
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Mobiflage:
Deniable Storage Encryption for Mobile Devices
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Abstract—Data confidentiality can be effectively preserved through encryption. In certain situations, this is inadequate, as users may

be coerced into disclosing their decryption keys. Steganographic techniques and deniable encryption algorithms have been devised to

hide the very existence of encrypted data. We examine the feasibility and efficacy of deniable encryption for mobile devices. To address

obstacles that can compromise plausibly deniable encryption (PDE) in a mobile environment, we design a system called Mobiflage.

Mobiflage enables PDE on mobile devices by hiding encrypted volumes within random data in a devices free storage space. We

leverage lessons learned from deniable encryption in the desktop environment, and design new countermeasures for threats specific

to mobile systems. We provide two implementations for the Android OS, to assess the feasibility and performance of Mobiflage on

different hardware profiles. MF-SD is designed for use on devices with FAT32 removable SD cards. Our MF-MTP variant supports

devices that instead share a single internal partition for both apps and user accessible data. MF-MTP leverages certain Ext4 file

system mechanisms and uses an adjusted data-block allocator. These new techniques for storing hidden volumes in Ext4 file systems

can also be applied to other file systems to enable deniable encryption for desktop OSes and other mobile platforms.

Index Terms—File system security, Mobile platform security, Storage Encryption, Deniable encryption

✦

1 INTRODUCTION AND MOTIVATION

Smartphones and other mobile computing devices are
being widely adopted globally. For instance, accord-
ing to a comScore report [2], there are more than
119 million smartphone users in the USA alone, as
of Nov. 2012. With this increased use, the amount of
personal/corporate data stored in mobile devices has
also increased. Due to the sensitive nature of (some
of) this data, all major mobile OS manufacturers now
include some level of storage encryption. Some vendors
use file based encryption, such as Apple’s iOS, while
others implement “full disk encryption” (FDE). Google
introduced FDE in Android 3.0 (for tablets only); FDE
is now available for all Android 4.x devices, including
tablets and smartphones.
While Android FDE is a step forward, it lacks deniable

encryption—a critical feature in some situations, e.g.,
when users want to provide a decoy key in a plausible
manner, if they are coerced to give up decryption keys.
Plausibly deniable encryption (PDE) was first explored
by Canetti et al. [3] for parties communicating over a
network. As it applies to storage encryption, PDE can be
simplified as follows: different reasonable and innocu-
ous plaintexts may be output from a given ciphertext,
when decrypted under different decoy keys. The original
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plaintext can be recovered by decrypting with the true
key. In the event that a ciphertext is intercepted, and the
user is coerced into revealing the key, she may instead
provide a decoy key to reveal a plausible and benign
decoy message. The Rubberhose file system for Linux
(developed by Assange et al. [4]) is the first known
instance of a PDE-enabled storage system.
Some real-world scenarios may mandate the use of

PDE-enabled storage—e.g., a professional/citizen jour-
nalist, or human rights worker operating in a region
of conflict or oppression. In a recent incident [5], an
individual risked his life to smuggle his phone’s micro
SD card, containing evidence of atrocities, across inter-
national borders by stitching the card beneath his skin.
Mobile phones have been extensively used to capture
and publish many images and videos of recent popular
revolutions and civil disobedience. When a repressive
regime disables network connectivity in its jurisdiction,
PDE-enabled storage on mobile devices can provide a vi-
able alternative for data exfiltration. With the ubiquity of
smartphones, we postulate that PDE would be an attrac-
tive or even a necessary feature for mobile devices. Note,
however, that PDE is only a technical measure to prevent
a user from being punished if caught with contentious
material; an adversary can always wipe/confiscate the
device itself if such material is suspected to exist.
Several existing solutions support full disk encryption

with plausible deniability in regular desktop operating
systems. Possibly the most widely used such tool is
TrueCrypt [6]. To our knowledge, no such solutions
exist for any mainstream mobile OSes, although PDE
support is apparently more important for these systems,
as mobile devices are more widely used and portable
than laptops or desktops. Also, porting desktop PDE
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solutions to mobile devices is not straightforward due
to the tight coupling between hardware and software
components, and intricacies of the system boot proce-
dure. For example, in Android, the framework must be
partially loaded to use the soft keyboard for collecting
decoy/true passwords; and the TrueCrypt bootloader is
only designed to chainload Windows.

We introduce Mobiflage, a PDE-enabled storage en-
cryption system for the Android OS. It includes coun-
termeasures for known attacks against desktop PDE
implementations (e.g., [7]). We also explore challenges
more specific to using PDE systems in a mobile envi-
ronment, including: collusion of cellphone carriers with
an adversary; the use of flash-based storage as opposed
to traditional magnetic disks; and file systems such as
Ext4 (as used in Android) that are not so favorable to
PDE. Mobiflage addresses several of these challenges.
However, to effectively offer deniability, Mobiflage must
be widely deployed, e.g., adopted in the mainstream
Android OS. As such, we implement our Mobiflage
prototype to be compatible with Android 4.x.

Our contributions include:

1) We explore sources of leakage inherent to mobile
devices that may compromise deniable storage en-
cryption. Several of these leakage vectors have not
been analyzed for existing desktop PDE solutions.

2) We present the Mobiflage PDE scheme based on
hidden encrypted volumes—the first such scheme
for mobile systems to the best of our knowledge.

3) We introduce two variants of Mobiflage to address
several challenges specific to different Android
hardware profiles. Mobiflage for devices with re-
movable SD cards (MF-SD) avoids PDE-unfriendly
features of the Ext4 file system by storing hidden
volumes within the FAT32-based external partition.
Devices, such as the Nexus S, which use an internal
eMMC partition to emulate removable SD storage
are also supported by MF-SD. Newer devices, such
as the Nexus 4 and HTC One, have neither physical
nor emulated external storage. Instead, they rely on
the media transfer protocol (MTP) and share a single
Ext4-formatted partition for both the (internal) app
storage and (external) user data storage. To support
these devices, we present MF-MTP, by making sub-
tle changes to the Ext4 file system. For the remainder
of the document, the termMobiflage will refer to the
high level design. The terms MF-SD and MF-MTP
will refer to the specific implementation variants.

4) We provide proof-of-concept implementations of
our Mobiflage variants for Android 4.x (Ice Cream
Sandwich and Jelly Bean). We incorporated our
changes into 4.x as an optional feature (i.e., encryp-
tion without PDE is still available). There are no
identifying technical differences between an instan-
tiation of the default and PDE encryption modes.

5) We analyze the performance impact of our im-
plementation during initialization and for data-

intensive applications. We also perform file system
benchmarks to determine the impact of our mod-
ified Ext4 driver. In a Nexus S device, our imple-
mentation appears to perform almost as efficiently
as the default Android 4.x encryption for the ap-
plications we tested. However, the Mobiflage setup
phase takes more time than Android FDE, due to a
two-pass wipe of the storage (our Nexus S required
almost twice as long; exact timing will depend on
the size and type of storage).

2 THREAT MODEL AND ASSUMPTIONS

In this section, we discuss Mobiflage’s threat model and
operational assumptions, and few legal aspects of using
PDE in general. The major concern with maintaining
plausible deniability is whether the system will provide
some indication of the existence of any hidden data.
Mobiflage’s threat model is mostly based on past work
on desktop PDE solutions (cf. TrueCrypt [6]); we also
include threats more specific to mobile devices.

Threat model and operational assumptions.

