
ON SECURITY BEST PRACTICES,
SYSTEMATIC ANALYSIS OF SECURITY ADVICE,

AND INTERNET OF THINGS DEVICES

by

Christopher Bellman

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Carleton University
Ottawa, Ontario

© Christopher Bellman

August, 2022

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Thesis Scope . 1

1.2 Motivation . 3

1.3 Research Questions . 5

1.4 Contributions . 6

1.5 Outline . 7

1.6 List of Publications . 8

Chapter 2 Internet of Things vs. Internet of Computers 10

2.1 Brief IoT Security Literature Review 10

2.2 Generic Architecture of Consumer-Grade IoT Devices 12

2.3 Distinguishing Characteristics of IoT 13
2.3.1 Low-Cost . 14
2.3.2 Non-Standard Interfaces . 18
2.3.3 Cyberphysical Interaction . 20
2.3.4 Expectation of Long-Lived Devices 21
2.3.5 “Many-User” Devices with Unclear Authority 23

2.4 Discussion and Concluding Remarks 25

Chapter 3 Disambiguation of Security Advice Terminology 27

3.1 Background and Overview of Established IoT Security Advice 28
3.1.1 Lifecycle of IoT Devices . 28
3.1.2 Established IoT Security Advice 30

ii

3.2 Defining ‘Best Practice’ . 32
3.2.1 Definition and Analysis . 32
3.2.2 Outcomes vs. Actions . 37
3.2.3 Imperative and Declarative Advice vs. Actions and Outcomes 42
3.2.4 Commonly-Used Qualifying Terms 43
3.2.5 Category 1: Quality-based Terms 45
3.2.6 Category 2: Commonality-based Terms 46
3.2.7 Category 3: Stipulation-based Terms 47

3.3 Concluding Remarks . 48

Chapter 4 Coding Tree and Analysis of 1013 Security Advice Items 50

4.1 Security Advice Coding Tree Methodology and Development 51
4.1.1 Establishing Analysis Tools 51
4.1.2 Advice Categorization by Lifecycle Phase 61
4.1.3 Relationship to Security Principles 62
4.1.4 Actual Use of Security Advice Coding Tree Methodology . . . 63

4.2 Empirical Analysis of IoT Security Advice Dataset 64
4.2.1 Results of Coding . 64
4.2.2 Proportion of Non-Actionable Advice 65
4.2.3 ‘Not Useful’ Advice . 67
4.2.4 Associating Advice Items with IoT Lifecycle Stages 68

4.3 Related Work . 70

4.4 Concluding Remarks . 71

Chapter 5 Critique of Coding Tree Methodology 74

5.1 Methodology and Results . 75
5.1.1 Extracting Tags Used by Coders 75
5.1.2 Proportion of Non-Actionable Advice 77
5.1.3 Coder Nonagreements . 79
5.1.4 Type A Tag Comparisons . 81
5.1.5 Type B Tag Comparisons . 82
5.1.6 Type C Tag Comparisons . 83
5.1.7 T-agreements Summary and Results 84
5.1.8 Proportion of Q-nonagreements Within Each Question 85

5.2 Interpretation of Nonagreement Results 87
5.2.1 High Numbers of Q-nonagreements 89
5.2.2 Low Numbers of Q-nonagreements 92
5.2.3 Observations of Q-nonagreement Distributions 93

iii

5.2.4 Comparing Actionable and Non-Actionable Agreements 95

5.3 Coding Tree Utility and Limitations 96
5.3.1 Utility of the Coding Tree Methodology 96
5.3.2 Limitations of the Coding Tree Methodology 98
5.3.3 Avenues for Coding Tree Methodology Improvement 100

5.4 Related Work . 101

5.5 Concluding Remarks . 102

Chapter 6 Comparing Three IoT Advice Datasets Using SAcoding103

6.1 DCMS and ETSI Document Summaries 104
6.1.1 Document 1: DCMS 13 Guidelines Document 105
6.1.2 Document 2: ETSI Provisions 106

6.2 Informal Comparison and Critique of DCMS and ETSI Documents . 107
6.2.1 Positioning of DCMS and ETSI Documents 108
6.2.2 Reference to External Advice 111
6.2.3 Target Audience . 112
6.2.4 Distinct Advice Topics . 113
6.2.5 Technical Content . 114

6.3 Analysis of Actionability Using the Coding Tree 117
6.3.1 Analysis Methodology . 117
6.3.2 Results . 118
6.3.3 Interpretation of Results and Comparative Analysis 119

6.4 DCMS Guidelines and ETSI Provisions Coding Output 125

6.5 Related Work . 128

6.6 Concluding Remarks . 130

Chapter 7 Explication of IoT Device Identification 133

7.1 Unwrapping “IoT Device Identification” (Background and Models) . . 134
7.1.1 Device Fingerprinting . 135
7.1.2 Device Classification . 136
7.1.3 Device Authentication . 136
7.1.4 Model Relating IoT Identification Approaches and Objectives 138

7.2 Categorizing IoT Device Identification Proposals 139
7.2.1 Categorization 1: Identification Objectives 140
7.2.2 Categorization 2: Identification Approaches 142

iv

7.2.3 Objective and Approach Categorization Insights 142

7.3 Further Analysis of One Identification Approach: Authentication . . . 143
7.3.1 Categorization 3: Authentication Approaches 144

7.4 Challenges Adapting IoC Authentication Approaches for IoT 150

7.5 Related Work . 153

7.6 Concluding Remarks . 155

Chapter 8 Conclusion and Future Work 157

8.1 Answering Research Questions . 157

8.2 Future Research Directions . 161

Bibliography . 163

Appendix A . 182

A.1 SAcoding Method Software Interface Tool and 1013-Item Dataset . . 182

v

List of Tables

1.1 Summary of primary IoT security advice documents 4

2.1 IoT device characteristics and their implications for security . . 13

2.2 Classes of resource-constrained devices 15

3.1 Assignment of UK DCMS guidelines to lifecycle phases 30

3.2 Categories of commonly-used qualifying terms 44

5.1 Distribution of coders’ advice item codes across DCMS guidelines 76

5.2 Summary of coder non-agreement for each comparison type . . 84

5.3 Summary of first and second code use for each agreement type 84

6.1 DCMS sub-topic and full guideline dataset tagging results . . . 119

6.2 ETSI provisions dataset tagging results 121

6.3 DCMS Full and Sub-Topics coding results 126

6.4 DCMS Full and Sub-Topics coding results (continued) 127

6.5 ETSI provisions coding results 128

7.1 Categorization of identification objectives and approaches . . . 141

7.2 Authentication approaches and proposals that incorporate them 147

vi

List of Figures

2.1 Partial IoT taxonomy and examples of sub-areas 11

2.2 Generic architecture of smart home IoT deployment 12

2.3 Relationship between sensors and actuators 20

3.1 Our model of the IoT device lifecycle 29

4.1 Decision tree for classifying advice items (coding tree) 54

4.2 Continuum of practice code actionability 55

4.3 Relationship between terms based on focus of advice’s intent . 55

4.4 Codes and descriptions for coding tree 56

4.5 Detailed annotation for the coding tree questions 57

4.6 Main summary of one-coder advice coding results 65

4.7 Distribution of actionable practices across IoT lifecycle phases 69

5.1 Summary and comparison of two-coder advice coding results . 77

5.2 Distribution of Q-nonagreements between two coders’ tags . . 86

5.3 Q-nonagreement results for Type A comparison 87

5.4 Q-nonagreement results for Type B comparison 88

6.1 Summary of DCMS and ETSI set tagging 120

7.1 Two-step setup-verification model for device authentication . . 137

7.2 Model of device identification and relationship between opera-
tions and approaches . 139

vii

Abstract

While Internet of Things (IoT) security best practices have recently attracted consid-

erable attention from industry and governments, academic research has highlighted

the failure of many IoT product manufacturers to follow accepted practices. We

begin by investigating a surprising lack of consensus, and void in the literature,

on what (generically) best practice means, and provide a technical examination of

related terminology. We use iterative inducting coding to design an analysis method-

ology for categorizing security advice and measuring its actionability. We use this

methodology to analyze three datasets: a set of 1013 IoT security best practices, rec-

ommendations, and guidelines, and two formally recommended IoT security advice

documents. We find all three sets to be largely non-actionable. Through design and

use of this methodology, we identify the characteristics of actionable security advice.

We also analyze recent work on IoT device identification based on three identification

objectives (distinguish device instances, distinguish device classes, and authenticate

device identity), and the technical approaches by which they are reached: device

fingerprinting, classification, and authentication. We differentiate the role of these

objectives and approaches in IoT security, and develop a model relating them.

viii

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Paul C. Van Oorschot

for his invaluable guidance and support (both academic and financial) throughout

my time at Carleton as a PhD student. I attribute the significant improvements

(typically after amazing detailed feedback on my many drafts) of our research papers

and this thesis to Paul’s incredible attention to detail, deep knowledge of computer

security, and his ability to convey his thoughts to his students.

I offer a personal anecdote highlighting an important formative moment in my

PhD timeline, for which I am grateful. After the initial few years of my PhD studies,

I was struggling to find a research direction that was unique and worthy of in-

depth study, but also an appropriate fit for my background. One day during one

of our weekly meetings, seeing that I was struggling, Paul explained his idea for

a general research direction based on a line from a paper that we had both read,

but I had overlooked at the time. I found the research direction—IoT security

advice—interesting, unique, and it seemed appropriate for my background. I am

ever grateful for Paul’s suggestion, not only as it eventually led to the unique line of

research culminating in this thesis, but that he first allowed me to struggle on my

own (with guidance, of course) before intervening with a strong nudge in the right

direction. I believe this, and all the other lessons he has taught me, has made me a

better researcher.

Additionally, I would like to thank the members of the Carleton Security Research

Labs (CCSL and CISL) for their support and guidance over the years. In particular,

I’d like to thank my close colleague Hemant Gupta, who has been both supportive

and helpful since I first joined the research lab; and Dr. David Barrera for assisting

with portions of the research in this thesis, and general guidance in navigating the

challenges of a PhD program.

I would like to thank the committee members for reading and providing valuable

feedback for this thesis. Members (listed alphabetically) include: Dr. AbdelRah-

man Abdou (Carleton University), Dr. Carlisle Adams (University of Ottawa), Dr.

ix

Ashraf Matrawy (Carleton University), and Dr. Mohammad Zulkernine (Queen’s

University).

Finally, a special thank-you goes to my family and friends for all the support over

the past five years—your encouragement is deeply appreciated, and I could not have

done this without your support.

Christopher Bellman

August, 2022.

x

Chapter 1

Introduction

The Internet of Things (IoT) is commonly described as adding computation and

network communication capabilities to traditionally non-networked items or “things”

[219]. It surrounds us with a variety of network-connected devices such as smart

light bulbs, door locks, web cameras, audio speakers, thermostats, and objects not

traditionally associated with Internet communication like fridges, traffic lights, or

sensors and controllers built into critical infrastructure systems. These devices, while

offering convenience or new functionality, have acquired a reputation [14] of poor

security and misconfiguration, leading to huge numbers of network-accessible devices

being vulnerable to a variety of attacks and exposed to new threats (e.g., [21, 177,

192]). As IoT devices may be more isolated or resource-constrained (e.g., battery

power, processors, memory) than their Internet of Computers (IoC)1 counterparts,

or lacking in software update support, their security issues are often hard to address.

Their numbers are expected to exceed 50-billion by 2025 [108]. Given the scale of

the Mirai botnet attack [125], the widespread realization of potential IoT-related

damage has made researchers aware of the threats that IoT devices pose.

1.1 Thesis Scope

Unlike IoC, which can only indirectly affect the physical world, IoT has implications

for not only computer security, but also safety. One of the over-arching questions

underlying our research is: How is IoT security different from IoC security? We

describe how this scoping question motivates our research in the next section. Our

work herein has primary focus on consumer IoT devices (in particular, smart home or

wearable devices; discussed further in Chapter 2). These are commonly recognized

as being poorly secured, or having little investment in security [14, 21, 138]. Our

1Pre-IoT devices such as mobile phones, laptop/desktop computers, and servers [191].

1

2

scope does not include internet-connected or autonomous vehicles. Since consumer

IoT devices are heavily marketed and sold to everyday end-users, users rely on these

devices within their daily lives, and most users do not have the knowledge or ability

to mitigate known vulnerabilities, the user population is heavily reliant on a strong

security implementation from manufacturers. In contrast, other IoT segments such

as critical infrastructure, industrial IoT, or smart cities, may reasonably be expected

to have individuals dedicated to the ongoing maintenance and protection of such

devices. For completeness, in Chapter 2 we offer an overview of the consumer IoT

landscape, including how IoT differs from IoC and the new challenges introduced.

We scope our work to two domains. In the first, we focus our research questions

on IoT security advice for consumer-grade devices, including security best practices,

desired security outcomes, and security principles (among other related terms; we

will give definitions for these terms in Chapter 3) as they relate to the development

of secure IoT devices and their communication. We focus on the advice itself as

an approach for improving IoT device security; investigating conformance with ad-

vice or advice recipient motivation to follow advice is not within this thesis’ scope.

When we generally mention security advice, we mean guidance for how to secure

a computer-related component (e.g., reduce vulnerabilities or prevent attacks of an

IoT device, a computer, a network) as proposed by someone typically of author-

ity (discussed further in Chapter 3). This includes security of hardware supporting

devices, but primarily the software run by devices (e.g., OSes, software packages,

APIs, communication protocols). This further includes security advice for how de-

vices communicate with network services (e.g., in local networks such as a hub device,

or cloud services), but excludes focus of securing cloud services themselves. While we

briefly discuss surrounding government policy and IoT security-focused legislation,

our primary focus is on IoT security advice itself, versus mechanisms by which to

enforce its use.

In the second domain, we focus our research questions in the area of identification

of consumer IoT devices (device identification defined in Chapter 7). This includes

determining which devices (and groups of devices) exist within an administrative

domain, e.g., end-user home or enterprise offices. While not physical “things”, we

3

include what are called virtual devices, e.g., abstract interfaces to devices that enable

a user to remotely interact with their physical counterparts; these are common inter-

faces within IoT’s remote-access paradigm, allowing remote interaction with devices

via the Internet.

1.2 Motivation

As mentioned in our scope (preceding section), a general motivation for our work is

determining how IoT security differs from IoC security, and how those differences are

exhibited in consumer-grade IoT deployments. We focus on two areas where noting

differences in IoT and IoC have led us to open research questions.

Our first focus is IoT security advice. Unlike typical IoC deployments, the cyber-

physical nature of IoT—interfacing with physical world objects—results in threats

to our physical world as well as to networks and other internet hosts [125]. This has

resulted in considerable attention (e.g., [14, 61, 68, 151]) to security advice for IoT

security. IoT security best practices are often stated to be widely available, but ex-

isting advice, as we have observed through our preliminary investigation, commonly

equates best practices with desired security outcomes (the security goals to reach).

The focus on outcomes (versus how to reach them) leaves the steps to reach security

goals unspecified or ambiguous. An underlying problem that seems largely unrecog-

nized to date is the lack of general consensus or awareness of the difference between

a desired outcome and an actionable practice2 (in the context of security). These

observations motivate our research questions and investigation into the current state

of IoT security advice, where we build a methodology that we argue allows security

advice givers and relevant stakeholders to analyze security advice provided and de-

termine if it is actionable for the target audience, and identify the characteristics of

advice that lead to actionable advice.

For reference, Table 1.1 briefly outlines four primary documents whose contents

are analyzed in Chapters 3–6. Each document relates to the others in specific ways,

as summarized here. While these descriptions may not yet be useful to the reader,

2By actionable we mean a practice that focuses on steps or actions to follow rather than outcomes
to reach. Chapter 3 defines this more carefully.

4

Table 1.1: Summary of primary IoT security advice documents used in this thesis.
Document Name is the label we use to refer to each document. Formal names are
provided where documents are described.

Document Name Description

1. DCMS 1013-item dataset [59] A large set of IoT security advice items. Our pre-processing of
the set results in 1013 items for use in our analyses. Primarily
used in the analysis of Chapter 4. Dataset advice referenced in
Documents 2, 3, and 4.

2. DCMS 13 guidelines [62] Contains 13 guidelines for securing IoT devices. Each guideline
used as a category for advice in the large dataset (see Document
3). Analyzed and compared with the ETSI provisions document
(Document 4) in Chapter 6 (§6.1).

3. DCMS mapping document [63] Maps each item from the large DCMS dataset (Document 1) to
one of the 13 DCMS guidelines (Document 2). Primarily used
in the discussion of Chapter 6.

4. ETSI provisions [68] A set of security advice items from ETSI. References the secu-
rity advice items from Document 1. Analyzed and compared
with the DCMS 13 guidelines (Document 2) in Chapter 6 (§6.1).

they are intended as a convenient overall reference.

A second topic we argue is different between IoC and IoT is identification. In IoC,

it is common for the users to be the subject of identification (i.e., the users are identi-

fied, and their devices are tools for the user to interact with services); in IoT there is

commonly no obviously identifiable user (discussed further in Chapter 2). One char-

acteristic of IoT devices that differs from IoC is large deployment numbers. In IoC,

particularly in a consumer environment (e.g., a home), devices are typically few in

number and interacted with explicitly (e.g., using a computer or tablet’s interface to

interact with the tablet). In IoT, where devices tend to be indirectly interacted with

(e.g., turning smart light bulbs on or off as regular bulbs; interacting with hub devices

instead of smart devices themselves), it is more difficult to keep track of the status of

each device (e.g., software they run, update status), and unauthorized access may go

unnoticed. As such, determining which devices are within a domain has attracted re-

search attention, yet IoT device identification appears to be (like IoT best practices)

another area plagued by inconsistent terminology regarding approaches and goals.

We use this as a starting observation to motivate our investigation into IoT device

identification, and first explore what (generally) it means to identify an IoT device.

5

Investigating IoT device authentication more deeply (versus user authentication in

IoC), we first consider: if IoC authentication techniques can be adapted for use in

IoT, it may not be necessary to develop entirely new, untested techniques specifi-

cally for IoT. However, due to unique characteristics of IoT (Chapter 2), adapting

IoC approaches for IoT may not be as simple as directly reusing known techniques,

and the extensive history of flaws in authentication of constrained devices (e.g., Blue-

tooth [87,199,218]) suggests this is a difficult problem likely without a single solution

for all use cases. As such, identifying why IoC approaches cannot be directly used

may light the path to where progress can be made. This line of thought motivates

our investigation into IoT device authentication approaches.

Based on these observations and motivations, the general goals of our research

include: (i) to determine the security implications of how IoT differs from IoC, (ii)

to understand the current state of consumer IoT security advice and determine the

nature of advice being offered to consumer-focused IoT security stakeholders, and

(iii) to better understand consumer IoT device identification, its goals, and by which

approaches they are reached. These general goals motivate the research questions

we pursue in this thesis.

1.3 Research Questions

The main research questions we address in this thesis are as follows.

RQ1. What are IoT security best practices, and how do they relate to security de-

sign principles and other commonly-used terms; how are these terms used to

describe or characterize IoT security advice they are applied to?

RQ2. Can we design a methodology for objectively characterizing security advice?

• Here, by characterizing we mean to determine what category of advice an

advice item is (i.e., in the sense of specific actions to take, outcomes to

reach, or general principles to follow).

RQ3. How actionable is the current state of IoT security advice; does it primarily

consist of security objectives to reach, or more specifically ways to reach those

6

objectives (i.e., actionable practices)?

RQ4. How can the coding tree methodology (developed in answering RQ2) be used to

compare the actionability of different sets of IoT security advice, or generally

characterize any improvement in subsequent versions of a given set?

RQ5. In what ways do researchers use the term IoT device identification, what are

the most common goals of IoT device identification, and what approaches are

being used to reach them?

• This allows us to explore the overlap between IoT and IoC authentication

approaches, and how authentication goals are being met in recent IoT

authentication proposals.

• Here, authentication goals may include, e.g., establishing initial keying

material, carrying out entity authentication, establishing session keys.

1.4 Contributions

The main contributions of this thesis are as follows.

1. We provide what we believe is the first in-depth technical analysis of apparently

intended meanings of the term security best practice, and related terms. We

categorize commonly-used terms related to best practices, and suggest use-cases

where terms in each category are best used.

• This provides uniform, consistent terminology for use in the creation and

presentation of security advice.

• Among other commonly-used terms, we distinguish and define (actionable)

security practices distinct from desired security outcomes and security prin-

ciples (definitions given in Chapter 3).

2. We provide a novel analysis methodology (Section 4.1’s security advice coding

method, i.e., the SAcoding method ; informally the coding tree) for characterizing

security advice based on the terminology refined herein.

7

• We identify specific characteristics of security advice that contribute to the

advice being actionable, and offer guidance on using these to specify action-

able practices.

3. We apply the SAcoding method, first on the DCMS 1013-item dataset (which we

believe represents current IoT security advice; see Table 1.1), enabling a novel

analysis and characterization of the current state of IoT security advice.

• This methodology allows a novel analysis of how actionable (defined in Chap-

ter 3) several large sets of current advice are, specifically the DCMS 1013-

item dataset and those mentioned in item 4.

• We cross-check and critique the new methodology itself by exploring the

reproducibility of DCMS 1013 dataset analysis results by a second coder.

4. We use the SAcoding method to compare the actionability of advice items from

the DCMS 13 guidelines and ETSI provisions (Documents 2 and 4 in Table 1.1).

• This analysis highlights the methodology’s value for comparing and charac-

terizing improvement in sets of security advice.

5. We offer a model relating the concepts and approaches involved in IoT device

identification to typical identification goals (Fig. 7.2). We use the model to analyze

a selection of recent IoT device identification proposals and extract the most

common end-goals, and the approaches commonly used to reach them.

• As a byproduct, some ambiguity in common IoT identification terminology

is resolved.

1.5 Outline

Chapter 2 discusses background related to IoT in general, including the differences

between IoT and IoC, and new security challenges involved with IoT. Chapter 3

examines terminology used in the documentation and discussion of security advice;

8

we disambiguate commonly-used terms (notably, best practice) and provide concrete

definitions for terms that we use to analyze existing security advice. Chapter 4

develops an analysis methodology for analyzing security advice, and we conduct an

empirical study of the DCMS 1013-item dataset to determine (among other analyses)

how actionable the advice is that government, industry, and academic sources are

providing. Chapter 5 is a critique of the coding tree methodology, and considers

the degree to which the results from Chapter 4 are matched by a second coder, and

offers insights derived from a comparison of two coders’ tagging results. Chapter 6

compares and critiques the DCMS 13 guidelines and the ETSI provisions, and applies

the coding tree methodology to both documents’ advice items to illustrate its utility

for comparing the actionability of different sets of advice and characterizing how

or if one set improves on another. Chapter 7 investigates IoT device identification,

including categorizations of the desired goals of IoT identification, and the approaches

used to reach them. Chapter 8 concludes with a discussion of remaining challenges

in the creation of IoT security advice, identification of IoT devices, and directions

for future research.

1.6 List of Publications

Chapter 2 content is available in the proceedings of a peer-reviewed conference [36]:

Christopher Bellman and Paul C. van Oorschot. Analysis, Implications, and

Challenges of an Evolving Consumer IoT Security Landscape. In proceedings of

the International Conference on Privacy, Security and Trust (PST), 2019.

Content from Chapters 3 and 4 has been submitted for journal publication and

is currently undergoing minor revisions [32]. An earlier version of part of this work

was filed as a technical report:

Christopher Bellman and Paul C. van Oorschot. Best Practices for IoT Security:

What Does That Even Mean? Apr 2020. Technical report available at:

https://arxiv.org/abs/2004.12179

9

Content from Chapter 5 has been submitted for journal publication [33]. Parts

of research involved in Chapters 4 and 5 were done in collaboration with Dr. David

Barrera, who contributed through discussion and as a test coder in methodology test

trials, to the development of our coding tree methodology, and was one coder for

the main tagging exercise of the 1013-item IoT security advice dataset (described in

Chapters 4 and 5). As such, his tagging data is included in the analyses of Chapter 5.

Content from Chapter 6 has been submitted for journal publication and is cur-

rently undergoing minor revisions [37].

Chapter 2

Internet of Things vs. Internet of Computers

In this chapter, we discuss general background for consumer-grade IoT architecture

and devices, and how IoT is different from the existing Internet of Computers (IoC).

In particular, we identify five distinguishing characteristics of consumer IoT devices,

discuss the implications each has for security, and highlight how these result in

new or different challenges than those of IoC. These characteristics, implications for

security, and challenges provide context and background for the problems we address

throughout this thesis.

IoT—in both its definitions and the security community’s perceptions of it—

has evolved considerably over the past decade. As such, there is need for a revised

understanding of the landscape of IoT security. Fig. 2.1 gives a partial taxonomy

reflecting our view of major categories of IoT. Surveys prior to the Mirai botnet

(e.g., [189, 196, 230]; others also noted in the next section) lack technical details as

work done in more specific areas of IoT security was yet to be carried out in depth.

Technical progress over the past decade allows a new understanding of the challenges

and opportunities in IoT security. We take a fresh look at the characteristics that

distinguish IoT from IoC (Section 2.3), and consider the implications of each for

security as they impact, e.g., IoT network architecture, security and networking pro-

tocols, and cryptographic implementations. We relate these implications to current

security challenges, and those that are expected to appear as IoT continues to grow,

permeating our environments.

2.1 Brief IoT Security Literature Review

As with IoT itself, literature surrounding IoT is growing. Here we first mention

related work in the form of selected security-focused publications and surveys of IoT

security. Smith [191] discusses emerging threats in IoT and differences between IoT

10

11

Critical Infrastructure
• Electrical grid
• Telecom infrastructure
• Water supply & sewage

• Road sensors
• Smart traffic lights
• Security cameras

Smart Cities

Industrial IoT
• Building lighting
• Automated factories
• Remote monitoring

Autonomous Vehicles
and Robots
• Self-driving cars
• Drones
• Aircraft
• Military robots

Consumer IoT Devices
• Smart home devices
• Wearables
• Health monitors*
• Implanted medical

devices*

Figure 2.1: Partial IoT taxonomy and examples of sub-areas. Our focus herein is
on consumer IoT devices. We exclude medical devices (e.g., implanted devices or
those provided by a medical service such as a hospital) from our scope (denoted
by ∗) as they appear to be more safety-critical and may involve more regulation;
however, some consumer-grade wearable devices included in our scope (e.g., off-
the-shelf devices) may offer health-focused features such as pulse or blood-pressure
monitors, but are not necessarily designed for clinical use.

IoT security space for non-technical audiences.

Alrawi et al. [13] highlight components of the malware lifecycle (e.g., infection

vector, malware payload, capabilities) and compare how each affects desktop, mobile,

and IoT platforms. Notably, their Table 1 shows how similar the malware lifecycle

is for all three platforms, with the most major differences appearing among how

devices are infected (the infection vector). Beyond how devices are infected, the three

platforms have many similarities with how malware is designed for each; notably, the

desktop and IoT platforms share the majority of components, highlighting that IoT

and IoC (particularly desktop platforms) are still similar in many ways. From a

malware perspective, IoT devices may be more similar to some components of IoC

such as desktop platforms than others like mobile platforms [13].

Ferrag et al. [77] conduct a review of authentication proposals for specific IoT

subdomains (e.g., “Internet of Vehicles”, “Internet of Sensors”), and compare the

proposals’ threat models, security technologies (e.g., hashing, data encryption, and

12

IoT
Hub

InternetIoT
Services

Wi-Fi
Access
Point

Gateway

Smart
phone

Class 2+
Device

OS: Full

Class 0
Device

OS: None

Class 1-2
Device

OS: IoT

smart home environment

Smart
phone

Figure 2.2: Generic architecture of smart home IoT deployment. Solid lines denote
wired connections, dashed lines represent Wi-Fi, dotted lines represent low-power
wireless, e.g., Zigbee, Bluetooth Low-Energy. “IoT” OSs are specifically for IoT
devices (Section 2.3.1). “Full” refers to traditional OSs, e.g., Linux.

session-key establishment techniques), and method for formal security validation.

They identify challenges and open issues within each subdomain. Their IoT subdo-

mains map on to our IoT sub-areas from Fig. 2.1, e.g., among others, their “Internet

of Energy” roughly maps to our Critical Infrastructure sub-area, their “Internet of

Sensors” roughly maps to our Smart Cities.

2.2 Generic Architecture of Consumer-Grade IoT Devices

The architecture of IoT is defined by the mechanisms and physical structure by

which each device in the network communicates with others. Fig. 2.2 depicts a

simplified view of the network architecture for a smart home. IoT services include

interoperability and trigger-action programming functions (e.g., IFTTT [109]) and

management platforms (e.g., Amazon AWS IoT Core).

Low-end devices make use of lightweight communication protocols and standards.

IoT-friendly (lower resource consumption) upper-layer protocols are commonly used

for communicating with other devices or services [97]. Hub devices (e.g., Phillips

13

Table 2.1: IoT device characteristics and their implications for security.

1. Low-Cost (Section 2.3.1)
• Constrained resources

• Smaller/no OS

• Need for more efficient protocols

• Need for lightweight cryptographic algorithms and protocols

• Over-provisioned functionality (low-cost component re-use)

• Manufacturer security inexperience (IoT sub-component)

2. Non-Standard Interfaces (Section 2.3.2)
• New attack surfaces

• Greater physical access to devices (by attackers)

• Device management, configuration, and updates complicated; exacerbated by scale

3. Cyberphysical Interaction (Section 2.3.3)
• Successful network attack may affect physical world

• Implied trust in manufacturer (devices can cause physical damage to real-world)

4. Expectation of Long-Lived Devices (Section 2.3.4)
• Lack of support for software updates may leave vulnerabilities unpatched

• Forgotten devices remain attractive targets

• Device outliving manufacturer impacts software updates

• Cryptographic algorithms and protocols must be future-proofed

5. “Many-User” Devices with Unclear Authority (2.3.5)
• Home guests may be denied functionality of critical services

• Rogue guests may retain remote access

• Difficult to differentiate authorized and unauthorized users

Hue Bridge, Samsung SmartThings Hub) are used to manage local devices and bridge

communications to other hosts; these are typically less resource constrained. Devices

that require an intermediate node for communication connect to a hub via low-power

wireless to forward messages. Higher-end devices connect directly to a gateway or

Wi-Fi access point. From the gateway, traffic can be routed as normal on the Internet.

Alternatively, smart devices such as wearables connect directly to a smartphone via

low-energy wireless and/or to the Internet via cellular signal or Wi-Fi. Remote

devices can be used to access IoT cloud services and smart home devices.

2.3 Distinguishing Characteristics of IoT

IoT has characteristics that distinguish it from IoC. Here we discuss select charac-

teristics and their security implications (Table 2.1).

In IoT, an individual user may have a variety of devices associated with them

14

in addition to standard IoC devices (e.g., laptop, smartphone, desktop computer).

Combined with non-personal devices associated instead with environments, the num-

ber of IoT devices is expected to dwarf the number of IoC devices [108]. This scale

impacts essentially all characteristics as the number of devices in a domain commonly

exacerbates existing issues.

2.3.1 Low-Cost

An IoT device might simply be a standard device with a small built-in computer/

communications component. When an IoT device is referred to as “low-cost”, we

often mean its IoT component. Manufacturers typically minimize the cost of an IoT

component, favoring market presence over security [154].

Device resource constraints are typical consequences of low costs. Precisely defin-

ing what it means to be resource constrained is difficult, as definitions based on

hardware quickly become outdated (e.g., 32-/64-bit processors are becoming more

commonly used in IoT devices [23]); terminology used to describe existing devices has

blurred with time (e.g., home entertainment set-top boxes formerly described as “em-

bedded systems” are now described as an IoT device or “embedded IoT” [21] due to

their communication capabilities); and resource requirements for different functions

may vary considerably, making one set of resources sufficient for one application, but

not for another.

Some resource constraints in IoT are the absence of input/output (e.g., screen,

keypad), memory sizes, processor speeds, and battery size. RFC 7228 [46] defines

three classes of resource constrained devices (Table 2.2). Class 0 devices are generally

too constrained to communicate directly with hosts on the Internet securely, relying

on an intermediate node to communicate via low-power protocol such as Bluetooth

Low-Energy (BLE), Zigbee, or 6LoWPAN. They typically use single-purpose special-

ized microcontrollers [99]. Class 1 devices commonly struggle to communicate over

the Internet using standard upper-layer communication protocols (e.g., HTTP, TLS),

instead using lighter-weight protocols through intermediate nodes; and may use a ba-

sic IoT-focused OS. Class 2 devices still leverage protocols and features designed for

resource constrained devices, but may (depending on hardware and software) also

15

Table 2.2: Resource-constrained device classes, memory limitations [46], operating
systems (if any), and communication methods [99].

Class
Volatile
memory

Non-volatile
memory

OS & Communication

0 <<10 KiB <<100 KiB Function-specific hardware, few IoT OSs. Basic health indi-
cator and keep-alive messages, requires intermediate node.

1 ∼10 KiB ∼100 KiB IoT-specific OS. Lightweight wireless (e.g., BLE)/wired,
UDP-based protocols.

2 ∼50 KiB ∼250 KiB IoT-specific OS. Lightweight wireless/wired, UDP-based
protocols, commonly-used upper-layer protocols.

2+ >50 KiB >250 KiB IoT-specific, or full OS. Commonly-used upper-layer proto-
cols.

be capable of running standard protocols to communicate on the Internet.

An unconstrained IoT device is often mainline powered, has one or more 32 or

64-bit processors [23], potentially gigabytes of memory, and possibly a screen. In

the latter case, we may not even consider it to be an IoT device, as it has roughly

equivalent specifications to an IoC device.

In this thesis, when we discuss resource-constrained devices, we mean devices

that: may be battery powered (versus mainline power), have relatively limited mem-

ory (e.g., potentially unable to support common cryptographic libraries or store large

cryptographic keys), are not equipped to communicate over wired or Wi-Fi networks

(instead using, e.g., ZigBee and Bluetooth), or have less powerful processors than

typical IoC devices (e.g., 8/16-bit processors) [46]. The resources available to a de-

vice may restrict its functionality or limit its capabilities—security features feasible

for an unconstrained device may be infeasible for a constrained device (e.g., due to

missing standard interfaces, see Section 2.3.2; battery power preservation, limiting

communication or computation; missing hardware features such as PUFs, see Chap-

ter 7). As such, developing security best practices for IoT devices (Chapter 3) must

take the target devices’ constraints into account when selecting appropriate security

mechanisms, and identification and authentication approaches (Chapter 7) must be

appropriate for the targeted devices.

Implications for Security. Seeking cost reductions, manufacturers may use

open-source software or generic hardware in their devices, choosing components that

16

provide the required functionality. Use of over-provisioned components increases

risks. For example, unused modules and features, often not properly disabled, provide

additional attack surface. A common example is using Linux for the OS of a device

(and not disabling functions or services that are unused). This consequence is related

to manufacturer inexperience as new manufacturers who do not fully understand

their technical or functional needs may choose generic, potentially over-provisioned

solutions; standard (over-provisioned) Linux may also be deployed simply due to

cost-cutting, as disabling unused functionality may require additional time-cost.

Class 0 devices are highly resource constrained—they are typically specialized

microcontrollers that have static and highly specific functions [99]. Those above Class

2 may be capable of running a full operating system like Linux. Devices in between

(classes 1 through 2) can use a variety of open- and closed-source OSs tailored for

resource constrained devices (e.g., FreeRTOS, TinyOS, Contiki [99], Tock [133]).

A wide variety of low-power protocols (e.g., BLE, 6LoWPAN, Zigbee) are typ-

ically used to communicate with other physically-near devices. Depending on the

hardware, less resource constrained devices are capable of running Wi-Fi and com-

mon upper-layer protocols for Internet communication. IETF work currently under-

way is developing new or adapted suites of protocols designed for constrained devices

(e.g., CoAP [187]).

Both communication and cryptography functions require processing and mem-

ory, so lightweight cryptographic algorithms and wireless protocols need to be used,

especially for Class 0 devices. Devices must be able to run common cryptographic

algorithms at acceptable speeds to meet secure communication requirements. Gen-

erating and storing sufficiently-long asymmetric keys (e.g., ≥2048 bits for RSA [31])

in IoT is more challenging than in IoC. Further, best practices for key sizes will grow

over time (e.g., 3072 bits recommended for RSA by 2031 [30]), which is increasingly

problematic for IoT. In comparison, elliptic curve (EC) cryptography boasts faster

computation and smaller key sizes (than RSA) [38, 136].1 This (along with better

computational efficiency) explains the adoption of EC cryptographic algorithms in

IoT environments.

1For example, a 224-bit ECDSA key has comparable strength to a 2048-bit RSA key [30].

17

Now that IoT has become attractive for manufacturers, the “IoT” label on a de-

vice may be used as a marketing feature; however, the addition of IoT functionality

is often not accompanied by security expertise (for IoT subcomponents). Manufac-

turer inexperience amplifies safety issues as any weaknesses with a device adds to

the potential impact of attacks and problems related to non-standard interfaces.

New Problems/What is Different. Class 1 and 2 devices are capable of

running lightweight OSs designed specifically for IoT. Common constraints include

limited memory (≈10–50 KiB volatile, ≈100–250 KiB non-volatile memory, per Ta-

ble 2.2), low power usage (must operate for months without battery replacement),

low-delay processing (commonly requires real-time responses), and built-in security

mechanisms (cryptographic/security protocols, access control) [99].

A common characteristic of IoT OSs is their development in the C language [99].

C and C++ have historically been the choice for IoC operating systems and tools;

however, they bring with them a number of vulnerabilities such as memory safety er-

rors (e.g., buffer overflows), integer-based vulnerabilities, and race conditions. Many

past security issues experienced in IoC OS design are at risk of reappearing in IoT

as C/C++ are used in IoT-specific OSs [99].

For wide-spread adoption of secure communication, toolkits will need to support

both expert and non-expert developers. Many such toolkits exist for IoC and higher-

end IoT devices (e.g., OpenSSL, NSS, wolfCrypt—commonly written in C). Libraries

such as micro-ecc, TinyECC, and µNaCl bring limited cryptographic functions to

heavily resource constrained 8-bit microcontrollers. Some IoT development boards

use dedicated processors (e.g., Microchip ATECC608A) for cryptographic algorithms

and key storage.

Prevention and/or mitigation of malicious action is required to address device

compromise. The recently-proposed Manufacturer Usage Descriptions (MUDs) are

manufacturer-provided descriptions of how their devices are designed to behave [102].

MUDs obtained directly from the manufacturer are intended to simplify misbehavior

detection and may simplify detection of anomalous activity. In the absence of MUDs,

automatic generation of communication policies at the network level may be pursued

[34,152].

18

2.3.2 Non-Standard Interfaces

Device interfaces vary significantly between IoC and IoT. For usability, the challenge

in IoT is often greater in the configuration of a device rather than in its standard

function. Interaction design is related to the ways a user interacts with a device.

In IoC, this is almost exclusively using a keyboard and monitor, or touch screen.

IoT devices commonly require some alternative method for device setup or configu-

ration (e.g., smartphone app, cloud management service). This leads to a number of

challenges for users to manage device updates, configuration, and decommissioning.

IoT is still fairly new, and device diversity is high. Diversity is amplified by the

wide range of what we define as an IoT device and makes it difficult to standardize

interaction and management methods. This exacerbates problems such as secure

device configuration or communication between devices. Coupled with hardware

differences, in highly-constrained devices, software is specialized for a specific task

making it difficult to produce software for, update, and manage a wide variety of

devices. This is ameliorated in devices with IoT-focused OSs providing common code

bases [99].

Implications for Security. New interaction interfaces introduce new attack

surfaces. Voice commands have proven useful in smart home devices, taking any

sound in the environment as a potential command. Sensor inputs (temperature,

noise) can be abused to provide falsified data (e.g., manipulating sensor readings).

Cloud services present additional attack surface, with the core cloud services inher-

iting IoC challenges. Finally, physical access to IoT devices is an additional attack

surface; it is likely easier for a guest or intruder to physically access or steal a small

IoT device than a laptop or desktop computer due to the devices’ placement and

ubiquity. Once stolen, the attacker could potentially access the home network using

this device or recover sensitive data from its storage.

Problems with the usability of a device’s interfaces are exacerbated by the scale

of devices to be maintained. It is one thing to configure a small handful of devices,

but scaling the quantity up may cause users to become frustrated and potentially

leave devices configured with default (and possible insecure) settings (e.g., default

passwords, as exploited by the Mirai botnet [21, 125]). IoT devices—particularly

19

consumer devices—should be simple to set up and maintain for the average user.

This makes designs involving safe default settings important. If a device functions

correctly (from the user’s perspective) without a secure configuration, users may

choose to not configure it. Enforcing device configuration before allowing it to func-

tion would solve this issue [14], but it would impact usability and frustrate users,

suggesting an important aspect of secure device onboarding is usability.

New Problems/What is Different. For each new interaction mode, new pro-

tection methods may be needed to mitigate attacks conducted via their use. For

voice inputs, unauthorized users might send inputs to a device via audio commands.

For example, “Hidden voice commands” can trigger functions on voice-activated de-

vices without being understandable voice commands to the human ear [50], leading

to attacks that users cannot identify. Sensors should ideally determine if a reading

has been falsified or manipulated. Cross-checking of device readings may be viable

in some cases (e.g., comparing a thermometer’s reading to a reading from across the

room) to determine consistency, but requires communication either between (pos-

sibly heterogeneous) sensors or with a central hub device. Remote management

requires that each communication hop between a device and its remote access point

(Fig. 2.2) be secure. IoT resource constraints require new solutions for secure end-

device communication. IoT cloud services are a more usable approach to interacting

with devices compared to individually connecting to each one, but the security of

such platforms is beyond users’ control, and they must trust the service provider to

maintain security of service infrastructure and communications.

If a device lacks standard interfaces, users may find the device difficult to update

or configure, and this may motivate users to interact with it as little as possible or use

default configurations. A non-standard interface is a general nuisance for users (if not

highly usable) that adds a barrier to the adoption of some security mechanisms such

as authentication approaches, where a user may be required to update or configure

keying material. This is discussed in more depth in Chapter 7.

As smaller, more pervasive devices are easier to physically access or steal, each

individual device would ideally protect itself from physical or digital attacks. One

approach is to minimize the sensitive data stored (such as user data or sensitive

20

ActuatorSensor

Command/signal

Physical action

Sensor data

Physical world

Digital world

Environment reading

Figure 2.3: Relationship between sensors and actuators, and their role in IoT.

communication information), under the assumption that the device will be stolen,

and the data then recovered by offline attack. Thus, an additional security design

challenge for IoT devices is that they should store only the minimum information

required to successfully function.

2.3.3 Cyberphysical Interaction

Over time, the terms “cyberphysical system” and “IoT” have merged, and are now

commonly used interchangeably [90].2 Both share the characteristic of linking the

physical environment to the digital space, so we refer to a cyberphysical device as

a device that interacts with its environment. Fig. 2.3 depicts two common classes

of cyberphysical IoT components—sensors and actuators—and their relationship to

one another and the world. Sensors convert environmental readings into data, and

actuators convert digital commands into signals that trigger physical manipulation

of an environment.

Implications for Security. In IoC, attacking a system means interacting with

data, but in IoT there is a potential impact on the physical world. The new risk

in IoT is that network attacks can affect physical environments through actuation.

Further, with devices surrounding us, it is possible to link data from various sources.

2Cyberphysical systems tend to be viewed as being more about controlling mechanical systems
(in a more industrial sense), whereas IoT is viewed more as the integration of digital information
and communication with the physical world [90], intuitively suggesting that an IoT system involves
less actuation than a cyberphysical system.

