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Abstract

User authentication is one of the primary mechanisms that protects online accounts
from break-in by attackers. Password-based authentication is currently the most
widespread form of user authentication, but has many well-documented usability and
security drawbacks. As an increasing number of consumer, financial, governmental,
and other organizations move towards offering services online, users are burdened with
creating and managing increasingly large portfolios of online accounts; this increased
user burden exacerbates the drawbacks of password-based authentication. This the-
sis contributes to the reinforcement of password-based authentication by pursuing
parallel mechanisms that improve security without further burdening users—this is
a prominent avenue of improvement, given the continued dominance of password au-
thentication. To that end, our contributions achieve three broad goals. First, we
identify, develop, and evaluate device fingerprinting mechanisms for use alongside
passwords, and offer guidance on their use, to enhance the security of password-based
web authentication. Second, we expand on the concept of mimicry resistance, a
dimension that has thus far been overlooked in the design and study of web authenti-
cation schemes. We develop a comprehensive methodology for evaluating the mimicry
resistance of web authentication schemes and provide guidance on how to combine
multiple schemes alongside password authentication to maximize the benefits gained.
Third, we perform a comprehensive analysis and evaluation of a broad range of single
sign-on (SSO) schemes, which reduce password fatigue by allowing users to access a
multitude of online services through a single master password. We identify design
properties of SSO schemes and develop an evaluation framework that highlights their
benefits and drawbacks, revealing trade-offs between different designs. These three
contributions encompass complementary approaches that can be used together to
improve online security with minimal impact on usability.
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Chapter 1

Introduction

The Internet has changed many aspects of our daily lives, from the way we communi-
cate to the way we shop, consume media, and pay our bills. These changes continue to
reshape our lives even as of the time of writing, with new services changing the way we
track our health, automate household tasks, and transit from one part of town to an-
other; the number and the diversity of such online services will only continue to grow.
A common requirement for accessing the vast majority of these online services is to
create an account with the corresponding service provider (SP). Online accounts serve
firstly to identify ourselves to SPs, and secondly to prevent other users from accessing
our private information stored on those accounts or from performing unauthorized
transactions on our behalf. When accessing online accounts, the overwhelming ma-
jority of SPs require users to identify themselves by a user name and prove that
identity with a password selected at the time of account creation. Password-based
authentication has many well-documented security and usability drawbacks, which
we summarize as follows:

Security: Password capture and replay. Password authentication is a
knowledge-based scheme, meaning that any attacker that learns a user’s account
password can break into the account. This is in contrast to, for example, possession-
based schemes that require users to be in possession of a hardware device (e.g., a
USB token) to access their accounts. Passwords are susceptible to being captured via
a number of categories of attacks, e.g., by malicious software installed on a public
PC that records all keystrokes, by fraudulent websites that masquerade as legitimate
websites and ask users to type in their password, or by observing a user (either in
person or remotely through a camera) as they type in their password. Attackers
may also attempt to guess users’ passwords; to improve the effectiveness of guessing
attacks, attackers may leverage databases containing user passwords that have been
stolen or leaked from different websites.

1
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Usability: Password selection and re-use. It is difficult for users to select
passwords that they can easily remember but which are also difficult for attackers
to guess. This difficulty is exacerbated by the advice given by computer profession-
als to users that they should select unique passwords across different accounts, to
ensure that a compromised password for one account does not lead to users’ other
accounts being compromised (cf. the above mention of attackers’ use of stolen pass-
word databases). Due to the large (and growing) number of online accounts that
users must manage, this advice is impractical for users to implement.

Although numerous alternatives have been proposed to replace password authen-
tication, none have been successful in displacing it as the dominant scheme for web
authentication. While some current password alternatives offer more security and
usability benefits, none retain the full set of benefits that passwords offer. For ex-
ample, possession-based authentication schemes may not require users to memorize
a password, but they do require users to carry around a hardware device with them.
Moreover, all password alternatives face obstacles to adoption, e.g., due to develop-
ment costs for SPs or the need for preserving compatibility with existing end-user
systems. Since passwords do not seem to be disappearing [86], a prominent avenue of
improvement is to reinforce their security by parallel mechanisms [26] without further
burdening users.

1.1 Motivation and Thesis Goals

We believe that there is a need for practical mechanisms that can be easily deployed
to improve security with minimal impact on usability, without necessarily having to
supplant current password-based authentication that is already familiar to users. The
general motivation behind the research contributions in this thesis is to contribute
towards identifying and developing mechanisms to fulfill the aforementioned need.
More specifically, the principal goals of this thesis are as follows:

G1. Identify and develop mechanisms, and offer guidance on their use, for enhanc-
ing the security of password-based web authentication with minimal (or no) negative
impact on usability. We focus especially on the use of device fingerprinting, a mecha-
nism by which SPs can identify diverse attributes of users’ devices to assemble device
identifiers, analogous to how humans can be identified by their physical fingerprints.
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G2. Extend the concept of mimicry resistance in user authentication (a concept
that has been considered for user authentication to software applications running
on the user’s device) to user authentication to web applications; doing so requires
determining the differences in threats relevant to user-to-device and user-to-web au-
thentication, determining what classes of schemes possess mimicry resistance on the
web, how to use and combine such schemes together, and how to evaluate the benefits
that they provide. Mimicry here refers to user impersonation techniques employed
by attackers (e.g., by attempting to appear as if authenticating from a location from
which a user usually authenticates) to gain unauthorized access to users’ online ac-
counts. In line with our previously-stated objective of minimizing any negative impact
on usability, we place special emphasis on mimicry-resistant schemes that can operate
without any (or with minimal) explicit new user actions.

G3. Perform a comprehensive analysis and evaluation of a broad range of au-
thentication schemes designed to allow users to securely leverage a single password to
access multiple services. These authentication schemes are known as single sign-on
(SSO) schemes, and they are designed to alleviate the discussed usability drawbacks
(namely, password selection and re-use) of conventional password-based authentica-
tion by significantly reducing the number of passwords that users are required to
remember. A typical SSO scheme requires the user to authenticate to an Identity
Provider (IdP) to establish an authenticated session; throughout the session, the IdP
provides proof-of-identity to authenticate the user to other SPs without requiring any
additional authentication tasks from the user. While a wide variety of SSO schemes
have been proposed over the last decade, there is a lack of clarity regarding what
benefits are offered by different schemes, which benefits are more desirable to differ-
ent stakeholders (namely users, SPs, and IdPs) and whether there are any competing
interests between them, and which benefits are better suited in different environments
or use-case scenarios (e.g., medium-value vs. high-value accounts). Therefore, there
is a need to study the high-level design of SSO protocols to determine the design
choices to be made, the benefits and drawbacks that result from different choices,
and the inherent trade-offs that are involved in SSO protocol design.
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1.2 Contributions

The research contributions in this thesis are focused on achieving the goals outlined
above. Below, we summarize the contributions made in achieving each of the three
principal goals of this thesis.

G1. Device fingerprinting for augmenting password-based web authentication.

1. Identified and classified 29 available device fingerprinting mechanisms, primarily
browser-based and known, but including several network-based methods and
other methods not discussed in prior academic literature.

2. Identified and assessed properties distinguishing device fingerprinting mecha-
nisms that are more suitable for application to augment user authentication.

3. Defined a series of adversarial models within the context of device-fingerprint-
augmented user authentication.

4. Offered guidance on practical issues in the implementation, deployment, and
use of device fingerprinting within the context of user authentication.

G2. First systematic study of mimicry resistance for web authentication.

1. Investigated the mimicry-resistance dimension in web authentication, including
ranking schemes under three sub-classes of mimicry resistance.

2. Investigated schemes that possess mimicry-resistant characteristics, namely
device fingerprinting, user geolocation, and physically unclonable functions
(PUFs), and evaluated their degree of mimicry resistance when used for web
authentication.

3. Constructed a comprehensive evaluation methodology, which includes:

(a) A two-dimensional chart that visually reflects the ability of authentication
schemes to resist two categories of attacks leading to account break-in: (i)
exposure or theft of an authentication secret (e.g., a password), and (ii)
mimicry of user (or user device) actions.

(b) A set of benefits that ideal mimicry-resistant authentication schemes may
provide.
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4. Used the evaluation methodology, in combination with a set of benefits defined
in a prior well-known evaluation framework for web authentication schemes, for
the first detailed exploration of the benefits of combining mimicry-resistant web
authentication techniques with password-based authentication.

G3. Single Sign-On.

1. Prior work has explored various aspects of SSO security. We perform the first
comprehensive analysis and comparison of a broad range of SSO systems pro-
posed and/or deployed within the last decade, including two hardware-based
SSO schemes that are undergoing large-scale deployment, FIDO UAF [117] and
Mobile Connect [79].

2. Identified different design properties of SSO schemes and developed a taxonomy
based on a categorization scheme across the design properties.

3. Developed an evaluation framework that highlights benefits and drawbacks of
SSO schemes based on their design properties as defined under our taxonomy,
and analyzed a representative set of 14 SSO schemes under this framework.

4. Identified trade-offs between different design goals, and identified how various
SSO schemes can be augmented with existing techniques to achieve specific
benefits while forgoing others. Such trade-offs allow SSO schemes to be tailored
to different needs and scenarios.

1.3 Publications

Work from Chapter 3 has been published at a peer-reviewed conference, and is avail-
able in the conference proceedings:

F. Alaca, P. C. van Oorschot. Device Fingerprinting for Augmenting Web
Authentication: Classification and Analysis of Methods. ACSAC 2016,
Dec. 5–9, Los Angeles.

The work from Chapters 4 and 5 has been submitted for publication; a preprint
is available:
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F. Alaca, A. Abdou, P. C. van Oorschot. Comparative Analysis and
Framework Evaluating Mimicry-Resistant and Invisible Web Authentica-
tion Schemes. arXiv:1708.01706 [cs.CR] (arXiv.org e-print, Cornell Uni-
versity Library, 16 pages, 4 Aug. 2017).

The above work was done in collaboration with Dr. AbdelRahman Abdou when he
was a postdoctoral fellow at Carleton. Abdou (whose own PhD research was on se-
cure location verification) was involved in research discussions throughout the course
of the work, and also contributed to the writing—he was particularly instrumental in
identifying, classifying, and evaluating geolocation schemes suitable for web authen-
tication.

The work from Chapter 6 has been submitted for publication; a preprint is avail-
able:

F. Alaca, P. C. van Oorschot. Comparative Analysis and Framework Eval-
uating Web Single Sign-On Systems. arXiv:1805.00094 [cs.CR] (arXiv.org
e-print, Cornell University Library, 38 pages, 30 Apr. 2018).

All of the above papers were written under the supervision of Prof. Paul van
Oorschot, who offered mentorship and valuable feedback throughout the research
and writing process.

1.4 Scope of Thesis

This thesis is focused primarily on user authentication on the web. However, user
authentication is also relevant to other contexts which may have different constraints
or requirements. For example, many smartphones implement user authentication
mechanisms (e.g., 4-digit PIN, fingerprint recognition, or face recognition) to deny
unauthorized access to the phone’s contents and functionality—this is an example of
local authentication. We explain several differences in the security requirements and
relevant attack models between local authentication and web authentication schemes
in Sections 2.1.2 and 6.2.5. In the interest of completeness, we provide an overview of
local authentication schemes from the literature, particularly those based on environ-
mental or behavioural measurements (e.g., searching for nearby wireless networks to
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determine whether the user is logging in from a familiar location), that offer mimicry-
resistance benefits.

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background
and related work on web authentication, device fingerprinting, the concept of mimicry
resistance, and single sign-on. Chapter 3 covers our work on augmenting password-
based authentication with device fingerprinting. Chapter 4 covers our framework for
evaluating mimicry resistance in web authentication schemes, and Chapter 5 per-
forms an evaluation of a representative set of schemes, highlighting and discussing
the benefits offered by different schemes and how different schemes can be combined
to maximize the benefits offered. Chapter 6 presents our taxonomy and evalua-
tion framework for SSO schemes, along with an evaluation of a representative set of
schemes. Chapter 7 provides an integrated discussion of insights and recommenda-
tions derived from this thesis, and identifies open problems for further research that
have been identified as a result of our work.



Chapter 2

Background and Related Work

This chapter explains concepts and defines terms used throughout the remainder
of this thesis, and further defines our scope by positioning our work in relation to
existing literature. While this chapter provides more general background and related
work relevant to the overall context of the thesis, more specific background and related
work is presented in subsequent chapters.

2.1 User Authentication

Authentication is the process that takes place between a user (i.e., the claimant)
that is claiming a certain identity and a verifier that assesses the validity of the
user’s claim. In web authentication, verifiers are websites that control access to user
accounts, i.e., by ensuring that only account holders should be able to access and
perform transactions on their respective online accounts. Typically, users claim an
identity by entering a user name, and websites verify user identity by asking users to
enter a secret text password that is typically selected by users at the time of account
creation.

2.1.1 Approaches to User Authentication

User authentication is conventionally based on one of four approaches, as follows:

1. Personal knowledge (i.e., something the user knows). Examples include
text passwords, 4-digit PINs, personal knowledge questions (e.g., “What is your
mother’s maiden name?”), and graphical passwords (e.g., drawing a pattern on
a touchscreen device).

2. Physical possession (i.e., something the user has). Examples include
hardware USB tokens, or mobile phones. User possession of a USB token may
be verified by the user plugging it into the device they are authenticating from;

8
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possession of a mobile phone may be verified by the verifier website sending the
user a randomly-generated text message, and asking the user to type it into the
website.

3. Physical biometrics (i.e., something the user is). Examples include fin-
gerprint, iris, or facial recognition.

4. Behavioural biometrics (i.e., something the user does). Examples in-
clude user recognition via typing rhythm, mouse or touchscreen usage dynamics,
or gait analysis (e.g., by collecting smartphone accelerometer data while the user
is walking).

Other approaches, as will be discussed later, include behavioural characteristics (other
than biometrics) that may involve geographic location, habitual user actions, and
capabilities (e.g., being able to respond to an e-mail sent to a specific address or
domain).

Local vs. Remote Authentication

Local user authentication refers to authentication between a user and a system run-
ning on a device in their physical possession. Examples include logging into a laptop
or desktop computer with a password, or unlocking a smartphone using a 4-digit
PIN or physical biometric. In contrast, remote user authentication refers to authen-
tication between a user and a service running on a remote server, typically over the
Internet or other network link. Remote authentication occurs through a user agent
that communicates to the remote server on the user’s behalf; for example, in web
authentication (our primary area of focus), remote servers consist of websites, and
user agents consist of web browsers.

Start-of-Session vs. Continuous Authentication

Conventionally, websites authenticate users once at the beginning of each browser ses-
sion; we refer to this as start-of-session authentication. Subsequent to verifying user
identity (e.g., by validating a user-entered password), websites provide the browser
with a session cookie that remains valid for a pre-determined period of time (e.g.,
several hours) or until the user explicitly logs out of their account. For as long as
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the session cookie remains valid, users typically do not need to re-authenticate. In
addition to start-of-session authentication, some websites may also require users to
complete additional authentication tasks before carrying out highly sensitive trans-
actions; this practice is referred to as progressive authentication [166].

Continuous authentication refers to mechanisms that continuously authenticate
users throughout a session, typically by performing unobtrusive measurements without
requiring any deliberate user action. A benefit of continuous authentication schemes
is that they can also de-authenticate users when the obtained measurements deviate
beyond a certain threshold of what is expected. Two categories of schemes proposed
thus far in the literature for continuous authentication are:

1. Implicit authentication. These schemes are based on behavioural biometrics
that can be measured without any deliberate action by users, i.e., by obtaining
measurements from actions that users perform throughout the regular use of an
application, such as swiping on a touchscreen.

2. Zero-effort authentication. These schemes allow verifiers to automatically
authenticate users by detecting physical user possession of one or more devices
(e.g., a miniature hardware device specifically designed to act as an authentica-
tor device).

Jakobsson et al. [94] propose an implicit authentication framework that contin-
uously obtains measurements using smartphone sensors (e.g., GPS, accelerometer,
WiFi and Bluetooth connections) throughout the day to maintain an authentication
score that increases when habitual user actions are observed, and decreases when un-
usual actions are observed. They propose that the authentication score can be used
either to replace passwords or as a second authentication factor used in combination
with passwords. Khan et al. [101] evaluate six different smartphone-based implicit
authentication schemes (that measure, e.g., touchscreen input, touchscreen keyboard
usage, gait pattern, phone call/text usage), and offer relevant insights. For exam-
ple, schemes vary in the amount of data collection needed to make a decision—some
require only milliseconds, whereas others may require on the order of 10 seconds.
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ZIA (Zero-Interaction Authentication) [44, 144] is an example of zero-effort au-
thentication; users wear a small authenticator device that communicates over a short-
range wireless link with their computer. When the authenticator device is within
range, it automatically provides the user access to the computer’s encrypted file sys-
tem. Conversely, the encrypted file system is made inaccessible after the authenticator
device leaves the wireless range of the computer.

Implicit schemes and zero-effort schemes have generally been proposed for local
authentication. With many of these techniques, remote authentication is more dif-
ficult to secure, since they require verifiers to rely on measurements collected from
user-controlled devices. Therefore, attacker-controlled devices may impersonate users
by sending falsified measurements to remote verifiers. Such threats may be mitigated
with hardware-based trusted computing1 technologies designed to allow verifiers to
validate that the measurements collected by user devices have not been tampered
with. For example, GPS coordinates can be obtained from user devices through a
hardware Trusted Platform Module (TPM) [154, 121].

Theoretically, implicit and zero-effort authentication schemes may be “converted”
to start-of-session authentication schemes, but they may not necessarily be practical
or efficient to use. For example, a scheme that measures touchscreen keyboard usage
could ask users to type a paragraph on their phone, or a scheme that measures gait
may ask users to stand up and walk around to collect accelerometer measurements.

Bilateral Authentication

Bilateral authentication refers to schemes that cross-check or compare information
observed by two different devices—generally between an authenticator device in the
user’s possession, and the device that the user is authenticating to. For example, for
in-person credit card transactions, the verifier may obtain the GPS co-ordinates from
the mobile phone of the credit card owner and compare it with the GPS co-ordinates
of the payment terminal [197, 121, 201]; this ensures that the credit card owner is
physically present when the transaction is being made.

1Trusted computing refers generally to hardware technologies that allow verifiers to cryptograph-
ically verify that a device (e.g., a smartphone or personal computer) has executed a computer
program without altering the underlying code or tampering with any program output [185].
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Authentication schemes may be both bilateral and zero-effort: Zero-Effort Bilat-
eral Recurrent Authentication (ZEBRA) [120] is a local authentication scheme that
requires users to wear a bracelet equipped with an accelerometer. While users type
on their computer keyboard, the computer wirelessly receives accelerometer readings
from the bracelet, and compares the readings with the keystrokes made on the key-
board. Comparing the accelerometer data with the keystrokes allows the computer
to verify that the user typing on the keyboard is wearing the bracelet. Unlike ZIA
(discussed previously), which relies only on users’ physical proximity to their com-
puters (so, e.g., a physically-present attacker may be able to use a victim’s computer
while the user is nearby but has turned their back), ZEBRA verifies that the bracelet
owner is actively using the computer.

Sound-Proof [99] is a bilateral remote authentication scheme that determines
whether the user’s smartphone and the computer the user is authenticating from
are in close physical proximity. The verifier website records the ambient sound from
the microphone on the computer (through a browser API) and transmits it (over
the Internet) to the user’s smartphone. The Sound-Proof application on the user’s
smartphone also records the ambient sound from its own microphone, and compares
it with the sound file received from the user’s browser. If the two sound files match,
this indicates that the smartphone and computer are in close physical proximity, and
the smartphone application sends a cryptographically-signed assertion to the website
to approve the user authentication. To protect against attackers in close physical
proximity to users (e.g., an attacker seated at a coffee shop nearby the user; also cf.
the example above for ZIA), Sound-Proof requires explicit user consent at the time
of authentication by tapping a button on the smartphone application to approve the
authentication attempt.

2.1.2 Attacks on User Authentication

In this thesis, we categorize attacks on user authentication into two broad categories:
(1) Credential capture and reuse, and (2) Mimicry attacks.
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Credential Capture and Reuse

The vast majority of user authentication schemes rely on the protection of a secret,
known as a credential. Knowledge-based schemes, such as passwords, require users
to protect the secrecy of their password. Possession-based schemes, such as hard-
ware USB tokens, require the token to protect the secrecy of cryptographic keys.
Many physical biometrics also require secrecy and are arguably unsuitable for remote
authentication (e.g., [25]). For example, attackers have used high-resolution public
photographs to “clone” fingerprints of high-profile individuals [103]. Moreover, in re-
mote authentication schemes where a digital representation of the fingerprint is sent
from the user’s device to the remote server, an attacker that captures the digital
representation could later reuse it to impersonate the user.

Bonneau et al. [25] evaluate a wide range of web authentication schemes proposed
as password replacements. In their evaluation framework, they develop evaluation
criteria that reflect each authentication scheme’s susceptibility to different types of
attacks, all of which relate to credential capture and reuse. We summarize these
attacks as follows, and highlight how each attack relates to password authentication:

1. Online guessing attacks involve guessing the user credential. Passwords are
vulnerable to these attacks, since users tend to choose predictable passwords
that are easy for attackers to guess. A helpful precaution against such attacks
is to limit the rate at which users can attempt to authenticate (e.g., lock the
account for several hours after 5 unsuccessful attempts) [8].

2. Physical observation involves physically observing the user while they are
authenticating, e.g., watching them type in their password.

3. Internal observation involves capturing credentials via malware installed on
the user’s device or by intercepting communication between the user’s device
and the verifier.

4. Leaks from other verifiers involve attackers impersonating users to verifiers
using information stolen from a different verifier. For example, users often re-
use passwords across multiple websites; this allows attackers to steal a password
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database from one website and attempt to use the same passwords to imper-
sonate users on another website. Websites can reduce the scalability of such
attacks by not directly storing user passwords; instead, the recommended prac-
tice is to use secure password-hashing functions, which generate cryptographic
transformations of text passwords that cannot be easily reversed.

5. Offline guessing attacks involve stealing a password database containing se-
cure hashes of passwords, and finding password strings whose transformations
match with the stored hashes. More computationally-intensive (i.e., “slow”)
hash functions increase the time cost of each individual guess; however, while
slow hash functions are helpful for reducing the “guessability” of medium- to
high-strength passwords, they are ineffective for protecting the simplest pass-
words (e.g., “123456”) that would only take several attempts to guess (the opti-
mal attack strategy is to guess in descending order of the most commonly-used
passwords).

6. Phishing involves deceiving users by directing them to a fraudulent website
that pretends and appears to be a website (e.g., a bank) that users normally
use. A common technique is to e-mail users a message asking them to log in
to their account (e.g., to view a new notification) and to include a link to a
phishing website. When the phishing website asks users to log in to access their
account, users may provide their credentials (e.g., passwords) if they believe
the website to be legitimate. This technique allows attackers to harvest large
numbers of passwords.

7. Targeted impersonation involves attacker impersonation of users they are
personally acquainted with, by exploiting knowledge of personal details such as
birth date or names of relatives. While there is no evidence to suggest that
passwords can be guessed in this manner, personal knowledge questions com-
monly used for password reset (e.g., “What is your mother’s maiden name?”)
may be guessed in this manner [27].

8. Physical theft involves stealing a user’s device, such as a USB authenticator
token, that stores secret credentials.



15

Mimicry Attacks

Mimicry is the impersonation of users not through re-use of a captured secret, but
through imitation of user behaviour or user device (i.e., hardware and software) be-
haviour. Mimicry attacks have been studied within the context of intrusion detection
systems [202]; for example, an attacker may hijack control of an application running
on a device and attempt to evade detection by simulating the normal behaviour of
the program while inserting a malicious sequence at some point during execution
[203]. Mimicry attacks are easier to carry out if the expected behaviour of legitimate
applications is known to attackers, which is typically the case for publicly-available
software.

Implicit authentication schemes for local authentication do not necessarily rely
on an explicit secret, but instead their security typically relies on the difficulty of
mimicking user behaviour that is readily observable. However, mimicry attacks have
been found to be feasible against some implicit schemes [101, 16]; for example, an
attacker may observe and imitate a user’s keyboard usage dynamics. However, such
attacks are highly unscalable, since they are highly targeted and require attacker
possession of the user’s device. Mimicry attacks can also be made more difficult by
combining multiple implicit authentication schemes.

In Chapters 4 and 5, we extend the concept of mimicry resistance to the domain
of web authentication.

2.1.3 Account Recovery Schemes

It is common practice for verifiers to provide fallback authentication schemes for ac-
count recovery purposes, in case users lose their credentials for their primary means of
authentication. Some authentication schemes that may be too unusable or inefficient
to use as a primary means of authentication may be acceptable to use as a fallback
mechanism, since it will be used relatively infrequently. However, choosing a fallback
scheme that is less secure than the primary authentication scheme weakens the overall
security of the system, since attackers can bypass the primary authentication mech-
anism and attack the fallback mechanism instead. For example, personal knowledge
questions are sometimes used for account recovery, but have been demonstrated to
be even weaker against guessing attacks relative to passwords [27]. We revisit this
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challenge throughout our discussions on mimicry-resistant authentication schemes in
Chapters 4 and 5, and single sign-on systems in Chapter 6.

2.1.4 Multi-Factor Authentication

Multi-factor authentication combines two or more types of authentication mechanisms
(i.e., factors) to provide stronger security. The overall security of the multi-factor
authentication scheme depends on the security of each factor, and the “independence”
of each factor from the other(s). For example, carrying two USB hardware tokens
on the same keychain would provide little benefit compared to a single hardware
token. In Chapter 5, we offer further discussion and insight on combining multiple
authentication schemes and pitfalls to avoid.

2.2 Machine Authentication

Authentication mechanisms can also be classified based on the type of entity that is
being authenticated. While user authentication encompasses all schemes that authen-
ticate users to machines (whether local or remote), there is also a need to authenticate
machines (either to users or to other machines).

2.2.1 Device Authentication

Device authentication involves authenticating a device to a verifier such as a remote
server. For example, a mobile phone needs to authenticate itself, typically via a cryp-
tographic secret stored on a SIM card, to connect to a mobile network. Some systems
may implement two-stage authentication, which combines a local user authentication
stage and a device authentication stage; for example, when making a credit card
payment with chip-and-pin technology, the payment terminal first communicates to
an authentication server on the payment network to validate the authenticity of the
credit card itself (i.e., device authentication), and users are then authenticated by en-
tering a numerical PIN that is verified locally by the payment device (i.e., local user
authentication). Two-stage authentication can also be applied to web authentication,
as discussed in subsequent chapters of this thesis.

Device authentication can also occur between devices (i.e., machine-to-machine
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authentication). For example, self-driving cars may authenticate each other when
communicating information about traffic flow or obstacles on the road—in this par-
ticular example, the purpose of the authentication may be to ensure that the traffic
information being received is from a car (and not, e.g., a rogue transmitter device)
that is manufactured by a legitimate car maker and has therefore undergone any
necessary regulatory certification.

Device authentication is often easier to do securely than user authentication, since
it is not constrained by the requirement to be usable by human users. A typical means
of device authentication is through cryptographic challenge-response protocols (using
either symmetric-key or public-key cryptography); for example, the verifier may send
a cryptographic challenge to the device, which in turn generates a response that
proves (to the verifier) the device’s possession of a cryptographic key.

2.2.2 Server Authentication

Server authentication involves authenticating remote servers to users. On the web,
this is achieved through HTTPS, which is built upon the TLS public-key infrastruc-
ture. For example, when a user visits the website www.carleton.ca over HTTPS, the
web browser authenticates the web server to ensure that the communication between
the web browser and www.carleton.ca is not being intercepted by an attacker. Upon
successful authentication, web browsers display a visual cue in the border area of
the browser interface (which cannot be manipulated by the web content being dis-
played), such as a green lock icon, to indicate to users that the web server has been
authenticated. Server authentication is out of the scope of this thesis. However,
techniques discussed to augment user authentication (e.g., device fingerprinting and
geolocation) can also be used to strengthen the security of server authentication. For
example, Abdou [3] proposes a scheme for server location verification to augment TLS
authentication in web browsers.

2.3 Device Fingerprinting

Device fingerprinting is a technique by which a server collects information about
a device’s software and/or hardware configuration for the purpose of identification.
Nmap [116] is a classic tool that can fingerprint devices over the network by sending
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specially crafted packets to hosts and analyzing the response packets to find features
that are attributable to specific hardware, operating systems, or software stacks.
More recently, web analytics and advertising services have been performing device
fingerprinting through web browsers to track and analyze users’ browsing habits [56,
4].

2.3.1 Browser-based Device Fingerprinting

Web browsers reveal information to websites about the host system both explicitly
by exposing information such as screen resolution, local time, or OS version, and im-
plicitly by leaking information about the device’s software or hardware configuration
through observable differences in browser behaviour. Eckersley [56] published the first
research paper discussing in detail the concept of browser-based device fingerprinting
and showed that websites could identify users and track their browsing habits by
collecting basic information such as device IP address, time zone, screen resolution,
and a list of supported fonts and plugins. Web browsers are intentionally designed to
provide extensive device information to allow websites to tailor and optimize content
for a wide variety of target devices; for example, when a website detects that the
user is on a smartphone, it may provide a user interface more suitable for a small
touchscreen display.

Mowery et al. [131, 132] later proposed two more advanced fingerprinting meth-
ods; the first measures performance characteristics of the browser’s JavaScript en-
gine, and the second renders text in an HTML5 canvas element2 to distinguish font-
rendering techniques across different software and hardware platforms. Bojinov et al.
[23] demonstrate how smartphones can be fingerprinted via a multitude of onboard
sensors; in particular, they use the device’s accelerometer calibration error and the
frequency response of the speakerphone-microphone system.

2.3.2 Web Tracking

Empirical studies by Acar et al. [5, 4] and Nikiforakis et al. [146] reveal extensive use
of device fingerprinting by advertisers as a fallback mechanism to track users, should

2An HTML5 canvas element creates a rectangular area on a web page in which 2D and 3D
graphics can be rendered using JavaScript.



19

they clear their browser cookies3. Advertisers also save identifying information via
less conventional storage mechanisms, e.g., Flash cookies, which are more difficult for
users to delete [124]; this information may be used to reconstruct browser cookies,
should the user clear them [182, 13, 126, 4]. Vastel et al. [200] use machine learning
to correlate browser fingerprints that change over time, e.g., due to software updates
or changes to device configuration.

2.3.3 Fingerprint Diversity

Spooren et al. [183] argue that the relative lack of diversity in mobile device fin-
gerprints, compared to desktop computers, makes them less reliable for risk-based
authentication. For example, they found that over 90% of Android devices use an
identical set of fonts, and that all iOS devices and Windows Phone devices respec-
tively share an identical set of fonts. However, the study did not include many of the
more recent and advanced fingerprinting mechanisms discussed herein, in Chapter 3.
Laperdrix et al. [113] collected and analyzed fingerprints from 119,000 devices, and
found that while some mobile device attributes are less diverse (e.g., limited browser
plugin support), other attributes (e.g., user-agent string and canvas fingerprinting)
are much more diverse than on desktops.

2.3.4 Fraud Detection Based on Device Fingerprinting

Eisen [57, 58] is the inventor on two patents relevant to device fingerprinting: the first
describes how a server may detect fraudulent transactions by recording the difference
between the server’s local time and that of each client (to determine the client’s time
zone, observance of daylight saving time, and drift from UTC); the second describes a
generalized framework wherein a server can obtain a fingerprint on each page that the
client requests from the server and signal a warning for a session-tampering attempt
when there is sufficient change in the fingerprint. A patent by Varghese et al. [198]
describes how a client’s device fingerprint can be used as an index to retrieve its
associated risk of fraud from a central database of fingerprints for devices suspected
of participating in fraud, and accordingly grant the client an appropriate level of

3A browser cookie consists of data which a website can save on the user’s local machine upon
being visited by the user, and can be updated or retrieved by the website on subsequent visits.
Cookies are often used to save users’ website preferences or to track their browsing behaviour.
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access to the account. A number of commercial fraud detection services [123, 192]
employ device fingerprinting to identify and block transactions initiated from devices
known to be associated with a high risk of fraud.