1) Mobiflage must be merged with the Android code
stream, or a widely used custom firmware based on
Android (e.g., CyanogenMod1) to ensure that many
devices are capable of using PDE. Then an adversary
will be unable to make assumptions about the pres-
ence of hidden volumes based on the availability
of software support. We do not require a large
user base to employ PDE; it is sufficient that the
capability is widespread, so the availability of PDE
will not be a red flag. Similar to TrueCrypt [6], all
installations of Mobiflage include PDE capabilities.

2) The adversary has the encrypted device and full
knowledge of Mobiflage’s design, but lacks the PDE
key and password. The existence and location of the
hidden volume is therefore also unknown.

3) The adversary has some means of coercing the
user to reveal their encryption keys and passwords
(e.g., unlock-screen secret), but will not continue to
punish the user in vain. To successfully provide
deniability in Mobiflage, the user is expected to
refrain from disclosing the true key.

4) The adversary can directly access the device’s stor-
age, and can have root-level access to the device
after capturing it. The adversary can then manip-
ulate disk sectors, including encryption/decryption
under any decoy keys learned from the user; this can
compromise deniability (e.g., the “copy-and-paste”
attack [8]). Mobiflage addresses these issues.

5) The adversary model of desktop FDE usually in-
cludes the ability to periodically snapshot the en-
crypted physical storage (cf. [7]). However, this
assumption is unlikely for mobile devices and has
therefore been relaxed (as the adversary will have
access to the storage only after seizing the user).

1. http://www.cyanogenmod.org/

http://www.cyanogenmod.org/
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6) In addition to the Dolev-Yao network attacker
model [9], [10], we also assume that the adversary
has some way of colluding with the wireless carrier
or ISP (e.g., a state-run carrier, or subpoena power
over the provider). Adversaries can collect activity
logs from these carriers to reveal the use of a PDE
mode on suspected devices.

7) We assume the mobile OS, kernel, and bootloader
are malware-free, and while in the PDE mode, the
user does not use any adversary controlled apps.
The device firmware and baseband OS are also
trusted. Control over the baseband OS may allow
an adversary to monitor calls and intercept network
traffic [11], which may be used to reveal the PDE
mode.

8) We assume the adversary cannot capture the user
device while in the PDE mode; otherwise, user
data can be trivially retrieved from the device. We
require the user to follow certain guidelines, e.g.,
not using Mobiflage’s PDE-mode for regular use;
other precautions are discussed in the NDSS 2013
publication [1].

Legal aspects. Some countries require mandatory dis-
closure of encryption keys in certain cases. Failure to
do so may lead to imprisonment and/or other legal
actions; several such incidents occurred in the recent
past (e.g., [12], [13]). Cryptography can be used for both
legal and illegal purposes and governments around the
globe are trying to figure out how to balance laws against
criminal use and user privacy. As such, laws related to
key disclosure are still in flux, and vary widely among
countries/jurisdictions; see e.g., Koops [14].
Some of our recommendations, such as spoofing the

IMEI or using an anonymous SIM card, may be illegal
in certain regions. Local laws should be consulted before
following such steps. Mobiflage is proposed here not to
encourage breaking laws; we want to technically enable
users to benefit from PDE, but leave it to the user’s
discretion how they will react to certain laws. Our hope
is that Mobiflage will be used for good purposes; e.g.,
human rights activists in repressive regimes.

3 MOBIFLAGE DESIGN

In this section, we detail our design and explain cer-
tain choices we made. We differentiate between the
design goals of MF-SD and MF-MTP. User steps for
Mobiflage are also provided. Parts of the design are
Android specific, as we use Android for our prototype
implementation; however, we believe certain aspects can
be abstracted to other systems. Challenges to port the
current design into other OSes need further investiga-
tion.

3.1 Overview and Modes of Operation

We implement Mobiflage by hiding volumes in empty
space within a mobile device’s storage. We first fill the

storage with random data, to conceal the existence of
additional encrypted volumes. In MF-SD, the hidden
volumes are created in the device’s external (SD or
eMMC) storage partition. We store the hidden volumes
in the external storage, due to certain file system limi-
tations discussed in Section 3.2. We create two adjacent
volumes: a userdata volume for apps and settings, and
a larger auxiliary volume to house documents, photos,
etc. MF-MTP creates A hidden volume in the device’s
internal (userdata) partition. Only one hidden volume is
necessary for MF-MTP, since the MTP exposed storage
simply appears as a separate volume when it is in fact
a directory on the userdata partition. We make subtle
changes to the Ext4 file system to overcome the PDE
unfriendly features discussed in Section 3.2. The exact
location of the hidden data for both variants is derived
from the user’s deniable password.
We define the following modes of operation for Mobi-

flage. (a) Standard mode is used for day-to-day operation
of the device. It provides storage encryption without
deniability. The user will supply their decoy password
at boot time to enter the standard mode. In this mode,
the storage media is mounted in the default way (i.e.,
the same configuration as a device without Mobiflage).
We use the terms “decoy” and “outer” interchangeably
when referring to passwords, keys, and volumes in the
standard mode. (b) PDE mode is used only when the user
needs to gather/store data, the existence of which may
need to be denied when coerced. The user will supply
their true password during system boot to activate the
PDE mode; we mount the hidden volumes onto the file-
system mount-points where the physical storage would
normally be mounted (e.g., /data, /mnt/sdcard). We
use the terms “true”, “hidden” and “deniable” inter-
changeably when referring to the PDE mode.

3.2 File-system considerations

The default file system for the internal storage in An-
droid 4.x devices is Ext4. Ext volumes are divided
into block groups, which contain some meta-data (e.g.,
inode/block bitmaps and inode table) and many data
blocks (e.g., 32768 blocks per block group). In order to ef-
fectively hide data in the free space of an Ext file system,
we must avoid overwriting meta-data structures and
occupied data blocks. After decrypting the outer volume,
the adversary can examine the meta-data structures. The
absence, or visible corruption, of outer volume meta-data
would be suspicious and give the adversary reason to
assume that hidden data has been stored in that region.
Furthermore, when creating directories in the root of

an Ext4 file system, the directories are placed in the
most vacant block group available on the disk [15]. This
effectively spreads directories, and the data contained
within, across the entire disk. Data written to the outer
volume will likely collide with hidden data (and vice
versa) regardless of where it is placed in an Ext4 file
system. Therefore, in order to reliably hide data within
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an Ext4 volume, modification of certain file system be-
havior was necessary for MF-MTP; see Section 4.

3.3 Steganography vs. Hidden Volumes

There are currently two main types of PDE systems
for use with FDE: steganographic file systems (e.g.,
StegFS [16]) and hidden volumes (e.g., TrueCrypt [6]).
Steganographic file systems’ known drawbacks include:
inefficient use of disk space, possible data loss, and
increased IO operations. These limitations are unaccept-
able in a mobile environment, for reasons such as perfor-
mance sensibility, and relatively limited storage space.
(For more background on these systems, see the dis-
cussion of deniable storage encryption proposals in the
NDSS 2013 publication [1]) . Consequently, we choose
to use hidden volumes for Mobiflage. This implies that
IO is as efficient as a standard encrypted volume, and
the chance of data loss is mitigated, although not com-
pletely eliminated. Most deniable file systems are lossy
by nature. Hidden volumes mitigate this risk by placing
all deniable files toward the end of the storage device.
Assuming the user knows how much space is available
for the deniable volume, they can refrain from filling the
outer volume past the hidden volume offset.