21

Recorded data from our environment can reveal richer knowledge about us and our

environments. Purchasing and using an IoT device implicitly demands trust in the

manufacturer and service providers, in the case that data is stored and/or processed

by them, and also in the case that devices can cause harm to a user (e.g., a thermostat

could be disabled, causing a home to freeze during winter; a thermostat could be set

to maximum, increasing heating costs).

New Problems/What is Different. In IoT, triggering an actuator in a device

alters the physical environment, thus security vulnerabilities may result in greater

damage (or personal harm) and threat models need to consider this [217].

Currently, environmental monitoring across a variety of devices is difficult due

to the heterogeneity inherent in IoT [215]; however, with greater standardization

and interoperability between devices and ecosystems, tracking user behavior (for

beneficial or malicious use) will become easier as data sources become available to

more devices in an environment. Even if the data itself is unusable (encrypted,

anonymized), metadata could be linked to extract personal information about the

user or their environment [147, 229]. However, cross-checking data from multiple

sources may also provide a defense against misbehavior (e.g., manipulation of sensors,

malicious alteration of data; unauthorized devices added to the network, discussed

in Chapter 7) [215]. Multiple devices can use contextual data or metadata provided

by its surrounding devices to sanity-check other input data.

2.3.4 Expectation of Long-Lived Devices

Consumer IoT devices may operate for a long time (e.g., 5–10 years). This requires

that devices remain functional and secure over this period. Many types of device

are designed to minimize interaction, as in “set-and-forget”. Once set, they may

continue functioning without frequent (or any) maintenance. Devices such as smart

light bulbs should function properly as light bulbs, but not require the user to check

for software updates or perform maintenance. The IoT device lifecycle is further

discussed in Chapter 3.

Implications for Security. The need for software updates is a significant threat

to IoT devices as lack of updates means potentially unpatched vulnerabilities. It

22

may aid usability if manufacturers can take responsibility for the update process,

however users may need to be made aware of the existence of vulnerabilities and

updates, should automatic, manufacturer-controlled updates be unavailable. Further

complicating the issue of update strategy, a device could outlive its manufacturer—

software updates may not be available throughout a product’s lifetime. Will third-

party developers be able to fill the gap as is common in the IoC? With (relatively)

few major commodity operating systems in IoC (Windows, macOS, Linux), software

development toolkits are commonly accessible. In IoT where low-end (e.g., Class 0

from Table 2.2) devices make use of specialized hardware and commonly run no OSs

at all, building third-party software is more difficult (no accessible toolkits/developer

APIs) and may be not commercially viable.

Devices may continue to be used, after an initial IoT-supported configuration,

without further end-user reliance on IoT functionality. For example, smart light

bulbs may be set once to a standard white color and high brightness, then never

changed again—thereafter turned on and off like a normal light bulb. In cases where

devices remain network connected but no longer relying on network connectivity (for

their IoT functionality), the network connectivity may remain as an attack surface

for attackers to exploit. The combination of network connectivity, lack of monitoring,

and potentially little or no manufacturer update strategy leads to devices remaining

vulnerable for significant periods.

Another potential issue is quantum computing and its impact on currently in-

feasible computational problems. A risk is that long-promised quantum computing

advances may result in the failure of public-key algorithms built on RSA, Diffie-

Hellman, and corresponding EC analogues [96]. Quantum-safe (also known as post-

quantum) cryptographic algorithms and protocols are applicable to IoC as well. This

poses a serious problem for IoT devices that are constrained and not easily updated.

New Problems/What is Different. Software updates must be received with

verifiable integrity (i.e., authenticity). A method for determining which devices need

updates will be required to point users to out-of-date devices and to enforce security

policies [152].3 In the case of a bad update (whether by accidental corruption or a

3Device identification is discussed in Chapter 7.

23

malicious image), a device may operate with vulnerabilities or attacker access, or

may not function at all. The ability to roll back an update may help; however, this

function might be unknown to users or fail if the update was malicious or disabled

the device. Given the set-and-forget nature of IoT, updates presented to the user (if

any) may well be ignored or declined. Push-based automatic updates may be more

appealing in the scale of IoT (as opposed to users manually pulling or approving

updates). This is, however, less easily accomplished than in IoC where near constant

TCP/IP Internet connections are expected.

What happens if a vulnerability is found, but a user can not patch it (unavail-

ability or no knowledge of patch existence)? If a manufacturer is unable to provide

updates, the responsibility could be transferred to another entity. Regardless of the

OS a device is using or the status of a manufacturer, a software update policy set by

the manufacturer could be used to enforce how and when updates are applied, and

who is responsible for them [154]. This is highly related to the lifespan of a device

as short-lived devices would be seen as less important to spend resources developing

software for. Regardless, a software update strategy for long-lived devices is needed,

one option being deactivation of devices past their manufacturer-supported lifetimes.

Inactive devices (devices connected to a network but no longer used by end-users)

should have their network access disabled in order to protect the integrity of the

network.

2.3.5 “Many-User” Devices with Unclear Authority

In IoC, systems are commonly labeled as “multi-user” or “single-user” based on their

architecture and usage. In these systems a user is identified (by, e.g., a username or

user ID) and they interact with a system within the context of being an identified

user. In IoT, devices commonly belong to an environment and are generally not

linked to an individual user or group of users, thus being a “many-user” device (e.g.,

sensors, voice assistants, lights). While this is not the case for all IoT devices, it is

a characteristic that is common.

Implications for Security. Device-to-device access control is a matter of con-

figuration by the owner or trusted user, which could be (and commonly is) solved by

24

standard role-based or discretionary access control [145]. IoT devices may now belong

to an environment rather than a user. This makes it difficult for systems to differen-

tiate between authorized and unauthorized users. Modern smart home hubs provide

different approaches (based on device or device ecosystem) to access control such as

differing levels of control (privileged versus unprivileged user), guest accounts, and

time-/location-based policies [145]; however, these are for hub devices—individual

“things” in an environment require different approaches as standard role-based or

discretionary access controls are not applicable when an individual user can not be

uniquely identified.

A homeowner who deploys devices within a house has full access to the devices

they own. The owner of a home who provides it to a rental service (e.g., Airbnb,

VRBO) requires administrator access to critical devices (e.g., lighting, heating) but

guests should be granted basic user access to at least operate the devices; however,

different IoT ecosystems provide guest access in different ways, which presents a

usability issue for how to manage guests [145]. Different hubs and more advanced

IoT devices may have interfaces that employ user accounts for access control [145].

For devices incapable of this or ones that are used frequently, conveniently usable

methods for access control appear to be necessary as it becomes tedious to manage

users or authenticate frequently (discussed below). To highlight one access control

issue, rogue guests could continue to access devices after leaving and returning to

an environment and, for example, unlock the front door of a rental unit if their

credentials were not disabled.

New Problems/What is Different. A single solution for access control that

covers all permissions and devices within a system may be feasible if all devices belong

to the same ecosystem and are designed to be interoperable, but may be impossible

for devices of different ecosystems that are incompatible with a single shared access

control system. Some ecosystems’ hub devices may limit access to configuration

settings to authorized users, but providing a user with access to use a light bulb and

thermostat of two different brands becomes more difficult as an interoperability layer

may be required, or two separate means for authorization. Further, access control

may be done differently in different devices or ecosystems, making access control

25

more open to misconfiguration in environments with device heterogeneity.

Once user access is granted, it may need to be revoked. Not all devices provide

access control mechanisms that separate privileged and unprivileged actions [14].

Administrators should ideally have the ability to configure revocation strategies;

however, some revocation methods require identification of individual users. Alter-

natively, solutions such as time-limited access tokens provide automatic revocation,

but require careful configuration of user access windows to balance user access and

exposure window (time after legitimate token use but before token revocation). For

devices accessed via smartphone, this is not a problem as identification becomes

linked to the user’s phone.

2.4 Discussion and Concluding Remarks

It is generally acknowledged [14, 21] that many consumer-grade IoT devices have

easily exploited security vulnerabilities, but existing toolkits (for critical software

tools and cryptographic protocols, Section 2.3.1) may not adequately support the

needs of constrained devices. Given IoT hardware capabilities, cryptographic li-

braries require re-engineering to meet the constrained capabilities, and commonly

relied upon algorithms in IoC need to be re-evaluated, e.g., as in now using ECC

over RSA [121, 136] to meet performance challenges. Research over the past two

decades has explored lightweight cryptography in a number of areas including wire-

less sensor networks [134, 136, 205, 224] and smart grid applications [142]. Findings

in these areas can be applied in IoT.

A common theme that appears in all characteristics and problems discussed in

this chapter (Table 2.1 on page 13) is the scale of IoT. Scale exacerbates all secu-

rity and usability challenges. Both manufacturing and deploying properly secured

devices is already difficult in IoC for a home environment; IoT brings comparably

many more devices, complicating access control (fine-grained access control becomes

infeasible with scale), secure configuration (of a larger number of devices), and device

software updates (secure protocol design, acquisition, integrity, authorization, and

installation).

26

While scale is an important characteristic of IoT that differs from IoC, as dis-

cussed throughout this chapter, other characteristics of IoT security (Table 2.1 on

page 13) differ from IoC. To follow our general Chapter 1 guiding theme of how

IoT security differs from IoC security, throughout this thesis we consider how these

characteristics are exhibited in consumer-grade IoT deployments as they (the char-

acteristics) impact the topics we discuss.

Chapter 3

Disambiguation of Security Advice Terminology

In this chapter, we examine the terminology used in the documentation and dis-

cussion of security advice, and disambiguate commonly-used terms (notably, best

practice). Comparing and contrasting different perspectives, we provide concrete

definitions for terms that we use to analyze existing security advice, and our analysis

from this chapter motivates portions of subsequent analyses in Chapters 4–6.

The term best practice is commonly assumed to be intuitively understood, yet

academic work in this area (as noted in Section 3.2) lacks consensus on informal

definitions for the term, and closer inspection suggests a clear explicit definition

is needed. We argue that this assumption results in ambiguity and contributes to

security problems, and that intuitive understandings are at best foggy and differ

considerably across even experts.

Large collections of documents from industrial, government, and academic sources

also conflate best practice with common terms such as recommendation and guideline

[59]. How do best practices, good practices, and standard practices differ? Or

guidelines, recommendations, and requirements? If something is not actionable, does

it make sense to recommend it as a best practice?

We provide what we believe is the first in-depth technical examination of intended

meanings of the term security best practice, and the surrounding related terms noted

above. We argue that confusion and ambiguity result from the lack of a common un-

derstanding and precise definition of these terms, and that this confusion permeates

official best practice recommendations (as discussed in Chapters 4 and 6). We sup-

port this argument by first investigating current use of terms related to best practices,

and explain how meanings of each term differ qualitatively (Section 3.2). We clas-

sify these descriptive terms into three categories and separately define (actionable)

security practices distinct from desired security outcomes and security principles.

27

28

3.1 Background and Overview of Established IoT Security Advice

In this section we discuss key areas of IoT and their role in the adoption of security

best practices. These areas include: the IoT device lifecycle (and when in a device’s

lifecycle security advice is applicable), which stakeholders have the most significant

impact on the security of a device, and existing security advice, which we analyze in

Section 3.1.2, Chapter 4, and Chapter 6.

3.1.1 Lifecycle of IoT Devices

The lifecycle of a consumer IoT device includes phases it goes through from early

design to the time it is discarded (possibly re-used, or never used again) [82]. We

model the full lifecycle of a device, as decisions made within one part of the lifecycle

(particularly the pre-deployment stages) may affect later phases.

Once IoT products have left the hands of manufacturers, it becomes more chal-

lenging to address vulnerabilities. We believe it is important to understand the stages

within each phase, as security advice to be followed relates directly to the processes

carried out within specific stages. Fig. 3.1 presents our model of a typical lifecycle

of an IoT device based on existing work [82], modified to incorporate what we be-

lieve are the most relevant phases (and stages within them). Our model highlights

our interpretation of the four major phases where IoT security advice is generally

applicable. Our analysis (Section 4.2) includes a discussion on the impact of security

advice followed at each lifecycle stage.

The Creation phase takes place under the authority of the manufacturer, where

a device is designed, developed, and pre-configured. The Creation phase happens

pre-deployment, i.e., before the device is sold to an end-user. This excludes when a

user receives the device from another user.

In the Installation phase, the user has received the device and readies it for normal

use. This is the first post-deployment phase, and contains onboarding or bootstrap-

ping (often used interchangeably or meaning slightly different things, depending on

who uses it) [184] which includes technical details such as key management, registra-

tion and identification of devices, establishing trust relationships, and other device

configuration.

29

1.1 Design

1.2a Hardware
Manufacture

1.3 Integration &
Pre-Configuration

2.1 Installation

2.2 Configuration

3.1a Normal
Use

3.1b Software /
Firmware Update

4.1 Data/Key
Removal

4.2b. Transfer
Ownership4.2a Disposal

1. Creation

2. Installation

3. Usage

4. Decommissioning

1.2b OS/App
Development

OR

AND

post-deployment
pre-deployment

Figure 3.1: Typical IoT device lifecycle (initial design to end-of-life). Broad phases
(1–4) encapsulate multiple stages (e.g., 2.1, 2.2).

The Usage phase involves using the device as intended (e.g., a light bulb provides

light, a smart thermostat controls temperature, a home security camera provides live

camera access). While containing only two stages, the device is expected to spend

most of its life in this phase. Software/firmware updates take place in this phase.

The Decommissioning phase is where a device ends its life with respect to a

single user or organization. The device is readied for removal from its environment

(data/key removal from the device), physically removed, and leaves the end-user’s

ownership (either via disposal or transfer of ownership to another user). If device

ownership is transferred to another user, the device returns to the Installation phase

where the post-deployment ownership phases begin again.

30

Table 3.1: Assignment of UK DCMS guidelines to lifecycle phases. Detailed guideline
descriptions are given in the DCMS 13 guidelines document [62].

Example Lifecycle
Guideline Title Sources Phase (Fig. 3.1)

UK-1 No default passwords [57, 61,71] 1.3

UK-2 Implement a vulnerability disclosure policy [48, 71,135] 1.1 3.1a

UK-3 Keep software updated [10, 48,49] 1.1 1.2b 3.1b

UK-4 Securely store credentials and security-sensitive data [57, 58,71] 1.2a 1.2b 1.3

UK-5 Communicate securely [48, 58,71] 1.2b 1.3

UK-6 Minimise exposed attack surfaces [11, 26,54] 1.2a 1.2b 1.3

UK-7 Ensure software integrity [71, 92,200] 1.2b

UK-8 Ensure that personal data is protected [9, 11,53] 1.2a 1.2b 1.3

UK-9 Make systems resilient to outages [48, 49,71] 1.1 1.2b

UK-10 Monitor system telemetry data [54, 57,71] 1.1 1.2b 3.1a

UK-11 Make it easy for consumers to delete personal data [70, 164,193] 1.1 1.2b

UK-12 Make installation and maintenance of devices easy [135,193,200] 1.1 1.2a 1.2b

UK-13 Validate input data [71, 165,193] 1.2b

3.1.2 Established IoT Security Advice

In this thesis we conduct analyses of IoT security advice contained in one dataset, one

UK DCMS document, and one ETSI document.1 We describe these advice sources

here for context, and they are analyzed throughout Chapters 4–6.

DCMS 13 guidelines. The DCMS Code of Practice for Consumer IoT Secu-

rity [62], proposes 13 guidelines.2 Each includes a brief summary title and a more

detailed guideline. This set of guidelines is analyzed in detail in Chapter 6. Table 3.1

lists all 13 guideline titles and our assignment of the IoT lifecycle stages in which

these guidelines are applicable, and examples of informal (unrefereed) primary source

documents suggesting such advice.

The DCMS 13 guidelines are intended to provide stakeholders practical advice for

securing IoT devices. The guidelines target four stakeholders: device manufacturers,

IoT service providers, mobile application developers, and retailers [62]. We note here

that end-users are not mentioned as a targeted stakeholder.

DCMS 1013-item dataset. This dataset (the Version 3 dataset from [59])

1These documents were introduced in Table 1.1 on page 4 and are described in greater detail
early in Chapter 6.

2The DCMS 13 guidelines are also used in Australia [27].

31

contains individual IoT security advice items extracted from existing academic, in-

dustry, and government documents for manufacturers of IoT products [63]. Starting

with 1052 advice items, we manually filtered the dataset to remove duplicate items

(i.e., if one advice item was word-for-word identical to another, only one of the two

were kept). After removing duplicates, 1013 items remained. The security advice

(henceforth items or advice items) originated from 69 mostly informal documents,

from 49 different organizations, and is positioned as security guidance rather than

extremely detailed specification-level advice [63] (Section 3.2 elaborates on this). Or-

ganizations represented in the collection include major organizations such as the IoT

Security Foundation [111], the European Union Agency for Network and Information

Security (ENISA) [71], and the GSM Association (GSMA) [92]. Industrial security-

focused organizations comprise the most highly-referenced sources in the collection;

however, a number of government entities and businesses are included such as the

US Senate [1], the US National Telecommunications and Information Administration

(NTIA) [208], and Microsoft [151]. The preceding examples represent the breadth of

organizations that have contributed advice to the IoT security space. We chose this

dataset for our analysis as it represents, to our knowledge, the most comprehensive

publicly available collection of IoT security advice.

DCMS mapping document. A second DCMS document, Mapping of IoT

Security Recommendations, Guidance and Standards to the UK’s Code of Practice

for Consumer IoT Security [63] maps each advice item in the 1013-item dataset

(1052 items before our pre-processing) to one of the 13 guidelines from the DCMS 13

guidelines document. While itself not analyzed, we mention this document here, as

it is referenced in both the DCMS 13 guidelines document and the ETSI provisions

document (next), and throughout this thesis.

ETSI provisions. The European Telecommunications Standards Institute (ETSI)

has also published a document of “baseline requirements” for IoT security [68] that

appears to be an evolution of the DCMS 13 guidelines document. It includes all 13

categories as major headers (most often with slightly modified wording), but elabo-

rates on each with a set of requirements that fit the theme of that category, much like

what is done in the DCMS mapping document. For example, Provision 5.1-2 from

32

the section titled 5.1 No universal default passwords (comparable to the DCMS’ No

default passwords guideline header) states [68]:

Where pre-installed unique per device passwords are used, these shall be generated

with a mechanism that reduces the risk of automated attacks against a class or

type of device.

EXAMPLE: Pre-installed passwords are sufficiently randomized.

As a counter-example, passwords with incremental counters (such as “password1”,

“password2” and so on) are easily guessable. Further, using a password that is

related in an obvious way to public information (sent over the air or within a

network), such as MAC address or Wi-Fi SSID, can allow for password retrieval

using automated means.

The majority of the advice items’ topics contained therein are represented in the

large DCMS dataset we analyze in Chapter 4. We mention the ETSI document here

for context, and analyze the advice items therein further in Chapter 6.

While this chapter deals primarily with terminology, we introduce these docu-

ments as examples of security advice that we also analyze in later chapters.

3.2 Defining ‘Best Practice’

In this section we consider definitions for best practice, including our own definition

taking into account the concepts of outcomes, actions, and actionable practices, and

discuss related terms commonly appearing in the literature. Through this, we provide

a refined, self-consistent vocabulary for security best practices and also disambiguate

a wide variety of qualifying terms into three semantic categories.

3.2.1 Definition and Analysis

The definition of best practice is largely taken for granted. Few documents that use

it make any effort to explicitly define it. Of note, even RFC 1818/BCP 1 [169], the

first of the IETF RFCs specifying what a Best Current Practice document is, fails

to define best practice. Thus, the term (and concept of) best practice is, at least in

33

security, almost always used casually, versus scientifically—the implicit assumption

being that everyone understands what it means well enough to not require an explicit

definition.

Some examples where best practices are used casually, and to express different

meaning, include the following. In considering Cloud Security Providers (CSPs),

Huang et al. [106] refer to: “security mechanisms that have been implemented across

a large portion of the CSP industry [are thus] considered standardized into a ‘best-

practice’.” Here, best practice appears to mean widely implemented. In their evalua-

tion of home-based IoT devices, Alrawi et al. [14] note numerous violations of security

design principles, and assert “Best practices and guidelines for the IoT components

are readily available”, but offer neither citations for best practices among 108 refer-

ences, nor their own definition. In a recent Canadian national news article [118] on

banks disclaiming liability for customer losses from e-transfer fraud, and one-sided

online banking agreements, a defensive bank representative is quoted: “We regularly

review our policies and procedures to ensure they align with best practices.” This

quote appears to be not about security, but rather legal best practices in the sense

of our agreements are no worse than our competitors’.

A negative consequence of this is that different experts also implicitly redefine

best practice to suit their own needs or context (examples are given above). This

leads to ambiguity, where certain uses of best practice have different meanings and

connotations, while elsewhere different phrases may imply the same concept. To

address this, we first propose a definition for practice (separate from best practice)

that we build on below:

A practice is a specific means intended to achieve a given desired outcome.

A practice specifies actions (explained on page 37) to reach an outcome, but does

not necessarily imply any level of quality or security with respect to the means or

mechanism used, or the outcome (discussed further in Section 3.2.5). Building on

this definition, to reduce ambiguity and provide more precision to analyze security

best practices, we propose the following practical definition for best practice:

34

A best practice is a specific means intended to achieve a given desired outcome,

and that is considered to be better than, or “at least as good”, as the best of

other widely-considered means to achieve that same outcome.3

Note that by our definition, a best practice is something that can be done (an action),

not something that is desired to be achieved (an outcome).4 A community in which

a best practice is developed may have their own measure for quality, and quality re-

quirements may vary based on the community, environment, and context. Further, as

by our definition, best practices are specific to the outcome they aim to achieve, there

is generally no “silver-bullet” best practice for use across all applications—practices

typically must be tailored for the context [188, Chapter 2] (e.g., a surgeon has differ-

ent hand-washing best practices than an individual preparing a family meal). Best

practices may be intended for manufacturers, but for the benefit of end-users (other

stakeholders are often involved). Stakeholders that benefit may or may not be in-

volved in a best practice’s implementation. For example, a user of a product might

not care how a manufacturer implements a best practice, despite relying on it for

security.

For comparison, we now review four notable definitions of best practice and com-

pare them to our definition above. While focused more on human aspects of best

practices, of specific note is King’s discussion of security best practices, where they

are defined as [124]:

[Best practices are] practices that have proven effective when used by one or more

organizations and which, therefore, promise to be effective if adapted by other

organizations.

King’s discussion covers several important concepts, including that effectiveness is

based on evidence of multiple instances (implying some degree of consensus), that a

practice must be applicable to real situations (not theoretical), and that it may exist

among a set of practices of equal quality to carry out a security process [124].

3While one view of “best” might imply being above all known others, another is that “best” is
a category that may have more than one member. It is thus reasonable to allow (by definition)
multiple best practices for a given desired outcome (consistent with King [124]).

4We discuss outcomes and actions in greater depth on page 37.

35

McGraw [149] gives a view that best practices (in the context of development

activities aiming to improve software security) are:

[...] usually described as those practices expounded by experts and adopted by

practitioners.

His view describes how best practices are created by a group of experts and often

intended for use by non-experts. This reference also regularly refers to touchpoints,

which are described as “a set of software security best practices” [149] (implying

touchpoints are best practices). However, the description throughout that book

indicates that these touchpoints are general categories of recommended processes

and generic activities (e.g., code review or penetration testing [149]) rather than

specific procedures that our definitions would recognize as actionable practices.

Garfinkel et al. [84] describe best practices (in the context of operating system

and internet security) as:

[...] a series of recommendations, procedures, and policies that are generally ac-

cepted within the community of security practitioners to give organizations a rea-

sonable level of overall security and risk mitigation at a reasonable cost.

This definition emphasizes general agreement within a community about the quality

of a practice (however difficult that agreement may be to attain) as a defining feature

of a best practice. Notably, their description suggests that following a best practice

is often a trade-off between cost and quality, meeting somewhere in the middle where

both values are acceptable for an organization (we discuss the feasibility of a practice

in Chapter 4).

If we consider the definitions by McGraw [149] and Garfinkel et al. [84] on a

spectrum of how specific they envision best practices to be (the scope of practices

themselves), McGraw’s description is at one extreme (the coarse or general end),

while Garfinkel et al.’s is at the opposite end (very specific). McGraw views best

practices as being comprised of general categories of activities to follow at different

stages of the software development lifecycle; Garfinkel views them as fine-grained,

e.g., at the level of command-line arguments and exact details specific to a given OS

version or specific system configuration commands.

36

Shostack and Stewart [188, pp.36–38] describe best practices as:

[...] activities that are supposed to represent collective wisdom within a field [and]

designed to be vague enough to apply in the general case.

Our definition agrees regarding “collective wisdom within a field”, but we call for best

practices to be more specific than vague. While not as general as McGraw [149], nor

as specific as Garfinkel et al. [84], Shostack and Stewart’s perspective of best practices

fits somewhere between these two on the above spectrum.

While we use our own definition for best practice, we avoid saying that others

are necessarily “wrong”—our definition is based on what we find useful to explain

the concept of best practice, is informed by a general consensus of the goals of best

practices (ultimately to improve security), and serves as a concrete, explicit reference

definition throughout this thesis. Our definition, compared to the above four, builds

on our explicit definition of what a practice is (i.e., a specific set of steps to reach

a desired outcome) rather than a more general view of “good things to do” or an

outcome to reach. Our definition builds on a common theme of the others: the

acceptance of a practice (and resulting outcome) as being high-quality by experts of

a community. We specifically require that a best practice is not a goal (outcome),

but a method for achieving a goal.

It is often infeasible to specify a universal best practice, i.e., one that is widely

applicable for every application. A determination of a universal best practice would

require knowledge of not only every practice and some way to measure their relative

quality and cost, but also a one-size-fits-all practice that addresses all circumstances.

While it may be difficult to find such universal best practices, best practices are in

our view (for typically narrower ranges of applications) born of a consensus, e.g., of

the experts in a given field or community.

One can also consider the implications of best practices from legal, technical, and

social angles. From a legal perspective, following a best practice may be used as

an argument to escape or limit liability, as in “following the crowd” or consensus

as surely being reasonable. For example, financial institutions citing “industry best

practices” to disclaim liability, per our example on page 33 [118]. Technically, a best

37

practice is often the best way known to technical experts or researchers for achieving

an outcome (supported by some form of consensus), or as a way to limit risk [84].

Less formally, best practice often implies the most common (if not necessarily best)

way to do something. At one level, one might argue that each of these are similar,

but at a semantic level, they are different uses of the same term.

3.2.2 Outcomes vs. Actions

We now define what we will mean by the terms outcome and action.

An outcome is a desired end goal that a stakeholder aims to reach.

An action is an activity involving one or more steps or specific methods carried

out by a person or computer, typically (in our context) to achieve a desired

outcome.

For example, an outcome may be having created a strong password, and an action

to (partially) achieve this outcome may be to enforce a minimum password length of

8 characters [89].

In practice, outcomes or goals that are vague or broad may not give stakeholders

a clear idea of any concrete set of actions that can be taken to achieve the goal.

A desired outcome of “strong security”, for example, is nebulous and cannot be

mapped to specific actions to achieve the goal. Defining tightly-scoped outcomes or

specifying an objective to withstand specific attacks allows for successful mapping

to corresponding actions.

A given practice may be viewed as actionable if it can be carried out without

guesswork by an advice target. We argue that being actionable is the crucial charac-

teristic, the key point being to formulate advice such that the steps to be executed

are explicit or well understood by targeted advice recipients. Our view of action-

ability as a desired advice characteristic is not based on consensus—we use it in this

thesis as a concrete position to provide a baseline for discussing its potential bene-

fit in establishing security advice, but acknowledge that this position lacks external

confirmation. This leads to our next definition.

38

By actionable practice we mean a practice that involves a known, unambiguous

sequence of steps, whose means of execution are understood (by the target advice

recipients).

While we use actionable practice here to emphasize that a practice must be one

that a target subject can actually carry out, describing a practice as actionable is

redundant, as all practices are necessarily actionable by our definition of a practice

(page 33, i.e., a specific means to achieve a desired outcome). An outcome (alone)

cannot be a best practice (or even a practice, and therefore not actionable), as an

outcome alone does not typically or necessarily specify a specific means to an end.

In what follows, when we use the term practice, we generally mean a practice that

is actionable.

It follows that a recommendation specifying an outcome, but the path to which

is an open research problem, cannot (and in our view should not) be considered a

practice. Specifying “advice” that implies use of techniques that are experimental

or unproven introduces ambiguity in how to carry out the advice and may result

in inconsistent execution of the advice (which is not, by our definition, a practice).

We argue that it is important for the security community—whether by academic,

industrial, or government efforts—to identify and agree on practices with concrete

desired outcomes for use by those targeted by the advice. Best practices adopted for

specific use-cases will ideally lead to more reliable (correct) execution of the practices

and thereby improve security.

Our heavy focus on (actionable) practices arises from our belief that, if stated

clearly, they may be a promising, direct way to help pre-deployment stakeholders

improve security. Improving security advice is separate from the issue of motivating

advice recipients to actually follow the advice—actionable security advice does not

improve the security of a device if it is not followed. Lack of actionable security

advice is not necessarily the root cause of IoT device insecurity (or advice not being

followed) [24, 127, 156, 174], but we find in this thesis that existing advice is largely

non-actionable. In this way, we aim to contribute to improving security advice;

motivating its use is beyond the scope of this thesis.

39

Using the page 38 discussion of actionable, upon examining the 13 DCMS guide-

lines (Table 3.1) we find only one has a detailed description in the original docu-

ment [62] meeting our sense of the term actionable. It states [62]:

UK-1 (“No default passwords”): All IoT device passwords shall be unique and

not resettable to any universal factory default value.

As a consequence, we expect that most are unlikely to be reliably implemented from

this advice alone.

As another example, consider [62]:

UK-5 (“Communicate securely”): Security-sensitive data, including any remote

management and control, should be encrypted in transit, appropriate to the prop-

erties of the technology and usage. All keys should be managed securely. The use

of open, peer-reviewed internet standards is strongly encouraged.

This somewhat vague guideline is not, by our definition, actionable, as it is non-

specific about which actions to take to follow it, and is unfocused on a single security

topic (discussed further in Section 4.2.3).

Guidelines may result in the inference of implementation details based on the

experience of the implementer, but this is not, by our reading, how these 13 guidelines

are positioned. The associated DCMS mapping document [63]5 is intended to provide

additional details and context for how the guidelines should be followed, but as we

later find (Section 4.2), the advice in the mapping document is largely non-actionable.

The 13 guidelines are further analyzed in Chapter 6.

Target audience of advice. Advice authors must understand who the intended

target audience is (i.e., understand their level of knowledge and limitations) in or-

der to create suitable advice. A sequence of steps described as generally understood

(from our definition of actionable on page 38) implies that the target audience has

the appropriate level of knowledge to follow the advice (independent of having suf-

ficient resources, discussed below). Advice that is not understood or not specific

enough to be implementable by the target audience becomes non-actionable to that

5Recall Table 1.1 on page 4.

40

audience, even if actionable to others. This means wording and outcomes must be

understood from both a (semantic) language perspective and a technical perspective.

Appropriate audience targeting is discussed in Chapter 6.

A practice need not necessarily specify a full sequence of low-level, specific, de-

tailed steps; it may be sufficient to state high-level steps, provided they are action-

able. For example, a practice involving the use of AES does not necessarily require a

line-by-line implementation as specified by NIST [158]; similarly, it may suffice for a

practice to state a library or function to use, how it should be used, and specify any

desired configuration details. To use a non-security example, a car mechanic does

not need to build a car’s alternator from scratch, but they are expected to be able

to follow a guide to install and configure a pre-assembled one. This again highlights

the importance of an appropriate target audience selection—depending on the con-

text, specification-level details are important for, e.g., those building libraries and

toolkits (to use the AES example), while others may require only the details needed

to properly use available libraries. Both situations can have practices developed for

them, while reaching desired outcomes and being appropriate for their respective

audiences.

Advice that simply mentions a general technique by name (without details) is

non-actionable, by our definition. However, pointers to “next-level” implementation

details (discussed further in Chapter 6) may meet our requirement of unambiguous

steps (for actionability), e.g., with details in an external reference. In this way,

advice may direct advice recipients to non-prescriptive techniques or approaches

(e.g., key management techniques as in the UK-5 example above), but then link to

further sources for specific details. This allows specifying how to carry out an advice

item generally (how to approach a problem), while avoiding fine detail and lengthy

descriptions, yet remaining actionable via links to detailed unambiguous steps. This

avoids advice items that dictate an exhaustive number of individual steps, and avoids

needing advice updates due to, e.g., parameter changes or algorithm upgrades; low-

level details can be more frequently updated in external sources, without need to

re-issue higher-level best practice advice (as it remains valid for longer periods).

While our definition of an actionable practice is designed to match what we expect

41

is practically followable, clearly indicating what advice recipients must do, in some

cases recipients can infer how to execute advice even if it lacks details. For example,

depending on a target’s experience, what a “standard algorithm” is may be under-

stood. While we retain our definition of a practice being actionable, we acknowledge

that in some cases, some advice recipients have sufficient experience to infer ac-

tionable detail from otherwise non-actionable advice—making explicit step-by-step

instructions unnecessary. Nonetheless, because security experts are not always the

audience responsible for executing security advice (e.g., at an IoT device manufac-

turer), we encourage development of actionable practices (or providing actionable

next-level details, as described in the previous paragraph) for specific targeted audi-

ences.

Infeasible advice. We separate the concepts of a practice being actionable, and

a target audience having the resources to execute the practice. A target audience

must have the resources (technical, financial, personnel) available to carry out some

practices, but we hereby clarify that the intention of our definition of a practice is

that availability of resources does not affect the inherent actionability of a practice.

(In other words: though a practice is actionable in general, that does not guarantee

that a given party has the resources to carry out the practice.) A practice that

involves a significant cost may be ruled out as a best practice by a recommending

group, governing body, or peer community. Similarly, while still actionable by our

definition, a practice that has (for example) 300 well-defined, unambiguous steps

and takes 14 years to complete would rarely be considered a best practice. Such a

practice would be considered infeasible, which we define as follows:

An infeasible practice is a practice that remains actionable, but viewed by a non-

negligible subset of advice recipients as impractically inefficient or excessively

costly.

Note this is illustrated by our continuum of the actionability of practices (Fig. 4.2 on

page 55). As will be defined in Chapter 4, an Infeasible Practice (P3) is actionable,

but by fewer parties (as indicated by its placement toward the actionable by fewer

parties labelled end of the continuum) than a practice requiring a Security Expert

42

(P4)—as practically speaking, high costs may reduce the number of parties able to

implement a practice.

3.2.3 Imperative and Declarative Advice vs. Actions and Outcomes

By our definition (page 33), the statement of a best practice includes specifying a

means to reach a desired outcome. We briefly consider now the utility of advice

items that do not specify any such means or specific set of actions. As a particular

case, consider an advice item that specifies an outcome whose attainment can be

verified (but leaving it to an advice recipient to determine a specific means). Some

advice recipients may still be able to attain the outcome, and auditors could verify

attainment. Would such advice—which we call declarative advice, next paragraph—

be equivalent to a best practice? Not by our best practice definition, which requires

a specific means; by our definition, an outcome and a best practice are categorically

different. Nonetheless, if the means used to reach the outcome is of secondary im-

portance to an advice giver or authority, and their primary interest is attaining the

outcome, then advice items in the form of (verifiable) declarative outcomes may be

useful alternatives to (actionable) best practices—for advice recipients who can inde-

pendently determine a means to reach the outcome. Having made this observation,6

we proceed herein to use our (Section 3.2.1, page 33) definition of best practice.

As supporting context, we note that actions and outcomes can respectively be

mapped to imperative advice (advice that includes specific steps or actions to reach

an outcome), and declarative advice (advice that specifies an end result or outcome

to reach, but not any specific method by which to reach it) [44,75].

Depending on their nature, some outcomes may be verifiable, e.g., through a test

that yields a yes/no answer to whether the goal was reached, or a measure used

against a pass-fail threshold. For example, consider the advice item [193]:

Where a device or devices are capable of having their ownership transferred to a

different owner, all the previous owner’s Personal Information shall be removed

from the device(s) and registered services.

6We thank an anonymous referee for raising this question.

43

This could be verified, for example, by checking that any memory region designated

for storing user personal information has zeros in every byte.

In contrast, an example of a non-verifiable advice item is use a randomly generated

salt with a minimum length of 32 bits for hashing with passwords [89]. If we assume a

verifier is only presented with the fixed-length output from a hashing function (i.e.,

h from h = H(p, s), where p is a password and s is a salt value), this practice is

not verifiable, as the output provides no indication of the salt’s length or method

of generation. For example, a password of “password123” and a salt of “ABCD”

produces a SHA3-256 hash of “e0aa...beef” (truncated), which does not reveal any

characteristics of the salt. While we use this as an example, in practice, salts are

typically stored with the hash output—if a verifier were to recover one, they would

then have access to the other.

3.2.4 Commonly-Used Qualifying Terms

A number of what we call qualifying terms are widely used as an adjective before

the word practice (e.g., common, good, best) but without definition of the qualifying

term itself. Being widely used might suggest that readers know (and are in universal

agreement on) what authors mean when they use these terms. Like best practice,

while security community members are apparently expected to have a general intu-

itive understanding of the meanings of these terms, consensus has not been reached

on the meanings of these terms either.

For example, IETF BCP draft Best Current Practices for Securing Internet of

Things Devices [153] contains advice that is arguably positioned in three different

ways:

• as advice within a best current practices document (containing advice consid-

ered to be the best current practices);

• as recommendations (suggesting that use of the advice items is endorsed); and

• as minimum requirements (their use is a minimum expectation).

In an effort to both highlight existing terminology and move toward more consistent

use of terminology, we associate these highlighted terms (among others) with one of

44

Table 3.2: Categories of commonly used qualifying terms related to best practices.

Category
Focus

Qualifying Terms (examples) Suggested Use

Quality

Über

For practices considered superior to all
others, even if not widely adopted. These
terms imply elite quality, possibly at high
cost or complexity.

“state-of-the-art”
“gold standard”

Best
“best current practice” For practices widely-considered to be high

quality (plus widely adopted, ideally).“best practice”

Good

For practices that are beneficial (e.g., to
improve security), without implying that
better practices do not exist. Here,
“recommended” and “suggested” do not
imply a formal endorsement.

“recommended practice”
“suggested practice”
“good practice”

Commonality “minimum expectation” For practices not necessarily implying
quality, but reflecting wide use.
Alternatively, these may be de facto
practices or functionality, informally
recognized by experts as generally expected.

“baseline practice”
“accepted practice”
“common practice”
“standard practice”

Stipulation “regulation” For practices endorsed (formally) or
mandated in some capacity by an
organization or individual. Includes practices
that may be, in some way, enforced by an
entity such that there implies a negative
consequence if the advice is not followed.

“mandatory practice/requirement”
“formal standard”
“code of practice”
“recommendation”
“guideline”

three distinct categories of qualifying terms, summarized in Table 3.2. These three

categories can be used to characterize a given advice item: quality (page 45), com-

monality (page 46), and stipulation (page 47). Table 3.2 also suggests where/when

each qualifying term should be used and gives examples.

While we primarily categorize terms by what we view as each term’s dominant

goal (i.e., identifying the quality of an advice item, how commonly an advice item is

used, and acknowledging a governing authority’s stipulation of the advice item), an

advice item can share the characteristics of more than one category. For example,

an advice item that is considered to be a good practice (quality category) can also

be a standard practice (commonality category) through wide use, and a best practice

(quality) can be included in a formal standard (stipulation).

Table 3.2 does not explicitly define the commonly-used qualifying terms contained

therein; rather, it describes how we suggest each term (belonging to a category) be

45

most appropriately used. For example, here our Suggested Use for best practice ex-

presses its relationship to being widely considered of high quality (albeit a higher

quality tier exists), while our definition (page 32) explicitly notes that best prac-

tices are better than (or at least as good as) other high quality practices with wide

consideration. In what follows, we discuss these terms in greater detail.

3.2.5 Category 1: Quality-based Terms

Quality-based terms provide a natural basis on which to differentiate practices. Con-

ceptually, we order über, best, and good practices along a quality continuum. We note

that terms used to describe practices of low quality (i.e., below good) receive less

attention in literature as documents promoting security advice focus more on good

than bad practices. Our definition of a good practice (the lowest quality we formally

recognize) implies that anything lower does not improve security.

Über practices. The sub-category or group Über suggests practices that are in

some way superior to best practices, or beyond what would be considered already

high quality. State-of-the-art or gold standard implies something of elite technical

quality, but perhaps not yet widely adopted. Consider as a practical example: in

luxury cars, a heated steering wheel. While more comfortable on a cold winter day,

best practice would likely be to ensure correct function and adequate steering grip to

reduce the likelihood of accidents. A heating function may be the “gold standard”

or “state-of-the-art” (typically at higher cost).

Best practices. The group Best suggests practices widely considered to be high

quality, and often, widely adopted. While technically better practices may exist,

best practices are widely accepted within a community to be high quality.

Good practices. The group Good suggests practices that improve security but

are not necessarily the best practices available. They generally are not lauded for

high quality per se. A good practice often either does not have wide acceptance as

being the best, or is perhaps not widely practiced or not considered essential even

if easy and beneficial (e.g., a good practice is to apply the emergency brake when

parking facing down a hill, while a best practice is to both apply the emergency brake

and turn the wheels to the curb). Further context may prove useful for understanding

46

their use. For example, access control to a low-value free online newspaper account

may not require a best practice authentication method (per our definition); a good

practice may suffice [84]. In other words [124]: “sometimes the good is good enough”.

3.2.6 Category 2: Commonality-based Terms

Commonality-based terms also often include the word practice (accepted practice,

common practice), but their unifying trait is frequency of use rather than quality.

Baseline practice/minimum expectation. These terms suggest a minimum

level to be reached. We assign these to the commonality category, as it is expected

that the minimum acceptable level of advice is commonly followed.

Common/standard/accepted practices. These terms reflect broad usage.

For example, it may (unfortunately) be common to store passwords in plaintext

within a database (thus being a common practice), but that is not best practice (or

even a good practice).

We repeat that commonality does not necessarily imply quality. Terms in this

category are less clearly ordered than in the quality category, and some terms are

used interchangeably (e.g., common/standard/accepted). As baseline and minimum

expectation both imply a lowest reasonable threshold to start from, these may be

considered more of a priority to be followed, thus we order them higher in the group

than the common/standard/accepted practices.

Correlated with commonality is the maturity of advice, typically reflecting the

length of time that advice has been, or continues to be, given or known. To follow

an earlier example, while not considered even a good practice, storing passwords

in plaintext has become a mature practice [168]. Ideally, a best practice would be

mature as well as widely considered to be high quality (Section 3.2.5), but greater

maturity of an advice item does not always imply higher quality (e.g., DES is a

mature cipher, but no longer best practice).

Security design principles. Security design principles are a known set of

guiding rules which aim to improve security [182]. These principles are generally

based on experience, suggesting their maturity. Security design principles are also

generally expected (by experts) to be followed, and are complementary to the existing

47

categories, but we intentionally omit them from Table 3.2, and discuss them further

in Section 4.1.3.

