NAT). In other re-

searchwork, Herzberg et al. [74] demonstrated a method for bypassing source port

randomization of responses, when the responses from ANSes are fragmented. Man et

al. [114] used network side-channels for inferring the DNS query source ports and

cache poisoning.

Defenses Against Centralization

The growing trend of adopting remote public recursive resolvers (e.g., Cloudflare’s

resolver at 1.1.1.1) in client-side software, such as web browsers and pre-configured

devices, including IoT devices [122, 139] has raised privacy concerns about central-

ized data being gathered by resolvers [83]. Hounsel et al. [84] proposed and evaluated

various approaches for distributing DNS queries to prevent centralization of DNS

queries in a single recursive resolver. Similarly, Hoang et al. [76] proposed the K-

resolver mechanism to distribute queries among multiple resolvers. This splits the

queries sent to each resolver to prevent any single resolver from gaining complete

knowledge of all queries over time. In order to address query-centralization-related

privacy issues, other solutions such as transferring Vanilla DNS [144] and DoH

queries [123, 144] over Tor network [144], and ODNS [147] have been proposed to

hide the IP address of the client who issues a DNS query from recursive resolvers.

Aside from approaches for mitigating query centralization in Stage 1, QName

minimization (Section 2.2.11) has been proposed to enhance the privacy of client

queries in Stage 2 of name resolution. QName minimization significantly reduces

the query information exposed to and potentially collected by higher-level zones in

the DNS hierarchy (e.g., root or TLDs) in Stage 2.
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Additionally, Asoni et al. [17] proposed paged DNS, as a scheme to enhance the

privacy of resolvers querying the root and TLDs as centralized points in Stage 2. In

paged DNS, DNS records on ANSes of the root and TLDs are grouped into pages,

and resolvers query pages instead of single specific queries. Therefore, PageDNS

requires modifications to ANSes and recursive resolvers to enable querying, respond-

ing, and updating the pages of records. However, Stage 1 and subordinate zones

under the TLDs continue to use Vanilla DNS.

Another technique proposed to improve DNS resolution privacy is known as

Range Queries [174], which includes a set of cover queries alongside each actual

query, thus obscuring the specific query being made. Range Queries are susceptible

to a Semantic Intersection attack by which the resolver can learn the hostnames

belonging to a site and using this to separate dummy queries from real ones [62].

Additionally, timing attacks are another threat to Range Queries, as adversaries can

analyze the behavior of the entity issuing queries and infer the real queried record

based on the timing of queries [62]. If the querying entity initiates a subsequent

set of range queries before all queries from the initial set have been processed, the

resolver may infer that the remaining queries in the first set are dummy queries [62].

Both PageDNS and Range Queries are compatible with DNSSEC to add message

authentication; however, their implementation would result in significant overhead

when used with DNSSEC. This is because the additional responses retrieved for

the records within pages and dummy queries would also include DNSSEC RRSIGs,

thereby increasing the overhead and processing requirements.

2.2.12 DNS Enhancements Requiring Substantial Changes

Here, we briefly discuss DNS schemes that require substantial modifications to the

name resolution procedure. These are categorized into two groups: P2P-based

schemes and Blockchain-based.

P2P-based Schemes: As one of the first attempts to use peer-to-peer networks

for name resolution, Cox et al. [38] proposed and evaluated DDNS as an alternative

to DNS. DDNS employs Distributed Hash Tables (DHTs) based on the Chord [156]

peer-to-peer protocol to store and query DNS records. Although DDNS benefits

from the load-balancing and resilience of peer-to-peer networks in the face of attacks

against availability, it add time overhead versus Vanilla DNS. Overlook is another

proposed scheme that uses DHTs on top of the Pastry [143] overlay network. As
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a part of the GNUnet project, the GNS [167] is proposed as a decentralized and

censorship-resistant alternative to DNS. Its objective is to enhance name resolution

privacy by incorporating DHTs for distributing and resolving key-value mappings.

Blockchain-based schemes: Namecoin was the first censorship-resistant block-

chain-based name system, Namecoin was forked from Bitcoin and its first block

was mined in 2011 [126]. Kalodneret et al. [97] conducted an empirical analysis of

Namecoin ecosystem. Since its development many other blockchain-based naming

systems, such as Blockchain Name System (BNS) [3] and Ethereum Name Service

(ENS) have been proposed and implemented [96]. Since all these schemes rely on de-

centralized blockchains, they are censorship-resistant and no centralized entity acts

as a single point of failure or has control over their registered domains. However,

due to the need for radical modifications to the existing DNS infrastructure and

DNS resolution process, none of these schemes have gained widespread adoption as

replacements for Vanilla DNS.

2.3 Secure Delegation of Authorization

In Internet protocols that employ long-term secrets, one method to avoid replication

of these secrets is to implement secure delegation of authority to other entities in

the protocol without directly sharing the long-term key. In this section, we provide

background on methods for delegation of authorization to explore techniques that

avoid sharing (replicating) long-term private keys.

Secure delegation of authorization and its revocation have been fundamental

challenges in different PKIs [33]. For example, in the intersection of CDNs and

web X.509 PKI, there is a need for delegation of authorization for TLS termination.

A CDN is made up of numerous geographically distributed servers, known as edge

servers. These are used to efficiently and often securely transfer content to end-users

primarily based on their geographical location. In some instances, as a simple dele-

gation method, domain owners employing CDNs for TLS-based services share their

long-term private keys with the CDN to enable TLS sessions to end-users. By trans-

ferring private keys to CDN instances, the private key owner effectively delegates

authority to the CDN to provide TLS-based services on their behalf. However, the

long-term key is then replicated on all the CDN edge servers and exposed to attacks

targeting these servers.
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Delegation methods can likewise be employed within the DNS context to grant

authority to the DNS server instances (e.g., when anycast is used) within a zone,

facilitating secure communication with the DNS server instances and eliminating

the need to duplicate long-term keys across all server instances.

Long-term private key sharing, as described in the context of delegation for

TLS-based services, is highly discouraged. Private key sharing does not provide fine-

grained authorization for delegatees. Furthermore, the compromise of the long-term

secret on any of the delegatees jeopardizes security across all other delegatees. In

order to address the challenges of long-term key sharing, various methods have been

proposed to enable partial or complete delegation without requiring key sharing,

while also supporting the revocation of such privileges [33].

One class of delegation schemes involves securely storing the long-term secret on

a designated server. Each communication with delegatees, then requires interaction

with the server that stores the long-term secret. For example, in the TLS context,

Keyless SSL [157] relies on TLS handshake proxying [155] and completes each hand-

shake to the edge servers of a CDN by communicating to a designated server that

stores the long-term TLS private key.

SSL splitting [106] is another example of this class of delegation. In this approach,

after SSL connection establishment, the designated server that holds the long-term

key sends the MAC and a unique identifier for each TLS record to the delegatee. The

delegatee then verifies its cache for the corresponding payload associated with the

MAC and sends it to the requester. In Keyless SSL [157], the delegatee interacts

with the designated server only during the TLS handshake process. In contrast,

SSL splitting requires per-record communication with the designated origin server,

limiting the advantages of delegation in the context of CDNs. Chuat et al. [33]

conducted an extensive analysis of delegation and revocation schemes, and developed

a framework for their systematic analysis.

Proxy certificates [169] and delegated credentials [22] are another type of secure

delegation protocols that do not require per-connection or per-record communica-

tions with the designated server that stores the long-term key. In these schemes, the

designated server that holds the long-term secret generates data structures (e.g., cer-

tificates), and signs them using the long-term secret. These signed structures are

then used by the delegatees to securely offer services without the need for the long-

term secret or frequent communications with the designated server.
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2.3.1 Delegated Credentials

Here, we provide a detailed description of delegated credentials, which, when com-

bined with an appropriate revocation system, offer a promising solution for the

delegation and replication of long-term secrets, without introducing per-connection

delays [33]. In the web X.509 PKI domain owners have a limited control over the

fields of the TLS certificates (e.g., expiry window or supported algorithms) that a

CA issues. Additionally, the use of short-term certificates increases the load on CAs,

and a brief outage of the CAs may result in the unavailability of TLS-based services.

To address these limitations through delegation of authorization, a method known

as delegated credentials has been proposed and standardized [22]. In the web PKI,

the CA-issued certificates for end-users cannot be used to sign other certificates;

however, if their digital signature bit is enabled in their key usage extension, such

certificate can be used to sign and validate other objects beyond certificates and Cer-

tificate Revocation Lists (CRLs). Delegated credentials are small data structures,

digitally signed by endpoint X.509 certificates, thereby facilitating the delegation of

authorization from endpoint TLS certificates. These delegated credentials are then

distributed among the edge servers within the CDN context and their correspond-

ing private keys are used to effectively complete TLS handshakes without requiring

long-term private key replication.

Listing 2.1: Delegated credendtials structure (based on [21])

struct {

struct {

uint32 valid_time; // DC lifetime

SignatureScheme signature_algorithm;

Pkey DC_public_key; // public key of DC

} Credential;

SignatureScheme algorithm; // DC signature algorithm

Signature signature; // delegation signature

} DelegatedCredential; // short-form name: DC

As shown in Listing 2.1, a delegated credential is composed of a structure that

contains an other structure for the “Credential.” In the Credential structure, there is

a valid time field, which specifies the duration in seconds relative to the NotBefore

field of the certificate responsible for issuing (i.e., signing) the delegated credential.

This indicates the period during which the delegated credential is considered valid.
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The DC public key and signature algorithm specify the public key and signature al-

gorithm of the Credential key pair. The DelegatedCredential.algorithm and Delegat-

edCredential.signature specify the respective signature algorithm and the signature

that establishes that binding between the end entity certificate and the delegated

credential.

In Chapter 4, we use a structure analogous to delegated credentials within the

DNS context to mitigate the challenges associated with sharing long-term private

keys among nameserver instances within DNS zones.

2.4 Formal Analysis of Security Protocols

Verifying security and privacy properties of protocols often involves significant chal-

lenges, primarily due to the difficulty of manually analyzing or proving these proper-

ties, including manually exploring all the possible protocol behaviors. Consequently,

researchers have investigated mathematical and automated methods to facilitate the

verification of security properties in protocols. Formal verification methods can be

broadly classified into two categories: symbolic and computational [29].

In Chapter 6 we employ a symbolic analysis approach to increase assurance in the

provided properties of our new scheme. In the symbolic model of security protocols,

cryptographic primitives are represented as symbols, while messages are expressed

as terms used by these primitives. These primitives are employed in rules that define

the protocol’s specification, with the rules deterministically modeling the protocol’s

behavior. This approach simplifies the analysis by ignoring the mathematical com-

plexities of cryptography and focusing on the logical interactions between entities

within the protocol.

For example, senc(m, k) is a symbolic function for symmetric encryption of a

message m with a key k. If a rule has access to k or the defined adversary obtains

knowledge of k, they can use the decryption function sdec(c, k) to decrypt the

plaintext message m. Notably, cryptographic primitives in the symbolic model are

assumed to be perfect. Thus, in this example, only with access to the key k the

message can be decrypted.
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2.4.1 The Tamarin Prover

Tamarin is a tool used for symbolic modeling and formal verification of security

protocols [117]. It offers pre-defined symbolic cryptographic primitives, such as

Diffie-Hellman (DH) key agreement, symmetric encryption, and digital signatures.

Tamarin has been employed for modeling and analysis of security protocols such as

TLS 1.3 [39], 5G authentication [23], RHINE [55], and other security protocols [146].

Thus, Tamarin is as an appropriate tool for a formal security analysis of the secure

DNS scheme that we propose in this thesis (DNSSEC+).

The default attacker model in Tamarin is the Dolev-Yao [54] adversary model,

which assumes complete control over the network: the adversary can read, modify,

drop, or fabricate and inject network messages. A Tamarin user defines a symbolic

model of a protocol in Tamarin syntax and specifies the properties to be proven.

Tamarin is capable of automatically generating proofs to establish the validity of the

specified properties, without requiring manual interaction. Tamarin also provides

an interactive mode with a graphical interface that offers a step-by-step manual

proof development process, with visualization of the constraint solver and of any

discovered attacks.

Protocol Specification: In Tamarin, the allowed protocol interactions and

steps are specified using multiset rewriting rules. These rules form a labeled transi-

tion system, with a global state composed of facts that represent the state informa-

tion. The transition system begins with an empty multiset of facts and this multiset

evolves as rules are executed.

The following example demonstrates a Tamarin rule, named Example DH. Each

rule has a left-hand-side (LHS/premise) and a right-hand-side (RHS/conclusion)

that specify the multisets before and after the rule execution. If all the LHS facts

exist in the current state, the rule can be executed, resulting in the removal of the

LHS facts from the current global state and the addition the RHS facts to the state.

Listing 2.2: Example Tamarin rule for DH key generation

1 rule Example_DH:

2 [Fr(a)] // premise (LHS)

3 --[Secret(a)]→ // action/event facts

4 [!Ltk($A, a), Out(g^a)] // conclusion (RHS)

In Tamarin, facts are typically represented as F(t1,...,tn), where F represents
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the name of the fact, and t1 to tn are the terms that represent variables, messages,

functions, and other symbolized elements. On the LHS (line 2), the fact Fr() is a

built-in Tamarin fact, used for modeling fresh random values such as keys, and a is a

freshly generated term, which will be used as a DH private key in this example. On

the RHS, Out() is another built-in fact in Tamarin that models an entity sending

out a message to the adversary-controlled network. Here (gˆa) models the public

component of a DH key in the built-in DH theory of Tamarin. To use the bulitin DH

model within Tamarin we define the DH base (generator) as a public term. The fact

!Ltk() stores identity A with its fresh private key a. The facts within the LHS and

RHS are state facts that, upon execution of the rule, are respectively removed and

added to the global state. The ‘!’ symbol indicates that a fact is persistent: it will

not be removed from the system’s state when it is consumed by rules and can be used

as often as needed. There is another type of fact, such as Secret() in Example DH,

which is not present in the LHS and RHS and is categorized as an event/action fact.

Action facts are not added to or consumed from the system’s state. Instead, they

serve to label transitions by recording the execution of rules, and they are added to

the protocol execution trace. The different possible executions of the rules generate

a set of potential execution traces made up from action facts. These traces serve as

the basis for defining and verifying properties.

Defining Properties: In Tamarin, properties are formulated as lemmas, which

are guarded first-order logic formulas defined over action facts and time points. For

a security property to be verified, its lemma must hold across all possible execution

traces, with no counterexamples found. Tamarin checks and either provides a proof

when the property holds in all protocol behaviors, or returns a counterexample that

demonstrates an attack. In some cases, the automatic proof construction process

in Tamarin may fail to produce a proof or a counterexample with the allocated

time and resources, and the verification process fails to terminate. In this case,

the property is neither proved nor disproved. In such cases, the interactive mode

of Tamarin can be used to identify the underlying problem and guide the tool by

writing special intermediate lemmas and refining the protocol model to help the

automatic proof generation process to reach a conclusive termination.

The example in Listing 2.3 presents a simple secrecy lemma, named Example

Secrecy. Here, K() (line 4) is a built-in action fact that represents the adversary’s

knowledge of a specific term, such as a ‘key’ in this example. The #i and #j are
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temporal variables, representing time points. This lemma asserts that for all possible

protocol behaviors and values of the variable ‘key’ (line 2), if the ‘key’ is captured

in the execution trace by the action fact secret() at time point i (line 3), there

exists no time point #j such that (denoted by ‘.’) the adversary knows the ‘key’

(line 4). If Tamarin identifies a counterexample at which the value ‘key’ is known

to the adversary, it stops the proof process and presents the attack in the output.

Besides lemmas employed to demonstrate the security and privacy properties of

a modeled protocol, there are also executability lemmas whose objective is to ensure

that the modelled protocol can properly execute to completion. Unlike the regular

property lemmas, which must hold for all protocol traces, executability lemmas

need only be valid for a single trace and are defined using the term exists-trace

in Tamarin. This indicates that there is at least one trace in the set of protocol

execution traces in which the defined protocol executes completely.

2.5 Summary

In this chapter, we primarily reviewd and analyzed the provided properties and

weaknesses of schemes that have been proposed to augment the security or privacy

of Stages 1 and 2 of the DNS resolution process. Chapter 3 will develop a threat

model for the DNS resolution process and establish an evaluation framework for

assessing its security, privacy, and availability properties. Using this framework,

we summarize and systematically evaluate the reviewed schemes. Additionally, we

provided an overview of PKI and delegation mechanisms, which will be used in

Chapter 4 for the design of DNSSEC+. Finally, we provided background on formal

analysis of security protocols, which will be applied in Chapter 6 to formally verify

a set of security and privacy properties of DNSSEC+.

Listing 2.3: Example Tamarin lemma for proving secrecy

1 lemma Example_Secrecy:

2 "All key #i .

3 Secret(key) @i

4 ==> not (Ex #j . K(key) @j)"
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Chapter 3

Systematic Analysis of Secure DNS Schemes

As the literature review in Chapter 2 shows, Vanilla DNS was originally designed

without security or privacy goals, rendering it susceptible to various attacks. To

mitigate the vulnerabilities of Vanilla DNS, numerous schemes have been proposed

to improve the security and privacy of the DNS resolution process. However, the

absence of a comprehensive, DNS resolution-specific threat model makes it difficult

to systematically compare existing threats within the DNS resolution process and

to evaluate the effectiveness of proposed secure DNS schemes. To address this,

in this chapter, we develop a comprehensive threat model of the DNS resolution

process. We begin by defining the scope of the threats being analyzed and identifying

attacks specifically associated with the DNS resolution process. Based on this, we

provide a taxonomy of attack techniques that essentially enumerate threats to DNS

resolution. Then, using this threat model as a foundation, we define security, privacy

and availability properties to mitigate the identified attacks and vulnerabilities.

Finally, we develop an objective evaluation framework based on the defined threats

and use it to assess 11 previously proposed secure DNS schemes.

3.1 Threat Model and Attack Taxonomy

Initially, we define a DNS resolution threat model for use as a basis for defining

security, privacy, and availability properties that per our model, suffice to secure

the DNS resolution process. DNS resolution refers to the process by which a client

generates a DNS query and, through a configured stub resolver, sends it to a recursive

resolver. The recursive resolver interacts with various entities in the DNS hierarchy

until it obtains the resource record associated with the queried record or gets an

error response. The recursive resolver then returns the obtained response or error

message to the client. Our focus herein is on the network-based attacks on the

name resolution path, which involve exploiting network protocols and specifically

interfering with or affecting the name resolution process. Host-based attacks are

excluded from our scope (see Section 1.1.1).

Herein, attacks such as domain name squatting (e.g., typosquatting [2]), domain
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name hijacking [130], and parked domains [164] are excluded from our scope, as they

are not network-based threats. Furthermore, attacks that involve registrars or search

engines [130] are excluded from our scope, as these entities are not directly involved

in the DNS resolution procedure. Botnet-related DNS threats are excluded as these

attacks do not interfere with the name resolution procedure (e.g., DNS tunneling

or data exfiltration [125] or using DNS for inter-botnet communication [50]), or use

legitimate functionality of DNS (e.g., DNS-based fast-flux [113] or Domain Gener-

ation Algorithms (DGAs) [9, 134]). DNS reflection and amplification attacks [7],

whose primary target is not the availability of DNS servers, are also beyond scope.

In Figure 3.1, DNS threats are classified based on their technical goals and the

techniques employed to achieve these goals. The main technical goals are categorized

into five groups, namely domain name impersonation, censorship, degradation of

service, information gathering, and evading detection.

Monetization, while typically viewed as the direct goal of domain parking, can

be considered a general objective for most DNS attacks and falls outside our scope.

The domain name impersonation technical goal means fraudulently representing

a service point (IP address). While web services are a primary target of domain

name impersonation, this technical goal can also apply to non-web (non-HTTP)

services. The service might be, e.g., a web server, a server running File Transfer

Protocol (FTP) [43], or an NTP server [95] (one technique to achieve this is pharm-

ing). Censorship refers to blocking specific DNS schemes or altering DNS responses

of specific domains. We assume that nationwide adversaries such as governments

(e.g., China [77] or Iran [16]) are the main DNS-based censorship agents. Degra-

dation of service is the objective of adversaries that disrupt the availability of the

DNS infrastructure to legitimate clients. Adversaries with the information-gathering

goal collect client and query-related information on the name resolution path, often

violating the privacy of clients.

Subsections 3.1.1 to 3.1.5 discuss the five categories of technical goals used by

adversaries to actively or passively exploit vulnerabilities in the DNS resolution

process.

3.1.1 Domain Name Impersonation Techniques

This subsection describes the technical goal of domain name impersonation, which

represents the first technical goal in Figure 3.1. One of the main methods for per-
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forming domain name impersonation is through pharming. From the viewpoint of a

client that issues a DNS query for resolution, we define pharming as any such method

in which the response record (e.g., IP address in ‘A’ record) that the client receives

is different from the one that the ANS has currently associated with the queried

record. One technique of pharming is through changing the DNS record association

(e.g., domain-name/IP-address) in the cache of recursive resolvers or clients, known

as DNS cache poisoning. Cache poisoning can be done by direct local cache changes

(e.g., by installing malware on a recursive resolver or client and manipulating their

cached DNS records). However, direct local cache changes are host-based attacks,

beyond our scope.

Inline adversaries in the name resolution path can transmit altered/false re-

sponses and impersonate authorized entities to carry out cache poisoning [107].

Off-path adversaries over the Internet can perform cache poisoning using techniques

such as Kaminsky [98], fragmentation [74], network side-channels [114], or birth-

day attack [152].1 Cache poisoning often involves injection of false responses by

impersonating legitimate entities. In network-based cache poisoning attacks, ad-

versaries impersonate legitimate recursive resolvers or ANSes to deceive the victim

into believing that the responses received are from the legitimate entities that were

queried.

Due to the lack of anti-replay means in DNS/DNSSEC, an adversary can capture

and replay false/stale responses [15]. For example, DNSSEC responses are typically

signed once and are valid for a specific period (see Section 2.2.9). In instances where

an ANS has reassigned a domain name to a different IP address, replaying previously

signed DNSSEC records can be used to carry out pharming and cache poisoning to

misdirect clients.

3.1.2 Censorship Techniques

This subsection discusses the censorship-related technical goal, focusing on tech-

niques that leverage DNS payloads for censorship, as well as methods used to censor

access to DNS-based schemes. In Figure 3.1, techniques that can be used for DNS-

based censorship are depicted as gray boxes. Destination-based response blocking

refers to blocking DNS queries/responses that satisfy specified criteria by a censoring

1The vulnerability associated with birthday attacks has been mitigated in modern DNS software
implementations by not sending multiple queries for the same domain name at the same time.
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agent. For example, a query could include a specified domain name, a destination

IP address associated with a recursive DNS server, or a destination port number

associated with a particular DNS scheme. Direct IP-address-based censorship of

Internet services other than DNS (based on packet headers) falls outside the scope

of our model, as it is distinct from the DNS infrastructure and is not related to

DNS resolution. In DNS-payload-based censorship, typically a Stage 1 intermediate

adversary (i.e., inline or on-path, e.g., an ISP or recursive resolver) blocks DNS

queries or responses by targeting specific payload fields. This may involve blocking

or falsifying DNS resolution based on the payload’s QName within a query or the

IP address within a response [16]. As the legitimate association between a domain

name and IP address changes, DNS-payload-based censorship often involves a type

of pharming. While DNS-payload-based censorship provides adversaries with a fine-

grained technique of censorship, DNS server censorship can block the entire traffic

directed at the DNS servers of a specific DNS scheme based on their IP addresses,

domain names [78], or their designated port number. For example, a censoring

government can block DoT by blocking all traffic associated with TCP port 853 or

disrupt DoTor by restricting access to Tor guard relays.

3.1.3 Degradation of Service Techniques

Degradation of service is another goal by which adversaries degrade or disrupt the

availability of DNS resolution. We limit our primary scope to attacks where the

targeted entities are DNS resolution components.