2.3.5 Privacy Concerns

Most of the existing research on browser-based device fingerprinting focuses on privacy
concerns, and aims to develop techniques that limit its usefulness for tracking users;
e.g., by restricting the subset of browser functionality made available to websites [181],
by adding random noise to output generated by various browser functions [145, 112],
or by reducing the level of precision in browser-provided information [151]. Nikiforakis
et al. [146] discuss the difficulties of thwarting fingerprinting techniques with client-
side privacy software; e.g., differences in JavaScript implementations across browser
vendors can reveal which browser is being used even if the user-agent string4 is ob-
scured; web proxies can often be circumvented to reveal the user’s true IP address
through external plugins such as Flash or Java (cf. [137]); and user manipulation of
the device fingerprint may result in a less common fingerprint that is even more useful
for identifying the user.

2.3.6 Augmenting Web Authentication with Device Fingerprinting

Chapter 3 of this thesis is focused on the little-explored use of device fingerprinting for
the purpose of augmenting web authentication. Device fingerprinting overlaps both
implicit and zero-effort authentication, since the information collected reflects both
device-specific information (e.g., system performance) and user behaviour (e.g., user-
selected preferences, installed browser extensions)—however, the distinction between
the two categories may sometimes be ambiguous, since device-specific information
reflects user behaviour through their choice of device. Since device fingerprinting
leverages personal devices that users already use, it does not require users to carry
an additional dedicated hardware token.

While implicit authentication schemes such as recognition of typing rhythms or
touchscreen usage patterns could also be performed within web browsers, using them

4The user agent string is an identifying string sent by the web browser to a server, which can
include information such as the browser and operating system versions.
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for start-of-session authentication requires asking users to perform additional tasks
such as typing a paragraph or swiping around objects on a touchscreen. Our interest
in device fingerprinting stems primarily from the usability benefit that it does not
require user interaction.

Aside from the following work that we summarize from the academic literature,
to the best of our knowledge there is no other substantial exploration of techniques
for augmenting web authentication with device fingerprinting. Unger et al. [194]
propose enhancing session security through server-side monitoring of certain web
browser attributes (e.g., user-agent string, supported CSS features) to help detect
session hijacking.5 Preuveneers and Joosen [162] propose a protocol that monitors
various parameters throughout an authenticated session, such as user IP address
and time of access; applies a similarity-preserving hash function to enable privacy-
preserving fingerprint storage that allows similarity checks between stored fingerprints
and subsequently-collected fingerprints; and uses a comparison algorithm that assigns
a weight to each attribute (based on its usefulness for identifying that particular
client) to determine if the fingerprint has changed significantly enough to ask the
user to re-authenticate. Van Goethem et al. [196] propose an accelerometer-based
device fingerprinting mechanism for multi-factor mobile authentication. Freeman et
al. [66] propose a statistical framework to detect suspicious login attempts using
various browser attributes and other parameters such as time of access.

2.4 Single Sign-On

Single Sign-On (SSO) is an umbrella term for authentication schemes and architec-
tures that allow users to rely on a single master credential to access a multitude
of online accounts. We categorize SSO schemes across two broad categories: feder-
ated identity systems (FIS) and credential managers (CM). FIS establishes a means
of communicating user identity across administrative domains; this allows users to

5Session hijacking is an attack that bypasses user authentication by taking control of an existing
authenticated session. On the web, this is typically achieved by session cookie theft, as discussed
further in Section 2.4.1



22

authenticate to an Identity Provider (IdP) that can communicate proofs of user iden-
tity to Service Providers6 (SPs), thereby granting users access to SP services with-
out needing to re-authenticate. CM-based SSO methods store SP-specific credentials
(e.g., passwords or cryptographic keys) and automatically send them to SPs on behalf
of users; CMs are typically protected by a single master credential such as a password
or a hardware token containing a cryptographic key (e.g., USB key or smart card).
In Chapter 6, we classify both FIS- and CM-based SSO schemes into more granu-
lar subcategories, while identifying benefits and drawbacks associated with different
approaches. While SSO has long been used in enterprise networks to enable users
to access network services and applications with a single set of credentials (e.g., see
Kerberos [143]), we focus specifically on SSO designed for web authentication.

2.4.1 Related Work on SSO

Bonneau et al. [25] evaluate 35 authentication schemes, including a number of SSO
systems, based on a usability, deployability, and security (UDS) framework. Among
all categories of schemes considered, FIS (e.g., OpenID) and CM (e.g., password man-
agers) schemes retained the most usability and deployability benefits of passwords,
while improving security. The usability benefits of SSO stem from the reduced user
memory burden from having to remember fewer passwords—however, while password
managers offer the benefit of working with all password-based websites, FIS have the
drawback of having much more limited SP support. The security benefit of SSO in
general hinges on the assumption that users will be able to choose and remember a
stronger master password (since they will have fewer passwords to remember); ad-
ditionally, the security benefits offered by CM-based schemes rely on users picking
(or randomly generating) unique passwords across SP accounts, to provide resilience
against online guessing attacks and to limit the damage caused by any single com-
promised password to a single corresponding SP. Our analysis of SSO schemes in
Chapter 6 is largely applicable with or without these assumptions, and our taxon-
omy and evaluation framework are complementary to the UDS framework in that we
identify and analyze additional usability, deployability, security, and privacy benefits

6Often also referred to as Relying Parties (RPs), i.e., when they rely on on other parties to
authenticate users.
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specifically relevant to SSO systems, independent of the user authentication mecha-
nism used.

NIST’s Digital Identity Guidelines [74, 75], as revised in 2017, provide techni-
cal and procedural guidelines for US government agencies implementing several FIS
models, which are part of our analysis in Chapter 6. Pashalidis and Mitchell [155]
categorize web SSO broadly into pseudo-SSOs, true SSOs, proxy-based SSOs, and
local SSOs; the first two categories correspond loosely to what we call FIS and CM
schemes, and the latter two correspond loosely to the T1 and T2 categories we define
in Section 6.2.5. Our taxonomy and evaluation framework, developed as a result of an
analysis of newer schemes that have been proposed and deployed since the analysis of
Pashalidis and Mitchell, provides a more granular means by which modern schemes
can be evaluated and compared.

Below we summarize existing research related to protocols evaluated in our anal-
ysis, leaving our protocol overviews for individual schemes to Chapter 6.

SSO Vulnerabilities

Whereas our taxonomy and evaluation framework for SSO schemes is based on high-
level design properties, in practice SSO security also depends on the secure design
and implementation of the underlying protocols. Many SSO vulnerabilities arise due
to widespread implementation errors (an analogy can be drawn to the widespread
practice of websites using password authentication that insecurely store passwords).
Sun et al. [188] analyze 96 popular OAuth 2.0 based SPs using Facebook SSO, and
find that the majority are vulnerable to at least one serious implementation-related
vulnerability such as access token theft via a cross-site scripting (XSS) attack. Chen et
al. [39] analyze over 600 mobile applications using OAuth 2.0 for SSO authentication,
and find that about 60% were vulnerable to exploit due to incorrect implementation.
Fett et al. [61] develop a formal analysis framework for web SSO implementations, and
apply it to BrowserID (the protocol underlying Mozilla Persona) to find a number
of server-side IdP implementation-related vulnerabilities; they also [62] conduct a
formal analysis of OpenID Connect to discover new classes of attacks and outline
implementation guidelines for corresponding defenses.
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Some SP vulnerabilities can be traced back to inadequate documentation in pro-
tocol specifications or SDKs. Sun et al. [190] conducted a formal analysis of OpenID
2.0 and found that protection against session tampering required the implementation
of safeguards not discussed in the specifications; an empirical study revealed that
many OpenID 2.0 RPs were vulnerable to cross-site request forgery (CSRF) attacks
since they did not have the safeguards in place. Wang et al. [204] formally analyzed
OAuth 2.0 SDKs provided by Microsoft and Facebook (two major IdPs) to determine
whether SP developers can securely build SSO into their applications by following
only explicitly-stated assumptions in the SDKs; it was found that many apps built
with these SDKs were vulnerable to major exploits due to violations of unstated
assumptions by IdPs (e.g., the expected sequence of API calls made by an SP).

Implementation-related vulnerabilities can also impact password managers (but
potentially to a lesser degree than FIS—IdP-side vulnerabilities may be more likely to
be promptly fixed than SP-side vulnerabilities [212]). For example, flawed password
auto-fill policies may result in password compromise [177] by, e.g., filling in the user’s
password on a page retrieved via a non-HTTPS connection. Web-based password
managers that operate by locally injecting JavaScript into websites via a browser
extension or bookmarklet can be vulnerable to various XSS or CSRF attacks [115].

Automated SP Vulnerability Scanners

Although implementation-related vulnerabilities are widespread, automated vulnera-
bility scanners may help SP developers secure their applications by remotely scanning
for common implementation errors. Zhou et al. [212] develop an automatic vulner-
ability checker to test for five different vulnerabilities; they scanned over 1660 sites
that use Facebook SSO, finding that about 20% were susceptible to at least one vul-
nerability. Mainka et al. [118] analyze common implementation-based vulnerabilities,
categorize them (e.g., one category is replay attacks allowing attackers to imperson-
ate users by sending expired access tokens to SPs that fail to check the nonce or ex-
piry parameters), and develop an automated vulnerability assessment tool that scans
OpenID Connect SPs for common vulnerabilities; they also discovered protocol-level
vulnerabilities in OpenID Connect.
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Hardening SSO Protocols

A common threat to virtually all current web authentication schemes, including SSO,
is that of session hijacking. Typically, successful user authentication to a website is
followed by the provision of an HTTP session cookie allowing users to browse across
different pages of the website without re-authenticating. Session cookie theft (e.g.,
via XSS attacks [152]) allows attackers to bypass user authentication by hijacking
an existing authenticated user’s session. Token Binding [160] (formerly TLS Chan-
nelID [15] and Origin-Bound Certificates [52]) allows cryptographically binding tokens
(e.g., session cookies, access tokens sent from IdPs to SPs via the user’s browser) to
browsers using client-side dynamically generated TLS certificates [76]. Token binding
can be applied across different SSO protocols to defend against various token theft
attacks (such as session cookie theft or identity assertion reuse), e.g., Dietz et al. [53]
implement token binding for Mozilla Persona, and FIDO UAF [14] supports it as an
optional feature (for backwards-compatibility with platforms that do not yet support
token binding).

SSO Adoption

Sun et al. investigate SSO adoption barriers, both from users’ [191] and SPs’ [189]
perspectives. Their user study reveals various reasons behind users’ hesitance to adopt
SSO, such as inaccurate user mental models (e.g., incorrectly believing that they were
sharing their password with the RP) and concerns relating to privacy and potential
phishing attacks. In contrast, a user study by Stobert [186] indicates that users are
much more willing to adopt password managers built into the OS or web browser—
this motivates our analysis of CM-based schemes such as Firefox Sync and FIDO
UAF7. McCarney [125] discusses other classes of password managers, e.g., managers
that use a master password to generate SP-specific passwords—such schemes have
not received much interest, due to practical issues such as the need to reset all SP
passwords when the master password is changed.

7FIDO UAF is currently built into a number of major platforms that advertise it under their own
branding, e.g., “Windows Hello” on Windows 10 and “Samsung Pass” on Samsung smartphones.



Chapter 3

Device Fingerprinting for Augmenting Web Authentication:

Classification and Analysis of Methods

We explore the state-of-the-art of device fingerprinting, albeit with a special focus:
to augment web authentication mechanisms, and especially password-based methods.
Despite usability and security drawbacks, the latter remains the dominant form of
authentication on the web—in part because more secure alternatives have their own
usability and deployability issues [25].

Large web services can mitigate insecure passwords in part by using server-side in-
telligence in the authentication process with “multidimensional” authentication [26],
wherein conventional passwords are augmented by multiple implicit signals collected
from the user’s device, ideally without requiring explicit new user actions. We explore
the applicability of various fingerprinting techniques to strengthening web authenti-
cation and evaluate them based on the security benefits they provide. We aim to
identify techniques that can improve security, while being ideally invisible to users
and compatible with existing web browsers, thereby imposing low cost on usability
and deployability.

We identify and classify 29 available device fingerprinting mechanisms, primarily
browser-based and known, but including several network-based methods and others
not in the literature; identify and assess their properties suitable for application to
augment user authentication; define a series of adversarial models within the context
of fingerprint-augmented authentication; and consider practical issues in the imple-
mentation, deployment, and use of device fingerprinting within the context of user
authentication.

While prior work has mostly presented specific device fingerprinting mechanisms
or their use by web trackers, we analyze a broad range of such mechanisms within
the context of augmenting password-based web authentication.

26
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3.1 Framework and Threat Model

Base definitions, replay and spoofing. In device fingerprinting, servers use one or
more mechanisms (fingerprinting vectors or vectors) to extract and verify properties
related to the software and/or hardware configuration of a device. “Pure” device
fingerprinting is stateless, depositing no new client-side information; alternatives are
stateful. By device fingerprint we mean the overall set of vectors a server employs, or
depending on context, the output corresponding to such vectors. A base assumption
is that attackers eventually learn the set of device fingerprinting vectors employed by
websites. A server may use a collection of vectors and choose some (random or other)
subset in particular instances; if so, we assume the attacker does not know the subset
beforehand.

Many vectors require browsers to perform certain operations, e.g., via JavaScript,
and return the output to the server. If a vector response is static, i.e., constant
regardless of circumstances, an attacker observing or intercepting this can later replay
it. If all vectors composing a device fingerprint are static, so is the device fingerprint
(i.e., of a particular device), and simple replay suffices. By spoofing we mean an
attacker trying to mimic the fingerprint of a target device; this is a form of mimicry
attack (Chapters 4 and 5 discuss mimicry attacks and mimicry resistance in further
detail). If a server varies the vectors, or uses individual vectors for which the response
is dependent on conditions or a variable challenge of some form, then spoofing requires
a more complex attack than simple capture and replay—e.g., successfully spoofing
some forms of geolocation (as discussed later) requires attacker access to a proxy
machine located near the victim (which we call a co-location attack). In the models
below and elsewhere, we typically use the more general term spoofing, but often this
requires only replay.

To facilitate analysis of device-fingerprinting-augmented authentication, we define
a continuum of five attack models, in order of increasing attacker power and skill.
Table 3.1 summarizes and compares attacker capabilities across these models. This
modelling also serves to motivate and focus later discussion of desirable defensive
properties of fingerprinting vectors (see Section 3.3 and Table 3.2).

Model M1: Naive attack. We consider a naive attack to be a conventional
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M1: Naive attack
M2: Optimized password & fingerprint guessing
M3: Targeted password & fingerprint guessing
M4: Fingerprint phishing & spoofing
M5: Session hijack with fingerprint spoofing

Table 3.1: Attacker models (rows) and capabilities (columns).

online password-guessing attack that does not attempt to thwart any secondary au-
thentication mechanisms. Such attacks will simply fail, since they involve guessing an
account password while making no effort to spoof the device fingerprint of the account
owner. The verifying server can thus determine, based on previously-collected device
fingerprints, that the authentication attempt comes from a device that the account
owner has never used. Advanced attackers will use the more sophisticated models
below.

Model M2: Optimized password and fingerprint guessing attack. This
attack follows an optimal guessing strategy, i.e., guessing passwords in order of pop-
ularity across many accounts [24] while iterating over device fingerprint “guesses”
expected to maximize the probability of account break-in. The attacker may spoof or
mimic device fingerprints that match a set of popular devices, potentially tailored to
the target website audience; e.g., websites targeting users in particular countries are
likely to have visitors within certain time zones, or vendor-specific technical support
sites will likely have visitors using that vendor’s devices. The attacker can then, based
on the popularity of each password and device fingerprint combination, mount an at-
tack by iterating through the list of password-fingerprint pairs in order of decreasing
popularity across all accounts. In special cases, the attacker may reduce the search
space by obtaining a list of passwords (e.g., from a leaked password database of an-
other website, if users can be mapped between the two websites through information
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such as e-mail addresses) or a list of device fingerprints (e.g., by exploiting a XSS
vulnerability to obtain the necessary data from a large subset of users to spoof their
device fingerprints).

Model M3: Targeted password and fingerprint guessing attack. The
attacker aims to break into a specific account, and mounts a password guessing attack
while also attempting to spoof a fingerprint to match a target device. This attack
iterates over passwords and fingerprints in some optimized order, as in M2. The
attacker may significantly reduce the search space by using known information (e.g.,
if the user is known to use a particular type of device) or in special cases may possess
(e.g., due to a priori capture) the user’s password or a fingerprint of the user’s device,
thereby reducing the attack to either fingerprint guessing or password guessing.

Model M4: Fingerprint phishing and spoofing. Whereas classic phishing
attacks steal passwords, this related attack targets users of websites employing device-
fingerprinting-augmented authentication. This attack involves luring users (e.g., by
e-mailing users a phishing link) to an impostor website that captures both the victims’
passwords and device fingerprints. The attacker then gains access to victims’ accounts
by spoofing the device fingerprints and replaying the captured passwords. This attack
is harder if the device fingerprint is not static.

Model M5: Session hijack with fingerprint spoofing. The attacker aims
to hijack an existing authenticated session, vs. attackers M1-M4 which attempt
account break-in via password and fingerprint guessing or stealing. The M5 attacker
is granted (i.e., assumed to have) the power to steal session cookies and execute
client-side JavaScript by exploiting, e.g., improperly-configured HTTPS [178, 106] or
XSS vulnerabilities. This enables the attacker to (1) capture device fingerprints sent
from the browser to the server, and (2) perform any additional fingerprinting that
would facilitate spoofing the user’s device and thereby resuming the session from the
attacker’s device. A device fingerprint useful under M5 must thus be hard to spoof
(beyond simply replaying a static string). Server-side fingerprint checking has been
proposed as a defence against attacker reuse of stolen session cookies [194, 162].1

1The motivation behind this use case is similar to that of Channel ID (originally known as Origin-
Bound Certificates [52]), which uses self-signed, domain-specific SSL client certificates dynamically
generated by the client. Session cookies are cryptographically bound to the SSL session, thereby
requiring an attacker to possess both the client’s cookie and domain-specific private key to hijack a
session.
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We now make some simple observations on these models:

• Attacks under M1: Device fingerprinting completely stops naive attacks, even
if fingerprints are replayable.

• Attacks under M2: Device fingerprinting significantly reduces the success prob-
ability of M2 attacks, even with replayable fingerprints, if the guessing space of
the fingerprints is sufficiently large relative to the number of guesses the attacker
is capable or allowed to submit.

• Attacks under M3: These attacks are more difficult to defend against, since the
attacker targets a specific user and is assumed to have device-specific informa-
tion. These attacks are also more difficult to carry out and are less scalable
(i.e., harder to mount on a massive scale).

• Attacks under M4: These are the most difficult to prevent among M1-M4, since
the M4 attacker lures the user by phishing to capture a password and device
fingerprint. If the fingerprint is static, simple replay suffices for spoofing.

• M5 is specific to session hijacking, with fingerprinting used not simply to aug-
ment authentication at the start of a session, but throughout one; this is pursued
in Section 3.4.2.

The above models and discussion help delineate properties important in our later
analysis and classification.

3.2 Device Fingerprinting Vectors: Classification

We now identify, summarize, and classify fingerprinting vectors based on a review of
research literature, informal sources (e.g., online sources, open-source fingerprinting
libraries, online advertising and anti-fraud services), and other fairly obvious vectors
including some not formally documented elsewhere to our knowledge. In most cases,
we classify these vectors based on the method used to obtain the fingerprintable
information from the client. Alternative classifications are possible, such as based
on the type of information collected: hardware features, network information, user-
defined preferences, and software installed (e.g., OS, applications, device drivers,
shared libraries).
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Category 1: Browser-provided information. Web browsers explicitly provide
(e.g., via JavaScript) a wide range of system information that is of use to constructing
a device fingerprint. Known vectors are listed below.

(a) Major software and hardware details. The navigator and window Browser
Object Model (BOM) objects expose attributes such as browser/OS vendor and ver-
sion, system language, platform, user-agent string (which includes the prior three and
sometimes others, e.g., device model number), installed plugins, supported browser
storage mechanisms (e.g., localStorage, indexedDB, sessionStorage, WebSQL via open-
Database), screen resolution, colour depth, and pixel density.

(b) WebGL information. WebGL [127], a JavaScript API for rendering graphics
within web browsers, exposes various attributes (e.g., GL version, max texture size
or render buffer size, supported WebGL extensions, vendor/renderer strings) of the
underlying browser and hardware.

(c) System time and clock drift. The device’s system time can be accessed via
JavaScript and used to infer the device’s time zone, observance of daylight saving
time, and clock drift from Coordinated Universal Time (UTC) [57].

(d) Battery information. The HTML5 battery status API is suitable for finger-
printing when sufficiently precise readouts are provided [151]. The battery’s charge
level can be used for short-term tracking of clients across different websites; its ca-
pacity (which slowly degrades with battery age, but changes very little over relatively
short periods such as days) can be estimated by monitoring the discharge rate for
about 30 seconds, and used to aid identification.

(e) Evercookies.2 An evercookie is a mechanism whereby a client identifier
(and/or other tracking information commonly stored in a browser cookie) is stored on
the device using a variety of techniques such as HTML5 local storage, HTTP ETags,
or Flash cookies, thereby allowing websites to reconstruct user-deleted cookies [4].

(f) WebRTC. WebRTC is a set of W3C standards that support native (plugin-
free) browser-to-browser applications such as voice and video chat [18]. Devices can be
fingerprinted by enumerating supported WebRTC features and potentially connected

2Evercookies violate the stateless property of our “pure” device fingerprinting definition, but
are nonetheless considered a form of fingerprinting by, e.g., the W3C: https://w3c.github.io/
fingerprinting-guidance

https://w3c.github.io/fingerprinting-guidance
https://w3c.github.io/fingerprinting-guidance
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Figure 3.1: Illustration of text and graphics rendered in an HTML5 canvas for fin-
gerprinting a device.

media devices such as microphones and webcams; browsers differ as to what types
of devices can be enumerated without user permission. WebRTC also exposes the
IP addresses assigned to all network interfaces present on the device [167], including
private IP addresses assigned by a NAT router or VPN.

(g) Password autofill. JavaScript can be used to detect if a password has been
user-typed, or auto-filled by a browser or password manager. Our tests show that
this is easily achieved using event listeners3 to detect whether the user has typed any
characters into the password field, e.g., by assigning an event listener for the keydown
event (triggered when a key is pressed down) and keypress event (triggered after a
key has been pressed and subsequently released). Since these events are triggered
by physical key presses, their absence indicates password entry via autofill (or other
automated means, e.g., an automated password-guessing attack).

Category 2: Inference based on device behaviour. Information about the
device can be gleaned not only by querying the browser (as in Category 1), but
also by executing specially-crafted JavaScript code on the browser and observing the
effect, e.g., measuring execution time or analyzing generated output. The following
fall in this category.

(a) HTML5 canvas fingerprinting. JavaScript can be used client-side to render
a variety of text and graphics in an HTML5 canvas (e.g., as illustrated in Figure 3.1),
and send the server a hash of the resulting bitmap image [132]. Subtly different images
are generated by devices with different software/hardware configurations, e.g., fonts
and font rendering (e.g., anti-aliasing) vary with OS and video driver, and emojis

3JavaScript event listeners wait for some event to be generated (typically as a result of user
action, e.g., by clicking on a button or typing a key) and execute a function to process the event.
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vary with OS and smartphone vendor [113]. Rendering text using a list of predefined
fonts allows font detection [59]. Rendering complex graphics using WebGL provides
further fingerprint diversity by a wide range of rendered hardware-dependent graphics
output.

(b) System performance. Client-side JavaScript can be used to run JavaScript
engine benchmarks over a range of computationally-intensive operations. The elapsed
times are measured to infer device performance characteristics [131].

(c) Hardware sensors. Mobile device sensors can be fingerprinted based on vari-
ations in manufacturing and factory calibration, e.g., measuring calibration error of
smartphone accelerometers (accessible via JavaScript) or the frequency response of
speakerphone-microphone systems [23, 47].

(d) Scroll wheel fingerprinting. Various aspects of user pointing devices can
be inferred via JavaScript by listening for the WheelEvent event, triggered whenever
the user scrolls using a mouse wheel or touchpad [148]. For example, a mouse wheel
scrolls the page by fixed increments when triggered; a touchpad can scroll by varying
increments. Measuring the rate at which a document is scrolled reveals information
both about user scrolling behaviour and the value of the OS user-configurable scrolling
speed.

(e) CSS feature detection. The browser vendor and version can be inferred by
testing CSS features that are not uniformly supported across browsers [194], e.g., by
setting the desired CSS property on a target element and subsequently querying the
element to determine if the change was applied. This vector, and vectors 2(f) and
2(g) below, yields a subset of the information obtained from the user-agent string via
1(a) or 4(e). If a device fingerprint already extracts user-agent string information by
another vector, then 2(e) here can also be used to test if that information has been
manipulated.

(f) JavaScript standards conformance. Browsers differ in conformance to the
JavaScript standard, allowing fingerprinting based on behaviour in corner cases. Var-
ious JavaScript conformance tests run thousands of test cases that can collectively
take over 30 minutes. Mulazzani et al. [138] developed a technique that leverages the
fact that modern browsers fail very few of these tests. This technique can be used
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to verify the browser vendor and version reported in the user-agent string by using a
decision tree to select a very small subset of tests that run in negligible time.

(g) URL scheme handlers. Some browsers implement non-standard schemes to
access local resources; e.g., res:// in Microsoft IE exposes images stored in DLL files
in the Windows system directory, and moz-icon://, jar:resource:// and resource:// in
Mozilla Firefox expose various built-in browser and OS resources. Although recent
browser versions disallow websites from accessing local files via file:// (to prevent
leakage of user private data), this restriction does not extend to the aforementioned
schemes. Websites can thus create HTML image tags with the source address set to a
local resource and use the onerror event handler to detect if the image was loaded. By
iterating through a list of resources preloaded with various browser or OS versions,
this vector can enumerate the non-standard schemes supported and the resources
successfully loaded [92]. This offers an alternative to 2(e), 2(f), and 1(a) to infer
browser vendor and version.

(h) Video RAM detection. The amount of Video RAM (VRAM) available to the
GPU, while not explicitly available via the WebGL API, can be inferred by repeatedly
allocating textures until VRAM is full, after which textures start being swapped into
system main memory. By observing the elapsed time for each texture allocation and
recording the step at which a large spike in elapsed time is observed,4 it can be inferred
that GPU VRAM is at full utilization. After this point, the browser can continue
allocating textures until an OUT_OF_MEMORY5 error is returned.

(i) Font detection. While installed fonts cannot be enumerated via JavaScript,
text can be formatted with fonts from a predefined list; the dimensions of the resulting
text can distinguish different font rendering settings and allow the presence of each
font (and even versions of the same font) to be inferred [146, 63].

(j) Audio processing. The HTML5 AudioContext API allows the creation of au-
dio visualizations by providing an interface for real-time frequency- and time-domain

4For example, on a system we tested, about 1ms elapsed while allocating each 16MB texture.
This spiked to 10-40ms after the GPU VRAM reached full capacity.

5This error does not necessarily indicate all system memory is depleted, but that WebGL can no
longer allocate memory. It is undesirable to continue allocating until this error triggers, as the user
may be presented an error message (in our testing, desktop Google Chrome does not produce an
error; Chrome for Android does).
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analysis of audio playback. As with 2(a) HTML5 canvas fingerprinting, audio pro-
cessing varies by browser and software/hardware configuration [59].

Category 3: Browser extensions and plugins. Browser plugins and extensions
can be leveraged for fingerprinting in a manner similar to Categories 1, 2, and 4 (i.e.,
by directly querying for information, by inference, and/or by protocol-level analysis).
The following are such methods.

(a) Browser plugin fingerprinting. Browser plugins such as Java, Flash, and
Silverlight can be queried (via plugin objects embedded in a webpage) to reveal system
information, often in more detail than available via JavaScript. For example, Flash
provides the full OS kernel version; both Flash and Java plugins allow all system
fonts to be enumerated; even the order in which system fonts are enumerated can
vary across systems, increasing the distinguishability of fingerprints [146, 56].

(b) Browser extension fingerprinting. If a JavaScript-blocking extension6 is
installed (disabling JavaScript by default for all websites, except those whitelisted
by the user), a website can attempt to load scripts from a large set of websites (e.g.,
Alexa Top 1000) to detect which are on the user whitelist [131]. Similarly, ad blockers
can be detected by embedding a “fake” ad such as a hidden image or iframe with
a source URL containing words commonly blacklisted by ad blockers (e.g., “ads”);
JavaScript can then detect if the fake ad has been loaded, and return the result to the
server. Other extensions may be fingerprinted by other methods, e.g., some browser
extensions add custom HTTP headers [113].

(c) System-fingerprinting plugins. Websites may install specialized plugins
(e.g., by bundling them with other software available for download) to provide more
powerful fingerprinting information such as hardware identifiers, OS installation date,
and installed driver versions [146]. Such plugins are generally considered spyware.

Category 4: Network- and protocol-level techniques. The prior categories
involve accessing application-level APIs on client devices. Network- and protocol-
level techniques can also be used to fingerprint devices as follows.

6NoScript is a popular JavaScript-blocking extension for Firefox; similar extensions are available
for Chrome.
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(a) IP address. A client IP address can be used as an identifier, or to query re-
gional Internet registries (via the WHOIS protocol [45]) to obtain further information
such as the Autonomous System (AS) it resides in and organization name it is reg-
istered to. While IP address is a more precise identifier than AS number, the latter
is a more stable ID for hosts with dynamic IP addresses and is useful as a poten-
tial cross-check when verifying client location (see further comment regarding this in
Section 3.3.6).

(b) Geolocation. The client’s geographical location may be determined via several
mechanisms. Modern web browsers typically expose APIs (e.g., via the navigator
BOM object, cf. vector 1[a]) by which a website may request user permission to obtain
current location (via, e.g., onboard GPS hardware, cellular triangulation, WiFi access
point information, or user-supplied information). Network-based mechanisms [137]
include WHOIS lookups based on IP address, inference based on routing data, and
geolocation involving delay-based measurements [2].

(c) Active TCP/IP stack fingerprinting. Differences across network links
and OS TCP/IP implementations allow devices to be fingerprinted by sending them
carefully-crafted TCP/IP probes and analyzing response packet header fields (e.g.,
RTT, TCP initial window size) or link characteristics (e.g., MTU, round-trip delay).
This method is browser-independent, and can be used on any Internet-accessible host.
Nmap [116] is a popular scanning tool that includes host discovery, port scanning,
and an OS detection feature that sends various probe packets and applies heuristics
from its built-in database to differentiate thousands of systems. As this sends special
probe packets to the client, i.e., is active fingerprinting, it can trigger firewall and
IDS alerts due to its common reconnaissance use by attackers.

(d) Passive TCP/IP stack fingerprinting. A less intrusive (less powerful) tech-
nique, passive fingerprinting, sniffs existing network communication but uses heuris-
tics similar to active fingerprinting to identify hosts; p0f [210] is an example of such a
tool. Passive approaches are more suitable fingerprinting vectors, as header analysis
of existing web traffic requires no new packets that may be flagged as intrusive.

(e) Protocol fingerprinting. Protocol-level fingerprinting can be applied to
higher-level protocols to differentiate versions or configurations of browser software
or libraries. For example, the server may record HTTP header fields sent by clients,
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e.g., user-agent string, list of acceptable languages and character encodings, and the
user-configurable DoNotTrack parameter. Moreover, the browser’s TLS library can
be fingerprinted using its ClientHello packet from the handshake sequence that nego-
tiates protocol parameters [31]; information of relevance includes client TLS version,
supported ciphersuites (and their order of presentation), compression options, and
list of extensions (and associated parameters such as elliptic curve parameters).

(f) DNS resolver. A web server may determine which DNS resolver a client is
using—for many clients, the default DNS resolver is configured by the user’s ISP
(which typically should not respond to queries originating from outside the ISP’s
network), but a minority of users may switch to other DNS resolvers, e.g., run by
Google or OpenDNS. One approach involves a server sending the client browser a
document containing a reference to a randomly-generated subdomain under a domain
for which the authoritative DNS server is under control of the website owner [184].
When the client attempts to resolve the subdomain, the website’s DNS server receives
the request from the client’s DNS resolver and can associate the randomly-generated
subdomain with the client for which it was originally generated.

(g) Clock skew. TCP timestamps can be passively analyzed to measure client
clock skew—a measure (e.g., in microseconds per second) of the rate at which the
client’s clock deviates from the true time [104].