3.2.7 Category 3: Stipulation-based Terms

Distinct from quality and commonality, some terms related to best practices have

more to do with the endorsement by an authority, the authority’s jurisdiction, and

whether the advice is mandatory (i.e., a firm requirement). Note that the entity

creating advice is not necessarily the authority mandating its use. Our stipulation

category contains qualifying terms describing advice that is mandated or endorsed

by an entity in some way. These too can be ordered along a continuum. On the strict

end are terms that imply a negative consequence for not following the advice (e.g.,

mandatory practice, requirement, regulation). On the looser end are terms that are

stipulated, but not necessarily enforced (e.g., guideline/guidance, recommendation).

As with a best practice, stipulations should, in our view, ideally be accompanied by

an explanation of the intended outcome.

Regulation. We use regulation to mean a directive from an authority stating

specific advice that must be followed to be allowed to operate within a jurisdiction.

Here, a jurisdiction refers to the legal or authoritative domain, or the context of the

deployment environment or use cases (e.g., home IoT may require different practices

than IoT devices for government; physical locations, e.g., to meet certain require-

ments to be allowed to be sold in a country; or scope of technology, e.g., certain

practices may be more appropriate for IoT devices rather than desktop computers).

Mandatory practices/requirements. Hereafter just “requirements”, these do

not necessarily imply the quality of a given practice, but rather that it is stipulated

by some governing body or regulation, suggesting official endorsement. These may

be considered “enough” for some purposes (e.g., enough to not be sued or enough to

pass inspection). Practices across a range of qualities may be requirements depending

on the governing body or motivation, although a practice established as high quality

is more likely to become a requirement.

Formal standard. We take formal standard to mean a formally documented

48

(endorsed by some authority) specification. This typically (but not necessarily) im-

plies acceptable quality; the main point is to officially specify details and recog-

nize, e.g., a particular method or measurement. The purpose of a standard may be

interoperability—e.g., standards for the gauge of rail tracks or pipes. In this context,

formal standard differs from standard practice (i.e., common practice, above) and is

not related to frequency of use, e.g., it is standard (practice) to eat at 12 noon. Stan-

dards are typically sufficiently detailed such that conformance or compliance can be

judged by, e.g., an auditor, or interoperability tests [84].

Code of practice. We take code of practice to mean a set of guidelines designed

to help inform others (traditionally within a profession) of expectations. They often

pertain to ethical or safety issues. Codes of practice are often stipulated (within

an organization or industry), but may be viewed as voluntary in that, e.g., failure

to follow them typically does not result in major penalties unlike stricter terms

(mandatory practices/requirements). In our use, a code of practice is distinct from

formal regulations such as an “electrical code” or “building code”.

Recommendations and guidelines. A recommendation is an endorsement of,

e.g., a practice by an individual or organization as their suggested way to do some-

thing. Recommendations (depending on the recommending entity) may be subject to

bias or be self-serving, and do not necessarily reflect expertise or universal consensus.

Some recommendations, depending on their sources, are, in essence, requirements.

Recommendations commonly suggest following a standard [63]. Similarly, a guide-

line or guidance is often given to promote a suggested way to achieve a goal (or as

described by Garfinkel et al. [84], something that should be done). A guideline may

be used in the spirit of a recommendation—offered as help, versus imposing rules.

3.3 Concluding Remarks

The basic concept of best practices is familiar to experts and non-experts alike. We

discussed what we argue is (and return to in later chapters) an important charac-

teristic for security advice: whether it is actionable. We offered uniform, consistent

49

terminology (Section 3.2) that characterizes and separates concepts. This allows sys-

tematic exploration (Chapter 4) that begins here with generic discussion and clas-

sification grounded through specific focus on consumer IoT devices. We argue that

actionability of security advice should be a primary goal of advice-givers, in order

that advice be executable by the target audience. Actionability plays a significant

role in the following chapters.

As final thoughts on best practices and related terminology, we noted inconsis-

tency in the use of common terms (Section 3.2) and the situations in which they

are used, with the same terms used with different meanings in different situations.

We argue that supporting consistent use of terms, and separating the concepts of

quality, commonality, and stipulation provides a better foundation to discuss and

analyze security advice within the community.

Chapter 4

Coding Tree and Analysis of 1013 Security Advice Items

In this chapter, we develop a methodology that we call the security advice coding

method (hereafter SAcoding method, or informally the coding tree), for analyzing se-

curity advice, and we conduct an empirical study of the 1013-item DCMS collection

of IoT security advice to determine how actionable (Chapter 3) the advice is.1 The

dataset reflects advice from government, industry, and academic sources. Applica-

tion of the coding tree methodology to an advice item dataset (expressed in natural

language, e.g., English) results in the assignment of labels to the advice items, char-

acterizing the advice. The labels allow a measure of how actionable each item is for

target audiences to follow. We also consider where in the IoT lifecycle each advice

item would be most effectively applied; this exercise confirms the critical role pre-

deployment IoT stakeholders can play in securing consumer IoT devices, and follows

from IoT device manufacturers being the primary target of the advice datasets that

we analyze.

We begin our analysis of the 1013-item IoT security dataset by using iterative

inductive coding [148,202] to create codes by which to categorize the dataset’s advice

items. In an effort to improve reproducibility of coding results (i.e., independent

coders reaching the same code for a given advice item), we create a novel coding tree

for coding of security advice items. This tree is used to guide coders toward tags in

an objective manner rather than manually applying codes directly to advice items.

The inductive coding process is used to establish and iteratively refine item codes,

and we iteratively refine the structure of the coding tree which uses the codes as its

leaves (discussed in Section 4.1.1). We then used a methodology based on the coding

tree to categorize the advice in the 1013-item dataset.

1Recall our position from page 37 that actionability is a key characteristic of security advice.

50

51

4.1 Security Advice Coding Tree Methodology and Development

Our methodology for the analysis of existing IoT security advice begins with iter-

ative inductive coding. Our specific goal is to categorize (code) 1013 IoT security

advice items2 for further analysis and thereby to characterize the current state of

IoT security advice. Such categorization is commonly done on, e.g., qualitative data

from interview responses, to allow further analysis. The iterative inductive coding

process begins with reviewing and understanding the dataset and developing codes

(collectively, a codebook) to assign to dataset items, and iteratively refining the codes

as new themes, relationships, and insights emerge from further review [202]. Induc-

tive coding techniques are commonly used in computer science and security research

in the analysis of qualitative data (e.g., [120,127,156]).

4.1.1 Establishing Analysis Tools

Establishing an initial codebook

To begin development of a codebook for inductive coding, a first coder 3 initially re-

viewed the 1013-item IoT security advice dataset (Section 3.1.2) to extract unrefined

categories (codes) that characterize advice items. Discussion and preliminary test

codings based on the extracted categories by the first and third coder (cf. footnote 3)

resulted in the following coarse codebook (set of codes):

• Practice

• Incompletely specified practice

• Outcome

• Security design principle

• Too vague to tell

2This is not to be confused with the DCMS 13 guidelines introduced on page 4 and detailed on
page 30.

3 A coder is a researcher that conducts iterative inductive coding as described in this chapter.
The first coder (C1) is the thesis author, the second coder (C2) is an additional coder, the third
coder (C3) is the thesis author’s research supervisor.

52

• Out of scope

After establishing this early codebook (with associated definitions4), test sets con-

sisting of ten new, mechanically selected items from the dataset (to test across topics

within the dataset; e.g., item numbers 100, 200, [...], 1000) were coded to determine

agreement between the two coders. This consisted of each coder reading, interpret-

ing, and assigning each item in the test set to a code (informally called a tag). This

process was done a second time on a distinct test set of 10 items. From this process

we refined the codebook by creating new codes for items that did not fit well into

existing codes. Assigning an item directly to a code was subjective, resulting in low

inter-coder agreement of between 30–40% for the first two test sets. This motivated

the development of the coding tree (described next).

Establishing the coding tree

To reduce subjectivity, what we call a coding tree was built to more objectively guide

coders towards codes based on a sequence of yes/no questions (final version is Fig. 4.1

on page 54; the final codebook is in Fig. 4.4 on page 56).5 For a given advice item,

starting at the top of the tree, each question progressively directs coders to a next

question via branches down the tree, finally arriving at a leaf node (containing the

resulting code). An additional coder6 was used to assist in test codings and further

refinement of the coding tree.

This method was iteratively refined through five test coding sets, where coders

refined the codebook (the codes), questions, and organization of the tree. Improve-

ment was measured based on inter-coder agreement after modification (i.e., addi-

tion/modification of codes and/or questions) of the tree. Over several iterations,

coders discussed the results to resolve ambiguities and gaps in code definitions or

questions in the coding tree, refining questions difficult to reliably answer and com-

ing to an agreement on the codes [105], improving inter-coder agreement through a

4The final codebook definitions are given in Fig. 4.4 on page 56.
5To our knowledge, we are the first to build a coding tree that uses questions to guide coders

toward tags for qualitative data; most coding is done using a codebook and iterating on the codes
therein (e.g., [105,120,127,156]).

6For consistency, we call this coder C2 in the remainder of this chapter and Chapter 5.

53

relatively concise decision path. To code items that required more reflection, coders

could optionally consult a further detailed annotation (see Fig. 4.5), which was cre-

ated by the first coder during the refinement phase and used by coders during the

full coding exercise.

Many advice items positioned as practices in the DCMS 1013-item dataset were

explicit about technique or technical method to address security, but lacked action-

able detail. For example, Item #50 in the 1013-item dataset [200] states:7

Endpoints must always use standard cryptographic algorithms.

This led us to develop the continuum of Fig. 4.2. On its left side, practices are

less widely actionable (an incompletely specified practice, a general practice/policy).

These often specify vague technical directions to take or methods to use (“stan-

dard cryptographic algorithms” in the example), but not explicit actions as typically

needed to allow successful execution. On the right side are practices that even end-

users would be able to carry out (P6), suggesting that if an end-user would be able

to carry out the practice, so would a more experienced implementer. Moving left

requires more in-depth knowledge and experience to understand (or infer a direction

from) a practice, and implementation details become more ambiguous or unclear

(even to a security expert). Coders did not use this continuum for coding, but we

use it to visually represent where each category of practice may exist in relation to

each other as a companion to the coding tree.

The binary yes/no decisions made by coders (through use of the coding tree)

resulted in codes being assigned to advice items; as a side effect, by reaching one of

the codes also in Fig. 4.2, advice items were indirectly placed onto the continuum.

In contrast, where to directly (manually) place an advice item on the continuum

(P1–P6 in Fig. 4.2) may be less clear or might result in some point between two

codes. For example, Item #90 states [193]:

Communications protocols should be latest versions with no publicly known vul-

nerabilities and/or appropriate for the product

7Numbered dataset is available in Appendix A.1.

54

N

Y

M1

Y

N
M2

Y

N

Y

N1.1

N1

P6P4 P5

N

Y
Y

P1

Advice item from dataset

N

Y

N

Y

T'

Y

N

P2

Y

N

T

P3

N

Q1

Q2

Q3

Q4

Q5

Q6Q11

Q10

Q9

Y

NQ8

N

Q7
Principles

Actionable codes
(practices)

Q1. Is the item conveyed in unambiguous language, and relatively focused?

Q2. Is it arguably helpful for security?

Q3. Is it focused on a desired outcome more than how to achieve it?

Q4. Does it suggest a security technique, mechanism, software tool, or specific rule?

Q5. Does it describe or imply steps or explicit actions to take?

Q6. Is it viable to accomplish with reasonable resources?

Q7. Is it intended that the end-user carry out this item?

Q8. Is it intended that a security expert carry out this item?

Q9. Is it a general policy, general practice, or general procedure?

Q10. Is it a broad approach or security property?

Q11. Does it relate to a principle in the design stage?

Figure 4.1: Decision tree for assigning codes to advice items (coding tree). Leaf node
codes explained in Fig. 4.4. Black shading (M1, M2, P1, P3) represents codes we
consider not beneficial to include in advice (for lack of actionability or feasibility);
white codes (P4, P5, P6) are desirable actionable practices (excluding infeasible
P3); grey codes (T, T ′, N1, N1.1, P2) are considered useful for context, but not
actionable.

55

P1, P2 *P5 *P4

Actionable by fewer parties Actionable by more parties

*P6
*P4. Practice (Security Expert) P1. Incompletely Specified Practice

 P2. General Practice or General Policy
*P3. Infeasible Practice

*P3

*P5. Practice (IT Specialist)
*P6. Practice (End-User)

Figure 4.2: Practice categories: Actionability continuum. Terms defined in Fig. 4.4.
An asterisk (*) indicates practice categories that we define as actionable.

This advice item might be (manually, i.e., directly) coded as either P4 or P5 de-

pending on knowledge of the coder (a limitation, discussed in Chapter 5).

Making a second code available to coders

To further address reproducibility in use of the coding tree, a second code (for a

given advice item) is optionally available to a coder. If the coder reaches a question

that, based on their interpretation of the item, could be answered both as yes and

no, this option allows (one time only, per advice item) both the yes and no edges

in the coding tree to be followed to their respective leaf node code. As a result, two

codes (first and second codes) would be assigned to the advice item. For example,

Item #977 states [170]:

The RTOS makes use of secure storage to protect sensitive application data and

secrets and additionally binds the data to a specific device instance.

A coder may answer no to Question 5 if they believe this advice does not describe

Focus on end-results;
Less technical/more general

Focus on mechanism;
More technical/specific detail

Requirement Guideline/Recommendation

● ●●●
▲ ▲

Outcome Practice (Fig. 4.2)Principle Standard

Potential target for: ●▲

★

Figure 4.3: Relationship between terms based on inferred focus of advice’s intent.
The ⋆ denotes where we suggest policies [83] fit on this continuum; arguably, they
might alternatively be located in parallel or just to the right of principles. We note
that practices and policies may not always align—practices may be, e.g., delayed by
policies through need for organization approval, or rejected due to incompatibility
with policy goals.

56

M1. Not Useful (too vague/unclear or multiple items): Advice that does not make
sense from a language perspective (e.g., not full sentence, unclear grammar), or is not focused
on a specific task/action to complete.

M2. Beyond Scope of Security: Advice that is not clearly an item that would be executed
for the benefit of security.

N1. Security Principle: Advice that suggests a generic (as in applying to many situations)
rule to follow that has shown through experience to improve security outcomes or reduce security
exposures. Discussed in Section 4.1.3.

N1.1. Security Design Principle: Advice that suggests a Security Principle, but specifically
for the Design phase of the lifecycle (therefore a subset of security principle).

T, T′. Desired Outcome: Advice that suggests a generic, high-level end goal that a stake-
holder would like to attain (as opposed to a means by which to reach a goal).

P1. Incompletely Specified Practice: Advice that suggests a technical direction of a prac-
tice (e.g., a technical method/technique, software tool, specific rule), but lacks clear indication
of any steps to be taken, and fails to meet our definition of actionable.

P2. General Practice or General Policy: Advice that is not explicit about any techniques
or tools, but is considered a general approach to improving security. This may also be policy-
related advice. These are not considered actionable (despite being labeled as a practice) due to
their general, less specific nature.

*P3. Infeasible Practice: A practice, but one whose execution would require an unreasonable
amount of resources (e.g., time, financial, human), or cost vastly more than what benefit would
be gained.

*P4. Specific Practice—Security Expert: A practice requiring an expert in security to
execute. These may require in-depth knowledge and experience of security topics, and often rely
on the advice recipient to infer steps that are not clearly defined in the advice.

*P5. Specific Practice—IT Specialist: A practice that IT specialists (dedicated IT and
development employees) developing or maintaining a product would be able to execute. These
practices do not require the advice recipient to be a security expert, but assumes basic knowledge
of computer security such as that gained through coursework in formal or informal education.

*P6. Specific Practice—End-User: A practice an end-user would be able to execute. These
are actionable by that audience, and typically executed by the user via direct interaction with
the device, using a mobile app, or cloud service.

Figure 4.4: Codes and descriptions for coding tree of Fig. 4.1. As discussed on
page 67, coders who reach M1 for an advice item may also opt to chose a sub-code
to denote the item as Unfocused. An asterisk (*) indicates practice categories that
we define as actionable (matching Fig. 4.2).

57

Q1. Does the advice make sense from a language perspective (e.g., it is a sentence that you can read
and makes sense), unambiguous (i.e., you can tell what they are trying to convey from a language
perspective, not technical), and not multiple items grouped into one piece of advice? Is the advice
focused on one topic, whether it is a step to take, an outcome to achieve, or security principle?
If the advice seems to have multiple topics being discussed or has multiple outcomes it wants an
implementer to reach, this would be considered unfocused.

Q2. Is the advice arguably useful for pursuing security in some way? Does it seem like it will help
improve security outcomes rather than processes unrelated to security?

Q3. Is the advice a high-level outcome rather than some method (or meta-outcome) for how to
achieve an outcome? E.g., data is secured in transit would be an outcome because it is a desired
goal or state, whereas encrypt data in transit is not because it explains a method for achieving that
outcome (in this case, encryption). Encryption may be considered a meta-outcome, as it is not
meaningful to the end-user’s ultimate goal of protected data.

Q4. Is the item a method used in achieving/following the advice? E.g., encryption or replacing
a password with black dots are techniques/mechanisms, but secure data or making the password
unreadable are not. An example of a specific rule: no hard-coded credentials—this is a rule that is
fairly specific as to its goal and would be followed like a practice, but not necessarily with actionable
steps.

Q5. Does the advice suggest actionable technical steps (one or more) that suffice to follow the
advice? It has sufficient detail to suggest a step/action to take.
Actionable: Involving a known, unambiguous sequence of steps, whose means of execution is gen-
erally understood.

Q6. Could the advice item be followed with an acceptable cost?. E.g., the advice would not take
years to follow, or have cost out of line with the anticipated benefit.

Q7. Does the item suggest that the end-user will be responsible for carrying out this practice? Note
that end-users first interact with devices after the Creation phase.

Q8. Does following this advice require an expert understanding of security and security implemen-
tation in order to properly follow the advice? Someone following this advice item would have to
be an expert in security to be able to understand it and successfully follow it, or be capable of
extracting actionable steps from an otherwise non-actionable item based on their experience.

Q9. Is the item a security policy (general rule) to improve security, but is not explicit about what
technical means is used? These are less actionable (akin to incompletely specified practices—see
definition in Q5), and are not technically explicit. A general policy often has more emphasis on
what is (dis)allowed (or may be a general rule closely related to a desired outcome), rather than on
how to achieve it.

Q10. Is the item a general way or general strategy, or a property that would improve security?
A security property is a characteristic or attribute of a system related to security. E.g., an open
design.

Q11. Some principles relate to the core design phase of the product/system rather than later
lifecycle phases.

Figure 4.5: Detailed annotation for the coding tree questions. Annotations were
available to coders if they needed further details to answer a particular question
regarding an advice item.

58

or imply actions to take (thus resulting in a code of Incompletely Specified Practice,

P1), but if they could argue it does, they could answer yes to Question 5, leading

them toward codes P3–P6. To encourage coders to be decisive, and to avoid intro-

ducing unnecessary complexity into analysis, only one additional tag was allowed,

and permitted in the coding interface; as it turned out, neither coder tagging the full

1013-item dataset (C1 from this chapter, C2 from Chapter 5) expressed the need for

more than two tags, so this design decision was not revisited.

As an argument could be made by a coder that a question could be answered yes

and no, we made the decision to consider both codes as equals in the analyses of

this chapter (and Chapter 5), i.e., neither code is considered more or less important

than the other; both codes assigned to an advice item are counted in the results

(Section 4.2). For calculating agreement in trial codings, in cases where two coders

availed themselves to a second coding on the same item, if coders agreed on at least

one code, it was counted as an agreement for that item.

Determining test set inter-coder agreement

For the development of the coding tree, i.e., during test codings, as opposed to the

two-coder full coding of the 1013-item dataset described in Chapter 5, by convention,

we considered agreement between two test coders if:

• their coding resulted in agreement on at least one code (one coder’s first or

second code matches either the first or second code of the other); OR

• both coders’ decisions resulted in an item coded into any code category from

P1 to P6 per Fig. 4.2; AND those two codes were within plus-or-minus one

code distance away on the Fig. 4.2 continuum.

For example, if one coding was Infeasible Practice (P3) and the other Specific

Practice—Security Expert (P4, one position right of P3), we declared this an agree-

ment on the basis that their proximity on the continuum implies equivalence, taking

into account the subjective nature of coders answering the decision questions. We

refer to this as the “plus-or-minus one rule” (“±1”). Fig. 4.3 relates practices in our

59

continuum (Fig. 4.2) with other concepts.8

Final test set coding and inter-coder agreement

A final test coding was done with a set of 20 items. Based on first/second codes

(page 55) and ±1 rule (page 58), the mean agreement rate between the three coders

was 73%. The following are the proportion of the 20 items that were agreements

between each coder (C1–C3),9 and their Cohen’s Kappa (κ) measure of inter-coder

reliability [148]:

1. C1 and C2: 75% agreement, κ = 0.67

2. C1 and C3: 80%, κ = 0.74

3. C2 and C3: 65%, κ = 0.59

Particularly between C1 and C3 (item 1 above), we view 80% as a good level of agree-

ment, and the inter-coder reliability score of κ = 0.74 is “substantial”, according to

a scale by Landis and Koch [131].10 Between C1 and C2, we consider 75% agreement

to be high; however, the reliability score drops significantly to κ = 0.67. Between

C2 and C3, we are disappointed with the level of agreement, and the reliability score

κ = 0.59 is also disappointing (“moderate” on Landis and Koch’s Kappa statistic

scale [131]). Chapter 5 investigates reasons for coder non-agreement in detail.

After the final test coding by the three coders, a detailed technical analysis and

full coding of the 1013 item dataset was done by the first coder using the coding

tree of Fig. 4.1. The coding exercise was facilitated by a software tool11 that we

developed to ease coding and record results (including first and second code, where

present, and to also collect other notes such as the lifecycle stage, page 61; and coder

comments/notes to later revisit). As the advice items in the dataset are grouped

by the 13 guidelines in the DCMS mapping document [63], all advice items in the

8This is discussed further in Section 4.1.3.
9 Recall from page 51 that Coder 1 (C1) is the thesis author, C2 is the additional coder, and

C3 is the thesis author’s research supervisor.
10Landis and Koch [131] regard their scale as “clearly arbitrary”. Nonetheless, as it is commonly

used by others, we use it here as a benchmark for comparing our coder agreements.
11Information about the coding tree interface tool’s availability is discussed in App. A.1.

60

coding of the full 1013 item set were randomly ordered to avoid bias from reading

similar advice in repetition.

In contrast to typical inductive coding exercises where a code is manually assigned

to an item by a coder, when we say an advice item is “coded” by a coder, we mean

they used the coding tree, and the associated methodology assigned the resulting

code. The coding interface tool that we built displayed the coding tree (Fig. 4.1),

code definitions (Fig. 4.4), detailed annotations for each question (Fig. 4.5), and two

drop-down boxes where coders were asked to input the codes delivered through use

of the coding tree.

Coding tree methodology summary

In summary, an iterative inductive coding methodology was used both to derive codes

and build the coding tree, and the coding tree was used to code the 1013 advice items

(Section 4.2). While the coders were asked to follow the coding tree down to the leaf

nodes and then enter the code delivered into the drop-down boxes, in our software

implementation there were no restrictions to stop coders from immediately selecting

a code based on their first reading of the advice item. This limitation is discussed in

Chapter 5.

We note that many of the terms discussed in Chapter 3 (e.g., categories from Sec-

tion 3.2; the quality, commonality, and stipulation categories) are not represented in

our codes. Where no extra context is provided about an individual advice item, and

we use only the text of the advice (as was our case with analysis herein), it is diffi-

cult to know if an item belongs to any of these categories. For example, determining

the quality of an advice item would require knowledge of how a community rates a

practice, to know its commonality among practitioners requires knowledge of how

frequently that advice is used, and to know if it is stipulated requires knowledge of

how that practice is mandated in possibly widely varying real world environments.

As such, terms like best practice, common practice, or regulation are not used in our

codes (Fig. 4.4). We have instead used codes that can be applied to advice items

without requiring (unavailable) contextual information.

61

A decision was made to use a single coder for the 1013-item coding exercise de-

scribed in this chapter,12 which was based on all test coders reaching a consensus on

the final set of codes and questions in the coding tree (consistent with the methodol-

ogy of, e.g., Huaman et al. [105]), the acceptably high level of agreement during test

codings, and the work effort required to manually code (via the coding tree) 1013

items. Using a single coder is noted in Chapter 5 as a limitation of this chapter’s

work; however, Chapter 5 extends this chapter’s analysis to include a second coder,

aligning more closely with the coding methodologies of, e.g., Krombholz et al. [127],

Kang et al. [120], and Naiakshina et al. [156],13 and pursues detailed explanations of

the larger deviations found between the coding results of coder C1 and coder C2.

4.1.2 Advice Categorization by Lifecycle Phase

Separate from the inductive coding of Section 4.1.1, the first coder assigned each

actionable item (P3–P6) to a stage in the IoT lifecycle (Fig. 3.1 on page 29) where

the item could be best carried out (in the subjective opinion of the coder), indepen-

dent of the codes defined and used in the coding tree. This was done by determining

which stakeholder would be in a position (in our view) to carry out the item, and

matching where this would appear to best occur in the lifecycle. This determina-

tion was based on which stakeholders could reasonably execute a practice (within

reason—an end-user given an API would not be likely to implement a best practice

or fix a vulnerability), not necessarily the single stakeholder in the best/most effec-

tive position to implement it, thus allowing for items to be associated with multiple

stages. For example, Item #191 [92] states:

When a product is being developed it is often enabled with debugging and test-

ing technologies to facilitate the engineering process. This is entirely normal.

However, when a device is ready for production deployment, these technologies

should be stripped from the production environment prior to the definition of the

Approved Configuration.

12At the time we conducted this chapter’s research, the second coder (C2 from Section 4.1.1)
had not yet completed the tagging of the full 1013-item dataset. Chapter 5 reports on the second
coder’s full coding results.

13The coding methodologies of these studies are compared with ours in Chapter 5’s Section 5.4.

62

This item could either be executed in the OS/App Development stage (1.2b) where

code is stripped from software before completion, or during the Integration & Pre-

Configuration (1.3) stage where features may be disabled or left out of device inte-

gration. We considered only practices (being implicitly actionable) for this catego-

rization, as without actionability, it is difficult to determine what steps would need

to be taken and when (in the lifecycle) they would be executed.

While an indication of where the advice item would be carried out in the lifecycle

was included by many items in the advice statement itself (e.g., do not hard-code

secret access codes for testing/debugging in software [113]), others required subjective

judgement for placement (e.g., “keep software updated” [67] could be targeting the

Creation phase or Usage phase depending on which stakeholder it implies should

maintain software). If the item did not have an obvious or implied associated lifecycle

phase, we categorized it as Unclear (see Fig. 4.7 on page 69).

4.1.3 Relationship to Security Principles

We observed that many security advice items were rephrasings of established security

principles. In our context of computer security, we define a principle to be a generic

(applying to many situations) rule shown through experience to improve security

outcomes or reduce exposures, and a design principle to be a subset specifically

guiding the design of a system. Other subsets may relate to other lifecycle phases.

For context, note Saltzer and Schroeder [182] define eight “[...] useful principles that

can guide the design and contribute to an implementation without security flaws”.

NIST [197] notes “the primary focus of these principles is the implementation of

technical controls”,14 suggesting that security principles are appropriate targets to

be implemented via practices. In our coding tree, both security principles and (more

specifically) security design principles are leaf nodes.

Fig. 4.3 on page 55 conveys our view of the relationship between security princi-

ples, practices, outcomes, and other terms. On one extreme (left) are concepts more

focused on end-result (outcomes); on the other are the most actionable items that

14Examples of these principles (from the quote) are “protect against all likely classes of ‘attacks’”,
“use unique identities to ensure accountability”, and “limit or contain vulnerabilities” [197].

63

focus on mechanisms to reach outcomes, often specified in fine detail (standards).

As Fig. 4.3 indicates, some items on this continuum may serve as a guideline or

requirement (Table 3.2 on page 44). Ideally, in our view, what is imposed as re-

quirements by governing bodies should be practices or standards (versus principles

or outcomes), as requirements should be actionable so those subject to them have a

clear understanding of how to follow them (cf. Section 3.2.2 for actionable). This is

represented on this continuum by the labeling of Practice and Standard as potential

targets for requirements (denoted by the triangle).

4.1.4 Actual Use of Security Advice Coding Tree Methodology

We envision the methodology described in Section 4.1 to be used primarily in two

ways. The first is for measuring the actionability of existing advice as a means to

establish a general view of the current state of IoT security advice, and to determine

where advice fails to meet the needs of security practitioners. This is the primary

focus of the coding exercise described in Section 4.1, and analyzed in Section 4.2.

The methodology can be used in a second way for the analysis of new IoT se-

curity advice, as a tool to assist advice authors in creating actionable advice. If

advice authors themselves use the coding tree on their own advice items, they can

differentiate actionable from non-actionable advice (among other more fine-grained

characteristics of advice). After using the coding tree, security advice items that

analysis tags with an undesirable code can then be revisited by advice authors to

revise, reword, and clarify the explanation of the advice.

For advice dataset creators to gain maximum benefit from the coding tree method-

ology, they would ideally have developed their datasets based on a predefined set of

target categories/codes, as the coding tree reveals categories of advice within a set,

but cannot itself determine which codes are intended or desired by an advice dataset

creator. We view the creation of actionable practices as the preferred objective for

advice authors; however, creating practices might not be the intention of all advice

authors—some may instead intentionally craft non-actionable guidance in the form

of Outcomes (T/T ′), General Practices or General Policies (P2), or Security Princi-

ples (N1/N1.1)—Fig. 4.4 gives descriptions of these forms of advice. Advice authors

64

may use the coding tree to steer their advice toward non-actionable codes, but we

recommend it be used in the pursuit of (feasible) actionable codes (P4–P6).

Once an advice item is revised, the questions in the coding tree may yield different

answers, giving advice authors feedback about whether their changes have had a

positive impact on the actionability of their advice, or if it follows a path down the

tree to a more desirable code. If the coding tree outputs an undesirable code (e.g.,

non-actionable), those giving the advice may be able to observe (from the coding

tree) at which question the advice diverged from a path to a desired code.

For example: “encrypt stored passwords” gives vague advice and is ambiguous on

how to achieve encryption. Question 5 (from the coding tree, page 54) sends this

advice to Incompletely Specified Practice (P1), as it lacks actions (explicit or im-

plicit) to take. The advice item could be reworded to specify a particular encryption

algorithm and mode. An accompanying document or note could also provide explicit

references to aid implementation, thus now passing Q5 as actionable.

4.2 Empirical Analysis of IoT Security Advice Dataset

In this section we carry out our (single coder) analysis of the 1013-item IoT security

advice dataset, which for context, is the dataset of security advice from which the

DCMS created their 13 guidelines [62]. We coded the items in this collection using

the methodology of Section 4.1. The primary goal of assigning each item to codes

(and associated definitions) is to provide a general sense of how well existing advice

dataset lists and literature specify practices (as opposed to advice positioned as

practices, but failing to be actionable, as required by our definition). Identifying

where practices are carried out throughout the IoT lifecycle allows us to see which

stakeholders are in the best position, or have the greatest number of items to address

regarding contributing to overall device security.

4.2.1 Results of Coding

Fig. 4.6 summarizes the distribution of codes given to all advice items in the DCMS

1013-item dataset, as coded by the first coder (C1). For distinguishing actionable

versus non-actionable advice (bottom of figure), if an item had two codes (first and

65

M1. Not Useful
M2. Beyond Scope of Sec.

N1. Sec. Principle
N1.1. Sec. Design Principle

T/T′. Desired Outcome
P1. Inc. Specified Practice

P2. General Practice/Policy
*P3. Infeasible Practice

*P4. Security Expert
*P5. IT Specialist

*P6. End-User

Non-Actionable (total)
*Actionable (total)

119

98

0.3% (3)

693
320

26%

1% (13)
2% (22)

10%

0

0

139 14%
214 21%

315 31%
114 11%

32%
68%

Based on analysis of the DCMS
1013-item dataset

140

Unfocused (14%)
259

Figure 4.6: Main summary of advice coding. Sum in top portion of graph exceeds
1013 as items may be assigned two codes (first/second—recall Section 4.1.1). Shading
intensity follows the same scheme as Fig. 4.1 on p. 54. See p. 67 for discussion of left
portion of M1 bar.

second) and at least one was an actionable code (i.e., P3–P6), we declared the

item actionable based on the reasoning that an argument could be made for its

actionability. For example, if an item was coded both as an Incompletely Specified

Practice (P1) and Specific Practice—Security Expert (P4), we declared the item

actionable as P4 is defined to be actionable. As such, the sum of actionable and

non-actionable items in Fig. 4.6 adds to 1013.

The coding tree’s software interface allowed a coder to designate whether an item

was specific to IoT. None of the items in the dataset were designated in this way.

This suggests our methodology is broadly applicable. Following this finding, we

intentionally left the resulting coding tree generic (non IoT-specific). While herein,

we used the coding tree to explore IoT security, we believe that its design and

resulting structure apply more widely to analysis of security advice in general.

4.2.2 Proportion of Non-Actionable Advice

Our analysis shows that organizations—often highly credible ones—are producing

recommendations for manufacturers that are not, by our definitions and analysis,

actionable, thus we believe at greater risk of being improperly (or not at all) executed

66

or implemented. This low proportion of actionable practices (of the 1013-item set)

is, in our view, a signal that the security community must significantly improve

how we capture and state “best practices” if manufacturers are expected to follow

recommendations.

The methodology used declares any code after the yes branch of Question 5 in the

coding tree (P3–P6, see Fig. 4.1) to meet the definition of actionable (Section 3.2.2).

In total, 32% (320/1013) of advice items were found to be actionable (at least one

actionable code as explained in Section 4.1.1; see Fig. 4.6):15

• 21% (214/1013) of items were coded as Specific Practice—Security Expert (P4);

• 14% (139/1013) as Specific Practice—IT Specialist (P5); and

• <1% (3/1013) as Specific Practice—End-User (P6).

The Infeasible Practice (P3) code went unused; this was encouraging, suggesting

that advice providers have an understanding of what sorts of practices are feasible

(in both resources and knowledge) for their target audience. Similarly, the code

Beyond the Scope of Security (M2) was also unused; however, this is arguably due

to source documents being generally targeted at computer security.

As Fig. 4.6 notes, 68% of the advice was declared to be non-actionable. We

would expect that this significant majority of advice items will either be poorly

implemented despite the advice recipients’ best effort to understand the advice, or

not at all; both cases representing a failure. This is not to say that we believe non-

actionable advice is useless—outcomes, principles, and general practices (Fig. 4.4)

still specify desirable end-results (outcomes) and generic goals. Actionability may

not be essential in all use cases (cf. page 63); however, our underlying assumption

is that advice givers (for the advice datasets under discussion) intend to be offering

advice positioned as best practices. We argue that actionability should be considered

a high (if not the highest) priority among the characteristics of such security advice

(see Section 3.2.2).

15Percentages in this list sum to more than 32% (proportion of actionable advice) due to the use
of a second code in some cases.

67

4.2.3 ‘Not Useful’ Advice

During the iterative development of our coding tree methodology, we observed many

advice items in the DCMS 1013-item dataset (described in Section 3.1.2) tended

to not be actions to take, but descriptions of security techniques (e.g., a hardware

security module, public-key encryption) or threats to a system (e.g., unused but

accessible network ports), and offered no suggestion for any action to take or execute.

Item #387 [200] provides an example of this:

Network firewalls are message-oriented filtering gateways used extensively to seg-

ment IIoT [industrial IoT] systems. Most firewalls are Layer 2, 3 or 4 IP

routers/message forwarders with sophisticated message filters. Firewalls may be

deployed as either physical or virtual network devices. A firewall’s filtering func-

tion examines every message received by the firewall. If the filter determines

that the message agrees with the firewall’s configured traffic policy, the message is

passed to the firewall’s router component to be forwarded.

One could make the argument that the description of a technique implies that the

advice giver wants a follower to use the technique, but the italic text block above

reads quite different from “do this” security advice and is lacking in actionable detail.

As such, we consider advice of this nature to be not sufficient for a stakeholder to

execute. 26% (259/1013) of items were coded as Not Useful (M1).16 Note that M1

is also used for advice items that are judged to “not make sense” from a grammar

or language perspective.

Similarly, individual advice “sub-items” are commonly given in rapid succession

within a single advice item (which may take the form of several sentences or a

paragraph). As a sub-category of the Not Useful (M1) code, we added an Unfocused

supplementary code for coders to use when they find multiple sub-items within one

item (represented as the left sub-bar of the Not Useful code in Fig. 4.6 on page 65).

For example, Item #84 [48] is in our view, an example of this:

IoT Devices Should Follow Security & Cryptography Best Practices. [1] BITAG

16See Fig. 4.6 and M1 description on page 56 (Fig. 4.4).

68

recommends that IoT device manufacturers secure communications using Trans-

port Layer Security (TLS) or Lightweight Cryptography (LWC). Some devices can

perform symmetric key encryption in near-real time. In addition, Lightweight

Cryptography (LWC) provides additional options for securing traffic to and from

resource constrained devices. [2] If devices rely on a public key infrastructure

(PKI), then an authorized entity must be able to revoke certificates when they be-

come compromised, as web browsers and PC operating systems do. Cloud services

can strengthen the integrity of certificates issued by certificate authorities through,

for example, participating in Certificate Transparency. [3] Finally, manufactur-

ers should take care to avoid encryption methods, protocols, and key sizes with

known weaknesses. [4] Vendors who rely on cloud-hosted support for IoT devices

should configure their servers to follow best practices, such as configuring the TLS

implementation to only accept the latest TLS protocol versions.

This advice item jumps across four topics (we inserted the numbers for exposition):

(1) the use of TLS or lightweight cryptography, (2) certificate revocation, (3) avoiding

weak or vulnerable key sizes, and (4) avoiding outdated TLS versions. Trying to

successfully code advice such as this (i.e., as a coder) was a challenge, as different

sub-items could be coded differently.

We found that advice items with a longer word length were often unfocused in

this way. In total, 54% (140/259) of the items that were tagged with Not Useful

(M1) codes, or 13.8% (140/1013) of all items were coded as Unfocused implying

that in the judgement of the coder (thesis author) they contained multiple distinct

topics within the advice item (similar to the above example). Had we extracted

each sub-item from the original dataset (making them more narrowly focused, but

as a result, potentially removing them from surrounding context), these may (most

likely would; Chapter 6 examines this issue) have been coded differently. This is a

limitation of this work (discussed in Chapter 5).

4.2.4 Associating Advice Items with IoT Lifecycle Stages

Fig. 4.7 shows the results of the thesis author’s manual association of each of the 320

actionable practices (Fig. 4.6 on page 65) with one or more of the lifecycle stages.

69

1.1 Design
1.2a Hardware Manufacture
1.2b OS/App Development

1.3 Integration & Configuration

2.1 Installation
2.2 Configuration

3.1a Normal Use
3.1b Software/Firmware Update

4.1 Data/Key Removal
4.2a Disposal

4.2b Transfer Ownership

32

234
81

0

10%

73%
25%

<1% (1)

22%

8%

0

1% (4)

16 5%

3% (10)

69

Unclear 30

25

1. Creation
(Total: 284)

2. Install
(Total: 16)

3. Usage
(Total: 35)

4. Decomm.
(Total: 4)

9%

Figure 4.7: Number of actionable practices that we declared as suitable to imple-
ment at each lifecycle phase (Fig. 3.1). Total of all numbers and percentages exceed
actionable practice total (320), phase totals, and 100% as practices may be suitable
to implement in multiple stages. Percentages are proportion of 320 actionable prac-
tices.

All lifecycle phases associated with each practice (Section 4.1.2) were combined to

yield the count shown for each bar. For example, if an item was coded as taking

place in both the OS/App Development (1.2b) and Design (1.1) stages, each of these

counts were increased by one (1).

The practice distribution among phases reveals important information about the

overall execution of best practices: 89% (284/320) of practices that were deemed

actionable could be implemented in at least one lifecycle phase within the manufac-

turer’s control (i.e., the Creation phase), i.e., the designers and manufacturers are

in a position to implement them. As a subset of this, the OS/app developers alone

(Phase 1.2b, Fig. 3.1) are in a position to implement 73% (234/320) of practices.

This follows from many advice items being software-related, thus suitable for imple-

mentation by one or more of several stakeholders involved in software development,

before the product is in end-user hands.

While this finding may seem self-evident, it draws focus to the importance of

attention to security during the product (device) Creation phase, and in particular,

the importance of IoT security advice being implementable (and understandable) by

IoT device manufacturers and their software development partners.

70

4.3 Related Work

Explicit formal definitions for the term best practice are rare in the security literature.

Literature about the nature and definition of security best practices (as opposed to

examples of best practices) is discussed in Section 3.2. Beyond this mention here of

defining best practice, in this section we discuss related work on establishing security

practices for IoT (as opposed to the characterization of what makes advice useful,

as done in Chapter 6).

Tschofenig and Baccelli [204] discuss efforts by The European Union Agency for

Cybersecurity (ENISA) and the IETF to provide recommendations and specifications

on IoT security. They categorize technical and organizational areas to be considered

for the secure development and use of IoT devices. Moore et al. [153] pursue specific

best practices for IoT, specifically regarding network-based attacks. Based on our

definitions herein, most of their advice items are not actionable (thereby not what

we consider to be practices). Dingman et al. [66] examined six sets of IoT security

advice and looked to determine whether three large-scale security events may have

been averted if their collected security advice was followed; our work in this thesis

focuses on the categories of advice (as captured by the codes, and how they relate

to actionability) rather than the technical content contained in advice.

A number of government and industrial agencies provide security advice for IoT,

for both manufacturers and groups looking to acquire IoT devices for their orga-

nizations. ENISA [71] published an expansive document about IoT security. This

includes a substantial set of security recommendations, but also useful contextual

and informative sections including (to single out a select few) the document’s target

audience (cf. Section 3.2.2), an overview of what IoT is and the relevant components,

threat and risk analyses, and technical measures for executing the advice (these mea-

sures appear to be positioned as technical steps to complement other security advice).

ETSI [68] (cf. Section 3.1.2) provides a series of baseline requirements for IoT se-

curity. These requirements use the 13 DCMS guidelines [62] as general topic headers

(adding a new one of their own), but provide more detail about technical steps to be

taken. These baseline requirements are discussed in depth in Chapter 6. To supple-

ment the baseline requirements document, ETSI provides a document describing how

71

to confirm conformance with the advice therein, noting that the advice in the support

document is independent of an assurance scheme [69]. Assurance is historically as-

sociated with products for governmental use [43, Chapters 18–21] [88, Chapter 13],

but is typically considered too expensive or otherwise unsuitable to the consumer

space. For DCMS documents [59, 62,63] used in this thesis, see Section 3.1.2.

NIST published three documents surrounding the interaction between US federal

government agencies and IoT manufacturers [159]. Two of these NIST documents

[72, 73] aim to assist IoT manufacturers to produce secure devices specifically for

use in the US federal government by offering technical and non-technical baseline

guidance. One of the NIST documents [74] is intended to help government agencies

learn what features or characteristics they should seek when procuring IoT devices.

RFC 8576 [82] proposes a generic lifecycle model of an IoT device, presented

as a simplified model. Other descriptions of lifecycles may include the key func-

tional components that describe its primary function (versus the entirety of its

life), e.g., Alrawi et al.’s IoT malware lifecycle components [13]. NIST’s SP 800-

27 [197] outlines five major general computer and IT system lifecycle phases and

suggests 33 IT security principles. While developed independently, our lifecycle of

Section 3.1.1 unsurprisingly has similarities, e.g., design/development, primary us-

age, and disposal/end-of-life phases. The NIST SP suggests that many individual

principles are vital to positive security outcomes across multiple phases, implying

there are important principles for phases other than the design phase. NIST SP 800-

160 [178] outlines a taxonomy of 32 security design principles covering three areas of

systems security: security architecture and design, security capability and intrinsic

behaviors, and lifecycle security ; the latter two are not specific to the design phase.

