9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

Even Hackers Deserve Usability:
An Expert Evaluation of Penetration Testing Tools

Michael Bingham, Adam Skillen, and Anil Somayaji
Carleton Computer Security Lab
Carleton University
Ottawa, Canada
{mbingham, askillen, soma} @ccsl.carleton.ca

Abstract—Penetration testing is a necessary task to prevent
or mitigate network intrusion. System administrators often use
various penetration testing tools to aid in testing their networks;
systems administrators, however, often do not have significant
security expertise. It is thus important that penetration testing
tools be usable by non-security experts. Here we examine the
extent to which two commonly used penetration testing tools,
Nessus and Metasploit, are usable by non-experts using a heuristic
walkthrough. We identify pitfalls in user interface design, software
configuration, and user notification which may hamper a non-
security expert’s ability to use such tools effectively. We propose
user interface improvements to address issues identified by our
evaluation. We also report on the efficacy of the domain-specific
heuristics we selected for penetration testing usability.

Keywords—Usable Security; Expert Evaluation; Administra-
tive Tools

I. INTRODUCTION

Software usability evaluations typically consider the average
computer user. In contrast, systems administrators are often
regarded as a special breed of user that possesses limitless
technical knowledge and skill. These idealized administrators
should be able to overcome any software shortcomings that
would otherwise frustrate or prevent the average user from
completing required tasks. As such, IT management tools are
often not designed with usability in mind.

Experienced system administrators will often be experts in
the use of the tools they use on a regular basis. Infrequently
performed tasks, however, will require sysadmins to use tools
for which they have little to no expertise. Even worse, these
tools will often encapsulate domain-specific knowledge beyond
the regular experience of sysadmins. A particularly significant
example of such an infrequent task is penetration testing.

With penetration testing, system administrators or security
professionals simulate attacks to discover vulnerable systems
and network components [11]. While full penetration testing
(e.g., in the form of “red teams”) is a complex, specialized skill,
system administrators must often do limited penetration testing
in order to determine whether their systems are vulnerable to
specific high-profile attacks. If their systems are vulnerable
they may have to drop everything and implement emergency
remediation strategies; if not, they can ignore the issue and
continue on with their normal tasks. Because penetration tools
are used infrequently but in circumstances where errors can be
critical, we assert that commonly used penetration testing tools
should be as usable as possible by system administrators who
are neither experts in these tools nor in computer security.

Building upon system management design principles in
the literature (e.g., [2], [5], [3]; see Section III) we evaluate
the usability of two commonly used penetration testing tools,
Nessus [12] and Metasploit [8], from a systems administrator’s
point of view. We carry out a heuristic walkthrough [10] with
two evaluators. The evaluators follow a typical penetration
testing use case (see Section II). We use the Carleton Computer
Security Lab (CCSL) [1] as our testbed. The CCSL has a small
network with roughly a dozen servers. Despite the small size,
the CCSL network does provide most of the components and
services one would expect to find in a production network
from a large organization (e.g., remote login, web applications,
identity management, authoritative domain name services).

Our contribution here are as follows. To the best of our
knowledge, this work is the first usability analysis of penetration
testing tools as well as being the first usability evaluation
of Nessus and Metasploit. We propose several changes to
both tools to improve their usability. We also develop a set a
heuristics for evaluating penetration testing tools based upon
standard approaches to penetration testing. Our results indicate
that the heuristic walkthrough is a viable technique for usability
evaluation of security management tools and that our heuristics
can help identify usability issues.

The rest of this paper proceeds as follows. We first
describe background on penetration testing in Section II.
Section III outlines our evaluation methodology including
our chosen evaluation heuristics. (The specific tasks used in
each walkthrough are described in the Appendix.) Section IV
presents the results of our evaluation, and Section V presents
our recommendations for improving the user interfaces of both
tools. We discuss the utility of our approach in Section VI;
Section VII concludes.

II. BACKGROUND

Penetration testing [11] involves discovering exploitable
vulnerabilities in a target system, service, or network. The first
part of the process involves identifying vulnerabilities. Due to
the high probability of false positives, the vulnerabilities should
then be verified before wasting time and effort by addressing
problems that do not exist.

Many papers have been published about penetration testing
design and methodology (e.g., [7], [6], [11]). However, most
such publications assume the audience is already familiar
with the fundamentals of penetration testing, mostly discuss

ASIA ’14 - 13

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

innovation in technique, and do not take into consideration
design aspects that would affect the usability for the end user.