Flooding is a technique of degrading the availability of DNS. This can be broken

down into attacks that target DNS infrastructure and attacks that perform reflec-

tion using DNS infrastructure. In targeting DNS infrastructure, adversaries flood

recursive resolvers (resolver-DoS ) or ANSes (ANS-DoS ) using techniques such as

query flooding, water torture/NXDOMAIN [111], or an attack known as phantom

domain [145].

In query flooding adversaries send a large number of DNS queries to a UDP-based

recursive resolver or ANS to exhaust their resources (primarily the processing power

of a DNS servers in UDP-based DNS). In the variation of this technique known

as the water torture/NXDOMAIN attack, adversaries generate random strings and

append them as prefixes (i.e., subdomains) to the targeted domain in the DNS

queries generated for flooding attacks [111]. The targeted ANS looks up for these
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non-existent domains, which exhausts the ANS’s processing resources and fills the

cache of the recursive resolver with non-existent responses.

The objective of phantom domain attack is to exhaust the resources of recursive

resolvers. Here, an adversary establishes slow or unresponsive ANSes, known as

phantom domains. Next, the adversary directs queries for these phantom domains

to a victim recursive resolver, and these slow or unresponsive ANSes consume the

resources of the recursive resolver.

In Reflection using DNS infrastructure attacks, due to the stateless nature of

UDP-based DNS, DoS attackers can reflect their flooding traffic using DNS in-

frastructure to amplify their attack traffic and obscure the source of their attack.

Furthermore, the inclusion of additional cryptographic records in DNSSEC increases

its amplification factor, thereby increasing its susceptibility to reflection amplifica-

tion attacks (see 2.2.9). Attacks that perform reflection using DNS infrastructure

are excluded from our scope, as their primary target is not the availability of DNS

itself.

3.1.4 Information Gathering Techniques

This subsection discusses the techniques used by adversaries and entities within

the DNS resolution process to collect information about clients and their queried

DNS records. As the entities involved in the name resolution process typically have

access to the data and metadata of transmitted DNS messages (e.g., query payload

or metadata), they can gather various information about a client, thus violating

the client’s privacy. Information Gathering is the third goal by which adversaries

(typically intermediate entities in the name resolution process) gather information

on client-related behavior and identity, using DNS queries or responses and their

associated metadata.

Collecting a client’s browsing or DNS query history, and combining these queries

with additional information, has been shown to allow identification or re-identification

of the client across time periods [26, 127]. Domain names within DNS queries may

disclose various information with different privacy sensitivity levels. For example,

DNS queries can leak personal information about a client (e.g., the applications that

a client uses or the type of IoT devices that a client owns [10]). In some cases, DNS

queries may allow information to be associated with a real-world entity, at which

point the information itself becomes Personally Identifiable Information (PII). For
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example, if a client issues a DNS query with the QName ‘admin.example.com,’ there

is a high probability that the client is the administrator of ‘example.com.’ Thus, this

domain name can be associated with a real-world identity and is considered PII.

In the DNS context, some part of the payload can directly disclose client-related

behavior and some part of the metadata (transmission-related information) can be

used for client identification. For example, the Questions, Answers, Authority, and

Additional sections of a DNS message payload can directly reveal client-related

behavioral information. On the other hand, timestamps, DNS header, and other

network layer headers can be collected to identify a client or form client-related be-

havioral information over time. In Figure 3.1, client-related behavior gathering refers

to collecting a client’s actions through DNS query information that can directly re-

veal the client’s behavior, and client-related identifier gathering refers to collecting

metadata or payload that could be considered as direct (e.g., IP addresses) or in-

direct (e.g., timestamps) identifiers of clients. Indirect identifiers can be used in

association with other information to increase the accuracy of identification or lead

to the formation of PII [127].

Eavesdropping can occur in both stages. In Stage 1, an adversary can collect

both client-related behavioral patterns and identifying information (e.g., IP address)

from a DNS query by eavesdropping. In Stage 2, adversaries can collect client-

related behavioral pattern by eavesdropping, and the metadata (i.e., identifying

information) belong to a recursive resolver. Although metadata in Stage 2 does

not belong to clients, the DNS query payload may contain client-related identifier

information such as ECS (Section 2.1.2). In Figure 3.1, we assume that there is no

ECS included in Stage 2; thus, eavesdropping in Stage 2 only reveals client-related

behavior.

In Stage 1, the ISP of a client serves as the convergence point for the client’s

interaction with the Internet. As such, it is capable of correlating an encrypted

DNS query with the subsequent traffic originating from the client, thus enabling the

inference of the encrypted queried DNS record. For example, if a client sends an

encrypted DNS query and the subsequent traffic is HTTPS, the ISP can do a reverse

lookup or check the plaintext Server Name Indication (SNI) field in the TLS client

hello message to discover the QName of the earlier encrypted DNS query. As all

Internet Engineering Task Force (IETF) standardized protocols are recommended to

mitigate pervasive monitoring attacks on the Internet [61], Encrypted SNI (ESNI)
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was initially proposed as a mechanism to prevent privacy leaks resulting from the

exposure of the SNI during TLS handshakes. Subsequently, Encrypted Client Hello

(ECH) was introduced to provide enhanced protection by mitigating information

leakage from the entire Client Hello message within the TLS handshakes [141]. In

Figure 3.1, this attack against the confidentiality of encrypted DNS messages is

called ISP correlation of traffic, which reveals client-related behavior.

Aside from ISPs, recursive resolvers can gather various information from the

DNS queries they receive for different purposes.2 In gathering client-related info.

by (RR), a recursive resolver gathers both a client’s behavior-related (e.g., QName)

and identifying information (e.g., IP address). Recursive resolvers can also geolocate

clients based on their IP addresses. In gathering client-related information (S2),

only the DNS message payload is privacy-sensitive to the clients, which might also

contain ECS, and the query metadata (i.e., identifying information) belongs to the

recursive resolver. Therefore, different entities involved in Stage 2 (i.e., intermediate

ASes and ANSes) can gather behavior-related information about clients that use

a recursive resolver but cannot often associate the gathered information with the

clients (unless ECS is included in the queries).

Lastly, DNS cache snooping is an active technique by which attackers collect

information about resolved domain names by a recursive resolver by checking cached

domain names on the recursive resolver. Cache Snooping is typically performed by

sending DNS queries with the Recursion Desired (RD) flag unset (RD=0), analyzing

the remaining TTL in the responses from a recursive resolver, or measuring the

response time of the DNS cache [68]. However, cache Snooping of the multi-layered

centralized resolvers with distributed caches is more sophisticated than single-cache

resolvers [139]. As in cache snooping, the adversaries either employ legitimate DNS

functionality (e.g., non-recursive requests) or side channels (e.g., time analysis);

cache snooping is beyond the scope of this model.

3.1.5 Evading Detection Techniques

In this subsection, we provide a brief discussion of attacks that abuse the legitimate

functionality of DNS as a benign protocol to hide malicious activities. As almost all

Internet-connected networks require name resolution, DNS is typically not blocked

2e.g., logged information from Google’s public DNS servers: https://developers.google.

com/speed/public-dns/privacy
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by firewalls. In evading detection based on DNS, adversaries try to leverage DNS

as a benign protocol to hide their malicious traffic or infrastructure. For example,

botnets use DGAs and DNS-based fast-flux [113] to hide their Command and Control

(C&C) server [4, 134]. Furthermore, an attacker can exfiltrate arbitrary data from

a compromised target through DNS traffic (also known as DNS tunneling) [125,

154, 173]. In DNS-based evading detection, adversaries do not directly interfere

with or disrupt the name resolution process. Instead, they exploit the legitimate

functionality of DNS for malicious goals. Therefore, the technical goal of evading

detection is beyond the scope of our taxonomy.

3.2 Resolving The Threats of DNS Resolution

In the threat model and attack taxonomy (Section 3.1), we systematically analyzed

and categorized existing threats within the DNS resolution process, providing a com-

prehensive overview of the threats and attack techniques. Building on this, we now

define 14 security, privacy, and availability properties for the DNS resolution pro-

cess. These properties are designed to address and mitigate the previously identified

threats.

3.2.1 Security Properties

The security properties that we define here are specific to the DNS resolution process,

and are designed to mitigate attacks that compromise the authenticity and integrity

of DNS messages or expose long-term secrets (e.g., private keys) to adversaries.

S1 Resilient-to-False-Resolver-Response (Stage 1): This property is achieved

if a DNS scheme prevents adversaries from injecting false responses to clients by

impersonating legitimate recursive resolvers.

In Stage 1, if an adversary has access to the issued DNS queries by a client or

can trigger a client to issue DNS queries (e.g., through embedded images on a

webpage), the adversary can inject false responses to the client by impersonating

the legitimate recursive resolver in the queries. Impersonating a recursive resolver

means generating a fabricated response using the parameters in the legitimate

client’s query (e.g., the resolver’s IP address, TXID, and other sections) to make

it appear as if the response is generated by the legitimate recursive resolver.
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An adversary in Stage 1 can be an inline or intermediate entity (e.g., a router or

an ISP) that became rogue or an outsider that redirects traffic through network

traffic hijacking (e.g., Address Resolution Protocol (ARP) spoofing or Border

Gateway Protocol (BGP) hijacking). An inline adversary has access to the DNS

queries issued by a client and the query parameters (e.g., random TXID and

source port). However, an off-path adversary first needs to trigger a client to

issue DNS queries, so that the adversary knows some of the query sections. Sub-

sequently, the adversary must accurately guess the correct values within various

sections of the issued queries or somehow match them to successfully inject false

responses on behalf of the legitimate resolver.

In addition, the inline adversary can block the client’s query or the legitimate

response from the recursive resolver. However, the off-path adversary cannot

directly block a legitimate query or response without mounting a DoS attack on

the destination of the query or traffic hijacking. Thus, the off-path adversary

must inject the false response before the legitimate response arrives at the client’s

machine.

Message authentication in Stage 1 is one way to mitigate active inline or off-

path false response injection attacks. Message authentication also guarantees

the integrity of DNS messages, mitigating benign bit errors [118]. Due to the

lack of message authentication or other means to mitigate false response injection

between clients and recursive resolvers in Vanilla DNS, false response injections

and impersonations of recursive resolvers go undetected by clients. Consequently,

if a client caches the response, false response injection can result in client-side

cache poisoning (e.g., stub resolver or the DNS cache of the client’s web browser).

S2 Resilient-to-Resolver-Replay-Attack (Stage 1): A DNS scheme provides

this property if recursive resolver responses to a client cannot be successfully re-

played to other clients, and previous responses sent to a client cannot be replayed

later to the same client.

As an example of S2, if a DNS scheme employs authenticated encryption with

different session keys per client-resolver interaction in Stage 1, this stops success-

ful replay of the transferred messages to different clients. Thus, having separate

protocol runs with fresh keys for each client prevents replay of DNS responses

from one client to others. Also, not reusing session keys prevents the replay
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of messages from previous sessions in subsequent sessions of the same client.

Moreover, adding Time-Variant Parameters (TVPs) [161] to the exchanged DNS

messages adds uniqueness to messages and prevents replay of messages in the

same session. Ensuring that interactions adhere to a one-to-one relationship

guarantees the uniqueness of messages, and effectively prevents replay attacks.

In the absence of anti-replay means in a DNS scheme, replay of stale responses

can be used to perform pharming or to degrade specific services that rely upon

DNS (e.g., CDN services [71]).

S3 Resilient-to-False-ANS-Response (Stage 2): In Stage 2, if a DNS scheme

prevents adversaries from successfully injecting false responses to recursive re-

solvers by impersonating legitimate ANSes, the scheme satisfies S3.

In general, an adversary may be able to impersonate legitimate ANSes used in

the queries of a victim recursive resolver and inject false responses to the recursive

resolver. As open resolvers are exposed to the Internet and respond to recursive

queries that they receive from any IP address, inline and off-path adversaries

can trigger them to issue DNS queries. Adversaries responsible for triggering

these queries then inject false responses, enabling cache poisoning (e.g., using

the Kaminsky [98, 114] technique) and thereby resulting in pharming.

For a DNS scheme, one way to satisfy Resilient-to-False-ANS-Response is by pro-

viding message authentication in Stage 2 for the responses received by recursive

resolvers from ANSes. For example, in Vanilla DNS, due to the lack of message

authentication and other means to mitigate false message injection in Stage 2,

recursive resolvers would not detect false message injections by impersonation of

ANSes.

False message injection in Stage 2 affects clients that use the targeted recursive

resolver, while false message injection in Stage 1 often affects a single client.

Therefore, attacks that result in false ANS response injection (i.e., cache poi-

soning of a recursive resolver) typically affect more clients than similar attacks

in Stage 1 (i.e., poisoning cache of a single client).

S4 Resilient-to-ANS-Replay-Attack (Stage 2): A DNS scheme provides this

property if ANS responses sent to a recursive resolver cannot be replayed to

other recursive resolvers. Furthermore, old responses sent to a recursive resolver

cannot be replayed later to the same recursive resolver.
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In the absence of anti-replay means in Stage 2, an adversary can capture and

replay old responses, which may be no longer correct. For example, in DNSSEC,

although responses are signed, they can be replayed by entities other than ANSes

before their signatures expire [172]. The stale records in DNSSEC (see Sec-

tion 2.2.9) can be used to inject false responses to the cache of resolvers [15] and

thereby misdirect clients to now-incorrect IP addresses. A solution to ensure

anti-replayability in DNS schemes is for ANSes to use different keys for message

authentication when interacting with different recursive resolvers in Stage 2. This

approach mitigates replay attacks by ensuring that each interaction is uniquely

authenticated. Moreover, incorporating TVPs into the exchanged messages helps

prevent the replay of previously authenticated messages to the same client, in

cases where a key is reused for authenticating multiple messages with the same

resolver [25].

S5 Avoid-Duplicating-Longterm-Secret (Stage 2): A DNS scheme that pro-

vides means for DNS zones to avoid duplication of long-term private keys on

all server instances and minimize the exposure of such keys to attacks targeting

these servers satisfies this property.

ANSes use long-term private keys in cryptographic operations (e.g., encryption

or message authentication) to provide security properties in Stage 2. The method

by which ANSes employ long-term private keys can expose the keys to attacks

targeted at ANS server instances. For example, if IP anycast is used to improve

the performance of content delivery and the long-term private key is present on

all CDN servers, the private key is exposed to attacks targeting these servers. In

DNSSEC (with offline-signing), where signatures are pre-computed, long-term

private key can be stored more securely, and there is no need for their presence

on all ANS servers; thus, DNSSEC satisfies S5.

3.2.2 Availability Properties

We now define two properties designed to mitigate attacks that disrupt the DNS

resolution process by blocking DNS messages or blocking access to DNS servers.

Additionally, we define two properties to address attacks targeting the DNS infras-

tructure, which could degrade or disrupt the name resolution process.
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A1 Resilient-to-DNS-payload-based-Censorship (Stage 1): A DNS scheme

must prevent a Stage 1 adversary from gaining access to plaintext DNS query

and response feilds (message sections) to provide this property. Consequently, an

attacker cannot intercept DNS messages based on specified DNS payload sections

to block the name resolution process.

In Stage 1, countries with a history or policy of censorship, such as China [77]

or Iran [16], have been observed to leverage DNS to block access to specific

domain names. Various sections in DNS queries and responses can be used by

censoring agents; QName inside the Question section is a particularly useful field.

In this work, if a DNS scheme prevents censoring agents from accessing all DNS

Question, Answer, Authority, and Additional in a DNS payload, it satisfies this

property.3 As the DNS message header section contains non-privacy-sensitive

information (e.g., control flags) about a DNS message, if in a DNS scheme this

section is accessible to censoring entities, but the other sections are concealed,

the scheme receives full credit for this property.

Inline censoring entities in Stage 1 (e.g., ISP) can target specific DNS queries/re-

sponses based on one or more DNS payload sections. The targeted DNS queries

or responses may then be blocked or responded with an NXDOMAIN answer [151],

a routable public IP address (e.g., Facebook address [77]), or a false IP address

(e.g., a placeholder “black hole” address [16]).

Resilient-to-DNS-payload-based-Censorship is typically achieved by encrypting

queries and responses in Stage 1. Strongly obfuscating DNS messages is another

technique to achieve this property. Our rationale for defining this property only

in Stage 1 is that an informed user or privacy-aware Internet software (e.g., web

browsers) can choose recursive resolvers outside a censoring region. Thus, if a

DNS scheme provides Resilient-to-DNS-payload-based-Censorship in Stage 1, the

recursive resolver could be selected in a non-censoring region and the Resilient-to-

DNS-payload-based-Censorship is not required in Stage 2 to mitigate censorship.

For example, a client residing in a censoring region (e.g., Iran [16]), who uses

Cloudflare’s recursive resolver, might know that it is not controlled by a censoring

entity and is located in a non-censoring region; thus, if queries from the client

3Some public recursive resolvers remove Authority or Additional sections from DNS responses.
We assume that these sections are not stripped from DNS responses since this behavior is not
consistent across all resolvers.
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to this resolver (Stage 1) are Resilient-to-DNS-payload-based-Censorship, this

property is not required in Stage 2.

A2 Resilient-to-DNS-Server-Censorship (Stage 1): A DNS scheme provides

this property if clients’ interactions with recursive resolvers do not have dis-

tinguishable characteristics that can be used to block access to the recursive

resolvers.

As a more coarse-grained technique than A1, in DNS server censorship, a censor-

ing entity completely blocks access to the recursive resolvers of a DNS scheme.

Inline middleboxes under the control of a censoring government can be used to

block DNS requests/responses that satisfy specific characteristics. For instance,

access to the servers of a DNS scheme might be blocked based on their IP ad-

dresses, domain names, or port number. If a DNS scheme is limited to a set of

discoverable IP addresses, domain names, or uses a distinguishable port number,

these characteristics can be used to censor this scheme by blocking access to its

resolvers.

Additionally, if a DNS scheme uses a known port number that indicates the use

of that specific DNS scheme (e.g., TCP/853 for DoT), the IP addresses of its

servers can be effectively discovered over the Internet (e.g., using ZMap [56]).

Thus, a DNS scheme that uses a distinguishable port number can be censored

directly by its port number or by discovering the IP address of its servers and

blocking access to those IP addresses.4

Also, if a DNS scheme is built upon another protocol that can get blocked by a

censoring government, the underlying protocol can get blocked to censor access to

the DNS servers of this scheme. For example, a censoring government can block

access to Tor relays or directory authorities to censor access to DNS-over-Tor

resolvers.

One method to achieve Resilient-to-DNS-Server-Censorship is that a proposed

DNS scheme does not rely upon another censorable protocol, does not have

distinguishable characteristics (e.g., specific port number), and is not limited to

a set of discoverable IP addresses or domain names that can be used to censor

the scheme.

4If the IP addresses of the DNS servers are frequently changed, persistent scanning and censoring
can still effectively block access to these servers.
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DNS schemes that disguise DNS traffic using ports of other protocols tend to be

resilient against port-based censorship. In that case, censoring traffic requires

fingerprinting and traffic analysis, which is more costly. For instance, DoH traffic

uses port 443—its traffic gets merged with HTTPS; hence, censoring DoH is more

costly (albeit not impossible). Schemes whose traffic can be effectively identified

and isolated with additional analysis (e.g., Machine-Learning-based (ML-based)

classification or statistical analysis) receive half credit for A2.

A3 Resilient-to-Resolver-DoS (Stage 1): A DNS scheme provides this property

if the used transport layer protocol in Stage 1 provides resistance mechanisms

against DoS attacks or the scheme employs DoS mitigation techniques at the

application layer to protect recursive resolvers.

In order to ensure the availability of the DNS resolution process, recursive re-

solvers must be accessible to legitimate clients and resist DoS attacks. Although

perfect availability over the Internet is idealistic, some DNS schemes are more

resilient to DoS attacks than others. The primary type of attack against avail-

ability is DDoS, which overwhelms the resources of the target from multiple

locations. Bandwidth depletion is a general type of DoS that can target any

Internet-connected service, including recursive resolvers. However, DNS-related

DoS attacks often target DNS at the application layer (e.g., flooding in UDP-

based DNS) or target the protocols upon which a DNS scheme relies (e.g., TCP

SYN flooding in TCP-based schemes).

As a UDP-based scheme, Vanilla DNS does not verify the source address of

queries at the transport layer, and queries are answered at the application layer.

As the number of queries in a UDP-based DNS scheme increases in the face of

a DDoS attack, server CPU usage, response latency, and the number of unan-

swered queries also increase [176]. Also, if, e.g., source address spoofing was

used in the UDP-based DNS packets, query rate-limiting based on IP address

is rendered futile [176]. On the other hand, DDoS attacks on TCP-based DNS

overwhelm the pre-allocated resources to TCP connections through SYN flood-

ing, preventing legitimate users from accessing name resolution services [161].

However, before completing the TCP handshake, DNS queries are not served at

the application layer, and after the handshake, IP-based rate-limiting is a viable

defense. Additionally, in TCP-based DNS, SYN cookies and SYN cache [105]
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can be employed to mitigate SYN flooding attacks [176].

In summary, if a DNS scheme works over TCP, as it has means to mitigate

DDoS attacks (e.g., SYN cache and SYN cookies [105]) and the query does not

get served at the application layer before the completion of the TCP handshake,

we consider it resilient against DoS. However, due to the lack of means to detect

spoofed messages in UDP, spoofed queries are responded in the application layer,

and UDP-based DNS schemes are often susceptible to DoS attacks. In order to

fortify UDP-based schemes against DoS attacks, anti-DoS mechanisms can be

implemented at the application layer (e.g., in QUIC).

A4 Resilient-to-ANS-DoS (Stage 2): Similar to A3, a DNS scheme that pro-

vides ANSes with DoS resistance mechanisms at the transport layer or employs

DoS mitigation techniques at the application layer satisfies this property.

In addition to recursive resolvers, ANSes are necessary components for a success-

ful DNS resolution process. Similarly, ANSes are susceptible to DoS attacks. We

apply the same rule as A3 for rating the resilience of ANSes to DoS. In Stage 2,

TCP-based schemes and UDP-based protocols that employ DoS mitigation tech-

niques at the application layer to protect ANSes provide Resilient-to-ANS-DoS.

3.2.3 Privacy and Anonymity Properties

In this part, we define five privacy-related properties for the DNS resolution process,

aimed at protecting against potential attacks that expose name resolution informa-

tion to unauthorized entities.

P1 Resilient-to-Eavesdropping-in-s1 (Stage 1): A scheme provides this prop-

erty if the plaintext content of (application layer) DNS messages sent in Stage 1

is accessible only to authorized entities (i.e., clients and recursive resolvers).

Due to the lack of confidentiality protection in Vanilla DNS, DNS queries and

responses in Stage 1 are susceptible to eavesdropping. Despite being a secu-

rity property, we categorize confidentiality of DNS queries and responses as a

privacy property. Our rationale is that while DNS information, which maps do-

main names to IP addresses, is publicly accessible, the specific destinations a

client intends to connect to may be considered private. Therefore, transmitting

DNS query and response data in plaintext can harm clients’ privacy. Encrypting
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the DNS messages transmitted from stub to recursive is one approach to achieve

Resilient-to-Eavesdropping-in-s1. This way, inline entities, such as a client’s lo-

cal network, ISP or other Stage 1 ASes, cannot have access to the content of

DNS messages. If the used encryption algorithm cannot resist traffic analysis

attacks that reveal domains visited by users, the scheme does not receive com-

plete credit for this property. In the evaluation of this property, it is assumed

that the traffic of a DNS scheme can be isolated, and given this, its resistance

to eavesdropping (of plaintext message) is assessed. Therefore, this property is

evaluated independently from the rating of P2.