Morgner et al. [154] explore the relationship between efforts in formal IoT tech-

nical standards and the (unfortunate) reality of the economics of IoT security and

its implications for the general security of manufacturers.

4.4 Concluding Remarks

The main contribution of this chapter is the development of the coding tree method-

ology and its use to analyze a large collection of IoT security advice. In particular,

72

we examined how actionable current advice17 is, and what advice characteristics (i.e.,

corresponding to the codes of Fig. 4.4) emerge from this dataset. Our main focus

has been the DCMS 1013-item IoT security advice dataset, which itself originates

from other organizations.

For our analysis, iterative inductive coding was used to create a codebook that

represents the characteristics of security advice (e.g., whether they are objectives

to reach or practices to follow). To more objectively assign a code to each item

in the dataset, we designed a coding tree. We suggest that IoT security advice-

giving organizations consider using the coding tree and methodology of Section 4.1

to measure whether potential advice is actionable, and take steps to improve the

advice’s actionability, unless their explicit goal is to target, e.g., security principles

or outcomes to reach (Fig. 4.4).

From our analysis of 1013 advice items from industrial, governmental, and aca-

demic sources (Section 4.2), we were surprised to find that the majority of advice

items are not actionable practices that can be followed, but rather, what we deem

to be non-actionable advice. Among the practices we identified as actionable, 73%

are suitable to implement in the OS/App Development lifecycle phase of an IoT de-

vice (Section 4.2.4), thus by the product manufacturer and its software development

partners. It is generally recognized that poor security practices early in the lifecycle

accrue what we might call a security debt, with negative consequences in later phases

(analogous to tech debt where technical shortcuts during development incur later

costs [128]); from this, our results in this chapter highlight the fundamental role of

pre-deployment stakeholders to underpin security for aspects that they alone are in

a position to control.

As the Internet of Computers has grown into the Internet of Things, an old

problem remains: how to ensure that security best practices are followed. An open

question is whether the research community can find ways to help advice-givers

(including governments) to compile more effective guidance, and have manufacturers

embrace and execute advice given. Our work argues that currently, even in the

security and technology communities (not to mention the general public), ambiguity

17 We use the DCMS 1013-item dataset as representative of current IoT security advice.

73

surrounds the language of technical best practices—such that arguably, the term does

as much harm to the security community as good. One hypothetical path forward (to

provoke thoughts, more than as a practical suggestion) is to seek agreement within

the technical security community that the term itself is vague and nebulous, and its

use should be boycotted. Another path forward is to work towards consensus on

definitions (as we pursue in Chapter 3).

We suggest that organizations proposing and endorsing “best practice” advice

have a clear idea of whether they are recommending practices, specifying baseline se-

curity requirements, or simply offering advice about good principles to think about.

If the goal is that relevant stakeholders adopt and implement specific practices aim-

ing to reduce security exposures, we believe it is imperative that (actionable) best

practices be identified and clearly stated, versus vague outcomes—lest the target

stakeholders be unable to map advice to a concrete practice, even if so motivated.

In summary: if security experts do not find guidelines clearly actionable, we should

not expect (security non-expert) manufacturers to magically find a way to adopt and

implement the advice. The economic motivation of manufacturers [154] (keeping in

mind markets for lemons [5]), their poor track record in IoT security, and lack of

accountability for vulnerabilities, point to a worrisome future. We hope that our

work is a step towards improving the efficacy of advice on best practices.

Chapter 5

Critique of Coding Tree Methodology

In this chapter, we perform a critique of the SAcoding method to determine if the

results from Chapter 4 can be reproduced by a second coder. To do this, using

the SAcoding method, a second coder conducted the tagging exercise on the 1013-

item DCMS advice dataset (the same as the first coder from Chapter 4), and we

compared their results with those of the first coder. Through an analysis of coder

agreement on tags and answers to individual questions, we provide a critique of the

coding tree methodology itself. Our analysis highlights areas where the coding tree

(its structure, instructions, and question descriptions) could be improved to enhance

coder tag agreement consistency, and provides other insights into the coding tree’s

utility, supporting our arguments on why it is useful. As we would like others to have

confidence to use our coding tree methodology to analyze different sets of security

advice (in both IoT and other security areas), we focus on the analysis of our results

and coder comparison.

Ideally, the coding tree would produce zero nonagreements (i.e., both coders agree

on all tags given to advice items). Despite our best efforts to create coding tree

questions that are as objective as possible (i.e., each question has clear criteria for

when to answer yes or no for an advice item), coders had numerous nonagreements

throughout the DCMS 1013-item dataset and in this chapter we look to identify

questions in our coding tree at which a large (or small) number of nonagreements

occur, and consider potential reasons underlying nonagreements. In this chapter,

we primarily focus on the coding tree’s structure and its instructions as vectors for

possible improvement. Chapter 6 focuses on criticism and improvement of security

advice.

Note that in the context of this chapter, an agreement (defined in Section 5.1.3)

takes place between two coders tagging advice using the coding tree; in contrast,

74

75

Chapter 4’s use of agreement was in the context of the trial codings with test sets

to develop the coding tree (pages 51–61), not its use on full datasets. We use the

findings and lessons learned from our analyses herein to inform Chapter 6’s analyses.

5.1 Methodology and Results

In this section, we discuss the methodology used in this chapter to gather and analyze

tagging data.1 To establish the data for these analyses (in the following sections),

a second coder (C2 ; the coder in the original analysis is denoted as C1) underwent

the same coding exercise as the first coder. Coding procedures (i.e., the coding tree,

instructions given to the coder, coding interface) for C2 remained the same as for C1

in Chapter 4. After C2 completed tagging the full DCMS 1013-item dataset, there

were two distinct sets of tagging results: C1’s results produced during the coding of

Chapter 4, and C2’s results as just described.

5.1.1 Extracting Tags Used by Coders

We analyze coder tag distribution and frequency as data for the analysis of coder

agreement. To determine how C2’s results compare to C1’s, we first extract the

tags resulting from each coder applying the coding tree methodology to all advice

items. To do this, for each advice item in the dataset of 1013 items (Section 3.1.2),

using all tags from each coder (a first, and optionally a second), the number of times

each tag occurred was counted separately for each coder. For example, for a given

advice item, if C1’s first and second tags were P5 and P4, C1’s count for each of

P4 and P5 would be incremented; this would not affect C2’s count for P4 or P5. As

these counts include both first and (when optionally selected) second tags, the sum

of all tag counts for each coder exceeds the number of the advice items in the dataset

(1013). Fig. 5.1 summarizes the counts; Table 5.1 shows each coder’s tag distribution

partitioned into the 13 groups specified in the DCMS guidelines document.

1Our methodology is compared and contrasted with similar research in Section 5.4.

76

T
ab

le
5.
1:

D
is
tr
ib
u
ti
on

of
tw

o
co
d
er
s’

(C
1

an
d
C
2
)
ad

v
ic
e
it
em

co
d
es

ac
ro
ss

th
e
13

D
C
M
S
gu

id
el
in
es
,
b
as
ed

on
ca
te
-

go
ri
za
ti
on

of
ad

v
ic
e
it
em

s
u
si
n
g
th
e
D
C
M
S
m
ap

p
in
g
d
o
cu
m
en
t
([
63
];

§3
.1
.2

h
er
ei
n
).

C
el
l
va
lu
es

re
fl
ec
t
th
e
p
er
ce
n
ta
ge

of
ea
ch

gu
id
el
in
e
th
at

w
er
e
ta
gg
ed

w
it
h
co
lu
m
n
1
co
d
es
,
fo
r
ea
ch

co
d
er
.
C
ol
u
m
n
su
m
s
fo
r
a
co
d
er

m
ay

ex
ce
ed

10
0%

as

co
d
er
s
co
u
ld

se
le
ct

u
p
to

tw
o
ta
gs

p
er

ad
v
ic
e
it
em

.
T
ab

le
id
en
ti
fi
es

th
e
co
d
es

th
at

ad
v
ic
e
to
p
ic
s
(e
ac
h
U
K

gu
id
el
in
e)

m
os
t

co
m
m
on

ly
re
ce
iv
ed
.
T
h
e
h
ea
tm

ap
al
lo
w
s
fo
r
co
m
p
ar
is
on

of
th
e
co
d
er
s’
co
d
e
d
is
tr
ib
u
ti
on

s.
R
es
u
lt
s
gi
ve
n
in

th
is
ta
b
le

ar
e

in
te
rp
re
te
d
in

S
ec
ti
on

5.
2
on

p
ag
e
88
.

U
K

G
u
id
el
in
e

C
o
d
er

U
K
-1

U
K
-2

U
K
-3

U
K
-4

U
K
-5

U
K
-6

U
K
-7

U
K
-8

U
K
-9

U
K
-1
0

U
K
-1
1

U
K
-1
2

U
K
-1
3

It
em

s
in

ca
te
go
ry

(/
10
13
)

8
1

6
3

1
4
5

8
4

1
6
5

1
6
1

6
5

9
8

3
9

5
1

2
2

1
8

2
1

M
1.

N
ot

U
se
fu
l

C
1

1
7
%

3
3
%

3
0
%

2
0
%

2
4
%

1
7
%

2
8
%

2
1
%

4
1
%

4
9
%

9
%

2
2
%

1
0
%

C
2

5
%

1
4
%

1
3
%

1
1
%

1
6
%

1
2
%

1
2
%

1
4
%

2
1
%

2
9
%

5
%

1
1
%

1
0
%

M
2.

B
ey
on

d
S
co
p
e
of

S
ec
u
ri
ty

C
1

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

C
2

0
%

5
%

1
%

0
%

1
%

0
%

0
%

2
%

0
%

0
%

0
%

6
%

0
%

N
1.

S
ec
u
ri
ty

P
ri
n
ci
p
le

C
1

0
%

2
%

2
%

0
%

0
%

3
%

2
%

2
%

3
%

0
%

0
%

0
%

0
%

C
2

0
%

0
%

0
%

0
%

4
%

1
0
%

3
%

1
%

3
%

0
%

0
%

0
%

5
%

N
1.
1.

S
ec
u
ri
ty

D
es
ig
n
P
ri
n
ci
p
le

C
1

0
%

0
%

0
%

1
%

1
%

7
%

3
%

4
%

5
%

0
%

0
%

6
%

0
%

C
2

0
%

0
%

1
%

2
%

1
%

6
%

2
%

2
%

5
%

0
%

0
%

1
1
%

1
0
%

T
.
D
es
ir
ed

O
u
tc
om

e
C
1

6
%

2
%

1
0
%

2
%

7
%

1
2
%

1
5
%

1
2
%

8
%

1
0
%

2
7
%

6
%

0
%

C
2

9
%

1
4
%

3
5
%

1
4
%

1
7
%

2
2
%

2
5
%

2
8
%

2
6
%

2
8
%

3
2
%

4
4
%

1
0
%

T
′ .

D
es
ir
ed

O
u
tc
om

e
C
1

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

6
%

0
%

C
2

3
%

0
%

1
%

1
%

4
%

1
%

0
%

1
%

0
%

0
%

9
%

0
%

0
%

P
1.

In
co
m
p
le
te
ly

S
p
ec
ifi
ed

P
ra
ct
ic
e

C
1

1
4
%

1
1
%

2
3
%

3
2
%

3
3
%

2
7
%

2
5
%

1
8
%

3
1
%

3
3
%

3
2
%

1
7
%

3
3
%

C
2

2
0
%

0
%

1
3
%

1
9
%

2
2
%

1
6
%

2
2
%

1
1
%

1
0
%

2
0
%

9
%

0
%

1
0
%

P
2.

G
en
er
al

P
ra
ct
ic
e
or

G
en
er
al

P
ol
ic
y

C
1

1
%

4
3
%

1
7
%

0
%

1
%

2
%

0
%

3
5
%

5
%

4
%

1
8
%

2
8
%

0
%

C
2

1
%

5
7
%

1
5
%

2
%

3
%

3
%

3
%

2
7
%

5
%

1
2
%

1
4
%

1
7
%

5
%

P
3.

In
fe
as
ib
le

P
ra
ct
ic
e

C
1

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

C
2

0
%

0
%

0
%

0
%

0
%

1
%

0
%

1
%

0
%

0
%

0
%

0
%

0
%

P
4.

S
p
ec
ifi
c
P
ra
ct
ic
e
-
S
ec
u
ri
ty

E
x
p
er
t

C
1

1
7
%

2
%

1
2
%

3
7
%

2
7
%

1
5
%

2
3
%

1
%

5
%

4
%

5
%

6
%

2
9
%

C
2

3
1
%

3
%

1
4
%

4
4
%

2
4
%

1
4
%

2
5
%

4
%

8
%

6
%

5
%

0
%

3
3
%

P
5.

S
p
ec
ifi
c
P
ra
ct
ic
e
-
O
th
er

In
d
iv
id
u
al

C
1

4
3
%

8
%

5
%

7
%

7
%

1
7
%

5
%

5
%

3
%

0
%

9
%

1
1
%

2
9
%

C
2

3
2
%

6
%

8
%

6
%

7
%

1
5
%

9
%

8
%

2
3
%

6
%

2
7
%

1
1
%

1
9
%

P
6.

S
p
ec
ifi
c
P
ra
ct
ic
e
-
E
n
d
-U

se
r

C
1

1
%

0
%

0
%

0
%

0
%

0
%

0
%

1
%

0
%

0
%

0
%

0
%

0
%

C
2

0
%

0
%

1
%

0
%

0
%

0
%

0
%

1
%

0
%

0
%

0
%

0
%

0
%

%
ta
gg
ed

as
ac
ti
on

ab
le

C
1

6
2
%

1
0
%

1
7
%

4
4
%

3
4
%

3
2
%

2
8
%

7
%

8
%

4
%

1
4
%

1
7
%

5
7
%

C
2

6
3
%

1
0
%

2
2
%

5
0
%

3
2
%

2
9
%

3
4
%

1
4
%

3
1
%

1
2
%

3
2
%

1
1
%

5
2
%

C
o
d
er

ac
ti
on

ab
le

d
iff
er
en
ce

1
%

0
%

5
%

6
%

2
%

3
%

6
%

7
%

2
3
%

8
%

1
8
%

6
%

5
%

77

M1. Not Useful

M2. Beyond Scope of Sec.

N1. Sec. Principle

N1.1. Sec. Design Principle

T. Desired Outcome

Non-Actionable (total)

Actionable (total)

26% (259)119
93

9
13
33
22
26
97
235

693
679
320
334

14% (142)

1%
1%

3%
2%
3%

10%
23%

0

68%
67%

32%
33%

Actionable vs. Non-Actionable Items (/1013)

Individual Tags (/1013)
140

49 Unfocused (14%)
Unfocused (5%)

Coder 1 (C1) Coder 2 (C2)

T′. Desired Outcome
18
<1% (1)

2%

P3. Infeasible

P6. End-User

P5. IT Specialist

P4. Security Expert

P1. Inc. Specified Practice

P2. General Practice/Policy

139
128

214
222

315
178
114
125

<1% (3)
<1% (2)

14%
13%

21%
22%

31%
18%

11%
12%

<1% (3)
0

Figure 5.1: Tag distribution of coding the full 1013-item DCMS dataset. Sum for
each coder (excluding actionable and non-actionable bars) exceeds 1013 as items
may be assigned two codes. C1’s results duplicated from Chapter 4 to aid visual
comparison. Actionable vs. Non-Actionable bars not drawn to scale. Note: While
the graph shows the number of tags of a given type for each coder, an identical
number of tags of, e.g., P2 would not imply that exactly the same individual advice
items were tagged P2 by both coders.

5.1.2 Proportion of Non-Actionable Advice

To determine whether an advice item is considered actionable or not, for each coder,

if either the first or (if present) second tag given to an item is actionable (P3–P6),

that advice item is considered actionable (as the coder could make an argument

for its actionability, as noted in Section 4.1.1). If either tag is actionable, this will

increment the count in the Actionable bar of Fig. 5.1 for that coder, otherwise the

78

count is incremented for the Non-Actionable bar. As this occurs exactly once per

advice item (per coder), the Actionable and Non-Actionable bars of Fig. 5.1 sum

to 1013 (total number of advice items) for each coder. See Section 4.1.1 for the

explanation of actionable tags.

From Fig. 5.1, we see C2 tagged 33% of items with an actionable tag. This

agrees with our finding on how actionable the DCMS 1013-item dataset is (C1’s 32%

from Chapter 4). Further, in more than 80% of advice items, both coders agreed on

whether any given advice item was actionable (discussed in detail in Section 5.2.4).

This suggests that the wording and selection of the coding tree’s questions and their

relative positions or locations in the tree allow for effective classification of actionable

items (versus non-actionable) using the coding tree.

Of the actionable tags, coders had similar proportions of use for the tags P5 (IT

Specialist—14% and 13%) and P4 (Security Expert—21% and 22%). The other two

actionable tags (P6, End-User ; and P3, Infeasible) were used a total of only 8 times

(out of the total 2026 items tagged by both coders), suggesting the advice items in

the dataset are, in general, appropriately targeted for their desired audience.2 Only

5 items were tagged as targeting end-users (P6), who are beyond the primary scope

of the advice; and 3 were considered infeasible (P3), suggesting that when advice in

this dataset is actionable (all tags beyond Q5’s yes branch), it is usually feasible to

follow.

Given that these two results align with the scope of the tagged advice (i.e., that

the advice is primarily for pre-deployment stakeholders), we believe the low use of

tags P3 and P6 indicates that this advice dataset meets its objective of providing

feasible (if actionable) advice for pre-deployment stakeholders [62,68].3

While both coders tagged the 1013-item dataset with similar numbers of action-

able tags overall, some tags were used more frequently by one coder or the other:

• M1 (Not Useful): 26% vs. 14% for C1 and C2, respectively

• T, T′ (Desired Outcome): 25% vs. 10%

• P1 (Incompletely Specified Practice): 31% versus 18%

2The targeted audience is very broad and non-specific, as discussed in Chapter 6.
3Section 5.2.2 discusses the low use of the P3 and P6 tags further.

79

Fig. 5.1 also shows that codes N1 (Security Principle) and N1.1 (Security Design

Principle) were used around twice as often by C2 than by C1 (33 + 26 = 59 vs.

13 + 22 = 35). For the other 6 code categories, coders had similar tag distributions

in that the number of items assigned to each tag differed between coders by at most 1

per cent of the number of items in the dataset. A similar code distribution does not,

however, imply coders agreed on the same codes for individual advice items. Initially,

a similar tag distribution appears promising, but overall it is premature to claim that

the SAcoding method can reliably estimate the proportion of a dataset’s advice items

in (most) categories; further evidence and perhaps methodology changes (discussed

in Section 5.3.3) would be needed to support a claim that tag distribution is repro-

ducible. The relationship between coder tag distribution and tag nonagreements is

discussed further in Section 5.1.7.

5.1.3 Coder Nonagreements

After extracting the tags used by each coder, we evaluated at which questions coders

had agreements and nonagreements for each advice item. We use agreements and

nonagreements in two contexts. In the context of tags, an agreement (hereafter a

T-agreement) is when at least one of the tags given to an advice item by a coder

(through use of the coding tree) is the same as one of the tags given by the other

coder; otherwise, it is a T-nonagreement (i.e., the coders have no tags in common

among their first and possibly second tags for an advice item).

In the context of a question, an agreement (hereafter a Q-agreement) is when both

coders provide the same answer to a question in the tree (e.g., both coders answer

yes, or both answer no). A Q-nonagreement is when coders answer differently to a

question in the tree (e.g., one yes, the other no).

A T-agreement is determined based on tags the coding tree assigns to advice

items (for each coder), a Q-agreement is determined based on individual questions

in the coding tree that two coders answer. Thus, Q-agreements are related to T-

agreements, as each coder’s path to a code through the coding tree dictates which

questions Q-agreements take place on.

How agreements and nonagreements (for both tags and questions) are determined

80

is described more thoroughly below. We describe non-matching tags and question

answers as nonagreements instead of disagreements, based on our view that the term

disagreement implies two coders explicitly disagreed on something (e.g., the tag to

be applied, or the answer to a question), rather than coders independently selecting

different sequences through the coding tree and the outcomes differing. Understand-

ing where coders had nonagreements most frequently (e.g., which questions in the

coding tree they diverge on) allows us to see where the coding tree might be improved

to more reliably converge coder answers toward yes or no, and highlight advice items

that are vague or open to subjective interpretation by a coder.

A coding sequence (hereafter sequence) is the sequence of question nodes resulting

from use of the coding tree on an advice item; the nodes are joined by edges, as

determined by yes/no question answers.4 The number of nodes in the sequence (n)

is the number of questions a coder answers before reaching a tag. For example, the

tag P1 is reached by answering Questions 1 (yes), 2 (yes), 3 (no), 4 (yes), and 5

(no), resulting in the sequence (Q1, Q2, Q3, Q4, Q5) of length n = 5. As a sequence

describes the path taken through the coding tree to reach a single code, a coder

determines one sequence for each tag assigned to an advice item. Sequences are not

explicitly created by coders, but result from answering a question at each node until

reaching a tag.

For a given advice item, a diverging question is the tree question at which two

coders give different answers, thus taking a different exit path from that node, even-

tually yielding different tags. When two coders yield a different tag on a given advice

item, we determine the diverging question by first finding where the two coders’ se-

quences overlap. Starting from Q1 in one coder’s sequence, we compare it with the

first node of the other coder’s sequence. If these match (Q1 always matches), the

node (question number) is appended to the overlapping sequence. The remaining

nodes of both sequences are compared in this way (see example below). As the over-

lapping sequence only contains nodes common to both coders’ sequences, question

order is preserved. The last node in the overlapping sequence is the diverging ques-

tion, as thereafter the paths differ. Consider the following example (underlined node

4See Fig. 4.1’s Y and N labeled edges from Q1 to a leaf node (code).

81

indicates the diverging question):

C1: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P5

C2: (Q1, Q2, Q3, Q4, Q9) ⇒ P2

Overlap: (Q1, Q2, Q3, Q4) ⇒ Q4 Q-nonagreement occurs at this question

We use this method to determine at which question the coders have Q-nonagreements.

As the number of tags given to an advice item by two coders can vary from 2 to

4, we consider three types of advice tag comparison (based on T-agreements). Each

comparison is within the scope of a single advice item, i.e., by looking at the tags

each coder (C1 and C2) assigned to that item.

As we consider first (subscript “1”, e.g., C11) and second (subscript “2”, e.g.,

C12) tags to be of equal importance (Section 4.1.1), these types are based on the

number of tags assigned by coders, not the tags’ status as either being the first or

second assigned to an item. Among all three comparison types, a match means that

two tags (one from each coder) are identical (e.g., C11 = C21)—a match never takes

place between two tags of the same coder.

5.1.4 Type A Tag Comparisons

In a Type A comparison, each coder gave only one tag (a first tag) to the advice

item. In this type, a T-agreement occurs if both coders’ first tag matched; a T-

nonagreement occurs otherwise. Consider the following example of a Type A T-

agreement and T-nonagreement:

T-agreement (C1 = C2):

C1: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

C2: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

T-nonagreement (C1 ̸= C2):

C1: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

C2: (Q1, Q2, Q3, Q4, Q9) ⇒ P2

T-nonagreement overlap:

82

C1, C2: (Q1, Q2, Q3, Q4) ⇒ Q4 Q-nonagreement occurs at this question

Note that there are only two sequences to compare in a Type A comparison (C11, C21).

5.1.5 Type B Tag Comparisons

In a Type B comparison, one coder gave one tag (first), and the other opted for two

tags (first and second), for a total of three tags to one advice item. In this type,

a T-agreement occurs if the single-tag coder’s first tag matched either the double-

tag coder’s first or second tag (again, as we consider both the first and second tags

to be of equal importance, a T-agreement is declared if either tag matches); a T-

nonagreement means the single-tag coder’s tag was not identical to either of the

double-tag coder’s tags. Consider the following example of a Type B T-agreement

and T-nonagreement (single and double underline indicate first and second overlap

T-nonagreement questions, respectively):

T-agreement (C1 = C22):

C1 : (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

C21: (Q1, Q2, Q3, Q4, Q5) ⇒ P1

C22: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

T-nonagreement (C11 ̸= C2 and C12 ̸= C2):

C11: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

C12: (Q1) ⇒ M1

C2 : (Q1, Q2, Q3, Q4, Q9) ⇒ P2

T-nonagreement overlaps:

1. C11, C2: (Q1, Q2, Q3, Q4) ⇒ length: 4 (diverges at Q4)

2. C12, C2: (Q1) ⇒ length: 1 (diverges at Q1)

In Type B comparisons, to determine a single question where coders diverged (a Q-

nonagreement), we use the longest T-nonagreement overlapping sequence ({C11, C2} =

4 > {C12, C2} = 1 from above), and declare the final question in that sequence to be

83

where coders had the Q-nonagreement. If we used the shortest of the two overlapping

sequences, in every instance that a coder tagged an item as M1 (Q1’s no answer),

the diverging question would be Q1, as it is the final question in the overlapping se-

quence.5 As in a T-nonagreement at most one coder could yield an M1 tag (it would

be a T-agreement if both did), the other sequence of the two-tag coder is necessarily

longer, providing a longer overlapping sequence to analyze. We recorded no cases

where one advice item had two overlapping sequences of the same length, but con-

taining different nodes. The above T-nonagreement example illustrates overlapping

sequences and how the T-nonagreement is determined for a Type B comparison.

5.1.6 Type C Tag Comparisons

In a Type C comparison, both coders opt for two tags (first and second), resulting

in a total of four tags assigned to an advice item. In this type, we declare a T-

agreement if one coder’s first or second tag is identical to either tag of the other

coder; a T-nonagreement occurs if neither of the two tags from the first coder is

identical to either from the second coder. Consider the following example of a Type

C T-agreement and T-nonagreement:

T-agreement (C11 = C22):

C11: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4 (matches C22)

C12: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P5

C21: (Q1, Q2, Q3, Q4, Q5) ⇒ P1

C22: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4 (matches C11)

T-nonagreement (C11 ̸= C21, C11 ̸= C22, C12 ̸= C21, C12 ̸= C22):

C11: (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8) ⇒ P4

C12: (Q1, Q2, Q3, Q4, Q5) ⇒ P1

C21: (Q1, Q2, Q3, Q4, Q9) ⇒ P2

C22: (Q1, Q2, Q3, Q4, Q9, Q10, Q11) ⇒ N1

5This example is discussed further in Section 5.2.

84

Table 5.2: The number of advice items considered in each tag comparison type (A–C)
and the number of T-agreements within each, and T-agreements where both coders
reached tags that were actionable, or both were non-actionable. T-nonagreement
percentages can be calculated as 100% minus agreement % stated in table. Regarding
denominators, note that 760 + 234 + 19 = 1013.

Actionable or non-
Type Num of advice items T-agreements (§5.1.3) actionable (§5.2.4)

Type A 760/1013 (75%) 308/760 (41%) 608/760 (80%)
Type B 234/1013 (23%) 130/234 (56%) 204/234 (87%)
Type C 19/1013 (2%) 17/19 (89%) 18/19 (95%)

As there are so few instances where both coders used two tags (as discussed shortly),

Type C is excluded from most of our subsequent analysis.

5.1.7 T-agreements Summary and Results

Using the above methodology for calculating T-agreements, 760 advice items received

one code from each coder (Type A), 234 had one code from one coder and two from

the other (Type B), and 19 had two codes from each coder (Type C).6 Table 5.2

summarizes the results of calculating T-agreements and T-nonagreements for Types

A, B, and C. Table 5.3 summarizes the T-agreements of the Regular calculation

type (column 3 from Table 5.2, page 84) and the number of times each coder’s code

selection order (first and second codes) resulted in a match with the other coder’s

codes across Types A, B, and C.

In Table 5.2, the high percentage of T-agreements among Type C advice items for

6The number of instances from each comparison type are the denominator in the last two columns
of Table 5.2.

Table 5.3: The number of times each first or second codes from each coder resulted
in a T-agreement (column 3 from Table 5.2) for the three comparison types. Each
numerator is the number of T-agreements within a code comparison pair; denomi-
nator is total number of T-agreements in a comparison type.

T-agreement case (code pair order)
Type First-First First-Second Second-Second

Type A (308 T-agreements) 308/308 (100%) – –
Type B (130 T-agreements) 78/130 (60%) 52/130 (40%) –
Type C (17 T-agreements) 5/17 (29%) 7/17 (42%) 5/17 (29%)

85

the Regular calculation type may be partially explained by the additional involve-

ment of the second tag from both coders. As shown in Table 5.3, for the Type C

comparison, a combined 71% of T-agreements were First-Second or Second-Second,

i.e., occurred between either one coder’s first tag and the other’s second tag, or both

coders’ second tags. While there were few Type C T-agreements on first codes (29%,

much lower than even Type A’s 41% T-agreements from Table 5.2), they tended to

agree more often (proportionally) when the second code was involved (as exemplified

in Table 5.2’s column 3 where T-agreements increase in Types B and C).

Overall, coders agreed on codes in 45% of cases ((308 + 130 + 17)/1013 from

Table 5.2).7 Comparing coder tags assigned to an individual advice item [33], for

a T-nonagreement, we can determine which tags were selected by each coder, i.e.,

when one coder reached a tag, what non-agreeing tag did the other coder reach? 8

This provides additional information about tags that were reached across the entire

dataset with similar frequencies by both coders (e.g., P4 ’s 1 percentage point differ-

ence), but for which there often failed to be a T-agreement on individual items. This

provides further details related to the assertion that a similar coder tag distribution

does not imply tag agreements for individual items (mentioned in Section 5.1.2).

Type A and Type B comparisons account for 98% of two-coder tag comparisons

in column 2 of Table 5.2. As so few advice items were tagged twice by both coders

(19/1013), we do not analyze or discuss Type C agreements (of tags or questions)

further (beyond Tables 5.2 and 5.3).

5.1.8 Proportion of Q-nonagreements Within Each Question

Fig. 5.2 summarizes the distribution of Q-nonagreements at each question for com-

parison types A and B. To understand how commonly coders had Q-nonagreements

7Coder agreement rates here (45%) are notably lower than the test set agreement rate of Chap-
ter 4 (73%). We attribute this in-part to Chapter 4’s use of the ±1 rule (Section 4.1.1 on page 58),
which is not used in this chapter’s analysis. Nonetheless, these rates were disappointing and below
our expectation.

8This analysis—that we call the ‘tag-vs-tag table’ analysis—was conducted in joint work with
co-authors [33] done after the original submission of the thesis, but before the oral defense and
subsequent minor revision. The details do not appear in this thesis, but the finding is mentioned
here to clarify the relationship between coder tag distribution and agreement on individual advice
items.

86

Q1

Q2

Q3

Q4

18 17%

24
26
18

16

Q5

Q6

Q7

Q8

Q9

Q10

Q11

23%
25%

17%
<1% (1)

15%

0

0

156

128

57
64

36

35%
<1% (4)

28%
14%

13%

8%

2% (7)

0
0

0

Type A: 452 two-tag Q-nonagreements
% = Qn/(760-308) = Qn/(452)

Type B: 104 three-tag Q-nonagreements
% = Qn/(234-130) = Qn/(104)

0

0

<1% (1)

0

Figure 5.2: Distribution of Q-nonagreements across diverging questions between two
coders’ tags for Type A and Type B (Q-nonagreements and diverging questions
as defined in §5.1.3). Compare with Figs. 5.3 and 5.4. Qn denotes question n
from the coding tree (page 54). Note Table 5.2 has 308 Type A T-agreements, and
760− 308 = 452 (number of Type A Q-nonagreements here).

at specific questions (versus T-nonagreements of tags for an advice item as above), we

considered the number of Q-nonagreements at each question relative to the number

of times each question was encountered by both coders.

To calculate this, we used the longest sequence of overlapping nodes from each

coder’s node sequences (as explained in subsection 5.1.3). For each question in

the coding tree we counted the number of times coders had a Q-agreement (the

same answer, either both yes or both no), and the number of times coders had

a Q-nonagreement. If the coders agreed on the final tag for an advice item, the

Q-agreement count of each node in the sequence (including the final Q node) is

incremented. If the coders did not agree on the final tag for an advice item, the Q-

agreement count was incremented for each node in the overlapping sequence except

the diverging node. For the final Q node in the overlapping sequence for a T-

nonagreement (Qn), the Q-nonagreement count was incremented, as on this question

the coders answered differently (the diverging question).

Since Q1 is the first question, always asked regardless of any other nodes visited

by each coder, the number of times Q1 is asked will be the total number of advice

items in each comparison type (760 for Type A, 234 for Type B, and 19 for Type C;

87

see Table 5.2).

M1

Q1

Q2

AN = 96
AY = 508

Qn-agreements = AN + AY

T'

T

P2

P4 P5

P6

P3

P1

M2

M1

N1 N1.1

Q1 (35%)
156/452
Q2 (<1%)
4/452

Q3 (28%)
128/452

Q4 (14%)
64/452

Q5 (13%)
57/452

Q6 (0%)

Q8 (8%)
36/452

Q7 (0%)Q11 (2%)
7/452

Q9 (0%)

Q10 (0%)

T'

T

P2

P4 P5

P6

P3P1

M2

M1

N1 N1.1

Q1 (21%)
156/760

Q2 (<1%)
4/508

Q3 (25%)
128/504

Q4 (19%)
64/331

Q5 (27%)
57/208
Q6 (0%)
0/107

Q8 (34%)
36/107

Q7 (0%)
0/107

Q11 (39%)
7/18

Q9 (0%)
0/59

Q10 (0%)
0/18

I) Distribution of 452 Type A Q-nonagreements across questions.
(Note: % values sum to 100)

II) Proportion of Q-nonagreements within each question, out of total
encounters of the question by both coders

(Note: Q-agreement plus Q-nonagreement % sum to 100 at each node)

of Q-nonagreements at question
452 total 2-tag Q-nonagreements = % # of Q-nonagreements at question

of times question was posed to
both coders of 2-tag advice items

= %

760=(96+508)+156

Figure 5.3: Q-nonagreement results for Type A comparison (one tag from each coder;
760 instances, cf. Table 5.2). (I) Duplicating data from Fig. 5.2’s Q-nonagreement
results. Shows proportion of Q-nonagreements (relative to all other nodes) occurring
at each question. (II) Within each question, ratio of Q-nonagreements to how often
that node was visited by both coders, including Q-agreements and Q-nonagreements;
circle size represents proportion of Q-nonagreements at that question relative to Q-
agreements plus Q-nonagreements at that question. Sum of Q-agreements at each
question include Q-agreements on both yes and no answers (see dashed box). Ques-
tions labelled 0% imply no Q-nonagreements occurred.

Figs 5.3 and 5.4 interpret Fig. 5.2’s data and show the distribution of Q-nonagreements

across all questions (subfigure I), and what percentage of joint encounters of each

question resulted in Q-nonagreements (subfigure II).

5.2 Interpretation of Nonagreement Results

In this section, we interpret our nonagreement results (for tags and questions) and

provide observations and insights on the utility of the coding tree; and we focus

88

T'

T

P2

P4 P5

P6

P3
P1

M2

M1

N1 N1.1

Q1 (17%)
18/104

Q2 (0%)

Q3 (23%)
24/104

Q4 (25%)
26/104

Q5 (17%)
18/104

Q6 (<1%)
1/104

Q8 (15%)
16/104

Q7 (0%)
Q11 (0%)

Q9 (<1%)
1/104

Q10 (0%)
T'

T

P2

P4 P5

P6

P3

P1

M2

M1

N1 N1.1

Q1 (8%)
18/234

Q2 (0%)
0/206

Q3 (12%)
24/206

Q4 (15%)
26/169

Q5 (14%)
18/130

Q6 (1%)
1/80

Q8 (21%)
16/78

Q7 (0%)
0/79Q11 (0%)

0/2

Q9 (8%)
1/13

Q10 (0%)
0/2

I) Distribution of 104 Type B Q-nonagreements across questions.
(Note: % values sum to 100)

II) Proportion of Q-nonagreements within each question, out of total
encounters of the question by both coders

(Note: Q-agreement plus Q-nonagreements % sum to 100 at each node)

of Q-nonagreements at question
104 total 3-tag Q-nonagreements = % # of Q-nonagreements at question

of times question was posed to
both coders of 3-tag advice items

= %

M1

Q1

Q2

AN=10 AY=206

Qn-agreements = AN + AY

234=(10+206)+18

Figure 5.4: Q-nonagreement results for Type B comparison (one tag from each coder;
234 instances, cf. Table 5.2). (I) Duplicating data from Fig. 5.2’s Q-nonagreement
results. Shows proportion of Q-nonagreements (relative to all other nodes) occurring
at each question. (II) Within each question, ratio of Q-nonagreements to how often
that node was visited by both coders, including Q-agreements and Q-nonagreements;
circle size represents proportion of Q-nonagreements at that question relative to Q-
agreements plus Q-nonagreements at that question. Sum of Q-agreements at each
question include Q-agreements on both yes and no answers (see dashed box). Ques-
tions labelled 0% imply no nonagreements occurred.

on specific areas of the coding tree associated with a large or small number of Q-

nonagreements in order to indicate potential areas for improvement of the coding tree,

or highlight tree areas where coding of advice items differed most between coders.

In some cases we can provide concrete explanations for why Q-nonagreements take

place more or less at certain questions; in cases where we cannot (e.g., due to the

subjective nature of the coding tree), we offer conjectures.

Beyond the full-set tag distribution of Fig. 5.1, Table 5.1 on page 76 shows the

distribution of the two coders’ tags across each of the 13 UK guidelines.9 From

9Recall that the guideline document is paired with a “mapping” document, which maps each of
the 1013 advice items to one of 13 guidelines; see Section 3.1.2.

89

Fig. 5.1, we see large differences in the frequency of occurrence between coders for

some tags. Comparing the differences in Fig. 5.1 to Table 5.1, for example, C1

tagged 49% of the advice mapped to the UK-10 guideline as Not Useful (M1),

whereas for C2, M1 resulted for 29% of items. Proportions of other tags within UK-

10 are different. For example, for Desired Outcome (T), the cells for C1 and C2 are

respectively 10% and 28%, suggesting coders disagreed significantly on (as it turns

out, in several categories of) tags for items in UK-10. In the UK-10 column, M1

occurs more frequently for C1 (than C2), and T more frequently for C2 (than C1);

however, we have no evidence of any causal relationship in this pairing of T and M1.

As the coding tree tool did not explicitly prevent coders from assigning tags based on

their first reading and the tag definition (bypassing the tool; see limitation discussion

of Section 5.3.2), these differences in tag distribution (and Q-nonagreements) may be

partially explained by unintended coder direct use of tag descriptions, versus question

details (as intended by our design) whereby answers to each question determine the

tag assigned.

5.2.1 High Numbers of Q-nonagreements

As evident from Fig. 5.2, in both Type A and B comparison types, nearly all Q-

nonagreements (98% of both) come from Questions 1, 3, 4, 5, and 8. We examine the

three questions with the most Q-nonagreements, and conjecture why these dominate

the Q-nonagreements.

Question 1 (35% and 17% Q-nonagreements for Type A and B, respectively)

asks if advice is unambiguous and focused. Q1 has the greatest difference in propor-

tion of Q-nonagreement between Type A and Type B (35% versus 17%), and also

the greatest combined sum of Q-nonagreements for both Type A and B. Here we

conjecture why Type A’s Q1 has significantly more Q-nonagreements than Type B’s.

A Type A comparison has 4 possibilities for both coders’ (C1, C2) Q1 answers:

Case 1. no, no (Q-agreement on no)

Case 2. no, yes (Q-nonagreement)

Case 3. yes, no (Q-nonagreement)

90

Case 4. yes, yes (Q-agreement on yes)

In a Type A Q-nonagreement (Cases 2 and 3; 50% of cases), if either coder answers

no to Q1 (resulting in a tag of M1), the diverging question is always Q1 regardless

of how many more questions the other coder has in their sequence.

A Type B comparison has 4 possibilities for both coders’ Q1 answers (C1, {C21,

C22}):

Case 1. no, {yes, no} (Q-agreement on no)

Case 2. no, {yes, yes} (Q-nonagreement)

Case 3. yes, {yes, no} (Q-agreement on yes)

Case 4. yes, {yes, yes} (Q-agreement on yes)

Note that we depict a Type B comparison as having 4 possibilities instead of 8 because

the order of C2’s codes do not matter for Q-agreement calculation (if either code is

identical to C1’s, it is a Q-agreement), and the two-tag coder cannot select no twice,

else they would be tagging an advice item as M1 twice. These two considerations

result in a Type B comparison only having 4 possibilities.10

In a Type B nonagreement (Case 2; 25% of cases), as the one-tag coder answered

no, regardless of how the two-tag coder answers questions beyond Q1, the only node

that both coders’ sequences will share is Q1. Thus, Case 2 may exemplify why there

are fewer Q-nonagreements in the Type B comparison—if the one-tag coder answers

no to Q1, the diverging question is always Q1 because it is the only node shared by

both coders. Note that a Q-nonagreement is impossible at Q1 if the one-tag coder

answers yes to Q1. In Type A, either coder answering no to Q1 (two of the four

cases, see above) forces the diverging question to be Q1. In Type B, only one of

the four cases result in a Q-nonagreement at Q1, which explains in part why there

are fewer Q-nonagreements at Q1 for Type B (35% of Type A versus 17% of Type

B), and why there are more Type B Q-nonagreements in the questions following Q1

(e.g., Q3, Q4, Q5) than for Type B’s Q1 (right side of Fig. 5.2 on page 86).

10The 4 excluded cases are: (no, {no, no}), (no, {no, yes}), (yes, {no, no}), (yes, {no, yes}).

91

Question 3 (28% and 23% Q-nonagreements for Type A and B, respectively)

asks if an item is an outcome, versus an action to take. For reference, we repeat Q3,

the definition of Outcome (page 37), and the extended annotation of Q3 (Fig. 4.5 on

page 57) here.

Q3: Is it [the advice item] focused on a desired outcome more than how to achieve

it?

Outcome: An outcome is a desired end goal that a stakeholder aims to reach.

Q3’s annotation details: Is the advice a high-level outcome rather than some

method (or meta-outcome) for how to achieve an outcome? E.g., data is secured in

transit would be an outcome because it is a desired goal or state, whereas encrypt

data in transit is not because it explains a method for achieving that outcome

(in this case, encryption). Encryption may be considered a meta-outcome, as it

is not meaningful to the end-user’s ultimate goal of protected data.

Our definition of outcome may not be clear enough, or perhaps difficult to relate

to the items in the dataset, leading to coder confusion about whether advice is an

outcome. As C2 selected T 2.4 times as often as C1 (235 versus 97), C2 often

answered Q3 resulting in T while C1’s answer to Q3 resulted in a tag deeper in the

tree, leading to frequent Q-nonagreements when the advice item was interpreted as

an outcome by C2. In cases where C2 produced T and C1 another tag, C1 produced

a tag that was below T (i.e., all tags below Q4 in the tree) 106/142 times (75%) for

Type A, and 39/40 times (98%) for Type B. This suggests that the description of an

outcome (above) is unclear or may be interpreted differently by coders with differing

background or experience; thus the definition of outcome, the coding tree’s question

about it (Q3), or its extended annotation (Fig. 4.5 on page 57) might be clarified or

improved in the coding tree materials that we provide to coders.