A number of tools exist (e.g., Nessus [12], Nexpose1 and
OpenVAS?) to perform the vulnerability scanning. These tools
perform discovery steps (typically port scans, DNS queries,
user enumeration, and OS/service fingerprinting) then check the
discovered services against databases of known vulnerabilities.
To verify the true positives, exploits can be researched in
public databases of known exploit payloads. Alternatively, tools
such as Metasploit [8] can be used to automate vulnerability
verification. After verifying true positive vulnerabilities, the
administrator must then determine which assets are most
valuable and assess the cost of providing reasonable protection
for those vulnerable systems.

While there has been extensive work in the usable se-
curity, to our knowledge there has been no previous work
in evaluating the usability of penetration testing tools, and
indeed there is very little work on the usability of system
administration tools in general. Most work in usable security
centers around user studies. System administrators do not lend
themselves to user studies, however, because of the difficulties
in getting a large enough and representative subject population;
thus, we need alternative methodologies. While ethnographic
studies are useful for evaluating more commonly used system
administration tools [4], we believe there is a need for less
resource-intensive methods for evaluating the usability of tools
for systems administration. We address this question further in
the discussion.

III. METHODOLOGY

We chose to evaluate the Nessus [12] vulnerability scanner
along with the Metasploit [8] exploitation automation engine.
These tools are well tested and have wide spread industry
adoption. We tested the free or community editions of these
tools with their provided web-based front-ends. In the case of
Metasploit, we registered for a free professional edition trial,
to assess features that were unavailable in the free edition.

Our testbed, the CCSL network, has 128 dedicated (publicly
routable) IP addresses. The CCSL network is divided into two
subnets, with unrestricted access to the public Internet through
the Carleton University network backbone. The CCSL runs
roughly a dozen servers and administers a dozen permanent
workstations (mostly Ubuntu GNU/Linux and Apple MacOS).
Several other networked devices (e.g., printers) also interface
with the CCSL network. All network infrastructure devices
(e.g., switches, routers, firewalls) are locally administrated.
Additionally, CCSL provides a wireless access point and virtual
local network access from some other Carleton University
subnets. Despite the small size, the CCSL does provide all
the components and services one would expect to find in a
production network from a large organization. As such, we feel
that the CCSL provides a realistic environment for penetration
testing by systems administrators.

Our expert evaluation involves two evaluators to assess the
usability of both selected software components. The evaluations
take the form of a heuristic walkthrough [10]. The motivation

Uhttp://www.rapid7.com/products/nexpose/
Zhttp://www.openvas.org/

of a heuristic walkthrough is to bridge the gap between
the cognitive walkthrough and heuristic evaluation usability
assessment methods.

A cognitive walkthrough follows a strict structure, guided
by scenarios or use-cases. The evaluator usually assumes the
persona(s) of the expected end user(s), while following the steps
outlined in the scenarios. During the evaluation, the evaluator
is focused on four basic questions related to user interface
usability:

1) Will users know what they need to do next?

2) Will users notice that there is a control (e.g., button,
menu) available that will allow them to accomplish
the next part of their task?

3) Once users find the control, will they know how to use
it (e.g., click on it, double click, pull-down menu)?

4) If users perform the correct action, will they see that
progress is being made toward completing the task?

The main criticism of a cognitive walkthrough is that it is too
tightly structured (i.e. evaluators are unlikely to find issues that
arise outside of the provided scenarios).

The counterpart to the cognitive walkthrough is the heuristic
evaluation. Unlike the cognitive walkthrough, the heuristic
evaluation is not structured based on tasks. Evaluators are
expected to explore the software freely and identify any
issues they discover. Instead of standard user interface-focusing
questions, evaluators are provided with a set of heuristics
to identify shortcomings. These heuristics are often domain
specific (and hence identify problems that are outside the scope
of the cognitive walkthrough focusing questions). The main
criticism of heuristic evaluations is that it is not focused enough:
evaluators may spend too much time on parts of the software
that the user will rarely ever see.

The heuristic walkthrough uses a two-pass approach: the
first pass follows the cognitive walkthrough and the second
pass follows a heuristic evaluation. It is expected that the
evaluator will benefit from the first pass by learning the
typical interactions between the end user and the software.
The evaluator learns the expected use cases while identifying
general usability issues, in the first pass. The second pass is
free-form, in the spirit of the heuristic evaluation. However, at
this point the evaluator is familiar the intended use-cases of
the software and can focus the heuristic evaluation on these
common tasks.

A. First pass—task oriented

The specific use cases we evaluate are based on the two
general theoretic approaches to penetration testing: attack tree
modelling [9] and flaw hypothesis [6]. From synthesizing
these approaches we conclude that penetration testing generally
consists of these steps:

1) Discover hosts, services, and features of the network.

2) Scan the network systems for potential vulnerabilities.

3) Test the execution of exploits for these vulnerabilities.

4) Re-evaluate what further vulnerabilities can be ex-
ploited once the system has reached a different security
state.