(h) Counting hosts behind NAT. For clients behind a NAT, the number of
hosts behind the NAT contributes to a device fingerprint. Bellovin [17] first proposed
counting hosts behind a NAT by passively analyzing the IPv4 ID field (used for
fragment reassembly); Kohno et al. [104] proposed the use of clock skew measurements
to differentiate hosts behind a NAT. These techniques may be augmented with upper
layer information, e.g., by including in the fingerprint the IDs of other users who
access accounts from the same IP address.

(i) Ad blocker detection. While ad blocker detection can be done client-side with
JavaScript as in vector 3(c), it can also be done server-side by monitoring incoming
HTTP requests to detect if the client has requested the fake ad.
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3.3 Device Fingerprinting Vectors: Desirable Properties

Augmenting authentication with device fingerprinting requires considering various
characteristics, which we now explore through a comparative analysis. Some char-
acteristics may influence device detection accuracy or effectiveness: for behavioral
advertising applications that use device fingerprinting to track user browsing habits
(not our focus), it may be sufficient to identify a unique individual device correctly
80% or 90% of the time; such accuracy is rarely sufficient in authentication con-
texts (our focus). We discuss these properties below, with a comparative summary
in Table 3.2.

To maximize accuracy, device fingerprints employ multiple fingerprinting vectors.
All vectors in Section 3.2 can be freely combined, limited by possible impact on de-
vice/user experience (only a few vectors, as noted below, have non-negligible resource
costs), and server cost for fingerprint verification. Vectors from Categories 1 to 3
involve client-side JavaScript (and thus incur non-zero, but typically small, client
overhead). To help compare vectors, and provide information of use in combining
them, estimates of the distinguishability provided by each vector are included below
and in Table 3.2.

3.3.1 Stability

Virtually all components of a device fingerprint are subject to change, but some (e.g.,
time zone for desktop machines or for mobile devices of users who rarely travel) may
change much less frequently than others (e.g., browser version). A significant change
in device fingerprint may require the verifying server (if device fingerprinting is used
to augment password authentication) to temporarily fall back to a less convenient but
more reliable user authentication mechanism, such as a one-time passcode sent over
SMS or e-mail. Thus it is preferable from a usability perspective to employ vectors
that provide fingerprints that are stable over time, i.e., with a sufficient number
of component vectors stable at a given time. Overall fingerprint stability can be
improved by combining multiple vectors and implementing a scoring mechanism that
allows a subset of vectors to change. In the empirical study by Eckersley [56], an
algorithm correctly linked a device’s old fingerprint with the updated fingerprint in
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65% of devices with 99.1% accuracy. If such an algorithm were used in the context
of authentication, a high-security application might minimize false accepts at the
expense of a higher false reject rate. This trade-off may be different in a context
where security is less important than user convenience.

The majority of individual vectors from Categories 1 to 3 are relatively stable,
with some exceptions:

• 1(a) Major software and hardware details may occasionally change if the user
upgrades their OS, switches browsers, installs or removes browser plugins, etc.

• 1(d) Battery information will change, e.g., as battery capacity degrades with
age.

• 2(a) HTML5 canvas rendering details may change with browser, OS, or graph-
ics driver updates.

• 2(e) CSS feature detection and 2(f) JavaScript standards conformance may
change with browser updates.

In contrast, vectors from Category 4 are generally less stable:

• 4(a) IP address, 4(b) Geolocation (depending on granularity), and 4(f) DNS
resolver (unless manually configured) change as users log in from different
locations. These vectors are more stable for desktop than mobile devices.

• 4(c, d) TCP/IP stack fingerprinting varies with routing changes that affect,
e.g., round-trip delay and number of hops between client and server. If a
user logs in from a different network location, additional changes would be
observable in, e.g., the MTU of the network link, or responses to probe packets
due to different firewall rules.

• 4(e) Protocol fingerprinting will vary with updates to the browser or shared
(e.g., SSL/TLS) libraries.

• 4(h) Counting hosts behind a NAT is unstable over time, as devices may enter
and leave a network.

Exceptions are 4(i) Ad blocker detection and 4(g) Clock skew (TCP timestamps
reflect CPU clock skew, which is relatively stable [104]). Even vectors unstable over
longer periods may remain useful for applications requiring identification across short
periods, e.g., throughout one day, hour, or session.
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3.3.2 Repeatability

We define repeatability as the property whereby a vector generates the same result
if the software, hardware, and network configurations of a device are unchanged
(whereas stability primarily concerns changes in device configuration). Repeatability
is challenging for vectors measuring device performance, e.g., CPU, GPU, or network
throughput, since performance varies if clients simultaneously perform other tasks.
Most vectors discussed are repeatable, with these exceptions:

• 2(b) System performance may vary based on whether the device is burdened
with other tasks. For mobile devices, it can also depend on temperature, as
mobile chipsets scale back clockspeeds at high temperature.

• 2(c), 4(g) Temperature can affect hardware sensor data [47] and clock skew
[139].

• 2(d) Scroll wheel fingerprinting requires that the user uses their scroll wheel.
If the user does not do so on every visit to a web page, the vector is not
repeatable.

• 2(h) Available VRAM will vary based on how much is currently in use by the
device.

• 4(f) The DNS resolver used may vary due to load balancing of DNS resolvers.

• 4(h) Vectors counting hosts behind a NAT may vary depending on the presence
of other devices on the network.

Fingerprinting vectors that are not reliably repeatable (i.e., not 100% repeatable, but
repeat often enough) may still be useful, if many vectors are used in the overall device
fingerprint and an appropriate scoring mechanism is used as per Section 3.3.1, where
some vectors are allowed to change.

3.3.3 Resource Use and Latency (Overhead)

Fingerprinting vectors that require more system resources (e.g., CPU cycles, system
memory, or I/O) incur performance costs (and reduce battery life, for mobile de-
vices). This is of less concern for websites that fingerprint devices only once per
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authentication process, and more for websites aiming to detect session hijacking by
fingerprinting repeatedly throughout a session.

Most Table 3.2 vectors have low client-side overhead, requiring processing time in
the milliseconds range, but a few may require time on the order of seconds: 1(d) Bat-
tery information, 2(b) System performance, 2(c) Hardware sensors, and 2(h) Video
RAM detection. While 2(b) consumes CPU cycles and 2(h) GPU memory, 1(d) and
2(c) only require time to collect sufficient data (i.e., they introduce latency, but do
not consume system resources) and thus rate half circles.

3.3.4 Spoofing Resistance

As per Section 3.1, attackers will try to spoof a device fingerprint that resembles the
target. For vectors from Categories 1 to 3, the browser runs client-side JavaScript
and returns output to the server; this makes it easy for attackers to spoof a (guessed
or intercepted) response,7 with three exceptions:

• 1(e) Evercookies are stateful (violating our pure fingerprinting definition), and
can store global identifiers using, e.g., Flash cookies and HTML5 local storage,
which are protected by Same-Origin Policy (SOP [128]). Rather than spoofing,
evercookies may be stolen and replayed by M5 attackers; but since this requires
exploiting a vulnerability, we grant a filled circle in Table 3.2.

• 2(c) While hardware sensors can be spoofed by obtaining a copy of the sensor
data from the client and replaying it, obtaining such data in the first place
may require user cooperation. For example, the web browser may ask for the
user’s permission before accessing the microphone.

• 3(c) Information available only through specialized plugins, e.g., hardware
identifiers, may require more effort for attackers to obtain if the plugin is
designed to communicate only with the website by which it was installed.

In comparison, Category 4 vectors are more resistant to spoofing (but none are com-
pletely immune). The following vectors are rated spoofing-resistant in Table 3.2:

7For example, credit card fraudsters use the FraudFox toolkit [65, 102], using a heavily modified
Mozilla Firefox and Adobe Flash, to spoof various fingerprintable attributes such as OS version,
screen resolution, and list of fonts. It includes a feature for capturing device fingerprints of phished
users.
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• 4(a) IP source address spoofing is possible due to insufficient deployment of
source address validation across the Internet [21], and is often used to mount
Denial-of-Service (DoS) attacks. However, using a spoofed source address to
establish two-way communication with a host is difficult, as the host will always
send response packets to the spoofed address.

• 4(g) Clock skew fingerprinting has been proposed for identifying wireless sen-
sors in mesh networks [88] and access points in 802.11 wireless LANs [95]; both
techniques rely on timestamps used in the respective MAC protocols. Arack-
aparambil et al. [10] showed that clock skew can be spoofed, but doing so
introduces irregularities detectable through analysis, and that using a smaller
801.11 beacon frame transmission interval (typically 100ms) causes the irreg-
ularities to be more pronounced and thus more easily detectable. Clock skew
measurements derived from TCP timestamps would be more coarse-grained
compared to MAC-protocol-level timestamps, but may nonetheless be difficult
to spoof undetectably.

With the exception of 4(i) Ad blocker detection, and 4(e) Protocol fingerprinting,
which can be spoofed fairly easily by using the same browser and library versions as
the target device, the remaining Category 4 vectors are graded as partially resistant
to spoofing (half-circle) in Table 3.2:

• 4(b) Techniques like delay-based location verification [2] require attacker access
to a proxy situated close to the victim to spoof the victim’s location. Geoloca-
tion relying on information reported by a browser location API is more easily
spoofed (but falls in Category 1).

• 4(c,d) Spoofing an OS TCP/IP stack can be done by manipulating TCP/IP
behaviour with various off-the-shelf tools [19]. Network- or link-dependent
measurements such as number of hops between client and server, round-trip
delay, and MTU appear to require comparatively more effort to spoof.

• 4(f) If the client uses its ISP’s DNS resolver (which typically responds only
to DNS requests originating within the ISP’s network), a successful attack
requires access to a machine within that ISP’s network.
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• 4(h) The difficulty of spoofing the number of hosts behind a NAT varies based
on the technique used; a simpler technique based on the IPv4 ID field [17]
would be easier to spoof, whereas a clock skew based technique [104] would be
more difficult (as discussed previously).

Resistance to spoofing may be increased by certain strategies. For example, with 2(a)
HTML5 canvas fingerprinting, when a device is first associated with an account, the
server may send multiple challenges (i.e., different sets of text and graphics to render),
with the client returning corresponding results. The server may then randomly select
a subset of stored challenges on each authentication attempt. Improving resistance
of a vector to simple replay improves spoofing resistance, but a highly resourceful
attacker might be able to configure attack software to mimic a target device for any
given challenge, including for 2(a) as just noted. Different strategies may enhance
the spoofing resistance of other vectors—e.g., for 2(b) System performance, a client
puzzle [12] approach might be used, whereby the server sends cryptographic puzzles
to the client and measures the time taken to receive a correct result. While more
powerful devices might still spoof slower devices, such techniques raise the bar for
attackers.

3.3.5 Client Passiveness

We classify a vector as client-passive if it can be used by the server without explicit
cooperation or knowledge of the device. All vectors from Categories 1 to 3 require
browsers to execute client-side JavaScript and return output to the server; these are
not client-passive. All Category 4 vectors are client-passive to some degree, as none
require explicit client cooperation. We elaborate in further comments.

• 4(b) Geolocation can be client-passive depending on mechanism, e.g., IP-based
geolocation with table look-up is client-passive, but not vectors that require
client-side JavaScript.

• 4(c) Active TCP/IP stack fingerprinting requires sending extra probe packets
to the client to observe the response (or lack thereof). While sending probe
packets does not require client cooperation, such packets may be detectable
by client firewalls; probes crafted to appear part of regular HTTP traffic may
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be considered client-passive. We thus grade this vector partially client-passive
(half-circle in Table 3.2).

• 4(f) DNS resolver fingerprinting does not require client-side JavaScript, but
on carefully inspecting webpage source code a client might suspect that the
random-appearing domain name string was injected to learn the client’s DNS
resolver. Thus, we grade this vector partially client-passive (half-circle in Ta-
ble 3.2).

All other vectors in Category 4 are graded client-passive; a device fingerprint can be
constructed with these solely by inspecting existing HTTP traffic between server and
client.

3.3.6 Distinguishing Information

To describe the granularity at which device fingerprinting (whether individual vectors,
or a combination of vectors) can identify a device, we use the term distinguishing
information. Distinguishability depends on the size of the (user) device space in
question and the diversity of the underlying properties fingerprinted. Prior work
(e.g., [56, 37, 59, 113]) has used Shannon entropy [174] to quantify the distinguishing
information conveyed by device fingerprinting vectors. Shannon entropy is a measure
of the average information conveyed by an event generated by a stochastic source
modelled by a random variable. It is calculated using the formula

H(X) = −
n∑

i=1
P (xi)logbP (xi), (3.1)

where H(X) is the entropy (typically measured in bits) of the random variable X,
P (xi) is the probability of an event xi occurring, n is the number of possible events
that may be generated by X, and b is the base of the logarithm (the base is 2 when
bits are the unit of measure). For any fixed n, H(X) is maximized when every
xi is equiprobable (i.e., a uniform probability distribution). In the case of device
fingerprinting, X is a random variable where each event xi represents a distinct device
fingerprint, P (xi) is the probability that a user visiting a website (in this case, of the
verifying server) will have the device fingerprint xi, and n is the number of distinct
device fingerprints (note that multiple devices may share the same device fingerprint
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xi). Using Shannon entropy to estimate the distinguishing information conveyed by
device fingerprinting vectors poses two major challenges, discussed below: (1) the
relationship between sample size and the resulting probability distribution, and (2)
device fingerprint distributions encountered by different websites may differ from each
other and from the fingerprint distribution of web-enabled devices as a whole.

Sample Size and Probability Distribution: Analyzing Individual Vectors

Shannon entropy is determined by an established probability distribution, which we
are not in position to describe for device fingerprinting. Prior studies have collected
device fingerprints from tens or hundreds of thousands of devices (e.g., [56, 37, 113])
from volunteer users, and used the collected fingerprints to calculate sample probabil-
ities. For example, 100 devices sharing the same fingerprint x1, out of a sample size
of 10,000 devices, would result in the probability P (x1) = 0.01. The aforementioned
studies used these sample probabilities to calculate the entropy of the resulting sample
distribution, using Equation 3.1. However, the device fingerprints collected by these
studies have not been demonstrated to reflect the statistical distribution of device
fingerprints among the overall population of web-enabled devices—for example, 10%
of the AmIUnique [113] dataset comes from desktop Linux-based systems, which is
about fives times higher8 than the Linux desktop marketshare, thus indicating a more
technologically-savvy pool of volunteers.

Collecting device fingerprints from a larger pool of volunteers (e.g., tens of millions,
rather than tens of thousands) could alter the calculated probability distribution in
the following ways:

1. The larger pool may result in the same calculated probabilities xi as the smaller
(original) pool. In this case, the entropy calculated using Equation 3.1 would
be unchanged. This outcome would be most probable if the smaller sample
of device fingerprints was already sufficiently large to be representative of the
distribution of device fingerprints among the entire population of web-enabled
devices.

8As of the time of writing, based on data from Net Marketshare: https://
www.netmarketshare.com/.

https://www.netmarketshare.com/
https://www.netmarketshare.com/
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2. The larger pool may result in different calculated probabilities xi when com-
pared to the smaller (original) pool. In this case, there are two possible out-
comes:

(a) The larger pool may have a more uniform (i.e., less skewed) distribution of
device fingerprints when compared to the smaller (original) pool. In other
words, different device fingerprints xi would be relatively more equiproba-
ble. In this case, the entropy calculated using Equation 3.1 would increase.

(b) The larger pool may have a more skewed distribution of device fingerprints,
where some device fingerprints xi occur much more frequently than others.
In this case, the entropy calculated using Equation 3.1 would decrease.

As can be seen in Equation 3.1, entropy depends not only on the skewness of the
probability distribution, but also on the number of possible outcomes n. In all
cases described above, n is likely to increase with the number of device fingerprints
collected—this is because in practice, there will always be a chance of encountering
a new device fingerprint that has not been previously observed. However, as the
sample size of the collected device fingerprints grows, n will grow much more slowly,
and device fingerprints xi with very few occurrences will have negligible impact on
the entropy calculated using Equation 3.1 (since the corresponding P (Xi) will be
near-zero).

Due to the lack of an established mechanism for determining or ensuring that
the statistical distribution of a device fingerprint dataset matches with the real-world
distribution of devices, it is difficult to draw accurate conclusions by comparing en-
tropy values calculated using different datasets (especially when datasets differ in the
number of device fingerprints collected). Different sample sizes may result in different
calculated entropies, for the reasons discussed immediately above. For this reason, a
normalized formula for entropy has been used [113, 37] to compare different datasets,
and has been calculated by aforecited work as
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Hnorm(X) = H(X)
HN

(3.2)

= H(X)
log2(n) , (3.3)

where HN represents what H(X) would be if all n values of X were equiprobable. This
normalized formula yields a value between 0 and 1; it does not reflect the number of
possible events n, but only the uniformity of the probability distribution. Therefore, it
has been used to compare the relative uniformity of the device fingerprint distributions
obtained by datasets using the same fingerprinting vectors. This measure does not
reflect relative differences in distinguishing information offered by different vectors:
any vector that yields equiprobable values would result in a normalized entropy value
of 1 (irrespective of whether the vector yields, e.g., 2 equiprobable values, or 100
equiprobable values). Moreover, outliers have a non-negligible impact on Hnorm(X),
since every outlier increases the value of n by 1, thereby increasing HN and decreasing
Hnorm. In contrast, the impact of outliers on H(X) is negligible. We therefore argue
that Hnorm(X) is not guaranteed to be a robust measure of relative uniformity between
different datasets, since larger datasets are more likely to have more outliers.

The takeaway from this discussion is that there are major limitations associated
with widely-used methods for quantifying the distinguishing information offered by
different fingerprinting vectors, and in comparing different datasets.

Sample Size and Probability Distribution: Analyzing Combined Vectors

Global Probability Distribution vs. Per-Website Probability
Distributions

Even if the distinguishing information of device fingerprinting vectors could be cal-
culated based on a probability distribution that accurately reflects the overall dis-
tribution of web-enabled devices, the utility of such a figure may in many cases be
limited. This is because the device distributions observed by different websites may
vary significantly. For example, if the 1(c) System time or 4(b) Geolocation vectors
are used by a website that targets users from a specific country (e.g., a website for
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a government service), the distribution of fingerprints would be much more skewed
when compared to a website that targets all users worldwide (e.g., a social media
website). Further work is required to develop more useful baseline measurements
that are more directly applicable to a wider range of websites.

Comparative Analysis

In what follows, we give best-effort estimates of distinguishability, to help in compar-
ing and selecting vectors to combine. Our analysis is informed in part by external
studies, and in part by qualitative analyses of each vector’s distinguishability. De-
spite the limitations associated with Shannon entropy and device fingerprint collection
methodology, the numerical estimates given in bits should be interpreted as Shannon
entropy values based on probability distributions that reflect the general population of
web-enabled devices—currently, we believe that this is the most useful basis for com-
parison. The values provided may change in the future if more extensive datasets are
collected or if the fingerprinted features evolve based on widespread changes among
web-enabled devices (e.g., the deprecation of Adobe Flash). Table 3.2 summarizes the
ratings, and its caption gives the scale and coarse mapping for the estimates below;
RFS denotes Requires Further Study.

• 1(a) Major software and hardware details is graded High, as it includes at-
tributes such as user-agent string, list of plugins, screen resolution, and pres-
ence of localStorage and sessionStorage (~10 bits, ~15 bits, ~4.83 bits, and ~2.12
bits respectively as per [56]), in addition to other attributes.

• 1(b) WebGL information is estimated Low (RFS), based on our preliminary
experimentation.

• 1(c) System time depends on time zone and daylight saving time; 24 possible
values would yield a maximum of ~4.65 bits, but in practice the distribution
of users across time zones will be skewed, e.g., ~3 bits as per [56]. Clock skew
can also be measured, but this RFS, so we grade this vector overall as Low
(RFS).

• 1(d) Battery information (RFS, but) is estimated Low for battery life, assum-
ing that web-connected devices largely have battery life in the range of 4-10
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hours of active use; using current charge level would provide more distinguisha-
bility for within-session fingerprinting.

• 1(e) Evercookies are graded VeryHigh; the server can save a globally unique
identifier on the device.

• 1(f) WebRTC is graded Medium (RFS), as most consumer routers assign IP
addresses in the 192.168.0.x range, thus these have upper bound ~8 bits.

• 1(g) Password autofill and 4(i) Ad blocker detection are graded VeryLow; each
are binary values.

• 2(a) HTML5 canvas fingerprinting is graded Medium, as it gives ~8.6 bits of
distinguishing information, per [113].

• 2(b) System performance (RFS, but) is estimated Low due to limited granu-
larity at which system performance can be measured within the constraint of
a few seconds.

• 2(c) Hardware sensors is graded Medium; Bojinov [23] collected accelerometer
data from over 3000 devices, calculating the entropy of the distribution to be
~7.5 bits.

• 2(d) Scroll wheel fingerprinting yields a binary value to distinguish scroll wheel
from touchpad, but can also potentially detect differences in OS scroll speed
settings; VeryLow (RFS).

• Vectors 2(e), 2(f), 2(g) are yet to be reported in empirical studies, but we
estimate VeryLow; these vectors serve to distinguish between different browser
vendors and versions, for which the distribution is likely skewed towards the
most recent versions.

• 2(h) Video RAM is estimated VeryLow to Low (RFS). Many common config-
urations offer limited (say 2-3 bits of) choice, e.g., 1GB, 2GB, 4GB. (However
this is complicated by many devices having shared system/video memory.)

• 2(i) Font detection is graded Low to Medium. Enumerating all fonts via the
Flash plugin yields 7-14 bits [56, 113], with the spread largely attributable
to substantially lower diversity of fonts on mobile devices. JavaScript font
detection is unordered and cannot do a full enumeration (it tests using a list
of known fonts).
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• 2(j) Audio processing (RFS, but) is estimated Medium, since it is conceptually
analogous to 2(a) [59].

• 3(a) Browser plugin fingerprinting includes full system font enumeration in
addition to leakage of more granular system information (e.g., kernel version).
However, mobile devices do not support plugins, and desktop web browsers are
moving instead to the extension model [113], so we grade this Low to Medium.

• 3(b) Browser extension fingerprinting is graded VeryLow to Low, based on the
expectation that few users install many browser extensions, aside from highly
technical users. This may be too conservative, as some extensions (if installed)
provide more distinguishing information, e.g., a NoScript whitelist.9

• 3(c) System-fingerprinting plugins can contribute considerable distinguishing
information, since they have less restricted access to the underlying OS and
hardware (see Section 3.2), compared to JavaScript. We grade it High.

• 4(a) IP addresses can often serve as global identifiers (but not always [38], e.g.,
due to NAT, proxying, and in some cases rapid address changes). We grade
this vector High.

• 4(b) Geolocation can give considerable distinguishability, depending on the
granularity of the specific geolocation mechanism. We grade this Low to High
(high variability).

• 4(c,d) Based on the p0f [210] MTU and TCP flag signature lists, we estimate
Low for 4(d) Passive TCP/IP stack fingerprinting, and Low to Medium for 4(c)
Active TCP/IP stack fingerprinting; active probing is more powerful (RFS).

• 4(e) Protocol fingerprinting includes the list of HTTP headers (~4.36 bits
[113]), the values corresponding to certain headers such as user-agent string,
HTTP accept headers (resp. ~10 bits and ~6 bits [56]), and DoNotTrack (up
to 1 bit). It can also be inferred whether cookies are enabled or disabled. SSL
fingerprinting RFS. Thus we give an overall grade of High (RFS).

• 4(f) DNS resolver is analogous to geolocation, but less granular. We grade this
Low to Medium.

9Published studies [56, 113], while skewed to technical users, did not specifically look at extensions
beyond ad blockers. Technical users might improve privacy by, e.g., disabling Flash; using many
browser extensions counters this.
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• 4(g) Clock skew is graded Medium, as Kohno et al. [104] collected clock skew
data for several thousand devices, calculating the entropy of the distribution
to be ~6 bits.

• 4(h) Counting hosts behind a NAT is graded Low; for household users, there
is likely little variation in the number of hosts behind the NAT that will com-
municate with the web server, e.g., 1 to 16 devices (it would be higher for
enterprise devices).

3.4 Role of Device Fingerprinting in Augmenting Authentication

To determine the most appropriate role for device fingerprinting in web authentica-
tion, we first discuss why it is unsuitable as a sole authentication mechanism. An
idealized10 form of device fingerprinting within the context of authentication might
have the following properties:

P1: Each device has a unique fingerprint that can be associated with a user’s ac-
count.

P2: Fingerprints obtained at different times from the same device are either iden-
tical; or linkable, i.e., can be determined with high confidence to be from the
same device; or if changed to the extent of being unlinkable (e.g., due to ma-
jor changes in software or hardware configuration), a backup mechanism such
as e-mail or SMS-based recovery is in place to allow the user to re-associate a
device with the target account.

P3: One of the following two properties is present:

i) Fingerprints are released only to legitimate websites to which the user
intends to authenticate.

ii) It is difficult for an attacker, even with full knowledge of the device’s
hardware and software configuration, to spoof that device.

If the above requirements could be met, device fingerprinting alone could be used
for account authentication. However, from Section 3.3, these requirements appear

10This characterization is impractical, but represents a highly favourable scenario for a web ap-
plication wishing to accurately identify devices by fingerprints.
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unreachable at present. It nonetheless remains possible to use device fingerprinting
to strengthen authentication via an additional dimension, and importantly, without
increasing the user burden—as opposed to, e.g., trying to improve password strength
by forcing a heavier burden on users through a more complex password policy.

Device fingerprinting in this context has two use cases, pursued in subsections be-
low: a) augmenting start-of-session authentication (cf. models M1-M4 of Section 3.1);
and b) maintaining authentication throughout a session, to stop hijacking of authen-
ticated sessions (related to model M5).

3.4.1 Authentication at Start of Session

When used as an added authentication dimension alongside passwords (or another
primary authentication method), to authorize a session the server requires both the
correct primary response and matching client fingerprint data. The server must thus
have persistent access to data sufficient to verify the fingerprint on later authentication
requests. The relevant time frame over which a fingerprint must be stable thus spans
multiple sessions. This increases the importance of property P2 above—if the device
configuration changes to the extent that an evolved fingerprint is no longer verifiable,
a backup mechanism is needed to re-associate device and account.11

While resource use is relevant in the scenario of start-of-session authentication, a
fingerprint need only be collected once at the start of the session; thus resource use
is not a major barrier to arbitrary combinations of Table 3.2 vectors.

Augmenting two-factor authentication. Client fingerprinting can augment
two-factor authentication (by our terminology, “factors” typically involve user actions;
“dimensions” like device fingerprinting ideally do not). Consider Google two-step
verification [76], which requires users to log in with a username and password, followed
by a six-digit SMS code sent in real-time to a mobile device. If the user chooses to
“trust” the computer on which they have logged in, a cookie is saved by the browser to
relieve the user of entering a verification code on subsequent authentication attempts
from that computer for the next 30 days. This is a security trade-off made in favour

11Likewise, a backup mechanism is needed if the user logs in from a new device that the server
does not yet recognize. The backup mechanism would thus indicate to the verifying server that the
new device is being used by the legitimate user, so that its device fingerprint may be recognized on
subsequent authentication attempts.
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of usability, since an attacker obtaining the cookie bypasses the second factor. Device
fingerprinting could be integrated into this scheme in at least three ways:

(a) When users submit a password, the server can validate the device fingerprint
before sending the SMS code. If fingerprint verification fails, the server may
require additional authentication tasks and/or send the user an alert (e.g., via
e-mail)—improving security in the event that the device used for receiving the
SMS codes is stolen.

(b) When users submit a password, the server can require both a matching device
fingerprint and a “trusted” cookie to bypass the second authentication factor
(e.g., 6-digit SMS code)—improving security in case of cookie theft.

(c) Advertisers use device fingerprinting to restore tracking cookies after users clear
them. This suggests a third application: if a user clears browser cookies and
later attempts to re-authenticate, the server may recognize, by a device finger-
print, that the user previously designated the device as “trusted”, and allow
it to skip the second factor (i.e., authenticate by username-password alone).
However, this approach appears to be a bad idea: users may clear their cookies
precisely so that the server “forgets” their device for security reasons, e.g., on
a device shared by multiple users.

3.4.2 Authentication Throughout a Session (Continuous
Authentication)

In typical password-based web authentication (Section 3.4.1), upon receiving a user-
name and password the server returns a browser session cookie, allowing the client
to maintain its authenticated state by including the cookie in subsequent HTTP re-
quests; the cookie, as a bearer token, replaces the password. Thus, an adversary
obtaining the cookie (e.g., by device theft, cross-site scripting, interception due to a
man-in-the-middle (MITM) attack or improperly configured HTTPS [106]) can sub-
mit authenticated requests without password knowledge.

Some websites record the user IP address when initiating an authenticated session,
and check that any incoming HTTP requests containing a session cookie originate
from the same address [40]. Such address binding of session cookies enhances session
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security—if the address cross-check fails, the server can terminate the session, and
optionally alert the user and lock down the account pending additional authentication
steps. Since the client sends the session cookie alongside each HTTP request, the
server ideally validates the source IP address on each request. This may impact
usability, e.g., user IP addresses often change in mobile environments; here it may
help to use multiple fingerprinting vectors.

Since modern webpages contain many resources, visiting a single page generates
many HTTP requests; thus in this use case, client-passive vectors are critical. For
fully client-passive vectors (including those in 4(b) that are client-passive, e.g., IP-
based geolocation), the server can extract relevant fingerprint data from existing
traffic flow, and can thus validate them on each HTTP request; this is not so for
partially client-passive 4(c) or 4(f), which require extra network traffic.

Non-client-passive vectors require the browser to perform certain operations and
generate fingerprint output for inclusion in each HTTP request. If the server uses
fixed vectors, and which do not involve time-varying challenges, and the device con-
figuration does not change, this fingerprint remains static for the duration of the user
viewing a single webpage. Thus recomputing this fingerprint prior to each HTTP re-
quest is redundant for legitimate clients (and might impact user experience if vectors
are high overhead); but, static fingerprints allow replay attacks by M5 attackers.

The SmartAuth framework [162] addresses replay attacks by hashing the device
fingerprint at the client with a counter before sending to the server. This is ineffective
against M5 attackers employing XSS to steal session cookies, as XSS can also steal
the plaintext device fingerprint and counter. Such attackers can resume the session
on their own machine and continue generating valid device fingerprint hashes, e.g.,
incrementing the counter and recomputing the hash. An attack script may collect
additional information about the target device to allow device spoofing in the event
that the server dynamically adjusts its fingerprinting by, e.g., following the strategy
employed by Unger et al. [194] of collecting a different subset of attributes each
time the device is fingerprinted. M5, our most powerful attack model, grants session
hijacking ability, and is more difficult to defend against.

In summary, for throughout-session fingerprinting:

1. Device fingerprints should be validated by the server for every HTTP request.
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2. Advantages of client-passive vectors include (i) obscuring the server’s finger-
printing strategy to the attacker;12 and (ii) eliminating client resource burdens.

3. Periodically varying the fingerprinting challenge (see Section 3.1) improves
spoofing resistance against attackers that intercept client-generated device fin-
gerprints. However, forcing clients to regularly recompute device fingerprints
increases resource usage costs.

4. Spoofing-resistance strategies that involve varying the format of client-generated
device fingerprints (e.g., using counters and hashes, or varying the fingerprinted
attributes used) can improve security but may be of limited effectiveness against
advanced M5 attackers.

5. Vectors with higher spoofing resistance (see Table 3.2) provide stronger authen-
tication assurances.

3.4.3 Account Recovery

When a fallback authentication mechanism is used for account recovery, the strength
of user authentication offered by a web application is limited by the weaker of the
two schemes (i.e., the primary mechanism and fallback mechanism) offered; cf. Sec-
tion 2.1.3. Therefore, it is important for the fallback mechanism to offer security
assurances comparable to the primary mechanism. Device fingerprinting can be used
to augment fallback authentication mechanisms, similarly to how they can augment
primary authentication mechanisms. Moreover, since fallback authentication schemes
are used less frequently than primary schemes, they are less constrained by usability
requirements. This allows a trade-off whereby more secure device fingerprints (i.e.,
offering higher distinguishing information and difficulty of spoofing) can be collected
with the help of user involvement (e.g., using vectors that require users to perform
specific actions, such as granting permission to obtain sensor readings).

