Deadbolt:

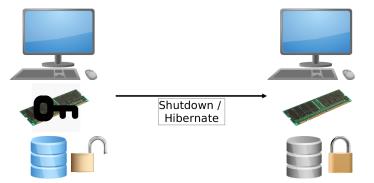
Locking Down Android Disk Encryption

Adam Skillen, David Barrera, and Paul C. van Oorschot

askillen@ccsl.carleton.ca

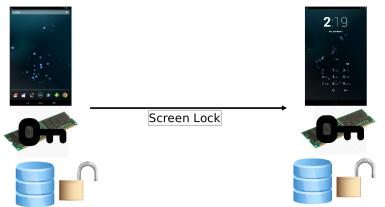
Carleton Computer Security Lab Carleton University Ottawa, Canada

SPSM 2013, Berlin, Germany November 8, 2013

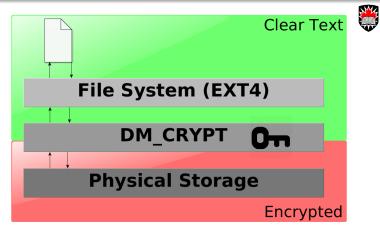

The problem with Android disk encryption

- Android storage encryption uses Full Disk Encryption (FDE).
- Key stays in RAM while *screen-locked*.
- FDE only protects private data when volume is unmapped. (e.g., device is shutdown)
- Mobile device *always-on* usage model weakens FDE.
- FDE key and private data are susceptible to cold-boot, lock-screen bypass, and hardware based attacks.

FDE – PC model

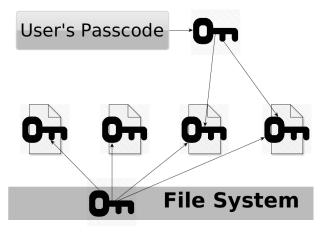


PCs are regularly shut-down or hibernated, effectively securing the encrypted data by removing the key from RAM


FDE – Mobile model

Mobile devices are instead *screen-locked*. The key remains in RAM and volume remains mounted

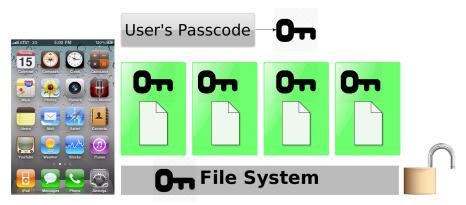
Android storage encryption



- Implemented through DM_CRYPT
- Block ciphers act on individual disk sectors.
- On-the-fly (transparent to users/apps).

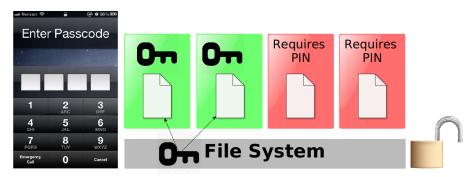
Carleton

cf. iOS storage encryption



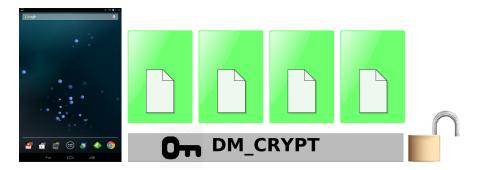
Files are encrypted individually, some keys are removed from RAM when screen-locked

Unlocked iOS device



All keys/files available when screen is unlocked

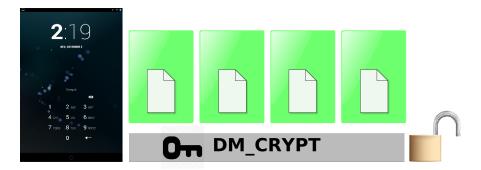
Locked iOS device



Some keys/files available when screen is locked

Unlocked Android device

Key and storage available when screen is unlocked


A. Skillen

Deadbolt

November 8, 2013

Locked Android device

Key and storage remain available when screen is locked!

A. Skillen

Deadbolt

- Software-only method to protect FDE key and encrypted data. Resilient to cold-boot and lock-screen bypass while in *Deadbolt* mode.
- Retains most smart-device functionality.
 (Dialer, SMS, Internet, optionally import some user data).
- **③** Resuming from Deadbolt mode is faster than a full boot-up.
- Added benefit of an optional *incognito* environment.
 Logs and activities can be discarded after resuming from Deadbolt.
- Full design and implementation for use with Android 4.0+ Source code available from project website.

- Deadbolt complements the Android lock-screen, for use in high risk situations
 - E.g., travelling, commuting, border-crossing
 - Intended users: anybody that currently uses device encryption
- Optionally, policies could be used to invoke Deadbolt
 - E.g., time-of-day, GPS location
- Incognito mode allows users to perform tasks deniably
 - E.g., phone calls will not show up in logs
- Safe mode allows users to perform potentially hazardous tasks
 - E.g., visit untrusted websites

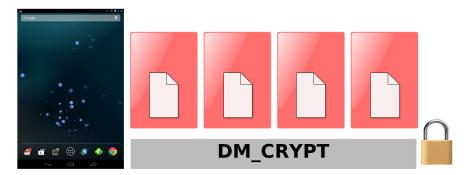
Assume adversary can obtain physical access to device while in Deadbolt

- **Software vulnerabilities** lock-screen routinely bypassed (e.g., recent Android Skype bug, iOS 7 bug).
- **Cold boot attack** keys and intermediate state in RAM, Müller et al. recently demonstrated cold boot on Android [ACNS'13].
- Hardware attacks ARM debug interface, JTAG, etc.