For example, our definition as written (above) relies on coders sharing a mutual

understanding of what a “desired end goal” is. If their understanding differs, one

may be more or less likely to select it for a given item than the other. A desired

end goal is briefly described in the annotation details using an example (above), but

92

for more complex cases in the 1013-item dataset, it may become less clear to coders

whether a given item fits our definition of outcome.

Question 4 (14% and 25% Q-nonagreements for Type A and B, respectively)

asks if an item suggests any of: a security technique, mechanism, software tool, or

specific rule. This relies heavily on the definitions of these terms, which are not

defined in the question itself (but are given in part in the annotations provided to

the coders, along with examples, Fig. 4.5 on page 57). The advice item may not

align well with the examples in the annotation, resulting in coders using their own

subjective definitions. Q4’s annotation might possibly offer more explicit and specific

definitions for each term in the question.

Finally, we note that Q4 is the main branch point where an advice item will

either head toward actionable tags (or P1), or toward more general advice such as

principles. Q-nonagreements at Q4 create a major divergence in coder sequences, in

that the resulting tags will differ even in terms of actionable versus non-actionable

(see Table 5.2).

5.2.2 Low Numbers of Q-nonagreements

As Fig. 5.2 on page 86 suggests, Questions 2, 6, and 7 rarely have Q-nonagreements,

but as these questions are related to the scope of the advice, how they are answered

(and whether they invoke Q-nonagreements) may change based on the advice set the

coding tree is applied to. We examine these questions and conjecture why these have

so few (if any) Q-nonagreements.

Question 2 (<1% and 0% Q-nonagreements for Type A and B, respectively)

asks if the advice item is helpful for security. Given the scope and target audience of

the 1013-item dataset (see Section 3.1.2 on page 30), and as the second question was

asked of coders 67% (508/760, Fig. 5.3.II) and 88% (206/234, Fig. 5.4.II) of the time

(for tag comparisons of Type A and B, respectively), but only answered as no 9 times,

suggests the advice in the DCMS 1013-item dataset was largely perceived by both

coders to be generally related to security issues. Thus, the few Q-nonagreements at

this question combined with its high frequency of use suggests it is an appropriate

question for filtering out out-of-scope advice. Our understanding is also that this

93

particular dataset was deliberately crafted to fall into the yes case of this question.

If our coding tree methodology is applied to a different dataset of advice, a larger

number of Q-nonagreements might occur at Q2.

Question 6 (0% and <1% Q-nonagreements for Type A and B, respectively)

asks if the advice is viable to accomplish with reasonable resources. This question

was rarely answered no to (in total 3 times, only one of which was a nonagreement).

Like Q2, this suggests nearly all actionable advice items in the 1013-item dataset are

reasonable to implement (per Q6’s description of reasonable, and our description of

infeasible advice in Section 3.2.2 on page 41).

Question 7 (0% Q-nonagreements for both types) asks if it is expected that

the end-users of a product would be expected to carry out the advice item. As the

target audience for the DCMS guidelines document (which makes use of the 1013-

item dataset; see Section 3.1.2 on page 30 for its scope) does not include end-users,

it makes sense that few Specific Practice—End-User (P6) tags would be used (yes

to Q7), thus no Q-nonagreements.

5.2.3 Observations of Q-nonagreement Distributions

We expect the overall distribution for Q-nonagreements (Fig. 5.3.I) to be weighted to-

ward the top, with the proportion of Q-nonagreements at subsequent nodes decreas-

ing, as Q-nonagreements higher in the coding tree preclude Q-nonagreements lower

in the coding tree for a given advice item. We do not expect this trend when consid-

ering Q-nonagreements within each question (Fig. 5.3.II), as here a Q-nonagreement

higher in the tree has no impact on the proportion of Q-nonagreements within each

question lower in the tree (beyond a reduced number of visits).

In general, Figs. 5.3 and 5.4 match our expectations for how Q-nonagreements

are distributed, with some exceptions. We note some cases where specific questions

have a small overall share of the Q-nonagreements (Figs. 5.3.I and 5.4.I), but a large

proportion of within-question Q-nonagreements (i.e., a high percentage of times a

question was posed to both coders, there was a Q-nonagreement; Figs. 5.3.II and

5.4.II). Two such cases are Q8 and Q11, which we discuss here.

Question 11 accounts for only 2% of the total Q-nonagreements. It asks whether

94

the advice item relates to the design phase of the product lifecycle. While it was rarely

reached by both coders, there was Q-nonagreement 39% of the times it was reached

in Type A (zero Q-nonagreements for Type B). As Q11 asks coders to answer based

on their interpretation of where in the device lifecycle the advice would be followed

(i.e., the design phase, or after), this may suggest a knowledge gap (among coders)

on mapping advice to lifecycle phase, or differing views of what comprises the design

phase of a product. The Q-nonagreements here at Q11 appear to be an issue with the

coding tree instructions rather than the input advice. As Q11 appears at the bottom

of the tree and leads to two end codes which are similar, Q-nonagreements here do

not impact the ending tag of an advice item as significantly as other questions—

regardless of whether coders had a Q-nonagreement at Q11, the ending tag is either

a security principle (N1) or security design principle (N1.1), with the latter viewed

as a sub-set of the former. While ideally Q-nonagreements here would be avoided,

we do not consider this a major problem for the tree, and its removal (e.g., removing

Q11 and having Q10’s yes go directly to security principle, N1) would only minorly

impact the overall coding results.

Question 8 is similar to Q11, in that it is a node that leads to two leaf nodes. The

Type A difference between overall Q-nonagreement proportion (Fig. 5.3.I, 8%) and

within-question Q-nonagreement proportion (Fig. 5.3.II, 34%) indicates that when

coders both reached Q8, it was common for them to non-agree. Q8 asks about the

level of security experience advice-recipients are expected to have. A coder with

more security experience may answer differently than a less experienced coder, as

they apply their personal security knowledge to determine which groups (security

expert P4, or IT specialist P5). This may help explain why a large proportion of Q8

answers were Q-nonagreements, as in our study the two coders’ security experience

differed significantly (a limitation, see Section 5.3).

Unlike Q11, Q-nonagreements at Q8 cause concern, as we expect IoT device man-

ufacturers to typically have IT specialists developing devices (P5), but fewer to

employ security experts (P4). As such, determining which of the two audiences an

item of advice is intended for is important, as an advice item that targets a security

expert might not be useful to (not executable by) a non-expert. If our tool is able to

95

identify advice items that do not match target recipients, this offers an opportunity

to improve advice.

5.2.4 Comparing Actionable and Non-Actionable Agreements

To determine how well the coding tree can determine the actionability of an ad-

vice dataset,11 we further calculated agreement within actionable tags, and within

non-actionable tags (i.e., P3–P6 ; versus all others) for comparison Types A and

B. The method follows that for determining agreements and nonagreements from

Section 5.1.3. This data is included in Table 5.2 (column 5) on page 84.

For Type A, we determine the single tag of each of the two coders for a given

advice item, and if both or neither are an actionable tag, that counts as an agreement;

else, a nonagreement. For Type A, coders agreed on 608/760 (80%) advice items

(both actionable or both non-actionable). For Type B, we compare the single-tag

coder’s tag to each of the double-tag coder’s tags. If in either pair ({C1, C21} or {C1,

C22}) both tags are actionable or both are non-actionable, it counts as agreement;

else, a nonagreement. For Type B, coders agreed on 204/234 (87%) advice items

regarding actionability. Unsurprisingly, this percentage is greater compared to Type

A because two pairs are being considered, and either pair may yield an agreement.

We note this as a limitation and give more weight here to the results from Type A.

This analysis indicates that, using the coding tree, coders are able to distinguish

a practice (that is actionable by our definition; Section 3.2.2) from a non-practice in

most cases—it appears actionable and non-actionable advice items are easily distin-

guishable. This does not, however, imply the coders will not have T-nonagreements

about which practice code an item is (e.g., see Q8 in Figs. 5.3.II and 5.4.II). Partic-

ularly for Type A comparisons, where the chance of T-agreement is lower (i.e., only

one pair can match, versus the two of Type B), this suggests the coding tree is useful

for estimating how actionable an overall advice dataset is (in this case, the DCMS

1013-item dataset).

11Recall that we prioritize actionability as a characteristic of useful security advice.

96

5.3 Coding Tree Utility and Limitations

Despite the iterative refinement and improvement of the coding tree (see Chapter 4),

coders still had a significant number of T-nonagreements on tags for advice items.

Overall, there is room for improvement of the coding tree methodology. While im-

proving the coding tree is the subject of future work (and we encourage others to

pursue this also), here we summarize areas where we believe the coding tree has

been demonstrated to be useful, and also limitations of the coding tree and its de-

sign methodology.

5.3.1 Utility of the Coding Tree Methodology

The following are what we believe the coding tree methodology is useful for, and

the benefits it offers to the IoT security field (and as noted earlier, we believe to the

wider security community also).

Summarizing characteristics of security advice. Applying the method to

analyze the 1013-item advice dataset (believed to broadly represent IoT security

advice) allowed a characterization of the dataset. This included, for the advice

items offered, the comparative number of items in designated categories (outcomes,

principles, practices, policies, and those unclassifiable). The tagging by two separate

coders resulted in similar proportions of tags for many, but far from all, tag categories;

however our confidence in this result is weak, as the T-agreement rates in Table 5.2,

and more detailed analysis [33] revealed that the coders often did not assign the same

tag to a given individual item. We thus find it premature to make a broad claim that

the method is useful for identifying advice that belongs to the high-level categories

represented by the tags, or for accurate estimates of the overall proportion of advice

that falls into each category.

These categories are used in Chapter 6 to compare different datasets, whereas

this chapter is focused on categorizing the advice in the DCMS 1013-item dataset

specifically.

97

Identifying non-actionability of advice. Applying the method to the 1013-

item advice dataset identified a significant proportion of current IoT security ad-

vice to be non-actionable. The method thus appears to be useful to identify non-

actionable advice in a dataset. While its use in this thesis is scoped to IoT advice

datasets, we believe that both advice givers and advice recipients in other security

areas can also benefit from the method.12

Measuring and characterizing actionability. The SAcoding method helps

measure not only what proportion of advice in a dataset is actionable, but in char-

acterizing why an individual advice item is (or is not) actionable. As the tree directs

coders toward tags that characterize a given advice item, the questions at each node

along the path contribute to a characterization or description of the assigned tag.

For tags that are actionable (all tags after Q6), the answers to questions leading to

those tags characterize each practice tag and what makes them actionable. These

characteristics include whether the advice provides a technique or mechanism to use

(Q4), how technically detailed the advice is (Q5), and which target audience the

advice is scoped to (Q7 and Q8). In this chapter, these properties are used to charac-

terize actionable advice in the DCMS 1013-item dataset; in Chapter 6 these are used

to compare actionability of the DCMS 13 guidelines and ETSI provisions, which are

smaller datasets.

Cross-checking target recipients and target codes. The method would

appear to be useful for advice givers (dataset creators) to cross-check the following,

for advice datasets under creation:

1. that intended target audiences match coding results regarding targets implied

by codes P4–P6;

2. that advice item wording delivers the higher-level specific types of advice in-

tended by advice givers, with respect to advice categories of actionable prac-

tices, principles, approaches/policies, or outcomes; and

3. that items falling into codeM1 (unclear or unfocused) are either clarified or split

12Recall from Section 4.2.1 on page 65 that while the coding interface allowed ticking a checkbox
to denote items as IoT-specific, neither C1 nor C2 selected this for any of 1013 items.

98

into finer-grained items, as appropriate;13 those falling into M2 (not security

related) are removed; and those falling into P1 (incompletely specified) and P3

(infeasible) are appropriately revised. These codes are the dark-shaded items

in Fig. 4.1.

5.3.2 Limitations of the Coding Tree Methodology

The following are acknowledged limitations of our coding tree methodology.

Findings based on DCMS 1013-item dataset. While we expect the coding

tree to be useful on other datasets (both non-IoT security areas and other IoT security

datasets), the findings herein (and in Chapter 4) are based on the DCMS 1013-item

dataset (Section 3.1.2). Our coding tree questions were designed to be generic and

applicable beyond IoT security advice. The upper-tree questions are broad filters to

determine if advice generally makes sense (from a language perspective, and if it is

focused),14 lower-tree questions differentiate tags at a more fine-grained level (e.g.,

Q11 differentiates security design principles from security principles, Q8 differentiates

practices intended for security experts from those intended for IT specialists), and Q6

asks whether a practice is viable with reasonable resources, filtering out practices that

are not considered feasible. However, while we argue that the coding tree questions

are not specific to IoT security advice, we have tested our methodology only on IoT

security advice datasets to date.

Limited number of coders. Our full dataset coding exercise involved two

coders. The tagging results from the second coder discussed in Section 5.1 show

promising reproducibility for determining actionability of an advice dataset, but ex-

tending the analysis with a greater number of coders would provide stronger evidence

of reproducibility across coders.15 Our intuition is that if a third coder was to tag

13Of advice items that both coders agreed were M1, in about 55% of cases, both coders did not
select the Unfocused sub-label, suggesting that most of these items were tagged M1 due to being
not unambiguous, rather than not relatively focused (cf. Q1’s terminology, Fig. 4.1 on page 54) [33].

14Recall that page 65 describes a checkbox on the coding interface, allowing coders to select
whether they believed the advice item was specific to IoT. This option was selected for 0 advice
items.

15Following ACM definitions [25], reproducibility would mean to obtain similar results with a
different team (coders) using the same experimental setup (SAcoding method and dataset), re-
peatability is for the same team and same experimental setup, and replicability is for a different
team and different experimental setup.

99

the 1013-item dataset using the coding tree as it exists currently (i.e., without im-

provements as suggested in the next subsection), we would see a similar number of

agreements on whether items are actionable (Section 5.2.4), but we expect the num-

ber of T-agreements (cf. Table 5.2 on page 84) would be similarly low between the

new coder and the first two.

Introducing additional coders is difficult for large datasets, as it takes significant

manual time for each coder (e.g., to read each advice item and answer a sequence

of coding tree questions until reaching a tag for each). One approach to alleviate

the coder time burden on individual coders might be to recruit numerous coders and

have each tag a randomly-sampled subset of advice items from a full dataset.

Coders of different security experience. We consider the two coders de-

scribed herein (C1 and C2) to be security experts; however, one has significantly

more experience in security. While difficult to measure and not something we had

considered in the design and analysis of the coding tree, the difference in experience

may have led to advice items and coding tree questions being interpreted/answered

differently, leading to different tags and more Q-nonagreements. Examples of where

in the coding tree this may cause Q-nonagreements are discussed in Section 5.2.2.

Coding tree methodology not strictly enforced. As mentioned in Sec-

tion 4.1.1, our software interface tool that coders used to tag advice items did not

ensure that coders followed the tree, question by question, allowing the possibil-

ity to “short-cut” their answers by selecting a final tag. While coding reported in

Chapters 4 and 5 generally avoided use of such short-cut coding, in retrospect, in

a preferred implementation the coding tree software interface would force coders to

select yes/no answers until a code is automatically assigned to an advice item.

Advice sub-items not extracted before tagging. As mentioned in Sec-

tion 5.1.2, a significant number of advice items were tagged with the supplementary

code Unfocused (an option ofM1 ; 14% and 5% for C1 and C2, respectively), meaning

they contained numerous sub-topics. Prior to tagging an advice item, if its sub-topics

were extracted and tagged individually (instead of together as a composite item),

each may have received a different tag than M1, altering the results of the full-set

tagging. Extracting and tagging sub-topics is conducted on a different dataset in

100

Chapter 6.

5.3.3 Avenues for Coding Tree Methodology Improvement

In this subsection, as a summary of the above limitations and discussion throughout

this chapter, we briefly describe areas where the coding tree methodology might be

improved. In particular, we focus on its questions, tree structure, and instructions

provided to coders, and how they might be enhanced to improve a coder’s consistency

(i.e., ensuring they tag each advice item using the same process each time) or simplify

the tree.

Tree structure. Some coding tree questions have more of an impact on the

tag given to an advice item than others, and therefore the characterization of an

advice item. For example, Q4 and Q5 are vital in determining whether an advice

item receives an actionable versus non-actionable tag. In contrast, Q11 was used

infrequently (asked 94 times for both coders combined, Fig. 5.1) and its role is to

distinguish two tags that are very similar: a security principle (N1) and security

design principle (N1.1). Arguably, Q11 could be removed without largely impacting

the coding results, illustrating an area where the tree could be simplified.

Simplified coding tree interface. The coding tree software interface used

in the coding exercise of Chapters 4 and 5 was functional, but may have led to

inconsistent use of the coding tree by the coders through, e.g., “short-cut” coding

(see Section 5.3.2 limitations above). In the case of short-cut coding, the coding tree

could be improved to enforce that coders select yes or no answers for each question,

with tags strictly assigned based on the answers, as was our intent.

Additional iteration on tags and questions. The test codings of Chap-

ter 4 involved three coders, and were concluded when acceptably high inter-coder

agreement was attained (Section 4.1.1). In Section 5.2 we identified questions where

coders had more Q-nonagreements than other questions, suggesting these questions

might be further refined to increase answer agreements across coders.

101

5.4 Related Work

In this section, we discuss work related to qualitative dataset coding [60] (used in

our coding tree methodology), to give context on how other security researchers have

used this technique.

McDonald et al. [148] note a common lack in research papers of detailed coding

process descriptions; in contrast, we explicitly describe our methodology in Chapter 4

and in this chapter, including: number of coders (1 for the initial coding exercise

and 2 here in Chapter 5), codebook establishment (page 52), inter-rater reliability

of test sets (page 59), and coder agreement calculation (page 79).

The following examples are used for comparison with our work and represent only

a small subset of qualitative coding papers in security-related research. Huaman et

al. [105] coded user feedback of password managers. After appearing to formally

agree on a final codebook (versus describing agreement or calculating inter-rater

reliability), they split their dataset among 3 coders who independently coded one

third of the dataset each using their final codebook. Kang et al. [120] coded verbalized

participant thoughts during drawing tasks about Internet-related tasks. They appear

to use 1 coder for coding their dataset and include a second coder for 15% of the

dataset to calculate inter-coder agreement. Their process appears to use inter-coder

agreement as a cross-check for their coding process, versus for establishing their

codebook. Naiakshina et al. [156] coded interview responses about how participants

used secure password storage mechanisms. They used 2 coders to independently

create codebooks for the full dataset and compared their codebooks using Cohen’s

kappa (it is unclear how this was done). Krombholz et al. [127] coded verbalized

participant thoughts during a system configuration task. They used 2 coders to

independently establish codes, agree on a final codebook, code their dataset, and

calculate inter-coder reliability (it is unclear if the calculation is on test sets or the

final full coding). Ukrop et al. [207] coded interview responses from participants that

had evaluated certificate validation status outputs (e.g., warnings, errors). They used

2 coders to independently establish initial codebooks, which were merged through

discussion, and the responses were re-coded using the final codebook. A third coder

coded half the responses and inter-rater reliability was calculated between the initial

102

2 coders and the third coder.

While we do not code qualitative data produced by users, the 1013-item dataset

used in Chapters 4 and 5 is comprised of qualitative data (security advice items),

and we apply coding methods similar to the above examples. We used 3 coders on

multiple test sets to iterate on a codebook, where a high final coder agreement (73%

mean agreement between 3 coders) and “substantial” [131] inter-rater reliability is

achieved (κ = 0.69 mean; not included in, e.g., [105, 120]). Instead of splitting

our dataset across multiple coders (as in [105, 120]), our two coders in this chapter

independently tagged the full 1013-item dataset, allowing comparison of full results.

5.5 Concluding Remarks

We conducted an analysis of two coders’ results (beyond just the single-coder anal-

ysis of Chapter 4) to determine the degree to which the coding tree results are

reproducible across two coders; and as coders did not produce identical results, to

explore where the coders found challenges in reproducibly tagging a large advice

dataset. Notably, coders had high agreement (80%–87%) on which advice items are

actionable and which are not actionable (independent of the proportion of actionable

tags assigned by each coder; Section 5.2.4), but we were disappointed in the overall

coder T-agreement rate ((308 + 130 + 17)/1013 = 45%, from Table 5.2). We also

acknowledged several limitations of the coding tree methodology and areas where

improvement could be made.

Overall, we believe the results here in Chapter 5, combined with the primary

results from Chapter 4, allow insights regarding IoT security advice that were not

visible without use of the coding tree. We hope that future work (possibly by others)

may extend this work to gain a better understanding of the coding tree’s usefulness

in measuring and analyzing security advice. We believe our results are useful for

practical analysis of security advice beyond the DCMS 1013-item dataset. We apply

our methodology to two sets of IoT security advice from the DCMS (distinct from

the 1013-item set) and ETSI in the next chapter.

Chapter 6

Comparing Three IoT Advice Datasets Using SAcoding

In this chapter, we first provide an informal comparison and critique of the DCMS

13 guidelines document (distinct from the 1013-item dataset used in Chapters 4 and

5) and the European Telecommunications Standards Institute (ETSI) document of

“baseline requirements” for IoT security [68],1 and identify areas where the ETSI

document has improved over the DCMS 13 document. We then apply the security

advice coding (SAcoding) method to the advice items in each document (two signif-

icantly smaller, coarse-grained sets of IoT security advice) and find that the ETSI

provisions document has a greater proportion of actionable advice. This demon-

strates the utility of the SAcoding method (versus its reproducibility, as investigated

in Chapter 5), including how it can be used on a wide variety of advice datasets.

Combining the comparison and critique, analysis of actionability, and the insights

gained through the analyses of Chapters 4 and 5, we describe the characteristics of

advice that contribute to actionable security advice for the target audience, and how

the coding tree methodology can be used to characterize improvement in different

sets of security advice.

The analyses of Chapters 4 and 5 focus on the 1013-item dataset—a fine-grained

set of advice, consisting of a variety of advice categories and specific advice items—

and critique of our coding tree. Here, we focus on two coarser (higher level) advice

datasets, analyze and compare them, and consider ways that advice datasets in

general might be improved. Our hope is that understanding both what makes useful

security advice and the challenges involved, advice-givers can produce more well-

targeted, actionable advice for advice recipients to rely upon.

1This is the ETSI Provisions document from Table 1.1 on page 4, which appears to be an
evolution of the DCMS 13 guidelines document. This is discussed in Section 6.2.

103

104

6.1 DCMS and ETSI Document Summaries

In this section we describe the relevant documents for this chapter’s analysis and

discussion.2 While not all parts of each document are necessarily relevant to our

discussion, each potentially impacts the overall effectiveness of security advice. As

we aim to provide an analysis and comparison of security advice datasets from two

specific documents (Documents 1 and 2 below), we specifically focus on their primary

advice content (i.e., not preamble or non-advice appendices). For context, we first

identify the main documents and their relationship to a few others, then give more

details on the two main documents in the subsections that follow.

Document 1: DCMS 13 Guidelines [62]. The DCMS “Code of Practice”

(October 2018) consists of 13 IoT security guidelines.3 These guidelines are re-used

in-part as the major headings for security topics in the ETSI Baseline Requirements

document (next).

Document 2: ETSI Provisions [68]. The ETSI “Baseline Requirements”

(June 2020) uses each of the high-level DCMS 13 guidelines (Document 1) as category

headings (with minor changes), under which it provides a larger, finer-grained set

of “provisions” for advice recipients to follow. This document is positioned as an

evolution of the DCMS guidelines, as discussed below.

DCMS 1013-item dataset [59]. This includes the DCMS 1013-item dataset of

IoT security advice used in Chapters 4 and 5 as a proxy representative of current IoT

security advice to determine the current state of IoT security advice. We mention it

here only because it is used in a fourth document, the DCMS mapping document

[63], which maps each advice item thematically to one of the DCMS 13 guidelines.

The mapping document is positioned as a “reference and tool for users of the Code of

Practice [guidelines document]” [63], suggesting those looking to follow the guidelines

would consult this mapping document for technical details supporting each guideline.

We note that the ETSI document suggests the use of the DCMS 1013-item dataset

for technical details, albeit without explaining how readers are expected to use it.

2Table 1.1 on page 4 also gives a summary of the documents used in this chapter.
3Recall that we discussed this DCMS 13 guidelines document in Chapter 3.

105

6.1.1 Document 1: DCMS 13 Guidelines Document

The DCMS 13 guidelines document (Document 1 above) defines 13 guidelines (Ta-

ble 3.1 on page 30 gives their titles), designed for pre-deployment stakeholders to use

for improving the security of their products and services [62]. These guidelines are

positioned as “practical steps”, and also as “outcome-focused” (cf. D2 on page 108,

and related discussion there), giving stakeholders the flexibility to follow each guide-

line on their own terms rather than offering specific means to execute them [62].4

As such, these are high-level guidelines (i.e., lacking in technical detail) that cover

a wide variety of IoT security topics. The first three guidelines are intentionally or-

dered first to signal their priority—these are the guidelines that the DCMS suggests

will have the greatest and immediate security impact for a stakeholder [62].

Each of the 13 guidelines follow a basic structure consisting of four parts: (1) a

shortened title for the guideline (itemized in Table 3.1), attempting to be capable of

conveying the general direction of the guideline and fitting onto a single line; (2) a

highlighted box containing the core guideline text itself; (3) text that further explains

guideline rationale; and (4) a brief footnotes section (not found on many guidelines)

indicating where additional external information can be found. We now elaborate

on these parts.

(1) Guideline Title. The guideline title describes the primary topic of the guide-

line. It seems intended to be short to convey this information for easy comprehen-

sion and fit on a single line. The title is related to the core guideline itself, but not

necessarily representative of the full recommendation as outlined in the guideline

description (Section 6.1.1). We refer to the guideline’s title as the guideline category,

as it is generally representative of the guideline’s theme.

(2) Guideline Description. The guideline descriptions seem to be the most im-

portant part of each guideline (or are the guideline itself), as they express what is

intended for the advice follower to reach, and the text is presented in a distinct

pink box. As such, this is the text that we primarily focus on for our analysis. For

4We argue this is a contradiction, discussed in Section 6.2.1.

106

example, the fifth guideline (DCMS-5) has this description [62]:

Security-sensitive data, including any remote management and control, should be

encrypted in transit, appropriate to the properties of the technology and usage.

All keys should be managed securely.

The guideline description does not seem to aim to express how a guideline should

be followed, but the goal to reach. This is directly contradicted by their description

of being “practical steps” (suggesting to us actionability), but then contradicted

again with another description of the guidelines being “outcome-focused, rather than

prescriptive” [62] (suggesting non-actionability—cf. Section 3.2.2).

(3) Further Description/Explanation. Each guideline is accompanied by addi-

tional supporting text that provides a non-technical explanation of why the guideline

is important, or how it solves an existing problem. While this is its primary use, in a

few cases this text includes additional avenues to solving a general problem. In some

cases it expands on the guideline description (2); in others it goes off in independent

directions.

(4) Guideline Footnote. Two of the 13 guidelines have a footnotes section giv-

ing a short list of references to external sources of additional information, or brief

clarification on the guideline (e.g., what “competent industry bodies” means [62],

then referencing the GSMA [94] and the IoT Security Foundation [112]).

The end of the document gives additional explanation for 6 of the guidelines

intending to answer frequent questions. This is offered as “additional explanatory

notes” [62], suggesting these are not necessary to be able to carry out the main advice.

These sometimes include additional advice or context about why the guideline is

important to be followed.

6.1.2 Document 2: ETSI Provisions

An ETSI document titled Cyber Security for Consumer Internet of Things: Baseline

Requirements [68]5 extends the 13 guideline categories established in the DCMS work.

5This is the ETSI Provisions document from page 104.

107

This document appears to be endorsed by the DCMS as an extension of their work,

as they list it within the Secure by Design project [64], and contribute a portion of

its content (particularly the introductory material and guideline titles).

While a portion of each document’s description is similar, the DCMS 13 guidelines

and ETSI provisions seem to differ in their overall scope. The DCMS guidelines

seem to be more about high-level advice that should be followed at the discretion of

a manufacturer [62], while the ETSI document is positioned as “technical controls”

with the intent to be measurable for compliance when combined with technical details

such as those from the DCMS 1013 dataset [59], or advice from ENISA [71], the IoT

Security Foundation [193], and the GSMA [93].

The core of the ETSI provisions document revolves around the 13 guideline cat-

egories shared (with minor editorial changes) with the DCMS’ guidelines (i.e., the

guideline title from Section 6.1.1), plus two additional sections for (1) how to report

on the implementation of the provided advice, and (2) guidance on how to protect

user data processed by a device. As (1) is a meta-guideline (i.e., how to report on

the use of the advice, not about security practice itself), we do not consider it in our

analysis; however, as (2) is a security topic with implementation details, we chose to

include it in our analysis.

Each of the 13 categories has, in this document, an optional category description

(a few sentences describing the overall goals of the category) and a series of “provi-

sions”. The number of provisions in a category ranges from 1 to 16. Each provision

has the following structure: (1) a one-sentence description of what is required by the

advice follower or implementer; (2) additional description of the provision; (3) one or

more examples of where or how the provision would be applied, as context; and (4)

one or more notes which tend to briefly provide context on where a provision may

apply. While all four components exist in many cases, a number of provisions only

have the basic description text.

6.2 Informal Comparison and Critique of DCMS and ETSI Documents

In this section, we informally compare and critique the DCMS 13 guidelines and

ETSI provisions documents. As the ETSI document appears to be designed as an

108

evolution of the DCMS guidelines document, beyond criticism we note areas where

improvements have been made. Each subsection describes and compares select com-

ponents of the documents. This discussion of improvements helps us characterize

what makes useful security advice, and is used in our analysis throughout this chap-

ter.

6.2.1 Positioning of DCMS and ETSI Documents

We first distill our view of the purpose and positioning of each document. Part of

our criticism, however, is that the positioning of both documents is unclear, and (we

believe) contradictory in places.

DCMS guidelines positioning

The DCMS guidelines document presents four statements describing its positioning

[62]:

(D1) This Code of Practice sets out practical steps for IoT manufacturers and

other industry stakeholders to improve the security of consumer IoT products and

associated services.

(D2) The guidelines bring together what is widely considered good practice in IoT

security. They are outcome-focused, rather than prescriptive, giving organisations

the flexibility to innovate and implement security solutions appropriate for their

products.

(D3) A number of industry bodies and international fora are developing security

recommendations and standards for IoT. This Code of Practice is designed to

be complementary to and supportive of those efforts and relevant published cyber

security standards.

(D4) The Code of Practice is supported by a mapping document and an open

data JSON file that link each of the Code’s guidelines against the main industry

standards, recommendations and guidance. This mapping gives additional context

to the Code’s thirteen guidelines and helps industry to implement them.

109

The guidelines are described as practical steps (something to do, actions; D1),

but also as high-level outcomes (something to reach; D2) to be achieved by following

the supporting set of security advice.6 By our definitions (Section 3.2.2 on page 37),

actions and outcomes are quite different in function. The guidelines are intended

to allow advice targets to select methods (to follow the guidelines) appropriate for

their devices (D2), suggesting the document should be used as a high-level set of

outcomes to try to reach rather than steps to follow. Readers of the guidelines may

be misled about whether the guidelines alone are sufficient to reach security goals,

or just high-level explanations of what should be done and supported by further

external details (which seems to be the intent of D3–D4).

ETSI baseline requirements positioning

The ETSI baseline requirements document provides the following positioning state-

ments [68]:

(E1) The present document brings together widely considered good practice in

security for Internet-connected consumer devices in a set of high-level outcome-

focused provisions. The objective of the present document is to support all parties

involved in the development and manufacturing of consumer IoT with guidance

on securing their products.

(E2) The provisions are primarily outcome-focused, rather than prescriptive, giv-

ing organizations the flexibility to innovate and implement security solutions ap-

propriate for their products.

(E3) [...] the focus is on the technical controls and organizational policies that

matter most in addressing the most significant and widespread security shortcom-

ings.

(E4) Overall, a baseline level of security is considered; this is intended to protect

against elementary attacks on fundamental design weaknesses (such as the use of

easily guessable passwords).
6 D2 mentions “good practice”; however, it is unclear whether their use of good practice implies

practices (as we use the term, cf. Table 3.2 on page 44), or just generally “good things to do”.

110

(E5) The present document provides a set of baseline provisions applicable to

all consumer IoT devices. It is intended to be complemented by other standards

defining more specific provisions and fully testable and/or verifiable requirements

for specific devices which, together with the present document, will facilitate the

development of assurance schemes.

E1 and E2 suggest the advice is intended to be high-level and focused on out-

comes, but in E1, also good practice.7 E3 mentions that the advice should be tech-

nical controls and organizational policies. The former (technical controls) suggests a

greater level of detail when compared to the DCMS guidelines, but not as specific as

to suggest technical specification, which they again defer to more detailed documen-

tation elsewhere (E5). E4 describes the advice as protecting against “elementary”

attacks, suggesting their advice targets generic versus targeted or niche threats (or

those specific to a use case), e.g., threats that are widely applicable to IoT devices.

Recall that the DCMS 13 guidelines are ordered to identify advice deemed the most

impactful.

The term provision is not explicitly defined in the ETSI provisions document, but

based on context in the document and our understanding of how it is used therein,

we infer that a provision is intended to be what we call a practice,8 as it appears

something that advice recipients should do to improve security. Note that we be-

lieve provisions are intended to be practices, but in many cases those specified in the

document lack “specific means” (as required by our definition of practice) to reach

a goal (the provisions are analyzed in Section 6.3.2).

By our reading, both the DCMS and ETSI documents are positioned similarly as

high-level advice to be supported by more detailed advice, but the ETSI document is

clearer about how advice can be carried out. Both are useful for understanding the

security landscape: the DCMS guidelines provides a high-level understanding of the

general direction for security protections, while the ETSI document provides advice

closer to (our definition of) practices for how to reach security goals.

7As mentioned in footnote 6 on page 109, it is unclear what is meant by “good practice”.
8 From page 33, “a practice is a specific means intended to achieve a given desired outcome”.

111

6.2.2 Reference to External Advice

In our view, both documents largely fail to provide direct reference to complimentary

security advice when providing high-level guidance, despite mentioning that their

advice should be paired with complementary advice from external sources. We now

give support for this view.

The DCMS 13 guidelines document suggests (in statements D2, D3, and D4

above) that stakeholders should use advice in the DCMS 1013-item dataset (mapped

to each guideline in the mapping document) for technical details to follow the guide-

lines. The 13 guidelines document, however, does not provide a clear indication

of which advice items to use within the 1013-item dataset, and apparently expects

stakeholders to select on their own. As discussed in Chapter 4, few items in the

1013-item dataset are actionable per our definition, so the document implicitly ex-

pects the advice followers to be knowledgeable enough to select appropriate advice

from the 1013-item set to follow a guideline.

Similarly, the ETSI provisions document does not provide specific implementation

details for many provisions. The document does, however, provide a references sec-

tion that points to external documents, which are occasionally referenced throughout

the provisions. In most cases, these are references to relevant industry organizations,

or entire documents (instead of specific lines or sections within a document) from

which the reader would be expected to independently locate and extract relevant

information. Like the 13 guidelines document, the ETSI provisions document men-

tions it uses the 1013-item advice dataset [59] (among others) to provide next-level

advice. This carries the same question of specifically which next-level advice to use

within the 1013-item dataset.

As both documents suggest their guidelines and categories deliver good practice,

e.g, from the 1013-item advice dataset, it is unclear what exactly is expected of advice

recipients when the documents don’t actually specify (actionable) practices. Can an

IT employee at an IoT manufacturer reliably select a small number of relevant items

from the 1013-item dataset and properly execute the advice? Advice recipients may

have to select advice from the next-level guidance document that they deem most

appropriate to reach their desired security goals.

112

6.2.3 Target Audience

The DCMS 13 guidelines document targets device manufacturers, IoT service

providers, mobile application developers, and retailers [62]. As this is a broad au-

dience, it is unclear what expertise those following the advice are expected to have.

ETSI describes their audience as the “organizations involved in the development and

manufacturing of consumer IoT”, which is even less specific than the DCMS audi-

ence. While the ETSI document appears to be an evolution of the DCMS document,

in this sense it does not improve.

The DCMS 13 guidelines document does explicitly label each guideline with one

of the above four target audiences (e.g., the first DCMS guideline “no default pass-

words” is labelled as applying to device manufacturers), so not all guidelines apply

to all four targets, but specific groups within each target (e.g., departments) are

not described. While here we are critical of the wording used by both documents

to describe their target audience, we expect following security advice would be the

responsibility of those in an appropriate development or security position within

organizations following the advice.

Within technically proficient target groups, do these documents assume it is a

security expert (with extensive knowledge and experience in security) that will be

following the advice; or a more typical developer or IT specialist, familiar with

basic security, but not themselves a security expert? This is important, as both

documents expect (stated explicitly for the DCMS 13 guidelines; implicitly for the

ETSI provisions) the reader to consult external sources for implementation details,

which may or may not be understandable based on one’s security expertise. As we

believe that it is beneficial for security advice to be actionable for the target audience

(Section 3.2.2), we argue that crafting advice specifically for the target audience is

important as it contributes to its actionability.

113

6.2.4 Distinct Advice Topics

Related to our Chapter 4 analysis of Not useful advice,9 within a single DCMS

guideline, numerous sub-topics may be offered. For example, DCMS-3 “Keep soft-

ware updated” states [62]:

[1] Software components in internet-connected devices should be securely update-

able. [2] Updates shall be timely and [3] should not impact on the functioning

of the device. [4] An end-of-life policy shall be published for end-point devices

which explicitly states the minimum length of time for which a device will receive

software updates and the reasons for the length of the support period. The need

for each update should be made clear to consumers and an update should be easy

to implement. [5] For constrained devices that cannot physically be updated, the

product should be isolatable and replaceable.

In the above guideline we can see five distinct sub-topics being discussed (we inserted

the numbers for exposition): (1) secure updates, (2) timely updates, (3) updates

should not interrupt device function, (4) publish policy about update status, and (5)

the ability to isolate and replace a device if it can not be updated. Each of these

sub-topics could have distinct practices associated with them, but here are combined

in a single guideline. Using our coding tree methodology, this guideline would be

tagged Not Useful (M1), with the Unfocused supplementary tag given.

In contrast, the ETSI document offers individual provisions that each have a

distinct topic. For example, Provision 5.3-1 under the same DCMS-3 heading states

[68]:

“All software components in consumer IoT devices should be securely updateable”

[Notes and examples omitted]

This provision is explicitly about secure updates, corresponding to item [1] in the

above DCMS guideline. Other sub-topics (2–5) are handled through separate provi-

sions (in the ETSI document) for achieving their own goals.

9The Not Useful (M1) tag and Unfocused supplementary tag are described in Section 4.2.3 on
page 67.

114

As a side note, given the 28 sub-topics in the DCMS 13 guidelines (the number

of all sub-topics that we extract from the 13 guidelines in Section 6.3.1), the ETSI

document, if aiming to cover those same topics, might be expected to have about

28 provisions. However, the number of ETSI provisions is more than twice this, at

67. The ETSI document uses IoT security advice documents found in the 1013-item

IoT security advice dataset and additional reputable sources (mentioned in the ETSI

provisions document’s introduction). It is unclear whether the increased number of

advice items is the result of new topics extracted from additional sources, or if similar

sub-topics to those found in the DCMS guidelines were sliced into finer-grained topics.

In either case, the ETSI document refined source datasets into more specific, fine-

grained items. Finally, the observation that the major categories (the titles of each

DCMS guideline) were largely retained while incorporating additional advice from

further sources suggests that the original categories are largely representative of the

general topics that IoT security advice-givers find important to address.

We believe it is reasonable to expect that advice recipients are able to extract

sub-topics as we do above. Our analysis in Section 6.3 takes this into account by

independently analyzing the DCMS guidelines from two perspectives: each guideline

as presented in the source document, and with each sub-topic extracted and used as

individual advice items (akin to ETSI’s provisions).

6.2.5 Technical Content

As discussed in Section 6.2.1 (page 108), we view the positioning of the DCMS

guidelines [62] and ETSI provisions [68] as self-contradictory, claiming to offer “prac-

tical steps” or “technical controls” (D1 and E3), but also describing their advice as

“outcome-focused” (D2 and E2).

If the intention is to offer practical steps or technical controls, we expect that

there would be technical details included to provide advice targets clear instruction

on how to execute the advice. If an advice item is vague about techniques expected to

be used, it is unlikely to be categorized (by our coding tree) as an actionable practice,

and we expect that some advice recipients would be unclear about how to execute it

without a further external source for technical details. The DCMS guidelines (and

115

the sub-topics therein) often briefly mention a technical approach (the topic of Q4

in our coding tree), but offer no explicit or obvious implicit steps or actions to take

(Q5 in the coding tree).

As an example of a guideline lacking (in our view) sufficient technical details to

enable reliable execution, DCMS-4 states [62]:

Any credentials shall be stored securely within services and on devices. Hard-coded

credentials in device software are not acceptable.

Not using hard-coded credentials would generally be regarded as a clear request not

requiring further technical detail. In contrast, the first sentence requests credentials

be “stored securely” without explaining that phrase (nor specific steps on how to

achieve that, if the guideline aimed to be actionable by our definition). As technical

details are largely absent from the DCMS guidelines document, it appears the doc-

ument, despite being positioned ambiguously,10 is intended as high-level advice with

the apparent expectation that external references be sought for technical detail of

how to execute advice (indicated in D4).

ETSI provisions commonly suggest a technique or tool to use for achieving a

goal, but often do not describe further execution detail (this corresponds to the

Incompletely Specified Practice code in the coding tree). They often also include

an example, which provides additional context or describes a real-world scenario

where application of the provision would be beneficial for security.11 While such

examples do not appear intended to replace technical detail, they offer additional

context that may help advice followers understand how to follow the advice. Like

the DCMS guidelines, it appears the intent is that the advice is primarily to be used

with external sources for technical details.

Summary of informal comparison. From our informal analysis above, our

view is that the DCMS 13 guidelines and ETSI provisions are positioned differently.

As we are interested in IoT security stakeholders being able to execute the provided

10Section 6.2.1 describes the DCMS 13 guidelines document’s ambiguous positioning.
11An example of a provision with an example is included in Provision 5.2-1 on page 32 of Chap-

ter 3.

116

advice, we note that the ETSI document appears to contain more technical con-

tent and details than the DCMS guidelines (improving actionability).12 We briefly

summarize each above subsection here.

• Positioning. Both documents propose what are described as “outcome-

focused” advice for consumer IoT devices, suggesting they want to give high-

level advice, but contradict this (in our view) by also positioning their advice

as “practical steps” (DCMS) and “technical controls” (ETSI), setting up an

expectation to deliver details enabling advice recipients to execute the advice.

• Reference to external advice. Both documents rely on often vague refer-

ences to external sources for more specific details of how to execute advice or

reach security goals, leaving it unclear about which sources to follow to reach

their goals.

• Target audience. Particularly in the ETSI provisions document, the target

audience is vague, making unclear the required knowledge level of the audience

expected to be executing the advice. The DCMS 13 guidelines document de-

tails which of 4 general audiences (described in Section 6.2.3) each guideline is

intended for.

• Distinct advice topics. Both documents categorize their advice in similar

ways using high-level categories. However, the ETSI provisions document sep-

arates individual sub-items within each category into stand-alone provisions,

whereas the DCMS 13 guidelines are contained within a single block of text.

