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Abstract

Deniable Storage Encryption for Mobile Devices

Adam Skillen

Smartphones, and other mobile computing devices, are being widely adopted globally

as the de-facto personal computing platform. Given the amount of sensitive informa-

tion accumulated by these devices, there are serious privacy and security implications

for both personal use and enterprise deployment.

Confidentiality of data-at-rest can be effectively preserved through storage en-

cryption. All major mobile OSes now incorporate some form of storage encryption.

In certain situations, this is inadequate, as users may be coerced into disclosing their

decryption keys. In this case, the data must be hidden so that its very existence can

be denied. Steganographic techniques and deniable encryption algorithms have been

devised to address this specific problem. This dissertation explores the feasibility

and efficacy of deniable storage encryption for mobile devices. A feature that allows

the user to feign compliance with a coercive adversary, by decrypting plausible and

innocuous decoy data, while maintaining the secrecy of their sensitive or contentious

hidden data. A deniable storage encryption system, Mobiflage, was designed and

implemented for the Android OS, the first such application for mobile devices.

Current mobile encryption mechanisms all rely, in some way, on a user secret.

Users notoriously choose weak passwords that are easily guessed/cracked. This thesis

offers a new password scheme for use with storage encryption. The goal is to create
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passwords that are suitably strong for protection of encryption keys, easier to input

on mobile devices, and build on memorability research in cognitive psychology for a

better user experience than current password guidelines.
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Chapter 1

Introduction

1.1 Motivation

Smartphones and tablets are now powerful computing devices, affording most of the

capabilities found on laptop and desktop computers. The smartphone market share

is rapidly expanding, and millions of new devices are sold every month.1 Many users

perform the majority of their communication, web browsing, and financial tasks on

their mobile devices, creating serious privacy and security concerns. Corporate devices

may accumulate confidential or proprietary documents; while personal devices have

passwords, browsing history, and private communications.

To protect the user, in the event a device is lost or stolen, all major mobile OSes

now provide some form of encryption to protect the data stored on these devices.

In certain situations however, data confidentiality achieved through encryption is

inadequate, to properly protect a user’s sensitive data. A user may be coerced into

disclosing their decryption keys. In this case, the sensitive data must be hidden

so that its very existence can be denied. Steganographic techniques and deniable

encryption algorithms have been explored to address this specific problem.

Given their portability and media capture capabilities, we assert that plausible

deniable encryption (PDE) is a significant security requirement for mobile devices.

1http://www.gartner.com/it/page.jsp?id=2237315
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The added protection offered by deniable storage encryption may be necessary when

the consequences for possession of contentious material can result in incarceration,

grievous bodily harm, or even death. Examples might include dissemination of cen-

sored news, literature of dissent, or evidence of atrocities.

Using PDE in these situations would not directly aid an individual in smuggling

controversial data: the storage device could be confiscated, erased, or destroyed.

However, PDE can protect the user, since the data may not be discovered. The user

can even provide decoy passwords and data to simulate accordance with a coercive

adversary’s orders to decrypt the data.

All of the existing storage encryption mechanisms (including PDE) rely, to some

extent, on a user secret, to protect the encryption keys. Users tend to choose poor de-

vice passwords, such as short numeric PIN codes, reminiscent of bank-card secrets [78].

On mobile devices, the user must also contend with arduous input mechanisms. Even

simple passwords take almost twice as long to type on smartphone soft-keyboards, as

compared with standard keyboards [47]. When given the choice, many users will pick

poor passwords that are easy to remember and input, but also easy to guess/crack.

Relying on existing user-chosen secrets to protect encryption keys reduces the

overall security of the cipher to the complexity of breaching the password. Password-

stretching and key derivation functions (e.g., [58, 51, 71]) have been devised to mit-

igate this risk, but in many cases are not implemented in such a way as to offer a

significant security advantage. In the case of PDE, a weak password can lead to

the exposure of the hidden data, if the password is guessed. Disclosure of deniably-

encrypted data may result in more sever consequences than exposure of a user’s

personal/private data.
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1.2 Thesis Statement

The primary aim of this dissertation is to design and implement a suitable security

mechanism for mobile devices, to contend with a coercive adversary. The additional

objective of devising an appropriate and convenient authentication scheme for pro-

tecting encryption keys is also addressed.

The main research questions explored in this dissertation are:

• Question 1: From both feasibility and efficacy standpoints, is deniable storage

encryption a practical goal for mobile devices?

• Question 2: Are there uncontrollable factors, such as communication chan-

nels and filesystem/storage technologies, that will betray or compromise the

deniability of hidden data, despite a theoretically sound design?

• Question 3: Given the restrictive input mechanisms available on mobile de-

vices, can a strong and memorable password scheme be devised, suitable for

protecting mobile storage-encryption keys?

1.3 Contributions

Deniable storage encryption mechanisms exist for PCs (e.g., [97, 62]). However, at

the time of writing this dissertation, no such system is available for mobile devices.

The tight-coupling between mobile device hardware and software, along with the boot

procedure, and distinctive storage features do not lend themselves to simply porting

existing PC PDE schemes. Mobile devices also open up new existence-leakage vectors,

and sources of compromise that can betray deniability. To assess the feasibility and
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efficacy of PDE for mobile devices, and address the aforementioned obstacles, the

Mobiflage scheme was designed and implemented for the Android OS. We analyze the

performance of the Mobiflage prototype on two mobile devices. We also explore the

sources of leakage inherent to mobile devices that may compromise deniable storage

encryption. Several of these leakage vectors have not been analyzed for existing

desktop PDE solutions.

Symmetric encryption keys are generally chosen at random, and may be as long

as 512-bits. It is unrealistic to expect a user to remember 64 random bytes, so ran-

dom keys are often protected by encrypting them with a password-derived key. This

reliance on user-chosen secrets to protect encryption keys reduces the overall security

of the cipher to the complexity of the password. This problem is compounded, as

users tend to choose poor passwords, such as short numeric PIN codes, on mobile

devices, to contend with constrained input mechanisms [78]. For example, we were

able to test all encryption keys derived from 4 and 5 digit PIN codes (110,000 in

total) for Android in under ten minutes on commodity hardware (see Appendix B).

This dissertation discusses a new password scheme for use with storage encryption.

The goal of the Myphrase design is to facilitate passwords that are suitably strong

for protection of encryption keys, easier to input on mobile devices, and alleviate

the memory burden on the user. By building on research in cognitive psychology,

Myphrase passwords are constructed to offer better memorability and security: fa-

miliar words and structures are randomly combined to create user-specific multi-word

passphrases. The Myphrase system was designed and implemented for use with both

PCs and mobile devices. We analyze the expected entropy of Myphrase passphrases

with two datasets: the Enron email corpus, and the collected works of several pop-

4



ular authors from Project Gutenberg. We also evaluate Myphrase using a recently

proposed framework of usability-deployability-security ratings and compare it against

similar designs.

1.4 Related Publication

Conference Paper. The work on deniable storage encryption discussed in this

dissertation has been peer-reviewed and published in the following article:

On Implementing Deniable Storage Encryption for Mobile Devices. A. Skillen

and M. Mannan. Network and Distributed System Security Symposium (NDSS

2013), Feb. 24-27, 2013, San Diego, CA, USA.

Technical Report. The work on strong and memorable passwords is available as a

technical report:

Myphrase: Passwords from Your Own Words. A. Skillen and M. Mannan. Tech-

nical Report: (http:// spectrum.library.concordia.ca/ 976791/ ), Jan. 24, 2013.

1.5 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we provide back-

ground information on storage encryption techniques, deniable encryption, and exist-

ing password-based encryption key protection methods. Chapter 3 presents the design

and implementation details for our mobile-device deniable-storage mechanism. We

present the threat model, evaluate the unique challenges present in the mobile envi-

ronment, and assess the security and performance of the implementation. A novel
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password-compatible key-protection mechanism, along with implementation details,

evaluation, and comparison against similar techniques, is introduced in Chapter 4.

In Chapter 5, we summarize the findings, in the context of the thesis objectives, and

provide some concluding remarks and future research directions.
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Chapter 2

Background

This chapter covers some of the necessary background information and literature

related to the work discussed in this dissertation. Specific literature reviews and

background information pertinent to each project is contained within the relevant

chapters.

2.1 Full Disk Encryption

Full disk encryption (FDE) employs symmetric-key block ciphers to encrypt entire

storage devices or partitions thereof. Encryption is performed on small units, such as

sectors or clusters, to allow random access to the disk. FDE subsystems typically exist

at or below the file system layer and provide transparent functionality to the user and

applications in what is sometimes referred to as on-the-fly encryption (OTFE). OTFE

implies that encryption is performed as files are written to the volume, and decryption

is performed during file access. In this manner, files only exist in a decrypted state

while they are in RAM. All data stored on the physical drive is encrypted, even

while it is actively mounted onto the filesystem. FDE schemes generally focus on

providing strong confidentiality, making efficient use of the storage media (i.e., no

excessive data expansion), and being relatively fast (i.e., no significant decrease in

IO throughput). All major desktop OSes now offer storage encryption with FDE
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support (e.g., Windows BitLocker, Mac OS X FileVault, and the Linux unified key

setup (LUKS)).

The traditional encryption threat model (e.g., Kerckhoffs’s Desiderata [53]) dis-

cusses encryption in the context of network communications. Encryption of storage-

at-rest must be treated differently, for example, since keys and IVs must be stored

locally (or else easily derived from local material). Certain crypto primitives, that

are entirely suitable for network communications, may be exploitable in the context

of FDE. Likewise, a vetted FDE implementation may not be appropriate for PDE;

see Appendix A for some examples.

Mobile devices may contain personal information, such as contacts and passwords.

Being small and portable, these devices can be easily lost or stolen. To mitigate

the consequences of such a physical security compromise, all major mobile OSes now

provide some form of encryption to protect the data stored on these devices. Some use

per-file encryption, while others use FDE to encrypt entire storage devices or volumes.

Table 2.1 provides a comparison of existing mobile encryption implementations.

2.2 Plausible Deniable Encryption

Semantic security is a property of an encryption function which states that possession

of a ciphertext alone will provide no information about the plaintext message (without

knowledge of the key) [34]. PDE defines a level of protection beyond semantic security,

in which a coercive adversary can demand the plaintext message or decryption key.

The premise of a PDE cipher, is that two or more distinct messages will result in the

same ciphertext, when encrypted with different random inputs (e.g., different keys or

nonces).

8



Mobile Cipher Key Type SD Card Key
OS Spec Length Encrypted Storage

Android AES-CBC 128-bit FDE No PBKDF2a (2000):
ESSIV:SHA256 Volume Footer

BlackBerry AES-CBC 256-bit File Yes PBKDF2 (20000):
Random IVs Internal Keystore

iOS AES-CBC 256-bit Filesystem N/A PBKDF2 (10000):
Random IVs + File Internal Keystore

Symbian AES-XTS 256-bitb File Yes PBKDF2
Plain IVs Internal Keystore

Windows Phone AES-CBC 128-bit File System No PBKDF2
Modified ESSIV FS Header

aPKCS#5 [51]
b128-bit AES + 128-bit XEX tweak

Table 2.1: Existing storage encryption mechanisms employed by major mobile OSes

Deniable encryption ciphers are classified in three ways [15]: (a) by which parties

are being coerced (sender, receiver, or bi-deniable); (b) by the underlying encryption

schemes (symmetric or public-key); and (c) by the time at which the decoy messages

can be created—either at the time of coercion (ad-hoc), or at the time of encryption

(plan-ahead).

For instance, a simplification of one of Canetti’s original examples describes a

public-key PDE scheme [15]: Bob wants to encrypt a sensitive message for Alice.

Along with the intended message, he also creates a decoy message that he can provide

to a coercive adversary without penalty. He also generates a pair of random looking

nonces that, when encrypted with each message, will create identical ciphertexts

under Alice’s public key. When faced with a coercive eavesdropper, Bob can forfeit

the decoy message and nonce. Since neither Bob nor the adversary have access to

Alice’s private key, they can only re-encrypt the message with her public key, and
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observe that the resulting ciphertext is identical to what had been captured earlier.

This example demonstrates a sender-deniable, plan-ahead, public-key PDE scheme.

Several new ciphers, or enhancements to existing ciphers, have been proposed to

create PDE schemes (e.g., [15, 69, 27, 56]). However, most of these proposals strive

to enable PDE in network communications, and are not directly applicable to storage

encryption.

Some PDE schemes use flexible deniability, in which ciphers have separate honest

and dishonest encryption algorithm variants [15]. These ciphers tend to have a non-

negligible detection probability (i.e., the adversary can detect whether the honest or

dishonest algorithm was used during encryption). Other schemes use single-algorithm

ciphers that would only be chosen by a user to enable PDE (i.e., using such a cipher

reveals the desire to enable PDE, and would not normally be used in any other

situation).

The Mobiflage scheme described below enables deniability through existing

symmetric-key block ciphers, as opposed to specially designed PDE ciphers. Mobiflage

is, strictly speaking, a steganographic (data hiding) technique, although it achieves

the same behaviour as a PDE cipher. In terms of the PDE paradigm, Mobiflage is

receiver-deniable, in that the user is expected to possess the key to decrypt the mes-

sage (i.e., volume), and may instead decrypt a decoy message (i.e., decoy volume).

Mobiflage is a plan-ahead construction, in that the user must decide on a fixed num-

ber of decoy messages (i.e., decoy volumes) at encryption time. See Section 3.9 for

existing deniable storage proposals.
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2.3 Password Protected Encryption Keys

The problem of using a low-entropy secret, such as a password, to protect a high-

entropy encryption key gave rise to key-derivation and password-stretching algo-

rithms [52]. The general idea is to use computationally expensive functions to add

a known amount of complexity to a low-entropy secret, hence slowing an exhaustive

search of the keyspace. The most widely used such algorithm is possibly the PKCS#5

standard: password based key derivation function 2 (PBKDF2) [51].

In the original PBKDF2 proposal, Kaliski suggests 1000 iterations of the HMAC-

SHA1 hash algorithm [51]. At the time, in the year 2000, it was believed that 1000

iterations would require one second to derive a single key on commodity hardware.

The negligible delay for a single password would compound to significantly slow a

brute-force attack. Since the time of publication, computer performance has grown

exponentially. The implication of Moore’s law [66] (which has, for the most part, held

true) is that computing power has roughly doubled every two years. So the original

1000 iterations should now, thirteen years later, require closer to 100,000 iterations

to achieve the same one second delay. Unfortunately, most implementations use

relatively low iteration counts (e.g., Google Android uses 2000 and Apple iOS uses

10,000). Additionally, custom single-purpose hardware (e.g., ASICs and FPGAs) can

be designed to perform the computations much faster than commodity hardware.

Other password-stretching algorithms have been proposed (e.g., [58, 71]). The

scrypt [71] proposal relies on both computationally complex and memory expensive

functions, to mitigate the advantage gained by custom hardware. NIST approved an

AES key-wrapping function [83] for the protection of random encryption keys. The

11



drawback is that the key-encryption-key (KEK) must be a valid AES key-length, and

is therefore likely to be used in combination with a passphrase stretching function.

In addition to the problems with iteration count and custom hardware, the user’s

choice of password can also reduce the necessary search space. When given the choice,

users will pick poor passwords that are easy to remember and input, but also easy

to guess/crack. Users rarely choose random passwords, and instead choose sequences

that are easy to remember and manage. Many users even choose dictionary words, or

their derivatives. New probabilistic password guessing algorithms (e.g., [106]) have

significantly reduced the time to attack user-chosen passwords.

All of the existing mobile storage encryption mechanisms rely, to some extent, on a

user secret, to protect the encryption keys. The overall security of the crypto-system

is reduced to the complexity of the weakest component. Given the poor decisions

made in key-derivation implementations, as well as advances in password guessing, it

is unwise to rely on user-chosen secrets to protect encryption keys.
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Chapter 3

Mobiflage: Deniable Storage Encryption for
Mobile Devices

This chapter discusses the design, implementation, and evaluation of a deniable stor-

age encryption scheme suitable for mobile devices. Existing, and newly discovered,

challenges that can compromise PDE in a mobile environment are explored. To ad-

dress these obstacles, a system called Mobiflage that enables PDE on mobile devices

was designed and implemented for the Android OS. By leveraging lessons learned

from known issues in deniable encryption for the desktop environment, new counter-

measures for threats specific to mobile systems are incorporated into the design. To

restrict attacks that may compromise deniability, strict user compliance is necessary,

including the use of a strong password to protect the PDE key (see our design in

Chapter 4 for an example scheme).

3.1 Introduction and Motivation

Smartphones and other mobile computing devices are being widely adopted globally.

For instance, according to a comScore report [18], there are more than 119 million

smartphone users in the USA alone, as of Nov. 2012. With this increased use, the

amount of personal/corporate data stored in mobile devices has also increased. Due

to the sensitive nature of (some of) this data, all major mobile OS manufacturers now
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include some level of storage encryption. Some vendors use file based encryption, such

as Apple’s iOS, while others implement FDE. Google introduced FDE in Android 3.0

(for tablets only); FDE is now available for all Android 4.x devices, including tablets

and smartphones.

While Android FDE is a step forward, it lacks deniable encryption—a critical

feature in some situations, e.g., when users want to provide a decoy key in a plausible

manner, if they are coerced to give up decryption keys. Plausible deniable encryption

(PDE) was first explored by Canetti et al. [15] for parties communicating over a

network. As it applies to storage encryption, PDE can be simplified as follows:

different reasonable and innocuous plaintexts may be output from a given ciphertext,

when decrypted under different decoy keys. The original plaintext can be recovered

by decrypting with the true key. In the event that a ciphertext is intercepted, and

the user is coerced into revealing the key, she may instead provide a decoy key to

reveal a plausible and benign decoy message. The Rubberhose filesystem for Linux

(developed by Assange et al. [3]) is the first known instance of a PDE-enabled storage

system.

Some real-world scenarios may mandate the use of PDE-enabled storage—e.g., a

professional/citizen journalist, or human rights worker operating in a region of conflict

or oppression. In a recent incident [96], an individual risked his life to smuggle his

phone’s micro SD card, containing evidence of atrocities, across international borders

by stitching the card beneath his skin. Mobile phones have been extensively used

to capture and publish many images and videos of recent popular revolutions and

civil disobedience. When a repressive regime disables network connectivity in its

jurisdiction, PDE-enabled storage on mobile devices can provide a viable alternative
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for data exfiltration. With the ubiquity of smartphones, we postulate that PDE would

be an attractive or even a necessary feature for mobile devices. Note, however, that

PDE is only a technical measure to prevent a user from being punished if caught with

contentious material; an adversary can always wipe/confiscate the device itself if such

material is suspected to exist.