ASIA ’14 - 14

http://www.rapid7.com/products/nexpose/
http://www.openvas.org/

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

The use-case we use follows the typical progression of a
penetration test. The use case will involve two tools to automate
the steps. The vulnerability scanner, Nessus [12], will perform
reconnaissance, network discovery/scanning, enumeration and
vulnerability identification. The exploit framework, Metas-
ploit [8], will ensure identified vulnerabilities are true positives
by attempting publicly available exploits against the target
system/service. Finally, we will analyze the reported feedback to
determine whether the results are comprehensive and facilitate
decision making and proper action by the administrator. See
Appendix A for the full list of step-by-step tasks associated
with our use-cases.

The evaluators will take on the following personas during
the first pass cognitive walkthrough:

e SYSTEMS ADMINISTRATOR: knowledgeable of the
system but not explicitly security trained. This will
help us identify the usability aspects of the security
related tasks (e.g., learnability, interface usability).

e SECURITY EXPERT: proficient security knowledge but
little knowledge of the system architecture. This will
help us identify other aspects, such as the granularity of
abstraction and capacity for producing mental models
of the target infrastructure.

B. Second pass—free form

We propose the following heuristics for the evaluation of
the penetration testing software. These heuristics are derived
from proposed design principles outlined by Chiasson et al. [2]
and Jaferian et al. [5] for usable systems management tools.
We have adjusted them to reflect requirements specific to the
penetration testing domain. We have divided the heuristics into
three categories: those that deal with general usability principles,
those that deal with the usability of the system model presented
to the user, and those that deal with the usability of discovering
and executing specific exploits.

C. General usability

H1: Administrators should be made aware of the required
tasks (and proper ordering) that they must perform to
successfully test penetration (e.g., network mapping,
port scanning, user-id scraping, etc.).

H2: Administrators should be able to easily figure out
how to successfully perform these tasks in the correct
sequence.

H3: Administrators should be able to tell when their task
has been completed, whether tests ended in success
or failure, and which true-positive vulnerabilities have
been identified.

D. Usability of system model

H4: Administrators should have sufficient feedback to ac-
curately determine the current state of the environment
and the consequences of their actions.

HS5: Administrators should be able to form an accurate
and meaningful mental model of the environment they
are testing.

H6: Administrators should be able to easily examine the
system from different levels of encapsulation (e.g.,

network, distributed services, host OS, etc.) in order to
gain an overall perspective and be able to effectively
plan and target attacks.

E. Usability of vulnerability identification

H7: The interface should facilitate interpretation and
exploitation of potential vulnerabilities to identify true-
positives.

H8: Administrators should be able to easily seek advice
and take advantage of community knowledge to
facilitate testing.

H9: The generated reports or feedback provided should
facilitate identification of critical threats against crucial
systems to aid in cost/benefit analysis for ranking
corrective steps.

For the remainder of the document, we will refer to the
task-based cognitive walkthrough as pass I and the free-form
heuristic evaluation as pass 2.

IV. RESULTS

This section describes our findings from the heuristic
walkthrough of the two software products. We also report
on the efficacy of our domain-specific heuristics.

A. Nessus

Both evaluators were relatively satisfied with the Nessus
user interface. Of the two software products evaluated, Nessus
had a much simpler user interface with a clear separation
between performing tasks and analyzing results. This made
accomplishing tasks much easier, as busy charts and tables did
not clutter the screen when attempting to execute scans (i.e.
all results were in the reports section, instead of being visible
while performing other tasks).

The task of performing a scan was intuitive, and the results
were displayed in such a way as to facilitate proper response
from the administrator. Figure 1 shows an example of the
Nessus host report. This visualization technique allows the
administrator to accurately identify the most vulnerable systems,
and respond accordingly.

Several user interface issues were identified, however
nothing that impeded the evaluators from accomplishing their
tasks. Table I shows the number of issues found during the
evaluation. In total, eight issues were identified in the first pass,
and ten in the second. Most of the issues found in the second
pass related to specific penetration testing tasks, while the first
pass revealed mostly general user interface shortcomings.

Of the discovered issues, the following were deemed the
most important to correct. See Section V for our recommended
remedies.

1) There is no indication that a policy must be created
before a scan can be initiated. This forces the admin-
istrator to cancel the scan task to create a new policy.
After creating the policy, a new scan must be created
from scratch.

2) Several user interface elements have unintuitive pur-
pose (e.g., visibility of policy). Although the system

ASIA ’14 - 15

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

Policies

Schedules

Scans

¢ Scans Hosts

Hosts Host
Vulnerabilities

192.168.56.102

Notes 192,168.56.101
192.168.56.1

192.168.56.100

Expot -

Vulnerabilities «

Audit Trail -

Scan Details

Fig. 1.
vulnerabilities.

defaults are sufficient to complete tasks, input fields
and controls should all have well defined purposes.