Cao et al. [37] demonstrate that many fingerprinting vectors (especially those that
rely on identifying hardware features) are cross-browser, meaning that the information
obtained by them is not specific to any particular browser implementation. The need

12While this temporarily increases spoofing resistance, recall our base assumption that this ulti-
mately becomes known.
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for spoofing-resistance, and the more relaxed usability constraints for fallback au-
thentication mechanisms, together motivate out-of-band (i.e., outside of the browser)
collection of device fingerprints using trusted computing technologies. For example,
Intel SGX [90] (Software Guard Extensions) can be used to execute signed code in
a secure enclave on user devices, allowing websites to cryptographically validate that
device fingerprints are generated by trusted code. During the account recovery pro-
cess, this would require websites to supply a signed executable application that users
could download and run to generate a device fingerprint, which the website could
then compare with device fingerprints that were collected from users’ devices during
prior successful authentication attempts.

3.5 Concluding Remarks and Recommendations

Our classification and analysis is informed and validated by previous studies as cited
earlier [56, 113, 23, 59, 210, 104] and our own experimentation with 19 fingerprinting
vectors. One conclusion from these is that combining essentially any subset of vectors
in Table 3.2 appears feasible. Combining multiple vectors into a device fingerprint of
course affects the properties discussed (see Sections 3.3.1 and 3.3.2). Distinguishabil-
ity is expected to increase, but does not in all cases—e.g., if a smartphone’s model
number is in the user-agent string, screen resolution adds no further distinction, as
all smartphones of one model have a given resolution. While an attacker may try to
statistically guess some components of a device fingerprint—e.g., spoofing the most
common screen resolutions—components such as hardware sensor calibration may be
completely random and thus difficult to guess efficiently.

While we cannot give precise quantitative guidelines, combining more vectors
tends to improve spoofing resistance, or at least raise the bar. However, we provide
some general guidance for combining vectors. A naive strategy for combining vectors
may involve a simple voting scheme, where a minimum of n out of m vectors must
match for the overall device fingerprint to be considered a match. However, we believe
that a more effective strategy would be to divide the set of vectors into multiple sub-
sets, such that each subset consists of vectors that are most closely correlated. Thus,
the impact of a single user action that changes the device fingerprint (e.g., upgrading
the browser, or logging in from a new location) would be more closely confined to a
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single subset. For example, OS-specific vectors (e.g., OS version and some TCP/IP
stack fingerprinting vectors) could form a subset; vectors relying on hardware-level
manufacturing variation (e.g., clock skew and hardware sensors) could form a sub-
set; browser-specific vectors (browser version, JavaScript standards conformance, CSS
feature detection) could form a subset; and network- or location-related vectors could
form other subsets. Statistical analysis of a device fingerprint dataset representative
of the user base of a given website would help in determining the best division of vec-
tors into subsets. A two-stage voting scheme could then be used: first, each subset
would be assigned a collective match or mismatch, by a voting scheme between the
component vectors in the individual subset; then, a voting scheme between the sub-
sets would assign a match or mismatch for the overall device fingerprint. The voting
scheme can be tuned to enhance usability by reducing the likelihood that legitimate
users will be locked out or forced to fall back to a less convenient fallback authentica-
tion scheme. For example, users who lose their device, but attempt to log in from the
same location using a different device on the same LAN, could be permitted access.
The reverse (logging in from the same device from a different location) could also
be permitted. We also recommend that, when possible, different subsets should use
specialized criteria to determine whether the fingerprint is a match—e.g., in a subset
of browser-specific vectors, a browser version string and presence of JavaScript/CSS
features that indicate a newer browser version (with respect to the browser version
that was last recorded for that user) should still be considered a match, whereas an
older version should be considered a mismatch (we validate this by the reasoning that
modern browsers typically apply updates automatically).

Further exploration may involve a more advanced quantitative analysis of overall
device fingerprint diversity and appropriate mechanisms for enabling users to associate
multiple devices with their account. New mechanisms may also be developed to better
cope with vectors that lack sufficient repeatability. One approach that we recommend
is to employ techniques that can determine the repeatability of individual fingerprint
vectors collected from a device, and exclude those vectors in instances where the
values are deemed unrepeatable. For example, clock skew fingerprinting would be
less repeatable over a network link with high jitter (i.e., high variation in latency),
which is trivial to measure. Determining the repeatability of fingerprint vectors such
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as system performance may require developing new mechanisms (e.g., a mechanism
may be developed to detect the CPU load on a device, and subsequently determine
whether the measured system performance would be repeatable).

We again emphasize that the fingerprinting mechanisms discussed herein require
no new user interaction and thus impose no additional usability burdens on users;
given increasing attention to usability, this strongly motivates the use of device fin-
gerprinting to augment user authentication.



Chapter 4

Framework for Evaluating Mimicry Resistance of Web

Authentication Schemes

The many password alternatives for web authentication proposed over the years, de-
spite having different designs and objectives, predominantly rely on the knowledge
of some secret. This motivates us, herein, to provide the first detailed exploration of
the integration of a fundamentally different element of defense into the design of web
authentication schemes: a mimicry-resistance dimension. We analyze web authen-
tication mechanisms with respect to new properties related to mimicry resistance,
and in particular evaluate invisible techniques that provide some mimicry resistance
(unlike those relying solely on static secrets), including device fingerprinting schemes,
physically unclonable functions (PUFs), and a subset of Internet geolocation mecha-
nisms.

4.1 Introduction

A challenge in providing sufficient security guarantees for web authentication, i.e.,
user-to-web and device-to-web (versus user-to-device), is that the security of many
schemes, including those relying on something-you-have or something-you-are, re-
quires the ability to protect a secret. For example, a physical biometric such as a
fingerprint can be captured in transit and replayed by an attacker without posses-
sion of the physical fingerprint, resulting in security properties similar to other stored
secrets such as passwords. The reliance of many schemes on an element of secrecy
is reflected in the Usability-Deployability-Security (UDS) evaluation framework [25],
where eight of nine security properties assess a scheme’s resilience against the expo-
sure of a secret.

We revisit the process of compromising an account from an attacker’s perspective,
now viewing it as a two-stage process involving both exposure and mimicry. Exposure
refers to the capture of information that enables account access, such as a password,

60
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session cookie, or a cryptographic key; mimicry refers to the imitation of a legitimate
user’s (or user device’s) actions or associated attributes with the aim of generating
an authentication response that would be accepted as legitimate by the server (e.g.,
spoofing a user’s geographic location if location-based authentication [51] is used).
Accordingly, a scheme’s authentication token may resist attacks by both: resisting
exposure and resisting mimicry.1 We investigate the little-studied mimicry-resistance
dimension in web authentication, first defining a suitable set of criteria and then
ranking schemes across a continuum of three classes of resistance to mimicry, as
detailed in Section 4.3. Mimicry-resistant authentication schemes have been proposed
to displace password authentication in the user-to-device context (see, e.g., analysis
of mimicry attacks on user-to-device authentication [101]). In contrast, our analysis
herein of user-to-web authentication schemes, including several previously evaluated
by Bonneau et al. [25, p.11] under the UDS framework, finds that most offer little to
no resistance to mimicry.

To construct a more comprehensive evaluation framework for authentication
schemes, we augment the existing UDS security properties, which concentrate on
exposure resistance, with new properties measuring mimicry resistance. We leverage
the UDS framework security properties to systematically rate authentication schemes
across an additional continuum ranging from lowest to highest resistance to exposure,
and use these as orthogonal axes (exposure and mimicry) to plot a two-dimensional
chart. Along both dimensions, our evaluation reflects the scalability of attacks re-
quired to defeat a scheme: schemes plotted closer to the origin can be defeated by
attacks that can be scaled with ease (such as online guessing) to break a large number
of accounts; defeating schemes plotted further from the origin requires more targeted
attacks (such as device theft) that are highly unscalable.

The lack of mimicry-resistant schemes among those previously evaluated under
UDS [25] motivates us to select and evaluate a representative set of techniques for
reinforcing web authentication that demonstrate the benefits of mimicry resistance.
We evaluate techniques that fall under four approaches, namely device fingerprinting
(FP) [56], Internet geolocation [54], Physically Unclonable Functions (PUFs) [209],

1The term mimicry has been used previously in the context of intrusion detection systems,
referring to the attacker’s ability to mimic legitimate traffic [203]. We use the term in the web
authentication context.
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and One Time Passwords (OTPs) [136]; some variations of these offer resistance
to mimicry attacks, and/or are also invisible, in that they do not require any user
effort to configure or use (see Section 4.2). We supplement the UDS framework
with two usability properties and four security properties (Table 5.1). Under this
revised framework, we evaluate techniques which fall under the four aforementioned
approaches when combined with passwords, and find that invisible and mimicry-
resistant schemes combined with passwords provide significantly higher resistance to
attack. This constitutes an initial step towards identifying mimicry-resistant web
authentication schemes that can enhance security with minimal usability penalties.

In summary, the following contributions are made in this chapter:

• Investigating the mimicry-resistance dimension in web authentication, including
ranking schemes under three sub-classes of mimicry resistance.

• Analyzing relatively new “invisible” techniques, and evaluating their degree of
mimicry resistance when used for web authentication.

• Constructing a comprehensive evaluation framework, which includes (a) a two-
dimensional chart combining the exposure- and mimicry-resistance dimensions,
to visually reflect the ability of a scheme to resist scalable attacks; (b) an aug-
mented UDS framework (in Chapter 5).

The remainder of this chapter is organized as follows. Section 4.2 provides back-
ground. Section 4.3 introduces the mimicry-resistance dimension in web authentica-
tion, and plots a representative subset of authentication schemes onto an Exposure-
Mimicry two-dimensional space. Section 4.4 offers insights gained from the analysis.

4.2 Background and Context

We briefly provide background and define terms for modes of authentication (Fig-
ure 4.1) and review related work on the evaluation of authentication schemes.

The standard method of user authentication on the web is for the user to type a
password into a web form, which is submitted over the Internet for the web server to
verify. We refer to this as user-to-web (see Figure 4.1) authentication—even though
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the password is physically entered into the user’s local device, the verifier is a re-
mote server (cf. local vs. remote authentication, Section 2.1.1). The device used for
authentication, which we call the access device herein, is a passive token2 conveyor,
and does no checking on behalf of the web server. In contrast, when a user authen-
ticates to their smartphone, it is user-to-device. Some authentication schemes that
appear to be user-to-web are actually two-stage authentication schemes that combine
a user-to-device scheme and a device-to-web scheme; for example, a mobile payment
app may authenticate the user via a biometric (e.g., fingerprint or iris scan), which
unlocks a locally-stored cryptographic key used by the mobile device to authenticate
to the remote server.

4.2.1 Invisible Authentication

As discussed in Section 2.1.1, implicit and zero-effort authentication reduce user bur-
den by, e.g., measuring and using users’ biometric attributes or physiological behaviors
for authentication, without requiring any deliberate user effort. Many such schemes
have been proposed, and are typically used for user-to-device authentication; the ac-
curacy and resistance to mimicry of some of these schemes has been evaluated [101].
In contrast, herein we consider web authentication schemes, thus focusing on user-to-
web and device-to-web authentication.

We also make the distinction between implicit and invisible schemes. The former
refers to schemes that do not require extra user effort during login, but do require
some initial user effort for setup; those are generally user-to-device schemes that
authenticate the user based on their behaviour as measured through various sensors
(e.g., accelerometer, swipe patterns), where the initial user effort is often downloading
an app, or calibrating input sensors. On the other hand, we define invisible schemes to
be device-to-web authentication schemes requiring no user involvement at all, neither
during set-up nor login. Note that not all device-to-web schemes are invisible, as
some require a user to carry out an action; for example, in a device-to-web scheme
that fingerprints the access device’s accelerometer while at rest [23], users may need
to place their device on a flat surface.

2We use the terms token (by default indicating a digital token) and credential interchangeably.
Hardware tokens will be explicitly identified.
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Figure 4.1: A comparison between user-to-device, device-to-web, and (direct) user-
to-web authentication.

4.3 The Mimicry-Resistance Dimension

User authentication typically relies on something-you-know (i.e., some secret the user
knows), something-you-have, or something-you-are. Biometric-based user-to-web au-
thentication mechanisms (i.e., something-you-are) are similar in server-side imple-
mentation to something-you-know, since biometric data is (preferably) stored as a
digital secret. Since the transmission path from the user’s biometric sensor (e.g.,
fingerprint reader) to the authentication server is often untrusted, or at least less so
than the path from the sensor to an authenticating application in user-to-device au-
thentication, an attacker may defeat authentication by simply replaying an exposed
secret (e.g., a fingerprint). Exposure can occur through, e.g., guessing or capture.
Most something-you-know and something-you-are web authentication schemes offer
limited resistance to mimicry, since exposure of a user secret typically allows attackers
to trivially defeat the scheme.

User authentication via something-you-have requires verifying servers to both au-
thenticate the hardware token and to verify user possession of the hardware token.
Hardware tokens are generally electronic devices (e.g., a USB OTP token or smart-
phone) that can be authenticated by the server using, e.g., cryptographic techniques.3

Because authenticating these hardware tokens will almost always rely on secrets,
something-you-have often boils down to a something-you-know, i.e., something the
hardware token knows. Most known variations of hardware authenticator tokens are
defeated once that secret is exposed [25], e.g., by capture or theft, again providing
little to no resistance to mimicry.

3Physically Unclonable Functions (PUFs) do not hide a key, but still have a component that may
be exposed albeit harder to reproduce/mimic. See Section 4.3.3 for further discussion.
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4.3.1 The Exposure-Mimicry Duality

Defeating web authentication typically requires two actions: exposing a token and
mimicking certain behavior. That behavior is any action the legitimate user (or de-
vice) normally performs while authenticating to a service; for passwords, that behavior
is trivially mimicked by simply submitting a static string. A scheme’s resistance to
compromise thus depends on its ability to independently resist exposure and mimicry.
To evaluate a scheme’s resistance across these orthogonal components, we construct
a two-dimensional space in Figure 4.2 and plot various web authentication schemes
on it. A marker (i.e., dot) represents a scheme’s authentication token. Height along
the y-axis indicates resilience to exposure; distance from the origin along the x-axis
indicates resilience to mimicry. Schemes placed on the chart are explained in Sec-
tion 4.3.3.

Vertical axis

The y-axis of Figure 4.2 is split into three segments: V1-Negligible-resistance (i.e.,
guessable), V2-Guess-resistant, and V3-Leak-resistant. Guessing a credential is the
easiest form of exposure. Digital theft (leak henceforth) is generally easier than
physical theft in that (1) leaks can often be arranged at scale, e.g., by phishing, and
(2) leaks can be by remote access, e.g., an Internet-facing authentication server is
subject to attack from anywhere in the world (an adversary need not be in physical
proximity).

V1. Within the lower-vertical segment, a credential requiring more guesses
is placed higher. The guessability of a scheme’s credential may depend on sev-
eral factors. A very weak password, for example, could be easier to guess than a
randomly-generated PIN. Unless stated otherwise, schemes are plotted according to
their strength in typical scenarios (e.g., passwords are assumed to be user-chosen,
which limits their resilience to guessing). Guessing attacks are assumed to follow
common guessing strategies for trawling attacks (capturing as many accounts as pos-
sible, often by guessing the most common password across all accounts, then moving
down a list of candidate passwords).

V2. The middle-vertical segment comprises schemes with secrets impractical to
guess, such as cryptographic keys or randomly-generated passwords with sufficient
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Figure 4.2: Exposure resistance and mimicry resistance as two dimensions to rate
authentication-scheme resistance to compromise. Along both axes, distance from the
origin reflects the scalability of attacks required to defeat a scheme: schemes plotted
closer to the origin (darker regions) can be defeated by attacks that can be scaled
with ease (such as online guessing) to break a large number of accounts; defeating
schemes plotted further from the origin requires more targeted attacks (such as device
theft) that are highly unscalable. Section 4.3.3 gives detailed explanations of different
classes of One Time Passwords (OTPn), Device fingerprinting (FPn), Geolocation
(Ln) techniques, and Physically Unclonable Functions (PUFn). †See inline discussion
at the end of Section 4.3.3 (p. 80) on the placement of PUF1*.
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length to withstand offline guessing attacks. Those may still be leaked (e.g., client-
side malware). Malware may either (1) steal login credentials for later user imper-
sonation, or (2) remain dormant until a user logs into their account, after which
attacker-created transactions can be authorized by the malware on the victim user’s
device [119]. Herein we are interested in evaluating an authentication scheme’s re-
silience to impersonation, not to malicious authorization. Defending against the latter
may require mechanisms such as out-of-band authorization for sensitive transactions
(which may be independent from the method of user authentication being used).

We consider within this segment four sub-levels, based on the number of sources
from which leaks may occur: the human user, the browser, the user device (e.g., laptop
or smartphone), and a public server whose compromise defeats authentication; e.g.,
a trusted third party of the main authentication server, or a party that also stores
the same credential (e.g., a same password used across multiple websites). A scheme
subject to leaks from all four sources is placed at the lowest of V2’s four sub-levels;
one subject to leaks from any three of the four places it second-lowest, and so on. A
scheme not subject to leaks from any of these four sources is placed in V3.

V3. Schemes in the upper-vertical segment are those resilient to exposure by
digital theft (e.g., leak or capture)—thus mostly physical tokens of some sort. Com-
promising these requires targeted attacks (most commonly physical theft) involving
physical proximity to specifically pre-identified users. A scheme’s vertical position
within V3 varies with vulnerability to theft. A smartphone for example, relatively
small in size and carried around more often, is easier to steal than a desktop PC—the
latter may require physical break-in to an office and effort to conceal the escape.

Sorting rationale. The intuition behind arranging the three segments in the
above manner follows logically from the trawling attack strategy of maximizing the
number of accounts broken into per unit of attack effort. Assuming, for example,
that a website does not throttle online password guessing, a good attack strategy is
to try guessing passwords. If online guessing fails, an attacker often moves to digital
theft (V2 segment on Figure 4.2), e.g., stealing credentials via XSS attacks, phishing,
or client-side malware. Since random passwords may be leaked but not efficiently
guessed, they are harder to expose. Weak passwords or PINs, for example, can be
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guessed and often also captured,4 and are rated lower in resistance to exposure. If all
forms of leaks (digital theft) fail, the attacker is left with physically stealing, e.g., a
smartphone or hardware authentication token. These attacks also become gradually
harder to scale (for an adversary) in the aforementioned order.

Relationship to UDS framework. As summarized in Table 4.1, the vertical
axis in Figure 4.2 addresses the S (Security) benefits in the UDS framework, exclud-
ing Unlinkable and Requiring-Explicit-Consent.5 The UDS framework did not intend
to provide an overall summary rating for a scheme, as that would require subjec-
tive weighting of the usability, security, and deployability benefits (which may be
context-dependent). In contrast, we use our sorting rationale (as discussed above)
in conjunction with the UDS security benefits to rate a scheme’s overall resistance
to exposure; for example, if a scheme only fails to provide Resilient-to-Unthrottled-
Guessing but provides the remaining eight security properties, it is placed near the
bottom of the vertical axis within V1 (despite having a virtually full row of security
bullets). Passwords fail to provide Resilient-to-Throttled-Guessing and Resilient-to-
Unthrottled-Guessing and are therefore placed in V1, despite providing Resilient-to-
Physical-Theft (which corresponds to our highest exposure-resistance category, seg-
ment V3).

Schemes are plotted along the vertical axis (see Section 4.3.3) based on their
security benefits offered,6, using the following criteria (also summarized in Table 4.1):

1. Schemes subject to guessing attacks (i.e., not offering both S3 and S4) are placed
in V1.

2. Schemes offering S3 and S4, but lacking any of S1, S5-7, or S9, are placed in
V2.

3. Schemes offering all of the above benefits are placed in V3.
4An example where a password can be guessed but not leaked would be challenge-response

schemes where the password is never typed on the keyboard nor stored anywhere (neither on the
server nor any client device), such that the user computes the response from the challenge in their
head, or offline using a calculator. That would be resilient to phishing, theft, malware, leaks from
verifiers, requires no trusted third parties, and possibly physical observation.

5These two security benefits from the original UDS framework do not share the focus of Figure 4.2
on exposure resistance. Unlinkable is a privacy benefit and Requiring-Explicit-Consent relates to
malicious authorization, e.g., a malicious RFID-based card reader embedded in a sofa that authorizes
a transaction without user knowledge [25].

6For schemes already evaluated in the original UDS paper [25] we use the benefits evaluated
therein.
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Table 4.1: Original UDS security benefits [25] evaluating schemes by susceptibility
to exposure, and relation to new framework. This table lists the properties a scheme
must offer to move to the next-higher vertical segment in Figure 4.2; i.e., both S3
and S4 must be offered to be placed in V2; all of S1, S3-S7 and S9 must be offered
to be placed in V3. The benefits are listed in descending order of the scalability of
carrying out the corresponding attack; e.g., guessing attacks (S3) are highly scalable,
but physical theft (S8) is highly unscalable.

UDS Security Property Segment
S3. Resilient-to-Throttled-Guessing Lower (V1)S4. Resilient-to-Unthrottled-Guessing
S1. Resilient-to-Physical-Observation

Middle (V2)
S5. Resilient-to-Internal-Observation
S6. Resilient-to-Leaks-from-Other-Verifiers
S7. Resilient-to-Phishing
S9. No-Trusted-Third-Party∗

S2. Resilient-to-Targeted-Impersonation†
Upper (V3)S8. Resilient-to-Physical-Theft

∗Additional third parties increase chances of leaks from public servers. From the adversary’s per-
spective, this property is similar to Leaks-from-Other-Verifiers. See inline for details.
†S2 encompasses a variety of targeted attacks, e.g., deceiving a human acting as a trusted party
as in social re-authentication [29], locating a user’s password written on a post-it note, or lifting
fingerprints from a doorknob [25]. The success of these attacks requires attackers to be in physical or
logical proximity (e.g., social engineering attacks against social re-authentication) to victims. The
difficulty in scaling such targeted attacks is similar to attacks involving physical theft (S8). These
differ from more scalable attacks such as educated guessing based on information scraped en-masse
from social media—these are covered by the more general guessing attacks (S3 and S4).
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Table 4.2: Three new UDS-type security properties (given in Section 5.1) directly
related to mimicry. A scheme must achieve these to move further right across the
horizontal segments in Figure 4.2. Example: Both M2 and M3 must be achieved to
be placed in H3.

New UDS Security Properties Segment
M2. Resilient-to-Delayed-Replay Left-most (H1)
M3. Resilient-to-Immediate-Replay Middle (H2)
M4. Resilient-to-Spoofing Right-most (H3)

Horizontal axis

The x-axis (mimicry resistance) reflects burdens on the attacker to mimic the verifier-
expected behavior, after exposing a scheme’s credential. Unfortunately, the security
of most authentication schemes proposed to date rely on some form of resisting ex-
posure, with compromise complete once an underlying secret token is revealed. This
includes passwords, user-to-web physical biometrics (see Section 4.2), and poorly
managed/generated private keys [85]. If leaking a credential does not allow an at-
tacker access by direct replay of the credential, the scheme exhibits some degree of
mimicry resistance, and gains horizontal distance from the origin in Figure 4.2.

We split the horizontal axis into three segments: H1-Negligible-resistance (i.e.,
easily replayable), H2-Replay-resistant, and H3-Spoof-resistant. In Section 5.1, we
expand the UDS framework by six new benefits; three of these benefits (M2, M3,
and M4) correspond to the aforementioned horizontal segments (H1, H2, and H3) as
defined precisely in Table 4.2.

H1. If an attacker can simply submit or replay a credential after exposing it,
the scheme provides no resistance to replay and thus gains no horizontal distance
along the mimicry-resistance dimension (i.e., lies on the vertical axis). For example,
replaying a captured password is trivial; thus, passwords lie directly on the vertical
axis in Figure 4.2.

In some cases, there is no clear-cut answer as to whether exposing information
directly helps the attacker gain access. For example, answers to personal knowl-
edge questions based on recent account activity (e.g., Who was the last person you
emailed?) likely remain unchanged for a few hours. Capturing an answer allows the
attacker to login only within that window. Such schemes are given some horizontal
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distance from the origin, but remain within H1. Another example is password expi-
ration policies [211, 42] forcing resets every, e.g., one hour, which would provide some
mimicry resistance (albeit highly unusable), and placed within H1 on Figure 4.2.

Some challenge-response schemes are also candidates for H1; whether or not a
captured response directly allows the attacker to compromise the account is condi-
tional on whether the captured response remains valid. Schemes where the set of
challenge-response pairs is finite and relatively small, or when capturing a handful of
challenge-response pairs suffices for defeating authentication, would thus fall within
H1. Cognitive schemes like Weinshall [207], and some challenge-response schemes such
as PassWindow [157], are prominent examples. Other challenge-response schemes are
placed in H2.

H2. After a credential is leaked, schemes that either require additional attacker
actions beyond simply replaying a string or conducting a straightforward operation
(e.g., cryptographic signing), or where attackers have a limited time window (e.g.,
< 2 mins) in which the credential can be used, are considered replay-resistant and
placed within H2. An example is DNS resolver fingerprinting (FP5 in Figure 4.2),
which determines the DNS resolver used by the client (see Section 4.3.3); knowing the
resolver’s address is insufficient to defeat authentication, as the attacker must also be
able to use it to resolve domain names.

One-time password (OTP) over SMS is another example scheme placed within
H2, as it enables the attacker to compromise the account only if the user has not
already used the OTP. An attacker that captures the OTP in clear text [69] must
use it before the legitimate (victim) user. Additionally, the server may set a 2-minute
time window where an OTP token is valid for usage, and expires afterwards. Such
schemes would be placed within H2 on Figure 4.2.

H3. We place within H3 any scheme that requires additional equipment and/or
systems (e.g., hardware chip manufacturers, or large scale distributed botnets) to
mimic the behavior that the server measures and expects from the legitimate user.
An example is robust location verification (see L4 in Section 4.3.3).

Because spoof-resistant schemes rely on measurements of various phenomena (e.g.,
a user behavior or habit), the measurement process must typically allow some degree
of tolerance to account for (1) imperfections in the measuring apparatus, or (2) the



72

phenomena’s natural instability over time.

For (1), consider an example location-based authentication scheme [197], where a
server grants access to a user only if the user is at an expected geographic location.
Ideally, the user’s location would be identified to such a high granularity that no two
human beings could exist at the same {latitude, longitude, altitude} coordinates.

For (2), again using location-based authentication as an example, a user’s daily
commute [94] from one geographic location to another (e.g., work to home) makes it
impractical to grant account access only when the user is geographically present in,
e.g., a 1 m2 area, even if the geolocation mechanism being used allows for such high
accuracy. Geolocating users with courser granularity (e.g., city-level) would thus seem
more practical (e.g., to avoid false rejects) for generic location-based authentication
purposes.

The degree of “fuzziness” (i.e., lack of precision) introduced while measuring a
user’s behavior in spoof-resistant schemes is thus likely to result in false accepts, i.e.,
falsely accepting another user as the intended one. In practice, some websites use
IP-address based location look-ups [158] to implement location-aware authentication,
which returns locations at the city or state level. Thus, all attackers physically present
in the user’s city (or even a legitimate user mistyping the username with no malicious
intent, i.e., if geolocation is used as a stand-alone authentication scheme) are falsely
accepted.

Note the distinction between false accepts (a result of imprecision) and mimicry
resistance (a result of resistance to attack): A scheme that uses high-precision GPS
co-ordinates (e.g., within a radius of 1m) reported by the user browser (e.g., L1,
Section 4.3.3) may offer low false accept rate, but offers no mimicry resistance since
attackers can use browser extensions that report forged coordinates.

False accepts are not directly reflected in the Mimicry-Resistant dimension
(though we capture them in the evaluation framework in Section 5.1). They are
indirectly captured however by a scheme’s position vertically. This is because re-
silience to guessing attacks and resilience to false accepts are both related to the
size and distribution of the credential space (e.g., cryptographic keys with sufficient
length and chosen uniformly at random are not subject to guessing attacks and false
accepts).
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4.3.2 Interpreting Attack Scalability

Figure 4.2 illustrates the relative resilience of schemes with respect to trawling attacks,
i.e., attacks aiming to maximize the number of accounts broken into. Schemes further
from the origin are less scalable to attack, i.e., they require more targeted attacks and
therefore impose a higher cost on the attacker in terms of time, effort, and money, as
a function of the total number of accounts targeted for attack. Schemes closer to the
origin are subject to more scalable attacks, i.e., a greater number of accounts broken
into at lower cost.

Along the vertical (exposure-resistance) axis, schemes most vulnerable to scalable
attacks are those where the attacker can guess user credentials (V1). Attacks against
schemes requiring information theft (e.g., via software vulnerabilities or malware)
are less scalable (V2), and schemes requiring physical device theft (V3) are the least
scalable (i.e., most costly) to attack.

Along the horizontal (mimicry-resistance) axis, attacks against schemes where an
exposed secret can be used as-is by the attacker (see Section 4.3.1) are most scalable;
attack scalability decreases for schemes that increase the attacker burden (in terms
of hardware costs or control of network infrastructure) for mimicking account-holders
beyond a simple replay attack (see Table 4.2). Since our evaluation is qualitative, it is
not intended that absolute distance from the origin be a quantitative measure suitable
for comparing schemes—however, the resilience of two schemes (i.e., scalability of the
attacks that a scheme can withstand) can be compared if they share one of the two
co-ordinates (i.e., identical x- or y-coordinates).

4.3.3 Scheme Placement on Figure 4.2

We use the mapping method of Section 4.3.1 (“Relationship to UDS framework”)
to position a representative subset of schemes along the exposure-resistance axis us-
ing their previously assessed (cf. [25, p.11]) security benefits. Upon evaluating the
mimicry resistance of these schemes, we find they offer little to no resistance to
mimicry as we explain below.

PassWindow [157] is a visual crypto technique whereby the user overlays a trans-
parency card on the screen to visually read and enter a 4-digit pass-code, which proves
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possession of the user’s card. It was shown [142] that observing 20–30 challenge/re-
sponse pairs can leak the card’s secret; we thus place the scheme within H1. Likewise,
cognitive schemes, including GrIDsure [96], Weinshall [207], Hopper Blum [87], and
Word Association [180] are placed in H1 since the schemes can be compromised after
few observations (e.g., Weinshall can be compromised after about seven observations
[68]).

In social re-authentication [29], a trusted friend can vouch for a user who, e.g.,
has lost their credentials. An attacker may capture a vouch code (e.g., via malware
on a trusted friend’s device) and simply replay it to authenticate as the victim; we
thus place it in H1.

Federated schemes, including OpenID [164], Microsoft Passport [105], Facebook
Connect, and BrowserID [82], offer no mimicry resistance if password authentication
is used, and we thus place them in H1. Their position on the chart would change
if the identity provider utilizes mimicry-resistant schemes. Persuasive Cued Click-
Points (PCCP) [41] and biometric schemes on Figure 4.2 (Iris and Voice) are also
placed in H1, since captured biometric samples are typically replayable [25].

We explore and discuss example schemes which do provide mimicry resistance,
and position them along the two axes (the remaining schemes on Figure 4.2). To
avoid redundancy, we only explain the horizontal position of these schemes in this
section; see Section 5.1 for their vertical position.

Geolocation (selected methods)

We review four broad classes of Internet geolocation techniques that can be used for
location-based authentication, placing a marker for each class on Figure 4.2 to rate
their ability to resist compromise. Location-based authentication typically requires
server-side storage of the user’s expected location (e.g., city-level, nation/state level,
or latitude/longitude coordinates, depending on the geolocation method employed)
in plain text, hashed, or cloaked [46] to a certain degree to preserve users’ privacy.
Any of the four classes of geolocation methods described below may be used by a
verifying server to obtain and/or verify the user’s current location at the time of
authentication, and grant access if the user is verified to be at the location expected
by the server.
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L1: GPS and WPS. GPS and WiFi Positioning System (WPS) geolocation are
commonly used in practice. WPS uses multi-lateration based on the signal strengths
between the device and nearby WiFi access points with known locations. These tech-
niques are usually selected by the user’s browser in the W3C geolocation API [159],
whereby the browser obtains the coordinates from the device’s GPS driver, or from a
location provider after submitting a list of nearby WiFi access points and their signal
strengths to the location provider. L1 gains no depth across the mimicry-resistance
dimension (see Figure 4.2), since techniques rely on browser-reported information that
can be substituted and replayed by an attacker, so knowledge of the user’s location
is sufficient to break authentication.