Several existing solutions support full disk encryption with plausible deniability in

regular desktop operating systems. Possibly the most widely used such tool is True-

Crypt [97]. To our knowledge, no such solutions exist for any mainstream mobile

OSes, although PDE support is apparently more important for these systems, as mo-

bile devices are more widely used and portable than laptops or desktops. Also, porting

desktop PDE solutions to mobile devices is not straightforward due to the tight cou-

pling between hardware and software components, and intricacies of the system boot

procedure. For example, in Android, the framework must be partially loaded to use

the soft keyboard for collecting decoy/true passwords; and the TrueCrypt boot-loader

is only designed to chain-load Windows.

We introduce Mobiflage, a PDE-enabled storage encryption system for the An-

droid OS. It includes countermeasures for known attacks against desktop PDE im-

plementations (e.g., [21]). We also explore challenges more specific to using PDE

systems in a mobile environment, including: collusion of cellphone carriers with an

adversary; the use of flash-based storage as opposed to traditional magnetic disks; and

file systems such as Ext4 (as used in Android) that are not so favourable to PDE.

Mobiflage addresses several of these challenges. However, to effectively offer deniabil-

ity, Mobiflage must be widely deployed, e.g., adopted in the mainstream Android OS.

As such, we implement our Mobiflage prototype to be compatible with Android 4.x.
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The academic contributions of this research include:

1. We explore sources of leakage inherent to mobile devices that may compromise

deniable storage encryption. Several of these leakage vectors have not been

analyzed for existing desktop PDE solutions.

2. We present the Mobiflage PDE scheme based on hidden encrypted volumes—the

first such scheme for mobile systems to the best of our knowledge.

3. We provide a proof-of-concept implementation of Mobiflage for Android 4.x

(Ice Cream Sandwich and Jelly Bean). We incorporated our changes into 4.x

and maintained the default full disk encryption system. During the normal

operation of Mobiflage (i.e., when the user is not using hidden volumes), there

are no noticeable differences to compromise the existence of hidden volumes.

4. We address several challenges specific to Android. For example, to avoid PDE-

unfriendly features of the Ext4 file system (as used for the Android userdata

partition), we implement our hidden volumes (userdata and external) within

the FAT32-based external partition.

5. We analyze the performance impact of our implementation during initialization

and for data-intensive applications. In a Nexus S device, our implementation

appears to perform almost as efficiently as the default Android 4.x encryption

for the applications we tested. However, the Mobiflage setup phase takes more

time than Android FDE, due to a two-pass wipe of the external storage (our

Nexus S required almost twice as long; exact timing will depend on the size and

type of external storage).
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3.2 Threat Model and Assumptions

In this section, we discuss Mobiflage’s threat model and operational assumptions, and

few legal aspects of using PDE in general. The major concern with maintaining plau-

sible deniability is whether the system will provide some indication of the existence

of any hidden data. Mobiflage’s threat model and assumptions are mostly based on

past work on desktop PDE solutions (cf. TrueCrypt [97]); we also include threats

more specific to mobile devices.

Threat model and operational assumptions.

1. Mobiflage must be merged with the default Android code stream, or a widely

used custom firmware based on Android (e.g., CyanogenMod1) to ensure that

many devices are capable of using PDE. Then an adversary will be unable to

make assumptions about the presence of hidden volumes based on the availabil-

ity of software support. We do not require a large user base to employ PDE; it

is sufficient that the capability is widespread, so the availability of PDE will not

be a red flag. Similar to TrueCrypt [97], all installations of Mobiflage include

PDE capabilities. There are no identifying technical differences between the

default and PDE encryption modes. However, when more users enable default

encryption, they help to obscure those that use PDE.

2. Mobiflage currently requires a physical or emulated FAT32 SD card. Devices,

such as the Nexus S, which use an internal eMMC partition as opposed to a

removable SD card are supported. Some devices, such as the Galaxy Nexus,

have neither physical nor emulated external storage. Instead, they use the

1http://www.cyanogenmod.org/
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media transfer protocol (MTP) and share a single Ext4-formatted partition for

the (internal) app storage and (external) user accessible storage. These devices

are not currently supported; possible solutions are outlined in Section 3.6.3.

3. The adversary has the encrypted device and full knowledge of Mobiflage’s de-

sign, but lacks the PDE key (and the corresponding password). The offset of

Mobiflage’s hidden volume is dependent on the PDE password, and is therefore

also unknown to the adversary.

4. The adversary has some means of coercing the user to reveal their encryption

keys and passwords (e.g., unlock-screen secret), but will not continue to punish

the user once it becomes futile (e.g., the adversary is convinced that he has

obtained the true key, or the assurance that no such key actually exists). To

successfully provide deniability in Mobiflage, the user is expected to refrain from

disclosing the true key.

5. The adversary can access the user device’s internal and external storage, and

can have root-level access to the device after capturing it. The adversary can

then manipulate disk sectors, including encryption/decryption under any decoy

keys learned from the user; this can compromise deniability (e.g., the “copy-

and-paste” attack [32]). Mobiflage addresses these issues.

6. The adversary model of desktop FDE usually includes the ability to periodically

access or snapshot the encrypted physical storage (cf. [21, 1]). However, this

assumption is unlikely for mobile devices and has therefore been relaxed (as

the adversary will have access to the storage media only after apprehending the

user).
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7. In addition to the Dolev-Yao network attacker model [67, 24], we also assume

that the adversary has some way of colluding with the wireless carrier or ISP

(e.g., a state-run carrier, or subpoena power over the provider). Adversaries

can collect network/service activity logs from these carriers to reveal the use of

a PDE mode on suspected devices. This assumption significantly strengthens

the attacker model, nonetheless, is quite realistic (see e.g., [22]).

8. We assume the mobile OS, kernel, and boot-loader are malware-free, and while

in the PDE mode, the user does not use any adversary controlled apps to

avoid leaking information via those apps; i.e., in the PDE mode, the user is

expected to use only trusted apps. The device firmware and baseband OS are

also trusted. Control over the baseband OS may allow an adversary to monitor

calls and intercept network traffic [103], which may be used to reveal the PDE

mode. Mobile malware, and defining/verifying trusted code are independent

problems, and are out of scope here.

9. We assume the adversary cannot capture the user device while in the PDE

mode; otherwise, user data can be trivially retrieved if the device is unlocked.

We require the user to follow certain guidelines, e.g., not using Mobiflage’s PDE-

mode for regular use; other precautions are discussed in Section 3.5. Following

these guidelines may require non-trivial effort, but is required for maintaining

deniability in our threat model.

10. The storage medium is assumed to be divided, either physically or logically,

into 512-Byte sectors, for use with the FDE system. All calculations below

(e.g., Equation 3.3) are performed modulo 512-Bytes.
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Legal aspects. Some countries require mandatory disclosure of encryption keys in

certain cases. Failure to do so may lead to imprisonment and/or other legal actions;

several such incidents occurred in the recent past (e.g., [93, 94]). Cryptography can

be used for both legal and illegal purposes and governments around the globe are

trying to figure out how to balance laws against criminal use and user privacy. As

such, laws related to key disclosure are still in flux, and vary widely among coun-

tries/jurisdictions; see e.g., Koops [57].

Some of our recommendations, such as spoofing the IMEI or using an anony-

mous/“burner” SIM card, may be illegal in certain regions. Local laws should be

consulted before following such steps. Mobiflage is proposed here not to encourage

breaking laws; we want to technically enable users to benefit from PDE, but leave it

to the user’s discretion how they will react to certain laws. Our hope is that Mob-

iflage will be predominantly used for good purposes; e.g., human rights activists in

repressive regimes.

3.3 Mobiflage Design

In this section, we detail our design and explain certain choices we made. User steps

for Mobiflage are also provided. Parts of the design are Android specific, as we use

Android for our prototype implementation; however, we believe certain aspects can

be abstracted to other systems. Challenges to port the current design into other OSes

need further investigation (e.g., Apple iOS does not use FDE, and the file system and

storage layout are also different).
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3.3.1 Overview and Modes of Operation

We implement Mobiflage by hiding volumes in empty space on a mobile device’s

external (SD or eMMC) storage partition. We first fill the storage with random noise,

to conceal the existence of additional encrypted volumes. We create two adjacent

volumes: a userdata volume for applications and settings, and a larger auxiliary

volume for accumulating documents, photos, etc. The exact location of the hidden

volumes on the external storage is derived from the user’s deniable password. We

store all hidden volumes in the external storage, due to certain file system limitations

discussed in Section 3.6.3.

We define the following modes of operation for Mobiflage. (a) Standard mode is

used for day-to-day operation of the device. It provides storage encryption without

deniability. The user will supply their decoy password at boot time to enter the

standard mode. In this mode, the storage media is mounted in the default way (i.e.,

the same configuration as a device without Mobiflage). We use the terms “decoy”

and “outer” interchangeably when referring to passwords, keys, and volumes in the

standard mode. (b) PDE mode is used only when the user needs to gather/store data,

the existence of which may need to be denied when coerced. The user will supply

their true password during system boot to activate the PDE mode; we mount the

hidden volumes onto the file-system mount-points where the physical storage would

normally be mounted (e.g., /data, /mnt/sdcard). We use the terms “true”, “hidden”

and “deniable” interchangeably when referring to passwords, keys, and volumes in

the PDE mode.

21



3.3.2 Steganographic File-systems vs. Hidden Volumes

There are currently two main types of PDE systems for use with FDE: stegano-

graphic file systems (e.g., StegFS [1, 62]) and hidden volumes (e.g., TrueCrypt [97] and

FreeOTFE [31]). Steganographic file systems’ known drawbacks include: inefficient

use of disk space, possible data loss, and increased IO operations. These limitations

are unacceptable in a mobile environment, for reasons such as performance sensibil-

ity, and relatively limited storage space. (For more background on these systems, see

Section 3.9.2.) Consequently, we choose to use hidden volumes for Mobiflage. This

implies: no altered file system drivers are required; IO is as efficient as a standard

encrypted volume; and the chance of data loss is mitigated, although not completely

eliminated. Most deniable file systems are lossy by nature. Hidden volumes mitigate

this risk by placing all deniable files toward the end of the storage device. Assuming

the user knows how much space is available for the deniable volume, they can refrain

from filling the outer volume past the point at which the hidden volumes begin.

3.3.3 Storage Layout

The entire disk is encrypted with a decoy key and formatted for regular use; we call

this the outer volume. Then additional file systems are created at different offsets

within the disk and encrypted with different keys; these are referred to as hidden

volumes. To prevent leakage, Mobiflage must never mount hidden volumes alongside

outer volumes. Thus, we create corresponding hidden volumes, or RAM disks, for

each mutable system mount point (e.g., /userdata, /cache, /mnt/sdcard).
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Some hidden volumes may be decoys, but at least one hidden volume will contain

the actual sensitive data and be encrypted with the true key. Since the outer volume is

filled with random noise before formatting, there are no distinguishing characteristics

between empty outer-volume blocks and hidden volume blocks. When the outer

volume (or a hidden decoy volume) is mounted, it does not reveal the presence or

location of any other hidden volumes. All hidden volumes are camouflaged amongst

the random noise. The disk can be thought of as the concatenation of encrypted

volumes, each with a different key:

EK1(V ol1)||EK2(V ol2)||...||EKn(V oln) (3.1)

Here, EK(·) represents a symmetric encryption function with key K and || represents

concatenation.

When the disk is decrypted with a given key, the other volumes will appear to be

uniformly random data. When the user is coerced, she can provide the outer volume

key and claim that no other volumes exist:

DK1(V ol1||V ol2||...||V oln) = V ol1||Rand (3.2)

Here, DK(·) represents the symmetric decryption function with key K (corresponding

to EK(·)) and Rand represents data that cannot be distinguished from random bits.

Therefore, a forensic analysis of the decrypted outer volume will not indicate the

existence of hidden volumes. However, some statistical deviations may be used to

distinguish the random data from the cipher output; see Section 3.6.1. Also, the

adversary may not trust the user to have disclosed all volume keys and continue to
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(a) The encrypted disk will appear as uniformly random bytes

Encrypted

Volume

(Key 1)

Encrypted
Volume
(Key 2)

(b) Encrypted volumes are created at different offsets using different keys; each volume is
formatted to consume all remaining space

Decrypted

Volume 

(Key 1)
RANDOM BYTES

(c) When the outer volume is decrypted, it appears to consume the entire disk and the inner
volume data is indistinguishable from random bytes

Decrypted
Volume
(Key 2)

(d) When an inner volume is decrypted, all other volumes are hidden among the random
noise

Figure 3.1: Hidden volume storage layout

coerce her for additional keys. At this time, the user can provide decoy keys for other

hidden volumes and insist that all the volumes have been exposed. Revealing the

existence of any hidden volume may either help or hinder the user, depending on the

situation; see Section 3.7, item (e).

Each decrypted volume will appear to consume all remaining disk space on the

device. For this reason it is possible to destroy the data in the hidden volumes

by writing to the currently mounted volume past the volume boundary. This is

unavoidable since a visible limit on the mounted volume would indicate the presence

of hidden volumes. Figure 3.1 depicts a graphical representation of the storage layout.
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3.3.4 Offset Calculation

The offset to a hidden volume is generated as follows (calculations are performed

modulo 512-Bytes):

offset = b0.75× vlenc −
(

H(pwd||salt) mod b0.25× vlenc
)

(3.3)

Here, H is a PBKDF2 iterated hash function [51], vlen is the number of 512-byte

sectors on the logical block storage device, pwd is the true password, and salt is a

random salt value for PBKDF2. The salt value used here is the same as for the

outer volume key derivation (i.e., stored in the encryption footer). Thus, we avoid

introducing an additional field in the default encryption footer that may indicate the

presence of hidden volumes. The generated offset is greater than one half and less

than three quarters of the disk; i.e., the hidden volume’s size is between 25-50% of

the total disk size (assuming only one hidden volume is used). We choose this offset

as a balance between the hidden and outer sizes: the outer volume will be used more

often, the hidden volume is used only when necessary. To avoid overwriting hidden

files while the outer volume is mounted, we recommend the user never fills their outer

volume beyond 50%.

Deriving the offset in the above manner (Equation 3.3) allows us to avoid storing

it anywhere on the disk, which is important for deniability. For comparison, True-

Crypt uses a secondary volume header to store the hidden offset, encryption key and

other parameters; all the header fields are either random or encrypted, i.e., indistin-

guishable from the encrypted volume data. In contrast, Android uses volume footers

containing plaintext fields, similar to the Linux unified key setup (LUKS [32, 33])
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header. Introducing a new field to store the offset would reveal the use of Mobiflage

PDE, so we choose to derive the offset from the password instead. Other systems,

e.g., FreeOTFE, mandate users to remember the offset; prompting the user for the

offset at boot time may also be a red flag for the adversary. The obvious downside of

a password-derived offset is that the user has no input on the size of the hidden vol-

umes. One possible method to accommodate user choice is discussed in Section 3.4.4,

item (2).

Alternatively, the offset could have been fixed at a given location on the disk (e.g.,

always appearing at 50%). However, there is a minor security benefit in deriving the

offset as shown in Equation 3.3: it complicates a dictionary attack, by mandating the

adversary capture a larger portion of the disk. If the offset was at a known location,

then an adversary could perform a dictionary attack on a couple of kilobytes of data

captured from that region (only the key and filesystem magic-number are necessary

to prove the existence of a hidden volume). With our approach, the adversary must

capture at least 25% of the storage to mount an attack. Note that the efficiency of

a dictionary attack is not affected by the offset location (see Section 3.7, item (a)).

Copying 25% of the storage may reduce the adversary’s ability to process a large

number of target users (e.g., all individuals passing through a customs checkpoint).

3.3.5 User Steps

Here, we describe how users may interact with Mobiflage, including initialization and

use.

Users must first enable device encryption with PDE (e.g., through the settings

GUI). Mobiflage’s initialization phase erases existing data on the external storage (SD
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Figure 3.2: Mobiflage initialization process; steps 1, 3, and 4 are performed by the default
Android FDE, the others are unique to Mobiflage

card); this data should be backed-up before initiating Mobiflage. However, users can

choose to preserve the outer volume’s userdata partition within the internal storage;

this partition may be encrypted in-place or initialized with random data (depending

on user choice). Assuming a single hidden volume is used, the user then enters the

decoy and true passwords, for the outer and hidden volumes respectively. Mobiflage

then creates the hidden volumes, performs in-place encryption of the internal stor-

age (if chosen) and reboots when complete; see Figure 3.2. Unlike Android FDE,

Mobiflage must initialize the external storage with random data for deniability. This
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Figure 3.3: Mobiflage usage – standard mode; for day-to-day use of the device (i.e., no
plausible deniability)

makes Mobiflage slower than the default Android FDE initialization (see Section 3.8).

However, the initialization step will likely be performed only occasionally.

For normal day-to-day use (e.g., phone calls, web browsing), the user enters the

decoy password during pre-boot authentication to activate the standard mode. All

data saved to the device in this mode will be encrypted but not hidden. It is important

for the user to regularly use the device in this mode, to create a digital paper trail

and usage time-line which may come under scrutiny during an investigation. The

user gains plausibility by showing that the device is frequently used in this mode; i.e.,

she can demonstrate apparent compliance with the adversary’s orders. Figure 3.3

illustrates the standard mode boot process.

28



Figure 3.4: Mobiflage usage – PDE mode; in this mode, the user can store data or perform
tasks which can later be denied

When the user requires the added protection of deniable storage, they will reboot

their device and provide their deniable password when prompted. In the PDE mode,

they can transfer documents from another device, or take photos and videos. Note

that app/system logs in this mode are hidden or discarded; however, there is still

a possibility of leakage through network interfaces. Section 3.5 provides a list of

precautions the user should take to mitigate such risks. Figure 3.4 illustrates the

PDE mode boot process.

After storing or transferring files to the deniable storage, the user should imme-

diately reboot into the standard mode. The files are hidden as long as the device is
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either off, or booted in the standard mode. If the user is apprehended with the device

in the PDE mode, deniability is lost. Even if the user shuts the device off shortly

before being apprehended, there is a possibility that the adversary can obtain the key

from data remanence in the RAM (e.g., the cold-boot attack [36]).

If the user is apprehended with her device, she can supply a decoy password, and

claim that no hidden volumes exist. The adversary can examine the storage but will

not find any record of the hidden files, apps, or activities. Depending on the situation,

the user can provide additional decoy passwords, when faced with continued coercion.