3.4 Storage Layout

The entire disk is encrypted with a decoy key and
formatted for regular use; we call this the outer volume.
Then an additional file system is created at an offset
within the disk and encrypted with a different key; this
is referred to as the hidden volume. To prevent leakage,
Mobiflage must never mount the hidden volume along-
side the outer volume. Thus, we create corresponding
hidden volumes, or RAM disks, for each mutable system
mount point (e.g., /userdata, /cache).
Since the outer volume is filled with random data

before formatting, there are no distinguishing character-
istics between empty outer-volume blocks and hidden
volume blocks. However, some statistical deviations may
be used to distinguish the random data from the cipher
output; see Section 5.1. When the outer volume is de-
crypted and mounted, it does not reveal the existence or
location of the hidden volume (i.e., the hidden volume is
camouflaged amongst the random data). When the user
is coerced, she can provide the decoy key and deny the
existence of hidden data.
Each decrypted volume will appear to consume all

remaining disk space on the device. For this reason it
is possible to destroy the data in the hidden volumes
by writing to the currently mounted volume past the
volume boundary. This is unavoidable since we cannot
place a visible limit on the mounted volume.

3.5 Offset Calculation

The offset to a hidden volume is generated as follows:

offset = ⌊0.75× vlen⌋− (H(pwd||salt) mod ⌊0.25× vlen⌋)

Here, H is a PBKDF2 iterated hash function [17], vlen
is the number of allocation units on the logical block
storage device, pwd is the true password, and salt is a
random salt value for PBKDF2. The salt value used here
is the same as for the outer volume key derivation (i.e.,
stored in the encryption footer). Thus, we avoid the need
to store an additional salt value. The generated offset
is greater than one half and less than three quarters of
the disk; i.e., the hidden volume’s size is between 25-
50% of the total disk size. We choose this offset as a
balance between the hidden and outer sizes: the outer
volume will be used more often, the hidden volume is
used only when necessary. To avoid overwriting hidden
files while the outer volume is mounted, we recommend
the user never fills their outer volume beyond 50%. For
MF-SD, vlen is measured in 512-byte sectors, as this is
the granularity used by the FDE engine. For MF-MTP,
vlen is measured in 4096-byte file system blocks, for easy
alignment of volumes; see Section 4.2.
Deriving the offset in the above manner allows us to

avoid storing it anywhere on the disk, which is unde-
sirable for deniability. For comparison, TrueCrypt uses a
secondary volume header to store the hidden offset, en-
cryption key and other parameters; all the header fields
are either random or encrypted, i.e., indistinguishable
from the encrypted volume data. In contrast, Android
uses volume footers containing plaintext fields, similar
to the Linux unified key setup (LUKS [8]) header. Other
systems, e.g., FreeOTFE, mandate users to remember
the offset; prompting the user for the offset at boot
time may also be a red flag for the adversary. The
obvious downside of a password-derived offset is that
the user has no input on the size of the hidden volumes.
One possible method to accommodate user choice is
discussed in Section 4.5, item (1).
Alternatively, the offset could have been fixed at a

given location on the disk (e.g., always appearing at
50%). However, there is a minor security benefit in deriv-
ing the offset as shown in above equation: it complicates
a dictionary attack, by mandating the adversary capture
a larger portion of the disk. If the offset was at a known
location, then an adversary could perform a dictionary
attack on a few kilobytes of data captured from that
region (only the key and file system magic-number are
necessary to prove the existence of a hidden volume).
With our approach, the adversary must capture at least
25% of the storage to mount an attack. Note that the
efficiency of a dictionary attack is not affected by the
offset location (see Section 6, item (a)). Copying 25% of
the storage may reduce the adversary’s ability to process
a large number of target users (e.g., all individuals
passing through a customs checkpoint).

3.6 User Steps

Here, we describe how users may interact with Mobi-
flage, including initialization and use.
Users must first enable device encryption with PDE

(e.g., through settings GUI). MF-SD’s initialization phase
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erases existing data on the external storage (SD card).
However, users can choose to preserve the internal
userdata partition or initialize it with random data. MF-
MTP must erase the internal storage partition to create
the hidden volumes; this data should be backed-up
before initiating Mobiflage (e.g., using the adb backup

command, or a third-party tool). The user then enters
the decoy and true passwords, for the outer and hid-
den volumes respectively. Mobiflage then formats, and
encrypts the outer and hidden volumes; see Fig. 1. Un-
like Android FDE, Mobiflage must initialize the storage
with random data. This makes Mobiflage slower than
the default Android FDE initialization (see Section 7).
However, the initialization step will likely be performed
only occasionally.

Fig. 1: Mobiflage initialization process: only steps 2 and
3 are performed by the default Android FDE. Note there
is no boundary between the outer and hidden volumes
(i.e., their address space overlaps).

For normal day-to-day use (e.g., phone calls, web
browsing), the user enters the decoy password during
pre-boot authentication to activate the standard mode;
see Fig. 2. All data saved to the device in this mode
will be encrypted but not hidden. It is important for
the user to regularly use the device in this mode, to
create a digital paper trail and usage time-line which
may come under scrutiny during an investigation. The
user gains plausibility by showing that the device is
frequently used in this mode; i.e., she can demonstrate
apparent compliance with the adversary’s orders.

When the user requires the added protection of deni-
able storage, they will reboot their device and provide

Fig. 2: Mobiflage usage – standard mode: for day-to-day
use of the device (i.e., no deniability). Note the hidden
volume will appear as random bytes in the outer volume
free space. The outer volume has no boundary - i.e., it
occupies the entire storage medium.

their deniable password when prompted; see Fig. 3.
In the PDE mode, they can transfer documents from
another device, or take photos and videos. Note that
app/system logs in this mode are hidden or discarded;
however, there is still a possibility of leakage through
network interfaces (see the NDSS 2013 publication [1].).

Fig. 3: Mobiflage usage – PDE mode: the user can store
data or perform tasks which can later be denied. In
Step 3, mount fails because the password provided was
incorrect for the outer volume. Instead of immediately
prompting the user to try again, Mobiflage will attempt
to decrypt the hidden volume using that password.
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After storing or transferring files to the deniable
storage, the user should immediately reboot into the
standard mode. The files are hidden as long as the device
is either off, or booted in the standard mode. If the user
is apprehended with the device in the PDE mode, denia-
bility is lost. Even if the user shuts the device off shortly
before being apprehended, there is a possibility that the
adversary can obtain the key from data remanence in the
RAM (e.g., the cold-boot attack [18]).
If the user is apprehended with her device, she can

supply the decoy password, and claim that no hidden
volumes exist. The adversary can examine the storage
but will not find any record of the hidden files, apps,
or activities. Assuming the user does not reveal the true
key, there will not be any evidence of the hidden data.

4 MOBIFLAGE IMPLEMENTATION

We focus on the MF-MTP variant in this section and
refer the reader to the NDSS 2013 publication [1] for
details on MF-SD. Testing of MF-MTP was performed
on a LG Nexus 4 device and the 4.2.2 source code. The
addition of PDE functionality to the Android volume
mounting daemon (vold) required less than one thou-
sand additional lines of code, and subtle changes to
the default kernel configuration. Changes to the 3.4.0
kernel Ext4 driver, resulting in 56 additional lines of
code, were necessary to implement MF-MTP. We also
discuss current implementation limitations of Mobiflage,
and compare MF-SD against MF-MTP.