• Technical content. The DCMS 13 guidelines provide little technical detail

for how to follow the advice, limiting the advice’s actionability by omitting

technical details that might help advice recipients reach security goals. The

ETSI provisions generally provide more technical detail, but it appears the

intent of both documents is for advice recipients to reference external advice

for further execution detail (see above).

12Recall our view (Section 3.2.2 on page 37) that actionability is an important characteristic of
security advice that allows it to be reliably executed.

117

6.3 Analysis of Actionability Using the Coding Tree

In this section we apply our coding tree tool (introduced in Chapter 4) to the DCMS

13 guidelines and the ETSI provisions to determine what proportion of the provided

advice is actionable by our definition. This allows a baseline measurement of the

actionability of the DCMS guidelines, and for a comparison to the ETSI provisions.

From this, we proceed to make observations of whether improvements have been

made in the ETSI provisions over the DCMS guidelines. We aim to support more

formally, via the coding tree methodology, the preliminary view from the informal

analysis of Section 6.2 that the ETSI provisions are an improvement over the DCMS

guidelines.

6.3.1 Analysis Methodology

We apply our coding tree methodology to three datasets: 2 based on the DCMS

guidelines, and 1 based on the ETSI provisions. We describe how these are estab-

lished here.

From the DCMS 13 guidelines document, we build two sets of advice. For the

first, we extract each guideline as a whole, considering the entire guideline as one

advice item. This is done to assess the actionability of the guidelines (as a set) while

considering the document’s advice as presented. In total there are 13 items in this

set (one for each full guideline). We call this set the DCMS Full guideline dataset.

For the second, we extract all sub-topics from each DCMS 13 guideline (sub-

topic extraction is described in Section 6.2.4). This is done to assess each sub-topic

as independent advice items (versus how actionable the DCMS Full dataset is). In

total there are 28 items in this set. We call this the DCMS Sub-Topics guidelines

dataset.

From the ETSI provisions document we extracted each provision (including their

associated examples and notes) from each of the 13 major categories and the one

new category (on how to protect user data used by the device, Section 6.1.2). This

yielded 67 advice items (provisions). As each ETSI provision is largely self-contained

and typically focuses on a single topic (like each of the DCMS sub-topics), ETSI

provisions are not subdivided. We call this set the ETSI Provisions dataset.

118

In summary, the above extractions resulted in three datasets that we compare.

• DCMS Full guidelines (13 items)

• DCMS Sub-Topics guidelines (28 items)

• ETSI Provisions (67 items)

For each dataset, the coding tree methodology and interface tool is applied to each

advice item in the set to determine its code; recall that each question in the coding

tree is answered about the advice item until a code is assigned. As discussed on

page 55 (Fig. 4.2), each code is pre-classified as being either actionable or non-

actionable, allowing a count of how many actionable advice items there are in each

dataset (thus the proportion of each set that is actionable). This was done for all

three sets by the coder (thesis author) that performed the Chapter 4 tagging of the

1013-item dataset (Coder C1 from Chapter 5’s analysis).13 The methodology used

was identical to that in Section 4.2.

6.3.2 Results

Recall that DCMS-i and ETSI-i indicate the same 13 category headers (page 104).

The headers convey the same or very similar information (e.g., DCMS’ “Monitor

system telemetry data” [62] versus ETSI’s “Examine system telemetry data” [68]),

but the content of the DCMS guidelines differs from the content of ETSI provisions.

We analyze the content.

Table 6.1 shows the results for the tagging of both the DCMS Sub-Topics set and

the DCMS Full guideline set. Note that only the tags represented in the analysis

results are shown in the table; unused tags are omitted. For the Full guideline

tagging, only 1 of the 13 guidelines (DCMS-1) was tagged as actionable (specifically,

P5). For sub-topic tagging, 7 of 28 sub-topic items (25%) were tagged P5 (the only

actionable tag that appeared in the results). The remaining 75% are non-actionable

tags.

13This chapter’s analysis focuses on the utility of the SAcoding method and how it can be applied
to different datasets, versus investigating reproducibility across coders (Chapter 5).

119

Table 6.1: Results of DCMS sub-topic and full guideline coding. n indicates number
of sub-topics manually extracted. Sub-Topics headers are leaf node codes. Full
column shows codes assigned to each individual guideline (i.e., DCMS-i). ∗ denotes
actionable codes, see Fig. 6.1. Page 121 explains absence of codes P3, P4, P6, and
M2. Relative code frequency illustrated in Fig. 6.1.

Frequency of code
assigned to Sub-Topic Full

Guideline n P1 P2 *P5 N1.1 T

DCMS-1 1 1 *P5
DCMS-2 2 1 1 M1
DCMS-3 5 1 1 3 M1
DCMS-4 2 1 1 M1
DCMS-5 2 1 1 M1
DCMS-6 1 1 N1.1
DCMS-7 2 1 1 M1
DCMS-8 3 1 2 M1
DCMS-9 4 1 3 M1
DCMS-10 1 1 P1
DCMS-11 2 1 1 M1
DCMS-12 2 1 1 M1
DCMS-13 1 1 P1

Total (28) 11 2 7 1 7

Proportion of Total 39.3% 7.1% 25.0% 3.6% 25.0%

Note that only 5 of the 11 tags available (from Fig. 4.4 on page 56) appear in

the Table 6.1 Sub-Topics results, and 4 of the 11 tags appear in the Full results (6

distinct tags in total).

Table 6.2 shows the results of tagging the ETSI provisions. Across the 67 provi-

sions, 7 different tags appear in Table 6.2 (the same tags as in Table 6.1, plus P4). A

combined 43% of provisions were tagged with actionable tags (in this case, including

both P4 and P5).

Figure 6.1 summarizes (based on data from Tables 6.1 and 6.2) the proportion of

the advice from the three analyses (DCMS Full and Sub-Topics, and the ETSI Provi-

sions) that was tagged with each code. The next subsection gives our interpretation

of these results.

6.3.3 Interpretation of Results and Comparative Analysis

Based on our methodology (Section 6.3.1), the ETSI provisions are an improvement

over the DCMS 13 guidelines in terms of proportion of actionable advice.

120

M1. Not Useful
9/13 69.2%
0

DCMS
Full (/13)

DCMS
Sub-Topics (/28)

1.5% (1/67)

M2. Beyond Scope of Sec.
0
0
0

N1. Sec. Principle 2/28
0

7.1%
0

N1.1. Sec. Design Principle
1/13 7.7%

3.6% (1/28)
3.0% (2/67)

T. Desired Outcome 6/28
0

21.4%
5/67 7.5%

T′. Desired Outcome
0
0
0

P1. Inc. Specified Practice
2/13
11/28

15.4%
39.3%

23/67 34.3%

P2. General Practice/Policy
0

3.6% (1/28)
7/67 10.4%

*P3. Infeasible
0
0
0

*P4. Security Expert
0
0

1.5% (1/67)

*P5. IT Specialist
1/13
7/28

7.7%
25.0%

28/67 41.8%

ETSI
Provisions (/67)

*P6. End-User
0
0
0

*Actionable
1/13
7/28

7.7%
25.0%

29/67 43.3%

Figure 6.1: Tag distribution across advice sets and actionability (data from Tables
6.1 and 6.2). Graph depicts the proportion of advice items in each dataset tagged
with each code. Actionable bars depict proportion of each set tagged with actionable
codes. Tagging based on the coding tree methodology of Chapter 4. An asterisk (*)
indicates codes we define as actionable. See Fig. 4.4 on page 56 for code descriptions.

121

Table 6.2: Results of ETSI provisions coding. Parenthesized numbers in column 1
are the number of provisions. Other column headings correspond to tags of coding
tree leaf nodes. ∗ denotes actionable tags, see Fig. 6.1. Page 121 explains absence of
codes P3, P6, and M2. Code frequency compared in Fig. 6.1.

n P1 P2 *P4 *P5 T N1.1 M1

ETSI-1 5 2 3
ETSI-2 3 1 2
ETSI-3 16 5 4 5 1 1
ETSI-4 4 1 3
ETSI-5 8 5 1 1 1
ETSI-6 9 2 1 3 2 1
ETSI-7 2 1 1
ETSI-8 3 2 1
ETSI-9 3 1 2
ETSI-10 1 1
ETSI-11 4 2 2
ETSI-12 3 1 2
ETSI-13 1 1
ETSI-DP 5 1 4

Total (67) 23 7 1 28 5 2 1

Proportion of Total 34.3% 10.4% 1.5% 41.8% 7.5% 3.0% 1.5%

As a first observation, the Incompletely Specified Practice (P1) code was used

15.4%, 39.3%, and 34.3% of the time for the DCMS Full, DCMS Sub-Topics, and

ETSI Provisions sets, respectively (Fig. 6.1). The frequency with which this code

appeared (through use of the coding tree) signals to us a heavy reliance on external

advice—without technical detail from the advice item itself or in a reference to

an external resource for additional detail, these items are not actionable (by our

definition). Note that the DCMS Full results appear to have significantly fewer P1

codes than the DCMS Sub-Topics and ETSI Provisions results (which, intuitively,

appears desirable), but this is perhaps misleading, as in 9/13 cases (Table 6.1) the

Full guidelines did not have an opportunity to reach P1 in the coding tree due to

being immediately assigned M1.14

Like the 1013-item dataset analyzed in Chapters 4 and 5, the Beyond the Scope

of Security (M2) and Infeasible Practice (P3) tags were not assigned to any items

of the three sets used in this chapter (Fig. 6.1). This is likely for the same reason as

14Recall from Fig. 4.1 on page 54 that Q1 asks whether an item is relatively focused, and many
of the Full guidelines result in a no answer to Q1, being assigned M1.

122

explained in Chapter 5.15 P4 (Security expert) was used 1 time in the ETSI Provi-

sions set and P6 (End-User) was used 0 times, suggesting both advice documents

matched their asserted target audience (manufacturers and other pre-deployment

stakeholders, Section 6.2.3).

As Fig. 6.1 highlights, the ETSI Provisions dataset substantially improves the

proportion of actionable advice within the dataset (43.3% versus 7.7% and 25.0% for

DCMS Full and Sub-Topics guidelines sets, respectively). As a side note, while we

expected that all three datasets would be less actionable than the next-level detail

they reference (32–33% of the 1013-item dataset, Fig. 5.1),16 our analysis here finds

that one of these, the ETSI Provisions, is more actionable (cf. Fig. 6.1). We attribute

this improvement to the ETSI Provisions having been refined into a clearer, focused

set of 67 items.

Below we discuss the results of each set tagging, and how the ETSI provision set

improves over the two DCMS sets.

DCMS 13 guidelines (tagging results and actionability)

It is unsurprising that the DCMS full guidelines containing more than one topic are so

frequently tagged M1 (Not Useful—too vague/unclear or multiple items) when con-

sidered in their entirety. This suggests that our coding tree methodology is useful

for identifying vague and unclear items (signalling these as candidates for clarifica-

tion); from above, we see that it can provide more insightful analysis results if such

unfocused advice items are manually preprocessed and separated into finer-grained

advice items. If producing actionable security advice is the goal of an advice giver,

the advice items in source documents themselves likewise should be refined into nar-

rower individual items confined within a single topic rather than in groups spanning

several topics. This is supported by Table 6.1.

Our tagging of the DCMS guideline sub-topics provided a more granular look at

the advice. While our view is that the guidelines were intended to be digested as

15Page 78 explains that when advice in the 1013-item dataset is actionable, it is almost always
feasible to carry out (Q6); and that advice intended to be security advice is rarely assigned M2 at
Q2.

16Recall that both the DCMS 13 guidelines document and ETSI provisions document suggest use
of the 1013-item dataset for next-level detail.

123

a whole,17 our results show that it appears to be more useful (i.e., the sub-topics

individually are more actionable, as measured by our methodology, than together,

Fig. 6.1) to consider each sub-topic as a distinct piece of advice if actionability is

important to the advice follower.

Table 6.1 showsM1 as the most common (by far) code in the Full dataset, but did

not appear in the results from the Sub-Topics set—where sub-topics were deliberately

extracted and apparently all items were understandable and contain only one topic,

corresponding to a yes answer to Q1. All M1 codes in the Full set were due to the

Unfocused supplementary topic being selected by the coder.18

Considering the sub-topics individually, 25% of the sub-topics were categorized

as actionable (Table 6.1). This drops to 8% if we consider the Full guidelines (1 of 13

guidelines was tagged as actionable). As a side point, in both cases, some items were

actionable by IT specialists (corresponding to code P5, occurring proportionally as a

ratio 1/13 and 7/28 for Full and Sub-Topics sets, respectively), but none were tagged

as P4 (security experts). This suggests that the sub-topics that are actionable were

appropriate for IT specialists, but not requiring the further expertise of security ex-

perts. While few in number, we view the occurrence of P5 (instead of P4) positively,

as we expect IoT device manufacturers to typically have IT specialists developing

devices. Thus, the subset of Sub-Topics advice that is actionable matches what we

believe to be the target audience.

ETSI provisions (tagging results and actionability)

For the ETSI tagging, 42% of advice (Fig. 6.1) was tagged as Specific Practice—

IT Specialist (P5). One practice (1/67), in ETSI-4 in Table 6.2, was tagged as

requiring a Security Expert (P4). Of actionable codes, 28/29 are P5, matching what

we believe is the target audience (IT specialists rather than security experts). A

greater proportion of the ETSI Provisions set were tagged as P5 than the DCMS

Sub-Topics set (41.8% vs. 25%), implying the ETSI provisions are more appropriate

than the DCMS sub-topics for what we believe is the ideal target audience for the

17This is based on the guidelines commonly being presented as a paragraph and within a high-
lighted section; see Section 6.1.1 on page 105.

18Unfocused code described in detail in Section 4.2.3 on page 67.

124

advice. Combined, actionable codes make up 43.3% of ETSI provisions.

Comparing the ETSI Provisions advice set to the DCMS Full and Sub-Topics

sets, the ETSI Provisions set is significantly more actionable (see the Actionable

bars of Fig. 6.1).

Comparative improvement in ETSI baseline requirements

We now use our results from this section so far (Section 6.3) to compare our two

main advice set documents in three selected areas, noting several aspects from the

informal analysis in Section 6.2 that improve the actionability of ETSI’s provisions.

(1) Actionability of advice. The ETSI provisions are considerably more ac-

tionable than the DCMS sub-topics and single guidelines. The actionability of the

DCMS sub-topics, at 25%, more than triples the corresponding 7.7% for the single

guidelines, but is itself almost doubled by ETSI provisions (43% actionable). We

attribute this largely to the improvement in technical detail among ETSI provisions

(next item).

(2) Technical detail included in advice. For the DCMS Sub-Topics set, a

combined 61% (17/28) evoked a yes at Q4 (Fig. 4.1 on page 54), suggesting they

described a security technique, mechanism, software tool, or specific rule. This is the

first technical question toward an actionable code. 11 of these 17 items exited the

path toward an actionable code at Q5 (asking: does the advice item describe or imply

steps to take), moving instead to Incompletely Specified Practice (P1). In the case of

the DCMS Sub-Topics set, this was typically because of a lack of technical detail in

the advice. In contrast, for the ETSI provisions, 78% of the 67 items progressed to

an actionability path at Q4 and 43% likewise at Q5. We interpret the proportion of

a dataset that is actionable as a signal of how technically detailed the dataset is—an

advice item reaching Q6 (beyond which all tags are actionable) has enough technical

detail to be considered actionable. Thus, we observe a significant improvement in

the level of technical detail in the ETSI Provisions set (43.3% of ETSI provisions

answered yes to Q5 versus 25% of DCMS sub-topics).

(3) Fewer incomplete practices. For the DCMS Sub-Topics set, 39.3% were

tagged as Incompletely Specified Practice (P1). This drops to 34.3% for the ETSI

125

document, suggesting that when ETSI provisions are able to make it to Q5 about

technical steps, they continue on the actionable path by specifying technical steps

more frequently than the DCMS sub-topics.19 While only 15.4% of the guidelines

from the DCMS Full set were tagged as P1 (significantly fewer incomplete practices

than the other two sets), as discussed on page 121, this is explained by the early

assignment of the M1 tag rather than a specific improvement in the DCMS Full set

advice.

In summary, using the coding tree methodology, we analyzed two security advice

documents from authoritative sources, and identified that the ETSI provisions im-

prove on the DCMS guidelines in proportion of actionable advice, increased technical

detail, and a reduction in the number of incomplete practices.

6.4 DCMS Guidelines and ETSI Provisions Coding Output

Tables 6.3 and 6.5 respectively show our coding for both DCMS datasets (Full and

Sub-Topics) and the ETSI Provisions from this chapter.

19A yes to Q5 branches to actionable codes (P3–P6), while answering no yields the P1 leaf.

126

Table 6.3: Our coding of the DCMS Full guidelines (13 items) and Sub-Topics (28
items), using the SAcoding method. DCMS Full guidelines coded using guideline
description (versus title, as included here). Table 6.1 on page 119 is derived from
this data.

Guideline Full Sub-
Topic

Sub-Topic Text (from [62])

Code Code

DCMS-1 P5 • DCMS-1 title: No default passwords
1.1 P5 All IoT device passwords shall be unique and not resettable to any uni-

versal factory default value.

DCMS-2 M1 • DCMS-2 title: Implement a vulnerability disclosure policy
2.1 P5 All companies that provide internet-connected devices and services shall

provide a public point of contact as part of a vulnerability disclosure policy
in order that security researchers and others are able to report issues.

2.2 P1 Disclosed vulnerabilities should be acted on in a timely manner.

DCMS-3 M1 • DCMS-3 title: Keep software updated
3.1 T Software components in internet-connected devices should be securely up-

dateable.
3.2 P1 Updates shall be timely and [...]
3.3 T [Updates] should not impact on the functioning of the device.
3.4 P5 An end-of-life policy shall be published for end-point devices which ex-

plicitly states the minimum length of time for which a device will receive
software updates and the reasons for the length of the support period.
The need for each update should be made clear to consumers and an up-
date should be easy to implement.

3.5 T For constrained devices that cannot physically be updated, the product
should be isolatable and replaceable.

DCMS-4 M1 • DCMS-4 title: Securely store credentials and security-sensitive
data

4.1 P1 Any credentials shall be stored securely within services and on devices.
4.2 P5 Hard-coded credentials in device software are not acceptable.

DCMS-5 M1 • DCMS-5 title: Communicate securely
5.1 P1 Security-sensitive data, including any remote management and control,

should be encrypted in transit, appropriate to the properties of the tech-
nology and usage.

5.2 T All keys should be managed securely.

DCMS-6 N1.1 • DCMS-6 title: Minimise exposed attack surfaces
6.1 N1.1 All devices and services should operate on the ‘principle of least privi-

lege’; unused ports should be closed, hardware should not unnecessarily
expose access, services should not be available if they are not used and
code should be minimized to the functionality necessary for the service to
operate. Software should run with appropriate privileges, taking account
of both security and functionality

DCMS-7 M1 • DCMS-7 title: Ensure software integrity
7.1 P1 Software on IoT devices should be verified using secure boot mechanisms.
7.2 P5 If an unauthorised change is detected, the device should alert the con-

sumer/administrator to an issue and should not connect to wider networks
than those necessary to perform the alerting function.

127

Table 6.4: Table 6.3 continued.

Guideline Full Sub-
Topic

Sub-Topic Text (from [62])

Code Code

DCMS-8 M1 • DCMS-8 title: Ensure that personal data is protected
8.1 P5 Where devices and/or services process personal data, they shall do so in

accordance with applicable data protection law, such as the General Data
Protection Regulation (GDPR) and the Data Protection Act 2018.

8.2 P5 Device manufacturers and IoT service providers shall provide consumers
with clear and transparent information about how their data is being used,
by whom, and for what purposes, for each device and service. This also
applies to any third parties that may be involved (including advertisers).

8.3 P1 Where personal data is processed on the basis of consumers’ consent, this
shall be validly and lawfully obtained, with those consumers being given
the opportunity to withdraw it at any time.

DCMS-9 M1 • DCMS-9 title: Make systems resilient to outages
9.1 T Resilience should be built in to IoT devices and services where required by

their usage or by other relying systems, taking into account the possibility
of outages of data networks and power.

9.2 T As far as reasonably possible, IoT services should remain operating and
locally functional in the case of a loss of network and [...]

9.3 T [Devices] should recover cleanly in the case of restoration of a loss of
power.

9.4 P1 Devices should be able to return to a network in a sensible state and in
an orderly fashion, rather than in a massive scale reconnect.

DCMS-10 P1 • DCMS-10 title: Monitor system telemetry data
10.1 P1 If telemetry data is collected from IoT devices and services, such as usage

and measurement data, it should be monitored for security anomalies.

DCMS-11 M1 • DCMS-11 title: Make it easy for consumers to delete personal
data

11.1 P1 Devices and services should be configured such that personal data can
easily be removed from them when there is a transfer of ownership, when
the consumer wishes to delete it and/or when the consumer wishes to
dispose of the device.

11.2 P2 Consumers should be given clear instructions on how to delete their per-
sonal data.

DCMS-12 M1 • DCMS-12 title: Make installation and maintenance of devices
easy

12.1 P1 Installation and maintenance of IoT devices should employ minimal steps
and should follow security best practice on usability.

12.2 P2 Consumers should also be provided with guidance on how to securely set
up their device.

DCMS-13 P1 • DCMS-13 title: Validate input data
13.1 P1 Data input via user interfaces and transferred via application program-

ming interfaces (APIs) or between networks in services and devices shall
be validated.

128

Table 6.5: Our coding of ETSI Provisions dataset (67 items), using the SAcoding
method. Table 6.2 on page 121 uses this data.

Provision Code

1-1 P5
1-2 P1
1-3 P1
1-4 P5
1-5 P5

2-1 P5
2-2 P2
2-3 P5

3-1 T
3-2 P1
3-3 P1
3-4 M1
3-5 P1
3-6 P5
3-7 P1
3-8 P2
3-9 P1
3-10 P5
3-11 P5
3-12 P5
3-13 P2
3-14 P2
3-15 P2
3-16 P5

Provision Code

4-1 P5
4-2 P4
4-3 P5
4-4 P5

5-1 P1
5-2 N1.1
5-3 P1
5-4 P5
5-5 P2
5-6 P1
5-7 P1
5-8 P1

6-1 P1
6-2 T
6-3 T
6-4 P5
6-5 P5
6-6 P5
6-7 N1.1
6-8 P1
6-9 P2

7-1 P1
7-2 P5

Provision Code

8-1 P1
8-2 P1
8-3 P5

9-1 T
9-2 T
9-3 P5

10-1 P1

11-1 P1
11-2 P1
11-3 P5
11-4 P5

12-1 P1
12-2 P5
12-3 P5

13-1 P1

DP-1 P5
DP-2 P5
DP-3 P5
DP-4 P1
DP-5 P5

6.5 Related Work

Discussion about the development of security advice often focuses on the usability

of advice (e.g., [3, 104, 173] below). While we focus on pre-deployment IoT security

stakeholders (i.e., before an end-user receives a device), others discuss the impact of

the usability of general security advice on end-users of IoC devices (e.g., [104, 174]

below). Related work on IoT security advice often focuses on the technical content

of the practices themselves (see Chapter 4’s related work section). In this section,

we discuss related work on characterizing security advice and what makes advice

useful (or not) for followers (versus the technical content of IoT security advice in

Chapter 4, or coding methodologies in Chapter 5).

129

Redmiles et al. [173] measure the readability of security advice from both expert

and non-expert online sources. In our work, readability is a crucial aspect in ac-

tionability (you cannot follow advice if you cannot understand it). Our coding tree

methodology (Section 6.3.1) handles readability by disqualifying advice at the first

branch of the coding tree if it is vague or unfocused (Q1 of Fig. 4.1 on page 54). In

another paper, Redmiles et al. [174] collected and analyzed a large set of end-user

security advice and found, through a user-study, most advice to be perceived as ac-

tionable, but users are unclear about which advice is most important to execute.

Herley [104] studied the costs and benefits of following security advice for end-users,

and suggests that users reject common security advice because on average it costs

them (effort required to comply) more to follow the advice than it benefits them.

Acar et al. [3] note that software developers often find security advice lacking

(e.g., out of date, missing concrete examples, missing important topics), and find

technical detail or pointers to external advice to be frequently missing from advice

given by major organizations (e.g., Microsoft, Mozilla, OWASP). Renaud [175] notes

in small and medium-sized enterprises (SMEs), a large amount of security advice

leads to uncertainty and confusion, and suggests that advice-giving organizations

need to agree on a reduced number of simple, clear sets of security advice. Assal and

Chiasson [24] note that available informational resources for software development

security practices vary in their level of technical detail, and report frequent non-

compliance with common software development security advice, e.g., circumventing

annoying or frustrating security features that hinder development speed. RFC 2119

[47] (a “best current practice” document), defines specific words such as “MUST”,

“SHALL”, “MUST NOT” (among others) that describe to readers how advice in

RFCs should be interpreted. While not directly about security advice, using well-

defined (and well-adopted) terms such as these help clarify what is expected of the

advice follower.

Beyond the above papers on usability and usefulness of general security advice

(whether for end-users [81, 104, 174] or software developers [3, 24, 175]), we are not

aware of any related work that focuses on crafting actionable security advice specifi-

cally for pre-deployment IoT stakeholders. This said, as IoT security advice overlaps

130

heavily with IoC advice,20 it is expected that findings about developing actionable

security advice for IoC (including the research mentioned above) would be directly

applicable to IoT.

6.6 Concluding Remarks

Given IoT’s rapid growth and popularity over the past two decades, many organi-

zations have offered security advice to IoT security stakeholders. While the advice

appears to be well-intentioned, it is unclear how actionable the advice is for different

IoT security stakeholders (recall that our main focus is manufacturers and soft-

ware/hardware developers). Actionable advice can then lead to adoption of strong

security development practices, which have unfortunately been found to be lacking

in consumer IoT [14].

Our coding tree methodology enabled us to explore the improvement in action-

ability of IoT security advice from the UK government’s DCMS 13 guidelines [62] to

the advice from ETSI’s provisions [68]. We suggest that use of the coding tree and

analysis of these documents may serve as a basis from which to begin a measurable

process of improving security advice (particularly its actionability; and the compo-

nents of security advice documents such as its positioning, references to external

advice, and target audience). However, from the results of our analysis of the DCMS

guidelines and ETSI provisions documents, constructing sets of actionable security

advice may not be as simple as the wide breadth of existing advice would make it

seem, and what is positioned to be widely “appropriate” advice may be ineffective

for mismatched audiences (e.g., expert level security advice used by non-experts).

Despite noting improvement, our analysis found both the DCMS 13 guidelines

and ETSI provisions advice sets leave room for improvement, suggesting more work

is needed not only in generating actionable advice, but also on means to evaluate

security advice itself. The design and use of the coding tree methodology has focused

on characteristics of security advice that we believe are important. Our analysis and

20Neither coder from Chapter 5 selected the option in the coding tree interface that denotes an
advice item as IoT-specific, suggesting IoT and IoC advice are similar in nature. This, in part,
motivated our decision to design the coding tree methodology for security advice in general rather
than specifically for IoT advice. See page 65 explanation.

131

discussion in Section 6.3 suggests the following characteristics be considered when

constructing actionable security advice.

Explicit declaration of target audience. An explicit declaration (and char-

acterization) of the target audience of security advice is essential in our view. This

plays directly into whether advice is actionable or not, as advice is often tailored

specifically for an audience, and to their knowledge. Without this declaration, unin-

tended audiences who use the advice may struggle to understand what is expected,

or lack details to successfully (and reliably) execute advice.

Appropriate level of technical details. A level of detail appropriate to the

target audience and matching the positioning of the document should be included.

This follows our definition of an actionable practice and target audience is a concept

built into our coding tree methodology. In our view, the level of detail should be

enough to provide the target recipient—implicitly or explicitly—unambiguous and

clear steps for how to reach a desired outcome. This may be accomplished by advice

that contains details itself (enough so an advice recipient can understand, e.g., the

technical mechanisms required), or reference external sources for further details (see

next item).

Pointers to next-level detail. Related to the previous item, if advice itself

lacks sufficient technical detail to be directly followed by the target audience, it should

provide specific references to resources containing the necessary details.21 Finally,

while a perhaps obvious point, we suggest that ideally, a referenced document not

itself send the advice recipient down a long chain of further references: an important

detail three levels further may overwhelm, and later documents may be written for

a different target audience.

Fine-grained advice items. It appears beneficial to package advice as fine-

grained items addressing narrower or single topics. Our systematic analysis compar-

ing the DCMS Full and DCMS Sub-Topics datasets supports this—when blocks of

advice text from the Full set were split into extracted sub-items for the Sub-Topics

21This is not specific to IoT security advice—another specific example of the usefulness of pointing
to additional technical information is for technical documentation regarding certificate validation
errors [207].

132

set, all Not Useful (M1) codes were replaced by codes conveying more meaning-

ful information reflecting sub-item content. Analysis of the ETSI Provisions, which

are finer-grained than the DCMS Full set, also supported this view; the provisions

attracted in total just one Not Useful code among 67 items.

In addition to these characteristics, we believe that security advice documents

should have a clear indication of whether the advice provided is intended to con-

vey, e.g., practices, guidelines, or requirements, to avoid contradictions such as in

the DCMS 13 guidelines where advice was suggested as being both actionable and

outcomes to reach [62]. Ambiguously positioned advice may cause confusion about

whether it is expected to be followed as presented to reach security goals, or if ad-

ditional details are needed. As we discuss in Chapter 3, the terminology used to

convey security advice is important, and often signals how it is designed, or expected

to be used. A document containing practices (possibly called best practices), by our

definition (Section 3.2.2 on page 38), is more actionable than one guiding towards

only high-level outcomes.

We believe that these recommendations provide useful guidance to those who

themselves provide guidance, i.e., advice-givers as they craft security advice intended

to clearly and coherently guide advice recipients.

Chapter 7

Explication of IoT Device Identification

In this chapter, we revisit the question: How is IoT security different from IoC

security? In Chapter 2 we examined the general differences; in this chapter we

view the differences between IoT and IoC through a focus on device identification,

and analyze how IoT devices are differentiated from other devices. Our focus in

this chapter is the identification of consumer IoT devices, and we exclude, e.g.,

autonomous vehicles and smart cities/infrastructure from our scope (see Chapter 1).

In the context of IoT, from our background reading we began from the view that

device identification is an overloaded term (i.e., used in many, or ambiguous ways)

and often not explicitly defined, requiring a reader to assume their own implicit un-

derstanding of this term. One popular subtopic is authentication of IoT devices,

which (as we will explain) has many similarities with authentication in IoC. Authen-

tication of resource-constrained devices is well-studied (as exemplified through recent

proposals we examine herein, and historical examples such as improvements to Blue-

tooth spanning more than 20 years [218]), but has lingering usability and key man-

agement problems such as secure device pairing for devices with interfaces that differ

significantly from IoC devices [129, 138, 194, 199, 209] and long-term keying material

management (e.g., device key pairs and certificate replacement [12,216] [191, Chap-

ter 5], passwords [125, 177]; discussed in Section 7.4). While imperfect, if existing

approaches from IoC can be employed for many IoT authentication use cases, au-

thentication objectives can be met through known means allowing us to apply past

authentication experience to IoT instead of developing entirely new and untested

approaches.

We first clarify what we believe to be the general objectives of IoT device iden-

tification (based on our review of research literature), and the approaches used to

133

134

reach them. Toward this goal, we carry out a literature review to identify three ap-

proaches commonly appearing in recent proposals that pursue IoT identification. We

then conduct several categorizations of such proposals to extract the identification

objectives, and the technical approaches used to reach them. Based on our literature

review, the major contribution from this chapter is a model unifying IoT device iden-

tification approaches and objectives, and a comparison of the supplementary data

used in their fulfillment. Selecting IoT device authentication for further analysis (the

other two identification approaches we discuss are device fingerprinting and device

classification), we extract the authentication approaches used in recent IoT device

authentication proposals and categorize them. Through this categorization, we rec-

ognize the overlap between IoT and IoC authentication approaches, and how device

authentication goals are being met in recent IoT device identification proposals.

7.1 Unwrapping “IoT Device Identification” (Background and Models)

Each IoT device identification proposal paper analyzed in this chapter uses one

or more approaches: device fingerprinting, classification, and authentication.1 In

this section, as background, we first give an overview of each approach and the

identification objectives they achieve. Other operations involved in identification

and the relationship between these approaches are then unified in our main model

(Fig. 7.2), after a first model of device authentication (our focus in Section 7.3).

Throughout this chapter, we use the following definitions.

Device instance. A device instance refers to a single physical IoT device that is

self-contained, has computing power, and communicates. For example, two devices

of the same smart light bulb model are separate device instances. A single instance

could have multiple communication interfaces (e.g., 802.11 radios, Bluetooth, ZigBee,

wired network interfaces) and/or run many services.

Device type. A device type refers to a set of functional characteristics that

defines or implies a device’s core functionality (e.g., a smart speaker, smart light

bulb, smart lock).

Device model. A device model refers to a manufacturer-specific product of a

1These approaches are described in the three subsections below.

135

given device type. All devices of a given model are expected to be functionally the

same, while different models may have different functions or features, physical form,

or cost. For example, different models of Amazon Echo Dot devices (smart speakers)

differ in these aspects, but are the same in their core functionality of a smart speaker

with voice assistant.

Device class. A device class refers to a collection of devices that is defined by

one or more characteristics or attributes. A class could be a particular device model,

a device type, or defined by a feature. For example, if an administrator wanted to

record (and later retrieve) all the IP addresses of a building’s IP cameras, they might

define an “IP camera” class. Device classification (informally, the act of associating

a device with a class) is discussed in Section 7.1.2.

Identifier. An identifier (colloquially an “ID”) is an explicit label assigned

to a device instance that is used to distinguish the device from others within its

scope/domain.

7.1.1 Device Fingerprinting

For our purposes within this chapter, we use the following definition.

By device fingerprinting we mean using available information to uniquely distin-

guish a device instance from a set of devices (or approaches that attempt to do

this).2

Fingerprinting involves a one-to-many test, aiming to match a device’s measured

features with a stored profile. For example, looking for Bob in a crowded room,

Alice might try to determine if the features of each person (e.g., hair color, height,

facial structure) matches her memory (of stored profiles) of what Bob looks like.

Similar to biometric authentication [115,116], device fingerprinting starts with an

enrollment phase, where a sample is taken from a device, features are extracted and

measured, and a profile is created and stored. Features are characteristics, commonly

the set of attributes and behaviors that a device exhibits such as the hardware

2Note that consistent with the later Fig. 7.2 on page 139, we associate this term with a matching
phase, not a profile-building phase.

136

platform (and version), OS and applications (and their version), and network traffic

patterns. Ideally the features vary sufficiently across device instances such that the

probability is negligible that two devices produce indistinguishable samples.

In a later (second) phase, a measurement of a fresh sample from a device is

matched against stored profiles. If a similarity score in testing against a given profile

exceeds a threshold, the identity of the measured device is assumed to be that associ-

ated with the profile. Note that in fingerprinting, the device itself asserts no explicit

identity. The level of assurance of identity depends on the number and granularity

of measured features, and the matching threshold.

7.1.2 Device Classification

For our purposes, we use the following definition.

By device classification we mean associating a device with an explicitly-defined

class based on attributes or features.

Classification is useful when a use case calls for a method to logically group devices,

and then apply rules or functions to them, e.g., to apply network policies to devices

based on their types [152, 227], detect device types or models with known vulnera-

bilities [144], or to detect abnormal traffic by comparing existing traffic with known

baseline traffic for a device model [181].

7.1.3 Device Authentication

For our purposes, we use the following definition.

By device authentication we mean proving or corroborating an asserted identity.

Typically this is done using some form of secret or cryptographic keying material.

By this definition, a device authenticates itself to another party by offering some

evidence that “proves” (provides some degree of assurance) that it is the asserted

device. In contrast with device fingerprinting, authentication is a one-to-one test,

as the offered evidence is verified relative to evidence expected from the asserted

identity.

137

Device
Authentication

Keys/Secrets for
Corroboration

Identifier

Registration
(Device Onboarding)

Assigning an
Identifier to Device

Stored Auth.
Material

Step 1: Onboarding a device

Corroborating
Evidence

Asserted Identifier

Step 2: Confirming device's identity at a later time

Stored Auth.
Material (Step 1) Verified Identity

VerifierClaimant

DATA OPERATIONis used in...
Legend:

OPERATION outputs... DATA

Figure 7.1: Two-step setup-verification model for device authentication. The first
step onboards a device into a trust domain, and the second later verifies the device’s
identity to confirm it is the same device that was registered (onboarded).

Authentication uses an asserted identifier previously associated with some de-

vice, and corroborating evidence produced from long-term keying material estab-

lished during onboarding (i.e., when a device is first added to a domain; discussed

in Section 7.1.3). Identifiers are associated with a device during onboarding (Step 1

of Fig. 7.1), and later asserted during authentication with evidence to be compared

with its stored authentication material (Step 2 of Fig. 7.1). Corroborating evidence

is the information that a device uses to corroborate its identity. Examples of this

include demonstrated knowledge of a secret shared between two devices, or demon-

strated knowledge of a private key used for digital signatures. When we say that a

device is asserting an identity, we mean that a device is providing an identifier (for

whatever purpose), thus implicitly asserting that it (the identifier) is associated with

the device (which has characteristics, behaviors, etc.).

Secure Communication Phases. It is a common requirement for devices to

communicate with data confidentiality and integrity. This is accomplished through

(1) an onboarding phase, and a communication session with two phases: (2) authen-

ticating a communicating device’s identity, and (3) establishing parameters (typically

cryptographic session keys) for a secure channel by which to communicate.

138

Phase (1) onboarding installs long-term keying material into a verifier (e.g., shar-

ing a password, installing a certificate), often when a device is added to a network for

the first time (Step 1 of Fig. 7.1). Onboarding (in the case of IoT devices) typically

involves a human installing the device (place at a location, connect to power/network,

provide initial configuration beyond default), and perhaps providing initial keying

material. Phase (2) uses initial keying material to authenticate the device (Step

2 of Fig. 7.1) and the verifier (for mutual authentication). Phase (3) uses an au-

thenticated key establishment protocol (involving Phase 1 long-term material, e.g.,

passwords [2,211] or digital signature keys [65]) to create and authenticate fresh com-

munication session keys. As a common reason for authentication is to communicate

securely, authenticating a device (Phase 2) and establishing an authenticated session

key (Phase 3) is often done using an integrated protocol.

7.1.4 Model Relating IoT Identification Approaches and Objectives

The model of Fig. 7.2 provides a foundation for our analysis and classification of

IoT device identification proposals in this chapter. The model relates identification

objectives (Section 7.2.1) and approaches used to reach them (Section 7.2.2). This

includes the three previously noted identification approaches (device fingerprinting,

classification, and authentication), along with supporting operations (that transform

or use data, e.g., profile generation, device onboarding).

Our model is based on the three categorizations we provide in this chapter (sum-

marized in Table 7.1), but itself also informed the categorizations. As the catego-

rizations progressed, the model was refined to better align data and approaches to

objectives, which in-turn led to further refinements of both the category definitions

and assignment of proposals to categories as our understanding of IoT identification

(and approaches to it) increased.

Each of the three main identification approaches (Sections 7.1.1–7.1.3) are sup-

ported by other processes and data, and belong to Phase Two. Phase One is a setup

and registration phase, where data is collected, provisioned, or configured for use in

Phase Two; this includes gathering data (e.g., device attributes and behaviors, iden-

tifiers, authentication material; Fig. 7.2) and processing it. Phase Two aims to reach

139

DATA OPERATIONis used in...Legend: OPERATION outputs... DATA

Attributes and
Behaviours

3. Device
Authentication

2. Device
Classification

Generate Profile

Corroborating
Evidence

Identifier

Registration
(Device Onboarding)

Assign Identifier to
Device

Detailed Profile

Phase One Phase Two

Stored Auth.
Material

Device Associated
with Class

Verified Identity

1. Device
Fingerprinting

Record Sample Measured Features

Implied Identity

Asserted Identifier

Keys/Secrets for
Corroboration

Figure 7.2: Device identification model and relationships between operations and
approaches. Some use cases may employ only a subset of components. The three
main identification approaches are labelled 1, 2, 3 to aid discussion; the Registration
phase (also in bold) is the main component in Phase One.

an identification objective through an identification approach. By an identification

use case we mean a specific scenario where identification is used.

Each of the identification approaches address different identification objectives as

described in Section 7.2.1. Regarding the desired objectives of each approach and

the processes and data involved, note from Fig. 7.2 that there is no overlap between

device authentication and device fingerprinting data or processes, i.e., the data and

processes used to achieve authentication and fingerprinting are distinct.3

Our main model of Fig. 7.2 provides a clear differentiation and mapping of the

goals each approach addresses, to the data and processes each uses. This model is

used as a roadmap for the rest of this chapter, and for unifying context.

7.2 Categorizing IoT Device Identification Proposals

In this section we extract from recent IoT identification literature the objectives that

researchers pursue through IoT device identification, and the approaches employed.

Our sources include: papers from 2019–2020 of the top four security conferences

(IEEE Symp. S&P, ACM CCS, Usenix Security, NDSS); a selection of papers from

3Section 7.2.3 discusses possible misuse of fingerprinting for device authentication.

140

2019–2022 of Google Scholar Alerts on the search queries “IoT identification”, “IoT

classification”, and “IoT authentication”; and related papers referenced by these. In

the following two subsections, we provide two categorizations of this literature: based

on the identification objectives being pursued, and on the approaches used. Both

categorizations, and citations to the literature set, are summarized in Table 7.1.

7.2.1 Categorization 1: Identification Objectives

We use the term identification objective for (our interpretation of) the end-purpose

pursued by IoT identification proposals, i.e., the purpose for which they want to

distinguish devices. To determine these objectives, we manually extracted the re-

search problems and IoT identification use cases from the selected papers. We find

identification objectives largely fall into three categories:

1) determine device instances within a domain;

2) determine device classes; and

3) authenticate devices.

We now discuss these three objectives individually.

1. Determine device instances within a domain. The goal here is to

determine all device instances (whether authorized or not) that are connected to

a service point within a domain (e.g., a network, a home, connected to a hub).

The approaches used to reach this objective typically fall short of providing strong

assurances of the identity of a device (as explained in Section 7.2.3), but rather aim

to enumerate device instances within a domain. In other words, there are relatively

weak (if any) assurances regarding device identity.

2. Determine device classes. The goal here is to group devices into existing

classes. The goal is not to enumerate device instances; such an enumeration is an

assumed given. Establishing such classes may be a preliminary exercise. We note

that, beyond the device identification process (our focus) per se, the resulting clas-

sification of device instances is often used in subsequent management or processing

tasks as observed in our literature review (e.g., applying policies to specific classes

of devices).

141

Table 7.1: Categorization of identification objectives and approaches. Items ordered
to highlight patterns. For authentication-focused papers, final column denotes cate-
gory of authentication approach used.