A rational adversary may not punish the user if they have no reason to believe that

(further) hidden data exists on the device. Assuming the user can overcome any

coercion the adversary attempts, and does not reveal the true key, the adversary will

have no evidence of the hidden data.

3.4 Mobiflage Implementation

We developed and tested Mobiflage on a Google/Samsung Nexus S phone using the

4.0 (ICS) and 4.1 (JB) Android source code. The addition of PDE functionality

to the Android volume mounting daemon (vold) required less than one thousand

additional lines of code, and subtle changes to the default kernel configuration. We

also discuss current limitations of Mobiflage. In addition to the Nexus S, we also

tested the portability of our prototype to a Motorola Xoom.
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Figure 3.5: Android FDE footer; note that some fields (e.g., the cipher specification) is
stored in clear text)

3.4.1 Changes to Android FDE

We first provide a brief introduction to Android FDE, as Mobiflage has been imple-

mented by enhancing this scheme. We then discuss the changes we introduced.

The Android encryption layer is implemented in the logical volume manager

(LVM) device-mapper crypto target: dm-crypt [23]. Encryption takes place below

the file system and is hence transparent to the OS and applications. The AES cipher

is used in the CBC mode with a 128-bit key. ESSIV is used to generate unpredictable

IVs to prevent watermarking attacks (Fruhwirth [32]; see also Section 3.6.1). A ran-

domly chosen master volume key is encrypted with the same cipher by a key derived

from 2000 iterations of the PBKDF2 [51] digest of the user’s screen-unlock password

and a salt value. To enable encryption, the user must choose either an unlock pass-

word or PIN (i.e., pattern and “Face Unlock” secrets may not be used). The cipher

specification, encrypted master key and salt are stored in a footer located in the last

16KB of the userdata partition; see Figure 3.5 for an example Android encryption

footer.
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When the device is booted and fails to find a valid Ext4 file system on the userdata

partition, the user is prompted for their password. The master key is decrypted from

their password-derived key. Storage read/write operations are passed through the

device mapper crypto target, so encryption/decryption is performed on-the-fly for

any IO access. If a valid Ext4 file system is then found in the dm-crypt target, it is

mounted and the system continues to boot as usual. Otherwise, the user is asked to

re-enter their password. By default, removable SD cards are not encrypted; however,

emulated external storage (i.e., a physical eMMC partition, mounted at /mnt/sdcard)

is encrypted.

We made three important changes to the default Android encryption scheme that

are necessary to defend deniability: (a) we use the XTS-AES cipher instead of CBC-

AES; (b) we enable encryption of removable storage; and (c) we wipe the SD card

with random data. XTS-AES is chosen as a precaution against copy-and-paste and

malleability attacks (see Section 3.6.1 for details). We use a 512-bit key (256-bit for

AES and 256-bit for XEX tweak). This gives the cipher additional strength over the

128-bit Android key-length, but more importantly makes the key exactly one disk

sector in size for easy alignment of hidden volumes. Note that, although the 256-

bit random key strengthens AES, the overall security of the system defaults to the

strength of the password used to protect the volume key. The xts and gf128mul

kernel crypto modules were compiled for our development devices, to enable the XTS

mode. These modules are available in the Linux kernel since version 2.6.24.

Android encryption can be performed in-place (i.e., reading each sector, encrypt-

ing it, and writing it back to the disk), or by first formatting the storage media.

We perform the wipe operation on the SD card even when the user enables in-place
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Volume Mount point Mode Description
Boot N/A N/A Boot-loader and kernel image
Recovery N/A N/A Recovery tools and backup kernel
System /system RO OS binaries, Dalvik VM, etc.

Cache /cache RW
Temporary space for OS and apps
(e.g., OTA updates and downloaded .apk packages)

Device log /devlog RW Persistent system logs
Userdata /data RW Apps and settings

External
/mnt/sdcard or
/storage/sdcard0

RW App and user data (e.g., photos, maps, music)

Table 3.1: Typical volumes on common Android devices (RO: read-only; RW: read-write;
N/A: not applicable)

encryption. We enhance the wipe operation to fill the flash media with random data

to address data remanence issues and to hide the PDE volumes (see Section 3.6.2 for

details). These changes are necessary even when encrypting without PDE, to make

the default encryption indiscernible from PDE. Our changes should not negatively

affect the security of Android FDE.

3.4.2 Partitions and File-system Support

Here we describe the Android storage layout and file systems, as well as the Mobiflage

storage structure used to implement PDE.

Device storage partitions. The exact storage layout of a mobile device is man-

ufacturer/device specific; Table 3.1 shows volumes typically found. Android 4.x has

two partitions that store user data: the internal Ext4 userdata partition and the

(emulated or physical) external FAT32 partition. The userdata partition stores apps

and settings, while the external partition stores documents, downloads, photos, etc.

We create both a hidden userdata partition and a hidden external partition for use

in the PDE mode. This allows the user to store hidden files as well as install hidden

apps. The OS and kernel are stored on read-only volumes, and can be safely shared
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Figure 3.6: Mobiflage SD card PDE layout

between the two modes. This also simplifies system updates, since updating the ker-

nel/OS in the standard mode will be reflected in the PDE mode. Over-the-air system

updates make use of the /cache partition, which is not persistent in the PDE mode,

so updates must always take place from the standard mode. The default file system

for the internal userdata partition is Ext4. For reasons outlined in Section 3.6.3, we

cannot reliably hide a volume within an Ext4 file system. Instead, we store the hidden

volumes in the FAT32 formatted external partition.

The FAT32 file system is much less complex than Ext4. FAT32 stores the allo-

cation tables and all meta-data at the beginning of a disk. The remaining space is

uninterrupted data blocks—i.e., no FAT backups or meta-data exist in further areas

of the disk. Writing a hidden partition to an unused area of a FAT32 file system

will not create any noticeable discrepancies, as would be visible in Ext4. We create

a hidden Ext4 partition to store apps and settings, and a hidden FAT32 partition

to store files such as photos and videos; see Figure 3.6. To prevent leakage into the

outer volumes, when the hidden volumes are mounted, we use tmpfs2 RAM disks for

/cache and /devlog. We also discuss persistent cache and device log partitions in

Section 3.7, item (c).

2http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt
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Mobiflage on-disk structure. Our prototype currently supports the creation of

only one hidden volume offset (i.e., no additional decoy hidden volumes). The outer

userdata and external volumes are first encrypted through the dm-crypt target. The

footer, containing only the outer volume key (encrypted with the decoy-password

derived key) and other default fields, is written to the disk in the usual manner. Before

encrypting the outer external volume, it is first filled with random data produced with

the XTS-AES cipher under two random, discardable keys (see Section 3.6.1). This is

not performed by Android FDE, which may lead to data remanence attacks via the

flash wear-levelling mechanism as discussed in Section 3.6.2.

We then generate an offset from the true password as described in Section 3.3.4. A

randomly generated hidden volume key is then encrypted with a key derived from the

true password. The encrypted hidden volume key is stored in the external partition

at the derived offset. The hidden volumes immediately follow the key on the disk,

and the volumes are encrypted by creating new dm-crypt mappings with the hidden

key. The hidden userdata volume is 256MB and the hidden external volume consumes

the remaining space. We choose 256MB for the userdata partition assuming this will

be sufficient for the installation of several hidden apps (e.g., custom browser, secure

VoIP and texting apps). This size may be user configurable (e.g., up to a maximum

of 25% of the hidden space). However, the bulk of the user data is stored in the

external storage (e.g., photos, downloads, maps), warranting a larger size.

To assess the portability of Mobiflage on other hardware profiles, we tested our

prototype on a Motorola Xoom. The Xoom uses the shared internal/external MTP

paradigm, but also contains an SD card slot. The shared MTP storage is treated

as the primary external storage, and all external app data is stored at this location
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(essentially ignoring the SD card). We altered Mobiflage by embedding the location

of the SD card block special file, to create and mount the hidden partitions. In

this particular configuration, it is perhaps a better idea to create a single hidden

Ext4 partition, since it will house all internal and external data, and the SD card

is inaccessible to installed apps (i.e., 256MB will be insufficient for MTP devices).

Other subtle tweaks may be necessary to support Mobiflage on different hardware

profiles.

3.4.3 User Interface and Pre-boot Authentication

The default Android encryption mechanism can be enabled through the settings GUI.

This prompts the user for their screen-unlock password, which is used to derive the

volume encryption key. The system then shuts down non-essential services and starts

encrypting the internal storage in-place. A user with root privileges can also use the

vdc command-line tool (e.g., from a PC to which the Android device is connected)

to enable encryption either in-place or with data wipe, as follows:

vdc cryptfs enablecrypto <inplace|wipe> <pwd>

In this case, pwd can be any password (i.e., independent of the screen-unlock pass-

word). Currently, the user can activate Mobiflage PDE using vdc as follows:

vdc cryptfs pde <inplace|wipe> <outer pwd> <hidden pwd>

Note that, the default Android shell, sh, does not maintain history between sessions

(i.e., command history cannot be retrieved from a captured Android device). In-place

encryption is used only for the internal storage. We wipe the SD card to reliably fill

the physical media with random noise. On flash media, it is apparently sufficient to
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completely fill the logical address space twice, as noted by Wei et al. [102]. Since

internal storage does not house any hidden volumes, we forgo the random wipe and

encrypt in-place. This allows the user to preserve their apps and settings in the

standard mode and creates a fresh install (i.e., factory reset) in the PDE mode. We

plan to incorporate the PDE options into the settings GUI in a future version of

Mobiflage.

When the device is booted up, the system will attempt to mount the userdata

volume. If a valid Ext4 file system is not found, the user is prompted for a password,

assuming storage encryption is in use. The system then attempts to mount the volume

with the stored key (decrypted with the password-derived key). If it fails, instead

of asking the user to try again, it will calculate the volume offset from the supplied

password; see Figure 3.4. The external storage sector found at this offset is decrypted

with the PBKDF2 derived key. Using the result as a volume key, the system will

attempt to mount a volume beginning at the next external storage sector after the

offset. If a valid Ext4 file system is found at this location, it is mounted. After

mounting the hidden userdata and external volumes, the boot procedure continues as

usual. If a hidden file system cannot be found at the derived offset, the system will

prompt the user to try again, just as it would if PDE were not enabled.

3.4.4 Limitations

Limitations of our current Mobiflage design and prototype include the following:

1. Mobiflage currently requires a separate physical FAT32 storage partition (SD

or eMMC). Devices that use MTP and share a single partition for internal and

external storage are not currently supported. We discuss the problems inherent
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to Ext4, and provide suggestions for other file systems (e.g., HFS+, Ext2/3) in

Section 3.6.3.

2. Users currently cannot set the desired size of a hidden volume; the size is derived

from a user’s password to avoid the need to store the offset on the device. An

expected size may be satisfied as follows (not currently implemented). We can

ask users for the desired size and iterate the hash function until an offset close

to the requested size is found. For example, we can perform 20 additional hash

iterations and report the closest size available with the supplied password. The

user could then choose to either accept the approximate size or enter a new

password and try again. Storing the iteration count is not needed. At boot

time, the system will perform consecutive iterations until a valid file system is

found, or a maximum count is reached (cf. [12]). This would slow down the

boot process somewhat while searching for the correct offset.

3. Currently, we support only one hidden volume offset. Creating additional (de-

coy) hidden volumes will require a collision prevention mechanism to derive

offsets. A method, such as the iteration count mentioned above, can be used to

ensure enough space is left between hidden offsets (e.g., 1.5GB). This increases

the chance of corrupting hidden data. Each hidden volume would appear to

consume the remaining SD card storage, but the address space would overlap

with other hidden volumes. We discuss the implications of multiple hidden

volumes in Section 3.7, item (e).

4. Transferring data between outer and hidden volumes may be necessary on oc-

casion; e.g., if time does not permit switching between modes before taking an

opportunistic photo. We do not offer any safe mechanism for such transfers at
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present. Mounting both volumes simultaneously is a straightforward solution,

but may compromise deniability (e.g., usage log data of a hidden file may be

visible on the decoy volume). The user can transfer sensitive files to a PC as

an intermediary, then transfer the files to the PDE storage. In this case, data

remanence in the outer volume is an issue. Another possibility is to keep a

RAM disk mounted in the standard mode for storing such opportunistic files

(and then copy to the PDE storage via a PC). However, some apps, such as the

camera app, do not offer an option to choose where files are saved.

3.5 Precautions against Colluding Carriers

In this section, we discuss threats from a colluding wireless carrier, and list a number

of precautions that may help maintain deniability in the presence of such a carrier.

Mobile devices are often connected to a cellphone network. It is likely that the

wireless carrier maintains activity records, with identifying information and times-

tamps, of devices interfacing with the network. These records can demonstrate that

the device is online and communicating at a given time. The use of the PDE mode

is likely to cause discrepancies between the carrier’s logs and the device’s standard

mode (outer volume) logs. For example, if the carrier has records of a phone call at a

given time, that occurred when the device was booted in the PDE mode, the device

will not have a record of the call in the standard mode; see Figure 3.7. In certain

situations, an adversary may be able to collude with the carrier (e.g., a state-based

carrier), or compel the carrier to disclose user records (e.g., by court orders). If the

user has provided the adversary with the decoy password, the adversary may find

discrepancies between the device logs and the carrier’s logs. This would give the ad-

39



Standard Mode

PDE Mode

Carrier

log1
log2
log5

log3
log4
log6

log1
log2

log5

log3
log4

log6

Figure 3.7: The adversary may collude with a service provider; discrepancies between
device logs and the carrier’s activity logs may compromise deniability

versary reason to believe that the user has not been completely forthcoming. They

may then continue to coerce the user for any additional passwords or keys.

To restrict the above threats, we provide a list of user practices that must be

adhered to when booted in the PDE mode; some of these practices may be onerous

to the user. This list shows pitfalls of using PDE systems in practice; however, it is

not meant to be comprehensive.

1. When using the device in the PDE mode, it should be left in “Airplane mode”

(i.e., antennae off), and the SIM card should be removed. This may prevent

the wireless carrier from identifying the device/user in their activity logs.

2. A secondary anonymous SIM card should be used, and the phone’s identifying

information spoofed, if connecting to a mobile network while in the PDE mode

(e.g., IMEI spoofing and software MAC address spoofing). This will restrict

any carrier or ISP from directly identifying a suspected device.
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3. We strongly discourage the use of mobile data networks in favor of public WiFi

hot-spots or Internet pass-through/tethering from a PC. Identifying network

traffic information (e.g., destination IP address) should be spoofed or obscured

with a tool such as Tor3 or a trusted (e.g., employer controlled) VPN when

using any type of network connection. This may also restrict an ISP or carrier

from correlating the user’s behavior (e.g., if the user is known to frequent a

certain file hosting service, or news agency).

4. When using the PDE mode, any web services (e.g., email, social networking)

should not be used unless a secondary account is created under a pseudonym

and is only used in the PDE mode. This will prevent any collusion between the

adversary and web service providers with which the user is known to have an

account. This includes the device registration account (e.g., Google or iTunes).

It is also recommended that auto-backup features (e.g., iCloud or Google Drive)

are disabled in the PDE mode.

3.6 Sources of Compromise

We examine three leakage vectors that may compromise deniability of a PDE scheme

on mobile devices: known issues in crypto-systems and software implementations of

desktop PDE schemes, as well as issues specific to current mobile storage systems.

Below we discuss these challenges and how they are addressed in Mobiflage.

3Tor on Android: https://www.torproject.org/docs/android.html.en
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3.6.1 Leakage from Crypto Primitives

Crypto primitives used in a PDE implementation must be chosen carefully. Below

we discuss issues related to random data generation and encryption modes.

PRNG. A fundamental requirement for PDE schemes implemented with hidden vol-

umes is that the whole disk must appear to contain cryptographically secure random

data. For this requirement, the cipher output must be indistinguishable from ran-

dom bits (cf. IND$-CPA [79]). However, certain statistical deviations between cipher

and PRNG output may exist (see e.g., [30, pp. 137–161]). To sidestep any potential

statistical inconsistencies, we draw randomness from the same distribution as the ci-

phertext space by using the encryption function itself as the PRNG (in a two pass

random-wipe, each pass with a new random key). Under statistical analysis, empty

sectors in an outer volume will appear the same as the sectors in a hidden volume,

when either encrypted or decrypted with a decoy key. For comparison, TrueCrypt

uses a built-in PRNG to fill empty volume space, with the assumption that the cipher

output will be indiscernible from their PRNG output.

Encryption modes. Encryption of data at rest has different considerations than the

traditional communication encryption model. For example, to enable random-access,

FDE implementations treat each disk sector as an autonomous unit and assign sector-

specific IVs for chaining modes such as CBC. These IVs are long-term and must be

easily derived from or stored in the local system. When FDE is implemented with a

CBC-mode cipher, information leakage about the plaintext disk content may occur

without knowledge of the encryption key or cipher used (see Appendix A).Tweakable

block cipher modes (e.g., LRW and XTS) have been designed specifically for disk
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encryption to prevent attacks such as watermarking, malleability, and copy-and-paste.

These attacks are particularly important for PDE, as they may be used to identify

hidden volumes without recovering any hidden plaintexts.

The default Android FDE uses CBC. We choose to move away from the Android

default and instead, use XTS-AES [43, 68] to prevent known attacks against CBC.

XTS-AES is a code book mode (i.e., no block chaining) and uses a secondary “tweak”

key to make unpredictable use of the disk sector index. XTS-AES is not an authen-

ticated mode, and as such is considered malleable [43]. However, unlike CBC, XTS

is not malleable at a bit granularity: a modified ciphertext block will decrypt to a

random plaintext block, preventing an attacker from making a predictable change.

The absence of authentication tags also allows for a copy-and-paste attack (i.e., suc-

cessful decryption of sectors that have been moved from other disk locations). Using

CBC with random IVs will garble only the first block, but successfully decrypt all

subsequent blocks in the moved sector. XTS-AES does not rely on block chaining,

and uses the tweak to entangle plaintext/ciphertext block pairs with their disk sector

location. As such, all blocks in a moved sector will decrypt to random plaintext. A

watermark attack relies on predictable IVs, and is mounted by convincing the user to

encrypt and store a file that has been specifically crafted to effectively zero out the

IVs. The watermark manifests itself as identical ciphertext blocks at the beginning of

consecutive disk sectors. The attacker can then examine the encrypted storage and

locate the watermark. Both XTS-AES (Mobiflage) and CBC with ESSIV (Android

FDE), effectively prevent watermarking attacks.
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3.6.2 Leakage from Flash-storage

In this section, we provide an overview of flash storage technologies typically found

in mobile devices. We also discuss flash leakage vectors that affect PDE and, to some

extent, FDE.