P2 Conceal-DNS-Msg-Nature-in-s1 (Stage 1): To provide this property, de-

tecting and isolating a DNS scheme’s traffic by its explicit headers or behavioral

characteristics must be prevented in Stage 1.

If DNS traffic is distinguishable in Stage 1, intermediate entities can block, redi-

rect or censor DNS traffic, and in case of backward compatibility, force the

communication to fall back [87] to less secure schemes (e.g., Vanilla DNS). Fur-

thermore, if the traffic of an encrypted DNS scheme is detectable, it can be fil-

tered for traffic analysis (e.g., in DoT/DoH [150]) to identify the domain names

visited by users with high accuracy.

In Stage 1, if the traffic of a DNS scheme is not easily distinguishable by explicit

headers in the network or transport layer (e.g., destination port number), this

scheme partially provides Conceal-DNS-Msg-Nature-in-s1. For instance, DNS

schemes such as DoT use a specific destination port number (853), which renders

their traffic easily distinguishable; these do not satisfy this property. Beyond

explicit headers, the traffic of a DNS scheme may not be distinguishable by

behavioral characteristics, such as time or size analysis, for the scheme to receive

full credit for this property.

To resist behavioral analysis, a DNS scheme may use techniques such as padding

before encryption or traffic-flow security [158] (e.g., sending cover traffic) to ren-

der its traffic less distinguishable. For example, DoH merges its traffic with web

traffic using port 443, transferring DNS queries as HTTPS traffic. However,

although DoH traffic is not distinguishable by its explicit headers, it is still sus-

ceptible to behavioral analysis (e.g., packet size [129], connection duration [163])

to detect and isolate DoH traffic. Thus, DoH partially conceals DNS message
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nature in Stage 1.

P3 Hides-Client-IPaddr-From-Resolver (Stage 1): A DNS scheme satisfies

this property if it provides any means that successfully conceals a client’s IP

address from the queried recursive resolvers in Stage 1.

Although DNS message confidentiality in Stage 1 (see P1) prevents unauthorized

access by inline entities to DNS queries, recursive resolvers usually have access to

both client-related behavior (e.g., QName) and identifying information (e.g., IP

address). In Stage 1, recursive resolvers can collect query-related information

and then use it to examine the behavior of DNS clients. For example, Bird et

al. [26] showed that clients can be accurately and uniquely identified in different

periods based on their web browsing histories. The same identification and

re-identification could be achieved by collecting DNS-related data from clients.

Moreover, in the context of IoT devices, the DNS query payload and metadata

can disclose information about the types of IoT devices owned by a client to

entities involved in Stage 1 of the resolution process (e.g., recursive resolver) [10].

Some DNS schemes use techniques such as proxies, relay servers, or the Tor

network to enhance the privacy of clients against resolvers, separating a client’s

IP address from its DNS queries. Clearly, if a client (stub resolver) includes its

IP address or subnet as ECS in DNS queries, the anonymizing DNS scheme adds

overhead but still fails to hide the client’s IP address. Thus, schemes that hide

clients’ IP addresses from recursive resolvers must explicitly remove or truncate

ECS from their queries to gain full credit for this property.

P4 Resilient-to-Eavesdropping-in-s2 (Stage 2): Similar to P1, this property

is met if the plaintext content of (application layer) DNS messages in Stage 2 is

only accessible to authorized entities (i.e., recursive resolvers and ANSes).

If the traffic between recursive resolvers and ANSes (i.e., Stage 2) remains confi-

dential, we consider a DNS scheme Resilient-to-Eavesdropping-in-s2 ; this implies

that inline entities cannot access DNS message contents.

Encryption is typically used to preserve the confidentiality of DNS messages in

Stage 2. An inline adversary in Stage 2 may be able to infer the QName of

a recursive resolver’s encrypted query through inter-domain dependencies, the

set of name servers queried by the recursive resolver [137, 148], and other side
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channels. However, confidentiality in Stage 2 still prevents access of inline entities

to client-related information for queries that include ECS. If the used encryption

algorithm is vulnerable to traffic analysis attacks that can reveal visited domains,

the scheme is not fully credited for this property. We rule out use of end-to-end

encryption between clients and ANSes as that noticeably increases the query

overhead of ANSes [148], and bypasses the benefits that come with using caching

recursive resolvers.

P5 Hides-Client-IPaddr-in-s2 (Stage 2): A DNS scheme that removes, in-

cludes only a subset of, or conceals ECS in DNS queries to preserve clients’

anonymity in Stage 2 satisfies Hides-Client-IPaddr-in-s2 .

Two types of entities can compromise privacy of clients in Stage 2: ANSes queried

by a recursive resolver and intermediate entities between a recursive resolver and

ANSes (when they can observe the plaintext of queries). If a client includes ECS

in DNS queries, recursive resolvers that support ECS will also include ECS in

their iterative queries as they traverse the DNS hierarchy. Thus, the intermediate

entities in Stage 2 and the ANSes (from root to the name server authoritative for

the zone of the queried record) will have access to the ECS added by the client.

If the exact IP address of a client is included (i.e., /32 in IPv4 or 128 bits in

IPv6), it can be used for user tracking, gathering information, selective cache

poisoning [101], or ECS-based censoring. To hide a part of ECS, if we assume

the default truncation of 24 bits for IPv4 and 56 bits for IPv6 based on the

ECS RFC’s default recommendation, these truncated addresses are likely to

reveal client-related information (e.g., country, city, or organization). Thus, as a

scheme that truncates ECS might still disclose client-related information of use

to attackers (e.g., for selective cache poisoning [101] at country or organization

level); such a scheme receives only partial credit for this property.

If a DNS scheme eliminates ECS in DNS queries to prevent Stage 2 intermediate

entities and ANSes from accessing clients’ IP addresses or subnet, it receives full

credit. Completely removing ECS improves the privacy and security of clients,

and may reduce page load time by excluding the overhead caused by ECS record

cache misses [82].

DNS schemes that encrypt queries in Stage 2, precluding access of Stage 2 inter-

mediate entities to ECS, receive partial credit for this property. In such schemes,
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the access of intermediate entities to ECS is precluded, but ANSes still have ac-

cess to the included ECS. If clients do not include ECS in DNS queries, no

client-related identifier is disclosed in Stage 2.5 In our evaluation, we assume

that ECS is included in DNS queries. A DNS scheme must explicitly remove,

encrypt, or truncate ECS at stub or recursive resolvers to satisfy this property.

3.3 Evaluation of Secure DNS Schemes

The DNS resolution threat model and attack taxonomy outlined in Section 3.1,

was used as the foundation for Section 3.2, where 14 security, privacy, and avail-

ability properties were defined to mitigate the identified threats effectively. Now,

using the properties defined in Section 3.2, we present an evaluation framework for

assessing the security, privacy, and availability properties of secure DNS schemes.

This framework provides an objective approach for analyzing existing secure DNS

schemes, identifying their security, privacy, and availability weaknesses. Moreover,

this framework provides valuable insights into existing threats and security proper-

ties that protect the DNS resolution process. It is our hope that this contributes to

the advancement and informed development of future secure DNS schemes.

In Table 3.1, we present a comparative evaluation of 11 previously proposed

DNS schemes whose theories of operation were discussed in our literature review

(Chapter 2). Subsequently, we provide insights from our DNS evaluation framework

regarding association between properties, high-level comparison of schemes, and

relevant discussions on the existing security, privacy, and availability challenges of

the name resolution process.

3.3.1 Relationships Between Properties

Table 3.1 presents a comparative evaluation of the DNS schemes reviewed in Chap-

ter 2, which were proposed to augment the security of DNS resolution in Stages 1

and 2. In Table 3.1, a full dot at row i and column j indicates that the scheme in

column j fully satisfies the property in row i. A half dot means that the scheme

partially satisfies the corresponding property, while an empty dot denotes that the

property is not satisfied by the scheme.

5Assuming that the queried record does not contain a client-identifier information.
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Before discussing the bigger picture in Table 3.1, we explore the relationships

and clarify distinctions between properties. Although similarities can suggest re-

dundancy between properties, they can also be an artifact of the specific schemes

rated. When possible, where a similarity exists, we explain a hypothetical DNS

scheme that would achieve one property but not the other.

A2 and P2: Based on the definitions, there is a relationship between Resilient-

to-DNS-Server-Censorship and Conceal-DNS-Msg-Nature-in-s1 . The absence of

Conceal-DNS-Msg-Nature-in-s1 is sufficient to prevent the realization of Resilient-

to-DNS-Server-Censorship. However, the presence of Conceal-DNS-Msg-Nature-in-

s1 does not guarantee Resilient-to-DNS-Server-Censorship. In other words, if a

DNS scheme’s traffic is distinguishable, then the distinguishable characteristics can

be used to isolate communications with DNS resolvers and block access to these

resolvers. On the other hand, if the traffic of a DNS scheme is not distinguishable,

if the protocol upon which it relies is susceptible to censorship, access to its servers

can be blocked by blocking the underlying protocol. For example, DoTor conceals

DNS messages by converting them into fixed-sized Tor cells, making DNS traffic

indistinguishable from other Tor traffic. However, censoring agents can limit ac-

cess to the entire Tor network, censoring DoTor alongside other Tor traffic. Thus,

DoTor satisfies Conceal-DNS-Msg-Nature-in-s1 but fails to satisfy Resilient-to-DNS-

Server-Censorship.

S1 and S2: The evaluations of Resilient-to-False-Resolver-Response and Resili-

ent-to-Resolver-Replay-Attack may at first reading appear to be equivalent. Resilient-

to-False-Resolver-Response is provided through implementation of countermeasures

against malicious false message injection, such as including MACs or digital sig-

natures in a scheme. Resilient-to-Resolver-Replay-Attack can be provided by inte-

grating anti-replay mechanisms with a scheme; e.g., by using distinct session keys

per session to provide session freshness and per-record nonces to ensure freshness

of messages in a session. Therefore, it is possible to have a DNS scheme that sat-

isfies Resilient-to-False-Resolver-Response (e.g., utilizing MACs) but not Resilient-

to-Resolver-Replay-Attack due to the absence of anti-replay mechanisms. In other

words, anti-replayability requires a more robust form of authentication, wherein the

interactions between entities have a one-to-one relationship, which inherently implies

the simpler form of message authentication without anti-replay mechanisms [109].

A1, P1, and P2: If a secure DNS scheme prevents unauthorized access to its
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Table 3.1: Comparative evaluation framework for assessing properties of secure DNS
schemes (s1: Stage 1, s2: Stage 2)
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Strict DNS-over-DTLS [140]   G# #  G# # # # # # # # #

Strict DNS-over-QUIC(S1) [89]   G# #  G# # # # # # # # #

DNS-over-Tor [144]    #     # # # # #  

Oblivious DNS [147] # # G# # # G# #  # # # # #  

messages (i.e., fulfills Resilient-to-Eavesdropping-in-s1 (P1)) or renders its traffic

indistinguishable (i.e., satisfies Conceal-DNS-Msg-Nature-in-s1 (P2)), the lack of

access to DNS payload prevents censoring entities from DNS payload-based censor-

ship. Therefore, to the extent that a given scheme satisfies either P1 or P2, it fulfills

A1 (Conceal-DNS-Msg-Nature-in-s1 ), as P1 or P2 render plaintext of DNS message

inaccessible to adversaries.

P5 for Stage 1 schemes: Property Hides-Client-IPaddr-in-s2 (P5) implies

preventing exposure of client IP addresses or subnets in Stage 2. Client IP addresses

in Stage 2 are typically included in DNS payload in form of ECS. Removing ECS

from the client’s query at stub resolvers or recursive resolvers ensures that the client’s

IP address remains undisclosed in Stage 2. In Stage 1, a scheme that Hides-Client-

IPaddr-From-Resolver (P3) must additionally remove ECS from its DNS queries, as

failure to do so would render the added overhead futile. Stage 1 schemes (i.e., DoTor

or ODNS) that remove ECS from DNS queries at stub or recursive resolvers achieve
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full credit for Hides-Client-IPaddr-in-s2.

3.3.2 Comparison of Schemes

Several observations can be made from the analysis of Table 3.1. First, none of the

secure DNS schemes provide security in the whole path of DNS resolution (i.e., both

stages), and none satisfy all properties in one stage. The majority of secure-DNS

schemes in our evaluation are designed to operate in Stage 1. To ensure a secure DNS

resolution process, these Stage 1 schemes have to assume that other Stage 2 schemes

(e.g., DNSSEC) are employed to secure the communication between recursive re-

solvers and ANSes. However, Stage 2 schemes such as DNSSEC and DNSCurve

are as yet not widely deployed and do not provide all of the defined properties in

Stage 2. Thus, clients using Stage 1 schemes might falsely assume that their DNS

resolution is fully protected, while the security and privacy of their queries can be

compromised in Stage 2.

DNSSEC (A disproportionate amount of effort for a minimal return):

Table 3.1 illustrates that DNSSEC only provides two properties: Resilient-to-False-

ANS-Response (S3) and Avoid-Duplicating-Longterm-Secret (S5). As stub resolvers

are typically configured as non-validating and depend on recursive resolvers for

DNSSEC usage and validation, DNSSEC only protects Stage 2. Recursive resolvers

in Stage 1 use designated bits to signal the clients that a response is DNSSEC-

validated. However, the communication between stub resolvers and recursive re-

solvers remains unprotected. The lack of security in Stage 1 allows an attacker to

inject false responses to clients, while possibly misleading them into believing that

DNSSEC has provided response validation. DNSSEC is not resilient against DoS

attacks, and due to the increased response size is subject to reflection amplification

attacks. Furthermore, due to long-lived signatures, DNSSEC-signed resource records

are susceptible to replay attacks, enabling the replay of stale records or sub-optimal

responses in CDN services [71]. Additionally, DNSSEC was not designed to provide

privacy-related properties; thus, it does not satisfy any of our privacy properties.

DNSSEC, while providing minimal properties, introduces a significant key man-

agement and signature generation burden adding computational and bandwidth

overhead to DNS resolution in Stage 2.

The live DNSSEC implementation in Table 3.1 denotes a version of DNSSEC

that generates signatures in real-time, requiring the presence of signature generation

84



3.3 Evaluation of Secure DNS Schemes

keys on the servers. Since the generated signatures are not unique for each query,

this real-time approach remains vulnerable to replay attacks. Furthermore, the

requirement to store signature keys on server instances increases the risk of key

exposure to potential threats. Consequently, unlike offline-signed DNSSEC records,

this implementation does not satisfy P5.

Beyond encryption: All of the evaluated schemes that were proposed to work

in Stage 1 use encryption to prevent unauthorized access to plaintext DNS messages.

However, encryption alone has been found to be insufficient to protect against traf-

fic analysis attacks. These attacks leverage metadata and encrypted data patterns,

such as time, size, direction, or order of packets, to infer or classify the queried

domain name or visited websites through statistical or ML-based techniques. Sim-

ple padding schemes have been demonstrated to be ineffective in mitigating traffic

analysis attacks that reveal the domain names visited by users [150].

One technique for obscuring size-related metadata and patterns is employing

large padding schemes prior to encryption. However, this results in a significant

increase in bandwidth overhead. An alternative approach is to adopt schemes that

repackage traffic into uniform-sized packets, such as Tor cells in DoTor. However,

using Tor also results in significant time, computational, and bandwidth overhead.

A viable approach for mitigating traffic analysis, which requires further research, can

be using various techniques such as padding, merging traffic with other protocols,

and implementing traffic-flow security measures (e.g., sending cover traffic) in the

DNS context to effectively mitigate such attacks with a reasonable overhead.

TLS-based DNS schemes: Among the TLS-based schemes, DoH provides

more privacy and availability properties than the others. In addition to the proper-

ties of other schemes, DoH partially provides Conceal-DNS-Msg-Nature-in-s1 (P2),

and Resilient-to-DNS-Server-Censorship (A2) by merging its traffic with the web.

TLS-based schemes that use UDP as the transport layer protocol, such as DoDTLS

and DoQ, are designed to enhance the performance of DoT while maintaining similar

security and privacy properties.

Near-identical schemes: Except for Conceal-DNS-Msg-Nature-in-s1 (P2) and

Resilient-to-DNS-Server-Censorship (A2), DNSCrypt*V3 and DoH provide similar

properties. Due to the distinguishability of DNSCrypt’s traffic, previous research

demonstrated that isolating DNSCrypt traffic is relatively easy without sophisti-

cated techniques [131]. However, isolating DoH traffic from web traffic requires
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more complex ML-based and statistical techniques. Consequently, isolation of DoH

traffic is more complex than isolation of DNSCrypt traffic; thus, DoH partially satis-

fies Conceal-DNS-Msg-Nature-in-s1 and Resilient-to-DNS-Server-Censorship, while

DNSCrypt does not. Moreover, DoH does not provide any mechanism to conceal

the IP addresses of clients from recursive resolvers; therefore, DoH does not satisfy

Hides-Client-IPaddr-From-Resolver (P3). Although DNSCrypt employs relays to

decouple DNS queries from client IP addresses, its lack of explicit removal or trun-

cation of ECS in DNSCrypt rules out credit for Hides-Client-IPaddr-From-Resolver .

Confidentiality in Stage 2: All of the secure DNS schemes that work in Stage 1

provide confidentiality in that stage. Hence, based on their use of encryption, they all

provide some degree of Resilient-to-Eavesdropping-in-s1 (P1). However, in Stage 2,

only DNSCurve provides confidentiality, which has not been adopted by the root

and TLDs. That is, the majority of DNS traffic in Stage 2 consists of DNSSEC

and Vanilla DNS, with their plaintext data being accessible to unauthorized enti-

ties. If Stage 2 traffic contains client-related information, such as ECS or complete

QName, it will disclose client-related information in Stage 2. This highlights the

importance of eliminating or truncating ECS from DNS messages and employing

QName minimization to reduce client-related information leaks in Stage 2.

Censorship resilience: Schemes that use a distinguishable port number are

vulnerable to port-based server censorship. Among the evaluated schemes, only

DNSCrypt, DoH, and DoTor employ port numbers that are shared other widely

used protocols. Furthermore, it is evident that schemes susceptible to port-based

censorship are also at risk of censorship based on IP address, as their name servers

can be identified by Internet scanning techniques. Given that censoring organiza-

tions (agents) employ various strategies to restrict access to the Tor network [1], they

can similarly block or degrade DoTor traffic along with other Tor-related commu-

nications. Additionally, DNSCrypt traffic has distinguishable characteristics [131],

making it easily recognizable and, therefore, susceptible to censorship. Overall,

among the evaluated schemes, DoH appears to have the highest resilience against

traffic isolation and server censorship.

Availability: Regarding the availability of recursive resolvers, only Stage 1

schemes that work on top of TCP or implement some means of source IP address

verification before resolving a DNS query are Resilient-to-Resolver-DoS. Addition-

ally, such schemes also resist DNS-based reflection amplification attacks by verifying
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the source IP address. However, none of the evaluated Stage 2 schemes protects

ANSes against DoS attacks. One possible explanation for the lack of DoS resistance

schemes in Stage 2 is the limited number of in Stage 2, and ANSes may be reluc-

tant to deploy stateful protocols that require maintaining the communication states

and consequently result in significant per-query overhead compared to UDP-based

schemes.

Traffic distinguishability: The distinguishability of DNS resolution traffic

from other network traffic can harm the availability and privacy of DNS resolution.

Two secure DNS alternatives satisfy some degree of Conceal-DNS-Msg-Nature-in-

s1 (P2), namely DoH and DoTor. However, it was shown that DoH traffic can be

distinguished from web traffic [163]; thus, DoH received partial credit for Conceal-

DNS-Msg-Nature-in-s1 . Therefore, only DoTor fully renders DNS traffic indistin-

guishable, and thereby mitigates attacks on isolated traffic of a DNS scheme, such

as downgrade attacks or exclusive censorship of DNS traffic.

Summary: According to Table 3.1, Stage 1 protocols primarily provide confi-

dentiality (P1), message authentication (S1), anti-replay mechanism (S2), resilience

to payload-based censorship (A1), and resilience to resolver DoS (A3) in that stage.

However, Stage 1 schemes often do not conceal the nature of DNS messages (P2)

and most are susceptible to DNS server censorship (A2).

Regarding Stage 2 schemes, we observe that the number of Stage 2 schemes is

limited, and the evaluated schemes provide a different set of properties compared to

one another. Moreover, none of the schemes provides resilience to ANS DoS (A4);

however, both of the evaluated schemes mitigate cache poisoning attacks by prevent-

ing false response injection (S3) and neither of the two hides clients IP addresses

completely in Stage 2 (P5).

3.4 Discussion

In this section, based on our literature review from Section 2.2 and the comparative

evaluation in Chapter 3, we discuss several high-level insights regarding the name

resolution process. One general observation is that the schemes designed to work

in Stage 2 are limited in that they provide only a handful of the defined security

benefits. On the other hand, Stage 1 schemes are diverse, and provide various

combinations of properties but none provides all.
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Slow migration away from Vanilla DNS. Although numerous secure DNS

schemes have been proposed over time, Vanilla DNS remains dominant for name

resolution in practice, particularly in Stage 2 [34, 168]. A subset of the secure

DNS schemes have security weaknesses and deployability obstacles that impede their

large-scale adoption. Therefore, designing new secure DNS schemes that are more

secure and deployable appears to be necessary for widespread adoption. To enhance

the adoption rate of secure DNS schemes, it appears crucial to incentivize and

educate clients and administrators of recursive resolvers and ANSes on their benefits

and implementation strategies. Furthermore, setting secure DNS schemes as the

default configuration in client-side software (e.g., web browsers) may be another

effective approach to progress widespread adoption. However, for both current and

future schemes, to prevent the centralized collection of client data in Stage 1, client

software must, by default, use multiple resolvers from different organizations and

distribute queries accordingly.

The privacy benefits of TLS-based schemes are questionable. TLS-

based schemes (i.e., DoT, DoH, DoQ, DoDTLS) rely on the evolved TLS and web

PKI [91], but mainly provide security; in the DNS context, they often fail to satisfy

privacy properties. For P1, encryption in TLS-based schemes must be enhanced with

defense mechanisms (e.g., strong padding) against traffic analysis attacks that reveal

or allow identification of domains visited by users. Additionally, most TLS-based

schemes require means to conceal DNS message nature in Stage 1 (P2) and hide the

IP addresses of clients from the recursive resolvers (P3). Aside from lack of privacy

properties, the TLS-based schemes are primarily proposed to secure Stage 1, and

Stage 2 remains unsecured. Taking into account these points, introducing the TLS-

based schemes as secure and privacy-preserving schemes to clients risks misleading

clients about name resolution security and privacy. For example, web browsers, such

as Google Chrome or Microsoft Edge, introduce DoH as secure DNS, but this only

secures Stage 1 and does not provide any of our properties in Stage 2.

Stronger privacy in other alternatives. Regarding Stage 1 schemes, schemes

that transmit DNS messages over the Tor network (e.g., DoTor) provides more

privacy benefits than others. DoTor is the only scheme that offers robust privacy

against intermediate entities in Stage 1, as it provides strong confidentiality and

conceals the nature of DNS traffic; thus, it prevents intermediate entities (including

ISP) from detecting name resolution. Additionally, DoTor [144] hides the IP address
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of clients from recursive resolvers. To take advantage of the benefits of Tor and

preserve security and privacy of DNS messages in Tor exit relays, other secure DNS

schemes in Stage 1 (e.g., DoT or DoH) could be combined with Tor when a regular

(non-onion) recursive resolver is queried (e.g., DoH-over-Tor [144]). However, using

Tor results in significant latency, bandwidth increase, and computational overhead,

which must be considered before integrating Tor with a secure DNS scheme. Aside

from integrating DNS schemes with Tor, combining Stage 1 schemes with ODNS-like

relays (e.g., Oblivious DoH (ODoH) [100]) enhances their privacy by hiding client

IP addresses from recursive resolvers. Among the Stage 2 schemes, DNSCurve

illustrates stronger privacy properties mainly by utilizing authenticated encryption.