3) Exporting scan results for use with exploitation soft-
ware is not clear (e.g., which file format is appropriate).
The export results screen offers several export file
formats. However there is no clear description of how
the exported data formats can be used.

4) Only two abstraction levels of the system are available
(either entire network or individual host). This coarse
grained dichotomy may be insufficient for certain
security decisions.

5) The meaning of provided vulnerability severity rat-
ings (e.g., critical vs. high) is not clearly defined.
Furthermore some screens provide numeric values to
the severity (e.g., high 7.5 vs. high 8.1). There is no
easily accessible definition for these ratings.

6) No guidance is provided for proper task flow (i.e.
policy creation — scan execution — report generation
— export results).

7) Limited support is available for searching community
knowledge about identified vulnerabilities. Although
a description of each vulnerability is accessible by
clicking on the title, the level of detail varies for each
vulnerability.

B. Metasploit

The evaluators found significantly more difficulty with
the Metasploit interface. The Metasploit interface often felt
cluttered, which was made even more noticeable compared to

Nessus host report visualization; the left hand column enumerates scanned hosts and the right hand column displays the quantity and severity of detected

TABLE 1. NUMBER OF USABILITY ISSUES FOUND IN NESSUS. U
DENOTES THE TOTAL NUMBER OF UNIQUE ISSUES, M DENOTES THE
OVERLAP OF UNIQUE ISSUES FOUND BY BOTH METHODS/EVALUATORS.

Pass 1 Pass 2] N

Evaluator 1 6 6 11 1

Evaluator 2 3 8 9 2
[v [8 T 10 J-T-]
L n [T v [4 J-T1T-]

the relatively simple tasks the evaluators were trying to perform.
This clutter made it difficult for the evaluators to determine
how to navigate from one sub-task to another. When this issue
was combined with the lack of direction from the interface,
navigation became an over-arching concern.

For example, Figure 2 shows the Metasploit host report.
This visualization is much busier and less informative than the
Nessus host summary. To find additional details about a specific
vulnerability and known exploit payload, the administrator
must navigate to a 3rd party web page. This hinders the
administrator’s ability to accurately identify the most important
threats and respond accordingly. Additionally, information
about the severity or possible consequences of an exploit are
unavailable.

Table II shows a breakdown of the number of issues found
during each phase of the evaluation. In total both evaluators
found ten issues, with more issues being found in the second
pass (13) than in the first pass (9). Combining this information,
the evaluators found a total of 16 unique issues.

ASIA ’14 - 16

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

Host GNP .57 (metasploitable)

Discovery Time 2013-12-08 14:15:04 -0500
Operating System C\ Linux Kernel 2.6 on Ubuntu 8.04 (hardy)\n VirtualBox
Ethernet Address Unknown

Virtual Environment VirtualBox

Status Looted
Comments Update Comments
No comments
Services Sessions Vulnerabilities Captured Data Notes Credentials Tags Attempts Modules
% New Vuln
Show | 10 ¥ |entries a,
Name References Exploit
@F CVE-2010-2075 & BID-40820 m OSVDB-65445 exploit/unix
NSS-46882
o - Q NSS-46882 unrealired firc/unreal_ircd_3281_backdoor
¢, BID-48539 Bl osvoB73sT3 K} coe-D-17291
NSS-55523 exploit'unix/ftp/vsftpd_234_backdoor
@ nNss-55523 pastebin.com blogspot
Samba “username »
Sambausemams §F CVE-2007-2447 B0 osvoe-a4roo ¢, BID-23e72
map script®) exploit'mutti'samba‘usermap_script
Command Execution defense samba.org
Java RMI Server
Insecure Default
oracle MSF-java_rmi_server exploit'multimisc/java_rmi_server
Configuration Java E m S * AL
Code Execution
N55-39519 * NE55-38519
N55-11154 Q NS5-11154
N35-38520 Q NS5-38520

Fig. 2. Metasploit host report

TABLE II.

NUMBER OF USABILITY ISSUES FOUND IN METASPLOIT. U

DENOTES THE TOTAL NUMBER OF UNIQUE ISSUES, M DENOTES THE
OVERLAP OF UNIQUE ISSUES FOUND BY BOTH METHODS/EVALUATORS.

Pass 1 Pass 2 U] al
Evaluator 1 7 7 10 4
Evaluator 2 4 8 10 2
[o T 9 7T 13 T -T7T-]
L n T 2 [2 [-1T-]

We present here a number of the most pressing usability
issues for Metasploit. Again, our suggested remedies are listed
in V. These are:

D
2)

3)

4)

The interface provides no direction about the ordering
of tasks.