D
eterm

ine
device

instances

D
eterm

ine
device

groups

A
uthenticate

device

D
evice

F
ingerprinting

(§7.1.1)

D
evice

C
lassification

(§7.1.2)

D
evice

A
uthentication

(§7.1.3)

A
uthentication

category
(§7.3.1)

Prior Work Objectives (§7.2.1) Approaches (§7.2.2)

Bauer [35] ✓
Fischer [79] ✓
Noguchi [161] ✓
Perdisci [167] ✓
Ray [171] ✓ AA3
Yousefnezhad [225] ✓ AA3
Aneja [19] ✓ AA3
Chowdhury [52] ✓ AA3
Hamad [100] ✓ ✓ AA3
Anantharaman [18] ✓ ✓
Kotak [126] ✓ ✓
Ammar [15] ✓
Ammar [16] ✓
Santos [183] ✓
Meidan [150] ✓
Singla [190] ✓
Marchal [144] ✓
Bao [28] ✓
Thomsen [203] ✓
Miettinen [152] ✓
Yu [227] ✓
Bezawada [40] ✓
Salman [181] ✓
Marchal [144] ✓
Aksoy [6] ✓
Kumar [130] ✓ AA4
Anantharaman [17] ✓ AA1, AA4
Mukhandi [155] ✓ AA1
Bin-Rabiah [41] ✓ AA1
Gritti [91] ✓ AA1
Kalra [119] ✓ AA1
Malche [143] ✓ AA1
Nashwan [157] ✓ AA1
Kim [122] ✓ AA2
Kim [123] ✓ AA1, AA2
Wang [214] ✓ AA2
Niya [160] ✓ AA2

142

3. Authenticate devices. The goal here is to verify that a device instance

matches the identity it is asserting. This allows, e.g., network infrastructure to

have confidence that devices connected to the network are who they claim to be

(i.e., entity authentication, Section 7.1.3). This is commonly desired (in reviewed

papers) for three purposes: to provide data origin authentication (i.e., to indicate

the source of a message/data), to prevent unauthorized devices from masquerading

as legitimate devices within the network, and to prevent unauthorized devices from

accessing network resources.

Our categorization of papers by identification objectives is summarized in Ta-

ble 7.1. These objectives, once reached, can be leveraged for subsequent functional

objectives. For example, once devices are classified by type (e.g., camera, light bulb,

thermometer), administrators might apply specific security policies to certain classes.

7.2.2 Categorization 2: Identification Approaches

We use the term identification approach to mean a general approach by which devices

are identified, i.e., how an identification objective is reached. Here we categorize

the same selection of papers (Table 7.1) into three approach-based categories used

to reach one of the three main identification objectives (from Categorization 1):

fingerprinting, classification, and authentication.

To assign the main proposals of each paper to the identification approach cate-

gories, we manually extracted (our interpretation of) the general device identification

approaches each uses. (So, to state the obvious: papers that use fingerprinting sam-

pled devices and compared them with stored profiles, classification papers grouped

devices based on profiles, and authentication papers confirmed the identity of devices

using corroborating evidence.) In most cases, papers used a single approach to reach

a single objective; however, three papers used multiple approaches to reach multiple

objectives, as discussed in Section 7.2.3.

7.2.3 Objective and Approach Categorization Insights

Table 7.1 summarizes the identification objectives of each selected paper, and the

approaches used. Comparing approaches with objectives, we see a natural pattern

143

(highlighted by the ordering of papers in Table 7.1): device fingerprinting is typically

used to determine device instances in a network, device classification is used when

determining device groups in a network, and device authentication to provide cor-

roboration of a claimed identity. It is evident from Table 7.1 that in almost all cases

reviewed, there is a one-to-one mapping of objective to approach. In cases where

a paper looks to reach two objectives (e.g., [17, 100, 126]), typically one approach is

used for each objective.

Our categorization suggests that, even when identification is not explicitly de-

fined, researchers tend to have a fairly clear understanding of what they intend when

they use the term, and follow an expected mapping of approach to identification

objective.

We note, however, one exception which comprises five proposals in Table 7.1:

some proposals (mis)use fingerprinting approaches for authentication. We single this

out as a misuse because IoT devices typically have a small set of primary functions—

a thermometer records temperature, a smart lock locks and unlocks, a smart light

bulb provides light. Sampling the attributes and behaviors of such devices may be

enough to classify devices by type; however, within a given device class or type, device

instances are often largely indistinguishable using fingerprinting among very similar

(or the same) device models [35, 100]. Also, since fingerprinting does not provide

strong assurance of device identity (as previously noted in Section 7.1.1), it is thus

not suitable for device authentication, except in a non-adversarial environment.

7.3 Further Analysis of One Identification Approach: Authentication

In this section we categorize recent IoT device authentication proposals. We focus

on device authentication (the objective and approach), as it has a long history in

IoC, implying mature methods; and is described in the literature in technical detail

more precisely than other high-level use cases. We look to determine if the objectives

of each authentication phase from Section 7.1.3 (establishing initial keying material,

authenticating an entity, establishing session keys) can be met with existing IoC

approaches rather than inventing new ones specifically for IoT.

144

7.3.1 Categorization 3: Authentication Approaches

From a variety of IoT device authentication proposals as listed in Table 7.1, we

manually extracted the authentication approaches. By an authentication approach

(in this section) we mean the general method for authenticating a device, largely

based on the technology used but above the level of specific protocols (including,

e.g., symmetric secrets, public key-based). Here authentication approach should not

be confused with the third of our three identification approaches of Section 7.1, i.e.,

fingerprinting, classification, and authentication.

From the papers in Table 7.1, we manually extract the approaches used for device

authentication to provide a third categorization. Each category employs an authenti-

cation approach in specific IoT use cases. We extracted the following four categories

of authentication approach.

AA1: Well-known cryptographic primitives. This authentication approach

category involves well-known cryptographic primitives. These include use of symmet-

ric (including passwords) and asymmetric secrets (public-key pairs) and functions,

developed into techniques for specific authentication use cases. The specific tech-

niques are essentially well-known and commonly used for authentication in IoC.

Experiments already in 2004 and 2005 showed elliptic curve-based (EC) opera-

tions (e.g., ECDH, ECDSA) on an 8-bit processor are possible, but times increase

significantly for future key sizes [29,98,213]. EC operations have become more widely

used in constrained devices [38, 218], and lower power consumption also makes EC

appropriate for battery-operated devices [213]. Thus, for all but the very heavily

constrained devices (see Chapter 2), EC public-key techniques are feasible in IoT.

AA1 approaches include the following proposals (summarized in Table 7.1). Bin-

Rabiah et al. [41] use a pair of symmetric keys established during the onboarding

phase for subsequent authentication of a device. Nashwan [157] uses symmetric and

public-/private-key pairs to authenticate nodes in smart irrigation systems. Gritti et

al. [91] use identity-based cryptography (a private key is associated with a device’s

identifier, which serves as the corresponding public key) and aggregate signatures [45]

within a local network. Mukhandi et al. [155] store digitally signed device identi-

ties on a blockchain, and use IoT device node consensus to provide integrity of the

145

stored identity. Anantharaman et al. [17] suggest using a certificate trust infrastruc-

ture where smart appliances are given a private key and a signed (by the appliance

manufacturer) certificate. Kalra and Sood [119] use EC operations to authenticate a

constrained IoT device. Malche et al. [143] use public-key signatures to authenticate

devices to servers. Kim et al. [123] use PUFs (discussed next) to generate key pairs

for digital signatures to authenticate devices to cloud services and other devices.

AA2: Physically unclonable functions (PUFs). This authentication ap-

proach category is populated by proposals that apply PUFs to authentication use

cases. PUFs leverage variations in physical objects (e.g., power-up state of SRAM,

crystal structure, paper structure) to produce unique outputs [22, 140, 141]. Strong

PUFs are appropriately suited to produce challenge-response pairs (CR-pairs) for au-

thentication (e.g., [228]), as they are characterized by their large number of responses

to unique inputs [140]. Weak PUFs are capable of comparatively (to strong PUFs)

few or just one output, and are commonly used to produce long-term cryptographic

keys [51, 85, 160] or as a random number generator (e.g., by using a pseudo-random

number as input and post-processing the PUF output to remove 0/1 bias [163]).

PUF challenge-response (CR) authentication involves a device receiving a chal-

lenge from a verifier, applying it as input to a device’s PUF, returning the response

to the verifier, and the verifier confirming the response matches the stored response.

Since weak PUFs can generate only a limited number of CR-pairs, they are most

appropriate for uses that do not directly expose PUF responses outside the device

(e.g., generating internal random numbers, cryptographic keys).

Given challenges of using PUFs in IoT (Section 7.4) and lack of wide-spread, time-

tested applications, the practical value of using PUFs in commodity IoT devices (both

in their hardware and software interfaces) remains unclear; however, use of PUFs

for authentication and key establishment is appearing now frequently in specialized

security-focused hardware products [110,220].

Reviewed AA2 proposals include the following. Kim et al. [122], aiming to reduce

the impact of CR-pair exposures and the CR-pair storage requirement on verifiers,

store only one CR-pair in a verifier at a time, storing a fresh CR-pair upon successful

authentication with the verifier. Kim et al. [123] also add PUF-based authentication

146

to the OCF IoTivity framework [114] by using PUFs to authenticate devices with

CR-pairs and public/private key pairs. Wang et al. [214], with the goal of reducing

device resource use, use CR-pairs from PUFs to authenticate resource-constrained

devices and generate session keys. Niya et al. [160] use smart contracts on the

Ethereum blockchain to store and verify device identifiers and bind them to end-

users, and uses a CR-pair stored during manufacturing for authenticating a device

to the manufacturer’s server.

AA3: Device fingerprinting. This authentication approach category includes

proposals that aim to authenticate devices using fingerprinting (based on attributes

and behaviors). These proposals are positioned as providing authentication, but we

call this device fingerprinting because in our view, our label is less misleading and

removes ambiguity (distinguished in Fig. 7.2).

Reviewed AA3 proposals include the following. Yousefnezhad et al. [225] use

individual device certificates and HTTPS to authenticate devices, and use device

fingerprinting in an attempt to distinguish device instances. Similarly, Chowdhury et

al. [52], Hamad et al. [100], Aneja et al. [19], and Ray et al. [171] use fingerprinting of

communication behavioral patterns as a method for distinguishing device instances.

AA4: Exceptions to above categories. We use this authentication approach

category for two proposals that fall outside the above three. Approaches in this

category apply known techniques (shared secrets, public-key cryptography), but in

novel ways through supporting infrastructure to manage and update keying material.

Reviewed AA4 proposals include the following. Anantharaman et al. [17] pro-

pose employing macaroons [42] for authenticating smart home appliances, which use

chained MACs for integrity checking, with the secret input (known by both the hub

device and a new smart appliance) to validate public caveats such as a validity period.

Kumar et al. [130] propose JEDI, which is an encryption protocol for IoT that uses a

hierarchical namespace and identity-based encryption to provide lightweight end-to-

end encryption and key delegation; however, at the cost of requiring infrastructure

to delegate keys, manage topic subscriptions (URIs are used as topics to subscribe

to, similar to other publish-subscribe protocols such as, e.g., MQTT [162], and only

specific users are granted keys to decrypt messages published in them), and perform

147

Table 7.2: Authentication approaches used in the three phases of device authenti-
cation (Section 7.1.3) based on authentication papers from Table 7.1 on page 141.
Category column indicates authentication category from that table.

Sym
m
etric

secret
(1-1)

C
A
-signed

certificate
(1-2)

M
anually

configured
public

key
(1-3)

P
U
F
C
R
-pair

(1-4)

Sym
m
etric-key

(2-1)

P
ublic-key

(2-2)

P
U
F
C
R
(C
hallenge-R

esponse)
(2-3)

D
iffi
e-H

ellm
an

key
agreem

ent
(3-1)

H
ash/K

D
F
of shared

nonces
&
keys

(3-2)

H
ybrid

encryption
(random

sym
m
.
key)

(3-3)

P
U
F
response

(3-4)

Authentication Papers Category Phase 1 Phase 2 Phase 3

Anantharaman [17] AA1, AA4 ✓ ✓
Nashwan [157] AA1 ✓ ▲
Bin-Rabiah [41] AA1 ✓ ▲
Kalra [119] AA1 ✓ ▲
Gritti [91] AA1 ✓
Malche [143] AA1 ✓
Mukhandi [155] AA1 ✓
Kumar [130] AA4 ✓ ▲
Kim [123] AA1, AA2 ✓
Wang [214] AA2 ✓ ▲
Kim [122] AA2 ✓ ▲
Niya [160] AA2 ✓

revocation of key pairs (a similar challenge as in certificate-based approaches, Sec-

tion 7.4). The primitives used to facilitate authentication and encryption in JEDI

and authorization with macaroons may be lightweight, but the infrastructure and

management requirements are non-trivial.

In an extension of the above categorization, in Table 7.2 we now extract the

approaches (or keying material, in the case of Phase 1) proposals use to facilitate

each of the authentication Secure Communication Phases noted on page 137: (1)

onboarding and establishing long-term keying material, (2) using Phase 1 material

to authenticate a device, and (3) establishing and authenticating fresh session keys.

Phase (1) long-term keying material types extracted from the reviewed proposals

include:

148

1-1. symmetric secrets (e.g., a password or shared symmetric key);

1-2. CA-signed certificates (more generally, a centralized trust anchor) and corre-

sponding private key stored by the device;

1-3. manually configured public keys (manually exchanged and configured in a ver-

ifier); and

1-4. PUF CR-pair (a challenge value that will be input into a PUF, and the response

value that the PUF returns).

Phase (2) approaches extracted from the reviewed proposals include:

2-1. symmetric-key authentication, involving corroborating a device’s identity us-

ing a symmetric secret (e.g., using a MAC or challenge-response with a hash

function);

2-2. public-key authentication, involving a device and verifier using public-/private-

key pairs for authentication; and

2-3. PUF challenge-response authentication (see Category 2 from Section 7.3.1).

Phase (3) approaches extracted from the reviewed proposals include:

3-1. DH-based authenticated key agreement;

3-2. using the output of a hash or key derivation function of shared nonces or keys;

3-3. using hybrid encryption (encrypting a random session key with a communicat-

ing partner’s public key); and

3-4. using a PUF response as a session key (e.g., hashing a PUF challenge and

response [122, 198], using a response as a seed for key generation algorithms

[198]).

For reasons discussed in Section 7.2.3, we exclude authentication proposals that

employ fingerprinting from Table 7.2.

149

As expected, for a given proposal, the authentication approaches it uses to fa-

cilitate each of the authentication phases align with the proposal’s category (from

above), e.g., AA1 proposals use symmetric secrets or public-key pairs for Phases 1

and 2, AA2 proposals use PUFs. Additionally, as the three authentication phases

are closely related (i.e., Phase 1 material typically influences the approaches used for

Phases 2 and 3), it is unsurprising that Phase 2 authentication uses the same general

authentication approach as for establishing initial keying material in Phase 1, e.g.,

in Kalra [119] (cf. Table 7.2 on page 147), public-key authentication in Phase 2 (2-2)

uses public-key material from Phase 1 (1-3).

We note (with some disappointment) that few papers in our selection describe

how session keys are established. This reflects that most authentication proposals

in Table 7.2 focus on entity authentication (i.e., confirming the identity of an IoT

device) and stop short of describing how authenticated session keys are established,

suggesting only the authentication of devices (Fig. 7.1) is their primary focus (versus

establishing an authenticated communication channel). We view this as a weakness

in these proposals (given that it is generally accepted among cryptographers that

session key establishment should be tied to entity authentication) [210, p.94], [65].

Summary discussion. The last column of Table 7.1 (page 141) shows our as-

signment of these 4 categories to each authentication proposal. AA1 approaches

(symmetric and asymmetric techniques) are well-known, and are in use in both IoT

and IoC. PUFs (AA2) have seen a great deal of attention, particularly in IoT con-

strained devices that require lightweight authentication mechanisms and tamper-

resistant key generation/storage (weak PUFs have been described as being essen-

tially a key storage mechanism [180]). While not yet enjoying massive widespread

use in IoC or IoT, PUFs have seen use for authentication and key establishment

in specialized security-focused hardware products [110, 220], suggesting promise of

broad future use in IoT devices. While AA3 proposals seek to use it to authenticate

devices, as noted in Section 7.2.3, fingerprinting appears ill-suited for authentication.

Except for AA4 (which itself still uses known primitives, as noted in Section 7.5),

all of our authentication approach categories use techniques that are already well-

known (research on PUFs dating back to 2002 [85]). This underscores that authors

150

of new IoT device authentication proposals for specific use cases appear to be relying

heavily on known security primitives, rather than inventing novel primitives for IoT.

One might alternatively say that there is a catalog of existing security primitives

for identification that have shown to be applicable to IoT use cases. Nonetheless,

challenges with these existing techniques are not necessarily trivial (discussed next

in Section 7.4), and niche use cases may benefit from additional research into, e.g.,

new IoT-specific primitives or infrastructure, to fit specific needs (which we do not

address in this chapter); as a side effect, research into new IoT-specific techniques

may be beneficial to non-niche IoT use cases using existing primitives.

7.4 Challenges Adapting IoC Authentication Approaches for IoT

In support of Section 7.3’s categorization of IoT device authentication approaches,

in this section we briefly identify notable challenges in adapting each category’s

approaches for IoT based on the initial keying material used by each (Phase 1 from

Table 7.2 on page 147). The characteristics of IoT that distinguish it from IoC [36]4

are reflected in many of the challenges discussed below; how these characteristics

impact IoT security is discussed in Chapter 2.

Symmetric secrets. Symmetric secrets require a bootstrapping mechanism.

This could be, for example, a user securely pairing two devices [129,194,209] (relying

on the user to verify both devices’ identities and establish long-term keying material;

complicated by non-standard interfaces), or a pre-established global secret that all

devices of a specific type or manufacturer know (generally discouraged, and often

disastrous [177]).

While onboarding becomes tedious even with a small number of devices, adding

new devices incrementally (a plausible situation for consumer devices) distributes this

burden; however, the usability of onboarding mechanisms, i.e., how users establish

initial keying material, remains an open usability problem. Frustrations with device

onboarding highlight an important usability aspect of device authentication [129,

194,209], as a user is often involved with bootstrapping the authentication material.

4Relevant IoT device characteristics include: low-cost, non-standard interfaces, and expectation
of long-lived devices; Table 2.1 on page 13.

151

Alternatively, onboarding techniques such as the resurrecting duckling model exist,

where a device trusts the keying material from the first device to form a security

association with it [195], alleviating some of the burden in use cases involving a

private domain where access to devices is controlled by a single or small number of

verified users.

CA-signed certificates. While certificates are well-understood and feasible

from a technical perspective, it is a technically heavier-weight approach for consumer

IoT device authentication than shared secrets or manual public-key exchange.

Challenges and recurring issues surrounding IoC certificate revocation and re-

placement are well-known for, e.g., the browser trust model [137] [230] [4, Chapter

7]. Of the papers cited in Table 7.1, we are not aware of any that specifically look

to solve the problem of certificate revocation in IoT (however, some acknowledge

revocation in their proposals, e.g., the JEDI proposal [130]). The apparent reason

is that this remains, in practice, a largely unsolved problem in IoC and appears to

be made more difficult in IoT [12, 191]. Further, any device aiming to verify an-

other’s certificate must maintain a store of trust anchors and be able to process

any associated certificate chains, adding an additional storage and communication

requirement, posing an issue to highly constrained devices where storage is often

minimal and communication (message size and frequency) is kept to a minimum.

If a hub device (e.g., acting as a verifier for the local network) wanted to verify

devices from another manufacturer, it must have and trust as a trust anchor the

other manufacturer’s public key (a noted challenge in federated systems such as

email [56,146]), requiring the various manufacturers to either rely on one (or multiple)

third-party root CAs, or agree on storing each other’s anchors within their devices.

The CA/browser model [55] (for example) has been built slowly over many years,

and relies on a small number of well-established entities that manage trust stores

through their software (e.g., Google, Apple, Microsoft, Mozilla). It seems unlikely

that IoT, with many more manufacturers, will be able to coordinate this securely in

practice.

Manual public-key configuration. With manually-configured public keys,

distributing public keys shares many of the same challenges of shared secrets (above),

152

including the need for a secure onboarding where public keys are registered, facil-

itated by a user. This does not require signing certificates (and managing trust

anchors), but relies on a bootstrapping phase where the two devices’ public keys can

be manually distributed (public key trust-on-first-use, which involves the user rather

than a central party; or third-party monitoring and cross-checking [216]), sharing

some of the same problems with the shared secrets approach. In examples such as

SSH [210, Chapter 10], removing the user from the loop has not been solved in IoC,

so it is unlikely that a solution will be found for this in IoT where typically the goal

is even less user interaction. As the manufacturer is not directly involved with the

keying material for this approach, key management challenges are often passed on

to the user.

Physically unclonable functions (PUFs). PUFs provide a number of ben-

efits. They act as a form of secure key storage separate from non-volatile memory,

not requiring additional space for authentication information; are difficult to extract

through physical attacks [85,180], and can support other well-known authentication

approaches (i.e., shared secrets and public-key material, but then also sharing their

challenges). However, devices must be provisioned with specific PUF hardware and

software tools to interface with them.

Intrinsic PUFs are PUFs based on hardware that already exists within a device

as a result of a manufacturing process (as opposed to deliberately being added)

[22, 95], e.g., SRAM PUFs (a memory-based type), which use the initial state of a

device’s SRAM to produce a unique output [51,95]. Intrinsic PUFs also include the

mechanism to be measured (e.g., reading memory) [22]. Other types may require

specific hardware for the embedding of the PUF or its measurement (e.g., arbiter

PUFs [201], coating PUFs [206], optical PUFs [101]).

For authentication using challenge-response pairs (CR-pairs), a bootstrapping

phase is still required to install initial CR-pairs in a verifier and in general they

must not be re-used (to avoid replay attacks) [228], but subsequent CR-pair updates

can be done upon successful authentication. Weak PUFs may be limited in how

many CR-pairs they can generate [85,179], and also require bootstrapping if used to

generate long-term keying material.

153

Virtual devices (i.e., logical copies of end devices that enable a user to remotely

interact with their physical counterparts) or services that run in the cloud are unable

to use PUFs for authentication, as multiple instances of virtual devices may share

the same physical hardware.

Section 7.3.1 identified approaches that have been used in recent IoT authentica-

tion proposals; however, each approach has its own challenges and problems.

7.5 Related Work

While we have discussed related work throughout this chapter (including Table 7.1),

here we discuss additional work on IoT identification including work on the follow-

ing topics: conflation of “classification” and “identification” (a motivating factor

for our model in Section 7.1), device authentication in related subject areas (e.g.,

wireless sensor networks, embedded systems, Bluetooth devices), device onboarding

proposals, and identifier design in IoT and networks.

In IoT literature, “classification” often means to differentiate devices by class

instead of a device instance, matching our observation (Table 7.1) that many use

cases seek to recognize or authenticate not a single device, but a group of devices to

then be managed. We note examples here. Miettinen et al. [152] determine device

types, suggesting the differentiation of types of devices on a given network. Singla

and Bose [190] classify unknown devices based on usage patterns. Yu et al. [226] use

banner grabbing over multiple protocols to determine brand and model of devices,

and define device identification as a classification function (i.e., grouping devices into

classes) versus labelling a unique device instance [227]. Perdisci et al. [167] classify

IoT devices based on DNS protocol fingerprints and compare individual device types.

Wireless sensor networks (WSNs [134,205]) and embedded systems [103] are char-

acterized by some of the same properties as some sub-areas of IoT (e.g., constrained

IoT consumer devices, industrial IoT, and smart cities; Fig. 2.1 from Chapter 2):

resource constraints, network communication, and cyberphysical interaction [224].

154

WSN authentication has received considerable attention, shares many of the chal-

lenges of IoT device authentication, and has historically used many techniques dis-

cussed in Sections 7.3.1 and 7.4. Xue et al. [221] and Li et al. [134] use pre-shared

passwords (a shared secret) for mutual authentication between sensor devices, gate-

way devices, and a user. Yang et al. [222] use CR-pairs from PUFs (Section 7.3.1)

to authenticate mobile sensor devices. Selimis et al. [185] use PUFs to generate

cryptographic material and identifiers.

Onboarding, authentication, and establishment of initial keying material for re-

lated areas we might now describe as IoT (e.g., WSNs, embedded systems; mobile ad

hoc networks, i.e., MANETs [107]) are historically well-studied areas. One example

of a prevalent technology is Bluetooth, which has faced many of the same problems

that IoT is currently struggling with, including constrained device pairing and au-

thentication. Its extensive history is marked with specification updates to address

many security issues [87, 117, 138, 199, 218]. While many vulnerabilities have been

addressed, new ones appear regularly [166]. Device onboarding and authentication

remains a challenge for heterogeneous, communicating, long-lived, and constrained

devices—characteristics which define large subsets of IoT.

The FIDO Alliance [78] defined an IoT platform onboarding specification that

involves installing onboarding credentials into devices during manufacturing, then

tracking the changes of ownership through the supply chain. It may be feasible

for manufacturers that have strong control over their supply chain to track each

ownership transfer; however, we expect that for smaller manufacturers or those that

cannot rely on each transfer to be secure and recorded, this mechanism for onboarding

is infeasible, i.e., this onboarding method may be appropriate for, e.g., manufacturers

that control their supply chain, but not for small manufacturers or those lacking such

control.

The Alliance for Internet of Things Innovation (AIOTI) [8] highlights identifier

requirements for IoT use cases, noting that the format for identifiers varies widely de-

pending on the use case, suggesting no single scheme suits all IoT use cases. Citing

scale concerns and issues with existing internet naming infrastructure, Venkatara-

mani et al. [212] propose the design of a new name service for Internet-communicating

155

devices (part of the MobilityFirst architecture [172]). Shang et al. [186] discuss how

Named Data Networking (NDN) can be applied to IoT. As an example of privacy im-

plications of including identifiers in devices, Fischer et al. [80] describe the identifiers

built into the Pentium III processor.

Manufacturer Usage Descriptions (MUDs) [132] are a method for devices to spec-

ify the network access they require based on descriptions from their manufacturer.

They are used by network infrastructure to monitor a device’s network behavior and

enforce access policies on the device. Hamza et al. [102] generate MUD profiles based

on observed device network traffic.

Roman et al. [176] analyzed then-current (as of 2011) key management systems

for WSNs and IoT, and suggested public-key approaches are viable in use cases

where client devices need to infrequently communicate with servers, and symmetric

secrets are viable in small-scale use cases (few devices) and for constrained client

nodes. They discuss challenges of each approach (we discuss authentication approach

challenges in Section 7.4). Gehrmann et al. [86] describe techniques for wireless

device authentication using manual exchange of authentication information. They

acknowledge, while per-device trusted CA-signed certificates would help simplify

authentication, the required effort to install unique certificates to each device during

manufacturing may be unreasonable for low-cost devices. Suomalainen et al. [199]

analyze and classify protocols for key establishment in wireless and wireline personal

networking technologies (including some commonly used in IoT such as Bluetooth

and Wi-Fi, and Wireless Universal Serial Bus and HomePlugAV), and provide a

taxonomy of key establishment methods, highlighting approaches and techniques for

related protocol classes.

Mimicry-resistance is a term used to describe something about a user or device

(e.g., behavior, data) that is resistant to being impersonated by an attacker [7]. Ray

et al. [171] use behavioral fingerprinting as mimicry-resistant identities for devices.

7.6 Concluding Remarks

The IoT device identification proposals included in the analyses of this chapter tend

to align with one or more of three approaches associated with identification: device

156

fingerprinting, classification, and authentication. Each approach is used to reach a

distinct IoT device identification objective. We provide a model of the relationship

between these approaches and objectives in Section 7.1.4 (Fig. 7.2 on page 139).

In order to further investigate the overlap between IoT and IoC authentication

(in particular, the goals and approaches of IoT device authentication and how they

compare to those of IoC), we narrowed our focus to IoT device authentication. From

our analysis of recent literature, we found that IoT device authentication research

primarily falls into three categories: modifying existing authentication approaches

that use well-known cryptographic primitives for use in specific IoT use cases, apply-

ing PUFs to IoT for authentication, and using fingerprinting to uniquely distinguish

and authenticate devices.5

Almost all IoT device authentication approaches from our literature analysis are

using existing, well-understood mechanisms from the pre-IoT world (with the excep-

tion of PUFs, which are understood but not widely deployed in either IoC or IoT;

AA2 on page 145), rather than fundamentally new approaches. Niche IoT device au-

thentication use cases may benefit from further research into novel approaches and

primitives (not covered in the scope of our work), which may in turn be of interest

and provide benefit to broader IoT use cases. This said, existing authentication ap-

proaches often have their own challenges which complicate their use in IoT (discussed

in Section 7.4).

To return to our general scoping question of Chapter 1 (how is IoT security dif-

ferent from IoC security?), upon investigation of IoT device authentication, we find

IoT and IoC authentication are similar in many respects, and share similar goals

(Section 7.3) and approaches (e.g., the three authentication phases and approaches;

Table 7.2), suggesting techniques already in common use may largely suffice to ad-

dress many of the emerging IoT use cases. Another consideration (unexplored in

this thesis) is whether the parties conducting the authentication in IoT (i.e., the

verifiers, Fig. 7.1 on page 137) differ from those in IoC—verifier capabilities and

their relationship to claimants may affect or constrain the subset of appropriate IoT

authentication approaches for a given use case.

5We believe fingerprinting is inappropriate for authentication, as noted in Section 7.2.3 and
Fig. 7.2.

Chapter 8

Conclusion and Future Work

In this thesis, we sought to answer five primary research questions relating to IoT

security advice and device identification. Here, we return to these research questions

(from Chapter 1), discuss how we answered them, and propose potential areas for

future research to expand on the work done in this thesis.

At the outset of this thesis, we did not envision our research would end up pro-

ducing the security advice coding tree method. After early success in these ideas, we

dedicated more energy to this line of questioning (i.e., characterizing security advice)

and were able to extend it significantly in Chapters 4–6 (cf. Section 1.6). Conversely,

Chapter 7’s work regarding IoT device identification yielded fewer results than we

had initially expected. As such, it forms a smaller portion of this thesis than we had

originally envisioned.

8.1 Answering Research Questions

In this section we describe how we answered our research questions through the work

done in this thesis.

RQ1: What are IoT security best practices,1 and how do they relate to security

design principles and other commonly-used terms; how are these terms used to

describe or characterize IoT security advice they are applied to?

In Chapter 3 we analyzed and categorized terminology commonly used in the

discussion and specification of security advice. We created a categorization for these

terms (which we call qualifying terms), and in doing so, defined and compared best

practice (in the quality-based category, where “best” implies a practice that is widely-

considered to be high quality) with others. We view security design principles and

1Note that we discuss the term “best practice”, not specifying technical practices.

157

158

practices—based on our definitions from Chapter 3 and the terms’ positions in the

coding tree from Chapter 4—as categorically different (i.e., they focus on independent

concepts). Later, in Chapter 4 (page 62) we compare practices with principles, and

determine principles to be more focused on end-results than practices (which are

more focused on mechanisms to implement). Of course, if one takes the view that it

is “best practice” to follow a certain design principle, then our view of this categorical

difference is broken.

The relationship between practices and security design principles was further

described by their relative positions and questions that lead to them in the security

advice coding tree of Chapter 4 (discussed next).

Here we emphasize the relationship between best practices and design principles,

as our early research put focus on this relationship. As our research progressed,

through broad discussion of these and other related terms, emphasis was moved

away from design principles as it (the term) became a part of the coding tree.

RQ2: Can we design a methodology for objectively characterizing security ad-

vice?

In Chapter 4 we constructed a security advice coding tree that allows for effective

categorization and characterization of security advice based on a subset of the ter-

minology refined in Chapter 3. We began with a basic codebook of unrefined codes

reflecting concepts in the DCMS 1013-item IoT security advice dataset, then used

iterative inductive coding to refine and augment the codebook, and iterated on the

coding tree’s structure, questions, and coder instructions to develop our coding tree.

As part of this coding tree, a subset of the specific tags for advice were identified as

being actionable (used in RQ3), meaning the advice they are applied to contains a

clear sequence of steps whose means of execution are understood by target advice

recipients.

We intended the design of the coding tree to produce reproducible and repeatable

results because its questions, structure, and instructions to coders are designed to

reduce subjectivity as much as possible,2 allowing new coders to reliably achieve

2Recall from Section 4.1.1 on page 52 that a major motivation for creating the coding tree
methodology was to reduce subjectivity.

159

similar results to ours, and for coders to repeat their own results on a dataset.

Chapter 5 compares two coders’ 1013-item tagging results as a first detailed analysis

exploring how reproducible Chapter 4’s results are by one additional coder. While

coder agreement on whether advice items were actionable was promising, as rates of

agreement on specific tags (for individual advice items) were below our expectation,

it appears premature to claim the method is useful for accurately estimating the

proportion of advice in a dataset that falls into each category.

Our research into security best practices and IoT security advice eventually led

to the use of the SAcoding tree as a method to analyze security advice. This was

not what we originally intended to do, but our findings from using the SAcoding

tree prompted further investigation (RQ4 below). Chapter 5 is a cross-check of the

SAcoding method (from Chapter 4); we did not anticipate this early in our research,

but it was conducted in the process of refining our research questions.

RQ3: How actionable is the current state of IoT security advice; does it primarily

consist of security objectives to reach, or more specifically ways to reach those

objectives (i.e., actionable practices)?

In Chapter 4 (after construction of coding tree methodology), we characterized

the advice currently being recommended by advice-giving organizations for (typically

pre-deployment) IoT security stakeholders. One coder applied our security advice

coding tree to the DCMS 1013-item security advice dataset,3 and in Chapter 5, to

allow a cross-check and further analysis of the SAcoding method itself, a second

coder tagged the full DCMS 1013-item dataset.

Through our analysis, we found that the majority of advice in the dataset is not

actionable, and largely comprised of security objectives to reach rather than practices

to follow, advice positioned as practices but lacking technical detail, or advice that

was deemed (by the coding tree) to be not useful. This suggests to us that there

is room for IoT security advice to be improved to become more actionable for IoT

device manufacturers (and other pre-deployment stakeholders).

RQ4: How can the coding tree methodology (developed in answering RQ2) be

3We use the DCMS 1013-item dataset as a proxy representative of current IoT security advice.

160

used to compare the actionability of different sets of IoT security advice, or gen-

erally characterize any improvement in subsequent versions of a given set?

In Chapter 6 we used our coding tree methodology on two sets of formally-

recommended IoT security advice: a set of guidelines from the UK government’s

DCMS (the DCMS 13 guidelines document from Table 1.1 on page 4), and a set

of provisions from ETSI (the ETSI provisions document). As the ETSI provisions

document appears to be positioned as an evolution of the DCMS 13 guidelines docu-

ment, we began by conducting an informal comparison and analysis of the two sets to

determine how the ETSI set improves (if indeed it does) over the DCMS set. We then

applied our SAcoding method to each set to characterize them (i.e., determine which

advice codes they are comprised of), and determine how actionable their advice is.

Following the characterization of how the ETSI advice improves over the DCMS

advice and how our SAcoding method can be used to compare sets of security advice

(both characterizing a set of advice and determining how actionable it is), we used the

characteristics of actionable advice (questions at each node along the path to a final

tag which ask about, e.g., technical detail, target audience, and advice granularity)

to recommend aspects of security advice that we suggest advice-givers should include

if looking to provide actionable security practices.

RQ5: In what ways do researchers use the term IoT device identification, what

are the most common goals of IoT device identification, and what approaches are

being used to reach them?

In Chapter 7, we analyzed recent academic papers that involved IoT device identi-

fication. From these papers, we aimed (1) to determine what objectives identification

proposals were looking to achieve through identification, and (2) to determine the ap-

proaches the proposals used to reach their objectives. In doing this, we determined

that device identification is commonly approached in three ways: fingerprinting,

classifying, and authenticating devices. To explicate the operations and approaches

involved in IoT device identification, we developed a model (Fig. 7.2 on page 139)

that outlines distinct operations involved in reaching identification goals (through

the three approaches from above).

161

As authentication is a popular research subject, we chose to investigate IoT device

authentication further to explore how authentication in IoT compares with authen-

tication in IoC. Extracting the authentication approaches from recent IoT device

authentication research papers, we found that many approaches being used or pro-

posed to authenticate devices are well-known approaches from IoC, suggesting the

goals of numerous IoT authentication use cases can be met using similar methods to

IoC.

8.2 Future Research Directions

In this section we describe avenues to investigate for future work. The discussion of

future work is based on extensions to the findings we discuss throughout this thesis,

or the challenges or new problems we encountered while conducting our research.

The security advice coding tree (of Chapter 4) is one of the primary contributions

and deliverables of this thesis. While in this thesis we focus on the coding tree’s

application to IoT security advice, we intentionally left the coding tree as broadly

applicable to computer security advice in general rather than focus its questions, tags,

or coder instructions specifically on IoT security (as discussed in Section 4.2.1). It is

our hope that the coding tree will find use (by the security community) outside of IoT,

and that its adoption will not only help validate its design, but become valuable as a

method for analyzing and improving security advice across broad computer security

audiences. To our knowledge, our SAcoding method is the first systematic method

for analyzing security advice.

We briefly outline several potential directions for future research here.

Coding tree improvements. Most of the discussion about future work re-

garding coding tree improvements (e.g., to improve coder consistency and simplify

the coding tree and instructions) appears in Chapter 5. Repeated here for conve-

nience, future work might further investigate the coding tree’s design and structure,

and make improvements (beginning with the suggestions in Chapter 5). Aside from

improving the SAcoding method, an alternative is to develop other methods for

systematically analyzing security advice.

162

Quantifying coding tree utility. In Section 8.1 we summarized how we in-

tended for the coding tree to be useful for advice givers. These two general goals

were intended in the design of the coding tree; however, verifying whether these goals

were met is not conducted within this thesis (the second goal—reproducibility—was

partially investigated through the addition of a second coder in Chapter 5). As

future work, we suggest a comparison with other inductive coding methodologies

to determine how the utility of the SAcoding method compares to them (possibly

by, e.g., measure of the time it takes to code items, or subjective opinion gathered

through further analyses involving experts using the coding process), and pursuing

further refinements and improvements of the method (discussed in Chapter 5).

Measuring practice quality. In Chapter 3 we outline what we call quality-based

qualifying terms, and in Chapter 4’s coding tree we imply some tags are ‘better” than

others (e.g., advice assigned an actionable tag is “better” than those without). In this

thesis we do not investigate the quality of a practice itself, i.e., how “good” are the

outcomes associated with carrying out a practice (including what makes a practice

better than another, and how to measure such a trait). Future work could further

categorize actionable practices (those with P3–P6 tags from Fig. 4.1 on page 54) by

new measures of practice quality.

Verifiable outcomes. Section 3.2.3 in Chapter 3 discussed imperative and

declarative advice,4 questioning that if an end result could be verified (i.e., to confirm

that a desired goal was achieved; how this could be done might be a research question

itself), would it be equivalent to a practice? If declarative advice can be verified,

what role does it have in determining best practices. Instead of working from the

view that creating actionable advice should be given the highest priority (as we do

in this thesis), future research could instead analyze security advice and explore if

stated outcomes (possibly those that we categorize in the DCMS 1013-item dataset

in Chapter 4) could be verified, thereby allowing advice followers to use any practices

they desire to reach the end-goal.

4Recall from Chapter 3 that declarative advice is specifying an end result rather than a method
to reach it [44,75].

Bibliography

[1] Bill—S.1691 - Internet of Things (IoT) Cybersecurity Improvement Act of 2017
(Bill), 2017. United States Senate https://www.congress.gov/bill/115th-
congress/senate-bill/1691/text?format=txt.

[2] 1Password. 1Password Security Design. https://1passwordstatic.com/fi

les/security/1password-white-paper.pdf, 2021.

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L.
Mazurek, and Sascha Fahl. Developers Need Support, Too: A Survey of Se-
curity Advice for Software Developers. In IEEE Cybersecurity Development
(SecDev), 2017.

[4] Carlisle Adams and Steve Lloyd. Understanding PKI: Concepts, Standards,
and Deployment Considerations (2nd edition). Addison-Wesley Professional,
2002.

[5] George A. Akerlof. The Market for “Lemons”: Quality Uncertainty and the
Market Mechanism. The Quarterly Journal of Economics, 84(3):488–500, 1970.

[6] Ahmet Aksoy and Mehmet Hadi Gunes. Automated IoT Device Identification
using Network Traffic. In International Conference on Communications, 2019.

[7] Furkan Alaca, AbdelRahman Abdou, and Paul C. van Oorschot. Compara-
tive Analysis and Framework Evaluating Mimicry-Resistant and Invisible Web
Authentication Schemes. IEEE TDSC, 18(2):534–549, 2021.

[8] Alliance for Internet of Things Innovation. Identifiers in Internet of Things
(IoT). https://aioti.eu/wp-content/uploads/2018/03/AIOTI-Identifi

ers_in_IoT-1_0.pdf.pdf, 2018.

[9] Alliance for Internet of Things Innovation (AIOTI). Report: Working Group
4—Policy. https://aioti.eu/wp-content/uploads/2017/03/AIOTIWG04R

eport2015-Policy-Issues.pdf, 2015.

[10] Alliance for Internet of Things Innovation (AIOTI). AIOTI Digitisation of In-
dustry Policy Recommendations. https://aioti.eu/wp-content/uploads/

2017/03/AIOTI-Digitisation-of-Ind-policy-doc-Nov-2016.pdf, 2016.

[11] Alliance for Internet of Things Innovation (AIOTI). Report on Workshop on
Security and Privacy in the Hyper connected World. https://aioti-space.
org/wp-content/uploads/2017/03/AIOTI-Workshop-on-Security-and-P

163

164

rivacy-in-the-Hyper-connected-World-Report-20160616_vFinal.pdf,
2016.

[12] Arwa Alrawais, Abdulrahman Alhothaily, Chunqiang Hu, and Xiuzhen Cheng.
Fog computing for the internet of things: Security and privacy issues. IEEE
Internet Computing, 21(2):34–42, 2017.

[13] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan Court, Kevin Snow,
Fabian Monrose, and Manos Antonakakis. The Circle Of Life: A Large-Scale
Study of The IoT Malware Lifecycle. In USENIX Security Symp., 2021.

[14] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. SoK:
Security Evaluation of Home-Based IoT Deployments. In IEEE Symp. Security
and Privacy, 2019.

[15] Nesrine Ammar, Ludovic Noirie, and Sebastien Tixeuil. Autonomous IoT De-
vice Identification Prototype. In Network Traffic Measurement and Analysis
Conference (TMA), 2019.

[16] Nesrine Ammar, Ludovic Noirie, and Sebastien Tixeuil. Network-Protocol-
Based IoT Device Identification. In International Conference on Fog and Mo-
bile Edge Computing (FMEC), 2019.

[17] Prashant Anantharaman, Kartik Palani, David Nicol, and Sean W. Smith. I
Am Joe’s Fridge: Scalable Identity in the Internet of Things. In International
Conf. on Internet of Things (iThings), pages 129–135. IEEE, 2016.

[18] Prashant Anantharaman, Liwei Song, Ioannis Agadakos, Gabriela Ciocar-
lie, Bogdan Copos, Ulf Lindqvist, and Michael E. Locasto. IoTHound:
Environment-agnostic Device Identification and Monitoring. In International
Conference on the Internet of Things, pages 1–9, 2019.

[19] Sandhya Aneja, Nagender Aneja, and Md Shohidul Islam. IoT Device Finger-
print using Deep Learning. In IEEE International Conference on Internet of
Things and Intelligence System (IOTAIS), pages 174–179, 2018.

[20] Kishore Angrishi. Turning Internet of Things (IoT) into Internet of Vulnera-
bilities (IoV): IoT botnets. preprint arXiv:1702.03681, 2017.

[21] Manos Antonakakis, Tim April, Michael Bailey, Elie Bursztein, Jaime Cochran,
Zakir Durumeric, Alex Halderman, J, Damian Menscher, Chad Seaman, Nick
Sullivan, Kurt Thomas, and Yi Zhou. Understanding the Mirai botnet. In
USENIX Security Symp., 2017.