L2: IP-address based tabulation. Tabulation-based geolocation service
providers such as Maxmind7 and ipinfo8 maintain lookup tables, which map IP ad-
dress blocks to cities and countries, possibly through publicly available information
such as IP address registries (e.g., whois9) and the geography of IP address alloca-
tion. Geolocation based on IP address table lookups is unreliable due to outdated
entries [158], and is evadable through use of middleboxes and virtual private networks
(VPNs) [137]. L2 is rated slightly more resilient to compromise than forgeable GP-
S/WPS coordinates, and is placed within H2; it is not in H3 since even an attacker
unable to forge source IP addresses may use public HTTP proxies or bots in close
proximity to the user.

L3: Measurement-based geolocation. In this class, network measurements,
such as Round-Trip Times (RTTs), are conducted from a set of landmarks (e.g.,
cloud-based or CDN servers) to the target user, and are then mapped to geographic
distances using a pre-calibrated delay-to-distance function. The user’s location is
estimated through multi-lateration, relative to the landmarks’ locations. Examples
include Spotter [110] and CBG [81]. Other proposals have suggested mapping the
network topology for higher accuracy [114]. To date, measurement-based geolocation
can achieve an accuracy on the order of a few tens of meters. Manipulating L3 requires
more advanced techniques than simply submitting forged coordinates, but can be
achieved with enough knowledge of the network topology and the landmarks/verifiers

7https://www.maxmind.com/
8http://ipinfo.io/
9https://www.whois.net/

https://www.maxmind.com/
http://ipinfo.io/
https://www.whois.net/
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being used [1, 67]; they are limited to H2.
L4: Robust location verification. Some techniques are designed to verify lo-

cation information obtained by other Internet geolocation techniques (e.g., L1-L3,
above), and/or are designed to be resilient to common adversarial manipulation
tactics. The result of a preliminary geolocation is treated as an asserted location
(analogous to a username asserting identity), to be verified by a measurement-based
proof (analogous to proof of knowledge of a secret). Examples of such schemes in-
clude Client Presence Verification (CPV) [2] (see Section 5.1) and Trusted Platform
Module (TPM)-supported GPS drivers [154]; the former cryptographically protects
network delay measurements used for verifying location assertions, and the latter
communicates coordinates securely. We call such techniques robust location verifica-
tion and rate them as spoof-resistant (H3) because manipulation requires attackers
to expend more effort than simply reporting a false location; successfully spoofing
legitimate client locations requires using specialized proxy machines (for attacks that
“co-locate” using a machine nearby to the victim) or GPS satellite signal-spoofing
devices [193].

Device Fingerprinting

Device fingerprinting refers to techniques by which a server collects information on a
device’s hardware/software configuration for the purpose of identification [56]. From
the 29 methods surveyed in Chapter 3, we derive six representative categories for
evaluation.

FP1: System parameters/preferences. This class includes software and hard-
ware information about the device to be authenticated, provided by the web browser’s
JavaScript API (e.g., the navigator and windows JavaScript BOM objects), such as
operating system version, screen resolution, time zone, system language, and sup-
ported WebGL capabilities. FP1 lies on the y-axis, since it can simply be mimicked
by replaying the information.

FP2: Audio and canvas challenge/response. This class includes two tech-
niques that fingerprint the client’s graphics and audio subsystems, respectively.
HTML5 canvas fingerprinting renders a variety of text and graphics in an HTML5
canvas on the client’s browser, which results in subtly different images (e.g., due to
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differences in anti-aliasing or font smoothing) depending on the graphics driver and
hardware on the device being fingerprinted. Audio processing fingerprinting leverages
the HTML AudioContext API that provides real-time frequency- and time-domain
analysis of audio playback, mainly used for creating audio visualizations. Playing the
same sound on different devices results in subtly different waveforms, depending on
the sound driver and hardware. To improve resistance to replay attacks, these two
techniques can be used in a challenge-response scheme, where the server can store the
client’s responses to many different challenges [33], and are thus placed within H2.

FP3: Hardware sensors. This class, suitable to fingerprint smartphones, lever-
ages the inherent variation in the manufacturing and factory calibration of typical
smartphone sensors, such as accelerometer and speaker-microphone systems. Similar
to FP1, FP3 lies on the y-axis since information can simply be replayed.

FP4: Clock skew. The server uses TCP timestamps to measure the clock skew
of the device being fingerprinted, which differs across devices due to manufacturing
variation. FP4 is placed within H3, since clock skew spoofing attacks are highly
sophisticated; e.g., Arackaparambil et al. [10] show how timestamp manipulation
can be detected to identify rogue wireless LAN access points. However, clock-skew
spoofing over a WAN connection is not well-studied, and therefore this rating may
change subject to further study and experimentation.

FP5: DNS resolver. The server determines a client’s DNS resolver(s) by pre-
senting to the client a page that contains a reference to a randomly-generated (non-
existent) subdomain, triggering a client DNS lookup; as a result the server will receive
a DNS query from the client’s resolver. The DNS resolver IP address serves as a fin-
gerprint. FP5 provides partial replay-resistance but can be defeated via the use of
proxies, similar to L2. In some cases, organizations run their own DNS servers, which
resolve domain names only to machines within the department’s network. To use a
victim’s DNS resolver, an attacker would need to be able to resolve domain names us-
ing the organization’s private DNS server. Since identifying the server is not enough
(and is easier than using the organization’s DNS), FP5 is placed within H2.

FP6: Protocol-based fingerprinting. This class includes schemes that glean
information from network-, transport-, and application-layer protocol fields. For ex-
ample, the TLS library of the client device can be fingerprinted using the Client Hello
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packet received during the handshake sequence, which includes information such as
the device’s supported TLS version, supported ciphersuites (and their order of presen-
tation), compression options, and list of supported extensions (along with associated
parameters such as elliptic curve parameters). FP6 lies within H1, since it is suscep-
tible to mimicry, but attacks are less scalable than simply replaying a static string;
OS- or library-level modifications may be required.

OTP Schemes

One-time password (OTP) schemes generate short-lived credentials, often used as a
second factor alongside conventional passwords. Depending on implementation (four
follow), an attacker may aim to capture either the seed or a challenge-response pair.

OTP1: OTP mobile apps. This class (e.g., Google Authenticator) generates
OTPs to be manually typed into a user’s access device, using a combination of a
locally-stored shared secret and either the current time (TOTP [136]) or a counter
(HOTP [135]). With malware on the device, the attacker can capture the locally-
stored shared secret; because this directly enables the attacker to compromise the
account, OTP1 provides no resistance to mimicry, and is placed on the vertical axis
of Figure 4.2. Note: A variant of this class is a mobile app that stores a public-
private key pair, e.g., as used by Duo Security [55] and Google Prompt (a more
recent iteration of Google two-step verification [9]). When the user types in their
password, the server sends a cryptographic challenge to the mobile app. The mobile
app then requests user consent, via simply tapping a button, to send the cryptographic
response to the server to complete the user authentication process. The advantage of
this approach compared to OTP1 is that it is more efficient to use. The disadvantages
are that the mobile app requires an Internet connection, and there is a chance of the
user accidentally consenting to a malicious authentication attempt.

OTP2: OTP USB tokens. This class (e.g., FIDO U2F keys [147]) is similar
to OTP1, but requires less effort since the user can press a button on the hardware
token to automatically enter the OTP into a browser window. Assuming hardware
tokens can resist malware, it becomes relatively challenging for an attacker to capture
challenge-response pairs. Similar to OTP1, the attacker can thus target the seed,
i.e., hardware token theft. This gives the attacker direct account compromise, and
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therefore is placed on the vertical axis (i.e., no horizontal distance from the origin) in
Figure 4.2.

OTP3: SMS OTP. The server sends a randomly-generated OTP (i.e., no re-
liance on a shared secret/seed) to the user via SMS. Contrary to the previous two
OTP classes, the seed here is only stored on the server, which makes it harder to
capture. The attacker can however capture an OTP in transit, e.g., by exploring
weaknesses in the cellular network [69], but will be required to use it before it expires
(and before the user uses it). Since the time window for a successful attack is limited,
OTP3 is placed further (horizontally) from the origin, in H2 on Figure 4.2.

OTP4: E-mail OTP. The server sends a randomly-generated OTP (again no
reliance on a shared secret/seed) to the user via e-mail. Because an attacker can
capture an OTP, e.g., via malware on the user’s machine, its mimicry resistance is
similar to OTP3.

PUFs

Physically Unclonable Functions (PUFs) are hardware modules (typically manufac-
tured into silicon-based chips) that leverage an underlying unique physical structure
to generate challenge-response pairs; ideal PUFs are impossible to clone, since the
unique structure of each individual PUF results from manufacturing variation [209].
For our evaluation herein, we assume the use of a challenge-response protocol (as
described by Yu et al. [209]) in conjunction with PUFs that are built into the user’s
device (as opposed to, e.g., a USB-based token).

PUF1: Strong PUFs. These theoretically generate an endless supply of
challenge-response pairs, allowing verifying servers to store any number of challenge-
response pairs (e.g., at user account creation) to be used for user authentication.
Several implementations of strong PUFs are available [168]; e.g., some PUFs gen-
erate challenge-response pairs by shining a laser on a scattering object at selected
angles and points of incidence [153]. A major challenge in developing strong PUFs
is to avoid susceptibility to model-building attacks that collect challenge-response
pairs and apply machine-learning algorithms to build a mathematical model of the
PUF [50]. Since strong PUFs resist such attacks, the only security property that
PUF1 lacks from Table 4.1 is Resilient-to-Physical-Theft, thereby placing PUF1 in
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V3; since device theft allows an attacker to directly impersonate the user (i.e., defeat
authentication), PUF1 offers no mimicry resistance for this type of attack.

PUF2: Weak PUFs. These can only generate a limited number of challenge-
response pairs. They are suitable for authentication when augmented with appropri-
ate mechanisms, e.g., when restricted to only responding to challenges sent from a sin-
gle trusted verifier over an authenticated channel [209]; this limits an attacker’s ability
to exhaustively capture all possible challenge/response pairs to mount a mimicry at-
tack. PUF devices are commercially available, e.g., for device authentication and
cryptographic key storage [91]. PUF2 is placed within H2—it lacks Resilient-to-
Internal-Observation from Table 4.1, but a successful mimicry attack requires build-
ing a mathematical model of the PUF only after capturing a sufficient number of
challenge/response pairs (e.g., via man-in-the-middle); however, since every PUF is
unique, the mathematical model would be device-specific.

As discussed later in Section 4.4, schemes can be plotted in Figure 4.2 using mul-
tiple markers that reflect resilience against different classes of attacks. To illustrate
this, we plot an additional marker labelled PUF1* to depict the mimicry resistance
of PUF1 against model-building attacks. Since strong PUFs are resilient to model-
building, PUF1* is placed outside of the plot axes (thus reflecting the impracticality of
such an attack). This serves to illustrate that while PUF1 does not offer any mimicry
resistance in the event of device theft, it is immune to model-building mimicry attacks.

Sound-Proof

Sound-Proof [99] is an authentication scheme that determines whether the user’s
smartphone and access device (i.e., another device from which the user is authenti-
cating to access their online account) are in close proximity. The access device records
ambient sound from the microphone and transmits it to the smartphone (via the In-
ternet), which compares with the sound recorded by its own microphone. A match
indicates that both devices are in an identical noise environment, and therefore likely
in close proximity, resulting in the smartphone sending a cryptographically-signed
assertion to the web server to approve the user authentication.

We include Sound-Proof in our evaluation as it provides a degree of mimicry
resistance if a trusted channel is established between the smartphone and web server,



81

e.g., by means of a TPM (via a trusted execution environment and secure key storage).
A TPM-augmented Sound-Proof would address attacks where, e.g., the attacker can
steal the key via root-privileged malware and use it to sign assertions. Note that
while Sound-Proof was originally proposed and evaluated as a second factor alongside
passwords, we place it on Figure 4.2 as a single-factor scheme (without passwords)—
Section 4.4 explains our rationale.

Although a TPM-based implementation may render it impractical for an attacker
to steal the Sound-Proof app’s cryptographic key from the user’s smartphone and
thus gain permanent access to the account, the attacker may still use a malicious app
on the user’s device to relay recorded audio. For example, the attacker can reproduce
the ambient sound from the environment in which the user’s smartphone is currently
located, e.g., by leveraging malware on the user’s smartphone or a nearby device to
record and relay the ambient sound to the attacker. Sound-Proof is thus placed in
H2 because this process is more sophisticated than simply replaying a static token.
It is not placed in H1, since repeated (physical or internal) observations do not seem
to help the attacker gain permanent access—the authors show [99] that the scheme
is resilient to guessing attacks even when the attacker knows the user’s environment
(e.g., by using typical background noise from a Starbucks coffee shop), and that
attacks are also made more difficult by requiring the sound files recorded by both
devices to be timestamped (with NTP-synchronized clocks).

4.4 Further Insights

We briefly discuss further insights from our analysis of mimicry resistance, and the
relative strengths of schemes plotted in Figure 4.2.

Multi-factor authentication. Figure 4.2 should be used to evaluate individual
authentication schemes. To evaluate a multi-factor scheme, the scheme must be bro-
ken down to its constituent factors, each represented individually as an independent
marker. Two independent markers can then be combined as a two-factor scheme as
follows: the (x,y) position of the resultant (combined) scheme is the greater of both
x-values and both y-values. That position should however be carefully interpreted.
For example, although combining L4 with OTP2 would result in a marker in {H3,V3}
(see Figure 4.2), an attacker capable of physically stealing the device to defeat OTP2
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will already be geographically co-located with the user, and thus need not expend
any additional effort to defeat L4.

Lack of schemes in top-right corner of Figure 4.2. None of the schemes
analyzed have strong resistance to both mimicry and exposure—see the three empty
squares in the top-right ({H2,V3}, {H3,V2}, {H3,V3}). Schemes in this region would
strongly resist scalable attacks. This motivates combining complementary schemes,
as discussed immediately above.

Bands versus markers. Instead of marker representation, schemes on Fig-
ure 4.2 could be represented using bands (i.e., lines/curves or shaded areas) or mul-
tiple markers. For example, passwords could be represented by a vertical band from
V1 (user-chosen passwords) to somewhere in V2 (system-assigned passwords that are
resilient to guessing attacks, but still subject to leaks). Such representation can help
identify how different implementations of a scheme may alter security. We chose the
simpler representation as it is easier to interpret, and to avoid cluttering the chart
with intersecting bands.



Chapter 5

Comparative Evaluation of Web Authentication Schemes

with a Mimicry-Resistance Dimension

The primary contribution of this chapter is the augmentation of the original 25 usabil-
ity, deployability, and security properties (benefits) of the UDS framework [25] with
six new benefits relevant to schemes that are invisible and offer mimicry resistance.
We use the augmented UDS framework herein for the first detailed exploration of the
benefits of combining mimicry-resistant web authentication techniques with ubiqui-
tous password-based user-to-web authentication.

The remainder of this chapter is organized as follows. Section 5.1 evaluates rel-
atively little-explored schemes found to have mimicry resistance, using a modified
UDS framework with new properties addressing the mimicry-resistance dimension.
Section 5.2 analyzes benefits when the aforementioned schemes are combined with
passwords. Section 5.3 concludes and offers recommendations.

5.1 Comparative Evaluation

In Table 5.1, we evaluate selected classes of invisible and mimicry-resistant authen-
tication schemes (selected baseline schemes are also included for comparison). We
augment the original 25 usability, deployability, and security properties (benefits) of
the UDS framework [25] with six new properties relevant to schemes that are invis-
ible and have mimicry resistance. The original UDS properties (see Appendix A)
and our new properties defined below are italicized when referenced herein. The new
properties are now described:

U9. No-False-Rejects is a usability benefit concerning authentication failures
resulting from system error (e.g., due to measurement error). False rejects arise due to
fuzzy or non-binary matching functions employed by some mimicry-resistant and/or
invisible authentication schemes, and are thus relevant to penalize (by withholding
this benefit) schemes that suffer from false rejects (e.g., measurement-based Internet
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geolocation methods). This differs from Infrequent-Errors (U7, Appendix A), wherein
authentication may fail due to user action (e.g., incorrectly typing a password) or
attempts to authenticate under unusual circumstances (e.g., from unexpected loca-
tions).

U10. Easy-to-Change-Credentials is a usability benefit for schemes where a
user may easily change credentials (e.g., in event of a server database leak). Intu-
itively, since invisible schemes require no user action upon login or account set-up
(see Section 4.2), these schemes rely on remotely (cf. device-to-web) observing habit-
ual user/device attributes and/or behaviours, and transparently verifying these upon
login. Changing these credentials (regardless of the reason for changing) is likely to
impose user burden, i.e., changing physical habits and/or habitual behaviors. This
new property (U10) allows appropriate penalization for such schemes. Note that in
contrast, Easy-Recovery-From-Loss (U8) reflects how easily a user can recover from a
credential loss (e.g., forgotten password). Credential loss requires a fallback mecha-
nism to verify the user’s identity; changing credentials does not, since the user remains
in possession of valid credentials. Easy-to-Change-Credentials is inherent to the au-
thentication mechanism itself, whereas Easy-Recovery-From-Loss may also depend on
the fallback mechanism.

M1. No-False-Accepts is a mimicry-related (hence, the ‘M’ index) security
benefit of schemes that have a sufficiently large credential space and/or measurement
precision such that two different sets of credentials (e.g., iris scans from two different
individuals) are always distinguishable. False accepts may include both non-malicious
users and attackers mistaken for legitimate users, e.g., due to close proximity in a ge-
olocation scheme, or a device fingerprint similar (within a margin of error) to that of a
legitimate user. Similarly to false rejects, the fuzzy nature of many mimicry-resistant
schemes explored in Section 4.3 also introduces the possibility of false accepts, jus-
tifying the importance of this new property (M1). Note that false accepts exclude
attacks on the integrity of the authentication system (these are covered by other se-
curity properties), such as manipulating delay measurements to spoof a location or
tampering with client-side code to spoof a device fingerprint. For example, a location-
based scheme lacks this benefit if it is susceptible to colocation attacks, i.e., where
the attacker travels and colocates himself with the user in a highly targeted attack.
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M2. Resilient-to-Delayed-Replay is a security benefit of schemes in which
credentials are not static, but change relatively slowly, e.g., personal knowledge ques-
tions based on the user’s account activity, such as recent transactions. Such non-static
credentials, when compromised, limit the duration for which the attacker retains ac-
count access. Schemes with horizontal distance from the origin in Figure 4.2 (i.e.,
placed in H1, H2, or H3) offer this benefit.

M3. Resilient-to-Immediate-Replay is a security benefit of challenge-
response based schemes where the server issues a new challenge per authentication;
thus an attack simply capturing and replaying a static string fails. OTP schemes
offer this benefit, since the credentials expire either upon first use or within a short
time frame (e.g., 2 minutes), thereby substantially limiting the window for successful
replay. Schemes within H2 or H3 in Figure 4.2 offer this benefit.

M4. Resilient-to-Spoofing is a security benefit of schemes that leverage mea-
surement techniques (e.g., hardware or network-based) that are impractical for an
attacker to defeat at scale. For example, CPV [2] is Resilient-to-Spoofing, since the
measurements cannot be manipulated to make an attacker appear to be in a different
location (i.e., that of the victim user). Only schemes in H3 of Figure 4.2 offer this
benefit.

Table 5.1 cells corresponding to benefits M2, M3, and M4 are populated based
on the analysis in Section 4.3.3 (and visualized in Figure 4.2). The following sections
evaluate the schemes with respect to the remaining benefits.

5.1.1 Impact of Account Recovery on Security

In practice, authentication schemes are paired with backup mechanisms to help users
recover account access if they lose their credentials. The recovery mechanism should
not be easier to defeat than the primary scheme, but may sacrifice usability since it
is used less frequently.

For conventional password-based authentication, e-mail based password reset is
the standard recovery mechanism. Its security relies on the implicit assumption that
the user’s e-mail account is at least as well-secured as any systems that rely on it for
password reset. It is ideally expected that users choose a stronger password for pri-
mary e-mail accounts; security-conscious users may also use two-factor authentication.
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Table 5.1: Evaluation of geolocation, device fingerprinting, OTP, and PUF schemes as
stand-alone authentication schemes and in combination with passwords. Password au-
thentication is included as a baseline; OTP schemes are widely used in combination with
passwords; Sound-Proof [99] is a two-factor scheme that also provides some mimicry re-
sistance. • denotes the scheme provides the corresponding benefit (column); ◦ denotes
partial benefit; an empty cell denotes absence of benefit. ** denotes framework properties
introduced herein.
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Scheme Usability Deployability Security
– P1: Web passwords (PW) • • • ◦ • • • • • • • • • ◦ • • • • •

G
eo

lo
ca

tio
n L1: GPS and WPS • • • • • • ◦ • • • • • • • • ◦ ◦ ◦

L2: IP-address based tabulation • • • • • • ◦ • • • • • • • ◦ • ◦
L3: Measurement-based • • • • • ◦ ◦ • • • • ◦ • • • ◦ • •
L4: Robust location verification • • • • • ◦ ◦ • • • • • • • ◦ • • •

D
ev

ic
e

FP

FP1: System parameters/prefs. • • • • • • • • • • • ◦ • ◦ ◦ • • ◦
FP2: Audio+Canvas Chal./Resp. • • • • • • • • • • • ◦ • ◦ ◦ • • ◦ • •
FP3: HW Sensors • • • • • • • • • • • • • • • ◦
FP4: Clock skew • • • • • • • • • • • • • • • ◦ • • •
FP5: DNS Resolver • • • • • • • • • • • ◦ • ◦ ◦ • ◦ • ◦
FP6: Protocol-based • • • • • • • • • • • ◦ • ◦ ◦ • ◦ •

O
T

P

OTP1: OTP mobile app • • ◦ • • • • ◦ • • • • • • • • • • • • • •
OTP2: OTP USB token • • • • • • ◦ ◦ • • • • • • • • • • • • •
OTP3: SMS OTP • • ◦ • • ◦ • • ◦ • • • • ◦ • • • • • • • • ◦
OTP4: E-Mail OTP • • • • • • • • ◦ • • • • • • • • • • • • • ◦ • • ◦

PU
Fs PUF1: Strong PUF • • • • • • • • • • • • • • • • • • •

PUF2: Weak PUF • • • • • • • • • • • • • • • • • •
– Sound-Proof [99] • ◦ ◦ • • • • ◦ • • • • • ◦ • • • • • • ◦ • •

Combining passwords (PW) with secondary scheme

G
eo

.+
PW

L1: GPS and WPS • • • ◦ • • • • • • • ◦ • ◦ • ◦ •
L2: IP-address based tabulation • • • ◦ • • • • • • ◦ • • ◦ • • ◦
L3: Measurement-based • • ◦ ◦ • • • • ◦ • ◦ • • • ◦ • • •
L4: Robust location verification • • ◦ ◦ • • • • • ◦ • • • ◦ • • • •

D
ev

ic
e

FP
+

PW

FP1: System parameters/prefs. • • • ◦ • • • • ◦ • ◦ ◦ • • • • ◦ •
FP2: Audio+Canvas Chal./Resp. • • • ◦ • • • • ◦ • ◦ ◦ • • • • ◦ • • •
FP3: HW Sensors • • • ◦ • • • • • • • • • • ◦ •
FP4: Clock skew • • • ◦ • • • • • • • • • • ◦ • • • •
FP5: DNS Resolver • • • ◦ • • • • ◦ • ◦ ◦ • • • ◦ • • ◦
FP6: Protocols • • • ◦ • • • • ◦ • ◦ ◦ • • • ◦ • •

O
T

P+
PW

OTP1: OTP mobile app ◦ • ◦ • • ◦ • • • • • • • • • • • • • • •
OTP2: OTP USB token • ◦ • • ◦ ◦ • • • • • • • • • • • • • •
OTP3: SMS OTP ◦ • ◦ ◦ • • ◦ • • • • ◦ • • • • • • • • • ◦
OTP4: E-Mail OTP • • ◦ • • • ◦ • • • • • • • • • • • • • ◦ • • ◦

PU
Fs PUF1 + PW • • ◦ • • • • • • • • • • • • • • •
PUF2 + PW • • ◦ • • • • • • • • • • • • • •

– Sound-Proof + PW [99] ◦ • • ◦ ◦ • • • • • ◦ ◦ • • • • • • • • • • •
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E-mail based recovery can also be used for the geolocation and device fingerprinting
schemes evaluated herein; alternatives such as SMS-based OTP are also suitable. For
example, in a geolocation-based scheme, a user wishing to login from a new location
could be e-mailed a link through which they could confirm their new location.

5.1.2 Evaluation of Stand-alone Schemes

Table 5.1 summarizes our evaluation of four main categories of schemes: geolocation,
device fingerprinting, OTPs and PUFs as both stand-alone authentication schemes
and in combination with passwords, based on the augmented UDS criteria from Sec-
tion 5.1. Password authentication is included as reference; OTP schemes are included
as they are widely used in combination with passwords. While additional schemes
could have been included, those selected were chosen as examples to demonstrate
the comparative framework. Each row in the table corresponds to an authentication
scheme, and each column to a benefit; a cell with a bullet represents a benefit offered
by the scheme, an empty circle represents a benefit partially provided, and an empty
cell indicates that the benefit is not provided.

Web Passwords

For the new properties, web passwords provide No-False-Rejects since a correctly-
typed password will never be rejected, Easy-to-Change-Credentials since passwords
can be easily changed, and No-False-Accepts since an exact match is required. How-
ever, passwords lack Resilient-to-Delayed-Replay, Resilient-to-Immediate-Replay and
Resilient-to-Spoofing, since it is trivial to replay a captured password.

Location-based Schemes

Since L1-L4 in Table 5.1 are invisible to the user, they provide most of the usabil-
ity benefits. L3 (measurement-based) and L4 (location verification) may sometimes
take longer than conventionally considered convenient, thus providing only a par-
tial Efficient-to-Use benefit. Additionally, all but L1 (GPS/WPS) may miscalculate
the location and falsely reject users in some cases, and therefore do not fulfill No-
False-Rejects. Although L1 (GPS/WPS) may sometimes result in a small error in
location calculation, the calculated location will generally remain in the same city,
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and thus gets a bullet. None of L1-L4 are Easy-to-Change-Credentials, since changing
credentials would require the legitimate user to change their location.

For deployability, all of L1-L4 are Accessible; they do not require any explicit
user action. They are Negligible-Cost-Per-User, since the infrastructure expense is
independent from the number of users being served. They lack Server-Compatible as
they require server-side changes, but are Browser-Compatible (no client-side changes
needed). L3 is partially Mature since there are indications that it is being used in
practice [141]; L4 is not Mature. Finally, Non-Proprietary variations for all of L1-L4
are available.

L1-L4 are largely similar to each other in terms of security properties offered,
with the exception of Replay-Resistance and Spoofing-Resistance. Due to the small
guessing space, L1-L4 are not Resilient-to-Throttled-Guessing-Attempts and Resilient-
to-Unthrottled-Guessing-Attempts. Since location information must be stored server-
side, they are susceptible to the same exposure threats as passwords, namely Resilient-
to-Physical-Observation, Resilient-To-Internal-Observation, Resilient-to-Leaks-from-
Other-Verifiers, and Resilient-to-Phishing. No-Trusted-Third-Party is provided by
L3-L4 if the website runs their own geolocation infrastructure (e.g., deploys their own
verifier servers), but not by L2 (IP address tabulation) which typically rely on a third-
party service provider, and partially by L1 since GPS does not require a third-party
service whereas WPS may. None of L1-L4 are fully No-False-Accepts, since other
users (both legitimate users and attackers) could be residing near the legitimate user,
and thus could be indistinguishable to the server. They are not Resilient-to-Targeted-
Impersonation, since they are susceptible to targeted colocation attacks. They are not
Requiring-Explicit-Consent, since they are invisible to the user—except for L1, since
a GPS/WPS location request may trigger a browser permission prompt to the user,
but if the user allows the browser to remember the preference, no future prompts are
displayed. They are all partially Unlinkable, since leaking server-stored user location
information may narrow the search space for linking together multiple accounts across
websites (the attacker may still need to collect additional information).
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Device fingerprinting

FP1-FP6 deliver most usability benefits, since they are invisible to the user. However,
as significant changes in the device configuration (e.g., software or hardware upgrade)
may substantially change a device fingerprint, they do not provide No-False-Rejects.
They are Easy-Recovery-from-Loss since e-mail based recovery can be used, as with
password authentication. They are not Easy-to-Change-Credentials, since changing a
device fingerprint may require the user to obtain a different device.

For deployability, device fingerprinting schemes are Accessible, since they do not re-
quire any explicit user action. They are Negligible-Cost-Per-User, since the cost of im-
plementation is essentially independent of the number of users. They are not Server-
Compatible, as server-side implementation is required, but are Browser-Compatible.
As device fingerprinting has been used for anti-fraud applications [192, 123], but not
widely for user authentication, we consider FP1, FP2, FP5, and FP6 partially Mature;
FP3 and FP4 are not, as they have been demonstrated academically but are not used
in practice to our knowledge. FP1-FP6 are generally available via Non-Proprietary
implementations.

Many of the security properties are shared across FP1-FP6. They lack No-False-
Accepts, since users that own identical devices (or share the same device) may be
indistinguishable from each other (and for techniques such as clockskew, the overall
credential space is not large enough to rule out collisions). They lack Resilient-to-
Unthrottled-Guessing-Attempts, since none of the data collected thus far to our knowl-
edge indicates that the overall distribution of device fingerprints would offer distin-
guishability of more than about 30 bits [56, 113, 23, 59, 104, 7]. They lack Resilient-to-
Internal-Observation and Resilient-to-Phishing, since an attacker may collect device
information by running their own device fingerprinting scripts via XSS attacks or
phishing websites.1 They lack Resilient-to-Leaks-from-Other-Verifiers, since a user’s
device fingerprint will be similar across websites (varying only based on the particular
fingerprinting techniques that each website uses, and the method of storage used),
thereby leaking information that can be used to attack users’ accounts on different

1Collecting device information helps the attacker, but alone is not enough to defeat mimicry-
resistant schemes such as L4.
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websites. They are each individually partially Unlinkable since there may well be mul-
tiple users with colliding device fingerprints—the likelihood of this may diminish sub-
stantially when combining multiple techniques, however. Requiring-Explicit-Consent
is not provided, since device fingerprinting is invisible to the user.

The remaining security properties differ across FP1-FP6, as follows. FP3 and
FP4 are Resilient-to-Physical-Observation and Resilient-to-Targeted-Impersonation,
since they rely on device-specific manufacturing variations (even across devices of the
same model) and therefore can only be determined via measurement; the remaining
schemes only partially fulfill these properties since an attacker that visually observes
a user’s device may obtain or mimic the same device model. FP1 and FP2 have been
shown to provide enough distinguishing information to provide Resilient-to-Throttled-
Guessing-Attempts—to our knowledge the remainder have not, but may collectively
provide it if combined together [7].

OTP Schemes

For usability, OTP1-OTP4 are Memorywise-Effortless since they do not require the
user to memorize anything; they are Scalable-for-Users since they allow the user to
set up multiple accounts without impacting usability. OTP4 (e-mail) is Nothing-to-
Carry, since the user just needs to be able to access their e-mail account, whereas
OTP1 (mobile app) and OTP3 (SMS) are partially Nothing-to-Carry, assuming users
are typically in possession of their mobile phones at all times; OTP2 (USB token)
does not fulfill this property. All schemes are Easy-to-Learn, but Inefficient-to-Use
since they require the user to type an extra code. They all provide Infrequent-Errors
since typos are much less likely with a short 6-digit numerical code, and No-False-
Rejects. OTP1 and OTP2 lack Easy-Recovery-From-Loss since the secret is stored
on the device/token; OTP3 partially provides it since there is no secret stored on the
phone; OTP4 provides it, since a back-up e-mail address can be used. They all offer
No-False-Rejects, since a valid OTP will not be rejected. Easy-to-Change-Credentials
is provided in full by all; a user that needs to switch to a new OTP authenticator
could, e.g., login with their old authenticator, and then register the new one.

For deployability, all of OTP1-OTP4 are partially Accessible, as blind users would
require screen reading software to read the OTP code. Only OTP1 and OTP4 are
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Negligible-Cost-per-User, since SMS incurs a per-message cost to the server,2 and
USB tokens have a per-user cost. All schemes except for OTP2 (USB tokens) are
Browser-Compatible; in addition to requiring browser support (at this time, only
Google Chrome supports FIDO U2F), OTP2 tokens require a hardware interface (e.g.,
USB-A, USB-C, NFC) that is compatible with the user’s devices—while a variety of
hardware tokens are available, they typically only possess one or two interfaces. All
of OTP1-OTP4 are Mature and with Non-Proprietary implementations available.