Once a task has completed, there is no indication of
how to move on to the next stage.

Exploitation tasks do not directly report success or
failure—the user must manually inspect the output of
a console window.

The interface largely ignores exploit severity. For the
administrator to judge the severity of a vulnerability
they must navigate to a third party web page and
interpret the text.

ASIA

5) Though the interface provides different views of
the system, some of these views leave out pertinent
information—especially about vulnerabilities and cur-
rent state.

6) The consequences of performing an action are not
made clear. Running some exploits may cause some
services to crash, for example.

7) The interface exposes many options, not all of which
are available in the community edition. This leads to
confusion about what options are relevant, useful or
even possible for the current task.

C. Heuristics

In this section, we report specifically on the data concerning
our selected heuristics. As mentioned, one of our goals is to
assess the effectiveness of the proposed heuristics in aiding
evaluators in finding usability problems. To this end, we have
collected data on the use of the heuristics, which can be found
in Tables IIT and IV. These tables show the number of issues
found by each heuristic broken down per evaluator.

Out of the three categories, the general usability class of
heuristics found the most usability problems (12) when counting

14 - 17

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

TABLE III. NUMBER OF USABILITY ISSUES FOUND BY EACH HEURISTIC FOR NESSUS. U DENOTES THE TOTAL NUMBER OF UNIQUE ISSUES, N DENOTES
THE OVERLAP OF UNIQUE ISSUES FOUND BY BOTH EVALUATORS.

General Usability System Model Vulnerability identification
HI [H2 | H3 | H4 [H5 | H6 | H7 | HS8 H9

[Evaluator 1 1 1 1 0 2 2 0 1 0

[Evaluator 2 3 1 1 0 0 1 1 1 0

[U [3T 1 T 2T70T72 2 LT 1] 0 |

[N [T T 1T 7T o] o0foO 1 0 | 1] 0 |

TABLE IV. NUMBER OF USABILITY ISSUES FOUND BY EACH HEURISTIC FOR METASPLOIT. U DENOTES THE TOTAL NUMBER OF UNIQUE ISSUES, N

DENOTES THE OVERLAP OF UNIQUE ISSUES FOUND BY BOTH EVALUATORS.

General Usability System Model Vulnerability identification
HI | H2 | H3 | H4 | HS | H6 | H7 | H8 H9
[Evaluator 1 1 1 2 1 1 0 2 0 1
[Evaluator 2 2 1 1 1 0 0 1 1 2
[U [3 [12217103 1] 3]
[n [o[1 [100000 0 |

the evaluations of both Metasploit and Nessus (six for Nessus,
and six for Metasploit). As expected, this class also had the
highest overlap with the first pass evaluation. This was followed
by the vulnerability identification class with nine issues and then
the system model class with seven issues. These classifications,
system model and vulnerability identification, were the domain-
specific heuristics that we expected would uncover issues that
could not be captured by a cognitive walkthrough alone.

Further breaking down the numbers reveals that vulnerability
identification found significantly more usability problems in
the Metasploit evaluation than in the Nessus evaluation. The
other categories had roughly equal performance across the two
evaluations.

Usability problems do not seem to cluster around any
individual heuristic. The only trend which stands out is that
the most usability problems were found by H1. Every heuristic
found at least two problems counting both evaluations, however
a handful (H4, H6, and H9) did not report any usability
problems in one of the two evaluations.

V. USER INTERFACE REDESIGN

Based on the analysis of the software and identified
problems, we propose several improvements to the usability
and data presentation of the selected tools.

A. Nessus

As discussed in Section IV-A, we were relatively satisfied
with the usability of Nessus. From a non-security expert’s
point of view, we believe Nessus meets our requirements (i.e.
Nessus has an intuitive task progression interface and provides
results and visualizations that allow the administrator to respond
appropriately to the vulnerabilities identified in critical assets).

We propose the following improvements to Nessus, to ad-
dress the most important issues we discovered (see Section IV-A
for identified problems):

1) Since there is no guidance for proper task flow, we
suggest a first-use wizard style guide to familiarize
the user with the required ordering of steps (i.e.
policy creation — scan execution — report generation
— export results). After first use, administrators
are free to use advanced options for creating new

2)

3)

4)

5)

6)

ASIA °14 - 18

custom policies/scans or re-using previously defined
policies/scans in future campaigns.

Currently, there is no indication that a policy must
be created before a scan can be initiated. We propose
that policies can be created in place after starting the
scan step. After creating the policy, the user will be
returned to the scan screen (instead of re-starting the
scan task, as is currently required).