4.1 Changes to Android FDE

We first provide a brief introduction to Android FDE,
as Mobiflage has been implemented by enhancing this
scheme. We then discuss the changes we introduced.
The Android encryption layer is implemented in the

logical volume manager (LVM) device-mapper crypto
target: dm-crypt [19]. Encryption takes place below the
file system and is hence transparent to the OS and
applications. The AES cipher is used in the CBC mode
with a 128-bit key. ESSIV is used to generate unpredictable
IVs to prevent watermarking attacks (Fruhwirth [8]; see
also Section 5.1). A randomly chosen master volume key
is encrypted with the same cipher by a key derived
from 2000 iterations of the PBKDF2 [17] digest of the
user’s screen-unlock password and a salt value. To en-
able encryption, the user must choose either an unlock
password or PIN (i.e., pattern and “Face Unlock” secrets
may not be used). The cipher specification, encrypted
master key and salt are stored in a footer located in the
last 16KB of the userdata partition.
When the device is booted and fails to find a valid

Ext4 file system on the userdata partition, the user
is prompted for their password. The master key is
decrypted from their password-derived key. Storage
read/write operations are passed through dm-crypt, so
encryption/decryption is performed on-the-fly for any
IO access. If a valid Ext4 file system is then found in the

dm-crypt target, it is mounted and the system continues
to boot as usual. Otherwise, the user is asked to re-
enter their password. By default, removable storage is
not encrypted; however, emulated external storage (i.e.,
an internal eMMC partition, mounted at /sdcard) is
encrypted.
We made three important changes to the default An-

droid encryption scheme that are necessary to defend de-
niability: (a) we use the XTS-AES cipher instead of CBC-
AES; (b) for MF-SD, we enable encryption of removable
storage; and (c) we wipe the storage with random data.
XTS-AES is chosen as a precaution against known attacks
(e.g., the copy-and-paste attack see Section 5.1 for details).
We use a 512-bit key (256-bit for AES and 256-bit for
XEX tweak). Note that, although the 256-bit random
key strengthens AES, the overall security of the system
defaults to the strength of the password used to protect
the volume key. The xts and gf128mul kernel crypto
modules were compiled for our development devices, to
enable the XTS mode. These modules are available in the
Linux kernel since version 2.6.24.
Android encryption can be performed in-place (i.e.,

reading each sector, encrypting it, and writing it back
to the disk), or by first formatting the storage media.
MF-SD performs the wipe operation on the SD card
even when the user enables in-place encryption. MF-
MTP does not allow in-place encryption, and always
wipes the storage. We enhance the wipe operation to
fill the flash media with random data to address data
remanence issues and to hide the PDE volumes (see
Section 5.2 for details). These changes are necessary
even when encrypting without PDE, to make the default
encryption indiscernible from PDE. Our changes should
not negatively affect the security of Android FDE.

4.2 MF-MTP Implementation

We discuss the problem of creating hidden volumes
within an Ext4 file system (or any complex file system
with distributed meta-data and non-sequential block
assignment) in Section 3.2. Since many new Android
devices no longer provide an external storage parti-
tion, and instead use the MTP/shared-internal-storage
paradigm with Ext4 file systems, we introduce two new
mechanisms to contend with the distributed meta-data,
and non-sequential block assignment characteristics of
Ext4. Our hope is that MF-MTP can also provide a
generalized PDE solution for other devices that lack re-
movable storage (e.g., Apple iOS devices). Performance
consequence of the modified driver are discussed in
Section 7.

Bad-block marking. After creating the outer volume,
and before creating the hidden volume, we calculate a
list of the outer volume blocks that contain meta-data.
Since Android does not use the flexible block group fea-
ture, all meta-data is contained in deterministic locations.
The file system meta-data blocks are: (a) the backup
superblocks and group descriptor tables in sparse block
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groups, and (b) the block/inode bitmaps and inode
tables in all block groups. We overlay the outer volume
meta-data blocks on the hidden volume file system, by
subtracting the hidden offset from the outer volume
block numbers, and pass the list of intersecting blocks to
the mke2fs tool as bad blocks when formatting the hid-
den volume. We fix the size of blocks, block groups, and
inodes when formatting, to easily calculate the quantity
and location of meta-data blocks in each block group.
The mke2fs tool will avoid writing any data to blocks
marked as bad, hence preserving the outer volume meta-
data blocks. One small caveat is that mke2fs will still
attempt to write the backup superblocks to bad regions.
This is likely due to the fact that backup superblocks are
not referenced in the bad block inode or block bitmaps,
and so cannot be marked as used to prevent data from
being written to them. We discuss the implications of
this issue further below under volume formatting.

Sequential inode allocator. Since the directory-spread
feature of Ext file systems will likely cause block colli-
sions between the outer and hidden volumes (see Sec-
tion 3.2), MF-MTP must not be used with such a feature.
Our Ext4 driver was modified to use a sequential inode
allocator. The first block group with both a free inode
and a free block is always selected, when creating a
file. This is sufficient to ensure the disk is filled linearly,
since the block allocator already tries to place data blocks
within the same block group as a file’s inode.

Volume alignment. To facilitate the bad-block marking
mechanism, file system blocks in both volumes must
be aligned. Therefore, we adjust the offset calculation
(see Section 3.5) to work on 4096-byte file system blocks
instead of 512-byte disk sectors. Note that although Ext4
supports a few different block sizes, we fix the block size
at 4096 bytes to simplify our calculations.

The first three blocks of a volume must not be marked
as bad when creating an Ext4 file system. The format
operation will simply fail if the primary superblock and
group descriptor table cannot be written to the first few
blocks. Therefore, after marking the bad blocks, we check
the alignment of the hidden volume, and ensure the
first three hidden volume blocks do not collide with
outer volume meta-data blocks (i.e., we ensure the first
hidden volume blocks are not marked as bad blocks). If
a collision is detected, we simply walk through the block
indices until three sequential good blocks are found.
There will be at most 516 bad (meta-data) blocks in a
row, due to the block and block group sizes. We then
adjust the size of the hidden volume by the number of
blocks skipped, and proceed to format the volume at
the new clean offset. When booting the device, this same
calculation is performed to locate the clean offset.

Along with the primary superblock, the hidden vol-
ume offset itself must not fall on a bad block, since the
hidden volume key must not collide with outer volume
meta-data structures. The same procedure as above is
used in this case. Since all operations are now block-

aligned (instead of being sector aligned) we also need to
alter how the PDE key is stored on the disk. There are
two viable solutions: we can continue to place the key
at the offset, then skip ahead 4096 − 512 = 3584 bytes
to format the volume at the next block. Otherwise, we
can write the key to the sector preceding the offset, and
format the volume at the offset proper. Both methods
will ensure the hidden volume is block-aligned with
the outer volume. We implemented the first method,
despite the fact that a small amount of space is wasted,
it maintains our stipulation that the hidden volume will
consume no more than 50% of the disk (the second
method places the key outside of the hidden region and
could consume one sector more than 50%).

Volume formatting. Backup superblocks are written to
(some) block groups, during the formatting of a volume.
The sparse-super flag can be set during formatting, to
create backup superblocks in some block groups instead
of all block groups. The backup superblocks are the only
meta-data structure that will ignore the presence of bad
blocks, and attempt to write to the block even when
marked as bad. In MF-SD, we write the outer volume
first, and then the hidden volume. Due to the ignorant
backup superblock policy, we instead write the hidden
volume first, and then write the outer volume, to ensure
the outer volume’s meta-data remains unadulterated. We
adjust all meta-data structures in the hidden volume to
avoid being overwritten, except for the stubborn backup
superblocks (note that all other meta-data structures will
avoid writing to bad blocks, and instead seek ahead to
the next good block). Therefore, it is only the backup
superblocks in the hidden volume that may be overwrit-
ten if such a collision occurs; Overwriting the backup
superblocks in the hidden volume is of no consequence,
since these superblocks are only ever read or modified
when attempting to manually mount the volume in an
advanced recovery mode (which is currently unavailable
to the Android FDE pre-boot authenticator).