ISP correlation. ISPs can correlate encrypted DNS traffic and subsequent traf-

fic originating from a client, and thus infer queried domain names from encrypted

DNS messages. ISP correlation-based information gathering is enabled by two fac-

tors: the distinguishability of encrypted name resolution and domain name leaks

from other protocols. This suggests that, a secure DNS scheme that renders its

traffic indistinguishable (i.e., provides P2) from other traffic can effectively mitigate

these correlations. Mitigating domain name leaks in other protocols (e.g., using

ESNI or ECH [141]) can also alleviate such correlation-based domain name leaks.

Complete availability. Availability is required for both recursive resolvers

and ANSes to ensure that name resolution takes place effectively. A subset of secure

DNS schemes aim to only mitigate reflection amplification by enforcing TCP when

DNS responses are larger than queries (e.g., DNSCrypt) or larger than a specific

threshold (e.g., DNSCurve). While such schemes address reflection amplification

attacks with minimum overhead, attackers can still perform DoS attacks by sending

UDP-based queries with spoofed source IP addresses that do not result in large

responses to enforce TCP, and expend the computation resources of such servers.

Therefore, using TCP as the default transport-layer protocol of a DNS scheme can

mitigate DoS with spoofed source IP addresses attacks targeting DNS servers.

Alternatively, source IP address verification can be implemented at the applica-

tion layer of a UDP-based scheme to mitigate DoS attacks targeting DNS servers.

However, validating the source IP address typically requires either an additional

round-trip or the maintenance of state from previous interactions, introducing com-

putational and network overhead. As a result, designers of secure DNS schemes

may choose to focus on mitigating reflection amplification attacks without enforcing
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source address validation to reduce performance costs.

Deployability issues. Due to the two-staged structure of DNS resolution and

the difference in required properties of each stage, proposing a comprehensive and

efficient DNS scheme that provides security, privacy, and availability properties in

both stages appears to be challenging. In addition, complex DNS alternatives that

require significant changes or introduce considerable overhead are unlikely to achieve

widespread adoption. Moreover, ANSes in Stage 2 have been reluctant to adopt

schemes that are complex or add considerable time or computation overhead. There-

fore, proposing a secure DNS scheme that meets the required properties of Stage 2

while overcoming deployability barriers to achieve large-scale adoption remains an

open challenge. One of the objectives in Chapter 4 is to propose a new secure DNS

scheme for Stage 2 that enhances security and privacy while mitigating the major

deployment challenges associated with previously proposed schemes.

Combining schemes. Since designing a single secure DNS scheme for both

stages potentially results in complexity and significant changes to the name res-

olution process, combining schemes is a potential solution. There are two main

approaches for combining secure DNS schemes: combining schemes within the same

stage and combining schemes in different stages. Integrating schemes in the same

stage augments the provided properties by the combined schemes in that stage,

while combining schemes in different stages secures both stages (the entire DNS res-

olution path) based on the selected schemes. For example, by combining DoT with

DoTor [144], or DoH with ODNS-like relays [100] in Stage 1, the resultant scheme

increases the provided properties only in Stage 1. On the other hand, by integrating

the TLS-based schemes in Stage 1 with DNSSEC in Stage 2, each scheme provides

benefits in one stage, and by complementing each other the entire DNS resolution

path is enhanced.

When combining schemes, the resulting overhead must not outweigh the aug-

mented properties. For instance, while integrating Stage 1 schemes with Tor may

enhance privacy, Tor introduces significant performance and computational over-

head, making it unsuitable for latency-sensitive or resource-constrained scenarios.

Centralization. It is widely accepted that relying on a single resolver is harm-

ful to clients’ privacy in Stage 1 [81, 147]. Accumulated name resolution his-

tory of clients can be used by resolution services for client identification and re-

identification, and other goals, such as financial gains.
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The various types of stakeholders in a DNS resolution process, such as clients,

network administrators, and organizations maintaining resolution services or ANSes

may prioritize their objectives differently. However, prioritizing client privacy and

security, a name resolution must use mechanisms that avoid centralization. For

example, DoTor [144] employs Tor relays, and ODoH [100] or DNSCrypt [48] use

specific relays to conceal the IP address of clients from recursive resolvers. Beyond

relay-based solutions, Hoang et al. [76] proposed the K-resolver to distribute DNS

queries among different DoH resolvers, which mitigates the privacy risks of a single

centralized resolver.

Bypassing censorship. Internet censoring entities often leverage DNS mes-

sages or resolvers to block access to specific services [16, 132]. Therefore, using

non-censoring recursive resolvers, residing out of the authority of censoring agents,

can help circumvent DNS-based censorship. The majority of schemes proposed for

Stage 1 offer some degree of resilience against payload-based censorship. However,

all these schemes remain vulnerable to server-based censorship, wherein censoring

authorities can effectively block the entire scheme by blocking access to the associ-

ated servers.

3.5 Summary

In this chapter, we developed a comprehensive threat model and attack taxonomy for

the DNS resolution process (Section 3.1). Based on the identified threats, we defined

14 security, privacy, and availability properties (Section 3.2), which were used to de-

velop a framework for the objective evaluation of DNS schemes (Section 3.3). Using

this framework, we conducted a comparative evaluation of a number of previously

proposed secure DNS schemes, and provided high-level insights into the security,

privacy, and availability aspects of the DNS resolution process (Section 3.4). The

systematic analysis in this chapter highlights the absence of, and the need for, a

secure DNS scheme that augments the security of DNS resolution in Stage 2 while

minimizing deployment barriers as much as possible. In Chapter 4, we present the

design goals and theory of operation of DNSSEC+, a secure DNS scheme proposed to

augment the security and privacy of Stage 2 while minimizing deployability barriers

and mitigating significant performance overhead.
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Chapter 4

DNSSEC+: A Secure Scheme in Stage 2

As discussed in Chapter 3, the absence of security and privacy measures between

DNS recursive resolvers and authoritative nameservers has been exploited by both

on-path and off-path attackers. Moreover, while many security proposals have been

introduced in practice and in previous literature, they typically focus on enhancing

security in Stage 1. In contrast, Stage 2 schemes are limited, and often face de-

ployability barriers or fail to provide security and privacy properties that mitigate

the threats within this stage. The absence of a broadly adopted security solution

between resolvers and ANSes motivates a new scheme that mitigates these issues in

previous proposals.

In this chapter, by drawing insights from shortcomings and benefits of previ-

ous secure DNS schemes in Stage 2, specifically DNSSEC, we present DNSSEC+.1

Primarily influenced by DNSSEC, it operates in Stage 2 and aims to preserve the

beneficial goals and properties of DNSSEC, while addressing its security and privacy

deficiencies. DNSSEC+ is designed to also incorporate beneficial Stage 2 properties

of other secure DNS proposals while avoiding their security and privacy vulnera-

bilities, and deployability obstacles. In a nutshell, DNSSEC+ provides real-time

message authentication while avoiding the duplication of long-term secrets on zone

server replicas. It also provides query and response confidentiality, including forward

secrecy for responses, without requiring extra network round-trips.

To achieve these benefits, we introduce a novel short-term delegation mechanism,

where a DNS zone delegates record-signing to its nameserver replicas (which may

not be fully trusted by the zone owner) using the nameservers’ own keys. Short-term

delegation approaches (see Section 2.3), such as the use of delegated credentials [22]

in CDNs for TLS-based communications, have been found to be effective in protect-

ing the long-term keys of security protocols [33]. This short-lived delegation enables

zone nameserver instances to serve zone records using real-time cryptographic oper-

ations, while limiting the exposure of long-term keys within the zone and minimizing

risks of short-term key compromise. Because the performance and adoption require-

1We are in the process of pursuing publication under the revised name ss2DNS to avoid the
misinterpretation that DNSSEC+ (our proposal) is a direct extension of DNSSEC.
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ments of a secure DNS scheme is expected to have a crucial impact on its adoption,

we aim for DNSSEC+ to have performance comparable to practical schemes. Be-

sides requiring the usual (single) round-trip between the resolver and each ANS (thus

no added network overhead or increased network resolution delays), DNSSEC+ uses

the existing DNSSEC trust model, thus requiring no new infrastructure.

4.1 Desired Properties of DNSSEC+

In this section, building on the strengths while addressing the shortcomings of

DNSSEC, we define nine design properties to satisfy in the development of DNSSEC+.

These are thus positioned as required properties; however, the technical details of

DNSSEC are not incorporated into DNSSEC+.

As explained in Chapter 3, an adversary can mount off-path or on-path active and

passive attacks in Stage 2. Active attacks enable security and availability threats,

whereas passive attacks are often sufficient to compromise privacy. Since DNSSEC+

aims to secure Stage 2 of the DNS resolution process, and the threats of Stage 1

differ (see Sec. 3.1), these must be mitigated using a secure DNS scheme in Stage 1.

Furthermore, the required properties and trust model for a Stage 1 scheme differ

from those of Stage 2, as each stage involves different entities with varying interests

in the DNS resolution process.

4.1.1 Desirable Properties to Retain from DNSSEC

In this section, we identify the desirable properties from DNSSEC that we retain in

DNSSEC+.

Message Authentication: False response injection can be performed by on-

path and off-path attackers in Stage 2 (Section 3.1). Similar to DNSSEC, DNSSEC+

provides message authentication and integrity to prevent unauthorized manipulation

and injection of responses.

Avoid duplicating long-term secret: In DNSSEC, ANSes within a zone

contain and serve the pre-signed DNS records for which these nameservers are au-

thoritative. Therefore, there is no need to duplicate the long-term private keys

(i.e., KSK or ZSK; see Section 2.2.9) on each nameserver instance within DNSSEC-

enabled zones. The root and TLD zones typically store the KSK or even the ZSK
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on a secure system, which is separate from the nameservers. DNSSEC’s signature

lifetime facilitates the secure storage of long-term private keys on a server. These

signatures have a defined expiry window, during which they can be served without

requiring access to the private key. In secure DNS schemes that employ real-time

cryptographic operations (e.g., encryption or signing), the private key is required to

be present on the ANSes. The duplication of private keys on the nameservers of a

zone exposes these keys to attacks targeted at ANS instances. As another secure

DNS scheme in Stage 2, DNSCurve requires private keys to be present on all ANS

instances to securely transmit DNS messages [145]. To minimize exposure of long-

term secrets within each zone, DNSSEC+ aims to avoid duplication of long-term

keys by using a secure delegation mechanism.

Single round-trip: DNSSEC employs UDP with single round-trip DNS res-

olution to transfer DNS responses alongside their corresponding signature. Since

the communications over the Internet are typically preceded by a DNS query, any

viable designed DNS scheme must minimize latency. Therefore, one of the main

deployability and usability goals of DNSSEC+ is to have a single round-trip for the

transmission of a query and the reception of its corresponding response, thereby

minimizing the overall delay associated with name resolution in Stage 2.

Established trust model: Stage 2 DNS security schemes need to provide

mechanisms for recursive resolvers to trust the keys used by the nameservers—that

is, a trust model. The web trust model is prevalent over the Internet, with billions

of issued certificates [35]. The web PKI has been used by Stage 1 schemes, such

as DoH and DoT [91]. However, in Stage 2, the web PKI has been rarely used.

We believe the reason for this is that TLS-based schemes (e.g., DoT, DoH) are

relatively expensive for Stage 2, and the root zone as a core authority within the

Internet infrastructure is reluctant to rely on external entities (e.g., CAs) in the web

PKI as its trust anchors. For DNSSEC+, we use a DNSSEC-like trust model, which

has been accepted and adopted by the root and TLDs within the DNS hierarchy.

4.1.2 DNSSEC Shortcomings to Be Addressed

This section outlines the weaknesses and vulnerabilities of DNSSEC that are ad-

dressed in DNSSEC+.

Significant amplification: As explained in Section 2.2.9, DNSSEC employs

UDP for single round-trip query resolutions. While efficient, this results in suscep-
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tibility to reflection attacks with considerable amplification factors. In DNSSEC+,

we aim to keep the single round-trip resolution, while minimizing the amplification

factor.

Replay attacks: In DNSSEC, signed resource records can be replayed within

their expiry window, resulting in vulnerability to stale-response injection. To prevent

response replay attacks from previous interactions, in DNSSEC+ we use TVPs [161]

for freshness.

Failing open: DNSSEC was designed with algorithm agility, enabling the use

of new cryptographic algorithms, and the removal of deprecated ones. However,

the lack of specified mechanisms for handling failures in validation or support of

new algorithms has resulted in vulnerable DNSSEC implementations on DNSSEC-

validating resolvers [72]. Adversaries can exploit these vulnerable resolvers by in-

jecting false responses with unsupported cryptographic fields (e.g., signatures or

keys) [72]. Vulnerable recursive resolvers accept these false responses as they do

not support and validate their cryptographic fields, thereby rendering them suscep-

tible to cache poisoning attacks, even when the zones are DNSSEC-protected [72].

In a secure DNS scheme, if message authentication fails, DNS messages cannot be

trusted and should be considered invalid. Adhering to the safe-defaults [161] prin-

ciple, if at any point in the name resolution process of DNSSEC+ any verification

fails, name resolution should be terminated and results discarded. Thus, by fail-

ing closed, potential downgrading attacks that could bypass the security validations

within a secure DNS scheme can be mitigated.

Lack of confidentiality and forward secrecy: DNSSEC does not provide

confidentiality. In the schemes that provide confidentiality by encrypting queries in

Stage 2, adversaries may still infer the queried domain name by analyzing query

patterns to ANSes [148]. However, certain queries in Stage 2 contain client-specific

information, such as ECS [36] or domain names that can be directly associated

with individual clients. Therefore, encrypting DNS messages in Stage 2 can pro-

tect client-related information and increase the difficulty of identifying the queried

record. DNSSEC+ has the primary aim of response authenticity and integrity,

which is achieved by transmitting authenticated and encrypted responses thus pro-

viding response confidentiality as well. In DNSSEC+, responses also provide forward

secrecy; thus, the compromise of long-term keys does not compromise the confiden-

tiality of previously transmitted responses. DNSSEC+ also provides an optional
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query-encryption mode for privacy protection, as detailed in the following section.

4.2 DNSSEC+ Technical Details

DNSSEC+ is primarily motivated by the lack of real-time record signing in DNSSEC

(as explained in Section 2.2.9). This design choice in DNSSEC provides the benefit

of avoiding the duplication (copying) of precious zone signing keys across hundreds of

potentially untrusted nameserver instances (the physically distributed server repli-

cas deployed globally). In DNSSEC+, records are signed in real-time, without dupli-

cating private keys. The main approach here is to allow each (untrusted) nameserver

instance to sign data using its own unique key, and have that key being authorized

by a central key server constituting the main ANS of the zone. The central key

server authorizes the key of a nameserver instance by signing it, and revokes the key

by refraining from renewing the signature. Such key signing can be implemented in

an automated fashion, thus allowing very short key lifetimes (e.g., few hours).

This design fundamentally shifts the perception of the replicated DNS zone server

instances, from the standard “logically centralized but physically distributed” notion,

to a “delegated (decentralized) servers” notion.2

In what follows, we detail how DNSSEC+ operates, how a recursive resolver

follows the chain of trust to verify the authorization of a server instance, and how

query-response privacy can be added to DNSSEC+ without introducing new network

round-trips between the resolver and any nameserver instance.

Nameserver delegation. Figure 4.1 shows a zone in DNSSEC+. Each zone

has a central key server (“key server” for short), which is trusted by, and under direct

control of, the zone administrator. Its purpose is to store the long-term signing key

of the zone, and delegate a limited authority to nameserver instances within the zone

by signing their keys. This delegation authorizes nameserver instances to respond

to queries using DNSSEC+.

Trust model. Similar to DNSSEC, a reveres-tree chain of trust is used in

DNSSEC+, where the public component of the long-term signing key of each zone

(i.e., the verification key) is transferred and published in the parent zone. The

public component of the long-term key of the root zone is installed in DNS resolver

2Not to be confused with DNS zone delegation, where an entire DNS zone is delegated to other
ANSes. The new delegation we are referring to in DNSSEC+ happens within a zone.
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software as a trust anchor.

Real-time integrity protection of DNS responses. Having access to the

long-term verification key of the zone (either from the parent zone, or hard-coded

as a trust anchor for the root), a recursive resolver querying a nameserver instance

will first verify the signature on the structure holding the nameserver’s short-term

key. This short-term key will then be used to establish a symmetric key between

the nameserver instance and the recursive resolver, and transfer an encrypted DNS

response back to the resolver.

Zone: example.com

Key server

Nameserver 1

Nameserver 2

Zone: sub.example.com

Key server

Nameserver 1

Nameserver 2

Signing short-term keys of NSs
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Figure 4.1: Zones in DNSSEC+ consist of a DNSSEC-like trust model (public key
of each zone is authenticated by its parent zone) and short-term delegation.

Additional feature: query confidentiality. In addition to response integrity,

DNSSEC+ also provides query confidentiality (for privacy) as an optional feature.

It thus has two modes of operation: no-privacy and privacy-enforcing. The former

provides confidentiality and integrity for DNS responses only, the latter for requests

and responses. A notable challenge in the privacy-enforcing mode is that a recursive

resolver must obtain the short-term nameserver key first from the nameserver itself,

as it is not present in the parent zone (which costs a round-trip with the nameserver

instance), then use it to encrypt the query and send it to the nameserver instance

(a second round-trip). Doubling the round-trip would be a major hindrance to the
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adoption of DNSSEC+ in practice.

To avoid requiring an additional round-trip, we use two different symmetric

keys: one to encrypt the query, the other the response. To establish the query

key with a nameserver instance, the resolver obtains all needed information from

the parent nameserver. When it transmits the encrypted query, it sends with it its

own DH agreement key (the ga) in the same transmission. Upon receiving this, the

nameserver instance generates the response key, encrypts the response with it, and

sends it along with its freshly-generated DH agreement key (the gb), which it signs

with its own short-term key (itself was signed by the long-term zone key).3 Note

that while, the query-encryption key is now accessible to all nameserver instances

(unlike the response-encryption key), an adversary compromising that key does not

impact the integrity and authenticity of the responses (as they use a different key),

which, similar to DNSSEC, is the primary goal of DNSSEC+ (hence the name).

Forward Secrecy. DNSSEC+ implements a half-static DH key agreement ap-

proach for queries to enable DNS resolution within a single round-trip. Thus, for-

ward secrecy is not provided for queries. However, DNSSEC+ provides forward

secrecy for responses, as the nameserver uses the resolver’s ephemeral key (included

in the query) and generates a new ephemeral key for each response transmission.

4.3 Zones in DNSSEC+

In each zone, there is a key server trusted by the zone owner (Fig. 4.1), and there

are other nameserver instances that may not be completely trusted by the zone

owner. The key server securely stores the long-term private signing key of the

zone. The nameserver instances can be nameservers under the control of the zone

administrator, or globally distributed nameserver instances managed by a CDN

service provider, which are not directly controlled by the nameserver administrator,

and do not have access to the long-term private key of the zone.

Table 4.1 lists the symbols used for specifying keys, zones and nameservers. A

zone with level l in the DNS hierarchy has a long-term signing key (wl), stored on

the key server of the zone. By a secure but unspecified means,4 the nameservers

and the key server within a zone must be able to mutually authenticate each other

3We use modular exponentiation (modp) for exposition, but expect EC to be used in practice.
4Different CDN providers may use different methods to ensure secure interactions with their

edge servers, and we do not impose any specific constraints on these options.
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and confidentially exchange messages. A nameserver with ID i in a zone with level

l in the DNS hierarchy generates a fresh short-term signing key structure (ωi
l),

which is a customized type of certificate. Subsequently, the nameserver sends its

short-term public key structure (ωi
l) through the described secure channel to the

key server of the zone. The key server verifies the short-term key structure and its

origin nameserver, and upon successful validation, signs the short-term public key

structure of nameservers (ωi
l) using the zone’s long-term signing key (wl). Finally,

the key server returns the signed short-term key structure to the nameserver.

Listing 4.1: Short-term nameserver signing key structure

1 struct {

2 struct {

3 int inception;

4 int expiration;

5 Pubkey STK_public_key;

6 int nameserver_ID;

7 int zone_level;

8 } short_term_key_structure;

9 Signature signature;

10 } Signed_short-term_key_structure;

As Listing 4.1 shows, the short-term signing key of a nameserver consists of a

key value plus 4 attributes. inception and expiration values indicate the lifetime

of the short-term key structure. STK public key is the short-term signing public

key of a nameserver (ωi
l), and nameserver ID indicates the unique ID of a name-

server within a zone. Finally, zone level field indicates the level of the zone in the

DNS hierarchy within which this short-term key is signed. These five fields con-

stitute the short term key structure, which will be signed by the long-term key

of a zone. The signed structure with the included Signature field then forms the

Signed short-term key structure.

For instance, Fig. 4.2 illustrates the process of signing short-term key structures

in the root zone. As the top arrow shows, Nameserver 1 generates a short-term

key structure (ω1
0), where “1” represents the nameserver ID and “0” indicates the

zone level. This structure is then transmitted to the root zone’s key server using

an authenticated and encrypted channel. Upon securely receiving the short-term

public key structure of Nameserver 1 (ω1
0), and validating the key structure and

99



4.3 Zones in DNSSEC+

Symbol Meaning
A, A Long-term public, private agreement key
Λ, Λ Short-term public, private agreement key
w, w Long-term verifying, signing key
ω, ω Short-term verifying, signing key
r Unique random number
l Zone level in the DNS hierarchy (subscript) (0 ≤ l)
i Nameserver ID number (superscript) (0 ≤ i)
R Recursive resolver (superscript)

Table 4.1: Symbols used in the abstract description of DNSSEC+ operation: The
top four are asymmetric keys, and the bottom three are ownership annotation. The
asymmetric key symbols (top four) will represent the public component of the key
(agreement or signature verification), and for their private component (agreement
or signing), the symbol is underlined.

authenticating the nameserver, the zone’s key server signs the short-term public key

structure of the nameserver (Ss.1 = Sw0
(ω1

0)) using the long-term signing key of

the zone (w0). Subsequently, the key server securely transfers the signed short-term

key of the nameserver to Nameserver 1. The signed structure of short-term keys of

nameservers have a validity period that specifies their lifetime. The signed short-

term key structures have a relatively brief lifetime (e.g., hours to days), defined by

the inception and expiration fields. Thus, short-term key structures minimize

the threat and exposure of compromised keys and ensure implicit revocation of

nameserver keys in short time intervals.

Root zone

Key server

w0

Nameserver 1

Nameserver 2

Nameserver i

Ss.1 := Sw0
(ω1

0)

Ss.2 := Sw0
(ω2

0)

Ss.i := Sw0
(ωi0)

ω1
0

ω2
0

ωi0

Figure 4.2: The delegation process in DNSSEC+: signing the nameserver short-term
key structures by the long-term signing key of the zone.
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Function Used to Notation
Symmetric A-encryption Encrypt message m with key a Ea(m)
Symmetric A-decryption Decrypt message m with key a Da(m)
Signature generation Sign message m with key a Sa(m)
Signature verification Verify signature on message m with key b Vb(m,Sa(m))
Key establishment Produce DH key using private key A and public B DH(A,B)
Generate ephemeral key pair Generate ephemeral agreement keys (A,A) := GenDH()

Table 4.2: List of functions used in DNSSEC+ (A-encryption/decryption: Authen-
ticated encryption/decryption)

Label Key type Used to
Zone Keys

Al Long-term zone private agreement key Establish shared secret for query A-decryption
Al Long-term zone public agreement key Establish shared secret for query A-encryption
wl Long-term zone signing key (private) Sign short-term nameserver keys
wl Long-term zone verifying key (public) Verify short-term nameserver keys

Nameserver Keys
ωi
l Short-term nameserver signing key (private) Sign ephemeral session agreement keys

ωi
l Short-term nameserver verifying key (public) Verify ephemeral session agreement keys

Λi
l Ephemeral nameserver private agreement key Establish shared secret for response A-encryption

Λi
l Ephemeral nameserver public agreement key Establish shared secret for response A-decryption

Resolver Keys

ΛR Ephemeral resolver private agreement key Establish shared secret for query and response
ΛR Ephemeral resolver public agreement key Establish shared secret for query and response

Table 4.3: List of keys used in DNSSEC+

Before the expiration of the current signed key structure, the nameserver in-

stances generate a new short-term signing key structure. Subsequently, this newly

generated key structure is transmitted to the zone’s key server via an authenticated

and encrypted channel to be signed. If the nameservers within a zone do not renew

their short-term signing key structures prior to the expiration of the current key, the

resolvers cannot validate the responses after expiration of the current key and the

DNSSEC+ resolution fails. The long-term keys in DNSSEC+ are stored securely

on the key server of each zone. Thus, the attack surface of the long-term keys is

significantly smaller compared to the short-term key structures, which are stored on

the nameserver instances.