User interface elements with unintuitive purposes
(e.g., visibility of policy) should all have rool-tip
helpers. Additionally, all required fields should be
clearly marked as such. Since the system defaults
seem reasonable for most tasks, perhaps these non-
intuitive fields can be concealed in an advanced
configuration screen. This is the current practice
employed by Metasploit, and it seems to work well
in their otherwise cluttered interface.

Exporting scan results for use with exploitation
software should be made much easier, e.g., when
the user clicks export, perhaps the first screen should
ask what they intend to do with the exported data. The
user would have options such as generating executive
summaries, generating expert administrator reports,
and exporting data for use with other software. The
current interface simply lists the available export file
format (e.g., HTML, NAS, PDF), with no indication
of how these files can be used outside Nessus.
More fine-grained abstraction of the target system
should be possible. E.g., reports could classify hosts
based on services instead of IP addresses or names.
Administrators could exercise better judgment if they
knew which services were vulnerable, instead of
which hosts (e.g., the web-server has 12 critical
issues and the identity-provider has 3). Each site
values specific services at different priorities (e.g.,
web hosting providers value their web servers as
critical assets, while cloud storage providers value
network attached storage higher than the web front-
end). Administrators would benefit from an additional
service abstraction, to facilitate easy identification of
vulnerable mission critical assets. The administrators
have the required domain knowledge to know which
assets their company values most.

The meaning of vulnerability severity (e.g., critical
vs. high) should be made abundantly clear on any

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

screen in which these ratings are used. E.g., critical
severity may indicates that gaining a root shell on
the host is trivial, while high severity might imply an
attacker can progress in a given list of attacks. The
meanings can be made available as tool-tip helpers
on web-forms and detailed in legends on printed
reports/summaries. The cryptic numeric rating system
should be abandoned altogether in favour of the clearly
defined categories described above.

7) Support for searching community knowledge about
vulnerabilities is currently limited to certain databases
(e.g., CVE3). In some instances, no community
databases are linked against the vulnerabilities at all.
Each vulnerability description has varying amounts of
detail, from title only to several pages of problem
description and potential exploitation attacks. All
vulnerabilities should have a required minimum level
of detail (e.g., type, service affected, description of
exploit, consequences of successful attack). Cases in
which there are no knowledge-base articles available
for a given vulnerability, perhaps the system could
show links to the top 5 Google results for the
vulnerability.

B. Metasploit

The issues that we found with Metasploit fit into two main
categories. The first of these categories is navigation. First,
the interface does not provide direction for the ordering of
tasks. After creating a project the user is dumped to a main
screen where every task is possible and given equal screen
space. Moreover, once the user has figured out and completed
their first task, to move on to the second task they return to
this main screen, again with no direction as to what comes
next.

The second category is visibility. The interface is largely
unconcerned with what information the user will find important,
and does little to make that information noticeable. For example,
the main goal of PT is to find and exploit vulnerabilities.
However, the interface does not highlight vulnerabilities and
does not give any indication of their severity.

Cutting across both of these categories is the issue of clutter.
We discussed earlier that the interface has an abundance of
elements and does little to give priority to the elements that are
important. It also contains elements that seem useful for the task
at hand—for example a button labelled “exploit” when viewing
vulnerabilities—but which are not available in the community
edition. This negatively impacts navigation, because the user
sees options that would be useful but which are not possible. It
also harms visibility because it increases the amount of noise
in the interface, drawing less attention to the elements that are
relevant.

These findings form the basis of our suggested improve-
ments. Specifically, we suggest:

1) Removing all user interface elements which are not
available in the current edition to reduce the issue of
clutter. This will free up screen real estate, allowing

3https://cve.mitre.org/

the user interface to give prominence to more relevant
interface elements.

2) Organize the main project page so that it suggests
an ordering of tasks consistent with the majority
of use cases (scan/import scan — vulnerabilities
— exploitation — post-exploitation/data collection).
Currently the tasks proceed in a semi-clockwise
direction. We would suggest introducing a linear, top
down ordering.

3) Provide a means to navigate from one task to the next
logical task (for example, from importing a scan to
viewing the vulnerabilities, or from running a data
collection module to viewing the collected data). This
would take the form of adding a standard forward
button to the top right of each tasks view.

4) Report whether a exploitation module was successful
or unsuccessful in the interface itself, rather than just
in the console view.

5) When listing exploits, highlight exploits which open
a session. Alternatively if a scan is imported from a
vulnerability scanner, show the severity rating assigned
by the scanner. We recognize that this may not be
immediately possible if it requires a change in the
data exchange format between the scanner and the
exploit engine.

6) Highlight information about vulnerabilities in all views
of the system.

7) Provide a more direct view of information about
exploits. List the service they target, their severity,
and possible consequences in the main interface.