Additional considerations. The following is a list of
additional considerations that are important to the im-
plementation, adoption, and usage of MF-MTP:

1) The userdata partition cannot be encrypted in-place
with MF-MTP, since the entire storage space with
random bytes during initialization (see Section 5.2
under the Wear-leveling heading). Users are respon-
sible for backing up and restoring apps and data
before initializing MF-MTP.

2) The e2fsprogs package was cross-compiled for
the ARM CPU, as we required the mke2fs and
tune2fs tools. The make_ext4fs tool, included
with the default Android OS, does not support
marking bad-blocks during format. The e2fsprogs
package is distributed under the GNU GPLv2 li-
cense which may be in conflict with the Android
Open Source Project, as it is provided under the
Apache license. The required functionality could be
independently implemented in the make_ext4fs
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tool to overcome this issue.
3) The modified MF-MTP Ext4 driver may also be a

feasible PDE solution for other Linux based OSes
that use Ext4. The bad block marking and linear
allocator could also be adapted for other complex
file systems to enable PDE in a wide range of de-
vices/platforms. However, the presence of the mod-
ified file system driver may be a red flag to an ad-
versary. Incorporating the linear allocator upstream
to Ext4 (i.e., by making directory spread an optional
feature) may mitigate this concern; although we do
not know the performance impact of such an option
on magnetic disks at this time.

4.3 User Interface and Pre-boot Authentication

The default Android encryption mechanism can be en-
abled through the settings GUI. Currently, the user
can activate Mobiflage PDE using the vdc command-
line tool as follows: “vdc cryptfs pde <inplace|wipe>
<outer pwd> <hidden pwd>.” Note that, the default
Android shell, sh, does not maintain history between
sessions (i.e., command history cannot be retrieved
from a captured Android device). Currently, the user
can activate Mobiflage PDE using the vdc command-
line tool as follows: “vdc cryptfs pde <inplace|wipe>
<outer pwd> <hidden pwd>.” Note that, the default
Android shell, sh, does not maintain history between
sessions (i.e., command history cannot be retrieved from
a captured Android device).
When the device is booted up, the system will at-

tempt to mount the userdata volume. If a valid Ext4
file system is not found, the user is prompted for a
password, assuming storage encryption is in use. The
system then attempts to mount the volume with the
footer key (decrypted with the password-derived key).
If it fails, instead of asking the user to try again, it will
calculate the volume offset from the supplied password.
The storage sector found at this offset is decrypted
with the PBKDF2 derived key. Using the result as a
volume key, the system will attempt to mount a volume
beginning at the next logical block after the offset. If
a valid Ext4 file system is found at this location, it is
mounted. After mounting the hidden volume, the boot
procedure continues as usual. If a hidden file system
cannot be found at the derived offset, the system will
prompt the user to try again.

4.4 Limitations

Limitations of our current Mobiflage design and proto-
type include the following:

1) Users currently cannot set the desired size of a
hidden volume; the size is derived from a user’s
password to avoid the need to store the offset on the
device. An expected size may be satisfied as follows
(not currently implemented). We can ask users for
the desired size and iterate the hash function until

an offset close to the requested size is found. For
example, we can perform 20 additional hash itera-
tions and report the closest size available with the
supplied password. The user could then choose to
either accept the approximate size or enter a new
password and try again. Storing the iteration count
is not needed. At boot time, the system will perform
consecutive iterations until a valid file system is
found, or a maximum count is reached (cf. [20]).

2) Currently, we support only one hidden volume
offset. Creating additional (decoy) hidden volumes
will require a collision prevention mechanism to
derive offsets. A method, such as the iteration count
mentioned above, can be used to ensure enough
space is left between hidden offsets (e.g., 1.5GB).
This increases the chance of corrupting hidden data.
Each hidden volume would appear to consume all
remaining storage, but the address space would
overlap with other hidden volumes.

3) Transferring data between outer and hidden vol-
umes may be necessary on occasion; e.g., if time
does not permit switching modes before taking
an opportunistic photo. We do not offer any safe
mechanism for such transfers at present. Mounting
both volumes simultaneously is a straightforward
solution, but may compromise deniability (e.g., us-
age log data of a hidden file may be visible on the
decoy volume). The user can transfer sensitive files
to a PC as an intermediary, then transfer the files
to the PDE storage. In this case, data remanence in
the outer volume is an issue. Another possibility is
to keep a RAM disk mounted in the standard mode
for storing such opportunistic files (and then copy
to the PDE storage via a PC). However, some apps,
such as the camera app, do not offer an option to
choose where files are saved.

4) File system failures may occur in the outer volume
that could corrupt hidden volume data. Further-
more, the user may write to the outer volume
beyond the boundary and cause hidden volume cor-
ruption. Currently, correcting hidden volume errors
requires mounting with a backup superblock and
using tools such as e2fsck to attempt to recover the
file system. Using such tools is possibly beyond the
capabilities of average users. To prevent overwriting
the hidden volume, the user could be prompted
for the hidden volume password when mounting
the outer volume. This would provide the hidden
offset and allow write blocking beyond the bound-
ary. However, this would also enable identifying a
hidden volume when the outer volume is mounted.
Currently, to avoid writing beyond the boundary,
we recommend that the user does not fill the outer
volume beyond 50%.

4.5 Comparison of Mobiflage Variants

Below we compare the benefits and drawbacks between
the Mobiflage variants.
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1) MF-SD is a cleaner solution than MF-MTP, as FAT32
accommodates hidden volumes natively, without
the need for a modified file system driver.

2) MF-MTP does not fix the size of the application stor-
age volume, /data, (e.g., fixed at 256MB) providing
greater flexibility for installing hidden apps.

3) With MF-SD, it is possible to maintain several hid-
den environments, by initializing Mobiflage on sev-
eral SD cards. Each SD card may contain different
apps and data. This is not currently a possibility for
MF-MTP due to the fact that Mobiflage currently
only supports one hidden offset.

4) Relying on FAT32 formatted external storage may
not be a valid method of implementing PDE for
much longer. Although many manufacturers still
produce devices with removable storage (e.g., Sam-
sung Galaxy S4), the trend seems to be moving
toward MTP enabled devices without SD cards.
Several other platforms (e.g., Apple iOS) also lack
removable storage.

5 SOURCES OF COMPROMISE

We examine three leakage vectors that may compromise
deniability of a PDE scheme on mobile devices: known
issues in crypto-systems and software implementations
of desktop PDE schemes, as well as issues specific to
current mobile storage systems. Below we discuss these
challenges and how they are addressed in Mobiflage.
Mobile devices are also often connected to a cellphone
network. We discuss possible collusion attacks with the
help of wireless carriers in the NDSS 2013 publication [1].

5.1 Leakage from Crypto Primitives

Crypto primitives used in a PDE implementation must
be chosen carefully. Below we discuss issues related to
random data generation and encryption modes.

PRNG. A fundamental requirement for PDE schemes
implemented with hidden volumes is that the whole disk
must appear to contain cryptographically secure random
data. For this requirement, the cipher output must be
indistinguishable from random bits (cf. IND$-CPA [21]).
However, certain statistical deviations between cipher
and PRNG output may exist To sidestep any potential
statistical inconsistencies, we draw randomness from the
same distribution as the ciphertext space by using the
encryption function itself as the PRNG (in a two pass
random-wipe, each pass with a new random key). Under
statistical analysis, empty sectors in an outer volume
will appear the same as the sectors in a hidden volume,
when either encrypted or decrypted with a decoy key.
For comparison, TrueCrypt uses a built-in PRNG to
fill empty volume space, with the assumption that the
cipher output will be indiscernible from their PRNG
output.