Aside from the long-term signing key of each zone (wl), which is stored on a

key server within each zone, there is another long-term agreement key associated

with each zone (Al). See Table 4.3 for a complete list of DNSSEC+ keys. To

provide confidentiality of DNS queries, resolvers need to have access to a trusted

(authentic) public agreement key from the nameservers. Retrieval of this key from

the nameserver would require an additional round-trip, violating our desired sin-
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gle round-trip policy (Section 4.1). In order to satisfy the single round-trip and

confidentiality properties at the same time, each zone with level l contains another

long-term initial agreement key (Al). Unlike the zone’s private long-term signing

key (wl), which is stored only on the key server within each zone, the private long-

term initial agreement key (Al) is transferred to all the nameserver instances within

each zone. In DNSSEC+, when a zone generates Al, it is required to transmit it

to the parent zone along with the zone’s long-term signing key (wl). Then, Al is

used to provide confidentiality of DNS queries, as we explain next in Section 4.4.

Based on the decision of resolvers on the privacy level of queries, they can use the

long-term agreement key of zones for query encryption.

4.4 Name Resolution in DNSSEC+

In DNSSEC+, ANS i within a zone with level l has two keys (see Section 4.3): one

short-term for signing (ωi
l) and one long-term for key agreement (Al). The key ωi

l is

signed by the long-term signing key of the zone (wl), which is stored on the zone’s

key server. A DNSSEC+ resolver has access to the long-term public keys of the root

(w0, A0) as trust anchors.

Resolver

EKQ(Query? example.com), ΛR, rq
w0, �0

ΛR, ΛR := GenDH()
KQ = DH(ΛR, �0)

KR = DH(Λi0, ΛR)

EKR(NS1, Ss.i, ωi0, Se, w1, �1), Λi0, rA

1

2

3

4Vw0
(ωi0, Sw0

(ωi0))

DKQ(Query)
KQ = DH(�0, ΛR)

(Λi0, Λi0) := GenDH()

Se = Sωi0(Λi0)

Vωi0(Λi0, Sωi0(Λi0))

DKR(response)
KR = DH(Λi0, ΛR)

5

Nameserver i

Figure 4.3: DNSSEC+ query resolution from a resolver to nameserver i of the root
zone. The steps in black occur in both no-privacy and privacy-enforcing modes;
steps in blue only occur in privacy-enforcing mode (query encryption).

In DNSSEC+, resolvers can operate in two modes: Privacy-enforcing and no-

privacy. Based on the privacy-sensitivity of queries (e.g., when ECS [36] is included)

or per client (stub resolver) request, they have the option to encrypt the transmitted
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queries in the privacy-enforcing mode. We use the notation in Table 4.2 to represent

cryptographic functions. Also, Table 4.3 classifies the keys within DNSSEC+ based

on their owner entities. The private part of an asymmetric key pair is expressed

using underlined letters (e.g., A is a private key and A is its corresponding public

key).

4.4.1 No-privacy Mode

Figure 4.3 illustrates the process of name resolution in DNSSEC+, when resolving

a domain name from nameserver i of the root zone. The steps written in black

occur when a resolver is in the default no-privacy mode. We first describe the

name resolution process in the no-privacy mode, followed by an explanation of the

privacy-enforcing mode. In Step 1, to initiate the query transmission, the resolver

generates an ephemeral agreement key pair (ΛR, ΛR). Subsequently, in Step 2,

the resolver transmits the plaintext query (Query? example.com) alongside the

resolver’s ephemeral public agreement key (ΛR) to nameserver i. Upon receiving the

query and looking up the response in Step 3, nameserver i generates an ephemeral

agreement key pair (Λi
0, Λ

i
0). Then, the ephemeral public key of the nameserver (Λi

0)

is signed (Se = Sωi
0
(Λi

0)) using the short-term signing key of the nameserver (ωi
0).

At this point, the nameserver generates a master key (KR) using DH key agreement

with the ephemeral private key of the nameserver (Λi
l) and the ephemeral public key

of the resolver (ΛR). The generated master key and the fresh random number (rA)

are used as inputs of a Key Derivation Function (KDF) to derive the encryption key

of the response. In addition to the standard DNS response, additional cryptographic

parameters are appended to the response prior to encryption.

As Figure 4.3 shows, in this example name resolution, the resolver queries the

root zone nameserver for a record associated with ‘example.com’, and the root zone

nameservers are not authoritative for providing the final response for this query.

Therefore, nameserver i within the root zone returns a nameserver ‘NS’ record for

the TLDs at level 1 in the DNS hierarchy. As demonstrated in Step 4, the nameserver

uses the master key (KR) derived in Step 3 with a fresh random number (rA) and

a KDF to encrypt the ‘NS 1’ record of the TLD with level 1. Additionally, the

nameserver appends the short-term key structure (ωi
0) of the nameserver with its

corresponding signature (Ss.i). The signature is generated by the long-term key of

the zone on the key server within the zone (Ss.i = Swl
(ωi

l)), as described in Sec. 4.3.
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Moreover, the signature of the ephemeral key of the nameserver (Se = Sωi
l
(Λi

l)) is

appended to the message before encryption. In this example, theNS1 in the response

belongs to a delegated TLD zone, so the long-term signing (w1) and initial agreement

key (A1) of the TLD are also appended to the response message. These long-term

keys of the TLD will be used when the resolver initiates queries directed at the TLD

nameservers. After encrypting the DNS response with additional cryptographic

signatures and keys, the nameserver appends the ephemeral public key (Λi
l) along

with the random number (rA) used for encrypting the response. Subsequently, the

nameserver transmits the response to the resolver in Step 4.

Upon receiving the response, in Step 5, the resolver generates the master key

(KR) using the ephemeral public key of the nameserver (Λi
0) and the resolver’s

ephemeral private key (ΛR). It then decrypts the message within the response,

and verifies the signature of the short-term public key structure of the nameserver

(Sw0
(ωi

l)) using the long-term signing key of the root zone (w0). Next, the resolver

verifies the signature of the nameserver ephemeral public key (Sωi
0
(Λi

0)), which was

used to encrypt the response. If the decryption or signature verifications fail, the

response is considered invalid and discarded. Otherwise, if all checks in Step 5

complete successfully, the resolver caches and uses the DNS response.

After securely resolving the NS record of TLD from the root zone, the resolver

has access to the long-term public keys of the ‘.com’ zone (i.e., w1, A1). The

resolver is now able to repeat the same steps for resolving Second-Level Domain

(SLD) NS records. When the resolver reaches the nameserver authoritative for the

queried record, it repeats the same steps. However, the response does not contain

the long-term keys of the child zone (i.e., wl+1, Al+1), as at that point the resolver

has reached the authoritative nameservers for the queried record, the resolver does

not need to traverse other subordinate zones.

4.4.2 Privacy-enforcing Mode

To resolve names in one round-trip while encrypting queries, we separated the long-

term zone key used for providing security and privacy properties of queries from the

long-term key used for responses. The blue steps in Figure 4.3 are used in addition

to the black steps in the privacy-enforcing mode. After generating the ephemeral

key pair, the resolver generates a master key using DH key agreement (GenDH())

with the root zone’s initial agreement public key (A0) and the resolver’s ephemeral
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agreement private key (ΛR). The generated master key (KQ) is then used for query

confidentiality (and integrity). In Step 2, the resolver uses authenticated encryption

with a key derived from (KQ) to protect the integrity and confidentiality of the

query. The authenticated encryption herein uses random numbers (192 bits) used

once as TVP to ensure freshness of encryption keys [20]. The resolver then transmits

the encrypted query, along with the resolver’s ephemeral public key (ΛR) and the

random number (rq) used in derivation of the encryption key, to nameserver i of the

root zone.

The nameserver i receives the encrypted query with the resolver’s ephemeral pub-

lic agreement key and the random number from Step 2. The nameserver generates

the same master key (KQ), using DH key agreement with the resolver’s ephemeral

agreement public key (ΛR) and the root zone’s long-term agreement private key

(A0). The nameserver uses the generated master key and the received nonce from

the resolver to decrypt the query. The next steps after decrypting the query is the

same as the steps explained in the no-privacy mode.

4.5 Caching

The caching mechanism for standard DNS records remains the same in DNSSEC+.

The resource records are transmitted as authenticated and encrypted messages.

After decryption and verification, they will be treated as Vanilla DNS messages.

Caching the long-term keys of the zones in DNSSEC+ is essential to achieve a com-

parable performance to Vanilla DNS. Otherwise, each time a new record needs to

be resolved by a resolver, the resolver needs to traverse the DNS hierarchy to obtain

the long-term keys of the intended zone to securely resolve the query. Regarding the

period for which long-term keys are cached in DNSSEC+ by resolvers, caching for

long- and short-term durations have similar advantages and drawbacks as DNSSEC

keys (Section 2.2.9). Caching for shorter durations enhances security, while longer

caching periods improve performance. Administrators have to determine an optimal

balance to effectively address both security and performance considerations.

The long-term signing key in DNSSEC+ is stored on a trusted key server within

each zone and not used directly in the interaction of nameservers and resolvers.

With that in mind, caching long-term public keys associated with zones for periods

longer than DNS record TTL values is less likely to raise security concerns, while
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providing performance benefits. For example, the public keys of a zone can be

cached for 24 hours, and whenever the resolver intends to resolve a query from

the nameservers within the caching period, the cached keys can be used without

requiring communication with the parent zones to obtain the long-term public keys

of the zone. A practical approach for setting the caching time of the zone keys is

to set the caching time of the long-term keys of the top zones in the DNS hierarchy

(e.g., root or TLDs) relatively longer compared to their subordinate zones. In this

manner, when a resolver wants to resolve a domain name within a given zone, if the

long-term keys of the intended zone are not cached, the resolver does not need to

traverse the entire DNS hierarchy to obtain the long-term keys of the intended zone.

This is because there is a greater likelihood of the long-term keys for higher-level

zones having been previously cached.

4.6 Updating Records and Keys

Standard DNS records: As DNS messages are now in DNSSEC+ sent securely

using the original DNS zone files, the process of updating records of zone files in

DNSSEC+ remains the same as in Vanilla DNS.

Updating Short-term keys (ωi
l): As such keys have short lifetime, name-

servers need to obtain a new signed short-term key structure before the expiration

of the current one (see Section 4.3).

Updating long-term zone agreement keys (Al): Since long-term zone keys

are used in the DNSSEC+ trust model, the process of updating long-term keys

require considerations to avoid name resolution failures. For updating the long-term

agreement key (Al) of a zone with level l, the zone administrator initially generates

a new agreement key Al on its key server and sends it its zone nameservers, so that

they can decrypt incoming queries encrypted using the new key. In the next step,

the zone owner removes the old key from the parent zone and adds the new Al to

the parent zone using the OOB authenticated channel between the zones.5 After

waiting for enough time, so that the old Al is removed from the caches of resolvers,

the zone owner removes the old agreement key from its nameservers.

Updating long-term zone signing keys (wl): Updating long-term signing

5In DNSSEC domain registrars typically provide web interfaces for adding/removing keys in
parent zones.

106



4.7 Discussion

keys is similar to updating KSKs in DNSSEC, where three update methods ex-

ist [121]. However, for updating the zone signing keys (wl) in DNSSEC+, we use a

customized approach, which is similar to the double-DS method in DNSSEC [121].

This method is the most efficient regarding the number of additional bytes added

to the responses during the long-term zone signing key updates.

For updating the long-term zone signing key, denoted as wl (old), to the new

key, denoted as wl (new), the zone owner first adds wl (new) to the parent zone. At

this point, the parent zone publishes both the old and new keys in DNS responses,

and the zone owner waits for enough time to ensure the expiration of wl (old) from

the resolver caches, and the wl (new) is cached alongside the old key in the caches of

resolvers. Next, the zone owner removes the wl (old) from its zone and starts using

wl (new) for signing the short-term key structures. Following this step, the zone

owner waits for enough time, ensuring the expiration of short-term key structures

signed by wl (old) in its zone. Finally, the zone owner removes the wl (old) from

the parent zone and the process is complete.

4.7 Discussion

This section provides further discussion for the points presented above and intro-

duces additional ideas to be explored in future.

Targeting Stage 2. DNSSEC+ operates in Stage 2, requiring a secure scheme

(e.g., DoT [86]) in Stage 1 if the overall goal is to secure the entire DNS resolution

path. The focus on Stage 2, rather than developing a new protocol for the full

resolution path, is justified by the deployment challenges faced by schemes that

require fundamental changes to the original two-stage name resolution in the DNS

design (see Section 2.2.12). Furthermore, various secure DNS schemes for Stage 1

have already been introduced and are increasingly adopted on both the client side

(e.g., web browsers) and recursive resolver side [102, 110]. By combining DNSSEC+

in Stage 2 with an existing secure Stage 1 protocol, the security of the entire DNS

resolution path can be enhanced.

Availability of Key Servers. Availability of key servers within each zone is

critical. If a key server becomes unavailable before the short-term signing keys of

the nameservers are updated, and those keys have expired, name resolution will fail.

Since key servers play such a critical role, aside from their security, their availability
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also needs to be ensured through means such as server redundancy. In practice,

external trustworthy key servers can be introduced in the trust infrastructure, which

can be used by zone owners to reliably outsource the functionality of acting as their

key server.

Reduce Response Size. In our current model and implementation in Chap-

ter 5, to authenticate the ephemeral keys of the DNSSEC+ nameservers, these

keys are signed by the short-term signing key of the nameservers. This signature is

appended as part of response and used by the recursive resolvers for verifying the au-

thenticity of the ephemeral key. An alternative is to use implicitly authenticated key

agreement protocols, such as MQV [104]. In this method, the key agreement func-

tion establishes a shared master key based on the short-term key of the nameserver

(ωi
l) and the ephemeral key of the nameserver (Λi

l), which is implicitly authenticated.

Therefore, by employing an implicit, unilateral authenticated key agreement func-

tion (i.e., where only the server-side is authenticated), inclusion of the ephemeral

keys’ signature in the responses becomes unnecessary. As a result, the additional

parameters in DNSSEC+ responses can be reduced by ∼70 bytes, which further

alleviates the amplification factor.

Notifying Clients. In the current design (Section 4.4) and implementation

(Chapter 5) of DNSSEC+, no means have been defined to inform clients regarding

successful use of DNSSEC+ in Stage 2. Similar to the AD flag (see Section 2.2.9)

in DNSSEC, a DNS header bit can be defined for DNSSEC+ by which resolvers

inform clients regarding effective implementation and use of DNSSEC+ in Stage 2.

Thereby, if a recursive resolver is trusted by a client and Stage 1 is secured, a

securely-communicated confirmation to the use of DNSSEC+ provides the client

assurance that the name resolution process was DNSSEC+-protected in Stage 2.

Mitigating Query Flooding. Since DNSSEC+ is a UDP-based scheme with-

out source IP address validation, nameservers are susceptible to query flooding,

exhausting computational resources. Such attacks can be mitigated by rate-limiting

techniques [45], forcing TCP use, or application-layer source IP address validation.

Additionally, zone owners can use CDN instances for their nameservers [168], en-

abling more resilience against flooding attacks by distributing queries among name-

servers.

Delegation in the Internet. In DNSSEC+, the short-term delegation of

ANSes within a zone is analogous to delegated credentials [22]. These short-term
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delegations mechanisms are useful in situations where a long-term secret owner does

not fully trust all the servers hosting its service, and reduces the risk of attacks on

the long-term secret. Short-term delegations also minimize the threat of key com-

promise, as they are implicitly revoked in short intervals, rendering them useless to

the attackers after their expiry [33].

Downgrade Attacks. Similar to downgrade attacks on HTTPS, where the at-

tacker forces a fallback to HTTP, and in which mitigations are implemented outside

of TLS protocol (e.g., HSTS [79]), attacks that block name resolution in DNSSEC+

and thereby downgrade DNSSEC+ to Vanilla DNS require mitigations outside of

the DNSSEC+ protocol itself. We do not discuss this here as it is out of our current

scope. Fallback to a less secure/private scheme is a deployment choice, which can

be configured to favor security/privacy or incremental deployment with incremental

benefits. Moreover, when fallback mechanisms are properly configured, passive ad-

versaries who do not alter or block name resolution are unable to execute downgrade

attacks. As a result, the security and privacy benefits of DNSSEC+ are preserved.

We note, however, that DNSSEC+ is designed to fail closed (Section 3.2), thus

mitigating within-protocol downgrade attacks [72].

Traffic Interception. Vanilla DNS traffic is transmitted in plaintext, which

enables a wide range of network-based traffic analysis and debugging techniques

that rely on the accessibility of plaintext DNS messages [153]. While the move to

encrypted DNS enhances privacy, it also introduces certain trade-offs. Encrypted

DNS can be abused by adversaries and malware to facilitate malicious activities

such as data exfiltration [173] and botnet communication [131]. The shift to en-

crypted DNS is particularly concerning for stakeholders who depend on access to

plaintext DNS traffic through software and hardware middleboxes for purposes such

as network management and monitoring, troubleshooting and debugging, intrusion

detection, and the identification of malware and data exfiltration.

The encryption of DNS messages in DNSSEC+ and the prevention of traffic pro-

cessing within the DNS context are conceptually analogous to interception mecha-

nisms observed in the TLS ecosystem [44]. Various techniques for traffic interception

have been proposed for TLS-protected communications, which may offer valuable

insights for addressing similar challenges in DNSSEC+. Readers are encouraged to

read this work [44], as it provides a comprehensive analysis of traffic interception

methods in the context of TLS communications.
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4.7 Discussion

Enhancing Deployability. To facilitate deployability, the trust model of

DNSSEC+ could be extended to leverage DNSSEC’s existing chain of trust for

the authenticated retrieval of zone keys. This approach enables the distribution of

DNSSEC+ keys as signed DNSSEC records, ensuring their authenticity within their

respective zones. This approach enables a DNSSEC+ zone to remain compatible

with a DNSSEC-enabled parent zone, thereby supporting incremental deployability

without necessitating the immediate adoption of DNSSEC+ by all zones. Addition-

ally, automation techniques such as those outlined in RFC 7344 [103] (Automating

DNSSEC Delegation Trust Maintenance), facilitate key management and the con-

tinuous establishment and maintenance of the DNSSEC trust model. Given that

DNSSEC+ employs a PKI and trust model similar to DNSSEC, one may reasonably

believe that these automation mechanisms can be directly applied to support the

deployment of DNSSEC+.

As reliance on third-party DNS infrastructure providers continues to grow, with

approximately 20 million websites utilizing Cloudflare DNS for authoritative host-

ing and query resolution,6 the adoption and deployment of DNSSEC+ by these

providers could significantly facilitate and accelerate its widespread implementation

on the ANS-side. In addition to ANSes, resolvers are also required to implement

and use DNSSEC+. Given the increasing adoption of public resolvers across the In-

ternet [139], encouraging their implementation and use of DNSSEC+ represents an

effective strategy for promoting the widespread deployment and use of this scheme

on a large scale. Since DNS infrastructure providers already possess the technical

capacity and the ability to influence Internet users to adopt DNSSEC+ in Stage 2,

they are well positioned to accelerate its initial deployment. In the absence of such

involvement, the responsibility for implementing and configuring DNSSEC+ falls

to individual zone administrators. As a result, the cost of adoption, whether com-

putational, configurational, or financial, must be handled either by infrastructure

providers or by zone owners and resolvers themselves.

With respect to scalability, while rigorous scalability testing is beyond our scope,

DNSSEC+ introduces no new significant overhead. Modern computing systems are

sufficiently powerful to handle its requirements, and cryptographic primitives are

expected to become more efficient over time.

Furthermore, to improve deployability, the key server does not need to be hosted

6https://trends.builtwith.com/ns/Cloudflare-DNS
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on a dedicated machine; instead, a zone’s primary nameserver can serve as the

key server, thereby reducing the overhead associated with deployment. Moreover,

DNSSEC+ will be installed as a software and operates in the user-space of the re-

solvers and ANSes without requiring kernel or firmware updates. The objective is not

to replace DNSSEC in Stage 2, but rather to position DNSSEC+ as a secure Stage 2

DNS scheme that can benefit from the current deployment of DNSSEC. Finally, we

acknowledge that certain elements of the DNSSEC design (e.g., key management

and the establishment of a trust model), which are also used in DNSSEC+ with

modifications, may result in similar resistance to the adoption of DNSSEC+.

4.8 Summary

After identifying the lack of a widely adopted secure DNS scheme in Stage 2 in

Chapter 3, this chapter introduced the properties and design goals of DNSSEC+,

based on the advantages and limitations of DNSSEC. Subsequently, we outlined

the new processes and entities introduced on the zone side, as well as the required

modifications to resolvers for DNSSEC+ implementation. Additionally, we detailed

the name resolution process in both non-privacy and privacy-enforcing modes. In

Chapter 5, we present the implementation of a DNSSEC+ prototype and conduct

an evaluation of its security and privacy properties alongside computational and

time performance in comparison with previously proposed secure DNS schemes.
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Chapter 5

Implementation and Evaluation of DNSSEC+

In this chapter, we begin with an analysis of the amplification factor in DNSSEC+,

followed by comparing the properties of DNSSEC+ with DNSSEC and DNSCurve.

Subsequently, a prototype implementation of DNSSEC+ is presented, and then used

for evaluating its performance across key metrics: server-side processing latency, res-

olution time, and CPU usage. We conducted a comparative analysis of DNSSEC+

with other schemes, including TCP-based DNS [119, 120], live-DNSSEC [53], and

DoT [86]. The results of our evaluation indicate that, in terms of total name resolu-

tion time, DNSSEC+ achieves performance comparable to previously proposed, and

also less secure DNS schemes, with an acceptable overhead on the server side (an

unavoidable consequence of the additional cryptographic operations). Furthermore,

DNSSEC+ demonstrates a significantly better performance compared to DoT in

total name resolution time and server-side CPU utilization.

5.1 Comparative Evaluation of DNSSEC+

In this section, we begin by examining the susceptibility of DNSSEC+ to amplifi-

cation attacks by conducting a comparative analysis of its amplification factor com-

pared to DNSSEC. Subsequently, we evaluate the security and privacy properties of

DNSSEC+ compared to DNSSEC and DNSCurve, the two schemes that have been

proposed and implemented in Stage 2. Using the evaluation framework developed

in Chapter 3, we demonstrate the enhanced properties provided by DNSSEC+ in

comparison with DNSSEC and DNSCurve.