Overview of flash storage. Mobile devices generally use NAND-based flash stor-

age. Flash memory is not divided into sectors in the same way as magnetic disks.

Write operations take place on a page level (e.g., 4KB page) and can only change

information in one direction (e.g., changing 1 to 0, but not the inverse). Thus, write

operations can only take place on an empty page. An erase operation takes place

on a group of several pages, called an erase block (e.g., 128 pages per block). Flash

memory cells have a finite number of program/erase cycles before becoming damaged

and unusable. Therefore, flash memory is often used with a wear-levelling mechanism

to prevent the same cell from being repeatedly written. In effect, logical block ad-

dresses (LBAs) on the disk are mapped to different physical memory pages for each

write operation. Thus, storage on flash memory is not a linear arrangement as in

traditional magnetic disks.

When a logical disk region is overwritten, it is usually simply remapped to an

empty page without erasing the original page. This can continue until there are no

empty pages, at which time unmapped pages in erase blocks are consolidated by the

garbage collector, and empty erase blocks are wiped. Otherwise, the erase blocks must

be completely wiped and rewritten to change a single page. This requires reading the

entire erase block into cache, modifying the affected page, wiping the erase block, and

finally writing the block back to the media.
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Generally, two types of flash media are used in Android devices. Older Android

devices use the memory technology device (MTD) for internal storage. An MTD

is analogous to a block or character device, specifically designed for flash memory

idiosyncrasies. To emulate a block device on an MTD, a software flash translation

layer (FTL) is used. The FTL enables the use of a standard block file system (e.g.,

Ext4, FAT32) on top of the raw flash media. Newer Android devices use embedded

multi media card (eMMC) for internal storage and secure digital (SD) for external

storage. eMMC combines the flash memory and hardware controller in one package.

SD has a dedicated controller and removable storage. Both technologies are presented

to the system as block devices. The FTL for eMMC and SD storage is implemented

in firmware on the controller as opposed to a software FTL as used by MTD.

Wear-levelling issues. Flash memory does not have the same data remanence

issues as seen in magnetic storage. However, the wear-levelling mechanism may leave

old copies, or fragments of files in unmapped pages on the flash disk. When making

changes to hidden files it is possible that (encrypted) fragments of the original file

will still exist in unmapped pages. This would provide an adversary with a partial

time-line, or partial snapshots, of changes made to the disk. If the adversary can

demonstrate that the regions affected do not coincide with disk activity in the outer

volume, they can conclude existence of hidden volumes.

The software FTL used by the Linux MTD driver (mtdblock) is simplistic and

does not use a wear-levelling mechanism.4 Some file systems (e.g., YAFFS2) are

designed to work directly with the raw flash memory instead of using an FTL. Such

file systems may implement their own wear-levelling mechanisms. This was the default

4The MTD subsystem for Linux: http://www.linux-mtd.infradead.org/faq/general.html
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technology for devices prior to Android 3.0, but has largely been replaced by eMMC

storage. The SD [86] and eMMC [49] specifications do not address wear-levelling

requirements, so it is up to the manufacturers to decide if and how to implement

wear-levelling in hardware FTLs.

Mobiflage stores all hidden volumes on the SD card. Therefore, exploiting the

unmapped, wear-levelling pages would require bypassing the hardware controller and

reading the raw flash memory, as opposed to acquiring a logical image (e.g., as pro-

duced with the dd tool). The adversary would need to read the physical to logical

block allocation map and reconstruct the physical layout of the disk. Existing studies

of raw flash performed by Wei et al. [102] have focused on writing specific strings

to the media through the hardware controller FTL, then bypassing the controller to

search for those strings in the raw physical flash. It is unknown how successful an

adversary may be in demonstrating that a given unused page was part of a hidden

volume and hence compromising deniability. Further work is needed to measure the

extent to which unmapped/obsolete pages can be correlated to LBAs.

Mobile forensic tools that focus on logical data acquisition (e.g., viaExtract,5

Paraben6) cannot mount this attack. Physical acquisition mechanisms exist for MTD

storage (see e.g., Hoog [41, pp. 266–284]); however, they tend to be costly, time

consuming, and generally destroy the mobile device.

Wear-levelling has implications for both non-deniable and deniable encryption

schemes. If a disk is encrypted in-place, plaintext fragments that existed before

encryption may still remain accessible. Wei et al. [102] show that most flash media

contains between 6-25% more storage than advertised to the system. The additional

5https://viaforensics.com
6http://www.paraben-forensics.com
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storage is used by the wear-levelling mechanism. For this reason, Wei et al. suggest

that the entire address space of a flash disk should be overwritten twice with random

data, to ensure all erase blocks have been affected, before encrypting the device.

Their findings show that in most cases, this is sufficient to ensure that every physical

page on the device is overwritten. Therefore, Mobiflage performs a two-pass wipe,

before encryption of the external partition, to avoid leaving any plaintext fragments

on the media, and to ensure the continuity of random data, which is crucial for PDE.

Currently, the default Android FDE does not take this precaution into consideration,

and the wipe operation is performed by simply re-formatting the file system.

A recent proposal by Reardon et al. [74] explores secure deletion for flash memory.

All file system data is encrypted with per-block keys. To securely delete a file system

block, the associated key is wiped from the physical flash with an ERASE command.

The data blocks are rendered un-readable, hence data remanence is not an issue.

Currently, their implementation only works with MTD storage, and would need to

be integrated into the SD/eMMC hardware controller FTL to afford secure deletion

to these devices [74].

Special “discard” operation. The discard operation can be issued from a file

system to the flash hardware controller. This command informs the host controller

that a certain LBA is no longer storing file system data and can be wiped at any time.

When all LBAs in an erase block are discarded, the controller’s garbage collector will

erase the block in the background. Discard effectively speeds up write access time, as

an empty block can be directly written to without a read-modify-erase-write cycle.

The ERASE command (or the TRIM command for ATA controllers) takes place on

the physical layer, and when used, will zero out regions of the physical flash media,
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not visible to the logical file system. Thus, the adversary may recognize the physical

blocks that are actually used to store file data. If the adversary knows the decoy

key, he may correlate physical blocks and LBAs to discover which blocks are used

by the hidden volume. As a security consideration, the dm-crypt mapper does not

forward discard commands [13], hence ensuring the continuity of random data on the

underlying physical storage.

3.6.3 Leakage from File-system and OS

The default file system for the internal storage in Android 4.x devices is Ext4. Ext4

introduced several new features including extents, uninitialized block groups, and

flexible block groups [55]. The flexible block group (flex group) feature allows a block

group’s meta-data (e.g., inode/block bitmaps and inode table) to be located anywhere

on the disk, instead of at the beginning of each individual block group, as in earlier

Ext file systems. The default setup is to store the meta-data for 16 consecutive block

groups in the first block group of each flex group. This would make it possible to hide

files inside an empty flex group without overwriting any meta data for that group.

However, as Ext4 places backup superblocks and group descriptor tables in some

block groups within each flex group, any hidden data stored in a flex group could

overwrite these structures; see Figure 3.8.

Additionally, the absence of backup superblocks and group descriptor tables would

be suspicious and give the adversary reason to assume that data has been hidden in

these flex groups. The locations of the backup structures and file data would need to

be known when creating hidden volumes. Furthermore, when creating directories in

the root of an Ext4 file system, the directories are placed in the most vacant block
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Figure 3.8: Ext4 filesystem layout; overwriting the meta-data structures (dark regions)
with hidden volume data would alert the adversary to the use of PDE

group available on the disk [54]. This effectively spreads directories, and the data

contained within, across the entire disk. Standard volumes, unaware of the hidden

volume location, will likely collide with hidden data regardless of where it is placed in

an Ext4 file system. Therefore, we cannot reliably hide data within an Ext4 volume

(without upstream changes in Ext4, e.g., by making directory spread optional).

One way to overcome the Ext4 backup superblock problem is to indicate those

regions of the disk as damaged or “bad blocks” when creating the hidden volume. The

hidden file system would then avoid writing data to those locations. When the outer

volume is mounted there would be no indication of tampering nor reason for suspicion.

Unfortunately, due to the Ext4 directory spread, this would not be a feasible solution

for Android MTP devices without removable storage. However, this method may be

used to implement PDE in other file systems such as NTFS, and HFS+ that employ

a more sequential write policy (i.e., they do not use a directory spread mechanism

as in Ext4). Another partial solution is to logically partition the internal storage

to include a FAT32 volume. In the standard mode, this volume would be mounted

to the SD card mount point, instead of using MTP. This partition would house the
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hidden volumes mounted in the PDE mode. MTP would be sacrificed in favor of the

older USB mass storage functionality when connected to a PC.

Most work in deniable disk encryption investigates data or existence leakage of

hidden files into temporary files, swap space, or OS logs (see e.g., [21]). For exam-

ple, a word processor that performs auto-save functions to a central location may

have backups and fragments of files edited from a hidden volume. If such backups

are present, and no evidence of the files are found on the disk, then the adversary

can assume the existence of hidden files and demand the true decryption key. We

explain in Section 3.7 (item (c)) that log files, swap space, and temporary storage are

effectively isolated between the two modes of Mobiflage.

3.7 Security Analysis

In this section, we evaluate Mobiflage against known attacks and weaknesses.

(a) Password guessing. We rely on the user to choose strong passwords to protect

their encryption keys. The current Android encryption pre-boot authentication times-

out for 30 seconds after ten failed password attempts. The time-out will slow an online

guessing attack, but it may still be feasible, especially when weak passwords are used.

An offline dictionary attack is also possible on an image of the device’s storage.

The adversary does not know the password to derive the offset, but the salt is found

in the Android encryption footer. The salt is used with PBKDF2, and is a precaution

against pre-generated dictionaries and rainbow tables. The salt cannot be stored at

the hidden offset as it is used in the offset calculation. Using the same salt value for

both modes enables the adversary to compute one dictionary of candidate keys (after
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learning the salt), to crack passwords for both modes. Exacerbating the problem is

Android’s low PBKDF2 iteration count. On a single core of an Intel i7-2600, at 2000

iterations, we were able to calculate 513.37±1.93 keys per second using the OpenSSL

1.0.1 library. Custom hardware (e.g., FPGA/GPU arrays) and adapted hash imple-

mentations (e.g., [100]) can make offline guessing even more efficient. See Appendix B

for more information concerning offline dictionary attacks against Android.

We tested different hash iteration counts in PBKDF2 and found that 200,000 iter-

ations is apparently a fair compromise between security and login delay. On the Intel

i7-2600, at 200,000 iterations, we were able to calculate 5.21 ± 0.01 keys per second

(i.e., guessing attack becomes 100 times slower). On our Nexus S (1GHz Exynos-3

Cortex-A8) development phone, it required an additional 0.67± 0.01 seconds to cal-

culate a single key. Our Motorola Xoom (1GHz Tegra-T20 Cortex-A9) required an

additional 0.41 ± 0.001 seconds and an HTC EVO3D (1.2GHz MTM8660 Scorpion)

required an additional 0.70±0.01 seconds. This would slow down the boot procedure

by approximately two seconds; note that, booting into the PDE mode requires three

invocations of PBKDF2: to test the key in the footer, to calculate the offset, and to

decrypt the hidden volume key. Possible computational and memory-wise expensive

replacements for PBKDF2 (e.g., [58, 71]) can also be used to mitigate custom hard-

ware attacks. In the end, we require users to choose a strong password resilient to

guessing. We introduce a design in Chapter 4 that may mitigate a password guessing

attack.

(b) Cipher issues. An implementation flaw can expose FDE ciphers to a theoretical

watermarking attack that has been documented for software such as LUKS [20]. The

issue occurs when the disk is sufficiently large and the size of the disk sector index (n)
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is small. For example, if n is a 32-bit integer, and there are more than 232 512-byte

sectors on the disk, the value of n will eventually roll-over and repeat itself. If the

adversary can create a special file with duplicate plaintext blocks at correct locations

and convince the user to store the file in their hidden volume, then the adversary can

demonstrate the existence of a hidden volume. In the given example, the duplicate

plaintext blocks would need to be repeated at 2TB intervals. The adversary will

not know what the corresponding ciphertext blocks will be, but finding identical

ciphertexts spaced at the correct distance would be strong evidence. This is an

implementation issue, and not an issue with the cipher algorithm itself. The problem

occurs for all FDE ciphers, including XTS and CBC-ESSIV, that use a sector index

smaller than the total number of disk sectors. To mitigate this problem, a longer

integer (e.g., 64-bit) is commonly used for the sector index. We use the 64-bit sector

index available in dm-crypt which will not roll over until 8192 Exabytes.

(c) Software issues. Mobiflage seems to effectively isolate the outer and hidden

volumes. Apps and files installed in the hidden volumes leave no traces in the outer

volume. Android does not use dedicated swap space. When the OS needs more RAM

for the foreground app, it does not page entire regions of memory to the disk. Instead,

it unloads background apps after copying a small state to the userdata partition. For

example, the web browser may copy the current URLs of open tabs to disk when

unloading, instead of the entire rendered page. When the browser is loaded again,

the URL is reloaded. Leakage into swap space and paging files was shown to be

an issue for desktop PDE implementations by Czeskis et al. [21]. As the outer and

hidden userdata partitions are isolated from one another in Mobiflage, we do not take

any specific measures against leakage through memory paging.
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The Android Framework is stored in the /system partition which is mounted read-

only. The Linux kernel is stored in a read-only boot partition which is not mounted

onto the OS file system. Leakage through these immutable partitions is also unlikely.

Android logs are stored in a RAM buffer, and application logs are stored in the

userdata partition. Leakage is also unlikely through logs as the userdata partitions

are isolated and RAM is cleared when the device is powered off. Some devices keep

persistent logs at /devlog, for troubleshooting between boots. To prevent leakage

through these logs, we mount a tmpfs RAM disk to this mount point when booting

into the PDE mode. The logs will remain persistent between standard mode boots,

but no PDE mode logs are kept.

Android devices typically have a persistent cache partition used for temporary

storage. For example, the Google Play store will download application packages to

this partition before installing them on the userdata volume. To prevent leakage

through the cache partition, we mount a tmpfs RAM disk to /cache in the PDE

mode; this partition takes 32MB of RAM. An alternative to tmpfs, without sacrificing

RAM, is to mount the volume through dm-crypt with a randomly generated one-time

key. The key is discarded on reboot, effectively destroying the data on the partition.

(d) Partial storage snapshots. If the adversary has intermittent or regular access

to the disk, they may be able to detect modifications to different regions of the disk.

If a decoy key has already been divulged, the adversary may surmise the existence

of hidden data by correlating file system activities to the changing disk regions. We

exclude this possibility, assuming the adversary will have access only after acquiring

the device from the user, and does not have past snapshots of the storage. If the user
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is aware that the storage has been imaged (e.g., at a border crossing), they should

re-initialize Mobiflage to alter every sector on the disk.

Partial snapshots may also allow the adversary to learn the location of the offset:

by identifying changes to regions in the latter portion of the disk (which likely coincide

with hidden volume disk activity), and calculating the distance from the first FAT32

data block to the hidden offset. Knowing the offset location can speed up a password

guessing attack. Currently, the adversary must execute the PBKDF2 function once.

The result is used twice: to calculate the offset, and as an AES key to decrypt the

volume-key at that offset. The adversary must then determine if the volume-key

decrypts a valid filesystem (e.g., by identifying proper FS magic number). If the

adversary is aware of the proper offset location, then he can skip the latter two steps,

if the first operation does not produce the correct offset. This means each incorrect

guess is identified before the two AES operations.

(e) Practical security of multiple hidden volumes. There is some debate over

the effectiveness of multiple hidden volumes [28]. Whether or not the user gains any

advantage is defined by the scenario. If the user cannot be held indefinitely, and

cannot be punished on the suspicion of PDE data alone, she may feign compliance by

relinquishing decoy keys. This may be advantageous to the user as, in the absence of

indisputable evidence, she will eventually be released. In other scenarios, revealing

the existence of one hidden volume may cause the adversary to suspect the existence

of additional hidden volumes. If they can hold the user indefinitely, then they can

continue to demand keys. It may in fact hinder the user to reveal any hidden volumes

in this situation. However, irrespective of multiple hidden volumes, the adversary can

keep punishing a suspect up until the true password is revealed. This is an inherent
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Cipher-spec Key-length Speed (KB/s) Speed reduction
(bits) Nexus S Xoom Nexus S Xoom

Unencrypted N/A 5880±260 4767±238 - -

AES-CBC-ESSIV
(Android 4.x)

128 5559±76 4168±186 5.46% 12.57%

AES-XTS-Plain64
(Mobiflage)

512
(256+256)

5288±69 3929±146 10.07% 17.58%

Table 3.2: Observed read/write performance of external (SD card) storage; note that Mob-
iflage reduces IO performance by approximately 5% over Android FDE

limitation of PDE schemes and may be alleviated (to some extent) by using a special

password to make the hidden data permanently inaccessible (cf. [28]).

3.8 Performance Evaluation

To understand the performance impact on the regular use of a device, we run several

tests on our prototype implementation of Mobiflage. This section summarizes our

findings.

We use Mobiflage on Nexus S and Motorola Xoom development devices by reading

from and writing to the SD card. The command-line tool cp is used to duplicate files

on the SD card. We run 20 trials on four files between 50MB and 200MB. We evaluate

the performance on unencrypted storage, under the default Android encryption, and

the Mobiflage scheme. Table 3.2 summarizes our results.

Note that, removable SD storage (as in the Xoom) is apparently much slower than

eMMC storage (as in the Nexus S), for all cases. Compared to the unencrypted case,

on our Nexus S, Mobiflage reduces IO throughput by almost 10%; in contrast, Android

FDE reduces the throughput by 5.5%. On the Motorola Xoom, Mobiflage reduces

throughput by 17.6% and Android FDE by 12.6%. Mobiflage seems to decrease
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throughput by roughly 5% over Android FDE. However, the decreased IO throughput

is negligible for regular apps and should not hinder the use of the device. For example,

a standard definition 30fps video file may have a combined audio/video bit-rate of

192 KBps. High definition video (e.g., Netflix) is generally below 1024 KBps. The

reduced speed of Mobiflage (3929 KBps) will still provide adequate buffering to ensure

that jitter will not be an issue in these video apps. Note that Blu-ray has a maximum

bitrate of 5000 KBps and may cause playback issues, if it is not first re-encoded. The

observed decrease in throughput may be attributed to the chosen cipher: XTS requires

two AES operations per block; and AES-256 uses fourteen rounds of operations while

AES-128 uses ten.