VI. DISCUSSION

Both software products seem to meet our original require-
ments: they both prove to be useful penetration testing tools in
the hands of technically knowledgeable (non-security expert)
systems administrators. Despite their obvious shortcomings,
they do facilitate identification of vulnerable systems and, to
some extent, aid in the prioritization of appropriate response.
Based on our findings, we proposed a number of user interface
improvements to the software that would further simplify
penetration testing tasks for administrators. In this section,
we also discuss the effectiveness of the heuristic walkthrough
as a discount usability evaluation method and our selected
domain-specific heuristics.

Based on the quantity, diversity, and overlap of issues iden-
tified, we believe the heuristic walkthrough is a viable discount
assessment tactic for usability evaluation. Each evaluator was
able to identify a number of unique issues during each pass.
Our results indicate that many problems would not have been
identified by a cognitive walkthrough or heuristic evaluation
alone. In Tables I and II we can see that typically the overlap
of problems found in both passes was one or two, with one
instance where it was four (roughly half the usability problems).
Likewise, a single evaluator would not have been sufficient to
identify all critical usability pitfalls. Looking at the same tables,
the overlap of problems found between the two evaluators tells
a similar story—generally only a handful, at most approaching
half. We believe that these observations strengthen the case
for heuristic walkthroughs as a strong alternative usability
evaluation method. This is especially true in situations, such as

ASIA ’14 - 19

https://cve.mitre.org/

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

security administration, where it may difficult to find a large,
representative sample of the user population.

Based on the number of issues identified by each heuristic
(see Tables III and IV), we can draw certain conclusions
about the usefulness of our domain-specific heuristics. The
conclusions, however, should not be overstated as they are only
based on one instance of use.

Our first class of heuristic (general usability) was most
successful in identifying problems. This came as a surprise
to the evaluators, as we had expected that more specific
heuristics would prompt the evaluator to uncover a larger
class of problems. However, closer analysis shows that the
most specific heuristics (those dealing with vulnerability
identification) actually performed slightly better than the system
model heuristics, which we consider to be at a middle level.
The most specific heuristics uncovered a significant amount
of problems with the Metasploit interface. This could be for
several reasons. First, the Metasploit interface may have more
usability problems generally than the Nessus interface. Second,
the heuristics may be targeted at a more active use case (notably
H7 which deals with the active exploitation of systems). In
fact the data shows that H7 found more usability problems in
Metasploit (which is geared towards active exploitation) than
in Nessus (which provides a more passive scanning service).

It is encouraging that problems did not have a significant
bias towards or away from any individual heuristic. This
suggests that no one heuristic was useless, and so we would
not remove any heuristic from the set.

Overall, we believe that our proposed heuristics are a
promising direction. We have increased confidence in the
usefulness of higher level, more general heuristics to apply to
this domain, however we also note that the specific heuristics
have helped the evaluators uncover significant problems.

VII. CONCLUSION

IT security management tools are often overlooked, when
considering software usability. Systems administrators are
considered highly technical users that can cope with user
interface issues which would otherwise discourage average
computer users. We posit that, while highly technically trained,

systems administrators are not necessarily security experts.

Therefore, while poor user interface design may not hinder
their ability to complete tasks, they require detailed security
information and useful visual cues to make proper security
decisions. We conducted an expert evaluation, in the form
of a heuristic walkthrough, on the usability of penetration
testing tools. Following the typical steps a systems administrator
would undergo, we discover several impediments that hinder the
accurate assessment of the network state. Based on our findings,
we present several potential improvements of the software
user interfaces which will enhance usability and decision
making. Additionally, we find the heuristic walkthrough to be

a valuable tool for developing security management interfaces.

Our selected heuristics, although helpful in our evaluation,
require further refinement for practical deployment. We hope
that this evaluation will contribute to the sparse field of security
management usability.

VIII. ACKNOWLEDGEMENT

The authors would like to acknowledge the assistance of
Sonia Chiasson, who provided background and feedback on
this work as part of a graduate seminar on usable security.

REFERENCES

[1] Carleton University. Carleton Computer Security Lab, Nov. 2013. https:
/Iwww.ccsl.carleton.ca/.

[2] S. Chiasson, P. C. van Oorschot, and R. Biddle. Even experts deserve
usable security: Design guidelines for security management systems.
In SOUPS Workshop on Usable IT Security Management (USM’07),
Pittsburgh, PA, 2007.

[3] P. Duez and K. J. Vicente. Ecological interface design and computer
network management: The effects of network size and fault frequency.
International Journal of Human-Computer Studies, 63(6):565-586,
December 2005.

[4] E. M. Haber and J. Bailey. Design guidelines for system administration
tools developed through ethnographic field studies. In Proceedings of the
2007 Symposium on Computer Human Interaction for the Management
of Information Technology (CHIMIT). ACM, 2007.