5.1.1 Amplification Factor

As explained in Section 4.1, it is crucial for DNSSEC+ to resolve queries in a single

round-trip. There are trade-offs associated with a single round-trip, and amplifica-

tion is one of the important aspects to consider. One of the schemes with a notable

bad reputation regarding traffic amplification in Stage 2 is DNSSEC. Although the

amplification factor in DNSSEC can theoretically exceed 100×, the empirically ob-



5.1 Comparative Evaluation of DNSSEC+

served average amplification factor for queries of type ANY for TLDs in DNSSEC

2014 was approximately 47× [162]. The queries of type ANY often result in a greater

amplification factor. When an attacker abuses ANY queries to target a DNSSEC-

enabled nameserver, the nameserver returns any type of resource records available

on the nameserver for the given domain name in response. In a DNSSEC-protected

zone, in addition to the resource records, the nameserver also returns the RRSIGs

associated with each resource record. Therefore, relative to the number of resource

records included in the response, a DNSSEC-enabled server returns RRSIGs, which

results in a greater amplification of traffic.

In DNSSEC+, regardless of the DNS record type and the number of records in

the response, the number of bytes added to the response for encryption and authen-

tication are constant (Figure 5.1). The reason is that, unlike DNSSEC, for each

DNS record a separate signature is not required. Consequently, the amplification

factor in DNSSEC+ is restricted and cannot be abused for considerable amplifica-

tions in DDoS attacks. With Elliptic Curve Digital Signatures (ECDSA) and NaCl

cryptography [24], the number of additional bytes for a non-delegating response is

∼245 bytes and for a delegating response ∼310 (see Sec. 5.2.1). The number of

added bytes by DNSSEC+ can be further decreased (Section 4.7). Compared to

DNSSEC, which can possibly add thousands of bytes to the response of a query of

type ANY, with DNSSEC+ only a limited number of bytes are added to each response

for authentication and encryption.

5.1.2 Comparative Analysis: DNSSEC, DNSCurve

Compared to DNSSEC, which only provides message authentication to DNS re-

sponses, DNSSEC+ provides real-time authenticated encryption for encrypting DNS

queries and responses, thereby providing both confidentiality and message authen-

tication. Therefore, DNSSEC+ does not require NSEC-like records [13, 14, 67] for

negative responses, and regular NXDOMAIN responses can be transmitted securely.

As explained in Section 5.1.1, compared to DNSSEC, which is susceptible to signifi-

cant traffic amplification rates, responses in DNSSEC+ only contain a fixed number

of additional bytes. Besides, in DNSSEC the responses are susceptible to be cap-

tured and replayed by an adversary, within the lifetime of their signature. However,

due to the use of ephemeral agreement keys, the DNS messages in DNSSEC+ cannot

be replayed between different sessions. Moreover, the added TVP introduces fresh-

113



5.1 Comparative Evaluation of DNSSEC+

ness to the messages within a session. Consequently, if more than one query is sent

with the same ephemeral key, the queries or responses cannot be replayed within the

same session. Another difference between DNSSEC and DNSSEC+ is that DNSSEC

requires separate queries to obtain the DNSKEY records from a zone’s nameservers.

Although both queries can be transmitted simultaneously and the delay would re-

main the same, in DNSSEC+ the keys are appended as part of the response and

one less query is required. Finally, DNSSEC requires modifications to the zone files,

while in DNSSEC+ the zone files remain unchanged, which saves the administrative

time of updating zone signatures.

Now consider DNSCurve [25, 46] in the context of key management. DNSCurve

lacks a specified mechanism for distributing nameserver keys among anycast in-

stances, in cases of anycasting. Furthermore, it requires long-term keys to be stored

on nameserver instances, making them exposed to attacks. To address these issues,

DNSSEC+ introduces a delegation approach where a key server within the zone signs

short-term key structures for nameserver instances. DNSSEC+ thus avoids dupli-

cating long-term secrets, and provides means for distributing the keys of nameserver

instances within a zone.

DNSCurve [46] does not provide forward secrecy to queries nor to responses,

because the ANS’s public key is not ephemeral. DNSSEC+ implements a half-

static DH approach for queries to enable DNS resolution within a single round-trip,

thus, also not providing forward secrecy for queries. However, DNSSEC+ provides

forward secrecy for responses.

Finally, DNSCurve does not provide a chain of trust in the DNS hierarchy. Thus,

resolvers cannot validate the authenticity of an NS record that contains a public

key, rendering DNSCurve susceptible to false nameserver injections [145, 168]. In

DNSSEC+, the long-term keys of ANSes establish a DNSSEC-like chain of trust up

to the root, making it resilient to the aforementioned attack.

5.1.3 Overall Evaluation

In addition to the amplification analysis (Section 5.1.1) and the examination of

the properties and design choices between DNSSEC+ and DNSSEC and DNSCurve

(Section 5.1.2), Table 5.1 provides a comparative overview of the security, privacy,

and availability properties of DNSSEC+ in comparison with DNSSEC (live and

offline) and DNSCurve, using our evaluation framework from Chapter 3. This eval-
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Table 5.1: Comparative evaluation of DNSSEC+ with secure DNS schemes in
Stage 2
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DNSSEC [11, 12, 13]  #  # # #

DNSCurve [25, 46]   # #  G#

DNSSEC+ [92]    #  G#

uation highlights that DNSSEC+ offers enhanced security and privacy properties

compared to DNSSEC and delivers stronger security properties than DNSCurve.

Although deployability properties were excluded from the scope of our evaluation

framework in Chapter 3, the established trust-model was another deployability prop-

erty that was considered and satisfied in both DNSSEC and DNSSEC+, while not

satisfied by DNSCurve.

As demonstrated in Table 5.1, regarding availability, none of the Stage 2 schemes,

including DNSSEC+, satisfy the Resilient-to-ANS-DoS property because they rely

on UDP-based communication without application-layer mechanisms for source ad-

dress validation. Implementing source address validation to enhance resilience against

ANS DoS attacks requires either an additional round-trip, which contradicts the

single round-trip design objective of DNSSEC+, or the maintenance of additional

state information, leading to increased resource consumption and added protocol

complexity.

For ANSes with UDP-based schemes in Stage 2, using the distributed infras-

tructure and defense mechanisms provided by CDNs can serve as a compensatory

measure against ANS DoS attacks. Additionally, implementing rate limiting mecha-
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nisms helps mitigate reflection attacks targeting specific entities. Similar to Vanilla

DNS and DNSSEC, DNSSEC+ requires the enforcement of TCP once response sizes

exceed a specified threshold, thereby establishing an upper bound for the amplifica-

tion factor and ensuring reliable response transmission.

5.2 Implementation and Performance Evaluation

We built a proof-of-concept prototype of DNSSEC+ for testing its performance in

practice, and for comparison with other DNS schemes. The prototype consists of

two parts: ANS-side and resolver-side.

5.2.1 Prototype Implementation

ANS-side. So as to implement the encryption and decryption functions, we modi-

fied the DNS library used in CoreDNS [65]. As demonstrated in Figure 5.1 (b), the

nameserver adds its short-term public key structure (ωi
l) with its signature generated

by the zone’s key server (Swl
(ωi

l)). Additionally, the signature of the ephemeral pub-

lic agreement key (Sωi
l
(Λi

l)) is added to the response prior to encryption. Finally,

the public ephemeral key of the nameserver (Λi
l), and the random number (rA)

used to encrypt the response are added to the response. The dashed boxes (Fig-

ure 5.1 (b)) represent the long-term keys associated with the child zone (Al+1, wl+1),

and are added when the response is referring to a delegated zone. In responses to

the queries for which a nameserver is authoritative, the dashed boxes are omitted.

We used ECDSA with curve P-256 and SHA256 [66] for signing and verifying the

signatures, and NaCl [24] library for authenticated encryption.

Resolver-side. The resolver encrypts the DNS queries (Figure 5.1 (a)) using

NaCl-based [24] authenticated encryption and sends the encrypted queries alongside

the freshly generated ephemeral key of the resolver (ΛR) and the random number

(rq), which were used to encrypt the query. Upon receiving an encrypted DNSSEC+

response, the resolver extracts the random number and public key from the message

and decrypts the encrypted part. Subsequently, the resolver parses and extracts the

included keys, signatures, and the DNS message from the response. The resolver

initially verifies the included digital signatures of the short-term key structure of

the nameserver and the ephemeral key of the nameserver. If the verification process
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Figure 5.1: Query and response format in DNSSEC+ (the dashed boxes are only
included in delegating responses). The numbers on top represent bytes.

succeeds, the resolver proceeds to process the DNS response; otherwise, the response

is discarded. To implement the resolver-side in DNSSEC+, we modified q [64], which

is a similar DNS resolution tool to dig, implemented in Go.

5.2.2 Performance Evaluation

In this section, we test our prototype implementation against several other DNS

schemes, focusing on three performance parameters: server-side processing time

(and how it is affected with various Link-Layer Maximum Transmission Unit (MTU)

values), total resolution time, and CPU utilization. We setup the study using two

VMs deployed on cloud servers, and acknowledge that such studies typically serve as

a preliminary evaluation of expected performance in practice. They do not replace

performance indicators obtained from a real-world, Internet-scale deployment of the

scheme in question. An Internet-scale evaluation is beyond the scope of this thesis.

Nonetheless, our preliminary experimental setup provides initial confidence in the

relative performance of DNSSEC+ compared to existing schemes. While absolute

performance measurements are not pursued, our CPU utilization analysis focuses

on demonstrating the relative computational overhead of DNSSEC+. Evaluating

scalability bottlenecks or the impact of DoS attacks on servers falls outside the

current scope and is left for future work.

Server-side Processing: We used two cloud servers in the United States, each

equipped with a 2-core (2.4 GHz) CPU and 2GB of RAM, running Ubuntu 20.04.

Figure 5.2b illustrates the CDFs of server-side processing times for five DNS schemes

compared to DNSSEC+ in both privacy modes. The processing time is measured

as the interval between the arrival of the last DNS query datagram fragment at the

ANS and the departure of the first response fragment, captured at the Link layer.

While server-side processing latencies include some noise from process switching,

this was considered negligible as it mainly affects the upper end of the CDFs in all

117



5.2 Implementation and Performance Evaluation

102 102.2 102.4 102.6
0

0.2

0.4

0.6

0.8

1

DNSSEC+

Time (ms)

C
D
F

DNS-U NP-DNSSEC+ DNSSEC+
TCP-P Offline-DNSSEC Live-DNSSEC
DoT-R DNS-T DoT

(a) Total DNS Resolution

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

DNSSEC+

Time (ms)

(b) Server-side processing

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

DNSSEC+

CPU Utilization (%)

C
D
F

(c) CPU utilization (120 QPS)

Figure 5.2: Total DNS resolution time, server-side processing delay, and CPU uti-
lization of different schemes. UDP-based DNS (DNS-U), TCP-based DNS (DNS-T),
TCP-P (Persistent), DoT-R (Resumption), NP-DNSSEC+ (No privacy). Figures
(b) and (c) do not include TCP-P and DoT-R (see inline for explanation).

the schemes that were analyzed.

The results of 1,000 queries show that DNSSEC with live signing requires over

65% more server-side processing time than UDP-based DNS at the 80th percentile.

Despite the cryptographic overhead, DNSSEC+ processes over 90% of queries in

under one millisecond, adding approximately half a millisecond to the server-side

processing time compared to UDP-based DNS. In DNSSEC+ without privacy, the
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absence of query decryption reduces server-side processing time by around 0.1ms

compared to the privacy-enforcing mode. Performance of DNSSEC+ can be further

improved by reusing ephemeral keys for multiple queries within a short time, with

minimal impact on forward secrecy. Aside from Live DNSSEC and DNSSEC+, all

other schemes exhibit similar server-side processing latency. Moreover, server-side

processing times for TCP with persistent connections (TCP-P) and TLS with session

resumption (DoT-R) are expected to be equivalent to standard TCP (DNS-T) and

DoT, as they measure query processing time after session establishments. Thus,

they are excluded from Figure 5.2b.

Total DNS Resolution Latency: Total DNS resolution latency was mea-

sured between both VMs, with an average round-trip time (RTT) of 81ms, based

on 35,000 RTT measurements, and a standard deviation of 0.131ms. As shown in

Fig. 5.2a, UDP-based DNS, DNSSEC, and DNSSEC with live signing have similar

total latencies of approximately 82ms. Since most DNSSEC+ queries are processed

in under 1ms on the server-side, the total resolution latency for DNSSEC+ is sim-

ilar to UDP-based DNS and DNSSEC, with a negligible increase. Based on the

DNSSEC+ measurements obtained within a single zone, it can be asserted that the

overhead associated with resolving records through the DNS hierarchy is also mini-

mal. Thus, the impact of DNSSEC+ on the end-users’ experience of DNS resolution

is negligible, as the introduced additional latency is minimal. Due to the TCP hand-

shake, TCP-based DNS results in double the latency of single round-trip schemes,

while DoT is four times slower due to the extra overhead of the TLS handshake. The

TLS termination messages (FIN, ACK, RST) are excluded from this calculation. If

termination packets were included, DoT would be five times slower than UDP-based

DNS. Although in-code timestamping for TCP-P and DoT-R was not included to

measure server-side processing (Fig. 5.2b) and utilization (Fig. 5.2c), we measured

the resolution time for these schemes (Fig. 5.2a) by using the timestamps of query

packet departures and response packet arrivals at the resolver.

CPU Utilization: Figure 5.2c presents the CPU utilization of different DNS

schemes when a multi-threaded program sends 20,000 queries at a rate of ∼120

queries per second. At the 90th percentile, UDP-based DNS and offline-DNSSEC ex-

hibit identical CPU utilization, while TCP-based DNS demonstrates approximately

0.5% higher utilization. Live DNSSEC shows an increase of 1% in CPU usage com-

pared to UDP-based DNS at this percentile. DNSSEC+ in both modes consumes
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approximately 2.5% more CPU. Notably, DoT without session resumption requires

around five times more CPU than UDP-based DNS and three times more than

DNSSEC+ in both privacy modes at the 90th percentile.

Effect of Network-Layer Fragmentation: Because DNSSEC+ messages are

typically longer than those of Vanilla DNS and DNSSEC, we examined the effect of

network-layer fragmentation, particularly for messages exceeding the MTU, on the

server-side processing time in all three schemes. We used four MTU values: 1450,

1000, 500, and 200.

For larger MTU values (Figures 5.3a, 5.3b), where fragmentation is less likely,

the CDFs of Vanilla DNS and DNSSEC largely overlap, and DNSSEC+ similarly

experiences no fragmentation. When the MTU is set to 200B (Figure 5.3d), both

DNSSEC and Vanilla DNS are prone to fragmentation, showing similar patterns,

and DNSSEC+ experiences ∼0.03 ms increase at 90th percentile. However, at 500B

(Fig. 5.3c), Vanilla DNS experiences less fragmentation, while DNSSEC remains

mostly fragmented, resulting in slightly slower performance for DNSSEC. Overall,

the impact of fragmentation on server-side processing time is negligible.

5.2.3 Server-side Time Breakdown

To have a better understanding of the server-side processing latency in DNSSEC+,

Figure 5.4 presents a detailed breakdown of the processing times for different server-

side operations in the privacy-enforcing mode. The results are the average values

upon resolving 1,000 queries. In the privacy-enforcing mode of DNSSEC+, upon

receiving a query, the ANS must first decrypt the query. The total decryption time

is 0.1ms, which is made up of two components: symmetric authenticated decryption

(0.08 ms) and query preparation (0.02 ms). The query preparation process involves

parsing the query and preparing the decryption key.

Upon decrypting the query and looking up for the corresponding response, the

ANS in DNSSEC+ must encrypt the response. The total encryption process re-

quires 0.3 ms. This time is composed of generating an ephemeral agreement key

and a nonce (0.08 ms), signing the ephemeral key using the nameserver’s short-

term signing key (0.11 ms), symmetric encryption of the response (0.08 ms), and

preparing the response (0.01 ms). The response preparation involves looking up for

the response and reading the cryptographic keys from memory, which are used in

generating the response. An additional 0.02 ms is spent on the time measurement
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Figure 5.3: Server-side processing delay for DNSSEC+, Vanilla DNS, and DNSSEC
in various MTUs.

functions and the execution of server-side functions within the code.

5.2.4 Takeaways

We evaluated the server-side processing latency and the total DNS resolution time

using a single-zone prototype. Based on these measurements, we expect that the

performance across other zones will have similar results when traversing the DNS

hierarchy. Although the server-side processing latency of DNSSEC+ is relatively

higher compared to other evaluated secure DNS schemes, it remains < 1 millisecond

for the majority of queries. The total resolution time of DNSSEC+ is comparable

to that of less secure schemes, as the server-side processing latency is overshadowed

by network delays in the total DNS resolution time [40, 115]. Moreover, in cases of

121



5.3 Summary

To
ta
l R

es
po
ns
e
En

cr
yp
tio
n

To
ta
l Q

ue
ry

D
ec
ry
pt
io
n

Si
gn

Ep
he
m
er
al
K
ey

Q
ue
ry

D
ec
ry
pt
io
n

K
ey

&
N
on
ce
G
en
er
at
io
n

Sy
m
m
et
ric

En
cr
yp
tio
n

Q
ue
ry

Pr
ep
ar
at
io
n

R
es
po
ns
e
Pr
ep
ar
at
io
n

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0
.3
0

0
.1
0

0
.1
1

0
.0
8

0
.0
8

0
.0
8

0
.0
2

0
.0
1

Server-side Operations

T
im

e
(m

s)

Figure 5.4: Breakdown of server-side processing latency for cryptographic operations

fragmentation of large responses in DNSSEC+, we showed that fragmentation has

a negligible effect on server-side processing time. Finally, DNSSEC+ demonstrates

CPU utilization comparable to that of less secure schemes, and significantly lower

than DoT.

5.3 Summary

Following the design and proposal of DNSSEC+ in Chapter 4, this chapter ex-

amines traffic amplification in DNSSEC+ compared to DNSSEC. Additionally, we

discussed the comparative advantages of DNSSEC+ over DNSSEC and DNSCurve.

Performance evaluation results indicate that DNSSEC+ has a negligible impact on

the total DNS resolution time. Moreover, server-side processing time and CPU

utilization for DNSSEC+ are not significantly higher than those of other secure

schemes, demonstrating its feasibility for deployment. Finally, it is shown that the

effect of fragmentation on server-side latency is minimal, with almost no impact

on total name resolution latency. In Chapter 6, we will develop a symbolic model
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of DNSSEC+ and formally verify the defined security and privacy properties to

establish confidence in the correctness of the properties.
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Chapter 6

Formal Analysis of DNSSEC+

As described in Chapter 4, DNSSEC+ is designed to augment real-time security

and privacy properties in Stage 2 [92]. Use of DNSSEC+ in Stage 2 effectively

mitigates vulnerabilities within this stage, including cache poisoning [43, 74, 98],

replay attacks using stale responses [15, 25, 71], eavesdropping [18], and large-scale

surveillance [70]. DNSSEC+ utilizes a delegation mechanism to mitigate the risk of

exposure of a zone’s long-term key to attacks by avoiding the need to replicate this

key throughout the ANSes of the zone. Additionally, it secures transmission of DNS

messages by employing symmetric authenticated encryption, with encryption keys

generated using DH key agreement.

The security and privacy properties of DNSSEC+ require formal analysis to

validate their fulfillment. To do so, we develop a symbolic model of the protocol

using the Tamarin Prover [117] (Section 2.4.1). Security and privacy properties of

DNSSEC+ are then formally proven using this model. Finally, the model is used to

assess the impact of key and entity compromises, demonstrating the consequences

of such compromises on these properties. Our analysis shows that all of the origi-

nally defined properties of DNSSEC+ hold as expected when none of the keys are

compromised. Moreover, compromise of any single long-term private key within

the protocol does not, in isolation, affect the validity of the security and privacy

properties of responses.

6.1 Stated Properties and Assumptions

This section begins by listing the design properties of DNSSEC+ and specifying

the subset related to security and privacy, which are formally verified by Tamarin

in this chapter. Next, the underlying assumptions and threat model used in the

development of the symbolic model for DNSSEC+ and the proof of its properties

are defined.
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6.1.1 Stated Properties of DNSSEC+

In Chapter 4, nine properties were defined to be fulfilled by DNSSEC+. Table 6.1

summarizes these, and highlights the subset of security and privacy properties, for-

mally proven herein using Tamarin. DNSSEC+ encrypts both queries and responses

to achieve message confidentiality. Additionally, the response encryption keys are

freshly generated, with the objective of providing forward secrecy. The next security

property that DNSSEC+ provides is entity authentication for the nameservers, and

guarantees that the transmitted responses are both authenticated and also resilient

to replay attacks. The defined entity authentication in DNSSEC+ is unilateral, as

only the nameservers authenticate themselves to the resolvers; the resolvers do not

authenticate themselves to the nameservers.

For the remaining properties, Chapter 4 demonstrated how the DNSSEC+ design

satisfies the objectives of avoiding duplication of long-term secrets through the secure

delegation process, achieving single round-trip DNS resolution, and employing an

established trust model. The property of minimum amplification is satisfied by the

design of messages which maintain a constant amplification factor compared to

DNSSEC (see Section 5.1.1). Furthermore, in Chapter 4 we presented the fail-

closed objective as a procedural design choice aimed at mitigating within-protocol

downgrade attacks in DNSSEC+.

DNSSEC+ Property Target notes
Message confidentiality DNS queries/responses Tamarin proof
Forward secrecy DNS response keys Tamarin proof
Entity authentication Nameservers Tamarin proof
Mitigate replay DNS responses Tamarin proof
Avoid duplicating LTK DNS zones by design
Single round-trip DNS resolution by design
Established trust model DNS hierarchy by design
Minimum amplification DNS responses by design
Fail-closed DNS resolution process by design

Table 6.1: Stated properties of DNSSEC+: the first four are supported by Tamarin
proofs herein, while the remaining five were established by design (see Chapter 4).
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6.1.2 Assumptions

As outlined in Chapter 4, there are three main components in DNSSEC+: the del-

egation of authorization to the nameservers within each zone, a trust model, and

the DNS resolution process. The establishment of the trust model, in which the

child zones below the root send their long-term public keys to their parent zone,

takes place through a secure OOB channel. Thus, it is assumed that this process is

securely completed prior to any name resolution. The delegation process, by signing

the short-term keys within a zone and sending them to the nameservers, is also con-

ducted through a confidential and authenticated OOB channel established between

the zone’s key server and its nameservers. The delegation process must be completed

prior to the initiation of any name resolution. The security and privacy properties

defined in Table 6.1 (i.e., first four properties) are for the DNS resolution process

in Stage 2, and the preceding processes of trust model establishment and delegation

to nameservers are assumed to be completed via their secure OOB channels.

We model the communication between the nameservers and key servers for the

delegation process within zones as secure OOB channels whose messages the adver-

sary (in Tamarin) cannot access. Additionally, we assume that there is a trust model

established between the zones within the DNS hierarchy through the authenticated

OOB channel between the zones. An example of such channel in DNSSEC is the use

of HTTPS-based communications via domain registrars for establishing the chain of

trust. Using these two assumptions, we formally verify the properties of the DNS

resolution process in DNSSEC+ using Tamarin.

In our model, we limit the name resolution to the root zone and do not continue

the resolution down the DNS hierarchy. By proving the security and privacy proper-

ties for DNS resolution with a root’s nameserver, it is assumed that, in DNSSEC+,

the resolver obtains the child (i.e., TLD) zone’s authentic long-term public keys

from the root. The long-term public keys of the child zone are assumed to be trans-

mitted authentically to the root during the trust model establishment phase. Thus,

in turn, the formal verification of the name resolution for the TLD zone would be

similar to the root, but this time with the TLD’s long-term keys. In this manner,

proving the properties of DNS resolution with the root zone extends the same prop-

erties for subsequent resolutions down the DNS hierarchy, assuming authentic trust

model establishment.

As outlined in Section 4.4, DNSSEC+ operates in two modes: privacy-enforcing
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and no-privacy. In the privacy-enforcing mode, DNS queries are encrypted to en-

sure confidentiality. In the no-privacy mode, queries remain unencrypted. Responses

are both authenticated and encrypted in both modes to maintain data authentic-

ity and confidentiality. We model and prove the security and privacy properties of

DNSSEC+ in the privacy-enforcing mode for which we can also prove the secrecy

of queries. Moreover, in Section 6.4, where we show the implications of key com-

promises, we demonstrate that the response properties remain verifiable if query

secrecy is compromised (e.g., when LTAK is compromised), which is an analogous

scenario to the no-privacy mode (where queries are in plaintext).