For security, all of OTP1-OTP4 are No-False-Accepts, Resilient-to-Physical-
Observation, Resilient-to-Throttled-Guessing, and Resilient-to-Unthrottled-Guessing.
OTP1-OTP2 and OTP4 are Resilient-to-Targeted-Impersonation, but OTP3 only par-
tially provides this benefit—attackers may transfer the victim’s phone number to a
new device via a social engineering attack on the user’s mobile operator [161]; the ease
of conducting such an attack is subject to the security measures put in place by the
mobile operator. They are Resilient-to-Leaks-from-Other-Verifiers and Resilient-to-
Phishing. Only OTP2 (USB tokens) is Resilient-to-Internal-Observation—OTP1 is
susceptible to theft of the shared seed via malware, and OTP3/OTP4 are susceptible
to malware- and network-based [69] capture attacks.3 Only the e-mail mechanism
(OTP4) is Resilient-to-Physical-Theft. They all provide No-Trusted-Third-Party and
Requiring-Explicit-User-Consent. OTP1 and OTP2 are Unlinkable since a unique key
is used for each website; phone numbers (OTP3) are linkable across sites; e-mail ad-
dresses (OTP4) are partially Unlinkable, since users may freely create different e-mail
aliases.

PUFs

For usability, PUF1 and PUF2 lack Nothing-to-Carry and Easy-Recovery-From-Loss,
since they are tied to the device. PUF1 is Easy-to-Change-Credentials since virtually
endless challenge/response pairs can be generated; PUF2 is not, since the hardware

2Bulk SMS rates can be on the order of a penny each (varying by country). The total cost will
vary based on whether the user base is small or in the millions, and on average login frequency.

3Since the UDS framework combines both network- and device-based eavesdropping/interception
into a single property (Resilient-to-Internal-Observation), OTP1 and OTP3-OTP4 share the same
y-coordinate in Figure 4.2, though OTP3 should be lower since it appears to be susceptible to a
larger subset of network-based interception attacks [172].
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needs replacement if subjected to a model-building attack. All other usability prop-
erties are fulfilled, since no user effort is required.

For deployability, PUF1 and PUF2 are not Negligible-Cost-per-User, since hard-
ware would need to be deployed for each user, and they are not Server-Compatible,
Browser-Compatible, or Mature. Non-Proprietary designs for PUF2 are avail-
able [209], but not for PUF1 (to our knowledge).

For security, assuming a large enough space of challenge-response pairs, PUF1
and PUF2 fulfill No-False-Accepts, Resilient-to-Throttled-Guessing, and Resilient-
to-Unthrottled-Guessing. PUF1 provides Resilient-to-Internal-Observation and
Resilient-to-Phishing since challenge/response pairs can be exposed without conse-
quence; PUF2 does not provide the former, since it is susceptible to model-building
attacks, but it provides the latter since it only responds to challenges originating
from a verifier server. Both are Resilient-to-Leaks-from-Other-Verifiers. PUF1 and
PUF2 are neither Resilient-to-Physical-Theft nor Requiring-Explicit-Consent. PUF1
has No-Trusted-Third-Party and Unlinkable since every website can store a separate
set of challenge-response pairs, but PUF2 lacks these properties since it typically
requires a single server to verify challenge-response pairs (see Section 4.3.3).

Sound-Proof

For usability, Sound-Proof provides Memorywise-Effortless since there is no secret for
the user to memorize. It is partially Scalable-for-Users, since only a single device is
required, but it appears that under the current architecture each service requires a
separate app. It partially provides Nothing-to-Carry, since users with a smartphone
will typically carry it with them at all times. It is Easy-to-Learn, Efficient-to-Use,
and Infrequent-Errors as (aside from installing a smartphone app at setup time) it
does not require any user effort to use. It partially provides No-False-Rejects and
No-False-Accepts—the false accept and false reject rates are tunable via a threshold
value, and the authors show that the intersection between the two (the equal error
rate) is about 0.02%. It lacks Easy-Recovery-From-Loss, as the consequence of losing
the phone is similar to that of OTP1. For deployability, it lacks Server-Compatible
and Mature.

For security, Sound-Proof partially provides Resilient-to-Physical-Observation,
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since being able to record sound in the vicinity of the user can break the scheme
(it also lacks Resilient-to-Targeted-Impersonation, for this reason). It is Resilient-
to-Throttled-Guessing-Attempts and Resilient-to-Unthrottled-Guessing-Attempts. It
is not Resilient-to-Internal-Observation or Resilient-to-Theft, since the scheme can
be broken by malware on the phone or by device theft. It is Resilient-to-Leaks-From-
Other-Verifiers (since there is no static secret to be stored), Resilient-to-Phishing,
and No-Trusted-Third-Party. It is not Requiring-Explicit-Consent since it requires no
user action. It is Unlinkable, since different services can use their own apps on the
user’s smartphone.

5.2 Evaluation of Combined Schemes

The evaluation above naturally suggests that schemes offering some degree of mimicry
resistance may complement passwords by adding a new security dimension; and in-
visible schemes such as device fingerprinting and geolocation do so without further
burdening users. None of the latter (invisible) schemes, however, seem suitable as a
sole mechanism for user-to-web authentication because either the invisibility aspect
makes them limited to device-to-web authentication (see Section 4.2), or their security
space is so small that they lack the ability to uniquely identify users (e.g., suffer from
false accepts). This motivates exploring the resultant benefits when these schemes are
combined with passwords. This is also useful since some password usability drawbacks
might be ameliorated in the medium to long-term by use of browser-based and/or
stand-alone password managers.

When combining two authentication schemes, both sets of credentials should be
correct for the user to gain access. This then strengthens security. Ideally, the
implementation should limit any partial feedback, which might be beneficial to an
attacker using a divide-and-conquer strategy to independently defeat each scheme
individually. When password authentication is combined with an invisible scheme, if
the correct password is provided but the supporting invisible scheme fails, the server
can immediately fall back to a backup scheme such as e-mail OTP. Otherwise, allowing
retry authentication attempts benefits attackers, but not legitimate users (except in
cases of system error where a retry might succeed, since invisible credentials are not
entered by the user). In the event of an attack, this serves to notify the user that
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their password has been compromised; otherwise, it gives the user an opportunity to
reset their supporting authentication mechanism (e.g., by registering a new location
or new device).

In Table 5.1, a combined authentication scheme as described above only inher-
its the intersection of the usability and deployability benefits, and the union of the
security benefits—except for No-Trusted-Third-Party and Unlinkable.

The bottom half of Table 5.1 evaluates the schemes from the top half when used
in combination with passwords. The evaluation suggests that either geolocation or
device fingerprinting can be combined with passwords to improve security properties,
namely Resilient-to-Physical-Observation, Resilient-to-Throttled-Guessing, Resilient-
to-Delayed-Replay, Resilient-to-Immediate-Replay, and/or Resilient-to-Spoofing. To
further improve security, geolocation can be combined with one or more device finger-
printing schemes. While combining schemes, select those that maximize the resulting
overall benefits, e.g., combining L4 with FP2 and/or FP4. As a downside, this would
increase the probability of false rejects, assuming the failure of any scheme causes au-
thentication failure. PUFs provide many security benefits, suggesting that they could
be sufficient as a sole authentication mechanism. However, their major drawback is
that they lack most deployability benefits (in the web authentication context).

The usability drawbacks observed for the combined schemes in Table 5.1 are
in Efficient-to-Use for schemes that introduce a perceptible delay in authenticat-
ing the user, No-False-Rejects primarily due to variations in measurement or fuzzy
matching functions, and Easy-to-Change. The deployability drawbacks are in Server-
Compatible and Mature, for schemes that have not yet been widely used in practice.

5.3 Concluding Remarks and Recommendations

The primary focus of this work is to provide the first systematic and in-depth treat-
ment of mimicry resistance as an additional dimension of security for user-to-web
and device-to-web authentication schemes, which has received virtually no scrutiny
whatsoever. Segmenting the mimicry-resistance dimension into levels of replayability
and spoofability helps differentiate the ability of various schemes to resist mimicry
attacks. Evaluating schemes using this new dimension, we found that most web



95

authentication schemes have limited to no mimicry resistance as they rely fundamen-
tally on the knowledge of some secret that (once exposed) can be directly used by
the attacker for fraudulent authentication. As validation for the usefulness of this
work, we make the argument that the recommendations and insights offered herein
were only possible from consideration of this new dimension that we capture in our
comparative evaluation framework. Moreover, our work highlights the advantages of
utilizing mimicry-resistant techniques in web authentication, motivating further ex-
ploration into invisible and mimicry-resistant techniques, and providing directions on
how to explore and evaluate the ability of schemes to resist scalable attacks. Below,
we summarize the most significant insights and recommendations drawn from this
work.

Benefits of Employing Mimicry-Resistant and Invisible Schemes. Our
evaluation demonstrates that there are security advantages in augmenting user-to-
web authentication schemes with device-to-web schemes (especially device-to-web
schemes with some degree of mimicry resistance). The resulting combination offers
greater security, with minimal impact on usability if the scheme is also invisible.
In multi-factor authentication, combining highly usable schemes often enhances the
resultant (combined) benefits even when each individual scheme offers relatively few
additional security benefits (i.e., security benefits from Table 5.1 on p. 86 that evaluate
resilience against various exposure and mimicry attacks); this is because security
benefits are often additive (complementary). Among the new benefits defined in
our evaluation framework to incorporate different properties associated with mimicry
resistance, benefits M2, M3, and M4 in Table 5.1 directly reflect the level of effort
that an attacker must expend to defeat an authentication scheme after the exposure
of a secret.

Among the schemes evaluated in Table 5.1, we find that mimicry resistance is of-
fered by some variations of device fingerprinting, several OTP-based schemes, robust
Internet geolocation methods, and certain variations of Physically Unclonable Func-
tions (PUFs). A challenging obstacle in reinforcing password authentication with
additional schemes is doing so while minimizing or entirely avoiding deployability
or usability penalties [86]. As such, our framework also includes two new usability
benefits (U9: No-False-Rejects and U10: Easy-to-Change-Credentials in Table 5.1)
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relevant to device-to-web and mimicry-resistant schemes. Geolocation and device
fingerprinting in particular offer substantial deployability advantages, and are highly
usable since they are invisible in that they require no user involvement, both for setup
(i.e., registration) and for login. We therefore recommend augmenting password au-
thentication with one or more schemes that are both invisible and offer mimicry
resistance—among the schemes evaluated in Table 5.1, L3, L4, FP2, FP4, FP5, and
FP6 are strong contenders.

Limiting Partial Feedback with Invisible Schemes. As discussed in Sec-
tion 5.2, we recommend that when password authentication (or an alternative primary
authentication scheme such as OTP) is augmented with an invisible scheme, any par-
tial feedback should be limited upon failed login attempts. Since invisible schemes
are device-to-web by definition, the credentials are provided by the device and are
therefore not prone to user error such as typos. Successful validation of a password
or OTP, but failed validation of an invisible scheme such as device fingerprinting,
indicates either system error or an attacker that has broken the primary authenti-
cation scheme. In either case, the website should immediately revert to a fallback
authentication scheme (whose security is no weaker than the primary scheme, as per
p. 97).

Attack Scalability as a Criteria for Scheme Selection. Plotting authen-
tication schemes along both exposure-resistance and mimicry-resistance dimensions
(Figure 4.2 on p. 66) gives a novel representation of attack scalability, where a scheme’s
ability to resist scalable attacks is conveyed by its distance from the origin. The new
framework thus allows for a more comprehensive evaluation of web authentication
schemes by their ability to resist both exposure and mimicry, and helps visualize rel-
ative resistance to scalable attacks, represented as a function of both components. We
recommend that attack scalability (i.e., the difficulty of scaling an attack to break
a large number of accounts) be used as a key criteria by websites for evaluating
the security offered by authentication schemes, since we believe it best reflects the
overall resilience of web accounts to compromise. In contrast, evaluating a scheme’s
resilience to targeted attacks (i.e., targeting one or a few individuals, as opposed to
a large number of accounts as aforementioned) requires careful consideration of nu-
merous specific scenarios that depend on each individual user; for example, despite
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the fact that schemes relying on a hardware token are generally considered to be
stronger than password authentication, and despite the fact that stealing large num-
bers of hardware tokens is a highly unscalable attack, an individual user’s hardware
token may still be easily stolen by a malicious roommate in a highly targeted attack.
Therefore, determining appropriate defenses against targeted attacks depends on the
circumstances and needs of each individual user, and recommendations should be
tailored accordingly (beyond the scope of the recommendations herein).

Selection of Fallback Authentication Schemes. While multi-factor au-
thentication typically requires all factors to pass in order to grant access, account
recovery schemes provide an alternative authentication path that attackers can ex-
ploit to bypass the primary authentication mechanism. Therefore, while combining
multiple factors strengthens security, we recommend that the security level of any
alternative attack path (e.g., account recovery mechanisms) be no weaker than the
primary scheme. Figure 4.2 is a helpful tool for choosing a fallback authentication
scheme, as schemes plotted close to each other offer similar resilience to scalable at-
tacks. Further insight on fallback schemes is offered in the discussion on FIDO UAF
in Section 6.5.

Future Directions for Developing New Mimicry-Resistant Schemes. An
interesting avenue for future work (motivated by our discussion on Robust Loca-
tion Verification and Sound-Proof in Section 4.3.3) is to identify and explore further
measurement-based techniques that require no user effort while providing mimicry
resistance when a trusted device-to-web channel can be established, e.g., by means of
a TPM. In particular, some authentication schemes that offer mimicry resistance for
user-to-device authentication (see Khan et al. [101]) may be augmented with TPM
(by providing cryptographically-signed touchscreen sensor readings for, e.g., a swipe
gesture recognition scheme) to offer mimicry resistance for user-to-web authentication
as well. Moreover, an example scheme analogous to FIDO UAF (see Section 6.1.1)
wherein each device is provisioned with a manufacturer-specific attestation key and
can generate on-device signing keys (in this case, for signing sensor readings as afore-
mentioned) could potentially occupy the top-right corner of Figure 4.2, as it would
require the attacker to both steal the user’s device and mimic the user. Note that this
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example scheme would be a user-to-web scheme (and not a two-stage scheme involv-
ing a user-to-device and device-to-web component), since the user input is validated
by the server, with the TPM functioning to defend against forged input.



Chapter 6

Comparative Analysis of SSO Schemes

Single Sign-On (SSO) systems have the potential to strengthen web authentication
while largely retaining the benefits of conventional password-based authentication.
We analyze in depth the state-of-the art of web SSO through the lens of usability, de-
ployability, security, and privacy, to construct a taxonomy and evaluation framework
based on different SSO architecture design properties and their associated benefits
and drawbacks.

SSO is an umbrella term for schemes that allow users to rely on a single mas-
ter credential to access a multitude of online accounts. We categorize SSO schemes
across two broad categories: federated identity systems (FIS) and credential managers
(CM). FIS establishes a means of communicating user identity across administrative
domains; this allows users to authenticate to an Identity Provider (IdP) that can
communicate proofs of user identity to Service Providers1 (SPs), thereby granting
users access to SP services without needing to re-authenticate. CM-based SSO stores
SP-specific credentials (e.g., passwords or cryptographic keys) and automatically uses
them to authenticate to SPs on behalf of users; CMs are typically protected by a single
master credential such as a password or a hardware token containing a cryptographic
key (e.g., smart card). We classify both FIS- and CM-based SSO schemes into more
granular subcategories, while identifying benefits and drawbacks associated with dif-
ferent approaches. While SSO has long been used in enterprise networks to enable
users to access network services and applications with a single set of credentials (e.g.,
Kerberos [143]), we focus specifically on SSO designed for web authentication.

Our primary contributions in this chapter are summarized as follows:

1. While prior work has explored various aspects of SSO security, this is to our
knowledge the first to perform a comprehensive analysis and comparison of a
broad range of SSO systems proposed and/or deployed within the last decade,

1Often also referred to as Relying Parties (RPs).
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including two hardware-based SSO schemes that are undergoing large-scale de-
ployment, FIDO UAF [117] (as of this writing, currently being standardized as
the W3C Web Authentication API [22]) and Mobile Connect [79].

2. We identify different design properties of SSO schemes and develop a taxonomy
built on a categorization scheme across the design properties. We also develop
a corresponding evaluation framework that highlights benefits and drawbacks
of SSO schemes based on their design properties, and analyze a representative
subset of 14 SSO schemes under this framework.

3. We identify trade-offs between different design goals, by identifying how various
SSO schemes can be augmented with existing techniques to achieve specific
benefits while forgoing others. Such trade-offs allow SSO schemes to be tailored
to different needs and scenarios.

The remainder of this chapter is organized as follows. Section 6.1 provides an
overview of the SSO protocols evaluated. Section 6.2 presents the new classification
and evaluation framework, and Section 6.3 provides a detailed evaluation of each
scheme. Section 6.4 discusses insights from the evaluation, and Section 6.5 concludes
and provides recommendations.

6.1 Overview of SSO Protocols

To give technical context for our comparative analysis, we give a simplified overview
of the schemes analyzed. Pointers to in-depth overviews are referred to by citations
herein.

6.1.1 Credential Managers

As cited in Section 2.4.1, CM-based schemes seem to gain wider acceptance from users
when they are already built into their browser or OS. This motivates our analysis of
Firefox Sync [134] (password-based CM) and FIDO UAF [117] (public-key based CM).
We also analyze Impostor [156], since its properties help demonstrate our taxonomy.
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Firefox Sync

The Firefox password manager saves user-created passwords (an updated interface
will offer a random password generator [133]) when typed into a website, and offers
to automatically enter them on subsequent visits. Users may also manually view
their saved passwords through a graphical interface. The password database is stored
locally in a file, which the Firefox Sync [134] protocol synchronizes across users’
devices. Below, we give a simplified overview of two versions of this protocol.

Firefox Sync 1.5 locally generates a symmetric key to encrypt the user password
database. The key is stored locally, and the encrypted password database is uploaded
to the user’s Sync account, accessed with a user name and password that is only typed
in once per device during the initial Sync setup [205]. After setting up Sync on one
device, the symmetric key can be transferred to another user device over a secure
connection initiated via a “pairing” process that first establishes a shared session
key. The pairing process uses J-PAKE [83] to display a short code on one device,
which the user types into the second device. User devices remain synchronized by
downloading the latest copy of the encrypted password database from the Sync server,
and uploading any updated contents if necessary. Sync 1.5 was superseded by Sync
2.0, since many users did not understand the purpose of the pairing process, and
expected to access their password database from any device using only their Sync
password. Users were generally unaware of the existence of the encryption key and
of the option to print it out for backup purposes, and consequently many users lost
access to their passwords if they only owned a single device that they replaced without
first backing up their key.

Firefox Sync 2.0 [206] locally derives two symmetric keys from the user’s Sync
password using PBKDF2 [98] and HKDF [107]. One key is used for authenticating
to the user’s Sync account (thereby not revealing the Sync password to the server),
and the second key is used to encrypt the password database before uploading it
to the server. This eliminates the need for device pairing; setting up a new device
only requires the user to enter their password during Sync setup. Although iterated
hashing is used both on the client side (to generate the authentication key) and on the
server side (for storing a hashed version of the authentication key) to slow down offline
attacks, the strength of the encryption key is still dependent on the user-chosen Sync
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password (in contrast to Sync 1.5, where the encryption key is randomly generated).

By default, both versions of Firefox Sync store passwords unencrypted on the
client system. Users may optionally select an offline master password (separate from
the synchronization password), from which a key is derived to encrypt the password
database on-disk. Chrome Sync [71], which employs a synchronization protocol sim-
ilar to that of Firefox Sync 2.0, uses the OS’s built-in credentials manager (which
typically encrypts its contents with users’ login passwords) to store passwords client-
side.

FIDO UAF

FIDO UAF [117] (Universal Authentication Framework), currently being standard-
ized as the W3C Web Authentication API [22], uses client-side UAF-enabled software
or hardware authenticators to authenticate users to SPs via public-key cryptography.
UAF authenticators are typically hardware modules built into end-user devices, but
they may also be software-based. When users register a UAF device with an SP
account (each device must be individually registered with each SP), the UAF client
generates an SP-specific asymmetric key pair (private keys are stored on-device; cor-
responding public key certificates, which are either self-signed or signed using an
attestation key discussed below, are sent to SPs). Local authentication, such as a
PIN or biometric, is used to “unlock” the FIDO authenticator and initiate the cryp-
tographic challenge-response protocol to authenticate users to SPs.

Hardware-based UAF authenticators with secure key storage capabilities can be
certified by the FIDO Alliance and provisioned with a signed attestation certificate
containing metadata about the device (e.g., device manufacturer, method of local
user authentication used). SPs can validate the certificate for a higher degree of user
identity assurance, since hardware-based UAF clients can protect against key theft
to a much higher degree than software-based UAF clients. Attestation certificates
can be revoked in the event that vulnerabilities are found (e.g., which may allow the
extraction of private keys from the device) in a hardware UAF client, to aid SPs in
phasing out support for vulnerable hardware.
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Impostor

Impostor [156] is a proxy-based CM that stores users’ passwords on a remote IdP.
Passwords are automatically submitted to SPs that the user visits through the IdP
proxy. Its design goal was to provide a means of using an untrusted machine without
exposing any long-term secret to it. Therefore, the authors suggest that the user-
to-IdP authentication be done through a challenge-response based scheme, e.g., a
hardware one-time-password (OTP) token (which we assume in our analysis).

6.1.2 Federated Identity Systems

An identity federation consists of one or more member IdPs and one or more member
SPs such that users can authenticate to member SPs through member IdPs. The
authentication process consists of a user-to-IdP authentication stage, followed by an
IdP-to-SP identity assertion to convey the user’s identity information (Section 6.2.3
outlines different methods for doing so) and assure the SP that the user has been au-
thenticated by the IdP. FIS protocols can have proprietary or open specifications—all
protocols discussed herein have open specifications. Some schemes that we evaluate
are protocols (such as OpenID 2.0, OAuth 2.0, and OpenID Connect), and others are
specific implementations of protocols, such as Mobile Connect (a proprietary imple-
mentation of OpenID Connect) and Shibboleth (a free implementation of SAML2).
The set of schemes we evaluate were selected to best highlight the features of our
taxonomy and evaluation framework.

Different organizations using the same protocol are not necessarily part of the
same federation. Moreover, both IdPs and SPs may support SSO authentication via
multiple protocols and be a member of multiple federations. Section 6.2.2 discusses
different types of federations based on how IdP-SP associations are established.

Shibboleth

Shibboleth [175] is a popular open-source FIS implementation based on SAML [149],
a highly flexible and extensible XML-based standard for exchanging identity infor-
mation between federation members. SAML’s high flexibility requires many protocol
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message format details to be agreed upon between federation members, thereby reduc-
ing deployment scalability [187]. A high-level overview of the protocol is as follows:

1. The user visits an SP, and clicks the login link to initiate the authentication
process.

2. A discovery process (see Section 6.2.2) takes place to discover the user’s IdP,
e.g., by presenting a list of supported IdPs to the user.

3. The user is redirected to their IdP. If an authenticated session does not already
exist with the IdP, the user logs in.

4. The IdP generates an authentication response and attaches it to an HTTP
POST request when redirecting the user back to the SP (while the authenticity
and integrity of the authentication response is protected by TLS, it may also
be signed by the IdP and encrypted with the SP’s key as an additional layer of
protection [176]).

5. The SP receives and validates the authentication response, and creates an au-
thenticated session for the user.

OpenID 2.0

The OpenID 1.x [164] and 2.0 [163] family of specifications were designed to be a
much simpler (but also less flexible) FIS scheme compared to SAML. The simpler
protocol message format enables OpenID-based IdPs and SPs to communicate with-
out requiring prior agreement on a large set of protocol parameters as was the case
with SAML. The design philosophy of OpenID was to allow any domain owner to set
up an IdP (users can therefore set up their own IdP if desired) and provide services
to any SP without prior coordination. The OpenID user ID format is a URL (or
XRI [48]) of a user profile page; the page contains metadata that points SPs to the
IdP URL to which the user should be redirected for authentication. The high-level
protocol flow is similar to that of Shibboleth as described above, but the IdP dis-
covery step consists of retrieving the metadata from the user’s supplied profile URL.
OpenID SPs experimented [191, 169] with various user interface designs for obtaining
users’ OpenID identifiers—generally, users would select their IdP from a list of logos
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of the most popular IdPs, and subsequently type in their user name (the SP could
then determine the correct IdP URL corresponding to the user name); more advanced
users could pick the option to manually enter their own URL instead (e.g., if they
host their own IdP or use a lesser-known IdP).

OAuth 2.0

OAuth 1.0 [11] and 2.0 [84] enable users to authorize web applications to retrieve
resources (e.g., photos or documents) from or perform actions (e.g., upload a new
document) on a user account on a resource server without revealing their account
password to web applications. However, OAuth can also be used as a FIS if the role
of the resource server is to store identity information. A high-level overview of OAuth
2.0 as an authorization protocol is as follows:

1. The user visits an SP and initiates the authentication process, typically by
clicking on a button from among a list of supported IdPs.

2. The user is redirected to the IdP for authentication, and authenticates to the
IdP.

3. The IdP presents the user with a list of resources that the SP has requested
permission to access. At the minimum, the SP requires access to the user’s
identity information. However, the SP may request additional permissions (e.g.,
accessing the user’s contact list or permission to make social media posts on the
user’s behalf).

4. If the user approves the permissions requested by the SP, the IdP generates an
authorization code and encodes it as a URI parameter when redirecting the user
back to the SP.

5. The SP submits the authorization code to the IdP in exchange for an access
token. Access tokens may be short-lived, when used by an SP to only verify a
user’s identity and establish an authenticated session, but may also be long-lived
if SPs request persistent access to perform actions on the user’s IdP account
(e.g., periodically obtain an updated copy of the user’s social media contacts)
even while the user is not logged into the SP.
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6. The SP queries the IdP to obtain a user identifier (e.g., e-mail address) that is
associated with the access token; the SP then creates an authenticated session
(i.e., initializes the server-side session, and provides a corresponding session
cookie to the browser) for the account corresponding to the user identifier.

Unlike OpenID, OAuth requires SPs to register out-of-band with IdPs they wish to
support. The registration typically requires the SP administrator to submit an online
form on the IdP website and establish a shared secret (typically a randomly-generated
string) for the SP to include when making API calls to the IdP. The primary purpose
of the shared secret is to prevent unauthorized use of access tokens (in case of token
theft), which provide access to user information and resources (albeit limited by the
permissions granted by the user in step 3 above) stored by the IdP. OAuth 2.0 relies
on TLS to protect the secrecy of the shared secret.

OpenID Connect

OpenID Connect [170] defines a standardized mechanism for exchanging identity in-
formation over OAuth 2.0. The high-level protocol overview is as described above
for OAuth 2.0, except that to identify the user in the final step, the SP requests
an ID token (in a standard JSON Web Token [97] format) from the IdP. The more
strictly-defined protocol message format, compared to OAuth 2.0, facilitates building
code libraries for SPs that can interoperate with multiple IdPs. OpenID Connect
also includes a number of optional (but rarely used) features such as dynamic client
registration, which allows SPs to automatically register with IdPs instead of going
through an out-of-band process; this is intended to allow OpenID Connect to operate
more similarly to OpenID 2.0, i.e., to allow any SP to request user authentication
services from any IdP, without any prior coordination. OpenID Connect also defines
a framework for establishing federated relationships; this allows co-operating IdPs to
form a federation, and allows SPs to register with the federation (instead of with each
individual IdP) to gain access to the services of all member IdPs.

Mobile Connect

Mobile Connect [79] is an OpenID Connect federation operated by the GSM Asso-
ciation; its IdPs consist of mobile network operators (MNOs) worldwide, and users
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authenticate to IdPs using their mobile phones as hardware authenticator tokens.
Mobile Connect redefines several optional API parameters as mandatory [78], such as
the nonce and state parameters used for binding an access token to an HTTP session;
the acr_values parameter is used by SPs to communicate a required Level of Assur-
ance (LoA) to IdPs for user authentication on a 4-point scale, as defined by ISO/IEC
and ITU-T [64, 93]:

• LoA1: Minimal confidence that user’s identity is consistent across multiple
authenticated sessions (e.g., using a device’s MAC address). Not applicable to
Mobile Connect.

• LoA2: Some confidence in user’s asserted identity. Requires at least one au-
thentication factor; typically implemented by Mobile Connect IdPs by sending
an SMS one-time password (OTP) to their mobile phone (to verify possession),
which the user types into the device (e.g., computer) they are authenticating
from.

• LoA3: High confidence in user’s asserted identity. Requires at least two authen-
tication factors; typically implemented by Mobile Connect IdPs by requiring a
user-to-device authentication mechanism (on the mobile device) such as a 4-
digit PIN or a biometric before displaying the OTP that the user needs to type
in.

• LoA4: Similar to LoA3, but requires in-person identity proofing (i.e., the user’s
online identity is associated with a real-world individual). Not currently sup-
ported by Mobile Connect.

Mozilla Persona

Mozilla Persona [82] was2 designed to enable users to tie their online identities to
their e-mail addresses, and for e-mail providers to fill the role of IdPs for their users.
Through public-key cryptography, Persona IdPs delegate to users’ browsers the re-
sponsibility of generating and sending identity assertions to SPs; this has the privacy

2Due to limited adoption, Mozilla discontinued internal development of the project in 2014 [34].
Nevertheless, it remains an interesting protocol to study due to its unique approach and the interest
it received in the security community.
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benefit that IdPs do not learn of the SPs that users visit. Similarly to OpenID 2.0,
automatic discovery (i.e., a protocol mechanism allowing for SPs to request service
from IdPs without any prerequisite human intervention such as out-of-band key es-
tablishment) is supported, allowing any Persona SP to request user authentication
services from any Persona IdP. A high-level protocol overview is as follows:

1. The user visits an SP website and clicks on a “Log in with Persona” button,
which pops up a new window in which the user enters their e-mail address.

2. The browser (using client-side JavaScript) determines whether the user’s e-mail
provider supports Persona by checking for the presence of a browserid file acces-
sible from the e-mail provider’s domain, at the location https://idp.domain/.well-
known/browserid. This file includes the IdP’s public key used for signing certifi-
cates, and the URL at which the IdP’s users should be redirected for authenti-
cation.

3. The user is redirected to the URL specified by the browserid file, and authenti-
cates to their IdP.

4. The browser (using client-side JavaScript) generates a public-private key pair
and sends the public key to the IdP. The IdP returns a signed user certificate,
containing the browser’s public key.

5. The browser generates and signs an identity assertion for the SP that the user
wishes to authenticate to. The signed assertion is sent to the SP, along with
the user certificate from the previous step.

6. The SP verifies the IdP’s signature (the IdP’s public key can be obtained from
the browerid file discussed in step 2) on the user certificate, and subsequently
the browser’s signature on the identity assertion.

7. The SP initiates an authenticated session for the user.

Due to limited adoption of Persona by e-mail providers, Mozilla introduced a
fallback IdP to authenticate users whose e-mail providers did not support Persona.
Users could create a Persona account on the Mozilla fallback IdP, by using their e-
mail address as their user name. Upon account creation, the fallback IdP e-mails the
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user a verification URL, which the user clicks to verify that they control the e-mail
address. Creating the Persona account requires users to select a password, to be used
for authentication in step 3 above, when the user is forwarded from an SP to the
Mozilla fallback IdP URL for authentication.

For some e-mail providers that support OAuth 2.0, the Mozilla fallback IdP acted
as an OAuth 2.0 bridge: instead of the user having to create a password for their
Persona account and verifying possession of their e-mail address through a verification
URL, users were instead redirected to their e-mail provider to authenticate via OAuth
2.0. In effect, the Mozilla fallback IdP acts as an SP to request an OAuth access
token (see Section 6.1.2) from the user’s e-mail provider. The fallback IdP then
uses the access token to obtain the user’s e-mail address from the e-mail provider,
and compares it with the e-mail address provided by the user to verify the user’s
possession of the e-mail address. The benefit of this approach (compared to the
default behaviour of the fallback IdP as described above) is that the user does not
have to create a new password for use with Persona.