[5] P. Jaferian, D. Botta, F. Raja, K. Hawkey, and K. Beznosov. Guidelines
for designing it security management tools. In Computer Human
Interaction for Management of Information Technology (CHIMiT’08),
San Diego, CA, 2008.

[6] R. R. Linde. Operating system penetration. In National Computer
Conference and Exposition (AFIPS ’75), Anaheim, CA, 1975.

[7]1 J. P. McDermott. Attack net penetration testing. In Workshop on New
security paradigms (NSPW’00), Ballycotton, Ireland, 2000.

[8] Rapid7. Metasploit, Nov. 2013. Version 4.5.2 http://www.metasploit.
com/.

[9] B. Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21-29, December
1999.

[10] A. Sears. Heuristic walkthroughs: Finding the problems without the noise.
International Journal of Human-Computer Interaction, 9(3):213-234,
1997.

[11] N. Shrestha. Security Assessment via Penetration Testing: A Network
and System Administrator’s Approach. Master’s thesis, University of
Oslo, Norway, 2012.

[12] Tenable Network Security. Nessus vulnerability scanner, Nov. 2013.
Version 5.2.4 http://www.tenable.com/products/nessus/.

APPENDIX

This section enumerates the use-case tasks performed during
the first pass (cognitive walkthrough) of our evaluation.

A. Nessus

The following tasks were performed during the evaluation
of the Nessus vulnerability scanner.

Task 1: Login

a) Navigate to web page
b) Enter Username/Password
¢) Click Submit
Task 2: Create Policy
a) Login (see Task 1)
b) Navigate to Policy page
c¢) Click Add to create new policy
d) Fill in policy details (or use defaults)
e) Click Submit
Task 3: Scan Network
a) Login (see Task 1)
b) Create policy (see Task 2)

ASIA ’14 - 20

https://www.ccsl.carleton.ca/
https://www.ccsl.carleton.ca/
http://www.metasploit.com/
http://www.metasploit.com/
http://www.tenable.com/products/nessus/

9th ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA’14), JUNE 3-4, 2014, ALBANY, NY

c)
d)
€)
f)
2
Task 4:
a)
b)
c)
d)

e)
Task 5:
a)

b)

c)

d
e)

B. Metasploit

Navigate to Scan page

Click Add to create new scan

Select policy to use

Select Scan Now for schedule

Click Submit

View Report

Login (see Task 1)

Start scan (see Task 3)

Navigate to Reports page

Click Browse to view results of scan
Navigate through hosts to see vulnerabilities
Export Results for use with Metasploit
Login (see Task 1)

View reports (see Task 4)

Click Download to export scan data
Select export file type

Click Save

The following tasks were performed during the evaluation
of the Metasploit exploitation engine.

Task 1:
a)
b)
c)

Task 2:
a)
b)
c)

Task 3:
a)
b)
c)
d)
€)

f)
Task 4:
a)
b)
c)
d)
Task 5:
a)
b)

c)
d
€)
f)
2
Task 6:
a)
b)

c)
d
€)
f)

Login

Navigate to web page
Enter Username/Password
Click Submit

Create new project

From main page, click New Project

Enter name, description, and network range
Click Create

Import Nessus scan results

Create new project (See task 2)

From main page, click on project name
Click Import button under Discovery heading
Select Nessus NBE report

Click Import Data

Click Back to Task List

Start manual scan

Create new project (See task 2)

From main page, click on project name
Click Scan button under Discovery heading
Click Initiate Scan

See vulnerabilities of a specific host

Create new project (See task 2)
Scan/import vulnerability data (See tasks 3 &
4)

From main page, click on project name
Click on Analysis

Click on the specific host

Click on the vulnerabilities tab

View vulnerability results

Exploit Vulnerabilities

Create new project (See task 2)
Scan/import vulnerability data (See tasks 3 &
4)

From main page, click on project name
click Exploit under Penetration heading
click Exploit

View exploitation results

ASIA ’14 - 21

Task 7: Generate Report

a)
b)

9
d)
e)
f)
g)

Create new project (See task 2)

Scan/import vulnerability data (See tasks 3 &
4)

Exploit vulnerabilities (see task 6)

From main page, click on project name
click Reports

click Standard Report

click Generate Audit Report

	Introduction
	Background
	Methodology
	First pass—task oriented
	Second pass—free form
	General usability
	Usability of system model
	Usability of vulnerability identification

	Results
	Nessus
	Metasploit
	Heuristics

	User Interface Redesign
	Nessus
	Metasploit

	Discussion
	Conclusion
	Acknowledgement
	References
	Appendix
	Nessus
	Metasploit