In addition to the above protocol-related assumptions, in symbolic analysis we

exclude computational attacks and primarily focus on the interactions and abstract

operation of the protocol. Consequently, symbolic analysis inherently incorporates

certain assumptions as part of its abstraction. The first assumption is that the

cryptographic primitives within the model are perfect. For example, an adversary

can generate a valid signature if and only if it knows the signing private key. Freshly

generated random terms, such as nonces and cryptographic keys, are assumed to be

unpredictable and unique. Since the information in the symbolic model is abstracted

to terms, an entity, including the adversary, either has complete knowledge of a term

or no knowledge at all, with no possibility of having partial knowledge of the term.

Common threats in Stage 2 of the DNS resolution include inline adversaries—

between a recursive resolver and ANSes. These can be located within distinct

Autonomous Systems (ASes), each maintained by different administrative policies.

Such entities have access to DNS messages and can read, modify, delete, and in-

ject fabricated messages. Additionally, off-path adversaries can send queries to a

recursive resolver and inject false responses, thereby poisoning the cache of the re-

solver [98][74]. In Section 6.3, we focus on proving the properties of DNSSEC+

against both in-line and off-path network-based attacks, and we use the default

Dolev-Yao [54] attacker in the Tamarin prover. In Section 6.4, in order to analyze

the impact of host and key compromises on the properties, we model host-based

attacks by adding the private keys of DNSSEC+ to the adversary’s knowledge and

analyzing how it affects the verified properties.
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6.2 Modelling DNSSEC+ in Tamarin

In this section, we develop a symbolic model of the delegation process and DNS

resolution in DNSSEC+, using Tamarin rules.

6.2.1 Secure Delegation

We invite the readers to review the entire process of secure delegation within DNSSEC+

zones in Figure 4.2 of Chapter 4. To model the DNSSEC+ delegation process in

Tamarin, we use four Tamarin rules:

D1. The initialization of a key server within the root zone, responsible for

generating and securely storing the long-term keys of the zone (i.e., LTSK and

LTAK).

D2. The initialization of the zone’s ANS instances and their respective short-

term signing keys (STSKs), followed by the transmission of these STSKs to

the key server via an OOB channel modeled in Tamarin, which assumes that

the messages are transferred over a channel not accessible to the adversary.

D3. Receiving the nameserver’s STSKs by the initialized key server in Step 1,

which then uses the zone’s LTSK to sign the STSKs. The signed STSKs are

subsequently returned to the nameservers through a secure OOB channel.

D4. Finally, the nameservers receive their signed STSK, enabling their use in

the DNS resolution process for responding to queries.

Listing 6.1 shows Step 1 of the secure delegation process. In this step, a key

server is initialized with two fresh long-term keys (Lines 2-3): a long-term signing key

(ltkKS) and a long-term agreement key (ltkKA) in the premise. In the conclusion,

these keys are added to the state as permanent facts (Lines 6-9) to be used as

premises of the next rules. Additionally, the public components of the long-term

keys are sent to the network and added to the adversary’s knowledge using the Out()

fact in Line 10. The action fact OnlyOnce() is used to restrict the protocol traces,

so that at most one key server being initialized. The KeyServerInit() action fact

is used in executability lemmas for ensuring the proper execution of the protocol

and correctness of proofs.
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Listing 6.1: Key Server Initialization

1 rule Key_Server_Init:

2 [ Fr(~ltkKS) // long-term signing key

3 , Fr(~ltkKA) ] // long-term agreement key

4 --[OnlyOnce(’Key_Server_Init’)

5 , KeyServerInit($K, ~ltkKS, pk(~ltkKS))]->

6 [ !ZKS Sk($K, ~ltkKS)

7 , !ZKS Pk($K, pk(~ltkKS))

8 , !ZKA Sk($K, ~ltkKA)

9 , !ZKA Pk($K, ’g’ ^ ~ltkKA)

10 , Out(<pk(~ltkKS), ’g’ ^ ~ltkKA>)]

In the next rule, demonstrated in Listing 6.2, a nameserver is initialized with a

fresh ID (nid) and fresh short-term signing key (stsk) in the premise.

Listing 6.2: Nameserver Requests Signing

1 rule NS_Sign_Request:

2 [ Fr(~stsk) // short-term signing key

3 , Fr(~nid) ] // nameserver ID

4 --[ NS Sign Req($N, ~nid, ~stsk) ]->

5 [ NS Wait Sig(< $N, ~nid, ~stsk, pk(~stsk)>)

6 , NS Sends to Sign(<$N, ~nid, pk(~stsk)>)] // OOB channel

The action fact NS Sign Req() is added to verify correct execution of the pro-

tocol. In the conclusion (lines 5-6, Listing 6.2), the NS Wait Sig() fact is used to

store the current state and terms and wait for the key server to sign the nameserver’s

short-term signing key. Finally, the NS Sends to Sign() fact is used to model send-

ing the public key of the nameserver through a secure OOB channel to the key server

to be signed. Unlike the rule for key server initialization (Listing 6.1), this rule can

be executed more than once, as the number of the nameservers within a zone is not

limited.

The next rule models the key server signing the short-term key of a nameserver.

As Listing 6.3 shows, the key server has the long-term private signing key of the

zone (!ZKS SK()) and receives the sign request from the nameserver through an OOB

channel (NS Sends to Sign()) as the premise. In the conclusion (line 5), the signed

short-term signing key of the nameserver is added to the state by Signed NS key()

fact. This fact is assumed to be received by the nameserver through a secure OOB
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channel. The KS Signs() is used in the executability lemmas.

Listing 6.3: Key Server Signs

1 rule Key_Server_Signs_NS:

2 [ !ZKS Sk($K, ltkKS)

3 , NS Sends to Sign(< $N, nid, stpk >)]

4 --[ KS Signs($N, nid, stpk, sign(<$N, nid, stpk>, ltkKS)) ]->

5 [ Signed NS key(sign(<$N, nid, stpk>, ltkKS), <$N, nid, stpk> )]

In the final step of the delegation process, the nameserver receives the signed

short-term key structure from the key server and adds it to the state. As demon-

strated in the premises of Listing 6.4, the nameserver state fact NS Wait Sig is used

here as a premise to ensure that this rule is preceded by the NS Sign Request rule

from Listing 6.2. The nameserver receives the signed key structure from the key

server through an OOB channel using the Signed NS key() fact from the previous

rule (Listing 6.3). The !ZKS PK() contains the public component of the zone’s long-

term signing key and added as a premise for verifying the signature generated by the

key server. In the action facts, the equality restriction (Eq()) is used for verifying

the signature of the short-term key structure, and the NS Rcv Signed() is used in

executability lemmas. In line 5, the rule verifies that the signature received from

the OOB channel is generated by the zone’s long-term signing key.

Listing 6.4: Nameserver Receives Signed

1 rule NS_Receives_Signed:

2 [ NS Wait Sig(< $N, nid, stsk, stpk >)

3 , Signed NS key(sig_stpk, <$N, nid, stpk> )

4 , !ZKS Pk($K, pkKS)]

5 --[ Eq(verify(sig_stpk, <$N, nid, stpk> , pkKS), true)

6 , NS Rcv Signed(sig_stpk, <$N, nid, stpk>)

7 ]->

8 [

9 !NS sstk Signed PK(sig_stpk, <$N, nid, stpk>)

10 , !NS sstk Signed SK(sig_stpk, <$N, nid, stpk>, stsk)

11 , Out(< stpk, sig_stpk >)]

In the conclusion, the signature of the nameserver with the short-term public and

private signing key are added to the state as permanent facts (Lines 8-10), which
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will be used in the name resolution process for signing the ephemeral keys by the

nameserver. Furthermore, the nameserver’s short-term public key and the signature

of the short-term key structure are sent to the network and added to the adversary’s

knowledge.

6.2.2 DNS Resolution

After completion of the delegation process, the zone’s long-term signing and agree-

ment keys are initialized, and the nameserver’s signing keys are signed by the key

server. At this point, resolvers can use the zone’s long-term agreement key to se-

curely transmit queries to the nameserver instances of the zone. The process of DNS

resolution occurs between a resolver and a zone’s nameserver instance. Assuming

that the queried zone is the root, the public long-term keys of the root zone are

securely included into the resolver software, as trust anchors, through secure means.

The DNS resolution process is modeled using three Tamarin rules demonstrated in

Listings 6.5 to 6.7.

The rule Res 1, Listing 6.5, models a resolver sending an encrypted query. In

the premises, the fact !ZKA Pk() holds the root zones long-term agreement pub-

lic key (ZKAP). Incorporating this fact in the premise models the insertion of the

root zone’s long-term public agreement key as trust anchor in the resolver’s soft-

ware. The next three premises generate three fresh values: ephR, representing the

resolver’s ephemeral private agreement key; query, denoting the query data includ-

ing domain name and qid ; and Rnc, indicating the resolver’s nonce. In this rule,

the query is modeled as a fresh value which represents the entire query, which is

unknown to the adversary. In the action facts, QKeySecret() is here to be used for

proving the secrecy of session keys used for the authenticated encryption of queries.

Additionally, QDataSecret() action fact is included here for proving the secrecy of

query data. Both these action facts will be used when we are defining the query key

and data secrecy properties. The ResolverSendQuery() is another action fact used

in the executability lemmas for ensuring proper execution of the protocol model.

Role(‘R’) action fact is used for distinguishing the role of the resolver from the

nameserver in the proofs.

In the conclusion, the nonce (Rnc), the ephemeral public agreement key of the

resolver (‘g’^ephR) and the symmetrically encrypted query are sent out to the

network using the Out() fact. The query encryption key is generated using a KDF
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Listing 6.5: Resolver Sends Query

1 rule Res_1:

2 let

3 queryKey = kdf(< ~Rnc, ZKAP ^ ~ephR >)

4 query_data = < ~query, ’Query’ >

5 in

6 [ !ZKA Pk($K, ZKAP) // public long-term key of the root zone

7 , Fr(~ephR) // resolver’s ephemeral key

8 , Fr(~query) // query

9 , Fr(~Rnc) ] // resolver’s nonce

10 --[

11 ResolverSentQuery($R, ~qid, ~ephR)

12 , Role(’R’)

13 , QKeySecret($R, ~ephR, queryKey)

14 , QDataSecret($R, query_data)

15 , OUT R 1(<~Rnc, ’g’ ^ ~ephR, senc(query_data, queryKey)>)

16 ]->

17 [ Out( <~Rnc, ’g’ ^ ~ephR, senc(query_data, queryKey)> )

18 , Res State 1($R, ~ephR, ~qid, ~Rnc)

19 , !EskR($R, ~ephR) ]

that takes the nonce and a DH established key. The Res State 1() fact stores the

query state and maintains the order of executed rules. This fact will be used in the

premise of the rule wherein the resolver receives the response.

As demonstrated in the next rule (Listing 6.6), we model a nameserver that re-

ceives an encrypted query and sends an encrypted response back to the resolver. In

the premises of this rule, the fact !ZKA Sk() models the possession of the nameserver

to the zone’s long-term agreement private key. The resolver used the public com-

ponent of this key to generate a session key for the query encryption. By using this

key and the resolver’s ephemeral public agreement key and nonce, the nameserver

is able to decrypt the received query. The fact In() is for receiving an encrypted

query sent by a resolver from the network (from conclusion of Listing 6.5). The

fact !NS sstk Signed Sk() contains the short-term signing key of the nameserver,

as well as the signature for this short-term key, which was generated by the zone’s

key server in the delegation phase. The nameserver also generates two fresh val-

ues: one is ephN that represents the nameserver’s ephemeral agreement key, and

the other is Nnc, which is the nonce used for generating the response session key.

The Running() action fact is added for proving the authentication of the name-
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server in the properties. The Role(‘N’) action fact is added for distinguishing the

nameserver from the resolver roles in the definition of properties. Additionally, the

NS Sends Response() is an action fact which is used in the executability lemmas

for ensuring that the name resolution executes properly.

Listing 6.6: Nameserver Responds a Query

1 rule NS_1:

2 let

3 queryKey = kdf(<Rnc, epkR ^ ZKA>)

4 ResponseMaster = kdf(< ~Nnc, Rnc, epkR ^ ~ephN >)

5 query_data = < query, ’Query’ >

6 ephSig = sign(’g’ ^ ~ephN, stsk)

7 response_data = < ’Response’, ~response, query, $N, nid, stpk

, ephSig, stk_sig >

8 in

9 [ !ZKA Sk($K, ZKA) // long-term agreement private key

10 , In( <Rnc, epkR, senc(query_data, queryKey) > ) // query

11 , !NS sstk Signed SK(stk_sig, <$N, nid, stpk>, stsk)

12 , Fr(~ephN) // nameserver’s ephemeral key

13 , Fr(~Nnc) // nameserver’s nonce

14 , Fr(~response) ] // response

15 --[

16 Role(’N’)

17 , NS Sends Response($R, $N, qid, ’Response’, nid, stsk,

stk_sig)

18 , Running($N, $R, ’Nameserver’, < qid, ResponseMaster >)

19 , IN N 1(qid, <Rnc, epkR, senc(query_data, queryKey)>)

20 ]->

21 [

22 Out(< ~Nnc, ’g’ ^ ~ephN, senc( response_data, ResponseMaster

) >) // send encrypted response to network

23 ]

In the conclusion of this rule, the nameserver sends out to the network the sym-

metrically encrypted response alongside the nameserver’s freshly generated ephemeral

agreement public key (‘g’^ephN) and nonce (Nnc).

As demonstrated in Listing 6.7, the resolver receives the response from the name-

server rule (Listing 6.6) and verifies the signatures included within it. In the premises

of this rule, the resolver receives the response from the network using the In() fact.

Furthermore, the Res State 1() fact is derived from the conclusion of the rule in
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Listing 6.5, where the resolver sent the query and stored the query state informa-

tion, including the resolver’s ephemeral agreement key and the fresh nonce used for

query encryption. Additionally, the ZKS Pk() fact, initialized by the key server rule

in Listing 6.1, contains the zone’s long-term public signing key (herein included as

the trust anchor). The private component of this key was used in the delegation

process to sign the short-term signing key of the nameserver instances.

Listing 6.7: Resolver Receives Response

1 rule Res_2:

2 let

3 ResponseKey = kdf(< Nnc, Rnc, epkN ^ ephR >)

4 response_data = < ’Response’, $N, qid, nid, stpk, sig_epkN,

stk_sig >

5 in

6 [ In(< Nnc, epkN, senc(response_data, ResponseKey)>)

7 , Res State 1($R, ephR, qid, Rnc)

8 , !ZKS Pk($K, ltkPK)

9 ]

10 --[

11 Eq(verify(sig_epkN, epkN, stpk), true)

12 , Eq(verify(stk_sig, <$N, nid, stpk>, ltkPK), true)

13 , Role(’R’)

14 , SecretR(response_data)

15 , RKeySecret(ResponseKey)

16 , Commit($R, $N, ’Resolver’, < qid, ResponseKey >)

17 , ResolverReceivesResponse( ’Response’, qid)

18 ]->

19 []

The first two action facts within this rule (Lines 11–12) are used to verify the sig-

natures included in the received responses. Line 11 verifies that the ephemeral agree-

ment key of the nameserver is signed by its short-term signing key, and Line 12 vali-

dates that the short-term signing key of the nameserver was signed using the zone’s

long-term signing key during the delegation phase. The Role(‘R’) action fact will

be used for distinguishing the role of resolver from the nameserver. SecretR() is the

action fact, which will be used in the proof of response data secrecy. In Line 15, the

fact RKeySecret() will later be used in the proof lemmas for proving the secrecy of

the response keys received by the resolvers. The Commit() action fact is added to be

used in the entity authentication proof. Finally, the ResolverReceivesResponse()
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is a fact which is used in the executability lemmas for ensuring that the protocol

successfully completes, and the properties are not proved in without the proper

execution of the protocol. As there is no further steps in the protocol run, the

conclusion of this rule is empty.

6.3 Modelling the Security Properties

Following defining the symbolic mode of DNSSEC+ using Tamarin rules, in this

section, we model the specified security properties of DNSSEC+ as lemmas using

Tamarin’s syntax, and subsequently verify that these properties hold.

6.3.1 Secrecy of DNS Messages

Message secrecy in formal verification is generally defined as follows:

msg secrecy ≜ ∀ msg i. Secret(msg) @i → not ∃ j. K(msg)@j

This means: the definition of msg secrecy is for all instances of the term msg,

where msg is captured by the Secret() action fact at time point i, there does not

exist a time point j at which the adversary knows the msg.

Secrecy of Query Data

We formally define the secrecy property of queries (i.e., in the privacy-enforcing

mode of DNSSEC+) generated and sent by a legitimate resolver by the lemma

specified in Listing 6.8. This lemma asserts that whenever an encrypted query is sent

by a legitimate resolver at time point i (captured by the instance of QDataSecret(R,

QData) action), and none of the private agreement or signing keys of DNSSEC+ are

compromised (lines 4-8), then there is no time point j at which the adversary knows

the plaintext of the query message. In the verification of this property in Tamarin,

it is assumed that all keys within the protocol remain unknown to the adversary.

We used the query secrecy lemma and verified the secrecy of the query data in

Tamarin. Additionally, we independently verified the secrecy of the query encryption

key using another lemma in Tamarin. In the context of DNSSEC+, we assert that

the query secrecy property also implicitly proves the confidentiality of the query

session key (i.e., the derived key used for query encryption). If the query encryption
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1 lemma query_secrecy:

2 "All R QData #i .

3 QDataSecret(R, QData) @i & Role(’R’) @i &

4 not (Ex Z #t1 . RevLTAK(Z) @t1) &

5 not (Ex R #t2 . RevEphR(R) @t2) &

6 not (Ex N #t3 . RevEphN(N) @t3) &

7 not (Ex Z #t4 . RevLTSK(Z) @t4) &

8 not (Ex N #t5 . RevSTSK(N) @t5)

9 ==> not (Ex #j. K(QData) @j)"

Listing 6.8: Lemma for query secrecy (verified by Tamarin)

key is compromised, this property will be violated, as the adversary can decrypt and

gain knowledge of the query data in plaintext.

Secrecy of Response Data

The DNSSEC+ response encryption key is distinct from the encryption key used for

transmitting its corresponding query. In addition to the secrecy of the query data,

we also verify the secrecy of the response data received by a legitimate resolver as

an answer to a query sent by the same resolver. We define the lemma for response

data secrecy, as demonstrated in Listing 6.9, and use Tamarin to prove this lemma.

This lemma asserts that: for all protocol behaviors, if an encrypted response to a

query of a legitimate resolver is received by the resolver at time point i (captured

by the instance of RDataSecret(RData) action in line 3), and none of the private

agreement or signing keys are compromised, there is no time point j at which the

adversary knows the plaintext response. In this lemma, similar to query secrecy, we

assume that none of the protocol private keys are known to the adversary.

1 lemma response_secrecy:

2 All RData #i .

3 RDataSecret(RData) @i & Role(’R’) @i &

4 not (Ex Z #t1 . RevLTAK(Z) @t1) &

5 not (Ex R #t2 . RevEphR(R) @t2) &

6 not (Ex N #t3 . RevEphN(N) @t3) &

7 not (Ex Z #t4 . RevLTSK(Z) @t4) &

8 not (Ex N #t5 . RevSTSK(N) @t5)

9 ==> not (Ex #j. K(RData) @j)"

Listing 6.9: Lemma for response secrecy (verified by Tamarin)

The proof of the response secrecy lemma in Tamarin verifies that DNS re-
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sponses of queries received by a legitimate resolver remain unknown to the adversary.

Additionally, we independently verified the secrecy of the response encryption key

using a separate lemma in Tamarin. Furthermore, in the context of DNSSEC+, the

response secrecy lemma implicitly ensures the secrecy of the response encryption

keys. If the response encryption key becomes known to the adversary, this property

would not hold, as the adversary would then be able to decrypt and learn the re-

sponse. Thus, response encryption key secrecy is a necessary condition for response

message secrecy in DNSSEC+ (because the response is encrypted once using a single

key).

A note on the secrecy of DNS queries and responses. In DNSSEC+,

if an adversary gains access to the plaintext of the response data, the secrecy of

the query is also compromised, as the query data (e.g., question and query ID

fields) is included in the response, as required by the DNS standard [119]. On

the other hand, the compromise of the plaintext query does not directly lead to

the compromise of the response in DNSSEC+. This is because the keys used to

encrypt queries and responses are distinct, and the response section of data is not

included in the query messages. However, given that DNS data is generally public,

an adversary with knowledge of the query’s question might independently resolve

the same query to determine the corresponding response. Thus, while the adversary

cannot directly extract the response from DNSSEC+ queries, access to plaintext

query enables inference of the response through independent resolution. These two

inherent characteristics of DNS highlight the importance of the confidentiality of

both queries and responses, as the lack of secrecy in one may render the secrecy of

the other futile.

6.3.2 Forward Secrecy

In DNSSEC+, the response session keys are derived from ephemeral keys of both

resolvers and nameservers. As a result, these session keys satisfy forward secrecy,

meaning that even if the long-term zone and nameserver signing keys are compro-

mised (i.e., LTSK and STSK), the session keys from prior DNS resolutions remain

unknown to the adversary. As illustrated in Listing 6.10, forward secrecy lemma is

formally defined within our Tamarin model and subsequently proved using Tamarin.

For all protocol behaviors, when a resolver receives a response encrypted with a ses-

sion key at time point i (modeled by RKSecret(Rkey) action) and none of the
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private agreement keys are compromised at any time, and also none of the long-

term signing keys are compromised before the response is received (lines 4 and 5),

then there is no time point j at which the adversary knows the session key.

As stated in lines 4 and 5 (Listing 6.10), the long-term keys LTSK and STSK must

not be compromised before the response is received and captured by the RKSecret()

fact at time point i. Therefore, by adding (t1 < i and t2 < i) to the conditions,

we are allowing the possibility that the adversary can know LTSK and STSK after the

response is received at i. If the signing keys LTSK and STSK are compromised before

the response is received, and the adversary has access to a query, the adversary

could use these signing keys to impersonate the zone or nameserver and inject a

false response, and the encryption key would then be known to the adversary, which

violates both secrecy and forward secrecy of the response encryption keys. Thus,

the compromise of query secrecy and one of these long-term keys undermines the

forward secrecy of DNS response keys and secrecy of DNSSEC+ responses.

1 lemma response_sesskey_FwdSecrecy:

2 "All Rkey #i .

3 RKSecret(Rkey) @i & Role(’R’) @i &

4 not (Ex Z #t1 . RevLTSK(Z) @t1 & t1 < i) &

5 not (Ex N #t2 . RevSTSK(N) @t2 & t2 < i) &

6 not (Ex Z #t3 . RevLTAK(Z) @t3) &

7 not (Ex R #t4 . RevEphR(R) @t4) &

8 not (Ex N #t5 . RevEphN(N) @t5)

9 ==> not (Ex #k. K(RKey) @k)"

10

Listing 6.10: Lemma for response key forward secrecy (verified by Tamarin)

6.3.3 Unilateral Authentication

Nameserver unilateral authentication is formally defined as a unilateral injective

agreement [109, 170], as illustrated in the lemma in Listing 6.11. The unilateral

authentication lemma is defined as an agreement on a specified set of values, in-

cluding keys and identities, in the matching runs between resolvers and name-

servers [51, 109], and then proved using Tamarin. It asserts that for all proto-

col behaviors, each Commit action by the resolver upon receiving a response with

the specified data implies that, if none of the private agreement and signing keys

within the protocol are known to the adversary, there exists a unique Running action
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(lines 10–12) performed by the nameserver with the same data. As there is a unique

Running action preceding each Commit action, DNSSEC+ effectively prevents replay

attacks by utilizing a fresh nonce for each response, which is included in the agreed

upon data in this lemma.