Encryption modes. Encryption of data at rest has dif-
ferent considerations than the traditional communica-

tion encryption model. For example, to enable random-
access, FDE implementations treat each disk sector as
an autonomous unit and assign sector-specific IVs for
chaining modes such as CBC. These IVs are long-term
and must be easily derived from or stored in the local
system. When FDE is implemented with a CBC-mode
cipher, information leakage about the plaintext disk con-
tent may occur without knowledge of the encryption
key or cipher used (see e.g., [8]). Tweakable block ci-
pher modes (e.g., LRW and XTS) have been designed
specifically for disk encryption to prevent attacks such as
watermarking, malleability, and copy-and-paste. These
attacks are particularly important for PDE, as they may
be used to identify hidden volumes without recover-
ing any hidden plaintexts. The default Android FDE
uses CBC. We choose to move away from the Android
default and instead, use XTS-AES [22], [23] to prevent
exploitation of known weaknesses in CBC when used
for disk encryption. We refer the reader to the NDSS
2013 publication [1] for further information.

5.2 Leakage from Flash-storage

In this section, we provide an overview of flash storage
typically found in mobile devices. We also discuss flash
leakage vectors that affect PDE and, to some extent, FDE.

Overview of flash storage. Mobile devices generally use
NAND-based flash storage. Flash memory is not divided
into sectors in the same way as magnetic disks. Write
operations take place on a page level (e.g., 4KB page)
and can only change information in one direction (e.g.,
changing 1 to 0, but not the inverse). Thus, write oper-
ations can only take place on an empty page. An erase
operation takes place on a group of several pages, called
an erase block (e.g., 128 pages per block). Flash memory
cells have a finite number of program/erase cycles be-
fore becoming damaged and unusable. Therefore, flash
memory is often used with a wear-leveling mechanism
to prevent the same cell from being repeatedly written.
In effect, logical block addresses (LBAs) on the disk are
mapped to different physical memory pages for each
write operation. Thus, storage on flash memory is not
a linear arrangement as in traditional magnetic disks.
When a logical disk region is overwritten, it is usually

simply remapped to an empty page without erasing the
original page. This can continue until there are no empty
pages, at which time unmapped pages in erase blocks are
consolidated by the garbage collector, and empty erase
blocks are wiped. Otherwise, the erase blocks must be
completely wiped and rewritten to change a single page.
This requires reading the entire erase block into cache,
modifying the affected page, wiping the erase block, and
finally writing the block back to the media.
Generally, two types of flash media are used in An-

droid devices. Older Android devices use the memory
technology device (MTD) for internal storage. An MTD
is analogous to a block or character device, specifically
designed for flash memory idiosyncrasies. To emulate
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a block device on an MTD, a software flash translation
layer (FTL) is used. The FTL enables the use of a stan-
dard block file system (e.g., Ext4, FAT32) on top of the
raw flash media. Newer Android devices use embedded
multimedia card (eMMC) for internal storage and some
use secure digital (SD) removable storage. eMMC com-
bines the flash memory and hardware controller in one
package. SD has a dedicated controller and removable
storage. Both technologies are presented to the system
as block devices. The FTL for eMMC and SD storage is
implemented in firmware on the controller as opposed
to a software FTL as used by MTD.

The software FTL used by the Linux MTD driver
(mtdblock) is simplistic and does not use a wear-
leveling mechanism [24]. Some file systems (e.g.,
YAFFS2) are designed to work directly with the raw
flash memory instead of using an FTL. Such file systems
may implement their own wear-leveling mechanisms.
This was the default technology for devices prior to
Android 3.0, but has largely been replaced by eMMC
storage. The SD [25] and eMMC [26] specifications do
not address wear-leveling requirements, so it is up to
the manufacturers to decide if and how to implement
wear-leveling in hardware FTLs.

Wear-leveling issues. Flash memory does not have the
same data remanence issues as seen in magnetic storage.
However, the wear-leveling mechanism may leave old
copies, or fragments of files in unmapped pages on the
flash disk. When making changes to hidden files it is pos-
sible that (encrypted) fragments of the original file will
still exist in unmapped pages. This would provide an
adversary with a partial time-line, or partial snapshots,
of changes made to the disk. For example, it is possible
that an adversary with access to the raw flash could dis-
tinguish between random data and encrypted data. Since
a flash page is generally larger than one sector, small
modifications to a file (i.e., changes within one sector)
will result in copying unmodified sectors to a new page,
along with the modified sector. Hence identical cipher-
texts will exist in separate physical locations on the stor-
age. The probability of identical outputs from an RNG
should occur with a much higher period (e.g., once every
264 128-bit blocks [27, pp. 137–161]). If the adversary can
demonstrate that the regions affected do not coincide
with disk activity in the outer volume, they can conclude
existence of hidden volumes. Some log-structured disk
encryption schemes (e.g., WhisperYAFFS [28]) address
this issue. However, such file systems are not suitable for
the block device nature of eMMC. We offer two possible
mitigations for block structured file systems: (a) increase
the XTS data unit size in dm-crypt to that of a flash
page. Although most XTS implementations use 512 bytes
as the data unit size (as this is the size of a traditional
disk sector) the IEEE P1619 [22] standard allows any size.
Since XTS has a cascade effect, changing any bit in the
flash page will result in a completely different ciphertext.
(b) Alter the Ext4 file system driver to ensure that any

modification to a file involves a full copy of all file data
to new blocks. The new blocks will map to different disk
sectors, which will result in different ciphertexts under
XTS. This option is less favorable, as it may result in
increased IO and data fragmentation.

Exploiting the unmapped, wear-leveling pages would
require bypassing the hardware controller and reading
the raw flash memory, as opposed to acquiring a logical
image (e.g., as produced with the dd tool). The adversary
would need to read the physical to logical block alloca-
tion map and reconstruct the physical layout of the disk.
Existing studies of raw flash performed by Wei et al. [29]
have focused on writing specific strings to the media
through the hardware controller FTL, then bypassing the
controller to search for those strings in the raw physical
flash. It is unknown how successful an adversary may be
in demonstrating that a given unmapped page was part
of a hidden volume and hence compromising deniability.
Further work is needed to measure the extent to which
unmapped/obsolete pages can be correlated to LBAs.

Mobile forensic tools that focus on logical data acquisi-
tion (e.g., viaExtract2) cannot mount this attack. Physical
acquisition mechanisms exist for MTD storage (see e.g.,
Hoog [30, pp. 266–284]); however, they tend to be costly,
time consuming, and generally destroy the device.

Wear-leveling has implications for both non-deniable
and deniable encryption schemes. If a disk is encrypted
in-place, plaintext fragments that existed before encryp-
tion may still remain accessible. Wei et al. [29] show that
most flash media contains between 6-25% more storage
than advertised to the system. The additional storage is
used by the wear-leveling mechanism. For this reason,
Wei et al. suggest that the entire address space of a
flash disk should be overwritten twice with random
data, to ensure all erase blocks have been affected,
before encrypting the device. Their findings show that
in most cases, this is sufficient to ensure that every
physical page on the device is overwritten. Therefore,
Mobiflage performs a two-pass wipe, before encryption
of the external partition, to avoid leaving any plaintext
fragments on the media, and to ensure the continuity of
random data, which is crucial for PDE. Currently, the
default Android FDE does not take this precaution into
consideration, and the wipe operation is performed by
simply re-formatting the file system.

A recent proposal by Reardon et al. [31] explores
secure deletion for flash memory. All file system data
is encrypted with per-block keys. To securely delete a
file system block, the associated key is wiped from the
physical flash with an ERASE command. The data blocks
are rendered un-readable, hence data remanence is not
an issue. Currently, their implementation only works
with MTD storage, and would need to be integrated into
the SD/eMMC hardware controller FTL to afford secure
deletion to these devices [31].