SecureKey Concierge

SecureKey Concierge [179] is a privacy-focused SSO system that enables IdPs to
provide user authentication to SPs through an intermediary service that performs
triple blinding: SPs are blinded from users’ selected IdPs, IdPs are blinded from the
SPs that users access, and SecureKey is blinded from any personally-identifying user
information. SecureKey is used by various online services offered by the Government
of Canada, and the approved list of IdPs currently consists of Canadian banking
institutions. A high-level protocol overview is as follows:

1. The user visits an SP and initiates the authentication process by clicking on a
link to authenticate through SecureKey Concierge.

2. The user is prompted to choose from a list of IdPs approved by SecureKey.

3. SecureKey forwards the user to their selected IdP for authentication.

4. Upon successfully authenticating the user, the IdP generates a meaningless-
but-unique identifier (MBUN) for the user. The user is then redirected back to
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SecureKey, along with the MBUN. The MBUN blinds SecureKey from users’
real-world identities.

5. SecureKey internally maps the MBUN to an internal Persistent Anonymous
Identifier (iPAI). The iPAI is used to generate an RP-specific (i.e., SP-specific)
Persistent Anonymous Identifier (rpPAI) to forward back to the SP. Generating
a unique rpPAI for each SP prevents colluding SPs from correlating the user’s
identity across accounts.

6. SecureKey redirects the user back to the SP, along with the rpPAI.

7. The SP initiates an authenticated session for the user.

The protocol flow as described above includes two authentication flows that are
chained together:

1. SecureKey acts as an IdP when interacting (over either Shibboleth or OpenID
Connect) with SPs. The SP forwards users to SecureKey for authentication,
and when the process is completed the SP only receives an rpPAI in an authen-
tication response message signed by SecureKey.

2. SecureKey acts as an SP when interacting (over Shibboleth) with the user’s
selected IdP: SecureKey forwards users to their selected IdP for authentication,
and receives a signed authentication response containing the MBUN.

SAW

SAW [195] leverages e-mail addresses and the existing SMTP e-mail system to build
a FIS. The protocol overview is as follows:

1. The user visits an SP and types in their e-mail address to initiate authentication.

2. The SP sends the user an e-mail containing a verification link to complete
the authentication process. The link contains a string that combines a string
generated by the SP with a string generated by the user’s browser, thereby
binding the verification link to the user’s session.

3. The user clicks the link, and the SP initiates an authenticated session.
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6.2 Classification and Evaluation Framework

To evaluate the SSO schemes discussed in Section 6.1, we first define 14 benefits (Sec-
tion 6.2.1) related to usability, deployability, security, and privacy. We then classify
schemes across 5 design properties (defined in Sections 6.2.2 through 6.2.6), together
forming a taxonomy for SSO schemes; each of these sections define categories asso-
ciated with the respective property, and conclude with an assessment of the benefits
that can or cannot be provided by schemes in each category.

6.2.1 Benefits Provided

Below, we define 14 benefits relating to usability, deployability, security, and privacy
aspects of SSO systems.

Usability

B1: Portable-Identity-Across-IdP. Users can change their IdP without up-
dating their SP accounts (i.e., without having to reconfigure each of their SP accounts
to point to their new IdP). This is a usability benefit, as users may wish to change
their IdP due to, e.g., changes in policy or pricing from their existing IdP, wanting to
benefit from features offered by another IdP, replacing a hardware authenticator, or
wanting to host their own IdP. This benefit is partially provided by schemes where the
user can only change to another vetted IdP (see B5: No-IdP-Vetting benefit) within
the same federation.

B2: No-Device-Setup. No software or hardware configuration (e.g., generating
or transferring cryptographic keys) is required by the user when authenticating from
a new device.

B3: No-Hardware-Token-Required. Users do not need to carry around
a hardware authenticator token. Schemes that restrict users to a single hard-
ware authenticator, such as a mobile phone, lack this benefit. Schemes that allow
IdPs to specify their own authentication mechanism (see Section 6.2.5 for more de-
tailed discussion on user-to-IdP authentication) are assumed here to use conventional
password-based authentication (unless stated otherwise), since this is the widespread
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practice.
B4: Resilient-to-Temporary-Service-Outage. Users can continue to authen-

ticate to SPs even during a temporary outage of a remote server providing an SSO
service. As discussed further in this section, the type of SSO scheme determines the
remotely-hosted service being relied upon, e.g., an IdP, discovery server, or synchro-
nization server. This is also a deployability benefit, since it reduces the risk for SPs
that they will lose user traffic in the event of an IdP outage.

Deployability

B5: No-IdP-Vetting. IdPs do not need to register with a federation operator,
thereby facilitating deployment. This also provides users with a wider range of IdP
choices, and even allows them to host their own IdP.

B6: No-SP-Sponsoring. SPs do not need to manually register with each indi-
vidual IdP that they wish to support, thereby facilitating deployment.

B7: No-SP-Stored-User-Secret. The SP does not need to store any user se-
cret, thereby facilitating SP implementation and eliminating the possibility of leaking
secret credentials in the event of an SP server compromise.

Security

The following three properties (B8a, B8b, and B8c) reflect whether the ability of
attackers to extract information from three different entities (user device, remote IdP,
and SP, respectively) can be leveraged to impersonate the user. We exclude active
attacks, i.e., involving attackers with persistent and full control over a user device,
since this is an extremely challenging threat model for any authentication scheme to
defend against. We also exclude session hijacking from our analysis, since SSO does
not offer any inherent defense against such attacks—instead, defense against session
hijacking can be offered by complementary mechanisms such as token binding (cf.
Section 2.4).

B8a: Resilient-to-Client-Leaks. Attackers cannot defeat user authentication
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by extracting (e.g., via malware) data from users’ access devices, such as keystrokes
or data stored on disk or memory.

B8b: Resilient-to-SP-Leaks. Attackers cannot defeat user authentication by
extracting (e.g., via server-side software vulnerabilities) user-specific data from the
SP, such as passwords or cryptographic authentication keys.3

B8c: Resilient-to-Third-Party-Leaks (e.g., IdP-leaks). Attackers cannot
defeat user authentication by extracting (e.g., via server-side software vulnerabilities)
user-specific data from a trusted remote server (e.g., an IdP, bridge IdP, or synchro-
nization server), such as passwords or cryptographic authentication keys.

B9: Signals-Assurance-Level. This is a security benefit, whereby the IdP can
convey to SPs the level of assurance (LoA) that it can provide in the user’s identity.
LoA is typically dictated based on the strength of the authentication mechanism used.
For example, users authenticated with two-factor authentication would have a higher
LoA than users authenticated with only a password.

B10: SPs-Can-Filter-IdPs. SPs can restrict the set of IdPs that they wish to
support (via whitelist or blacklist), based on any criteria the SP chooses. For example,
based on their needs, SPs may prefer to only support IdPs that offer certain security
measures such as Signals-Assurance-Level, IdPs that use two-factor authentication,
or IdPs that tie user identity to a real-world attribute such as a telephone number or
physical address.

B11: No-Impersonation-by-Third-Party. The SSO scheme does not provide
any remote server with the ability to impersonate a user. A scheme partially provides
this benefit if impersonation attempts can be detected by the user. For example, with
conventional password-based authentication with e-mail recovery, a malicious e-mail
provider may force a password reset on the user’s account to gain access, but this is
detectable by users since it results in a denial-of-service.

Privacy

3Extraction of server-specific data, such as TLS keys that facilitate man-in-the-middle attacks
against all users of the SP, are excluded. SSO does not offer any inherent defense against such
attacks, and complementary mechanisms are needed.



114

B12: Private-Browsing. The IdP has no knowledge of the SPs that its users
authenticate to. We also provide this benefit to schemes where the IdP is hosted on
a device that is under the user’s control.

B13: Unlinkable-Across-SPs. SPs are not provided with any user identifiers
that are linkable across different SP accounts. When evaluating schemes for this
benefit, we do not consider other mechanisms that colluding SPs may employ (e.g.,
browser fingerprinting [56], or collecting personally-identifiable information from the
user such as their e-mail address) to find links between different SP accounts.

B14: No-Sharing-of-User-Data. Schemes that authorize SPs to access user
information from IdPs do not offer this benefit. For example, OAuth 2.0 and OpenID
Connect are widely used by major IdPs (namely Google and Facebook) to provide SPs
with access to account information (e.g., contact lists and demographic information),
and support long-term access tokens that allow SPs to access account information
from IdPs even when the user is logged off.

6.2.2 IdP-SP Association Model

Figure 6.1 (p. 120) illustrates different models by which IdP-SP associations are es-
tablished. Typically, each IdP is associated with its own namespace. For example,
user John Smith from IdP1 and user John Smith from IdP2 are separate identities.
Each user-IdP pair is expressed by a unique representation whose format is specified
by the SSO protocol, e.g., OpenID 2.0 designates a unique URL for each user under
the IdP’s domain, and Mozilla Persona uses e-mail addresses under the IdP’s domain.
An IdP-SP association is characterized by an SP allowing users to identify themselves
by their ownership or control over an account or resource under the IdP’s namespace.
Such an identification process requires a protocol that enables the user to prove their
control over the IdP account. We describe six models of IdP-SP association below,
and provide a summary in Table 6.1 (p. 120). For each model, we also specify whether
the user identity namespace is managed by the user’s IdP, a federation operator, or
whether each SP manages its own user identity namespace (e.g., as is the case with
credential manager schemes).

A1: Decentralized association (IdP-managed namespace). This encom-
passes “open” protocols in which any entity implementing the protocol can become
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an IdP or an SP. For example:

(a) Mozilla Persona: The only requirements to become an IdP are to (1) own a
domain name; (2) place a text file on the web server (as explained in Sec-
tion 6.1.2) containing metadata such as the URL for the user authentication
endpoint; and (3) assign user identifiers formatted as a standard e-mail address
userid@domain.com (it is not required for the IdP to actually run an e-mail
server). Any website can become a Persona SP by implementing the proto-
col as described in Section 6.1.2 (no registration with a central authority is
required).

(b) OpenID 2.0: Similar to Persona, becoming an IdP requires only the implemen-
tation of the protocol as described in Section 6.1.2. No registration with any
central authority is required, neither for IdPs nor for SPs. In OpenID 2.0, user
identities are in the format of a URL (e.g., a profile page) over which the user
proves their control by authenticating through the IdP that hosts the URL.

A1 protocols provide No-IdP-Vetting and No-SP-Sponsoring: Together, these ben-
efits provide the deployability benefit that all SPs and IdPs can implement the pro-
tocol without requiring co-ordination. Users also have the freedom to either create
an account on an existing IdP or to establish their own IdPs if they wish to do so.

However, A1 protocols lack Signals-Assurance-Level: In an implicit SP-IdP as-
sociation model, SPs cannot determine users’ means of authentication—even if IdPs
were to provide the information, SPs cannot rely on it without a pre-established trust
relationship.

A2: Explicit association (IdP-managed namespace). This is the most
common form of web SSO today. SPs must establish an explicit association with
each IdP that they wish to support, typically through a manual registration process
that involves key exchange or the establishment of a shared secret. OAuth 2.0 and
OpenID Connect work in this manner.

A2 protocols provide No-IdP-Vetting: Any entity can implement the protocol and
become an IdP, thereby facilitating deployment.

However, A2 protocols lack No-SP-Sponsoring: Each SP must register with each
IdP with which it would like to associate. This typically involves a manual procedure
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through which the SP submits a form to establish certain parameters with the IdP,
such as an application ID and a shared secret. Typically, a human administrator from
the SP must manually submit the form, and the confirmation/approval by the IdP
may or may not be automated. This manual process is a deployability drawback that
results in SPs supporting a smaller set of IdPs, thereby raising the barrier to entry
for potential SP users.

A3: Federated association (IdP-managed namespace). This refers to
schemes whereby a central authority (e.g., in OpenID Connect terminology, the feder-
ation operator) maintains authoritative metadata as to which IdPs and SPs are part
of the federation. Both IdPs and SPs must undergo a registration process to join the
federation, but not explicitly with each other. Upon joining, SPs may rely on the
authentication service of any IdPs that are part of the federation, without needing
to manually pre-register with any of them. Member IdPs and SPs may be required
to follow certain privacy- and security-related policies, e.g., with regards to storage
of user data, or the method of authentication used. Different federations may be
established between organizations based on some shared attributes (e.g., geographi-
cal area) or objectives (e.g., educational institutions). For example, CANARIE [36]
operates a federation of research and educational institutions across Canada.

Currently, SAML (a popular implementation of which is Shibboleth) is the most
popular protocol that falls within A3. OpenID Connect also has an optional federation
component that is not implemented by any of the current major IdPs, namely Google,
Microsoft, Yahoo, and Paypal—SPs must therefore manage independent associations
with each IdP. Mobile Connect, administered by the GSM Association, is a recent
extension of the OpenID Connect standard that implements a federated association
model. Mobile phone service operators across the world that are members of the
GSM Association are eligible to be IdPs within the federation. Therefore, once fully
deployed, Mobile Connect SPs will be able to authenticate any user worldwide that
has mobile phone service.

Aside from maintaining IdP and SP metadata, a principal role of the federation
operator is to provide a discovery service through which users can be redirected
to the appropriate IdP for authentication, e.g., SAML may ask the user to select
their IdP manually when logging in, or Mobile Connect may determine the user’s IdP
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automatically by their mobile phone number.
A3 protocols lack No-IdP-Vetting, since the federation must be managed by an

operating entity, with which IdPs must register. They also lack No-SP-Sponsoring,
since SPs must manually register (and potentially abide by certain security policies)
to become a member of the federation.

A3 protocols may offer Signals-Assurance-Level, if the federation operator imposes
requirements for the type of authentication mechanisms used. For example, Mobile
Connect grades the user’s LoA on a 4-point scale, based on the authentication mech-
anism used.

A4: Bridged association (federation-operator-managed namespace).
These are similar to A3 schemes in that SPs associate with IdPs via a federation
operator. However, the federation operator acts as both a discovery service and an
IdP bridge, in that the SP relies on it for verifying users’ control over accounts under
the namespace of a multitude of IdPs (as opposed to the SP communicating directly
with IdPs). An example is the Mozilla Persona fallback protocol (as opposed to the
main Mozilla Persona protocol, which falls within A1 as previously discussed), in
which a fallback IdP performs this service in two ways: (1) via OAuth 2.0, for sev-
eral major e-mail service providers that support it; or (2) by sending a verification
code to the user’s e-mail address to verify that they can receive the code. In other
A4 schemes, such as SAW, the SP may implement its own IdP bridge—e.g., each
SAW SP verifies user control of an e-mail address by e-mailing a verification code
upon every authentication attempt. A4 schemes may be tailored towards a number
of different goals, namely,

• Leveraging an existing protocol deployment (e.g., SMTP and OAuth 2.0, in the
case of the Persona fallback protocol) to build a new identity protocol over it.

• Enhancing privacy by implementing the IdP bridge as an anonymizing proxy.
For example, SecureKey Concierge is an A4 protocol that provides a “triple-
blind” service, wherein SPs are blind to users’ IdP information, IdPs are blind
to users’ SP information, and SecureKey itself only processes unique but anony-
mous identifiers for users [179].

• Allowing users to switch between IdPs within the federation without imposing
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any burden on the SP. SecureKey Concierge provides this feature, by allowing
their users to switch between different banking institutions.

Third-party namespace verification may be performed in a way such that it can
be validated by multiple parties (e.g., both the IdP and SP). For example, Key-
base [100] is a directory service that maps users’ public keys to their social media
identities (while Keybase is not an SSO service, its function relates to third-party
namespace verification). Users post their public keys on their Keybase profile page,
and post corresponding cryptographically signed statements on their online accounts
(e.g., Twitter, Facebook, Github) to link their online identities. Since the crypto-
graphically signed statements are publicly-accessible, they can be verified not only
by Keybase but by anybody—this reduces the trust that must be placed in Keybase
itself to verify the statements. In contrast, the Mozilla Persona fallback IdP ties user
identity to control of an e-mail address, which involves sending the user an e-mail
that only the user can access—a process that is not publicly verifiable.

A5: Non-attested credential manager (SP-managed namespace). These
schemes provide repositories in which users save their SP-specific credentials, which
may consist of e.g., user names along with passwords or cryptographic keys. The
users’ credentials serve as pseudonymous identifiers, and are not associated with con-
trol over any IdP-controlled namespace. Password managers are the most popular
type of A5 protocols currently in use. We call A5 schemes non-attested, since SPs
cannot cryptographically verify any information about the authentication mechanism
between the user and IdP, including which IdP (if any) was used.

A5 schemes cannot provide SPs-Can-Filter-IdPs or Signals-Assurance-Level, since
SPs have no means of determining the user’s IdP. They provide No-IdP-Vetting and
No-SP-Sponsoring, since users can use any A5 scheme without obtaining SP approval.

A6: Attested credential manager (SP-managed namespace). These
schemes are similar to A5, but provide additional security guarantees. Through a
federation authority, SPs may verify information such as the user’s IdP and the type
of user-to-IdP authentication used. For example, FIDO UAF uses hardware authen-
ticator devices that act as users’ IdPs by storing a unique cryptographic key pair
for each SP website. Certified hardware authenticators possess an attestation key
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certified by the FIDO Alliance, thereby providing assurance to SPs that the authen-
ticator can securely store private keys in hardware (precluding theft by malware) and
signalling the LoA based on the type of user-to-IdP authentication that is used (e.g.,
PIN or biometric).

A6 protocols can provide Signals-Assurance-Level, since IdPs undergo a certifica-
tion process by the federation operator, which can then signal the LoA information
to SPs.

To support increased device compatibility, FIDO UAF also supports software
authenticators lacking the ability to protect cryptographic keys from malware, and
therefore performing no attestation (however, this is explicitly signalled). FIDO UAF
is therefore a hybrid system supporting both “strong” attested hardware authentica-
tors certified by a central authority (i.e., A6 scheme that provides LoA signalling) and
“weak” unattested software authenticators (i.e., A5 protocol). We analyze hardware
and software authenticators separately, since they differ substantially in the benefits
offered.

6.2.3 IdP: User Identity Conveyance Method

The following categories classify SSO schemes based on how IdPs convey user identity
to SPs.

G1: IdP assertion. The IdP generates an identity assertion each time the user
needs to access their SP. OAuth, OpenID Connect, Mobile Connect, and Shibboleth
fall within this category. The IdP typically communicates the assertion to the SP
through the browser via HTTP redirection, HTTP POST requests, and/or cross-
origin message-passing between iframes with postMessage [129].

G2: Browser assertion. The IdP delegates the authority for identity assertion
generation to the user’s browser. Mozilla Persona falls within this category: The
browser generates a cryptographic key pair to sign its own self-generated identity
assertions. Identity assertions also contain an IdP signature over the browser’s public
key, thereby allowing SPs to validate assertions. The assertion is typically commu-
nicated from client-side code to the SP. Mozilla Persona was intended to eventually
be built into the browser, but as an interim measure it used a client-side JavaScript
library.
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Figure 6.1: IdP-SP association models A1-A6, defined in Section 6.2.2. {A1,A5,A6}
allow users to authenticate to any SP through any IdP; A2 requires IdPs and SPs to
have a pre-established relationship, e.g., via a manual registration process; {A3, A4}
allow users to authenticate to SPs through an IdP only if both the SP and IdP are
federation members.

Id
P-

SP
Asso

cia
tio

n
M

od
el

Asso
cia

tio
n

Ca
teg

or
y

Example Scheme NS
Au

th
.:

Id
P

NS
Au

th
.:

Fe
d.

Ope
ra

to
r

NS
Au

th
.:

SP

Defining Characteristics

A1 (a) OpenID 2.0 • Any server implementing the protocol can become an
IdP or SP.

A2 (b) OAuth 2.0 • SPs establish explicit associations with IdPs, e.g., by
manual registration to establish shared secrets.

A3 (c) Mobile Connect •

A federation operator records which IdPs and SPs
belong to this federation; SPs then rely on IdPs in
the federation without having explicit relationships
with them.

A4 (c) SecureKey Concierge •

Similar to A4, except that the federation operator is
responsible not only for recording which IdPs and
SPs belong to the federation, but also for conveying
identity assertions to SPs on behalf of IdPs.

A5 (a) Firefox Sync • Credential management schemes that store and
automate the use of SP-specific user credentials.

A6 (a) FIDO UAF (Attested) •

Credential management schemes that can provide
cryptographic attestation to SPs to provide security
assurances, e.g., so the SP can verify the method of
user-to-device authentication used.

Table 6.1: Summary of IdP-SP association models from Section 6.2.2. Association
category (second column) corresponds to the three graphs from Figure 6.1. For each
association model (row), a bullet in one of three columns indicates whether the user
identity namespace (NS) authority is the user’s IdP, a federation operator, or the SP.



121

G3: User-to-SP authentication. In this category, there is no vouching mech-
anism that can signal to the SP that the user has already authenticated itself to the
IdP, and therefore the user must authenticate directly to the SP. The IdP may facili-
tate or may automate the process by which users authenticate to SPs (e.g., by storing
and synchronizing the user’s credentials across multiple devices, and automatically
filling in forms to enter the credentials). All A5 protocols fall within this category.
A4 protocols may also fall within this category, if the SP acts as its own IdP bridge
(e.g., SAW).

G4: IdP-proxied authentication. In this case, the IdP serves as an HTTP
proxy between the user and SP, which may convey identity information and/or cre-
dentials over a direct network connection to the SP. Thus, all traffic between users and
SPs (both during authentication and any subsequent traffic during the authenticated
session) flows through the IdP. Web proxies such as EZproxy [150] are commonly used
by educational institutions to allow off-campus access of academic material—e.g., iee-
explore.ieee.org may be accessed through ieeexplore.ieee.org.edu-proxy.com, where edu-
proxy.com is the URL of the institution’s proxy. However, such proxies typically do
not convey any identity information, since the SPs operate on IP address based ac-
cess control—thus, any user visiting from within the institution’s IP address range is
granted access. We are not aware of any proxy-based SSO schemes used in practice,
but they have been proposed in literature; Impostor [156] falls within this category.

G1 schemes are not Resilient-to-Temporary-Service-Outage, since SPs must ob-
tain an IdP-generated identity assertion to establish an authenticated session. G2
schemes may partially provide this benefit, if the client possesses a relatively long-
lived assertion-signing key; with Mozilla Persona, the expiration time of the client’s
signing key is set by the IdP and could be set to, e.g., 24 hours (an excessive ex-
piration time poses additional impersonation risks if the signing key is stolen). G3
schemes may fully provide this benefit if the credentials are cached client-side—users
may thus continue to use their locally-cached credentials, but would not be able to
update/synchronize any of their devices with new or updated credentials for as long
as the IdP remains unreachable. G4 schemes are not Resilient-to-Temporary-Service-
Outage, since all communication between clients and SPs must be proxied through
an IdP.
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6.2.4 SP: User Identity Verification Method

The methods of conveying an identity assertion from an IdP to an SP can be catego-
rized as follows:

C1: IdP Query. The SP must query the IdP to determine the validity of an
authentication token presented by the user (e.g., to verify that the token was issued
by the IdP, intended for use by the SP in question, and has not expired).

C2: Local Verification. The SP itself directly verifies that the user has correctly
authenticated. This may be done if (1) the user authenticated directly to the SP (see
G3), or (2) if the identity assertion is cryptographically signed by the IdP and can
be verified by the SP.

The OpenID 2.0 specification supports both C1 and C2, but recommends C2
since it reduces the number of required protocol round trips [163]—C1 is called direct
validation, and C2 is called association mode. Association mode requires a Diffie-
Hellman key exchange to establish a shared key between the IdP and SP; the IdP
uses the key to compute a MAC on identity assertions destined for the associated SP.
Association mode prevents tampering of identity assertions via MITM attacks that
may occur if direct validation is used. However, TLS also prevents tampering, and is
recommended (but not required) by the specification.

Mozilla Persona supports only C2: IdPs are stateless, since they do not generate
any identity assertions, and are not informed upon the generation of any identity
assertions. Instead, the browser generates the identity assertion (see 6.2.3), which
contains (1) the SP domain for which the assertion was generated, (2) the assertion’s
expiry time, (3) a client-generated cryptographic signature of the assertion, and (4)
an IdP-generated signature of the client-generated signing key. The SP can validate
assertions locally, since the only information required from the IdP is the IdP’s public
key (see Section 6.1.2), to be used for verifying the IdP-generated signature of the
client’s signing key. All other required information for validating the assertion (e.g.,
SP domain, assertion expiry time) is present within the assertion itself.

SAML and the OAuth 2.0 family of protocols (which includes OpenID Connect and
Mobile Connect) are stateful protocols: Clients must either (1) obtain a bearer token
from the IdP and send it to the SP, which must then query the IdP to determine the
assertion’s validity (known as Implicit Grant in OAuth 2.0); or (2) obtain a temporary
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code from the IdP and send it to the SP, which must then exchange it for a token
from the IdP (known as Authorization Code Grant in OAuth 2.0).

C2 protocols that are stateless can provide Private-Browsing (this includes all
A5 and A6 protocols), since IdPs are not aware of the SPs with which users are
associated. Protocols that are both C1 and A4 may also offer this benefit if blinding
is used (see Section 6.2.2).

6.2.5 User to IdP Authentication Type

Single sign-on involves both a user-to-IdP component and an IdP-to-SP component—
the latter was covered in Section 6.2.3. The user-to-IdP component can be classified
into two general categories based on whether the IdP is local (i.e., a device under
physical control of the user) or remote (i.e., a remote server). Evaluating specific
user-to-web authentication schemes [25] is out of the scope of this chapter. However,
we highlight the differences between different categories of single-factor and two-
factor schemes, particularly for FIDO UAF and Mobile Connect. The following two
categories are illustrated in Figure 6.2.

T1: Remote authentication. The user authenticates to a remote IdP, by means
of a password or any other form of user-to-web authentication. This may involve one
or more authentication factors:

(a) Single factor. Most currently-deployed IdPs that use single-factor authentica-
tion use conventional password-based authentication. One exception is Mobile
Connect with LoA2, which validates the user’s possession of their mobile phone.
Depending on the implementation, this may require the user to type in an SMS
OTP received on their phone, or the Mobile Connect authenticator application
may display a popup on the phone for the user to confirm the authentication
request by tapping an “OK” button.

(b) Two factor. Two-factor authentication can be further divided into two sub-
categories, that we define as follows:

(i) Two-step. Two-factor authentication in its most popular form on the web
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involves two steps, wherein the server verifies the user’s password (what-
you-know) in addition to their possession of a hardware token (what-you-
have) such as a smartphone or USB dongle. Here, the two factors are
independent from each other.

(ii) Two-stage. Mobile Connect with LoA3 requires that the mobile device
(what-you-have) be protected by a local authentication mechanism such as
a PIN or biometric. We call this two-stage, since the first authentication
stage (e.g., entering a PIN) occurs on the device itself, with no participa-
tion from the IdP. Only the second stage (e.g., receiving an SMS OTP or
tapping an “OK” button as described above) involves the IdP. Here, the
second factor (stage) depends on the first.

The security offered by the first stage of two-stage authentication depends on the im-
plementation of the local authentication stage. For example, a local authentication
mechanism that relies on a secure boot mechanism and trusted execution environ-
ment to render a stolen device inoperable after ten consecutive failed authentication
attempts would offer higher security than a device on which an attacker is given
unlimited authentication attempts or can easily extract the plaintext secret from
memory.

T2: Local authentication. The user authenticates to an IdP hosted on a local
device under physical control of the user. This differs significantly from T1 schemes
that use hardware authenticators (e.g., Mobile Connect or OpenID Connect with
Google two-step verification) to authenticate to a remote IdP. Local authentication
can be further classified as follows:

(a) Device-possession only. No user-to-device authentication is required, aside
from device possession (typically implied for local authentication). Firefox Sync
1.5 and 2.0 are both in this category by default, since the password vault is
stored on-disk in plaintext and can easily be extracted when in possession of
the device. The two protocols differ in their cross-device synchronization mech-
anisms, which is distinct from the local user-to-IdP authentication mechanism
discussed here.

(b) Single factor. A password or other user-to-device authentication scheme (e.g.,
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smart card, PIN, biometrics) is used to authenticate to the on-device local IdP.
FIDO UAF is in this category since it requires, e.g., a PIN or biometric to be
used locally before the user can be authenticated to any remote SPs. Firefox
Sync could be classified into this category if, e.g., the password vault is protected
by a master password or by full-disk encryption. However, weaker mechanisms
such as the user login mechanism in many commodity desktop operating systems
that do not encrypt user data can be easily defeated—for example, an attacker
in physical possession of the device could circumvent the user login (e.g., by
removing the hard disk and reading its contents) to extract the unencrypted
password vault from the device’s storage. Therefore, similarly to the first stage
of two-stage remote authentication as discussed above, the security offered by a
single-factor local authentication scheme depends on implementation and device
configuration details, e.g., use of secure boot and full-disk encryption.

Local authentication may use two or more factors in addition to the possession factor,
but this is not typically used (we are not aware of any such scheme used in practice).

T1 offers No-Device-Setup, since users can authenticate to a remote IdP from
any device; T2 cannot offer this benefit, since users must configure their new devices
before they are able to authenticate to SPs through them.

Trusted Computing

Secure hardware key storage, and trusted execution environments [140] can be used to
enhance the security of both T1 and T2 schemes. The primary benefit is the reduction
of damage that can be done by an attacker that breaches the IdP (e.g., via a remote
exploit, malware, or physical device theft)—both for IdPs hosted on a remote server
or on a local device under the user’s control. For context, Table 6.2 summarizes some
attacks against user-to-IdP authentication along with corresponding defenses.

Another function of trusted computing in SSO is that it allows one party to
make cryptographically-verifiable guarantees to another party. For example, through
trusted execution, FIDO UAF attested hardware authenticators guarantee to SPs that
the user has been authenticated on the local device via, e.g., a physical biometric.
Mobile Connect can use the mobile phone’s SIM card as a secure element for credential
storage and as a trusted execution environment to authenticate the user, guaranteeing
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U IdP SP1-Auth-Factor Auth-U-to-SP

U IdP SP

Tok

1-Auth-Factor

2-Auth-Factor

Auth-U-to-SP

U IdP SPPossession Auth-U-to-SP

U IdP SP
Possession

Auth-U-to-SP
1-Auth-Factor

U IdP SP

Tok

Auth-U-to-SP

2-Auth-Factor

T1a: Single-factor remote authentication

T1b (i): Two-step remote authentication

T1b (ii): Two-stage remote authentication

T2a: Zero-factor local authentication

T2b: Single-factor local authentication

1-Auth-Factor

Figure 6.2: Authentication flow for single-factor and two-factor T1 (Remote authen-
tication) and T2 (Local authentication) schemes. U, IdP, SP, and Tok represent
the user, identity provider (remote or local), service provider, and hardware token,
respectively.
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Authentication Type Possible Threat Corresponding Mitigation
T1a. Single factor,
remote IDP

Attacker may break first
factor Add second factor

T1b(i). Two-step,
remote IdP

Attacker may breach
remote IdP and steal
server-side stored
credentials, e.g., password
hash (to perform offline
guessing attack) and OTP
seed

Use non-replayable credentials (e.g., public-key
crypto)
Use hardware security mechanisms to securely store
replayable server-side credentials (e.g., use
hardware security module to store symmetric key
and use it to perform HMAC of passwords instead
of a standard hash)

T1b(ii). Two-stage,
remote IdP

Attacker in possession of
hardware token may
break first factor, since it
is validated locally

Use hardware security on authentication token
(e.g., trusted boot, trusted execution environment,
encrypted storage) to protect authentication from
local attacks

T2a. Device-possession
only, local IdP Device theft Add a local authentication factor

T2b. Single factor,
local IdP

Attacker may circumvent
local authentication

Use hardware security on authentication token
(e.g., trusted boot, trusted execution environment,
encrypted storage) to protect authentication from
local exploits

Attacker may breach local
IdP (e.g., via malware)
and steal stored
credentials to impersonate
user

Use non-replayable credentials (e.g., public-key
crypto) and protect them using secure hardware
storage
Ensure that replayable credentials are never
exposed to any party other than the corresponding
SP, e.g., by using mandatory access control to
ensure that only the IdP has access to stored
credential and only releases them to authorized SPs

Table 6.2: Threats and corresponding mitigations to discussed user-to-IdP authen-
tication types. Single-factor user-to-device authentication (T2b) requires user pos-
session of the device, and therefore provides security benefits similar to two-factor
user-to-remote-IdP authentication (T1b).

a higher LoA [77]. SSO may also benefit directly or indirectly from other applications
of trusted computing that enhance the security and privacy characteristics of online
services. For example, a remote server with Intel SGX can guarantee [108] that the
password entered by the user will be processed in a secure enclave and that only
the CMAC (cipher-based MAC) will be stored server-side, thereby eliminating the
possibility of offline attacks in the event that the password database is leaked. The
secure messaging application Signal [122] uses SGX for private contact discovery,
allowing clients to poll a secure enclave on the server to discover which of their
contacts are also using Signal, without revealing the user’s contact list to the server.
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6.2.6 Multi-Device Usage Model

The means by which users can access their SP accounts from multiple devices is related
to, but not fully determined by, the user-to-IdP authentication type (discussed above
in Section 6.2.5). Schemes can be categorized by this property as follows.