Implemented in the Android volume mounting daemon (vold)

- Pause running Android framework (GUI, daemons, etc.)
- ② Unmount encrypted userdata volume.
- **3** Zero all key material in RAM.
- Mount empty tmpfs (RAM filesystem) on /userdata.
- **1** Restart Android framework.
- cf. Switching runlevel without restarting kernel.

Deadbolt environment


• Uninitialized environment.

Default settings, no user data/apps.

- Base system apps (without user data). Sufficient for phone, web, texting, maps/GPS.
- tmpfs mounted to userdata storage.
 Private data inaccessible, all changes must be exported or lost.
- Optionally import certain data. E.g., contacts, WiFi passwords, etc.

Deadbolted Android device

Key and storage secured, core smartphone functionality retained

A. Skillen

Deadbolt modes

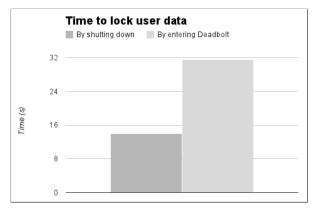
Incognito mode is like a Live-CD environment: no data persists after exiting (Default mode)

Allows importing/exporting data to encrypted storage

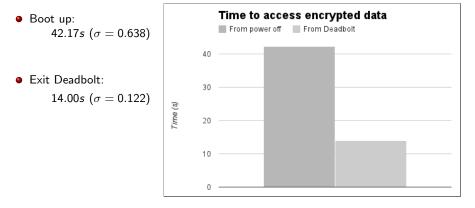
Safe mode allows users to perform potentially dangerous tasks without the risk of disclosing private data

Importing/exporting of private data is disabled

³⁶ 🔏 4:09	³⁶ // 🙆 4:55				
🚯 Deadbolt	🚯 Deadbolt				
Enable Deadbolt Enable Safe Mode Warning: If Safe Mode is enabled, any data created while the device is in Deadbolt mode must be manually backed up before returning to FDE mode. Options Minoport Contacts Minoport Wi-Fi Passwords	FDE Password Disable Deadbolt Options Save call log Save SMS Save Pictures				
Enter Deadbolt (Suspend full environment)	Exit Deadbolt (Resume full environment)				
(Suspend fun environment)	(ivesume run environment)				


Deadbolt performance – Locking data

Tested on Nexus 7 tablet with AOSP 4.2.2

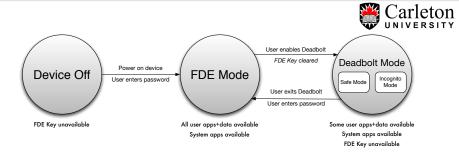

- Power off device: 14.03s (σ = 0.145)
- Enter Deadbolt:

31.62*s* (
$$\sigma = 1.235$$
)

Deadbolt performance – Unlocking data

Trade increased time to lock for decreased time to unlock, and maintain core functionality

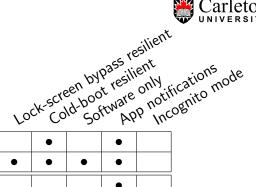
- Absence of user apps and data (e.g., games, email passwords).
- App notifications must use other means (e.g., over SMS).
- Minimum 256 MB RAM (Android 4.0+ devices).
- Cannot be installed after market, must be implemented in OS. (Can possibly be made part of default Android OS).
- Private data fragments may remain in RAM.



- With FDE, data remains *unlocked* while device powered on.
- Deadbolt offers security benefits of a powered off device while retaining most mobile functionality.
- Switching to Deadbolt faster than reboot.
- Some usability/security trade-offs.

Deadbolt project website:

http://www.ccsl.carleton.ca/~askillen/deadbolt


Deadbolt overview

- Enhanced Android lock-screen.
- All private data encrypted and inaccessible.
- Temporary (empty) Android environment.
- Core phone functionality available.

Deadbolt comparison

File	Apple iOS		•		•	
	BlackBerry	•	•	•	٠	
FDE	Windows Phone				•	
	Android FDE			•	•	
	Deadbolt	•	•	•	0 ^a	•

^a(e.g., over SMS)

Alternative approaches and future work

- Exiting Deadbolt is fast (only requires restarting GUI/services)
 - Suspend to disk (likely not an advantage given Android's memory model)
- Entering Deadbolt is slower (requires creating directory structure, unpacking system apps, restart framework)
 - Pre-created disk image could be used with OverlayFS (RO, COW)
 - Trusted execution implementation (key only available inside TEE)

Deadbolt

Copy files and merge SQLite databases while tmpfs and FDE storage mounted concurrently.

- Import Optionally import some data into Deadbolt. Any imported data is susceptible to disclosure.
 E.g., contacts, WiFi settings/passwords, bookmarks.
- Export Save some data created in Deadbolt. E.g., call log, SMS/MMS, photos.

- dm-crypt uses kzfree on key material when unmapped
- We wipe vold's copy of the key/password (using memset)
- Used LiME and AESKeyFind to examine memory in Deadbolt
- Plaintext private data fragments may exist in RAM.
- When exiting Deadbolt, we wipe the tmpfs
- Data imported into Deadbolt is subject to disclosure while in Deadbolt

J. Gözfried and T. Müler. ARMORED: CPU-bound encryption for Android-driven ARM devices (ARES 2013).

Key stored in CPU registers rather than RAM. (Defence against cold boot, but still susceptible to physical attack and lock-screen bypass)