Android apps are first loaded into RAM and do not run directly off the disk.

Mobiflage should not affect run time performance of apps. The increase in app load

time should also be practically negligible; as of Sept. 2012, the average Android app

size is about 6MB [46], although the size of certain apps (e.g., gaming) is increasing

rapidly. Some hardware, such as the camera, may use direct memory access (DMA)

and may be affected: instead of writing directly to the disk, the camera data is

processed by the CPU when passing through the dm-crypt layer. We tested the

camera on our Nexus S device while in the Mobiflage PDE mode, and did not notice

any performance impact.

The required time to encrypt the device is increased on account of the two pass

random wipe. The exact time will depend on the size of the external storage partition.

Android FDE encrypts external eMMC partitions in-place. As such, Mobiflage will

take twice as long to encrypt these partitions. Removable SD cards are not encrypted

by Android FDE, so we cannot provide a static comparison. Our Nexus S has only
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1GB internal, and 15GB eMMC external storage. After three initializations, we found

that on average the default Android FDE required one hour and five minutes, and

Mobiflage required just under two hours. The Motorola Xoom required one hour and

fifteen minutes on average for the default Android FDE to encrypt the 32GB internal

storage. Encrypting with Mobiflage required an additional 73 minutes when used

with a 8GB SanDisk SD card.

Power consumption will likely be increased for disk activity. This problem is

inherent to all FDE, and is not unique to Mobiflage. Background processes that have

high IO activity should be disabled, or IO should be buffered and batched to reduce

power consumption.

3.9 Related Work

In this section, we discuss deniable encryption implementations related to Mobiflage,

and provide an overview of available data encryption support as built into major

desktop and mobile OSes. We also discuss academic deniable-storage proposals. See

Section 2.2, for information about PDE ciphers.

3.9.1 Software Implementations

All major desktop OSes now offer storage encryption with FDE support (e.g., Win-

dows BitLocker, Mac OS X FileVault, and Linux eCryptfs). FDE uses ciphers to

encrypt entire storage devices or partitions thereof. Encryption is performed on small

units, such as sectors or clusters, to allow random access to the disk. FDE subsystems

typically exist at or below the file system layer and provide transparent functionality
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to the user. FDE schemes generally focus on providing strong confidentiality, making

efficient use of the storage media (i.e., no excessive data expansion), and being rela-

tively fast (i.e., no significant decrease in IO throughput). To contend with a coercive

adversary, PDE adds another layer of secrecy over FDE.

Most mobile OSes also offer data encryption (without PDE). BlackBerry devices

use a password derived key to encrypt an internal storage AES key, and an ECC

private key [77]. When a device is locked, the storage and ECC keys are wiped

from RAM. Any messages received while the device is locked are encrypted with

the ECC public key, and decrypted after unlock. Removable storage can also be

encrypted. Per-file keys are generated and wrapped with a password derived key,

and/or a key stored in the internal storage. iOS devices use a UID (device unique

identifier) derived key to encrypt file system meta-data, effectively tying the encrypted

storage to a particular device [2]. Per-file keys are stored in this meta-data and used

to encrypt file contents. File keys can be wrapped with a UID derived key, or a

UID and password derived key, depending on the situation (e.g., if the file must be

opened while the device is locked, only a UID key is used). Unlike the transparency

afforded by FDE, app developers must explicitly call the encryption API to protect

app data (beyond the default UID-key wrapping, which only protects the data if the

storage is removed and attacked without the device’s crypto processor) [99, 2]. The

advantage of file based encryption over FDE is that the device is actually encrypted

when the screen is locked (i.e., keys are wiped from RAM). This is not possible with

the current Android architecture, since background read/write operations would fail.

Older Android 2.3 (Gingerbread) devices can make use of third party software (e.g.,

WhisperCore [107]) to encrypt the device storage. WhisperCore enhances the raw
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flash file system, YAFFS2, which has been superseded on current Android devices in

favour of the Ext4 file system.

Disk encryption software such as TrueCrypt [97] and FreeOTFE [31] use hidden

volumes for plausible deniability. TrueCrypt is an open source encryption system

available for Windows, Mac OS X, and GNU/Linux. The system is currently at

revision 7.1a and has been around since early 2004. The software complies with ISO,

NIST, FIPS, and PKCS standards and specifications. TrueCrypt offers encryption

under several ciphers including AES, TwoFish, Serpent, and cascades of these ciphers

in the XTS mode. In addition to FDE, TrueCrypt also allows for mounting encrypted

file containers onto the filesystem. When encrypting a hard disk, TrueCrypt does not

alter the partition table. In this manner, there is no signature or indication of the

volume as being a TrueCrypt volume. TrueCrypt has withstood attacks (e.g., [75]),

suggesting that it is a robust FDE implementation. The open source model affords

expert advice and scrutiny, and weaknesses that have been identified are quickly

rectified (e.g., PDE leakage issues [21]).

On Windows systems, TrueCrypt can encrypt the OS system partition. A special

boot loader is used to obtain the user’s password and decrypt the disk before the OS is

loaded. On Linux systems, similar functionality can be achieved using an early user-

space RAM disk (i.e., a temporary root filesystem). TrueCrypt does not perform this

configuration, and requires the user to set up a RAM disk with the TrueCrypt binary

to capture the password and unlock the disk before the kernel attempts to mount the

actual root filesystem with the pivot root system call. The TrueCrypt boot-loader

(or RAM disk for Linux) is not encrypted and exposes the use of TrueCrypt to an

attacker. An alternative configuration is to erase the boot-loader and volume key
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from the hard disk, and keep a copy of them on some external media (e.g., CD or

USB storage). This can be seen as a form of two-factor authentication, since both

the external media and user’s password are required to boot the system. Configuring

the system in this way does not reveal the use of TrueCrypt: as there is no need for

an unencrypted boot-loader, the entire storage area will appear as random bytes.

System encryption with pre-boot authentication is not a straightforward solution

for Android devices, since the soft keyboard mechanism required to obtain the pass-

word is part of the OS framework and not immediately available on boot. A custom

boot-loader, implementing a soft keyboard, would be needed to capture the password

(cf. [90]). The dm-crypt volume could then be mounted before loading the Android

framework. However, since the OS partition is read-only on Android devices, it is

not encrypted. So we choose to work with the existing Android technique of partially

loading the framework to access the built-in keyboard. A custom boot-loader may

speed up the boot procedure, since the framework would not be required to mount

a tmpfs on /data while waiting for the user to enter their password. Mounting a

tmpfs incurs additional overhead to pivot the /data volume (unmount-then-mount),

but should not have any impact on security under our threat model.

TrueCrypt volumes contain a header at the very beginning of a volume. All

fields in the header are either random data (e.g., salt) or are encrypted, giving the

appearance of uniform random data for the entire volume. Unlike some other OTFE

frameworks, TrueCrypt does not store a hash of the passphrase (as with FreeOTFE),

nor the cipher specification (as is stored in the Android footer) in the volume header.

Therefore, when a TrueCrypt volume is loaded, all supported ciphers and cascades

of ciphers, are tried until a certain block in the header decrypts to the ASCII string
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“TRUE”. The header key is derived from the user’s passphrase using PBKDF2. If

the header key successfully decrypts the ASCII string, then it is used to decrypt the

master volume key, which is chosen at random during the volume’s creation.

A secondary header, adjacent to the primary header, is used when a hidden volume

exists. The secondary header contains the same fields as the primary header, along

with the offset to the hidden partition. When mounting a TrueCrypt volume, the

hidden header is tested before the primary header. To combat the OS/applications

leaking knowledge of hidden data (e.g., into logs, swap space, or temporary files) when

using hidden volumes, TrueCrypt recommends the use of a hidden OS. The hidden

OS is currently only an option for the Windows implementation. When encrypting

a system volume for use with PDE, TrueCrypt creates a second partition and copies

the currently installed OS to the hidden volume within. The user should only mount

hidden volumes when booted into a hidden OS, to ensure that any OS/application-

specific leakage stays within a deniable volume. When booted into a hidden OS,

all unencrypted volumes and non-hidden encrypted volumes are mounted read-only.

The alternative to a hidden OS for Linux is to use a live CD, when mounting hidden

volumes. A hidden OS is not necessary to prevent leakage in Mobiflage, since the

system volume on an Android device is mounted read-only and we attach hidden

volumes (or RAM disks) to all mutable volume mount-points.

There is a recent effort to port TrueCrypt to Android [19]. The current version

(Dec. 2012) provides a command-line utility to create and mount TrueCrypt volume-

container files (for rooted devices with LVM and FUSE kernel support). Hidden

volumes are possible within these container files; but FDE/pre-boot authentication
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is not currently supported. Several leakage vectors also remain unaddressed (e.g.,

through file system structures, software logs, and network interfaces).

FreeOTFE [31] is another open source project that offers FDE with PDE for Mi-

crosoft Windows. FreeOTFE does not currently implement a pre-boot authentication

mechanism, so it is important that the boot partition is not encrypted (as of Win-

dows Vista, this is a separate partition). The FreeOTFE volume header, known as the

critical data block, is encrypted with the user’s passphrase and contains the master

volume key for the volume image (along with other information about the encrypted

volume). Unlike TrueCrypt, FreeOTFE volumes can contain an arbitrary number of

hidden volumes. Each of these hidden volumes will have an associated offset within

the outer volume. A hidden critical data block is written to this offset, and the hidden

volume data immediately follows. The user is tasked with choosing the offset to mark

the beginning of the hidden volume. The user must also remember these offsets and

supply them when mounting the hidden volumes.

3.9.2 Deniable Storage Encryption Proposals

File encryption schemes with PDE support, called steganographic file systems, have

been first proposed by Anderson et al. [1]. One of their solutions uses a series of cover

files initially filled with random data, and assumes the attacker has no knowledge

of the plaintext content of a file. The hidden files are embedded by modifying and

XORing a linear combination of some cover files. The password and file name are used

to determine which cover files are used. This solution requires storing a large number

of cover files (e.g., 1000); also, these files must be relatively large to accommodate files

of arbitrary length. The second solution [1] is built on existing block ciphers. The
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disk is initially filled with random data. Files are then stored at disk block addresses

derived from the file name and password (e.g., using a hash function). The files are

encrypted with a key derived in a similar manner. An adversary would not be able

to distinguish between empty blocks and blocks containing hidden files. However, as

discussed [1], the probability of file blocks colliding increases as disk blocks are filled.

As a mitigation, writing each block to several disk locations has been suggested.

However, high storage and IO overhead of these solutions make them less suitable for

performance-sensitive mobile devices.

StegFS [62] is an Ext2 based file system inspired by the second approach of Ander-

son et al. [1]. It uses several security levels (up to 15), each with a separate password.

Its deniability relies on how many levels of hidden files are present, not on denying

the fact that hidden files exist. An external block allocation table (stored in the non-

deniable disk space) with entries for each disk block is used. When a given security

level is closed, there is no way to prevent overwriting that level’s blocks, so redundant

blocks are used to mitigate collisions. The existence of the modified Ext2 driver, and

the external block table, would indicate that PDE is in use. The project website7

explains that only 6% of the storage space can actually be used for file storage, as the

rest is used for meta-data and collision avoidance. Also, as hidden and regular files

are present on the same file system, data leakage may occur when security levels are

open.

Other StegFS-based systems improve efficiency and reliability of the original im-

plementation. Pang et al. [70] design a system where blocks used by hidden files are

in fact marked as occupied in the block bitmap. This alleviates reliability issues and

7StegFS https://albinoloverats.net/projects/stegfs
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IO inefficiencies, as storing multiple copies of a block is not required. Hidden files do

not have a directory record in the standard inode table. Since the blocks are marked

as used, but not referenced in a directory entry, the adversary can conjecture that

hidden files exist. The adversary can also estimate the amount of disk space uti-

lized by hidden files. Three mechanisms are used to frustrate such estimation. Some

empty or “abandoned” blocks are marked as used even though they do not contain

hidden data. When a new hidden file is created, several blocks are allocated that are

not actually filled with file data. Dummy hidden files are created and periodically

updated in the background to prevent snapshot analysis from determining the exact

blocks used by hidden files. These mechanisms make it more difficult to determine

which blocks actually store hidden data, but are not disk space efficient.

Further work [112] expands the above idea by adding dummy transactions to

obscure hidden files in network/cloud storage. This improves reliability and IO ef-

ficiency, but disk space utilization for dummy files and abandoned blocks remains a

concern, especially for resource constrained mobile devices. Also, strong deniability

cannot be offered as the adversary is aware that hidden files exist. Deniability is a

result of an adversary being unable to determine how much space is used by hidden

files.

The dummy-relocatable steganographic (DRSteg [38]) file system is proposed for

use in multi-user environments. DRSteg adds dynamic updating to dummy files to

prevent snapshot analysis. When coerced, a user can provide some of their hidden file

passwords and blame the additional hidden storage on dummy files and other users’

hidden files. However, the adversary is still aware that hidden files exist.
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Other Linux deniable implementations, such as RubberhoseFS [3], and Magikfs,8

employ techniques similar to StegFS for hiding data in file system free space. Several

of these projects are no longer maintained and existing implementations are also

mostly incompatible with the modern Linux OS. The presence of specialized file

system drivers designed to hide data would be a red flag to an adversary.

3.10 Concluding Remarks

Mobile devices are increasingly being used for capturing and spreading images of pop-

ular uprisings and civil disobedience. To keep such records hidden from authorities,

deniable storage encryption may offer a viable technical solution. Such PDE-enabled

storage systems exist for mainstream desktop/laptop operating systems. With Mob-

iflage, we explore design and implementation challenges of PDE for mobile devices,

which may be more useful to regular users and human rights activists. Mobiflage’s

design is partly based on the lessons learned from known attacks and weaknesses

of desktop PDE solutions. We also consider unique challenges in the mobile envi-

ronment (such as ISP or wireless carrier collusion with the adversary). To address

some of these challenges, we need the user to comply with certain requirements. We

compiled a list of rules the user must follow to prevent leakage of information that

may weaken deniability. Even if users follow all these guidelines, we do not claim

that Mobiflage’s design is completely safe against any leaks (cf. [21]). We want to

avoid giving any false sense of security. We present Mobiflage here to encourage

further investigation of PDE-enabled mobile systems. Source code of our prototype

implementation is available at http://users.encs.concordia.ca/∼a skil/mobiflage/.

8Magikfs http://magikfs.sourceforge.net/

65

http://users.encs.concordia.ca/~a_skil/mobiflage/
http://magikfs.sourceforge.net/


Chapter 4

Myphrase: Strong Multiword Passwords

This chapter describes a multi-word password scheme that aims to improve mem-

orability and strength of user-chosen passwords. In our Myphrase scheme, a small

dictionary is created from user-authored content such as sent emails and blogs. A

master passphrase is constructed by randomly selecting words from the dictionary.

Words in the passphrase are expected to be memorable to users and can be efficiently

entered by leveraging the auto-suggest feature. Myphrase is discussed here in the

context of web applications, as that provides an easy framework for evaluation and

comparison against other authentication schemes. Myphrase passphrases offer bet-

ter complexity than most user-chosen passwords, and as such Myphrase is a suitable

key-protection mechanism. Our Android prototype can be used with Mobiflage (see

Chapter 3), to provide strong protection for PDE keys.

4.1 Introduction and Motivation

To the dismay of security proponents and website administrators, many regular and

expert users consistently choose weak passwords, such as, 123456, iloveyou, ieee2012,

and princess (see e.g., leaked passwords from IEEE.org [26] and Rockyou.com [44]).

Most users do not understand the security implications of choosing a password; pass-

words are just words with which they can get access to their digital resources. Thus,

it is unsurprising that currently, common dictionary words and their predictable vari-
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ants are heavily used as passwords. For users, this is apparently the most sensible

choice for password creation and long-term management [39]. To exploit this be-

havior, offline and online password guessing attacks use common passwords as their

starting point. To restrict these attacks, some websites forbid certain obvious pass-

words; see e.g., Twitter [91]. Password authentication is so deeply entrenched in

modern technology that digital providers are reluctant to adopt new back-end secu-

rity mechanisms. Most sites enforce password rules to restrain users from choosing

passwords they desire; often these rules are too complex for users to cope with [45].

On the other hand, to facilitate user choice, Schechter et al. [84] suggested to place a

threshold in the use of popular passwords; users are free to choose any password as

long as that password has not been chosen by too many other users of the website.

This may reduce the total number of compromised accounts on a given site, but does

not protect the individuals that choose weak passwords.

Password entry from constrained input interfaces of mobile devices may further

influence users to choose dictionary words as passwords (cf. [48]). Recently, multi-

word password schemes have been revisited as an alternative to regular passwords by

leveraging auto-correct and auto-suggest features in mobile devices [16, 47]. However,

as long as users are free to choose words in a multi-word phrase, no significant im-

provement is apparent in password strength (see e.g., [59, 11, 104, 85]). In terms of

usability, non-text authentication solutions for mobile devices have also been proposed

(e.g., implicit authentication [48]). However, as many users access their password-

protected accounts from both traditional computers and mobile devices, new solutions

must consider both environments.
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With Myphrase, we explore a different approach, which is apparently more in-

line with user desire and can support both desktop and mobile platforms. Instead

of discouraging users from choosing what they are comfortable with, we leverage

users’ own personal vocabulary to generate strong passwords; i.e., any words can be

used irrespective of being considered too obvious or taboo. A Myphrase passphrase

consists of multiple randomly chosen words from a user-created/selected dictionary.

The dictionary is user-specific, e.g., generated from user-created text content, such as

emails; users may also choose a pre-generated dictionary aligned with their interests

e.g., lexicon from a favorite poet. Users can even use a list of common passwords as

their dictionary, e.g., the 3546-word John the Ripper most common password list.1

Dictionaries need not be private.

We examine two variations for passphrase construction. The first variant, called

Random Sequence (RS), randomly selects words without regard for syntax. For an

expected level of entropy, the required number of words in an RS-passphrase can be

easily set; e.g., for 60 bits of entropy, six words must be chosen from a 1024-word dic-

tionary. Memorability of RS-phrases is expected to benefit from the user’s familiarity

with the words (i.e., frequency of occurrence/use; cf. [82, 42, 35]). The second variant,

called Connected Discourse (CD), constructs proper sentences using rudimentary nat-

ural language processing (NLP). Dictionary words are tagged using a part-of-speech

(POS) engine, and inserted into pre-created sentence templates (cf. Mad Libs [73]).