2. https://viaforensics.com

https://viaforensics.com
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5.3 Leakage from Apps and the OS

Most work in deniable disk encryption investigates data
or existence leakage of hidden files into temporary files,
swap space, or OS logs (see e.g., [7]). For example, a
word processor that performs auto-save functions to a
central location may have backups and fragments of
files edited from a hidden volume. If such backups are
present, and no evidence of the files are found on the
disk, then the adversary can assume the existence of
hidden files and demand the true decryption key. We
explain in Section 6 (item (b)) that log files, swap space,
and temporary storage are effectively isolated between
the two modes of Mobiflage.

6 SECURITY ANALYSIS

In this section, we evaluate Mobiflage against known
attacks and weaknesses. We refer the reader to the NDSS
2013 publication [1] for other attacks/concerns.

(a) Password guessing. We rely on the user to choose
strong passwords to protect their encryption keys.
The current Android encryption pre-boot authentication
times-out for 30 seconds after ten failed password at-
tempts. The time-out will slow an online guessing attack,
but it may still be feasible on a weak password.
An offline dictionary attack is also possible on an im-

age of the device’s storage. The adversary does not know
the password to derive the offset, but the salt is found
in the Android encryption footer. The salt is used with
PBKDF2, and is a precaution against pre-generated dic-
tionaries and rainbow tables. The salt cannot be stored
at the hidden offset as it is used in the offset calculation.
Using the same salt value for both modes enables the ad-
versary to compute one dictionary of candidate keys (af-
ter learning the salt), to crack passwords for both modes.
Exacerbating the problem is Android’s low PBKDF2
iteration count. On a single core of an Intel i7-2600, at
2000 iterations, we were able to calculate 513.37 ± 1.93
keys per second using the OpenSSL 1.0.1 library. Custom
hardware (e.g., FPGA/GPU arrays) and adapted hash
implementations (e.g., [32]) can make offline guessing
even more efficient. We tested different hash iteration
counts in PBKDF2 and found that 200,000 iterations
is apparently a fair compromise between security and
login delay: our Nexus S (1GHz Exynos-3 Cortex-A8)
development phone, it required an additional 0.67±0.01
seconds to calculate a single key, while the guessing
attack becomes 100 times slower on our PC.

(b) Software issues. Mobiflage seems to effectively
isolate the outer and hidden volumes. Apps and files
installed in the hidden volumes leave no traces in the
outer volume. Android does not use dedicated swap
space. When the OS needs more RAM for the foreground
app, it does not page entire regions of memory to the
disk. Instead, it unloads background apps after copying
a small state to the userdata partition. For example, the
web browser may copy the current URLs of open tabs

to disk when unloading, instead of the entire rendered
page. When the browser is loaded again, the URL is
reloaded. Leakage into swap space and paging files was
shown to be an issue for desktop PDE implementations
by Czeskis et al. [7]. As Mobiflage isolates the outer and
hidden volumes, we do not take any specific measures
against leakage through memory paging.
The Android Framework is stored in the /system

partition which is mounted read-only. The Linux kernel
is stored in a read-only boot partition which is not
mounted onto the OS file system. Leakage through these
immutable partitions is also unlikely.
Android logs are stored in a RAM buffer, and applica-

tion logs are stored in the userdata partition. Leakage is
also unlikely through logs as the userdata partitions are
isolated and RAM is cleared when the device is powered
off. Some devices keep persistent logs at /devlog. To
prevent leakage through these logs, we mount a RAM
disk to this mount point, when booting into the PDE
mode. Logs will persist between standard mode boots,
but PDE mode logs are not kept.
Android devices typically have a persistent cache

partition used for temporary storage. For example, the
Google Play store will download application packages
to this partition before installing them on the userdata
volume. To prevent leakage through the cache partition,
we mount a tmpfs RAM disk to /cache in the PDE
mode; this partition takes 32MB of RAM. An alternative
to tmpfs, without sacrificing RAM, is to mount the
volume through dm-crypt with a randomly generated
one-time key. The key is discarded on reboot, effectively
destroying the data on the partition.

(c) Partial storage snapshots. If the adversary has inter-
mittent or regular access to the disk, they may be able
to detect modifications to different regions of the disk.
If a decoy key has already been divulged, the adversary
may surmise the existence of hidden data by correlating
file system activities to the changing disk regions. We
exclude this possibility assuming the adversary will have
access only after acquiring the device from the user, and
does not have past snapshots of the storage. If the user
is aware that the storage has been imaged (e.g., at a
border crossing), they should re-initialize Mobiflage to
alter every sector on the disk.

7 PERFORMANCE EVALUATION

This section summarizes several tests on our prototype
implementations, to understand the performance impact
on the regular use of a device.

Cipher performance. To determine the performance im-
pact resulting from the cipher, we use Mobiflage on
Nexus S and Motorola Xoom development devices by
reading from and writing to the SD card. The command-
line tool cp is used to duplicate files on the SD card. We
run 20 trials on four files between 50MB and 200MB. We
evaluate the performance on unencrypted storage, un-
der the default Android encryption, and the Mobiflage
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scheme. Although these results were obtained using MF-
SD, the impact of the cipher should affect MF-MTP in a
similar way.
Mobiflage seems to decrease throughput by roughly

5% over Android FDE. The full results are discussed in
the NDSS 2013 publication [1]. The observed decrease in
throughput may be attributed to the chosen cipher: XTS-
512 requires two AES-256 operations per block; and AES-
256 uses fourteen rounds of operations vs. ten rounds in
AES-128 for Android FDE.
The required time to encrypt the device is increased

on account of the two pass random wipe. MF-MTP will
take twice as long as the default Android FDE to encrypt
internal partitions. The exact time will depend on the
size and type of the storage.

Modified file system performance. The performance of
MF-MTP will be affected by both the cipher and the
modified file system behavior. Due to the FTL, there is
already a good deal of redirection and seeking involved
in flash data access, even when blocks are logically
sequential from the file system’s point-of-view. However,
any increase in seeking is not as cumbersome for flash
storage as for magnetic storage, since there is not any
time-consuming physical rotation or access-arm adjust-
ment in flash storage (i.e., seeking any block in flash
storage is performed in constant O(1) time complexity).
Note that at this time, we have not tested the linear
Ext4 allocator on magnetic storage, which will likely be
affected more adversely than flash.
To determine the performance impact of our modified

Ext4 driver, on flash storage, we use the file system
benchmarking tool Bonnie++ [33]. We compared the
default Ext4 against our modified version on our Sam-
sung Nexus. We used the Nexus S to avoid large-file
issues experienced on the Nexus 4 (Bonnie++ requires
tests performed on a file that is twice the size of the
system RAM). We observed that throughput was not
significantly affected, however latency for certain oper-
ations increased and decreased for others; see Tables 1
through 3. The improved latency (e.g., sequential read)
may be due to data locality: since flash operates on
segments that are larger than file system blocks, the total
number of requests may be reduced when the blocks are
stored sequentially (i.e., only one erase-block must be
requested to access several sequential file system blocks).
The increased latency (e.g., sequential create) may also
be caused by data locality: since only a certain number
of erase-blocks may be open for modification at a given
time (i.e., modifying data in different erase-blocks may
be performed in parallel, while modifying data in a
single erase-block must be done successively).