[22] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, François-Xavier Stan-
daert, and Christian Wachsmann. A Formalization of the Security Features of
Physical Functions. In IEEE Symposium on Security and Privacy, 2011.

165

[23] AspenCore. 2019 Embedded Markets Study—Integrating IoT and Advanced
Technology Designs, Application Development & Processing Environments,
2019. https://www.embedded.com/wp-content/uploads/2019/11/EETimes -
Embedded 2019 Embedded Markets Study.pdf.

[24] Hala Assal and Sonia Chiasson. Security in the software development lifecycle.
In Symp. on Usable Privacy and Security (SOUPS), pages 281–296. USENIX,
August 2018.

[25] Association for Computing Machinery (ACM). Artifact Review and Badging
Version 1.1. https://www.acm.org/publications/policies/artifact-rev
iew-and-badging-current, 2020.

[26] AT&T. The CEO’s Guide to Securing the Internet of Things. https://www.bu
siness.att.com/cybersecurity/docs/exploringiotsecurity.pdf, 2016.

[27] Australian Department of Home Affairs and Australian Cyber Security
Centre. Code of Practice—Securing the Internet of Things for Con-
sumers. https://www.homeaffairs.gov.au/reports-and-pubs/files/co

de-of-practice.pdf, 2020.

[28] Jiaqi Bao, Bechir Hamdaoui, and Weng-keen Wong. IoT Device Type Iden-
tification Using Hybrid Deep Learning Approach for Increased IoT Security.
In International Wireless Communications and Mobile Computing (IWCMC),
2020.

[29] Elaine Barker. SP 800-57 Part 1—Recommendation for Key Management:
Part 1–General, 2020. NIST.

[30] Elaine B. Barker. Recommendation for key management. NIST SP (Special
Publication) 800-57 Part 1, January 2016.

[31] Elaine B. Barker and Allen L. Roginsky. Transitioning the use of cryptographic
algorithms and key lengths. NIST SP (Special Publication) 800-131A, March
2019.

[32] David Barrera, Christopher Bellman, and Paul C. van Oorschot. Se-
curity Best Practices: A Critical Analysis Using IoT as a Case Study.
Journal submission, under minor revision, 2021. Technical report avail-
able at: https://www.ccsl.carleton.ca/~chris/publications/2021-Io

T-Security-Best-Practices-A-Critical-Analysis.pdf.

[33] David Barrera, Christopher Bellman, and Paul C. van Oorschot. A Close
Look at a Systematic Method for Analyzing Sets of Security Advice. Journal
submission, under review, 2022.

166

[34] David Barrera, Ian Molloy, and Heqing Huang. Standardizing IoT network
security policy enforcement. In Workshop on Decentralized IoT Security and
Standards (DISS), 2018.

[35] Johann Bauer. An Algorithm for IoT Device Identification. In International
Conference on Information Networking (ICOIN), 2020.

[36] Christopher Bellman and Paul C. van Oorschot. Analysis, Implications, and
Challenges of an Evolving Consumer IoT Security Landscape. In International
Conference on Privacy, Security and Trust (PST), 2019.

[37] Christopher Bellman and Paul C. van Oorschot. Systematic Analysis and
Comparison of Security Advice Datasets. Journal submission, under minor
revision, 2022. Technical report available at: https://arxiv.org/abs/2206.
09237.

[38] Daniel J Bernstein. Curve25519: New Diffie-Hellman Speed Records. In In-
ternational Workshop on Public Key Cryptography, 2006.

[39] Elisa Bertino and Nayeem Islam. Botnets and Internet of Things security.
Computer, 50(2):76–79, 2017.

[40] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi,
Indrakshi Ray, and Indrajit Ray. IoTSense: Behavioral Fingerprinting of IoT
Devices. preprint arXiv:1804.03852, 2018.

[41] Abdulrahman Bin-Rabiah, K K Ramakrishnan, Elizabeth Liri, and Koushik
Kar. A Lightweight Authentication and Key Exchange Protocol for IoT. In
Workshop on Decentralized IoT Security and Standards (DISS), 2018.

[42] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael
Vrable, and Mark Lentczner. Macaroons: Cookies with Contextual Caveats
for Decentralized Authorization in the Cloud. In NDSS, 2014.

[43] Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.

[44] Harold Boley, Micha Meier, Chris Moss, Michael M Richter, and A. A.
Voronkov. Declarative and Procedural Paradigms - Do They Really Com-
pete? In International Workshop on Processing Declarative Knowledge, pages
383–398. Springer, 1991.

[45] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT, 2003.

[46] C. Bormann, M. Ersue, and A. Keranen. Terminology for constrained-node
networks. RFC 7228, RFC Editor, May 2014.

167

[47] Scott Bradner. RFC2119: Key Words for Use in RFCs to Indicate Requirement
Levels, 1997. IETF.

[48] Broadband Internet Technical Advisory Group (BITAG). Internet of Things
(IoT) Security and Privacy Recommendations, 2016.

[49] CableLabs. A Vision for Secure IoT. https://www.cablelabs.com/insights
/vision-secure-iot/, 2017.

[50] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah
Sherr, Clay Shields, David A. Wagner, and Wenchao Zhou. Hidden Voice
Commands. In USENIX Security, 2016.

[51] Bin Chen, Tanya Ignatenko, Frans M. J. Willems, Roel Maes, Erik van der
Sluis, and Georgios Selimis. A Robust SRAM-PUF Key Generation Scheme
Based on Polar Codes. In IEEE Global Communications Conference, 2017.

[52] Rajarshi Roy Chowdhury, Sandhya Aneja, Nagender Aneja, and Emeroylar-
iffion Abas. Network Traffic Analysis based IoT Device Identification. In
International Conference on Big Data and Internet of Things (BDIoT), 2020.

[53] City of New York (NYC) Guidelines for the Internet of Things. Privacy +
Transparency, 2019.

[54] City of New York (NYC) Guidelines for the Internet of Things. Security, 2019.

[55] Jeremy Clark and Paul C van Oorschot. SoK: SSL and HTTPS: Revisiting
Past Challenges and Evaluating Certificate Trust Model Enhancements. In
IEEE Symp. Security and Privacy, 2013.

[56] Jeremy Clark, Paul C van Oorschot, Scott Ruoti, Kent Seamons, and Daniel
Zappala. SoK: Securing Email—A Stakeholder-Based Analysis. In Financial
Cryptography and Data Security, 2021.

[57] Cloud Security Alliance (CSA). Security Guidance for Early Adopters of the
Internet of Things (IoT), 2015.

[58] Cloud Security Alliance (CSA). Future-proofing the Connected World: 13
Steps to Developing Secure IoT, 2016.

[59] Copper Horse Ltd. Mapping Security & Privacy in the Internet of Things.
https://iotsecuritymapping.uk/wp-content/uploads/Mapping-of-Co

de-of-Practice-to-recommendations-and-standards_v3.json, 2019.
Version 3 dataset.

[60] Juliet Corbin and Anselm Strauss. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory (3rd ed.). SAGE Publications,
Inc., 2008.

168

[61] George Corser, Glenn A. Fink, Mohammed Aledhari, Jared Bielby,
Rajesh Nighot, Sukanya Mandal, Nagender Aneja, Chris Hrivnak,
and Lucian Cristache. IoT Security Principles and Best Prac-
tices. https://internetinitiative.ieee.org/images/files/resources/w
hite_papers/internet_of_things_feb2017.pdf, 2017. IEEE.

[62] Department for Digital, Culture, Media & Sport (DCMS) of the
UK Government. Code of Practice for Consumer IoT Security.
https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/773867/Code_of_Practice_for

_Consumer_IoT_Security_October_2018.pdf, 2018.

[63] Department for Digital, Culture, Media & Sport (DCMS) of the UK
Government. Mapping of IoT Security Recommendations, Guidance and
Standards to the UK’s Code of Practice for Consumer IoT Security.
https://assets.publishing.service.gov.uk/government/uploads/syst

em/uploads/attachment_data/file/774438/Mapping_of_IoT__Security

_Recommendations_Guidance_and_Standards_to_CoP_Oct_2018.pdf, 2018.

[64] Department for Digital, Culture, Media & Sport (DCMS) of the UK Govern-
ment. Secure by design. https://www.gov.uk/government/collections/se
cure-by-design, 2020.

[65] Whitfield Diffie, Paul C van Oorschot, and Michael J Wiener. Authentication
and authenticated key exchanges. Designs, Codes and Cryptography, 2(2),
1992.

[66] Andrew Dingman, Gianpaolo Russo, George Osterholt, Tyler Uffelman, and
L Jean Camp. Good advice that just doesn’t help. In 2018 IEEE/ACM
Third International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI). IEEE, 2018.

[67] European Telecommunications Standards Institute (ETSI). CYBER; Cyber
Security for Consumer Internet of Things, 2019.

[68] European Telecommunications Standards Institute (ETSI). CYBER; Cyber
Security for Consumer Internet of Things: Baseline Requirements (ETSI EN
303 645), 2020.

[69] European Telecommunications Standards Institute (ETSI). CYBER; Cyber
Security for Consumer Internet of Things: Conformance Assessment of Baseline
Requirements (ETSI TS 103 701 V1.1.1). https://www.etsi.org/deliver

/etsi_ts/103700_103799/103701/01.01.01_60/ts_103701v010101p.pdf,
2021.

169

[70] European Union Agency for Network and Information Security (ENISA). Se-
curity and Resilience of Smart Home Environments, 2015.

[71] European Union Agency for Network and Information Security (ENISA). Base-
line Security Recommendations for IoT, 2017.

[72] Michael Fagan, Jeffrey Marron, Kevin G. Brady Jr., Barbara B. Cuthill, Kate-
rina N. Megas, and Rebecca Herold. Draft NISTIR 8259C—Creating a Profile
Using the IoT Core Baseline and Non-Technical Baseline, 2020. NIST.

[73] Michael Fagan, Jeffrey Marron, Kevin G. Brady Jr., Barbara B. Cuthill, Ka-
terina N. Megas, and Rebecca Herold. NISTIR 8259B—IoT Non-Technical
Supporting Capability Core Baseline, 2021. NIST.

[74] Michael Fagan, Jeffrey Marron, Kevin G. Brady Jr., Barbara B. Cuthill, Kate-
rina N. Megas, Rebecca Herold, David Lemire, and Brad Hoehn. SP 800-213—
IoT Device Cybersecurity Guidance for the Federal Government: Establishing
IoT Device Cybersecurity Requirements, 2020. NIST.

[75] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo Reijers, Barbara Weber,
Matthias Weidlich, and Stefan Zugal. Declarative Versus Imperative Process
Modeling Languages: The Issue of Understandability. In Enterprise, Business-
Process and Information Systems Modeling, pages 353–366. Springer, 2009.

[76] Earlence Fernandes, Amir Rahmati, Kevin Eykholt, and Atul Prakash. Inter-
net of Things Security Research: A Rehash of Old Ideas or New Intellectual
Challenges? IEEE Security & Privacy, 15(4):79–84, 2017.

[77] Mohamed Amine Ferrag, Leandros A. Maglaras, Helge Janicke, Jianmin Jiang,
and Lei Shu. Authentication Protocols for Internet of Things: A Comprehen-
sive Survey. Security and Communication Networks, 2017(1), 2017.

[78] FIDO Alliance. FIDO Device Onboard Specification, 2021.

[79] Sebastian Fischer, Katrin Neubauer, Rudolf Hackenberg, Lukas Hinterberger,
and Bernhard Weber. IoTAG: An Open Standard for IoT Device Indentifi-
cAtion and RecoGnition. In International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE), pages 107–113, 2019.

[80] Stephen Fischer, James Mi, and Albert Teng. Pentium III Processor Serial
Number Feature and Applications. Intel Technology Journal, (Q2):1–6, 1999.

[81] Dinei Florêncio, Cormac Herley, and Baris Coskun. Do strong web passwords
accomplish anything? In Usenix HotSec, 2007.

[82] Oscar Garcia-Morchon, Sandeep S. Kumar, and Mohit Sethi. State-of-the-Art
and Challenges for the Internet of Things Security. https://datatracker.ie
tf.org/doc/draft-irtf-t2trg-iot-seccons/, 2019.

170

[83] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Chapter 3: Policies and
Guidelines, in [84], 2003.

[84] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Practical UNIX and
Internet Security (3rd edition). O’Reilly Media, Inc., 2003.

[85] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Sili-
con physical random functions. In ACM CCS, 2002.

[86] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual Authenti-
cation for Wireless Devices. RSA Cryptobytes, 7(1):29–37, 2004.

[87] Christian Gehrmann, Joakim Persson, and Ben Smeets. Bluetooth Security.
Artech House, 2004.

[88] Dieter Gollmann. Computer Security, 3rd Edition. Wiley, 2011.

[89] Paul A. Grassi and 12 others. SP 800-63B—Digital Identity Guidelines: Au-
thentication and Lifecycle Management, 2017. NIST.

[90] Christpher Greer, Martin Burns, David Wollman, and Edward Griffor. Cyber-
physical systems and Internet of Things. NIST SP (Special Publication) 1900-
202, March 2019.

[91] Clémentine Gritti, Melek Önen, Refik Molva, Willy Susilo, and Thomas Plan-
tard. Device Identification and Personal Data Attestation in Networks. J.
Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applica-
tions, 9(4), 2018.

[92] GSM Association. IoT Security Guidelines for Endpoint Ecosystems—Version
2.0. https://www.gsma.com/iot/wp-content/uploads/2017/10/CLP.13-

v2.0.pdf, 2017.

[93] GSM Association. IoT Security Guidelines. https://www.gsma.com/iot/iot
-security/iot-security-guidelines/, 2020.

[94] GSM Association. GSM Association. https://www.gsma.com/, 2021.

[95] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen, and Pim Tuyls. FPGA
Intrinsic PUFs and Their Use for IP Protection. In Cryptographic Hardware
and Embedded Systems (CHES), 2007.

[96] Oscar M. Guillen, Thomas Poppelmann, Jose M. Bermudo Mera, Elena Fuentes
Bongenaar, Georg Sigl, and Johanna Sepulveda. Towards post-quantum secu-
rity for IoT endpoints with NTRU. In Design, Automation & Test in Europe
Conference & Exhibition, 2017.

171

[97] Cenk Gündoğan, Peter Kietzmann, Martine Lenders, Hauke Petersen,
Thomas C. Schmidt, and Matthias Wählisch. NDN, CoAP, and MQTT: a com-
parative measurement study in the IoT. In ACM Conference on Information-
Centric Networking (ICN), 2018.

[98] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel-
ing Chang Shantz. Comparing Elliptic Curve Cryptography and RSA on 8-bit
CPUs. In Cryptographic Hardware and Embedded Systems (CHES), 2004.

[99] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. Oper-
ating Systems for Low-End Devices in the Internet of Things: A Survey. IEEE
Internet of Things Journal, 3(5):720–734, 2016.

[100] Salma Abdalla Hamad, Wei Emma Zhang, Quan Z. Sheng, and Surya Nepal.
IoT Device Identification via Network-Flow Based Fingerprinting and Learn-
ing. In International Conference on Trust, Security and Privacy in Computing
and Communications. IEEE, 2019.

[101] Ghaith Hammouri, Aykutlu Dana, and Berk Sunar. CDs Have Fingerprints
Too. In Cryptographic Hardware and Embedded Systems (CHES), 2009.

[102] Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi Gharakheili, Matthew
Roughan, and Vijay Sivaraman. Clear as MUD: Generating, Validating and
Applying IoT Behaviorial Profiles. In Workshop on IoT Security and Privacy,
2018.

[103] Steve Heath. Embedded Systems Design. Elsevier, 2002.

[104] Cormac Herley. So Long, And No Thanks for the Externalities: The Rational
Rejection of Security Advice by Users. In New Security Paradigms Workshop
(NSPW), 2009.

[105] Nicholas Huaman, Sabrina Amft, Marten Oltrogge, Yasemin Acar, and Sascha
Fahl. They Would do Better if They Worked Together: The Case of Interaction
Problems Between Password Managers and Websites. In IEEE Symp. Security
and Privacy, pages 1626–1640, 2021.

[106] Wei Huang, Afshar Ganjali, Beom Heyn Kim, Sukwon Oh, and David Lie. The
State of Public Infrastructure-as-a-Service Cloud Security. ACM Computing
Surveys (CSUR), 47(4):1–31, 2015.

[107] Jean-Pierre Hubaux, Levente Buttyán, and Srdan Čapkun. The Quest for
Security in Mobile Ad Hoc Networks. In International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHOC), 2001.

[108] George F. Hurlburt. The Internet of Things... of all things. ACM Crossroads,
22(2):22–26, 2015.

172

[109] IFTTT. IFTTT. https://ifttt.com/, 2019.

[110] Intrinsic ID. QuiddiKey. https://www.intrinsic-id.com/products/quid

dikey/, 2022.

[111] IoT Security Foundation. IoT Security Compliance Framework 1.1, 2017.

[112] IoT Security Foundation. https://www.iotsecurityfoundation.org/, 2021.

[113] IoT Security Initiative. Security Design Best Practices. https://www.iotsi.
org/security-best-practices, 2018.

[114] IoTivity. https://iotivity.org/.

[115] A.K. Jain, Arun Ross, and Sharath Pankanti. Biometrics: A Tool for Informa-
tion Security. IEEE TIFS, 1(2):125–143, 2006.

[116] A.K. Jain, Arun Ross, and Salil Prabhakar. An Introduction to Biometric
Recognition. IEEE Trans. on Circuits and Systems for Video Technology,
14(1), 2004.

[117] Markus Jakobsson and Susanne Wetzel. Security Weaknesses in Bluetooth. In
Cryptographers’ Track at the RSA Conference, 2001.

[118] Erica Johnson. Online Banking Agreements Protect Banks, Hold Customers
Liable for Losses, Expert Says. Canadian Broadcasting Corporation, Feb
9 2020. https://www.cbc.ca/news/business/online-banking-agreements
-1.5453192.

[119] Sheetal Kalra and Sandeep K. Sood. Secure authentication scheme for IoT and
cloud servers. Pervasive and Mobile Computing, 24:210–223, 2015.

[120] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. “My data
just goes everywhere:” User Mental Models of the Internet and Implications for
Privacy and Security. In Symposium on Usable Privacy and Security (SOUPS),
2019.

[121] Emilia Käsper. Fast Elliptic Curve Cryptography in OpenSSL. In International
Conference on Financial Cryptography and Data Security. 2011.

[122] Byoungkoo Kim, Seoungyong Yoon, Yousung Kang, and Dooho Choi. PUF
based IoT Device Authentication Scheme. In International Conference on In-
formation and Communication Technology Convergence (ICTC), 2019.

[123] Byoungkoo Kim, Seungyong Yoon, and Yousung Kang. PUF-based IoT Device
Authentication Scheme on IoT Open Platform. In International Conference on
Information and Communication Technology Convergence (ICTC), 2021.

173

[124] Guy King. Best Security Practices: An Overview. In National Information
Systems Security Conference, 2000.

[125] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey
Voas. DDoS in the IoT: Mirai and Other Botnets. Computer, 50(7):80–84,
2017.

[126] Jaidip Kotak and Yuval Elovici. IoT Device Identification Using Deep Learn-
ing. In International Conference on Computational Intelligence in Security for
Information Systems (CISIS 2020), 2020.

[127] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar
Weippl. “I Have No Idea What I’m Doing”—On the Usability of Deploying
HTTPS. In Usenix Security Symp., 2017.

[128] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical Debt: From
Metaphor to Theory and Practice. IEEE Software, 29:18–21, 2012.

[129] Arun Kumar, Nitesh Saxena, Gene Tsudik, and Ersin Uzun. A comparative
study of secure device pairing methods. Pervasive and Mobile Computing,
5(6):734–749, 2009.

[130] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E
Culler. JEDI: Many-to-Many End-to-End Encryption and Key Delegation for
IoT. In Usenix Security Symp., 2019.

[131] J. Richard Landis and Gary G. Koch. The Measurement of Observer Agreement
for Categorical Data. Biometrics, 33(1):159, 1977.

[132] Eliot Lear, Ralph Droms, and Dan Romascanu. Manufacturer Usage Descrip-
tion Specification. RFC 8520, IETF, March 2019.

[133] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pan-
nuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kB Computer
Safely and Efficiently. In Symposium on Operating Systems Principles (SOSP),
2017.

[134] Xiong Li, Jianwei Niu, Saru Kumari, FanWu, Arun Kumar Sangaiah, and Kim-
Kwang Raymond Choo. A three-factor anonymous authentication scheme for
wireless sensor networks in internet of things environments. Journal of Network
and Computer Applications, 103(May 2017):194–204, 2018.

[135] Greg Lindsay, Beau Woods, and Joshua Corman. Smart Homes and the In-
ternet of Things. https://www.atlanticcouncil.org/wp-content/uploads
/2016/03/Smart_Homes_0317_web.pdf, 2016.

174

[136] An Liu and Peng Ning. TinyECC: a configurable library for elliptic curve
cryptography in wireless sensor networks. In International Conference on In-
formation Processing in Sensor Networks, 2008.

[137] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce
Maggs, Alan Mislove, Aaron Schulman, and Christo Wilson. An End-to-End
Measurement of Certificate Revocation in the Web’s PKI. In Internet Mea-
surement Conference (IMC), 2015.

[138] Karim Lounis and Mohammad Zulkernine. Bluetooth Low Energy Makes “Just
Works” Not Work. In Cyber Security in Networking Conference (CSNet), 2019.

[139] Karim Lounis and Mohammad Zulkernine. Attacks and Defenses in Short-
Range Wireless Technologies for IoT. IEEE Access, vol. 8:88892–88932, 2020.

[140] Karim Lounis and Mohammad Zulkernine. More Lessons: Analysis of PUF-
based Authentication Protocols for IoT. Cryptology ePrint Archive, Report
2021/1509, 2021. https://ia.cr/2021/1509.

[141] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Functions: A Study
on the State of the Art and Future Research Directions, pages 3–37. Springer
Berlin, Heidelberg, 2010.

[142] Khalid Mahmood, Shehzad Ashraf Chaudhry, Husnain Naqvi, Saru Kumari,
Xiong Li, and Arun Kumar Sangaiah. An Elliptic Curve Cryptography Based
Lightweight Authentication Scheme for Smart Grid Communication. Future
Generation Computer Systems, 81, Apr 2018.

[143] Timothy Malche, Priti Maheshwary, and Rakesh Kumar. Secret Key based
Sensor Node Security in the Internet of Things (IoT). In International Con-
ference on Communication and Electronics Systems (ICCES), 2020.

[144] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad Reza Sadeghi,
and N. Asokan. AuDI: Toward Autonomous IoT Device-Type Identification
Using Periodic Communication. IEEE JSAC, 37(6), 2019.

[145] Shrirang Mare, Logan Girvin, Franziska Roesner, and Tadayoshi Kohno. Con-
sumer Smart Homes: Where We Are and Where We Need to Go. In Mobile
Computing Systems and Applications, 2019.

[146] Moxie Marlinspike. Reflections: The ecosystem is moving, 2016. https://si
gnal.org/blog/the-ecosystem-is-moving/.

[147] Michael McCool and Elena Reshetova. Distributed security risks and opportu-
nities in the W3C Web of Things. In Workshop on Decentralized IoT Security
and Standards (DISS), 2018.

175

[148] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. Reliability and Inter-
rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum.-Comput. Interact, 3(CSCW):1–23, Nov
2019.

[149] Gary McGraw. Software Security: Building Security In (1st edition). Addison-
Wesley Professional, 2006.

[150] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo, Mart́ın
Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. ProfilIoT: A Machine Learn-
ing Approach for IoT Device Identification Based on Network Traffic Analysis.
In ACM Symp. on Applied Computing, pages 506–509, 2017.

[151] Microsoft. Security best practices for Internet of Things (IoT), 2018.

[152] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, Tommaso Frassetto,
N. Asokan, Ahmad Reza Sadeghi, and Sasu Tarkoma. IoT Sentinel: Auto-
mated Device-Type Identification for Security Enforcement in IoT. In Interna-
tional Conference on Distributed Computing Systems, pages 2511–2514. IEEE,
2017.

[153] Keith Moore, Richard Barnes, and Hannes Tschofenig. Best Current Practices
(BCP) for IoT Devices. https://www.ietf.org/archive/id/draft-moore-

iot-security-bcp-01.txt, July, 2017. IETF Internet-Draft (Expired).

[154] Philipp Morgner and Zinaida Benenson. Exploring Security Economics in IoT
Standardization Efforts. In Workshop on Decentralized IoT Security and Stan-
dards (DISS), 2018.

[155] Munkenyi Mukhandi, Francisco Damiao, Jorge Granjal, and Joao P. Vilela.
Blockchain-based Device Identity Management with Consensus Authentication
for IoT Devices. In Consumer Communications & Networking Conference,
2022.

[156] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog,
Sergej Dechand, and Matthew Smith. Why Do Developers Get Password Stor-
age Wrong? A Qualitative Usability Study. In ACM CCS, 2017.

[157] Shadi Nashwan. Secure Authentication Scheme Using Diffie–Hellman Key
Agreement for Smart IoT Irrigation Systems. Electronics, 11(2), 2022.

[158] NIST. Announcing the Advanced Encryption Standard (AES). Technical Re-
port Federal Information Processing Standards Publications (FIPS PUBS) 197,
U.S. Department of Commerce, 2001.

[159] NIST. NIST Releases Draft Guidance on Internet of Things Device Cyberse-
curity, 2020.

176

[160] Sina Rafati Niya, Benjamin Jeffrey, and Burkhard Stiller. KYoT: Self-sovereign
IoT Identification with a Physically Unclonable Function. In Conference on
Local Computer Networks (LCN), number November, pages 1–9, 2020.

[161] Hirofumi Noguchi, Tatsuya Demizu, Naoto Hoshikawa, Misao Kataoka, and
Yoji Yamato. Autonomous Device Identification Architecture for Internet of
Things. In IEEE World Forum on Internet of Things (WF-IoT), 2018.

[162] OASIS. MQTT version 5.0, Mar 2019. https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[163] Charles W. O’Donnell, G. Edward Suh, and Srinivas Devadas. PUF-based
random number generation. MIT CSAIL CSG Technical Memo 481, 2004.

[164] Online Trust Alliance (OTA). IoT Security & Privacy Trust Framework v2.5,
2017.

[165] Open Web Application Security Project (OWASP). OWASP Secure Coding
Practices Quick Reference Guide, 2010.

[166] John Padgette, John Bahr, Mayank Batra, Marcel Holtmann, Rhonda Smith-
bey, Lily Chen, and Karen Scarfone. SP 800-121 Rev. 2—Guide to Bluetooth
Security, 2017. NIST.

[167] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Anton-
akakis. IoTFinder: Efficient Large-Scale Identification of IoT Devices via Pas-
sive DNS Traffic Analysis. In IEEE EuroS&P, pages 1–16, 2020.

[168] PlainTextOffenders.com. https://plaintextoffenders.com/, 2021.

[169] Jon Postel, Yakov Rekhter, and Tony Li. Best Current Practices. RFC 1818,
IETF, August 1995.

[170] PSA Certified. Critical security questions for chip vendors, OS providers and
OEMs, 2019.

[171] Indrajit Ray, Diptendu M. Kar, Jordan Peterson, and Steve Goeringer. Device
Identity and Trust in IoT-Sphere Forsaking Cryptography. In International
Conf. on Collaboration and Internet Computing (CIC), 2019.

[172] Dipankar Raychaudhuri, Kiran Nagaraja, North Brunswick, and Arun
Venkataramani. MobilityFirst: A Robust and Trustworthy Mobility- Centric
Architecture for the Future Internet. ACM SIGMobile Mobile Computing and
Communication Review, 16(4):1–12, 2012.

177

[173] Elissa M. Redmiles, M. Morales, Lisa Maszkiewicz, R. Stevens, Everest Liu,
Dhruv Kuchhal, and Michelle L. Mazurek. First Steps Toward Measuring the
Readability of Security Advice. In Workshop on Technology and Consumer
Protection, 2018.

[174] Elissa M. Redmiles, Noel Warford, Amritha Jayanti, Aravind Koneru, Sean
Kross, M. Morales, R. Stevens, and Michelle L. Mazurek. A Comprehensive
Quality Evaluation of Security and Privacy Advice on the Web. In Usenix
Security Symp., 2020.

[175] Karen Renaud. How Smaller Businesses Struggle with Security Advice. Com-
puter Fraud and Security, 2016(8):10–18, 2016.

[176] Rodrigo Roman, Cristina Alcaraz, Javier Lopez, and Nicolas Sklavos. Key
management systems for sensor networks in the context of the Internet of
Things. Computers & Electrical Engineering, 37(2):147–159, mar 2011.

[177] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin OFlynn. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In IEEE Symp. on Security and
Privacy, 2017.

[178] Ron Ross, Michael McEvilley, and Janet Carrier Oren. SP 800-160
Vol. 1—Systems Security Engineering: Considerations for a Multidisci-
plinary Approach in the Engineering of Trustworthy Secure Systems (Volume
1). https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-160v1.pdf, 2016. NIST.

[179] Ulrich Ruhrmair and Daniel E. Holcomb. PUFs at a glance. In Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2014.

[180] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas,
and Jürgen Schmidhuber. Modeling Attacks on Physical Unclonable Functions.
In ACM CCS, 2010.

[181] Ola Salman, Imad H. Elhajj, Ali Chehab, and Ayman Kayssi. A Machine
Learning Based Framework for IoT Device Identification and Abnormal Traffic
Detection. Trans. on Emerging Telecommunications Tech., (July 2019), 2019.

[182] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information
in Computer Systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[183] Matias R.P. Santos, Rossana M.C. Andrade, Danielo G. Gomes, and Arthur C.
Callado. An efficient approach for device identification and traffic classification
in IoT ecosystems. In IEEE Symp. on Computers and Communications, 2018.

178

[184] Behcet Sarikaya, Mohit Sethi, and Dan Garcia-Carrillo. Internet Draft: Se-
cure IoT Bootstrapping: A Survey, 2019. Document: draft-sarikaya-t2trg-
sbootstrapping-05.

[185] Georgios Selimis, Mario Konijnenburg, Maryam Ashouei, Jos Huisken, Harmke
de Groot, Vincent van der Leest, Geert-Jan Schrijen, Marten van Hulst, and
Pim Tuyls. Evaluation of 90nm 6T-SRAM as Physical Unclonable Function for
Secure Key Generation in Wireless Sensor Nodes. In International Symposium
of Circuits and Systems (ISCAS), 2011.

[186] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao Wang, Yingdi Yu, Alexan-
der Afanasyev, Jeff Thompson, Jeff Burke, Beichuan Zhang, and Lixia Zhang.
Named Data Networking of Things (Invited Paper). In International Confer-
ence on Internet-of-Things Design and Implementation, 2016.

[187] Z. Shelby, K. Hartke, and C. Bormann. The constrained application protocol
(coap). RFC 7252, RFC Editor, June 2014.

[188] Adam Shostack and Andrew Stewart. The New School of Information Security.
Pearson Education, 2008.

[189] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security, privacy and
trust in Internet of Things: the road ahead. Computer Networks, 76:146–164,
2015.

[190] Kushal Singla and Joy Bose. IoT2Vec: Identification of Similar IoT Devices
via Activity Footprints. In International Conf. on Advances in Computing,
Communications and Informatics. IEEE, 2018.

[191] Sean Smith. The Internet of Risky Things: Trusting the Devices That Surround
Us. O’Reilly Media, 2017.

[192] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. BlackIoT: IoT Botnet of
High Wattage Devices Can Disrupt the Power Grid. In Usenix Security Symp.,
2018.

[193] Abhay Soorya and 21 others. IoT Security Compliance Framework 2.0, 2018.

[194] Claudio Soriente, Gene Tsudik, and Ersin Uzun. Secure pairing of interface
constrained devices. International Journal of Security and Networks, 4(1/2),
2009.

[195] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security Is-
sues for Ad-hoc Wireless Networks. In International Workshop on Security
Protocols, 1999.

179

[196] John A. Stankovic. Research directions for the Internet of Things. IEEE
Internet of Things Journal, 1(1):3–9, 2014.

[197] Gary Stoneburner, Clark Hayden, and Alexis Feringa. SP 800-27 RevA—
Engineering Principles for Information Technology Security (A Baseline for
Achieving Security), 2004. NIST.

[198] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions for De-
vice Authentication and Secret Key Generation. In Conference on Design
Automation, 2007.

[199] Jani Suomalainen, Jukka Valkonen, and N. Asokan. Standards for security as-
sociations in personal networks: a comparative analysis. International Journal
of Security and Networks, 4(1/2):87, 2009.

[200] Sven Schrecker and 14 others. Industrial Internet of Things Volume G4: Secu-
rity Framework v1.0, 2016.

[201] Shahin Tajik, Enrico Dietz, Sven Frohmann, Jean-Pierre Seifert, Dmitry Ne-
dospasov, Clemens Helfmeier, Christian Boit, and Helmar Dittrich. Physical
Characterization of Arbiter PUFs. In Cryptographic Hardware and Embedded
Systems (CHES), 2014.

[202] David R. Thomas. A General Inductive Approach for Analyzing Qualitative
Evaluation Data. American Journal of Evaluation, 27(2):237–246, Jun 2006.

[203] Mathias Dahl Thomsen, Alberto Giaretta, and Nicola Dragoni. Smart Lamp
or Security Camera? Automatic Identification of IoT Devices. In International
Networking Conference, volume 180 of Lecture Notes in Networks and Systems.
Springer International Publishing, 2021.

[204] Hannes Tschofenig and Emmanuel Baccelli. Cyberphysical Security for the
Masses: A Survey of the Internet Protocol Suite for Internet of Things Security.
IEEE Security & Privacy, 17(5):47–57, Sep 2019.

[205] Muhamed Turkanović, Boštjan Brumen, and Marko Hölbl. A novel user au-
thentication and key agreement scheme for heterogeneous ad hoc wireless sensor
networks, based on the Internet of Things notion. Ad Hoc Networks, 20, 2014.

[206] Pim Tuyls, Geert-Jan Schrijen, Boris Škorić, Jan van Geloven, Nynke Ver-
haegh, and Rob Wolters. Read-Proof Hardware from Protective Coatings. In
Cryptographic Hardware and Embedded Systems (CHES), 2006.

[207] Martin Ukrop, Lydia Kraus, Vashek Matyas, and Ahmad Mutleq Wahsheh
Heider. Will You Trust This TLS Certificate?: Perceptions of People Working
in IT. In Annual Computer Security Applications Conference (ACSAC), 2019.

180

[208] US National Telecommunications and Information Administration (NTIA).
Voluntary Framework for Enhancing Update Process Security, 2017.

[209] Ersin Uzun, Kristiina Karvonen, and N. Asokan. Usability Analysis of Secure
Pairing Methods. In Financial Crypto, 2007.

[210] Paul C. van Oorschot. Computer Security and the Internet: Tools and Jewels.
Springer, 2020.

[211] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyzing the Dragonfly Hand-
shake of WPA3 and EAP-pwd. In IEEE Symp. Security and Privacy, 2020.

[212] Arun Venkataramani, Abhigyan Sharma, Xiaozheng Tie, Hardeep Uppal,
David Westbrook, Jim Kurose, and Dipankar Raychaudhuri. Design require-
ments of a global name service for a mobility-centric, trustworthy internetwork.
In International Conference on Communication Systems and Networks, 2013.

[213] A.S. Wander, Nils Gura, Hans Eberle, Vipul Gupta, and Sheueling Chang
Shantz. Energy Analysis of Public-Key Cryptography for Wireless Sensor Net-
works. In International Conference on Pervasive Computing and Communica-
tions, 2005.

[214] Hongyuan Wang, Jin Meng, Xilong Du, Tengfei Cao, and Yong Xie.
Lightweight and Anonymous Mutual Authentication Protocol for Edge IoT
Nodes with Physical Unclonable Function. Security and Communication Net-
works, 2022(1), 2022.

[215] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. Fear and logging
in the Internet of Things. In NDSS, 2018.

[216] Dan Wendlandt, David G. Andersen, and Adrian Perrig. Perspectives: Im-
proving SSH-style Host Authentication with Multi-Path Probing. In USENIX
Annual Technical Conference, 2008.

[217] Marilyn Wolf and Dimitrios Serpanos. Safety and Security in Cyber-Physical
Systems and Internet-of-Things Systems. Proceedings of the IEEE, 106(1):9–
20, 2018.

[218] Ford-Long Wong, Frank Stajano, and Jolyon Clulow. Repairing the Bluetooth
Pairing Protocol. In International Workshop on Security Protocols, 2005.

[219] Felix Wortmann and Kristina Flüchter. Internet of Things. Business & Infor-
mation Systems Engineering, 57:221–224, 2015.

[220] Xilinx. Defense-Grade Zynq UltraScale+ RFSoCs, 2022.

181

[221] Kaiping Xue, Changsha Ma, Peilin Hong, and Rong Ding. A temporal-
credential-based mutual authentication and key agreement scheme for wireless
sensor networks. Journal of Network and Computer Applications, 36(1), 2013.

[222] Kuiwu Yang, Kangfeng Zheng, Yuanbo Guo, and Dawei Wei. PUF-Based Node
Mutual Authentication Scheme for Delay Tolerant Mobile Sensor Network. In
Int. Conf. on Wireless Communications, Networking and Mobile Computing,
2011.

[223] Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao. A
Survey on Security and Privacy Issues in Internet-of-Things. IEEE Internet of
Things Journal, 4(5):1250–1258, 2017.

[224] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor net-
work survey. Computer Networks, 52(12):2292–2330, 2008.

[225] Narges Yousefnezhad, Manik Madhikermi, and Kary Framling. MeDI:
Measurement-based Device Identification Framework for Internet of Things.
In International Conference on Industrial Informatics (INDIN), 2018.

[226] Dan Yu, Peiyang Li, Yongle Chen, Yao Ma, and Junjie Chen. A Time-efficient
Multi-Protocol Probe Scheme for Fine-grain IoT Device Identification. Sensors,
20(7), 2020.

[227] Lingjing Yu, Bo Luo, Jun Ma, Zhaoyu Zhou, and Qingyun Liu. You Are What
You Broadcast: Identification of Mobile and IoT Devices from (Public) WiFi.
In USENIX Security, 2020.

[228] Meng-Day Yu and Srinivas Devadas. Pervasive, Dynamic Authentication of
Physical Items. ACM Queue, 14(6), 2016.

[229] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and
Haojin Zhu. HoMonit: monitoring smart home apps from encrypted traffic. In
ACM CCS, 2018.

[230] Zhi Kai Zhang, Michael Cheng Yi Cho, Chia Wei Wang, Chia Wei Hsu,
Chong Kuan Chen, and Shiuhpyng Shieh. IoT Security: Ongoing Challenges
and Research Opportunities. In International Conference on Service-Oriented
Computing and Applications, 2014.

Appendix A

A.1 SAcoding Method Software Interface Tool and 1013-Item Dataset

A website interface for the SAcoding method presented in Chapter 4 is available

at URL (1) below. At the URL, the results of our coding of the DCMS 1013-item

dataset are provided, as well as the software SAcoding method tool. Readers can test

the SAcoding method on advice items from the 1013-item dataset, and then compare

the tag they gave to an advice item with those of C1 and C2 from Chapters 4 and

5 (provided in the website). Within this website is the full 1013-item dataset (we

processed the larger DCMS set [59] down to a slightly smaller set of 1013) and original

sources for each advice item.

Separate from the website interface, both coders’ results (with related advice

items) from Chapters 4 and 5 are also available as a stand-alone JSON file. This file

is available through URL (2) below.

Source URLs:

1. SAcoding method web interface:

https://www.ccsl.carleton.ca/~chris/sacoding/

2. Full 1013-item coder results (and advice items):

https://github.com/ChristopherBellman/SecurityAdvice/blob/eda8b4fc08f

28ee7f7dcfbba92446ca3b011bf2b/cb1013-dataset-thesis.json

182

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Thesis Scope
	Motivation
	Research Questions
	Contributions
	Outline
	List of Publications

	Internet of Things vs. Internet of Computers
	Brief IoT Security Literature Review
	Generic Architecture of Consumer-Grade IoT Devices
	Distinguishing Characteristics of IoT
	Low-Cost
	Non-Standard Interfaces
	Cyberphysical Interaction
	Expectation of Long-Lived Devices
	``Many-User'' Devices with Unclear Authority

	Discussion and Concluding Remarks

	Disambiguation of Security Advice Terminology
	Background and Overview of Established IoT Security Advice
	Lifecycle of IoT Devices
	Established IoT Security Advice

	Defining `Best Practice'
	Definition and Analysis
	Outcomes vs. Actions
	Imperative and Declarative Advice vs. Actions and Outcomes
	Commonly-Used Qualifying Terms
	Category 1: Quality-based Terms
	Category 2: Commonality-based Terms
	Category 3: Stipulation-based Terms

	Concluding Remarks

	Coding Tree and Analysis of 1013 Security Advice Items
	Security Advice Coding Tree Methodology and Development
	Establishing Analysis Tools
	Advice Categorization by Lifecycle Phase
	Relationship to Security Principles
	Actual Use of Security Advice Coding Tree Methodology

	Empirical Analysis of IoT Security Advice Dataset
	Results of Coding
	Proportion of Non-Actionable Advice
	`Not Useful' Advice
	Associating Advice Items with IoT Lifecycle Stages

	Related Work
	Concluding Remarks

	Critique of Coding Tree Methodology
	Methodology and Results
	Extracting Tags Used by Coders
	Proportion of Non-Actionable Advice
	Coder Nonagreements
	Type A Tag Comparisons
	Type B Tag Comparisons
	Type C Tag Comparisons
	T-agreements Summary and Results
	Proportion of Q-nonagreements Within Each Question

	Interpretation of Nonagreement Results
	High Numbers of Q-nonagreements
	Low Numbers of Q-nonagreements
	Observations of Q-nonagreement Distributions
	Comparing Actionable and Non-Actionable Agreements

	Coding Tree Utility and Limitations
	Utility of the Coding Tree Methodology
	Limitations of the Coding Tree Methodology
	Avenues for Coding Tree Methodology Improvement

	Related Work
	Concluding Remarks

	Comparing Three IoT Advice Datasets Using SAcoding
	DCMS and ETSI Document Summaries
	Document 1: DCMS 13 Guidelines Document
	Document 2: ETSI Provisions

	Informal Comparison and Critique of DCMS and ETSI Documents
	Positioning of DCMS and ETSI Documents
	Reference to External Advice
	Target Audience
	Distinct Advice Topics
	Technical Content

	Analysis of Actionability Using the Coding Tree
	Analysis Methodology
	Results
	Interpretation of Results and Comparative Analysis

	DCMS Guidelines and ETSI Provisions Coding Output
	Related Work
	Concluding Remarks

	Explication of IoT Device Identification
	Unwrapping ``IoT Device Identification'' (Background and Models)
	Device Fingerprinting
	Device Classification
	Device Authentication
	Model Relating IoT Identification Approaches and Objectives

	Categorizing IoT Device Identification Proposals
	Categorization 1: Identification Objectives
	Categorization 2: Identification Approaches
	Objective and Approach Categorization Insights

	Further Analysis of One Identification Approach: Authentication
	Categorization 3: Authentication Approaches

	Challenges Adapting IoC Authentication Approaches for IoT
	Related Work
	Concluding Remarks

	Conclusion and Future Work
	Answering Research Questions
	Future Research Directions

	Bibliography
	
	SAcoding Method Software Interface Tool and 1013-Item Dataset