Calculating entropy for this variant is not as straightforward as the RS variant; en-

tropy depends on the selected sentence template and the breakdown of words in each

POS category from the dictionary. Memorability of CD-phrases is expected to benefit

1http://www.openwall.com/passwords/wordlists/password-2011.lst
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from high-order syntactic and semantic structures (cf. [63, 25, 60, 29, 61]), in addition

to word familiarity.

To reduce memory load, we expect users to memorize only one Myphrase master

passphrase, and use it across multiple websites. A site password is generated by

salting the phrase with the site’s URL domain; the salted password is also hashed

and converted into a server-compatible password (e.g., consisting of alphanumeric

characters only).

We test Myphrase by creating dictionaries for users in the Enron email corpus

and authors from Project Gutenberg. We find that our frequency ranked dictionaries

have similar POS break-down, as compared to text parsed from a large collection of

prose. We also compare the similarity between user’s dictionaries to determine how

personal or unique they are. We used these findings to identify sentence templates

that maximize a passphrase’s complexity.

In summary, Myphrase offers the following benefits.

1. Passphrase from user-specific words: Myphrase introduces a middle-

ground between conflicting choices for text passwords: machine-generated

(strong but memory-unfriendly), and user-chosen (memory-friendly but weak).

Myphrase phrases are machine generated but consist of a user’s personally-

meaningful words; these passphrases are expected to be both memory-friendly

and strong.

2. Stronger passwords: To restrict offline attacks, Myphrase passwords offer

a significant entropy gain; e.g., 60 bits in Myphrase’s default setting (cf. an

estimated 10-20 bits of entropy in current passwords [9]). Passwords are also

further strengthened using the PBKDF2 key-stretching function by a factor of
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215. The exact entropy of Myphrase passwords can easily be determined for the

RS variant and closely approximated for the CD variant. Entropy of user-chosen

passwords can at best be roughly estimated (see e.g., [14, 105]).

3. Scalable and resilient to site-password leaks: Users need to memo-

rize only one Myphrase master passphrase and can use it for all web logins—

irrespective of varying levels of site security. If a site-password is leaked from

the server-side, the user can update only that password, while maintaining their

master passphrase and all other site-passwords.

4. Cross-platform/device compatibility: Auto-suggesting words after typ-

ing (or tapping) a couple of characters may reduce the input time of the

passphrase; such a feature makes Myphrase suitable for mobile devices with

a constrained/touch-based keyboard. We have implemented proof-of-concept

prototypes for both desktop and mobile platforms.

Additionally, Myphrase passwords are resilient to phishing attacks. Attackers get

a password specific to their phishing domain, instead of the target domain; they also

do not receive the master passphrase. These benefits of Myphrase and limitations are

explained further in Section 4.5.

4.2 Myphrase Description

Below we describe Myphrase, including our assumptions and user steps.

Operational and threat model assumptions. The custom dictionary can be

generated from different types of user content, such as: (a) user-authored content,

70



e.g., sent emails, tweeted messages, blog posts, comments at social networking sites,

academic papers, and other such documents; and (b) user-liked content, e.g., favorite

ebooks, song lyrics, and emails from certain contacts. Alternatively, users may select

a pre-generated dictionary according to their interests or familiarity such as: an

urban dictionary, medical or technology dictionary. For the connected discourse (CD)

variant of Myphrase, the dictionary must contain the following POS categories: nouns,

verbs, adjectives and adverbs. However, the random sequence (RS) variant has no

such constraints (e.g., the dictionary may be comprised entirely of nouns, as in names

of cities or film actors). The dictionary itself and sources of the dictionary words are

not security-sensitive, and can be made public. However, the dictionary may be

privacy-sensitive, if users do not want to reveal that certain words appear in their

dictionary.

We assume that words in the created/selected personal dictionary are familiar

enough to users that they can memorize a relatively long sequence (e.g., six) of these

words as their master passphrase; see Section 4.5.4 for a discussion on memorability.

To make use of auto-suggest, for minimal typing and easy recognition, Myphrase

requires the dictionary be available in all user devices (e.g., via manual copy, email

attachment, browser sync mechanisms or web hosting). The dictionary can be re-

created from previously selected sources. Similar to regular passwords, the Myphrase

master passphrase is vulnerable to host malware and shoulder-surfing attacks; such

attacks are out-of-scope.

Myphrase design. When constructing the user’s dictionary, we rank words by

occurrence and keep only the most frequently used words. During this operation,

we omit 215 common conjunctions, articles, prepositions, and pronouns (e.g., ‘at’,
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‘and’, ‘she’) from the frequency ranking, and append them to the dictionary be-

fore passphrase generation. These words are necessary parts-of-speech, and must be

present regardless of their observed frequencies (for the CD variant). Conversely, these

parts-of-speech tend to be over-represented in a user’s dictionary, as compared to the

POS breakdown observed in a large collection of prose. Removing these words from

the frequency ranking should allow us to capture more personally meaningful, and

hopefully memorable, words from the input. This also allows us to more accurately

estimate the entropy for a given CD passphrase; see Section 4.5.1. We experimented

with different lists of common words ranging from 100 to 1000. We found that 215

was the optimal size to ensure enough variation was available for the CD sentence

templates, and balance dictionary POS break-down and passphrase entropy.

In Myphrase, passphrases are generated by randomly selecting words from the

user’s vocabulary in the following ways. (i) Random sequence: n words are randomly

selected from the user’s dictionary. (ii) Connected discourse: words are classified

based on their POS tag (e.g., verb, noun); an n word-long sentence template is

randomly selected from a pool of pre-created templates; dictionary words are then

randomly chosen for each position in the template, based on their POS class.2 The

value of n depends on the dictionary size and expected level of entropy. Currently,

we recommend that the passphrase offer at least 60 bits of entropy to restrict offline

dictionary attacks; e.g., n = 6 for a 1024-word dictionary for the RS variant. The

entropy for a CD passphrase cannot be directly calculated. Through experimenta-

tion we found that the complexity of a CD-phrase is roughly 65% of an equivalent

2This variant resembles the popular word game Mad Libs [73], in which players in turn choose
words of particular types to fill-in the blanks of a given sentence template. However, there are no
fixed words in our templates, and all words are chosen randomly from a user’s vocabulary.
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length RS-phrase, so n = 8 words from a 4096-word dictionary is recommended; see

Section 4.5.1 for details.

Specific words in the generated passphrase can be indicated for replacement, and

Myphrase will offer another random word. However, entropy of the phrase may suffer,

depending on the dictionary size and the number of iterations used for a specific word.

We limit the loss of entropy by restricting the number of times a user may selectively

regenerate words in the phrase to n, e.g., 8 times for an 8 word passphrase; see

Section 4.5.2.

The master passphrase is used to generate unique site-specific passwords as follows:

pwd = Hash2Text(hi(passphrase||domain||updatecount)) (4.1)

Here, h is a cryptographic hash/key-stretching function, e.g., SHA-1 or PBKDF2;

i is the number of hash iterations e.g., i = 32768; and updatecount is the number

of updates made to a specific site’s password (by default updatecount = 0, see also

“Updating site passwords” below). A higher value of i will make brute-force attacks

on the passphrase more computationally intensive, but values that are too high may

slow down password generation. To increase the cost of offline cracking attacks, we

use PBKDF2 in our implementation, which is more complex than SHA-1 alone, when

implemented in a custom circuit. Recently proposed computational and memory-wise

expensive functions can also be used (e.g., [58, 71]). The Hash2Text function encodes

the binary hash result into a server-compatible password, e.g., passwords with only

alphanumeric characters; cf. PwdHash [80].

User steps: dictionary and master passphrase generation. The following steps

are required to generate the master passphrase; see Figure 4.1. (a) Users first select
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Figure 4.1: Myphrase basic mechanism with RS and CD variants

word sources for their custom word dictionary, e.g., emails, and ebooks. (b) The

Myphrase tool extracts words from these sources, ranks the words by frequency, and

selects a pre-specified number (e.g., 2048) of the most frequent words as the dictionary.

After creation, users may choose to manually update the words in their dictionary.

(c) The tool creates a multi-word passphrase from the dictionary created in the

previous step (or a pre-selected dictionary) using the RS or CD variant. (d) Users

can continue generating new phrases until they are satisfied. When the user is satisfied

with a passphrase, she is expected to memorize the word sequence verbatim, or to

write it down in a secure place, (cf. [111, 40]). The exact spelling of words need not

be memorized due to the auto-suggest feature of Myphrase. However, users must not

rearrange the words in a phrase, as such modifications may reduce effective entropy.

User steps: site-specific password generation. (a) Users enter their passphrase;

assuming the dictionary is available as a browser add-on or with the Myphrase appli-

cation, users need to type only the first couple of characters for each word and then

select the correct word from the auto-suggestion list. (b) The site-specific password

is created using the formula shown in Equation 4.1. The site password is sent to the

authenticating site.
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Updating site passwords. Users may want to update their Myphrase site pass-

words for various reasons, including a periodic password update policy, and passwords

compromised at server-side (e.g., LinkedIn’s 6.5M password leak [6]). We allow pass-

word update without requiring the master passphrase to be changed, by increasing

the value of updatecount (see the site-password generation formula in Equation 4.1).

This value is site-specific and starts from zero; when a site’s password needs to be

updated, updatecount is incremented by one, and the updated value is used only for

the target site (i.e., other site passwords will still be generated with updatecount = 0,

if not already changed). This solution is similar to the index mechanism as proposed

by Halderman et al. [37]. Site URLs with updated count values must be stored and

synced across devices; e.g., via Firefox Sync.

4.3 Implementation

We implemented Myphrase for PCs as a Firefox addon, and for Android devices as

a custom soft-keyboard. The desktop version provides an interface to build dictio-

naries, generate passphrases, and insert site passwords. The mobile version currently

makes use of dictionaries and passphrases generated in the desktop version to insert

passwords into websites. A web interface is also created to facilitate password genera-

tion when other tools are unavailable (e.g., a temporary device). We currently handle

only English words; internationalization would require POS taggers for additional

languages. Details are discussed below.

Preferences. The Firefox addon offers a few user customizable settings; see Fig-

ure 4.2. We provide some pre-built dictionaries, but encourage users to create per-
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Figure 4.2: Myphrase preferences

sonalized ones. To help guide the user experience, we provide the following default

options: (a) type of master passphrase: connected discourse; (b) dictionary: lexicon

from the works of H. G. Wells; (c) length of master passphrase: eight words; (d) size of

custom dictionary: 4096 words; and (e) maximum word length: 14 characters. The

addon also has site-specific settings for each generated site password. These allow

Myphrase to conform to provider specific constraints, and store each site’s password

update count. The defaults are as follows: (a) length of site passwords: 12; (b) special

characters: disabled; and (c) password update count: 0.

Dictionary construction. The Firefox addon can build a personal dictionary from

the user’s outbound emails, and plain-text, HTML and XML files. Our text and

HTML/XML parsers can be used to build dictionaries from PDF and other document

formats after saving as text, ebooks (e.g., ePub, a compressed XML format), and
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web content saved as HTML. For email parsing, we choose to collect messages from

the Simple Mail Firefox addon [92], which enables managing several email accounts,

including POP/IMAP exposed webmails. It aggregates emails across accounts in

a single folder structure (i.e., emails sent from all accounts are stored in one “Sent”

folder). This allows us to gather words that may originate from disparate vocabularies

(e.g., work emails with professional terms vs. personal emails with slang or informal

words). Sent messages are collected by querying an SQLite database. The message

text is parsed to extract the user’s original text; i.e., we eliminate quoted text from

forwarded or replied emails.

Using a series of regular expressions, we decode HTML/XML entities and elimi-

nate mark-up, punctuation, digits, and other non-word strings. By default, we cap-

ture strings that are 14 characters or less. Note that short words do not compromise

the security of Myphrase; however, longer words may require more typing if the user’s

dictionary is not available for auto-suggest completion.

We retain the top 4096 words in the user’s dictionary by default. All characters are

reduced to lower-case before the word frequency analysis. The dictionary is saved as

a text file, which the user may further customize (manually). Users may also choose

to use a pre-built dictionary; we provide a few default dictionaries created using top

free ebooks from Project Gutenberg.

Master passphrase generation. After selecting a dictionary, users can generate

a passphrase in the Firefox addon. To select random words from the dictionary, we

use Mozilla’s PRNG, nsIRandomGenerator (assumed to be cryptographically secure;

uses mouse movement events within the Firefox window). For the RS variant, a

passphrase is generated simply by selecting n random words from the dictionary. For
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the CD variant, we first randomly choose a pre-built sentence template for the given

passphrase length (n = 4 to 12 words). A number of templates were created by parsing

top free ebooks from Project Gutenberg, and selecting a few which appear to yield

high entropy passphrases (discussed more in Section 4.5.1). We then use a Javascript

POS tagger [101] to classify the dictionary words. A passphrase is generated by

filling the template with randomly selected words from the classes that appear in

the template. For both variants, users can regenerate new phrases until they are

satisfied; a limited number of selective regeneration of words in a selected phrase is

also allowed. The master passphrase is not stored within our software, and cannot

be regenerated; users are expected to memorize it.

Site password generation. We anticipate that users will build personal dictionaries

and generate passphrases only occasionally. The day-to-day use of Myphrase will

largely consist of deriving site passwords. When faced with a login page, the user

right-clicks on the password field and selects the Myphrase insert option from the

browser context menu. On a mobile device, the user can pull down the notification

bar, to switch from their default keyboard to the Myphrase keyboard; see Figure 4.3.

The user is then prompted to enter her master passphrase. The prompt allows the

user to view the passphrase text, or have it shadowed in the case she is in a public

place. An auto-complete suggestion list is populated with words from the user’s

dictionary to speed up this task; see Figure. 4.4. This feature is especially useful

on mobile devices where typing tends to be slower. Passphrases are constructed

in such a way that the user will not require any modifiers (e.g., shift) or changing

keyboard views (e.g., numbers, special characters) which should greatly increase entry

time for mobile devices. At this stage, the user can also set site-specific constraints
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Figure 4.3: Myphrase mobile keyboard; the auto-complete suggestions are visible above the
keys

Figure 4.4: Myphrase site password generation – Firefox addon
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(e.g., password length) and increment the update counter. The update count and

constraints for each domain are saved as site specific preference within Firefox and

Android, so will only need to be set by the user once.

We then iterate the PBKDF2 HMAC SHA-1 function 32768 times, using the

passphrase as the HMAC secret, and the site’s domain and update count as the salt;

see Equation 4.1. The choice of our iteration count is explained in Section 4.5.2. The

result is then encoded into a compatible password and inserted in the password field.

Note that, both the addon and Android soft-keyboard make only the site-password

available to the authenticating domain, which could be a legitimate or phishing site.

The master passphrase remains inaccessible to all websites.

Myphrase mobile. We implemented Myphrase for Android devices as a custom soft-

keyboard. This enables Myphrase authentication for any password field on the device

including websites, apps and even device unlock; the current prototype implementa-

tion supports only website login with the full feature set. Users can quickly switch to

the Myphrase keyboard from the Android notification bar to enter a password. For

the Android/Mobiflage pre-boot authentication mechanism, the application package

must be installed as part of the system framework, as opposed to installation in the

user application store. The user’s text is displayed above the keyboard while they

are typing, but not entered into the password field until they press Enter. As with

the desktop software, auto-complete dictionary suggestions are displayed to speed

up passphrase entry. The auto-complete feature can only be made available to the

pre-boot authenticator when an unencrypted SD card is present (i.e., auto-complete

suggestions are not available during pre-boot for Mobiflage encrypted devices). Af-
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ter the boot process, the dictionary is available for all other authentication attempts

(e.g., web sites and apps).

4.4 Related Work

Multi-word passwords and several-related variants including first-letter mnemonics

have been proposed decades ago (see e.g., [5, 72, 59]). Similar schemes have been

recently revived to increase password entropy,3 and to make password input more

user-friendly in devices with touch-screen keypads [16, 47]. The use of readily available

auto-correct and auto-suggest features can significantly reduce input issues in these

devices (e.g., compared to inputting a password with mixed case letters and special

characters). Generally, there are two types of multi-word passwords: words and their

sequence chosen by a user (e.g., [72, 47]), and words selected randomly from a fixed,

system-chosen dictionary (e.g., Cheswick [16]). Cheswick’s proposal uses a 1020-

word dictionary of iPhone-friendly English words. Diceware [76] is another random

passphrase generator using one or more dice as the random number generator. Each

word in the phrase is chosen from a five digit number generated by five rolls of a die.

Any list of 7776 (65) unique words can be used; word lists are currently available in

several languages.

Smith proposed a word association authentication scheme [89] that requires users

to register a list of (cue, response) pairs consisting of personally-meaningful words;

obvious pairs such as (black, white) are disallowed. During login, users must provide

correct responses to cues chosen randomly by the system. As cues and responses are

user-selected and likely to vary significantly from user to user, Smith argues that this

3For example, see the popular XKCD cartoon at http://xkcd.com/936/.
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scheme would offer adequate benefits in terms of user-acceptance, memorability and

security.

The use of natural language processing techniques to create multi-word passwords

has also been explored. Atallah et al. [4] generate a meaningful/humorous phrase and

associated mnemonic for authentication. Another technique [50] creates sentences for

a given random password. News headlines are used as templates by substituting sim-

ilar words; several variants of the same sentence are generated using a POS tagger

and WordNet [65]. To generate multiple passwords from a master mnemonic sen-

tence, Topkara et al. [95] propose to split a password into two parts: a memorized

mnemonic sentence that is used to perform a table-lookup on a helper-card to derive

site passwords.

User-chosen phrases or word sequences are almost as memorable as regular pass-

words [109]; it has long been known that memorability of a sequence of items such as

words or phonemes is dependent on familiarity of those items [64, 42, 35]. However,

such phrases do not offer much improvement in terms of entropy as users generally

choose common phrases; see e.g., Kuo et al. [59]. Another recent analysis of over

100, 000 possible user-selected passphrases from the Amazon PayPhrase system also

reported similar results [11]. Generic attack techniques against multi-word passwords

have also been proposed; see e.g., Weir [104], Schmitz [85]. In contrast, random words

from a system-chosen dictionary offer better entropy, but may not be ideal in terms

of memorability. We allow users to reuse the same passphrase safely for all web lo-

gins, reducing their memory load and combating the multiple password interference

problem [17].
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4.5 Comparison and Evaluation

In this section, we discuss entropy of passphrases for both RS- and CD-Myphrase

variants, memorability of the passphrases and limitations of the scheme. We also

use a slightly modified version of the recently-proposed UDS (usability, deployability,

security) framework [10] for an analytical evaluation of Myphrase.