8 RELATED WORK

In this section, we discuss deniable encryption im-
plementations related to Mobiflage, and provide an
overview of available data encryption support as built
into major desktop and mobile OSes. For a discussion on

Throughput (KB/s)
Seq read Seq write

Ext4 default 9012±163 22501±439

Ext4 linear 8906±97 22580±553

% deviation -1.18 0.35

TABLE 1: Throughput of a 925MB file, at 4096-byte
granularity, in KB/s, of default Ext4 and Ext4 with linear
inode allocation; averaged across ten trials measured
with Bonnie++ (Seq: sequential).

academic deniable-storage proposals, we refer the reader
to the NDSS 2013 publication [1].

All major desktop OSes now offer storage encryp-
tion with FDE support. FDE uses ciphers to encrypt
entire storage devices or partitions thereof. Encryption
is performed on small units, such as sectors or clusters,
to allow random access to the disk. FDE subsystems
typically exist at or below the file system layer and
provide transparent functionality to the user. To contend
with a coercive adversary, PDE adds another layer of
secrecy over FDE.

Most mobile OSes also offer storage encryption (with-
out PDE). BlackBerry devices use a password derived
key to encrypt an internal storage AES key [34]. Remov-
able storage data can also be encrypted. Per-file keys
are generated and wrapped with a password derived
key, and/or a key stored in the internal storage. iOS
devices use a UID (device unique identifier) derived
key to encrypt file system meta-data, effectively tying
the encrypted storage to a particular device [35]. Per-
file keys are stored in this meta-data and used to en-
crypt file contents. File keys can be wrapped with a
UID derived key, or a UID and password derived key,
depending on the situation (e.g., if the file must be
opened while the device is locked, only a UID key is
used). Unlike the transparency afforded by FDE, app
developers must explicitly call the encryption API to
protect app data (beyond the default UID-key wrapping,
which only protects the data if the storage is removed
and attacked without the device’s crypto processor) [36],
[35]. The advantage of file based encryption over FDE
is that the device is actually encrypted when the screen
is locked (i.e., keys are wiped from RAM). This is not
possible with the current Android architecture, since
background read/write operations would fail. Older
Android 2.3 (Gingerbread) devices can make use of third
party software (e.g., WhisperCore [37]) to encrypt the
device storage. WhisperCore enhances the raw flash file
system, YAFFS2, which has been superseded on current
Android devices in favor of the Ext4 file system.

Disk encryption software such as TrueCrypt [6] and
FreeOTFE [38] use hidden volumes for plausible denia-
bility. TrueCrypt offers encryption under several ciphers
including AES, TwoFish, Serpent, and cascades of these
ciphers in the XTS mode. On Windows systems, True-
Crypt can encrypt the OS system partition. A special
boot loader is used to obtain the user’s password and
decrypt the disk before the OS is loaded. On Linux
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file system operations/s
Rnd seek Seq create Seq delete Rnd create Rnd delete

Ext4 default 545±13 858±15 8475±1383 903±21 1303±99

Ext4 linear 540±21 796±17 9489±848 866±21 1200±82

% deviation -1.00 -7.23 11.96 -4.10 -7.87

TABLE 2: Observed operations per second of default Ext4 and Ext4 with linear inode allocation; averaged across
ten trials measured with Bonnie++ (Seq: sequential, Rnd: random).

Operational latency (ms)
Seq read Seq write Rnd seek Seq create Seq delete Rnd create Rnd delete

Ext4 default 3868±450 217±85 597±122 332±75 502±161 384±140 948±485

Ext4 linear 3995±526 182±71 614±129 516±239 460±126 320±135 1474±512

% deviation 3.28 -16.33 2.72 55.46 -8.30 -16.52 55.43

TABLE 3: Operational latency, in milliseconds, of default Ext4 and Ext4 with linear inode allocation; averaged across
ten trials measured with Bonnie++ (Seq: sequential, Rnd: random).

systems, similar functionality can be achieved using an
early user-space RAM disk (i.e., a temporary root file
system). TrueCrypt does not perform this configuration,
and requires the user to set up a RAM disk with the
TrueCrypt binary to capture the password and unlock
the disk before the kernel attempts to mount the actual
root file system.
System encryption with pre-boot authentication is not

a straightforward solution for Android devices since the
soft keyboard mechanism required to obtain the pass-
word is part of the OS framework and not immediately
available on boot. A custom bootloader, implementing a
soft keyboard, would be needed to capture the password
(cf. [39]). The dm-crypt volume could then be mounted
before loading the Android framework. However, since
the OS partition is read-only on Android devices, it is
not encrypted. So we choose to work with the existing
Android technique of partially loading the framework to
access the built-in keyboard.
TrueCrypt volumes contain a header at the very be-

ginning of a volume. All fields in the header are ei-
ther random data (e.g., salt) or are encrypted, giving
the appearance of uniform random data for the entire
volume. Unlike Android FDE, the cipher specification
is not stored. Therefore, when a TrueCrypt volume is
loaded, all supported ciphers and cascades of ciphers,
are tried until a certain block in the header decrypts
to the ASCII string “TRUE”. The header key is derived
from the user’s passphrase using PBKDF2. If the header
key successfully decrypts the ASCII string, then it is used
to decrypt the master volume key, which is chosen at
random during the volume’s creation.
A secondary header, adjacent to the primary header,

is used when a hidden volume exists. The secondary
header contains the same fields as the primary header,
along with the offset to the hidden partition. When
mounting a TrueCrypt volume, the hidden header
is tested before the primary header. To combat the
OS/applications leaking knowledge of hidden data (e.g.,
into logs, swap space, or temporary files) when using
hidden volumes, TrueCrypt recommends the use of a
hidden OS. The hidden OS is currently only an option
for the Windows implementation. When encrypting a

system volume for use with PDE, TrueCrypt creates a
second partition and copies the currently installed OS
to the hidden volume within. The user should only
mount hidden volumes when booted into a hidden OS,
to ensure that any OS/application-specific leakage stays
within a deniable volume. When booted into a hidden
OS, all unencrypted volumes and non-hidden encrypted
volumes are mounted read-only. The alternative to a
hidden OS for Linux is to use a live CD, when mounting
hidden volumes. A hidden OS is not necessary to pre-
vent leakage in Mobiflage, since the system volume on
an Android device is mounted read-only and we attach
hidden volumes (or RAM disks) to all mutable volume
mount-points.
There is a recent effort to port TrueCrypt to An-

droid [40]. The current version (Dec. 2012) provides a
command-line utility to create and mount TrueCrypt
volume-container files (for rooted devices with LVM
and FUSE kernel support). Hidden volumes are possible
within these container files; but FDE/pre-boot authenti-
cation is not currently supported. Several leakage vec-
tors also remain unaddressed (e.g., through file system
structures, software logs, and network interfaces).

9 CONCLUDING REMARKS

Mobile devices are increasingly being used for capturing
and spreading images of popular uprisings and civil
disobedience. To keep such records hidden from au-
thorities, deniable storage encryption may offer a viable
technical solution. Such PDE-enabled storage systems
exist for mainstream desktop/laptop operating systems.
With Mobiflage, we explore design and implementation
challenges of PDE for mobile devices, which may be
more useful to regular users and human rights activists.
Mobiflage’s design is partly based on the lessons learned
from known attacks and weaknesses of desktop PDE so-
lutions. We also consider unique challenges in the mobile
environment (such as ISP or wireless carrier collusion
with the adversary). To address some of these challenges,
we need the user to comply with certain requirements.
We compiled a list of rules the user must follow to
prevent leakage of information that may weaken de-
niability. Even if users follow all these guidelines, we
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do not claim that Mobiflage’s design is completely safe
against any leaks (cf. [7]). We want to avoid giving any
false sense of security. We present Mobiflage here to
encourage further investigation of PDE-enabled mobile
systems. Source code of our prototype implementation
is available on request.
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