The proof of the authentication property in Listing 6.11 guarantees that the

resolver can verify the authenticity of responses received from a nameserver, provid-

ing only the authentication of the nameserver. However, this lemma cannot validate

that RES2 is equal to RES, as unilateral authentication implies that only the re-

solver authenticates the nameserver (i.e., NS in lines 3 and 10 are equal). Therefore,

no mutual authenticity guarantee, by including the equality between RES2 in the

Running action and RES in the Commit action, can be inferred from the unilateral

authentication property defined in this lemma. This is because in DNSSEC+, only

resolvers are responsible for authenticating nameservers, whereas the nameservers

do not authenticate resolvers.

1 lemma unilateral_injective_agreement:

2 "All RES NS data #i.

3 Commit(RES, NS, ’Resolver’, data) @i &

4 not (Ex Z #t1 . RevLTAK(Z) @t1) &

5 not (Ex R #t2 . RevEphR(R) @t2) &

6 not (Ex N #t3 . RevEphN(N) @t3) &

7 not (Ex Z #t4 . RevLTSK(Z) @t4) &

8 not (Ex N #t5 . RevSTSK(N) @t5)

9 ==>

10 (Ex RES2 #j. Running(NS, RES2, ’Nameserver’, data) @j & j < i &

11 not (Ex RES3 NS2 #i2. Commit(RES3, NS2, ’Resolver’, data) @i2

12 & not (i2 = i)))"

Listing 6.11: Lemma for unilateral nameserver authentication (verified by Tamarin)

Summary. In this section, we formally modeled the security and privacy prop-

erties of DNSSEC+ by defining their lemmas. Subsequently, we used Tamarin to

automatically construct proofs for each property in the presence of the Dolev-Yao

adversary. The analysis did not yield any counterexamples indicating attacks, and

the proof for each lemma was generated in Tamarin.
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6.4 Implications of Key Compromises

In Section 6.3, we defined and proved the properties of DNSSEC+ under the as-

sumption that if none of the agreement or signing keys within the protocol are

compromised, then the defined properties for the protocol are valid and verifiable

in Tamarin. In this section, we investigate the implications of key compromises in

DNSSEC+ using Tamarin. To this end, we allow each agreement key or signing key

to be compromised (become known to the adversary), and then determine whether

the properties from Section 6.3 still hold. Subsequently, we extend our analysis for

multiple protocol keys being compromised, modeling the compromise of different

entities within DNSSEC+. As an example, we find that if resolvers are compro-

mised, only the ephemeral private agreement key of the resolvers (ephR) will be

compromised. Table 6.2 summarizes the results, which are explained in details in

the following two subsections: 6.4.1 and 6.4.2.

6.4.1 Single Key Compromises

Long-term Agreement Key (LTAK): The long-term agreement key of a zone

(LTAK) is used by resolvers to derive query encryption keys. We allow this key to

become known to the adversary and retry to generate the proofs for the lemmas that

were proved in Section 6.3. As summarized in Table 6.2, if the LTAK is compromised,

only the query secrecy property can no longer be proved, and Tamarin identifies a

corresponding attack. Using the LTAK, with the resolver’s nonce and public agree-

ment key, an adversary can derive the query encryption key, and thereby decrypt

the query. However, since the remaining properties are related to responses and the

response encryption keys are different from those for queries, the other properties

remain valid.

Long-term Signing Key (LTSK): The long-term signing key (LTSK) of a zone

is used by the key server to sign the public signing keys of the nameservers as part

of the zone-side delegation process, thereby enabling the nameservers to respond to

client queries with verifiable authenticity. We allow this key to become known to

the adversary and attempt to recreate the proofs from Section 6.3. The compromise

of LTSK alone does not undermine the query secrecy property, as it does not impact

the confidentiality of queries. Tamarin successfully proves this property in this

scenario. Similarly, response secrecy remains intact and is proved by Tamarin, since
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an adversary possessing the LTSK cannot decrypt responses, nor can they generate

or inject false responses without access to the corresponding query, which is then

embedded within the response.

Furthermore, the response key forward secrecy property is proved by Tamarin,

as the compromise of LTSK does not impact the private agreement keys required to

derive the response encryption key. For an adversary to impersonate a nameserver

or inject a known false response, access to the query is necessary for generating an

acceptable false response.

Finally, when the LTSK is compromised, the resolver can still authenticate the

nameserver, preserving the validity of the entity authentication property in Tamarin.

Since the adversary cannot access the query information and response encryption

keys, the adversary cannot compromise the authenticity of the nameserver responses,

received by legitimate resolvers (as proved by Tamarin). Overall, by compromising

LTSK alone, an adversary can delegate authority to malicious nameservers by sign-

ing their short-term key structures. However, these malicious nameservers cannot

respond to legitimate queries without access to query decryption keys.

Short-term Signing Key (STSK): Similar to the long-term signing key (LTSK),

as proved by Tamarin, the compromise of private (STSK) does not impact the query

secrecy property, as this key is not utilized for query encryption. Furthermore, the

compromise of a nameserver’s STSK alone does not undermine the proof of response

secrecy in Tamarin. This is because the STSK is not directly used for encrypting

responses, and without access to the query data embedded in responses, an adversary

cannot generate and inject false responses, which are acceptable (by the legitimate

resolver) and known to the adversary.

Regarding the response forward secrecy property, possession of the STSK alone

does not allow the adversary to compromise the forward secrecy of response keys.

Additionally, the adversary cannot impersonate the nameserver, as the query data

is still required to generate responses, and this data cannot be accessed by the

attacker solely by having access to STSK. Regarding entity authentication, it is proved

by Tamarin as the adversary does not have access to the query to generate false

responses, and also does not have access to response encryption keys to compromise

the authenticity of the legitimate nameserver responses directly.

Ephemeral Nameserver Agreement Key (ephN): ephN is the ephemeral pri-

vate agreement key used on the nameserver-side to derive the response encryption
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key. Compromise of this key directly undermines the response secrecy property in

Tamarin, enabling the adversary to derive the response encryption key. Addition-

ally, as the query data is embedded within responses, this compromise would also

undermine the query secrecy as the adversary obtains query information from its

corresponding response.

Regarding the response key forward secrecy property, the compromise of the

ephemeral agreement keys render the response encryption key accessible to the ad-

versary, thereby violating forward secrecy regardless of the secrecy of the long-term

keys. Furthermore, possession of the response encryption key allows the adversary

to directly violate the nameserver authentication property (e.g., by modifying re-

sponses).

Ephemeral Resolver Agreement key (ephR): ephR is the ephemeral private

agreement key used for deriving both query and response encryption keys. Thus,

if the ephR of resolvers are known to the adversary, then both the query secrecy

and response secrecy would be directly compromised. Additionally, as the response

encryption key becomes known to the adversary, the response key forward secrecy

property does not hold regardless of the secrecy of the long-term keys. Finally,

the nameserver authentication would also be compromised, if ephR is compromised,

because an adversary knowing this key can directly modify the nameserver-generated

responses.

6.4.2 Entity Compromises

Three main types of entities are involved in the the DNS resolution of DNSSEC+:

resolvers, nameservers, and key servers. Here we explain the implications of com-

promise of each of these entities on the properties of DNSSEC+.

Resolver: In DNSSEC+, the only private key that resolvers have access to

is the ephemeral private agreement keys (ephR) they generate. Consequently, if

resolvers are compromised, the adversary would gain access to ephR. The impact

of a resolver compromise on the defined security properties is therefore equivalent

to the compromise of ephR itself. Thus, all of the defined query and response

properties would be violated by the attacker if resolvers are compromised, as shown

in Table 6.2.

Nameserver: In DNSSEC+, nameservers have access to the zone’s long-term

private agreement key (LTAK), their short-term signing key (STSK), and ephemeral
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Compromised
key/entity

Query
Secrecy

Response
Secrecy

Response Key
Fwd Secrecy

Nameserver
Authentication

LTAK ✗ ✓ ✓ ✓

LTSK ✓ ✓ ✓ ✓

STSK ✓ ✓ ✓ ✓

ephN ✗ ✗ ✗ ✗

ephR ✗ ✗ ✗ ✗

Nameserver ✗ ✗ ✗ ✗

Key server ✗ ✗ ✗ ✗

Resolver ✗ ✗ ✗ ✗

Table 6.2: Impact of key and entity compromises on the properties of DNSSEC+.
Columns represent the defined protocol properties, and rows show the keys and
entities within DNSSEC+. Each cell in the table indicates whether a property still
holds or not if the corresponding key or entity is compromised. (Keys compromised
due to entity compromises in DNSSEC+: Nameserver : ALTK, STSK, and EphN.
Key server : ALTK and SLTK. Resolver : EphR)

agreement keys (ephN). Consequently, if nameservers are compromised, all these

keys become known to the adversary. Possession of the ephemeral agreement key

(ephN) alone enables the adversary to compromise all defined security properties

(as shown in Table 6.2), regardless of the secrecy of the other keys. Therefore, the

compromise of a nameserver renders all the properties ineffective.

Key Server: In DNSSEC+, key servers are responsible for generating and man-

aging the long-term agreement key of a zone (LTAK), which is used for deriving query

encryption keys. Furthermore, key servers also manage the long-term signing key of

the zone (LTSK), which facilitates the delegation of authorization to the nameservers

within a zone. Compromise of the LTAK enables an adversary to decrypt queries,

thereby undermining the query secrecy property. Access to plaintext queries, com-

bined with the compromised LTSK, allows the adversary to impersonate the zone

or associated nameservers and inject false responses. The compromise of these two

long-term keys also enables an adversary to impersonate a zone and to inject false

responses using arbitrary response encryption keys, violating both response secrecy

and response key forward secrecy. Additionally, the ability to impersonate name-

servers and to inject false responses violates the nameserver authentication property.

Overall, as illustrated in the bottom three rows of Table 6.2, the compromise of

any entity involved in the DNS resolution process of DNSSEC+ undermines all four
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properties formally established in Section 6.3.

6.5 Discussion

Query Compromise. The compromise of a query in DNSSEC+ alone does not

result in the adversary gaining knowledge of its corresponding response. However,

since DNS records are not typically secret, an adversary who knows the query can

resolve the query independently to obtain its corresponding response. This is not

a flaw in DNSSEC+, but an inherent property of DNS itself. While the lack of

query confidentiality in DNS allows adversaries to independently resolve the same

queries, DNS responses to a single query can vary in specific scenarios. For example,

responses may differ in cases where Content Delivery Networks (CDNs) return re-

sponses based on the geographic/network location of the query’s source IP address,

or other scenarios where different load-balancing mechanisms are employed.

Additionally, some nameservers are configured to provide different responses

based on query metadata and querent profile, including the transport layer pro-

tocol, source address, and other metadata parameters. For example, a nameserver

might white-list “ANY” queries to specific network locations or addresses. Such con-

figurations may result in different DNS responses for identical queries. Consequently,

even when queries are not encrypted, an adversary resolving the same query may

not necessarily receive a response identical to the one provided to the original query.

Secrecy in Tamarin. In Tamarin, secrecy is defined as the adversary’s lack

of knowledge regarding a specific term, such as a message or a cryptographic key.

However, there are two main cases within our model through which an adversary

may gain knowledge of a specific term. The case involves accessing the plaintext of

encrypted messages from a legitimate protocol execution. The second requires the

adversary impersonating one of the protocol’s entities and injecting a false response,

thereby having access to the plaintext of the injected response. The latter does

not constitute a direct secrecy attack but rather an impersonation attack; conse-

quently, the encrypted legitimate protocol interactions are not necessarily compro-

mised. Nevertheless, the adversary’s ability to inject an arbitrary message that it

is aware of represents a violation of the message secrecy. In this paper, we have

proven message secrecy in this Tamarin conventional manner and have considered

both scenarios as violations of secrecy.
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Model Details. Tamarin has a pre-computation phase during which it deter-

mines the sources of protocol and intruder facts to reuse them in later analysis.

However, for certain protocols, Tamarin may fail to correctly identify the sources

of specific facts, resulting in an incomplete pre-computation phase. To address this

issue, users must manually define a special type of lemma, referred to as a “source

lemma”, to explicitly clarify the origins of values for which Tamarin lacks sufficient

information. In our work, we defined and used a source lemma to enable Tamarin

to successfully complete the pre-computation phase. This source lemma and other

details defined in the model are included in the publicly available source code of our

theory.1

6.6 Summary

In this chapter, we developed a symbolic model of DNSSEC+ and conducted a

formal verification of its security and privacy properties. Furthermore, we analyzed

the impact of key and entity compromises on these verified properties. In Chapter 7,

we revisit the research questions of this thesis, review how they have been addressed,

and discuss potential future research directions.

1https://github.com/Ali-Jahromi/FormalAnalysisDNSSECPlus
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Chapter 7

Discussion and Concluding Remarks

DNS is a critical component of the Internet, enabling the resolution of hundreds of

billions of queries each day.1 Consequently, the security, privacy, and availability of

these entities relying upon DNS are inevitably tied to the security and privacy of

the name resolution schemes used.

Based on the research questions outlined in Chapter 1, the initial objective of

this thesis was to identify the threats of the name resolution process and to define

a set of properties sufficient to mitigate these threats. The second objective was

to develop a systematic evaluation framework for assessing schemes designed to

enhance the security of the DNS resolution process. The third was to propose an

improved scheme to augment the security and privacy of the DNS resolution process

in Stage 2.

7.1 Addressing the Research Questions

In this section, we revisit the research questions and explain how they have been

addressed in this thesis.

RQ1. What are the primary security and privacy threats facing the DNS reso-

lution process; and, what security, privacy, and availability properties are sufficient

to effectively mitigate these threats?

In Chapter 3, we developed a comprehensive threat model of the DNS resolution

process with the primary focus on network-based attacks. The identified DNS reso-

lution threats were categorized into five main groups based on their technical goals,

with the techniques employed by attackers to achieve these objectives summarized

in Figure 3.1. To mitigate the DNS resolution threats outlined in the threat model

and attack taxonomy, we subsequently defined 14 security, privacy, and availability

properties for the DNS resolution process. These properties were established based

on insights from the threat model and the literature review of DNS security and

shortcomings of previously proposed secure DNS schemes (Chapter 2).

1https://vercara.com/resources/2023-dns-traffic-and-trends-analysis
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RQ2. What type of evaluation framework could be developed to objectively

evaluate the security and privacy of both existing and future DNS schemes designed

to enhance the security or privacy of the DNS resolution process?

To address this question, Chapter 2 presents a comprehensive literature review

of secure DNS schemes in Stages 1 and 2. This chapter also includes an analysis of

security and privacy enhancements to the DNS resolution process, distinguishing be-

tween approaches that require minimal modifications to the existing DNS and those

that require significant changes to the Vanilla DNS infrastructure and processes.

Building on this analysis, a systematic evaluation framework was developed to

assess DNS security schemes based on 14 defined security, privacy, and availability

properties that we asserted to be sufficient to address the identified threats to the

DNS resolution process. Utilizing this framework, Table 3.1 provides an evaluation of

11 secure DNS schemes identified in the literature review (Chapter 2). The findings

from this evaluation were further used for a discussion on the existing challenges in

the DNS resolution process.

This framework offers insights into the limitations of the analyzed schemes and

we hope that it may be of use as a foundation for the design and analysis of future

DNS security solutions by providing an objective approach for their evaluation.

RQ3. How can an enhanced Stage 2 DNS resolution scheme be designed and

developed to augment the security and privacy in Stage 2 of the DNS resolution

process?

Chapter 4 introduced DNSSEC+, a novel secure DNS scheme in large part moti-

vated by the benefits and shortcomings of DNSSEC. We defined 9 security, privacy,

deployability, and performance-related design goals for DNSSEC+. To achieve these

objectives, we described the required entities and processes involved in secure dele-

gation, trust model establishment, and name resolution within DNSSEC+.

The secure delegation mechanism here is a key feature of DNSSEC+. It mitigates

the risks associated with replicating long-term secrets across ANS instances within

zones, thereby reducing the risk of the exposure of long-term secrets via attacks

on these ANS instances. Additionally, DNSSEC+ was designed to complete the

name resolution process in a single round-trip, and as the network latency is the

dominant latency in DNS resolution, the total DNS resolution latency of DNSSEC+

is comparable to that of Vanilla DNS.

One of the primary barriers to the adoption and deployability of secure DNS
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schemes is the absence of an accepted trust model by root and TLD authorities in

the DNS hierarchy. To address this challenge, DNSSEC+ uses a DNSSEC-like trust

model, which has been accepted and adopted by root and TLD authorities. This

model is suitable for the DNS context as it maintains root zone authority without

reliance on external entities. Using this trust model enables DNSSEC+ to include

nameserver keys within DNS responses while simultaneously achieving the single

round-trip resolution goal.

To assess effectiveness, Chapter 5 presents a comparative evaluation of DNSSEC+

with other Stage 2 schemes with respect to their security, privacy, and availability

properties. Additionally, we implemented a prototype of DNSSEC+ and conducted

performance measurements for comparison with previously proposed secure DNS

schemes. The results demonstrate that DNSSEC+ achieves performance compara-

ble to existing schemes while offering enhanced security and privacy properties.

To gain further confidence in the security and privacy properties of DNSSEC+,

Chapter 6 presents a formal verification of the protocol using Tamarin, based on

a symbolic model of DNSSEC+. Furthermore, we analyzed the impact of key and

entity compromises on the security and privacy properties of DNSSEC+, demon-

strating the protocol’s resilience against potential threats.

7.2 Future Research Directions

In this section, we outline potential research directions for future work. These extend

investigations conducted in this thesis or address new problems identified herein.

Expanding Threat Modeling to Additional Aspects. In Section 3, a com-

prehensive threat model and attack taxonomy was developed, focusing specifically

on network-based attacks within the DNS resolution process. However, other critical

processes and threats within the DNS ecosystem, such as domain registration, zone

transfers, and the exploitation of DNS for malicious activities—such as botnet com-

munication or data exfiltration—were beyond the scope of this thesis. Expanding

threat model to include these would be worthwhile and serve as a stepping stone for

the development of effective mitigation mechanisms.

Systematic Evaluation of Usability and Deployability. In Section 3.3, an

objective framework was developed to evaluate the security, privacy, and availabil-

ity properties of secure DNS schemes. However, to achieve a broader systematic
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understanding, additional factors may include those related to usability and deploy-

ability. Extending our objective evaluation framework for these aspects would be

worthwhile, as usability and deployability barriers can prevent adoption of secure

DNS schemes.

Adapting DNSSEC+ for Stage 1. In Chapter 4, DNSSEC+ was proposed

and designed to augment security and privacy in Stage 2. The current design employs

a reverse-tree DNSSEC-like PKI, specifically tailored for a Stage 2 scheme. However,

we believe that DNSSEC+ can be modified to work with alternative PKIs, enabling

its application in Stage 1 to secure communication between clients and recursive

resolvers while maintaining a single round-trip resolution with minimal latency and

overhead. For instance, DNSSEC+ could be implemented in Stage 1 using the web

PKI, with CA public keys configured as trust anchors in the client (stub resolver)

software. A potential avenue for future research is to explore how DNSSEC+ can

be extended to Stage 1 by modifications that incorporate PKIs with trust models

different from the current reverse-tree trust model used in DNSSEC+, maintaining

its security and privacy benefits while minimizing overhead.

Utilizing DNSSEC+ to Enhance the Security of Internet Protocols.

As discussed in the literature review (Chapter 2) and the threat model (Chapter 3),

vulnerabilities in the DNS infrastructure have been exploited to compromise the

security and privacy of various Internet protocols and ecosystems. Future research

could explore the practical applications of DNSSEC+ in securing critical Internet

processes, such as domain validation in the web PKI [30], enhancing security and

privacy in VPN connections [138], and strengthening other network protocols that

rely on DNS [43].

Securing the Entire DNS Resolution. To enhance the security of the en-

tire DNS resolution path, the integration or combination of DNSSEC+ with other

Stage 1 schemes could be explored, aiming to deliver new combinations of secu-

rity, privacy, and performance properties, that meet the requirements of different

use cases. As a potential future research direction these combinations might be

analyzed to demonstrate their properties and suitability across different contexts.

Practical Adoption of DNSSEC+. For practical adoption, we expect that

the proper path would be to introduce discussion of DNSSEC+ to the IETF commu-

nity through the appropriate IETF Working Group (WG), which would be the one

that is responsible for DNSSEC (and other similar proposals). The steps would be
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(after an initial academic-style publication as is already in progress), to prepare an

IETF working draft that would receive technical feedback from the IETF commu-

nity (drawing upon its practical and deployability expertise in particular). Based on

this feedback, the document could evolve into a formal RFC, endorsed by the work-

ing group, most likely incorporating technical revisions to the scheme as specified

in the thesis. Whether or not that would actually lead to adoption of DNSSEC+ is

impossible to predict, as even DNSSEC itself has seen a very slow uptake over time

despite substantial expert support behind it.
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[28] Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leão Fernandes, Gareth

Tyson, Ignacio Castro, and Steve Uhlig. An empirical study of the cost of

DNS-over-HTTPS. In ACM Internet Measurement Conference (IMC), 2019.

[29] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authentica-

tion and Key Establishment. Springer, 2020.

[30] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael

Waidner. Domain validation++ for MitM-resilient PKI. In ACM Conference

on Computer and Communications Security (CCS), 2018.

[31] Marc Buijsman, Matthijs Mekking, and Jeroen van der Ham. Securing the

last mile of DNS with CGA-TSIG. Research Project, 2, 2014.

153

https://dnscurve.org
https://dnscurve.org


Bibliography

[32] Rishabh Chhabra, Paul Murley, Deepak Kumar, Michael Bailey, and Gang

Wang. Measuring DNS-over-HTTPS performance around the world. In ACM

Internet Measurement Conference (IMC), 20201.

[33] L. Chuat, A. Abdou, R. Sasse, C. Sprenger, D. Basin, and A. Perrig. SoK:

delegation and revocation, the missing links in the Web’s chain of trust. In

IEEE European Symposium on Security & Privacy, 2020.

[34] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran,

David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wil-

son. A longitudinal, end-to-end view of the DNSSEC ecosystem. In USENIX

Security Symposium, 2017.

[35] Cloudflare. Merkle Town. https://ct.cloudflare.com/, 2018. Accessed:

2024.

[36] Carlo Contavalli, Wilmer van der Gaast, David C. Lawrence, and War-

ren “Ace” Kumari. Client Subnet in DNS Queries. RFC 7871, 2016.

[37] Alex Cowperthwaite and Anil Somayaji. The futility of DNSSEC. In Annual

Symposium Information Assurance (ASIA). Citeseer, 2010.

[38] Russ Cox, Athicha Muthitacharoen, and Robert T. Morris. Serving DNS using

a peer-to-peer lookup service. In Peer-to-Peer Systems. Springer, 2002.

[39] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Auto-

mated analysis and verification of TLS 1.3: 0-RTT, resumption and delayed

authentication. In IEEE Symposium on Security and Privacy (S&P), 2016.

[40] Mark Crovella and Balachander Krishnamurthy. Internet Measurement: In-

frastructure, Traffic and Applications. John Wiley & Sons, Inc., 2006.

[41] Joao da Silva Damas, Michael Graff, and Paul A. Vixie. Extension Mechanisms

for DNS (EDNS(0)). RFC 6891, 2013.

[42] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke

Lee. Increased DNS forgery resistance through 0x20-bit encoding: security via

leet queries. In ACM Conference on Computer and Communications Security

(CCS), 2008.

154

https://ct.cloudflare.com/


Bibliography

[43] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. From

IP to transport and beyond: cross-layer attacks against applications. In ACM

SIGCOMM Conference, 2021.
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