4.5.1 Myphrase Entropy Estimation

Equal-length CD-phrases will provide a lower entropy count than RS-phrases, as each

template element is being chosen from a subset of the dictionary words. Experimental

entropy estimation of CD-phrases is discussed below. We also allow selective regen-

eration of words in a phrase. By keeping the regeneration count small, we can limit

the loss of entropy. We provide an analysis of selective regeneration and estimated

efforts required to launch brute-force guessing attacks against Myphrase passwords

in Section 4.5.2.

By default, we expect users to choose six words from a 1024-word dictionary for the

RS variant (providing 60 bits of entropy), and eight words from a 4096-word dictionary

for the CD variant (providing 60 bits of entropy on average). For easy memorization,

users may want to reduce the word count, especially for the RS variant (e.g., three

words). This may still provide higher entropy than current passwords (cf. 10-20 bits

of entropy as found in a large-scale password study [9]). However, such a three-word

master password can be practically retrieved from a leaked site password; this may

mandate changing all site passwords. If the adversary has the user dictionary, he can

attempt all 3 word combinations until he finds a match with the leaked site password.
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On average, this will require 229 attempts. Without the dictionary, he will need to

brute force lower-case strings of indeterminable length (the worst case scenario is

3 one-letter words, which only provides about 14 bits of entropy). As high-impact

password leaks happen not so rarely (e.g., [26, 6, 88]), we suggest users to invest in a

longer master passphrase. Creating a larger dictionary will also increase the effective

complexity of the passphrase.

Experimental entropy estimation of the CD-Myphrase variant. We obtain

real world entropy estimates of CD-phrases by examining the POS breakdown for

two datasets: Enron emails (from www.cs.cmu.edu/∼enron/) and Project Gutenberg

ebooks. We also test similarity between user dictionaries.

To generate sentence templates, we parse the 25 most popular ebooks from Project

Gutenberg between the period of Aug. 29–Sept. 28, 2012. We identify 60, 921 unique

strings. The POS class breakdown is as follows: nouns (71%), verbs (18%), adjectives

(7%), adverbs (3%), and others (1%). We then select sentence templates from the

parsed text, capitalizing on sentences that contained more of the highly populated

POS classes. We originally chose ten templates for each possible passphrase length

(4 to 12 words) that we believed would yield high entropy phrases; after evaluation,

we retain the 7 highest performing templates for each length. The sentence templates

used in the 8-word Myphrase connected discourse variant are listed in Table 4.1.

When constructing a user’s dictionary we rank words by frequency and select

only the most common words in the user’s vocabulary. This could skew the user’s

POS breakdown in such a way that our selected templates would not produce ideal

passphrases (e.g., if the frequency ranked dictionaries contain more verbs than nouns).

We chose to analyze the Myphrase dictionaries for selected ebook authors and Enron
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〈NN〉 〈VB〉 〈IN〉 〈DT〉 〈NN〉 〈VB〉 〈IN〉 〈NN〉
〈DT〉 〈NN〉 〈VB〉 〈RB〉 〈VB〉 〈IN〉 〈DT〉 〈NN〉
〈NN〉 〈CC〉 〈NN〉 〈VB〉 〈RB〉 〈IN〉 〈DT〉 〈NN〉
〈IN〉 〈PRP〉 〈VB〉 〈RB〉 〈PRP$〉 〈NN〉 〈VB〉 〈RB〉
〈DT〉 〈JJ〉 〈NN〉 〈RB〉 〈VB〉 〈TO〉 〈DT〉 〈NN〉
〈RB〉 〈VB〉 〈JJ〉 〈NN〉 〈VB〉 〈TO〉 〈DT〉 〈NN〉
〈CC〉 〈PRP$〉 〈VB〉 〈JJ〉 〈NN〉 〈VB〉 〈VB〉 〈PRP$〉

Table 4.1: Myphrase 8-word connected discourse templates; where 〈NN〉 is a noun, 〈VB〉
is a verb, 〈IN〉 is a preposition, 〈DT〉 is a determiner, 〈RB〉 is an adverb, 〈CC〉 is a con-
junction, 〈JJ〉 is an adjective, 〈PRP〉 is a pronoun, 〈PRP$〉 is a possessive pronoun, and
〈TO〉 is the word “to”.

employee emails. For ebooks, we choose 7–10 well-known works from ten authors. The

Enron email corpus contains 150 unique user accounts. We isolate each user’s personal

vocabulary by parsing only sent emails after eliminating quoted text, signature blocks,

etc. There were only 15 users with dictionaries of at least 4096 words (we also

discarded 2 dictionaries containing several anomalies, e.g., mid-word line-breaks). We

found both the Enron employees and ebook authors had similar POS breakdowns in

their frequency adjusted dictionaries, validating our template selections; see Table 4.2.

We also noticed earlier that some parts-of-speech (e.g., conjunctions, pronouns) were

over-represented; consequently, we remove the 215 common words from those classes

before frequency ranking the list.

Composition %
Gutenberg authors Enron authors
Avg Stdev Avg Stdev

Nouns 50.29 1.94 63.31 2.84
Verbs 29.27 1.77 22.68 1.70
Adjectives 14.19 0.98 9.16 0.85
Adverbs 6.06 0.60 4.44 0.45
Others 0.19 0.12 0.41 0.08

Table 4.2: Frequency adjusted POS classification for 4096-word popular Project Gutenberg
author dictionaries (N=10) and Enron dictionaries (N=15)
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Entropy count in bits
Gutenberg authors Enron authors

Length Min Max Avg Stdev Min Max Avg Stdev
6 words 41.5 57.5 47.8 5.4 41.2 57.0 47.0 5.4
7 words 47.7 62.6 54.9 4.7 46.5 61.5 53.7 4.4
8 words 58.1 71.0 63.9 3.9 57.2 71.2 63.1 4.4

Table 4.3: Observed entropy for phrases from 4096-word Gutenberg and Enron dictionaries.
Large deviation is a result of different templates. Each template has little variability as seen
in Table 4.4.

We then used the created Myphrase dictionaries to calculate expected entropy

from each template. Entropy for RS passphrases can be directly calculated, e.g., six

words from a 1024-word dictionary will result in: log2(10246) = 60 bits. The entropy

of a CD passphrase depends on the template and POS breakdown of the user’s dic-

tionary. For example, assume the chosen template is: “noun verb adverb determiner

noun verb preposition noun” with POS class sizes (noun, 1975), (verb, 1209), (ad-

verb, 86), (determiner, 21), (preposition, 86). A randomly generated passphrase from

this template will provide an entropy of log2(1975× 1209× 86× 21× 1975× 1209×

86× 1975) = 70.57. We performed the calculations on 6, 7, and 8 word phrases – see

Table 4.3; on average, these CD phrases retain about 65% of the entropy compared

to RS-phrases of respective lengths. The large deviations are a result of the different

templates within a given phrase length. The templates provided similar results re-

gardless of the dictionary used. This would suggest that we can further narrow the

entropy estimate for a given phrase length by adjusting the templates rather than

the dictionary. For example, template five for eight word phrases (see Table 4.1)

performed the worst, and could be eliminated. The results of 8-word templates are

shown in Table 4.4.
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Template Avg Stdev % of RS
1 71 0.17 72
2 66 0.32 68
3 66 0.12 68
4 61 0.83 63
5 58 0.44 60
6 63 0.64 66
7 60 0.94 62

Table 4.4: Observed entropy for 8-word templates; combined results from both Enron and
Gutenberg authors (N=25).

Dictionary uniqueness. We also compared the similarity between the dictionaries

to measure how unique they were to each user. For every pair of user dictionaries

in both Gutenberg and Enron datasets, we calculated the Jaccard index (i.e., the

size of the intersection between two dictionaries divided by the size of their union);

see Table 4.5. The results show that each user dictionary is relatively personal (the

average similarity is between 31-43%).

4.5.2 Selective Regeneration and Brute-force Attacks

Selective regeneration of words. The user is allowed to selectively regenerate

individual words in the passphrase; see Figure 4.5. Each time the user discards a word

they reduce the available choices and weaken the passphrase. We restrict the number

of re-selections to the number of words in the phrase (e.g., the user can regenerate 6

Jaccard index %
Min Max Avg Stdev

Gutenberg 34.84 49.59 42.58 3.62
Enron 23.38 41.82 30.52 3.48

Table 4.5: Similarity of user dictionaries (measured as Jaccard index of pairs of users
from both Gutenberg and Enron datasets)
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Figure 4.5: Myphrase passphrase generation with selective regeneration of individual words

words when constructing an 6 word passphrase) in order to ensure the user does not

introduce too much predictability. For example, if a RS passphrase consists of six

words from a 1024-word dictionary then the entropy will be: log2(10246) = 60. If the

user selectively regenerates six words, the entropy is reduced to: log2(10186) = 59.95.

Since only a few iterations are allowed, the entropy will not suffer significantly. If

the user finds many undesirable words, it would be appropriate for them to consider

creating a new dictionary from different sources.

The selective regeneration feature will probably be more useful for the CD vari-

ant. Some selected words will not create coherent sentences. A user is more likely

to reject these words, which decreases the available combinations for that template.

For example, assume the chosen template is: “noun verb adverb determiner noun
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verb preposition noun” with POS class sizes (noun, 1975), (verb, 1209), (adverb,

86), (determiner, 21), (preposition, 86). A randomly generated passphrase from this

template, e.g., “discomfort rang down the sunlight wait of freedom” will provide an

entropy of log2(1975 × 1209 × 86 × 21 × 1975 × 1209 × 86 × 1975) = 70.57 bits.

Assume the user regenerates the following words: (discomfort→clamor), (the→a),

(sunlight→heap→yelp→spirit) and (wait→answering→alter→contrived). Now the

sentence becomes: “clamor rang down a spirit contrived of freedom” and the modi-

fied entropy is: log2(1971× 1206× 86× 20× 1971× 1206× 86× 1971) = 70.48 bits.

As appears from this example, after a few iterations, the sentence may converge to

something acceptable to the user, without losing much entropy. However, if an at-

tacker uses sophisticated natural language processing, they may be able to determine

which words are more likely to be rejected, thereby narrowing their search space. A

larger dictionary can help offset this loss of complexity.

Iteration count and brute-forcing Myphrase passwords. We experimented

with different hash iteration counts, and found that 32768 caused an acceptable de-

lay for our PC (Firefox addon) and smartphone (Android app) implementations.

Running on a 2.5GHz Intel i7-2860 CPU, it required 2.84 ± 0.02 seconds to com-

plete for the addon. On a 1.2GHz ARM Cortex-A8 HTC smartphone it required

3.23 ± 0.06 seconds. With assembler and hardware crypto accelerated instructions

(e.g., OpenSSL) the time to iterate PBKDF2 reduced to 0.3 seconds on average.

Note that, the extension adds almost 10 times more inefficiency in the PBKDF2

calculation, which benefits the attacker. Native code execution within the browser,

e.g., Google Native Client [110], can be used to reduce this inefficiency. An attacker

can also parallelize the computations to brute-force the dictionary. With a 60-bit
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passphrase, the attacker will need to perform 259 calculations on average. On a 4-

core PC this will require: 259×0.3
60×60×24×365.25×4

= 1370020420 years to search this space.

If the attacker has access to a grid of 1 million such 4-core CPUs (e.g., a million-

node botnet), it will still require 1370 years; without the hash iteration, the required

time is only about 15 days (on average). For a 40-bit passphrase, the required times

on the million-node grid are about 12 hours (with hash iteration) and 1.25 seconds

(without hash iteration) on average. An attacker may be able to reduce the time

using custom hardware (e.g., FPGAs, ASICs, or GPU arrays) or efficient hashing

algorithms (cf. transferable state attack [100]). On the other hand, the attacker’s

workload to brute-force a target password will increase significantly if the server-side

stores only a one-way mapping of the password obtained through the use of iterated

hash/PBKDF2 functions with unique salt values per account. If the adversary at-

tempts to brute-force the passphrase without the dictionary, he will need to attempt

lower-case strings. Since the passphrases are combinations of words, the adversary

can take advantage of the fact that these strings will not be random (e.g., using

Markov chains or a weighted prefix trie). In the worst case scenario, the passphrase

could be the (unlikely) combination of 6 one-character words. The workload will then

be at most log2(266) = 28.2. The search space for brute-forcing an individual site

password, under Myphrase’s default settings, is log2(6212) = 71.45

4.5.3 UDS Evaluation of Myphrase

We now provide an analytical evaluation of Myphrase using the recently-proposed

UDS (usability, deployability, security) framework [10]. We modified the ratings

slightly, from the original three point scale, to include a fourth partial-benefit rat-
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ing. The partial-benefit rating exists between the original no-benefit and quasi-benefit

ratings, and indicates that a given benefit is weakly, or only partially met. The quasi-

benefit rating still indicates that a given benefit is almost fully met. For context,

we also include the ratings for regular user-chosen passwords, the Firefox password

manager, and the online password manager LastPass4 from the original UDS evalu-

ation. We also evaluate some similar schemes based on NLP, multi-word secrets, or

site-specific passwords generated from a master secret. Due to space limitation, we

refer readers to the UDS paper [10] for details of the framework and feature defini-

tions. We have not conducted any formal user-testing yet; to help better design such

tests, we would like to get expert feedback and comments on our publicly available

prototype. Thus we would like to emphasize that our usability ratings for Myphrase

within the UDS framework are only best guesses, given the lack of empirical data on

regular users at this point. See Table 4.6 for the summary of our evaluation.

Myphrase UDS Ratings Explanation.

We use Quasi to refer to “almost full benefit” and Partially to indicate “partial

benefit only.” We rate Myphrase as Quasi-Memorywise-Effortless/U1: users must re-

member at least one secret; Scalable-for-Users/U2: site-specific passwords are gener-

ated from the master passphrase; Quasi-Nothing-to-Carry/U3: having the dictionary

aids usability (less typing and less error in typing), but passwords can be gener-

ated from memorized passphrases; we do not grant Physically-Effortless/U4 since,

if the dictionary is unavailable, the user is likely to type more characters (for most

passphrases) than a regular password; Myphrase is Partially-Efficient-to-Use/U6:

typing the same passphrase should become easier with repeated use, however, un-

4www.lastpass.com/
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Text passwords    G#        G#     
Firefox G#  G# G#         G# G#      
LastPass G#  G# G#    G#  G#   G# G# G# G# G#     
Myphrase G#  G#  # G# #    #    G#       
Fastwords [47]   # G#    # G#     
Topkara [95] G#   # G# G#       G#      
Cheswick [16] G#  # G#    #         

Table 4.6: UDS evaluation of Myphrase. Key:  (offers the benefit); G# (almost offers the
benefit); # (offers partial benefit); blank (benefit not offered).

like a traditional password manager, the master passphrase must be entered for each

authentication; Quasi-Infrequent-Errors/U7: use of the same passphrase and auto-

fill words from a drop-down menu may result in less typing errors; Partially-Easy-

Recovery-from-Loss/U8: losing the master secret requires re-setting all site pass-

words, although the user can browse their dictionary in an attempt to jog their mem-

ory; Partially-Browser-Compatible/D4: the web interface can be used when software

tools are unavailable; Non-Proprietary/D6: no known patents as we are aware of.

Myphrase is not Resilient-to-Physical-Observation/S1: all password input techniques

are vulnerable to physical observation, and inspecting the user’s auto-complete selec-

tions may allow an adversary to learn the master secret more easily; is Resilient-
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to-Targeted-Impersonation/S2: words in the passphrase are chosen randomly—so

having access to a user’s preference to certain words or even the user dictionary

will not help in targeted guessing; Resilient-to-Throttled-Guessing/S3 and Quasi-

Resilient-to-Unthrottled-Guessing/S4: assuming at least 60 bits of entropy, the gen-

erated site-specific password is resilient against online guessing and to some extent,

against offline attacks; Resilient-to-Leaks-from-Other-Verifiers/S6 and Resilient-to-

Phishing/S7: each password is site-specific (i.e., salted by the site’s domain) and

retrieving the master passphrase from a compromised password requires non-trivial

computation power (on average, 259 password trials in the default setting; addition-

ally each trial needs 215 iterations of a hash function). This feature also restricts

malicious sites from replaying a user’s password to get access to another web account

of the user (perhaps to a more valuable account).

UDS comparison with Fastwords. We include Fastwords [47] as an example of

multi-word passwords where words are user-chosen. We rate it as not offering U1 and

U2: users are required to remember several phrases (similar to regular passwords).

Fastwords are independent of any particular dictionary (except the widely-available

built-in English dictionary in current mobile platforms); we rate it to offer U3. We rate

it as offering Quasi -D3: it may require server-side changes as many websites currently

disallow the space character in passwords. Fastwords do not offer D6: as mentioned at

fastword.me, the technology is patent-pending. Fastwords’ security features are rated

similar to text passwords; we believe it is unlikely to achieve significant improvement

in this area, as long as user-choice is involved (cf. [11]).

UDS comparison with Topkara’s scheme. The Topkara [95] scheme uses NLP-

generated master passphrases for use as mnemonics. Their scheme also constructs
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site-specific passwords, using a pen-and-paper table-lookup. We rate it Quasi -U1:

since there is at least one secret to memorize; we grant U2: the cognitive load does

not become more difficult for additional accounts; we do not grant U3 since the user

must carry the helper-cards, and additional accounts will require more cards; we

do not grant U4 since the user must perform a table-lookup and type in their site-

password; we rate Quasi -U6: the table-lookup and helper card construction require a

non-negligible amount of time; we do not grant U8 since losing the helper cards will

require resetting all site passwords; Quasi -D1: the scheme requires sight (although

Braille helper cards may mitigate this issue); we grant S2: card lookups are generated

from a random seed; Quasi -S4: the resulting site-passwords are at least 8 characters

long, including digits and special characters, which should exhibit log2(948) = 52 bits

of entropy at minimum; we grant S8: access to the card does not give an adversary

any significant advantage.

UDS comparison with Cheswick’s scheme. Cheswick’s scheme [16] generates

a passphrase by randomly selecting words from a fixed dictionary. We rate it as

not offering U1 and U2 since, like Fastwords, users must memorize several phrases;

Quasi -U3: similar to Myphrase, the fixed dictionary helps easy recall and typing;

Quasi -D3: server-side changes may be necessary to handle the space character.

4.5.4 Memorability of Myphrase Passphrases

We believe the memorability of a Myphrase passphrase is enhanced by the following

factors. (a) Frequent repetition: repeated use reduces the user’s working memory

load from potentially dozens of site passwords to one. (b) Semantic and syntactic

structures: words are apparently more memorable than random character strings,
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and sentences more memorable than random sequences of words. (c) Personally

meaningful words: familiarity with the passphrase components should make recall

easier. (d) Recognition of words: the auto-complete suggestions allow the user to

recognize their passphrase words from a list.

Our hypothesis is that Myphrase passphrases may retain security advantages of

random phrases without being too difficult to remember. We would like to test this

hypothesis through a user study in the future. Below we discuss some related work

supporting the idea that personally meaningful words could be more memorable.

An fMRI study performed by Saykin et al. [82] shows that brain activity is much

greater, and takes place in more regions, when a subject is shown a familiar word

as compared to an unaccustomed word. Gregg [35] also suggests that recall of com-

mon words is higher than uncommon words. (Note that frequency ranked words in

Myphrase are by definition “common” to the user.) Hulme et al. [42] performed two

experiments: in the first, non-word sequences were found to be less memorable than

words. The second experiment compared memorability of Italian and English words

on English-speaking participants. Users remembered English words better, but mem-

ory span for Italian words increased after learning the English translations. This also

supports the idea that a user will better remember words for which their semantics

are well known.

The auto-suggest feature of Myphrase reduces typing and may also jog the user’s

memory (i.e., the task of recall is partially reduced to recognition). However, it is

unclear to what extent this will help for overall memorization of the user’s passphrase,

including sequence. Early research by Gregg [35] suggests that recognition of words

is actually higher for uncommon words. In a recent recognition study [108], in the
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context of text based passwords, it was found that recognition of words was no better

than free-recall.

Our scheme can be thought of as a type of cued-recall in which the user must

recall the first letter of the word, and then a cue is given (in this case a list of words,

or the word itself). It is usually agreed upon that cued-recall is much easier than

free-recall (e.g., [98]).

The connected discourse variant also leverages the semantic and syntactic struc-

ture of a sentence. Previous research (e.g., [63, 25, 60, 29, 61]) suggests that such

high-order patterns are more memorable than random sequences of words. A re-

cent study on the memorability of random passphrases performed by Shay et al. [87]

contradicts this notion, and indicates that there is little difference between recollec-

tion of random passwords versus passphrases. However, in this study (also in [108])

personally meaningful words were not used. Furthermore, users were not provided

any recognition cues, and did not benefit from the repeated use of the phrase (one

Myphrase passphrase is expected to be used repeatedly for all or most web logins,

reducing the memory load and combating the the multiple password interference

problem [17]).

Words in a Myphrase passphrase should be more familiar to users; however, users

must memorize the sequence of these words—e.g., six words from a 1024-word dic-

tionary. Memorability of a phrase of such length appears to be feasible (albeit non-

trivial), especially when this phrase can potentially replace all site passwords for a

user.
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4.5.5 Limitations

Major limitations include: (a) Myphrase’s approach of using a master secret is sim-

ilar to several existing techniques—expecting that users will remember one strong

secret and derive all other site passwords from it. However, users most likely would

not change all their existing passwords to Myphrase at the outset (cf. [7]). Therefore,

the Myphrase passphrase would be “one more secret” to remember and will benefit

users only in the long-run. However, users can gradually migrate their accounts under

a Myphrase password, and keep using regular text passwords along with Myphrase.

(b) A forgotten or compromised (e.g., via PC malware) Myphrase master passphrase

will incur selecting a new passphrase and resetting all site passwords—a major incon-

venience for users. Users may write down the passphrase and store it in a place not

accessible to others (cf. [111, 40]). Users may browse the dictionary to attempt to

recognize the forgotten words in the passphrase. (c) The dictionary may be lost or

unavailable to users (e.g., when using a new device). In such cases, typing errors may

increase as users must recall the exact words in the phrase without any cue. Posting

the dictionary to a public or semi-public website (e.g., Facebook) may enable access-

from-anywhere. The dictionary may also be re-created from the original sources used.

(d) The Myphrase tool is required to convert the master passphrase to a site password.

When the tool is unavailable (e.g., in a friend’s device), a website for this conversion is

available at: http://users.encs.concordia.ca/∼a skil/myphrase/myp-web/. The web

tool uses locally-executed JavaScript, and does not interface with any 3rd party web

services. The user may even download the script and execute it locally (offline or

even in a virtual machine sandbox). The user enters their passphrase and the URL of

the site they wish to log into. The site password is then generated, and the user can
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copy–paste the site password into the login field of the web service. (e) We anticipate

the use of Myphrase may increase the login time (e.g., we observed the time to be

close to 20 seconds for a 8-word phrase from our own experience on a PC–a formal

user study will result in a more accurate estimation). We expect that the repeated

use of the same passphrase may reduce the login time in the long-run.

4.6 Concluding Remarks

Myphrase takes advantage of the already existing tendency towards choosing familiar

words as passwords. Users are generally frowned upon by security advocates for

making such choices, as these words can easily be subjected to dictionary attacks. In

contrast, Myphrase allows users to generate stronger passwords from a dictionary of

words they are familiar with or use in their daily communications. In the context of

FDE, regular user-chosen passwords do not provide adequate protection. For PDE-

enabled storage, a weak password can have dire consequences. Offline guessing is

easily performed on an encrypted volume image or partial snapshot. Myphrase is

much more suitable for protecting encryption keys, given the relatively high entropy

attained by the master passphrase and context-specific passwords.

As discussed, Myphrase has several potential limitations, e.g., longer login times,

and memorizing a sequence of several words as the master passphrase. However, the

use of personal words may help user-acceptance5 — a major obstacle for any new

password scheme. The auto-suggest feature reduces typing, which may also make

Myphrase more suitable for mobile devices than regular passwords. However, we

5See e.g., the user study [8] of object-based password: users browse their personal images/music
files as part of the login mechanism; some users reportedly enjoyed interacting with such objects.
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would like to emphasize that no formal user-testing has been conducted yet. We

introduce Myphrase here to promote discussion on authentication schemes that can

sustain site-password leakage and are suitable for both desktop and mobile platforms.

Our prototype implementation is available at:

http://users.encs.concordia.ca/∼a skil/myphrase/.
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Chapter 5

Conclusions and Future Work

In certain situations, users require a level of protection beyond the semantic secu-

rity that is offered by encryption. Deniable encryption techniques can be used to

augment standard encryption, to contend with a coercive adversary. This disserta-

tion examined the feasibility and efficacy of deniable storage encryption for mobile

devices. The Mobiflage tool was designed and prototyped to assess the effective secu-

rity and usability of the mobile deniable storage concept. The results are promising,

as Mobiflage addresses several leakage vectors while incurring a tolerable impact on

performance and usability. The implementation relies on a conscientious user that

will adhere to usage guidelines devised to prevent leakage or compromise through

inappropriate behaviour. One such directive is to choose a high entropy password to

protect the volume encryption keys. This dissertation also discussed a new password

scheme for that specific purpose.

The Myphrase design aims to facilitate passwords that are suitably strong for pro-

tection of encryption keys, easier to input on mobile devices, and alleviate the mem-

ory burden on the user. By building on research in cognitive psychology, Myphrase

passwords are constructed to offer better memorability and security: familiar words

and structures are randomly combined to create user-specific multi-word passphrases.

The Myphrase scheme was designed to generate passwords with at least 60 bits of

entropy, plus 15 bits through PBKDF2. While this falls short of the current 80-bit
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infeasibility boundary, it still provides at least twice the average complexity of current

user-chosen passwords. Myphrase was implemented for PCs and mobile devices. The

Android implementation is suitable for use with the Mobiflage pre-boot authenticator,

demonstrating the utility for protection of encryption keys on mobile devices.

5.1 Future Research Goals

The research on deniable storage encryption and key-protection passwords has iden-

tified additional avenues that should be explored:

1. Flash storage wear-levelling – Without access to the raw flash storage

cells (as with SD and eMMC), leakage through partial snapshots cannot be

prevented. It would be prudent to determine how easily LBAs can be correlated

to hidden volume data. This may inhibit the effective security of PDE on mobile

devices.

2. Generalized deniable storage encryption – Newer Android devices

do not contain SD cards, precluding the current Mobiflage implementation.

Likewise, other platforms (e.g., iOS) use the MTP protocol and share inter-

nal/external storage. The Mobiflage design can be adapted, and implemented

for use with MTP devices to provide a general solution for mobile devices.

3. Usability study of Myphrase – The memorability of Myphrase remains

conjecture at this point. There is strong support from existing research in cog-

nitive psychology, however, until a formal user study is conducted, the memo-

rability aspects cannot be confirmed.
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Appendix A

Crypto Primitives and Deniability

Certain crypto primitives, such as ciphers and pseudorandom number generators

(PRNGs), may leak information that can compromise deniability. For example, at-

tacks have been discovered against the CBC mode of operation, when applied to disk

encryption (e.g., [32]). This chapter gives details about possible attacks against CBC,

when used for data-at-rest, that may compromise deniability. These attacks justify

the use of XTS-AES in Mobiflage (the default Android encryption implementation

uses the CBC mode).

Plaintext difference attack. A plaintext difference attack has been demonstrated

(e.g., by Fruhwirth [32]). If any two ciphertext blocks within a volume sector, Cm =

Ek(Pm ⊕ Cm−1) and Cn = Ek(Pn ⊕ Cn−1), are identical, the adversary can learn the

difference between the original plaintexts. The preceding blocks, Cm−1 and Cn−1, are

also known to the adversary since they exist in the sector immediately preceding the

blocks in question. Since Cm = Cn, it holds that:

Pm ⊕ Cm−1 = Pn ⊕ Cn−1

Which may be expressed as:

Cm−1 ⊕ Cn−1 = Pn ⊕ Pm
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The adversary can now deduce the difference in plaintexts. In the case where either

Pn or Pm is zero, the adversary can recover the original plaintext of the other block.

In Mobiflage, the storage is filled with random bytes, however some regions may have

been zeroed (e.g., the inode table and block bitmaps in an Ext4 block group are zeroed

during formatting). This may allow the adversary to reveal fragments of hidden data

if the CBC mode is used.

This is mostly a theoretical attack, as the probability of two identical blocks in

a sector is very low: treating the cipher output as a random distribution (a relaxed

assumption), for the AES block size of 128 bits, and a disk sector size of 512 Bytes,

then

P (two identical blocks in a sector) =

(
32

2

)
/((2128)32)

≈ 496/1.0× 101233

≈ 2.1× 10−1230

Furthermore, assuming an equally likely distribution of ciphertext blocks, the proba-

bility that any given block in a sector will be all zeros is:

P (one block in a sector is all zeros) = 32/(2128) = 9.4039548× 10−38

For a per-sector probability of 1.98× 10−1269 that the attack conditions will be met.

There are 2097152 sectors per GB, so even for a 64GB disk there is only a negligible

probability that suitable attack conditions will exist:

1.34× 108

1.98× 10−1269
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Watermarking attack. Under certain schemes, the sector IVs are predictable (e.g.,

the index of the disk sector). This gives rise to a chosen plaintext attack known as

watermarking, as demonstrated by the authors of [32, 81]. Watermarking manifests

itself as a data existence leak, and can defeat deniable storage encryption. The attack

is mounted by encrypting a special plaintext file to produce two sectors where the

first ciphertext block of each sector is identical:

IV1 ⊕ P1 = IV2 ⊕ P2

Equivalently:

IV1 ⊕ IV2 = P1 ⊕ P2

This pattern, or watermark, can be detected in the encrypted data even when the

key and cipher are unknown. An adversary may trick a user into storing such a file

in their hidden volume, then seize the device and search for the watermark, proving

the existence of the hidden volume.

Copy-and-paste attack. An adversary can move pairs of ciphertext blocks from

one area of the disk to another. Since the decryption of a plaintext block Pi depends

only on the ciphertext blocks Ci and Ci−1, the block will decrypt properly no matter

where it exists on the disk. This has serious implications for deniability: a pair of

ciphertext blocks can be moved outside of the deniable region of a volume. The block

will decrypt to unintelligible plaintext since a different key is being used. Unless empty

regions of the disk were filled with random data before encryption, the adversary

would expect zero sectors or old file fragments, proving the existence of hidden data

and additional keys. Most PDE storage schemes, including Mobiflage, fill vacant
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storage with random bytes which should prevent the discovery of a hidden volume. In

addition, Mobiflage uses the XEX tweaked-codebook with ciphertext stealing (XTS)

mode which is not susceptible to the copy-and-paste attack, since the tweak operation

depends on a block’s sector index and will produce a different result when moved.

Tweakable block ciphers. Special tweakable cipher modes, such as LRW and

XTS, were created specifically for disk encryption, to prevent or mitigate known

attacks. IEEE Std 1619-2007 [43] defines the XTS-AES mode of operation. It has

been approved by NIST [68] as the preferred disk encryption block cipher. XTS

mode is a code book mode (i.e., no block chaining) which uses a secondary tweak key

to make unpredictable use of the disk sector index. The IEEE standard rates the

security of the system as equivalent to using ECB mode with a different key for each

block. It is important to note that the security of XTS rests on the security of AES.

The XTS-AES cipher mode works as follows:

Ci = EK1(Pi ⊕ (EK2(n)⊗ ai))⊕ (EK2(n)⊗ ai) (A.1)

Where:

⊕ is the exclusive OR operation,

⊗ is multiplication over the finite field GF(2128) modulo x128 + x7 + x2 + x + 1,

K1 is the AES encryption key,

K2 is the tweak key,

i is the cipher block index within a 512-byte sector,

n is the sector index on the disk, and

a is a primitive element of Galois Field (2128) that corresponds to the polynomial x.
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The IEEE standard does warn against encryption of more than a few hundred

terabytes with the same key. This may introduce the possibility of certain chosen

ciphertext attacks discussed in the standard. The attacks are not unique to XTS.

They are the result of the 128-bit AES block size and the birthday paradox (i.e.,

use of a larger key space will not mitigate these attacks). This is not a problem for

modern mobile devices which have relatively limited storage capacity (e.g., on the

order of 64GB).
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Appendix B

Attacking Android Encryption

In this chapter we discuss a dictionary attack against the default Android encryption

scheme. As a result of the implementation choices in the Android security model,

this brute-force attack, if successful, will also recover the device-unlock secret.

The Android FDE subsystem reuses the screen-unlock secret, to protect the en-

cryption key, with 2000 iterations of PBKDF2. It is the user’s responsibility to choose

a suitably strong password, to prevent a dictionary attack. The pre-boot authentica-

tion prompt will time-out for 30 seconds after 10 failed password attempts. In order

to mount an online attack, attempting all 4 and 5 digit PIN codes (110,000 total),

the device will be unresponsive for almost 3 days and 20 hours. The actual attack

will take longer, as there is a non-negligible delay to test each PIN with PBKDF2.

Since the adversary can, on average, obtain the correct PIN after exhausting 50%

of the search space, this online attack is feasible. If the user chooses a longer PIN

however, and the adversary has to attempt all possible PINs between 4 and 9 digits

(1,111,110,000 total), the device would be timed-out for almost 106 years.

An offline attack against the encryption system is also possible, if the adversary

can obtain an image of the device’s encrypted storage. Physical storage acquisition

techniques, such as JTAG and “chip-off”, can be used to obtain such an image (see

e.g., Hoog [41, pp. 266–284]). Logical acquisition techniques, such as installing a

custom recovery image with root privileges, may also be possible.
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The PBKDF2-protected volume key is contained in the encrypted volume’s footer.

A brute-force attack can be mounted to attempt to decrypt the volume key. When

the correct screen-unlock secret is found, the resulting volume key will decrypt a valid

filesystem. A tool, droidcrack, was created to test the feasibility of such a dictionary

attack against an encrypted Android disk image (source code available at http://users.

encs.concordia.ca/∼a skil/droidcrack/). The experiments were conducted on a single

core of a 3.4GHz Intel Core i7-2600, running Ubuntu 12.04 with the OpenSSL 1.0.0

library. To perform the offline attack against all 4 and 5 digit PINs required 9 minutes

and 2 seconds. To test all PINs between 4 and 9 digits required 63 days 7 hours and

35 minutes. On average the correct PIN would be identified after one month, making

this attack feasible, even on commodity hardware. These experiments demonstrate

that weak passwords cannot be relied upon to protect encryption keys. The eight-

character lower-case search space (268) would require 32.6 years on this hardware, but

may be feasible with parallelization. For comparison, the search space for passwords

generated by Myphrase is, by default, 6212 and would require 1.0 × 1014 years to

exhaust on this hardware. If the Myphrase dictionary is available to the adversary,

then the search space is reduced to 260 and would require 1.8 × 108 years. Both of

these scenarios can be considered infeasible. Increasing the PBKDF2 iteration count,

as discussed in Section 3.7, can slow a brute-force attack, but is insufficient alone. A

strong password is necessary to ensure an exhaustive search is infeasible.

123

http://users.encs.concordia.ca/~a_skil/droidcrack/
http://users.encs.concordia.ca/~a_skil/droidcrack/

	List of Figures
	List of Tables
	List of Equations
	List of Acronyms
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Related Publication
	Outline

	Background
	Full Disk Encryption
	Plausible Deniable Encryption
	Password Protected Encryption Keys

	Mobiflage: Deniable Storage Encryption for Mobile Devices
	Introduction and Motivation
	Threat Model and Assumptions
	Mobiflage Design
	Overview and Modes of Operation
	Steganographic File-systems vs. Hidden Volumes
	Storage Layout
	Offset Calculation
	User Steps

	Mobiflage Implementation
	Changes to Android FDE
	Partitions and File-system Support
	User Interface and Pre-boot Authentication
	Limitations

	Precautions against Colluding Carriers
	Sources of Compromise
	Leakage from Crypto Primitives
	Leakage from Flash-storage
	Leakage from File-system and OS

	Security Analysis
	Performance Evaluation
	Related Work
	Software Implementations
	Deniable Storage Encryption Proposals

	Concluding Remarks

	Myphrase: Strong Multiword Passwords
	Introduction and Motivation
	Myphrase Description
	Implementation
	Related Work
	Comparison and Evaluation
	Myphrase Entropy Estimation
	Selective Regeneration and Brute-force Attacks
	UDS Evaluation of Myphrase
	Memorability of Myphrase Passphrases
	Limitations

	Concluding Remarks

	Conclusions and Future Work
	Future Research Goals

	Bibliography
	Appendix Crypto Primitives and Deniability
	Appendix Attacking Android Encryption