M1: Device-independent. This includes remote authentication schemes (T1)
that do not rely on a hardware authenticator device that the user needs to carry.

M2: Portable hardware token. This includes remote authentication schemes
(T1) that use a portable hardware authenticator device, e.g., MobileConnect (both
single-factor LoA2 and two-factor LoA3).

M3: Per-device authorization. This includes schemes in which each of the
user’s devices need to be individually authorized by the user’s IdP (for T1 schemes)
or the user’s SPs (for T2 schemes). Mobile Connect (T1) could be extended to allow
mobile network operators to authorize multiple SIM cards that users could install
in their devices (e.g., laptops); this would result in a hybrid of M2 and M3, since
users could authorize their devices equipped with a cellular modem, but would need
to carry around their mobile phone to log in on non-equipped devices. FIDO UAF
(T2) is an M3 scheme, since users that obtain a new FIDO-enabled device need to
authorize the new device with each of their SPs.

M4: Device pairing. This includes local authentication schemes in which new
user devices need to be authorized by (i.e., “paired” with) an existing user device. This
could be achieved by, e.g., securely transferring a symmetric key from one device to
another, in the case of Firefox Sync. A more complex mechanism may be to generate
a new cryptographic key pair on the new user device, and authorizing the new key
pair from the existing device (e.g., by signing the public key).

M1 cannot offer Resilient-to-Client-Leaks, but offers No-Hardware-Token-
Required. M2 may offer Resilient-to-Client-Leaks but cannot offer No-Hardware-
Token-Required. M3 may offer Resilient-to-Client-Leaks but M4 can only offer it
if public-key cryptography is used and the private key cannot be extracted from the
device. Neither M3 nor M4 can offer No-Device-Setup, since users cannot authenti-
cate from a new device to their SP without first enrolling the device onto their SP
accounts.
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Scheme Design Properties Usability Deploy. Security Privacy
Firefox Sync 1.5 [205] A5 G3 C2 T2a M4 • • • • • • • • • •
Firefox Sync 2.0 [206] A5 G3 C2 T2a M4 • ◦ • • • • ◦ ◦ • • •
FIDO UAF (Attested) [117, 22] A6 G1 C2 T2b M3 • • • • • • • • • • • • •
FIDO UAF (Non-Attested) [117, 22] A5 G1 C2 T2b M3 • • • • • • • • • • • •
Impostor [156] A5 G4 C2 T1 M1 • • • • • •
SAW [195] A4 G3 C1 T1 M1 ◦ • • • • • • • •
OAuth 2.0 [84] A2 G1 C1 T1 M1 • • • • • •
OpenID 2.0 [163] A1 G1 C2 T1 M1 • • • • • • • •
OpenID Connect [170] A2 G1 C1 T1 M1 • • • • • •
Mobile Connect [79] A3 G1 C1 T1 M2 • • • • • • • • •
Mozilla Persona [82] A1 G2 C2 T1 M1 • • ◦ • • • • • • •
Mozilla Persona Fallback [82] A4 G2 C2 T1 M1 • • ◦ • • • • • † • •
Shibboleth [176] A3 G1 C2 T1 M1 • • § • • • • §
SecureKey Concierge [179] A4 G1 C2 T1 M1 ◦ • • • • • • • † • • •

Table 6.3: SSO schemes (rows) categorized across design properties (columns, left
half) and evaluated across benefits (columns, right half) from Section 6.2. Bullets
represent benefits provided; hollow circles represent partially-provided benefits; empty
cells represent benefits not provided. †Susceptible to impersonation by either of two
third parties. §Offered via optional protocol feature.
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6.3 Evaluation of SSO Schemes

Here, we explain our evaluation (based on the benefits discussed in Section 6.2.1) and
categorization (based on the design properties discussed from Sections 6.2.2 through
6.2.5) of each SSO scheme introduced in Section 6.1, as is summarized in Table 6.3.

Firefox Sync. We evaluate Firefox Sync 1.5 and 2.0 together, and indicate
differences between the two versions in the benefits offered. Firefox Sync offers
Portable-Identity-Across-IdP, since the user’s device is the IdP, and transferring cre-
dentials to new devices is supported via a synchronization mechanism. Users can
authenticate to SPs from any synchronized device without an additional hardware
token (No-Hardware-Token-Required), even when the synchronization server is down
(Resilient-to-Temporary-Service-Outage for authenticating to SPs, but not for updat-
ing or adding new passwords to the vault). Firefox Sync 1.5 does not offer No-Device-
Setup, since users must “pair” any new devices with one of their existing devices by
transferring their symmetric key for decrypting their password vault; Firefox Sync
2.0 partially offers this benefit, since the decryption key is derived from the user’s
password and must be entered during the device setup process.

Users’ devices are not vetted by any central authority (No-IdP-Vetting) and SPs do
not require any IdP-specific server-side modifications (No-SP-Sponsoring). However,
SPs must still store and protect per-user secret credentials (No-SP-Stored-User-Secret
not offered). Signals-Assurance-Level and SPs-Can-Filter-IdPs are not provided since
SPs cannot distinguish between IdPs.

Firefox Sync 1.5 offers No-Impersonation-by-Third-Party since the password vault
is locally encrypted on the user’s device with a randomly-generated symmetric
key; Firefox Sync 2.0 partially offers this benefit, since the vault encryption key
is password-derived and is therefore subject to offline attack by the synchroniza-
tion server. Firefox Sync 1.5 does not offer Resilient-to-Client-Leaks, since the vault
encryption key is not stored in hardware and can be transferred to all the user’s de-
vices via the pairing process; neither does Firefox Sync 2.0, since it derives the key
from a password, which may be captured by an attacker. Neither offer Resilient-to-
SP-Leaks, since SPs must store user passwords server-side (hashed passwords may
still be cracked via offline guessing attacks). Firefox Sync 1.5 offers Resilient-to-
Third-Party-Leaks, since password vaults stored on the synchronization server are



131

encrypted with randomly-generated keys known only to clients, and therefore are
infeasible to decrypt if leaked; Firefox Sync 2.0 partially offers this benefit, since it
relies on password-derived keys, and therefore leaked password vaults may be subject
to offline attack (with attack success depending on the strength of the user-chosen
passwords).4

Firefox Sync offers Private-Browsing, Unlinkable-Across-SPs, and No-Sharing-of-
User-Data since all authentication is performed through the user’s device without any
participation by a remote third-party server.

FIDO UAF. We evaluate the attested and non-attested FIDO UAF vari-
ants together, and indicate differences between the two versions in the benefits of-
fered. UAF offers No-Hardware-Token-Required and Resilient-to-Temporary-Service-
Outage: users can access their SP accounts from any of their UAF-enabled personal
devices without dependence on any third-party remote servers, but users must first
set up UAF on their devices with each individual SP (so No-Device-Setup is not of-
fered). Unattested UAF offers Portable-Identity-Across-IdP since users can transfer
their credentials to a new device, but attested UAF does not offer this benefit since
keys are stored securely in the device’s hardware and cannot be extracted.

Non-attested UAF offers No-IdP-Vetting, but attested UAF does not, since IdPs
must have their attestation key signed by the FIDO Alliance. Both UAF vari-
ants offer No-SP-Sponsoring since SPs do not require any IdP-specific server-side
modifications—SPs need only possess the FIDO Alliance root certificate to verify the
validity of any FIDO-signed IdP attestation keys. Both variants offer No-SP-Stored-
User-Secret, since SPs store users’ public keys.

Attested UAF offers Resilient-to-Client-Leaks, since private keys are stored in
hardware and cannot be extracted; non-attested UAF does not, since keys are stored
in software and are thus susceptible to capture. Both variants offer Resilient-to-
SP-Leaks and Resilient-to-Third-Party-Leaks, since verifying servers only store users’
public keys (which are not secret). Attested UAF allows SPs to validate signed IdP
attestation certificates, which indicate the method of authentication used (e.g., 4-digit
PIN or biometric) and the hardware vendor and model number (allowing SPs to phase

4This grading depends on the assumption that passwords are not re-used across SPs. Password
re-use results in the loss of the Resilient-to-Third-Party-Leaks benefit, since a leak from one SP can
lead to account compromise on other SPs.
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out support for hardware authenticators in which vulnerabilities have been found),
thereby offering both Signals-Assurance-Level and SPs-Can-Filter-IdPs; non-attested
UAF does not offer these benefits, since they are not certified by FIDO and therefore
use self-signed attestation certificates, with the signing key stored unprotected in
software. Both UAF variants offer No-Impersonation-by-Third-Party, since users’
authentication keys are only stored on their own devices.

Both UAF variants offer Private-Browsing, Unlinkable-Across-SPs, and No-
Sharing-of-User-Data since all authentication is performed through the user’s device
without any participation by a remote third-party server. To limit linkability between
SP accounts, attested UAF must use an attestation certificate that is shared by at
least 100,000 hardware devices (the same batch/revision of any hardware authentica-
tor model shares the same attestation certificate).

Impostor. Portable-Identity-Across-IdP is not offered, since users cannot change
IdPs without updating all of their SP accounts with their new identity. No-Device-
Setup is offered but No-Hardware-Token-Required is not offered (assuming a hard-
ware OTP token is used for user-to-IdP authentication; see Section 6.1.1). Resilient-
to-Temporary-Service-Outage is not offered, since users cannot authenticate to SPs
without first authenticating through their IdP.

No-IdP-Vetting is offered, since any domain owner can set up their own IdP. No-
SP-Sponsoring is offered, since users can provide any e-mail address as their user name
to SPs. No-SP-Stored-User-Secret is not offered, since SPs store user passwords.

Resilient-to-Client-Leaks is offered, since Impostor uses a challenge-response au-
thentication protocol designed for use on untrusted access devices, without exposing
any long-term credentials to them. Resilient-to-SP-Leaks is not offered, since SPs
must store user passwords server-side (hashed passwords may still be cracked via of-
fline guessing attacks). Resilient-to-Third-Party-Leaks is not offered, since passwords
are stored in plaintext by IdPs and are susceptible to capture and reuse. Signals-
Assurance-Level and SPs-Can-Filter-IdPs are not offered, since there is no SP-IdP
communication aside from automated password submission. No-Impersonation-by-
Third-Party is not offered, since IdPs are in possession of users’ SP passwords (unless
users self-host an IdP).

Private-Browsing is not offered, since users access all their SPs through the IdP
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proxy. Unlinkable-Across-SPs and No-Sharing-of-User-Data are offered, since IdPs
only communicate SP-specific user names and passwords.

SAW. SAW partially offers Portable-Identity-Across-IdP, since users can use e-
mail forwarding on an interim basis when transitioning from one address to another
(but all SPs must still be individually updated). No-Device-Setup and No-Hardware-
Token-Required are offered, assuming password-based authentication to the e-mail
provider. Resilient-to-Temporary-Service-Outage is not offered, since e-mail service
outage prevents users from receiving OTPs.

No-IdP-Vetting and No-SP-Sponsoring are offered since any domain owner can
host a mail server and exchange e-mails with any other mail servers. No-SP-Stored-
User-Secret is offered since SPs do not need to store any user secrets (only their e-mail
addresses).

Resilient-to-Client-Leaks is not offered (assuming password authentication);
Resilient-to-SP-Leaks is offered, since SPs do not store any user authentication se-
cret; and Resilient-to-Third-Party-Leaks is not offered since hashed passwords stored
by IdPs are susceptible to exposure and offline attack, resulting in attacker access
to users’ SP accounts. Signals-Assurance-Level is not offered, since the user-to-IdP
authentication method is not signalled to SPs. SPs-Can-Filter-IdPs is offered, since
SPs can whitelist or blacklist e-mail providers by domain name. No-Impersonation-
by-Third-Party is not offered: a malicious mail server administrator can impersonate
their own e-mail users.

Private-Browsing is not offered since IdPs can track the SPs that their users visit.
Unlinkable-Across-SPs is not offered, assuming users use the same e-mail address
across different SP accounts (users can theoretically use different e-mail aliases point-
ing to the same e-mail account to obtain this benefit, but we do not assume this to be
the case due to its impracticality). No-Sharing-of-User-Data is offered since SMTP
does not provide any user information.

OAuth 2.0 and OpenID Connect. The following evaluation applies to both
OAuth 2.0 and OpenID Connect, since their differences are small enough in their
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default configurations such that they do not differ in their benefits offered.5 Portable-
Identity-Across-IdP is not offered, since users cannot change IdPs without updat-
ing all of their SP accounts with their new identity. No-Device-Setup and No-
Hardware-Token-Required are offered, assuming conventional password authentica-
tion. Resilient-to-Temporary-Service-Outage is not offered, since users cannot au-
thenticate to SPs without first authenticating through their IdP.

No-IdP-Vetting is provided, since any domain owner can set up their own IdP. No-
SP-Sponsoring is not offered, since SPs must complete a manual registration process
with each individual IdP. No-SP-Stored-User-Secret is offered, since SPs only store a
{user ID, IdP ID} pair.

Resilient-to-Client-Leaks is not offered (assuming password authentication);
Resilient-to-SP-Leaks is offered, since SPs do not store any user authentication secret;
and Resilient-to-Third-Party-Leaks is not offered since hashed passwords stored by
IdPs are susceptible to exposure and offline attack, resulting in attacker access to
users’ SP accounts. Signals-Assurance-Level is not offered. SPs-Can-Filter-IdPs is
offered, since SPs must explicitly implement support for each IdP. No-Impersonation-
by-Third-Party is not provided, since IdPs can impersonate their users.

Private-Browsing is not offered, since user authentication requires redirecting the
user’s browser between the IdP and SP. Unlinkable-Across-SPs is not offered, since it is
not required for IdPs to assign unique pairwise (user-to-SP) pseudonymous identifiers
to prevent identity correlation across SP accounts. No-Sharing-of-User-Data is not
offered, since OAuth 2.0 and OpenID Connect based IdPs provide SPs with extensive
access to user profile information.

OpenID 2.0. Portable-Identity-Across-IdP is not offered, since users cannot
change IdPs without updating all of their SP accounts with their new identity. No-
Device-Setup and No-Hardware-Token-Required are offered, assuming conventional
password authentication. Resilient-to-Temporary-Service-Outage is not offered, since
users cannot authenticate to SPs without first authenticating through their IdP.

5As discussed in Section 6.1.2, OpenID Connect offers a more strictly-defined protocol for au-
thentication (compared to OAuth 2.0), which results in less variation between implementations,
thereby enhancing interoperability. It also offers optional features that can be implemented to, e.g.,
establish a federated association model as is done by Mobile Connect (which is therefore evaluated
separately).
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No-IdP-Vetting is provided, since any domain owner can set up their own IdP. No-
SP-Sponsoring is provided, since user IDs are in the format of a globally-resolvable
user profile URL via which SPs can dynamically discover the user’s IdP and initiate
the authentication process. No-SP-Stored-User-Secret is offered, since SPs only store
user profile URLs.

Resilient-to-Client-Leaks is not offered (assuming password authentication);
Resilient-to-SP-Leaks is offered, since SPs do not store any user authentication secret;
and Resilient-to-Third-Party-Leaks is not offered since hashed passwords stored by
IdPs are susceptible to exposure and offline attack, resulting in attacker access to
users’ SP accounts. Signals-Assurance-Level is not offered. SPs-Can-Filter-IdPs is
offered, since SPs can filter IdPs by domain name. No-Impersonation-by-Third-Party
is not provided, since IdPs can impersonate their users.

Private-Browsing is not offered, since user authentication requires redirecting the
user’s browser between the IdP and SP. Unlinkable-Across-SPs is not offered, since
user IDs (i.e., profile URL) are the same across different SPs. No-Sharing-of-User-
Data is offered, since OpenID 2.0 does not support the exchange of user profile infor-
mation.

Mobile Connect. Portable-Identity-Across-IdP is not offered, since users lose
access to all their SP accounts upon changing their mobile network operator—the
GSMA aims to address this in the future, by allowing users to transfer their identity
across IdPs if they keep the same phone number when changing service providers [80].
No-Device-Setup is offered since users can log into their SP accounts on any device
as long as they are in possession of their mobile phone (thus No-Hardware-Token-
Required is not offered). Resilient-to-Temporary-Service-Outage is not offered, since
users cannot authenticate to SPs without first authenticating through their IdP.

No-IdP-Vetting is not provided, since IdPs must be a GSM mobile network opera-
tor. No-SP-Sponsoring is provided, since Mobile Connect provides a discovery service
through which SPs are redirected to the correct IdP based on the user’s mobile phone
number. No-SP-Stored-User-Secret is offered, since SPs only store pseudonymous
user identifiers provided by IdPs.

Resilient-to-Client-Leaks is offered, since authentication private keys are securely
stored in users’ SIM cards; Resilient-to-SP-Leaks is offered, since SPs do not store any
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user authentication secret; and Resilient-to-Third-Party-Leaks is offered since IdPs do
not store any user authentication secrets (only public keys). Signals-Assurance-Level
is offered, since IdPs signal SPs with an LoA for each authenticated user. SPs-Can-
Filter-IdPs is offered. No-Impersonation-by-Third-Party is not provided, since IdPs
can impersonate their users.

Private-Browsing is not offered, since user authentication requires redirecting the
user’s browser between the IdP and SP. Unlinkable-Across-SPs is offered, since IdPs
assign unique pairwise (user-to-SP) pseudonymous identifiers to prevent user identity
correlation across SPs. No-Sharing-of-User-Data is not offered, since Mobile Connect
allows IdPs to share user attributes.

Mozilla Persona. The following evaluation applies to both Mozilla Persona and
Mozilla Persona Fallback, with any differences between the two variants (in terms
of benefits offered) explicitly indicated. Portable-Identity-Across-IdP is not offered,
since users cannot change IdPs without updating all of their SP accounts with their
new identity. No-Device-Setup and No-Hardware-Token-Required are offered, assum-
ing conventional password authentication. Resilient-to-Temporary-Service-Outage is
partially offered, subject to the browser certificate expiry time set by the IdP (typi-
cally 24 hours)—the user’s browser can generate signed identity assertions that can
be validated by SPs (if the SP has a cached copy of the IdP public key).

No-IdP-Vetting is offered, since any domain owner can set up their own IdP.
Persona offers No-SP-Sponsoring, since users can provide any e-mail address as their
user name to SPs. No-SP-Stored-User-Secret is offered, since SPs only store users’
e-mail addresses.

Resilient-to-Client-Leaks is not offered (assuming password authentication);
Resilient-to-SP-Leaks is offered, since SPs do not store any user authentication secret;
and Resilient-to-Third-Party-Leaks is not offered since hashed passwords stored by
IdPs are susceptible to exposure and offline attack, resulting in attacker access to
users’ SP accounts. Signals-Assurance-Level is not offered. SPs-Can-Filter-IdPs is
offered, since SPs can filter IdPs by domain name. No-Impersonation-by-Third-Party
is not offered, since IdPs (and also the fallback server, in the case of the Persona
Fallback scheme) can impersonate their users.

Private-Browsing is offered, since identity assertions are generated locally on users’
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browsers. Unlinkable-Across-SPs is not offered, since user IDs (i.e., e-mail address)
are the same across different SPs. No-Sharing-of-User-Data is offered, since Persona
does not support the exchange of user profile information.

Shibboleth. Portable-Identity-Across-IdP is not offered, since users cannot
change IdPs without updating all of their SP accounts with their new identity. No-
Device-Setup and No-Hardware-Token-Required are offered, assuming conventional
password authentication. Resilient-to-Temporary-Service-Outage is not offered, since
users cannot authenticate to SPs without first authenticating through their IdP.

No-IdP-Vetting is offered, since any domain owner can set up their own IdP. No-
SP-Sponsoring may be offered if SPs use a federation discovery service that allows
users to pick from a list of member IdPs in the federation. No-SP-Stored-User-Secret
is offered, since SPs only store a {user ID, IdP ID} pair.

Resilient-to-Client-Leaks is not offered (assuming password authentication);
Resilient-to-SP-Leaks is offered, since SPs do not store any user authentication secret;
and Resilient-to-Third-Party-Leaks is not offered since hashed passwords stored by
IdPs are susceptible to exposure and offline attack, resulting in attacker access to
users’ SP accounts. Signals-Assurance-Level is offered, since the underlying SAML
protocol allows IdPs to signal an LoA for each authenticated user (enforcement of
the feature depends on the federation authority). SPs-Can-Filter-IdPs is offered,
since SPs can choose which IdPs to support. No-Impersonation-by-Third-Party is
not offered, since IdPs can impersonate their users.

Private-Browsing is not offered, since user authentication requires redirecting the
user’s browser between the IdP and SP. Unlinkable-Across-SPs may be offered, since
Shibboleth optionally supports IdP-assigned unique pairwise (user-to-SP) pseudony-
mous identifiers to prevent user identity correlation across SPs. No-Sharing-of-User-
Data is not offered, since Shibboleth supports the transfer of user profile information.

SecureKey Concierge. Portable-Identity-Across-IdP is partially offered, since
SecureKey maintains a unique pseudonymous identifier for each user that is mapped
to the user’s IdP of choice, and users may switch to another IdP within the federation
at any time. No-Device-Setup and No-Hardware-Token-Required are offered, assuming
conventional password authentication. Resilient-to-Temporary-Service-Outage is not
offered, since users cannot authenticate to SPs without first authenticating through
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their IdP.
No-IdP-Vetting is not provided, since IdPs must be approved by SecureKey. No-

SP-Sponsoring is offered, since SecureKey can add or remove support for IdPs without
requiring any server-side updates to SPs. No-SP-Stored-User-Secret is offered, since
SPs only store pseudonymous user identifiers provided by SecureKey.

Resilient-to-Client-Leaks is not offered (assuming password authentication);
Resilient-to-SP-Leaks is offered, since SPs do not store any user authentication se-
cret; and Resilient-to-Third-Party-Leaks is not offered since hashed passwords stored
by IdPs are susceptible to exposure and offline attack, resulting in attacker access
to users’ SP accounts. Signals-Assurance-Level is offered. SPs-Can-Filter-IdPs is
offered, since SecureKey allows SPs to choose the set of IdPs that they wish to al-
low. No-Impersonation-by-Third-Party is not offered, since both SecureKey and users’
IdPs can impersonate their users.

Private-Browsing, Unlinkable-Across-SPs and No-Sharing-of-User-Data are of-
fered: users are indirectly forwarded from SPs to IdPs via SecureKey, which only
exchanges blinded identifiers (see Section 6.1.2) to offer privacy from IdPs and pre-
vent user identity correlation across SPs.

6.4 Discussion

Among the schemes analyzed, none possesses the technical features necessary to of-
fer all the benefits discussed. This is to be expected, since each design property
discussed necessitates some trade-offs between benefits. Moreover, even for schemes
that are able to offer certain benefits, conflicting interests between the stakeholders
involved (namely users, SPs, and IdPs) may result in the benefits not being offered—
e.g., OpenID Connect supports the use of pseudonymous identifiers, which provides
Unlinkable-Across-SPs, but major IdPs such as Google do not implement this fea-
ture [72]. This motivates a discussion to examine the scenarios under which each
individual scheme offers the most appropriate combination of benefits.

Below, in Sections 6.4.1 and 6.4.2 we consider different priorities from users’ and
SPs’ perspectives for authentication to high- and medium-value accounts (low-value
accounts are less relevant to this discussion, since they do not require any of the more
complex solutions as discussed herein). In Section 6.4.3 we discuss the threat of user
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impersonation by rogue insiders at IdPs, and provide two examples to illustrate the
complexity trade-offs associated with mitigating this threat.

6.4.1 High-Value SP Accounts

User’s perspective. For high-value SPs, such as banking or government services,
the threat of impersonation and/or data collection by IdPs (which relates to No-
Impersonation-by-Third-Party and Private-Browsing) is an important concern from
users’ perspectives. In other words, high-value SP accounts require more protection
against potential IdP misbehaviour. This motivates the use of CM-based schemes,
such as Firefox Sync or FIDO UAF, that manage user credentials on the user’s own
device.

SP’s perspective. If relying on third-party IdPs, high-value SPs may have con-
cerns about IdPs following necessary security requirements (e.g., maximum number of
authentication attempts before account lock-out, use of additional authentication fac-
tors), increasing the importance of SPs-Can-Filter-IdPs and Signals-Assurance-Level.
However, No-Impersonation-by-Third-Party would be a concern not only for users as
discussed above, but also for SPs. This leaves SPs with the following alternatives
that they may pursue:

1. Credential vault. SPs can encourage users to follow good password manage-
ment practices, including the use of a password manager, but this is difficult to
enforce. Many high-value SPs (including many major banks) encourage their
customers (and sometimes have made it mandatory [109]) to install client-side
software such as IBM Trusteer Rapport (currently installed on several hundreds
of thousands of systems [6]), to defend against client-side threats such as phish-
ing or malware. However, numerous online comments by users indicate that
such tools (which may also be extended to, e.g., verify the presence of a suitable
password manager on the user’s device) often degrade client-side performance
and stability. FIDO-certified UAF authenticators present a new opportunity
for such institutions to enforce client-side security requirements while being less
intrusive and more usable for end-users.

2. FIS with strong IdP vetting. High-value SPs that prefer a FIS scheme to
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delegate authentication to third-party IdPs must coordinate extensively (e.g.,
by putting in place appropriate auditing mechanisms) to compensate for the
lack of the No-Impersonation-by-Third-Party benefit. SecureKey Concierge is
an example of such a scheme (with millions of users [173]), which has extensive
technical requirements for IdPs, currently consisting of large Canadian finan-
cial institutions. Partnering with financial institutions as IdPs has the unique
advantage of benefiting from their fraud detection mechanisms—compromise
in banking credentials leading to fraudulent transactions is likely to be caught
quickly (either by automated means, or by users who notice transactions they
did not authorize) and would result in the bank issuing new credentials for
users. This provides additional protection to SPs against long-term compro-
mise of accounts.

6.4.2 Medium-Value SP Accounts

User’s perspective. For medium-value accounts, such as online shopping or blog-
ging platforms, users may be more concerned about SP misbehaviour such as spam-
ming or misuse of profile information obtained from IdPs [191]. In other words, more
protection is required against SP misbehaviour (as opposed to IdP misbehaviour; cf.
Section 6.4.1), thereby increasing the importance of the Unlinkable-Across-SPs and
No-Sharing-of-User-Data benefits. Protection against IdP misbehaviour is likely a
lower priority to users for medium-value SP accounts: the majority of such SPs al-
ready communicate extensively with users by e-mail (e.g., sending invoices and other
detailed account information), and the vast majority of such SPs already use e-mail
based password reset [28]. Therefore, users already place extensive trust in their e-
mail providers when managing their SP accounts. This motivates the use of e-mail
providers as IdPs for medium-value SP accounts.

Deployment of FIS schemes that allow users to use their e-mail addresses as their
online identity and that minimize sharing of user data are scarce, e.g., Mozilla Persona
was not adopted by either IdPs or SPs. Moreover, even if such a scheme were to be
widely deployed, it may eventually be superseded by a scheme that is less privacy-
friendly, e.g., major OpenID 2.0 IdPs migrated [70] their users to OpenID Connect
(which enables more extensive sharing of user profile information), thereby forcing
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users to either accept the change or to discontinue use of their existing SP accounts
and create new SP accounts. Such scenarios also raise the issue of the lack of Portable-
Identity-Across-IdP, which anchors users to their IdPs; another example is if a user
uses their mobile network operator (MNO) as their IdP (e.g., via Mobile Connect), it
will be more cumbersome to switch their mobile plan to a different MNO, since the
user will lose access to all their SP accounts. Considering all these drawbacks, we
believe the optimal solution from a user’s point of view is the same as for high-value
accounts: CM-based schemes such as Firefox Sync or FIDO UAF.

SP’s perspective. SPs have an incentive to push users towards FIS schemes, to
reduce the effort required in the sign-up process (e.g., the user is not required to select
a new password) and to gain access to users’ social media circles. The latter benefit
is especially appealing to smaller SPs that have limited resources to do their own
collection of user data. Medium-value SPs are more likely to choose the schemes that
maximize the size of their user base, and therefore many SPs that offer the option for
FIS-based SSO also offer the option for users to create a “conventional” account by
selecting a user name and password.

6.4.3 Detecting Impersonation by IdP

As discussed above in Section 6.4.2, many SPs allow users to reset their passwords
by e-mail. This theoretically would allow e-mail providers to impersonate users by
performing a password reset—however, this would cause the user to lose access to their
account, and is therefore a detectable impersonation attempt. Detectability of IdP
impersonation may provide a sufficient deterrent from doing so. Deterrence as a tool
to hold trusted third-parties accountable can be found in other contexts as well, such
as certificate transparency [111] for TLS certificate authorities (CAs).6 An important
distinction between the CA model and the FIS model is that CAs can generally issue
certificates for any domain, whereas IdPs can only impersonate their own users (but
not users of other IdPs). However, since the vast majority of the FIS market share
is held by a small number of IdPs, a rogue IdP can still have a major impact; this
motivates the deployment of countermeasures, or at least deterrence or accountability

6Certificate transparency requires TLS CAs to publicize every certificate that they digitally sign,
enabling detection of maliciously-issued certificates.



142

measures, against impersonation. Below, we discuss how two of the schemes analyzed
can be augmented with existing tools to offer detection of impersonation by IdPs. The
trade-off associated with this benefit is that it requires SPs to maintain additional
state information, a shared secret, or out-of-band channel (i.e., independent from the
IdP) with the user.

Augmenting SAW

When users log into an SP with SAW, the SP e-mails an OTP to users. An ad-
ministrator from within an e-mail provider could therefore impersonate any of their
own users by initiating an authentication process to an SP and intercepting the OTP
e-mailed from the SP to the user. A possible deterrent to this threat would be for the
SP to use client-side cookies (and with TLS token binding [160] for added security
against cookie theft) to recognize whether or not it is the first time that the user
has logged in from a browser; if not, the SP can send an out-of-band notification to
the user informing them (or requesting confirmation, for added security) that their
account has been accessed from a new machine. The out-of-band notification could
be sent via, e.g., a secondary e-mail address, SMS, a push notification directly to the
user’s browsers on their existing devices (via the W3C Push API [20]), or instant
messaging to users’ social media accounts.

Augmenting Mobile Connect

One of the available LoA3 authentication options in Mobile Connect involves using the
Mobile Signature Service (MSS) [60] standard to generate and store an asymmetric
key pair on the user’s SIM card, to be used for authenticating the user’s device to
the mobile network operator (MNO) [78]. When users log into an SP via Mobile
Connect, they are first redirected to their IdP (i.e., their MNO), which initiates an
authentication process whereby a confirmation prompt is received on the user’s mobile
device, and the user’s response (signed using the key stored on the SIM) is sent back
to the IdP. The IdP then generates an access token and redirects the user back to
their SP, completing the standard OpenID Connect protocol flow as discussed in
Section 6.1.

An alternative Mobile Connect design offering resistance to impersonation by
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IdPs could leverage the cryptographic capabilities of SIM cards (currently only used
for device-to-IdP authentication, as described above) to implement a device-to-SP
cryptographic challenge-response protocol. A possible implementation would be for
the user device to generate unique site-specific cryptographic key pairs (or use a
signature scheme that uses a single key as a seed to generate unique site-specific keys
[89, 35]), similarly to FIDO UAF. However, IdPs could sign users’ public keys, to
attest to SPs that users’ signing keys are generated on an IdP-authenticated SIM. If
a user loses their SIM, the IdP could issue the user a new SIM; this would require
the user’s device to generate new keys for each SP on their new SIM. A disadvantage
of this approach is that it requires a mechanism for key revocation, whereby IdPs
inform SPs that users have lost their devices so that SPs can invalidate users’ old
keys and accept the newly-generated keys. An advantage of this alternative approach
is that the key revocation and regeneration process enables IdPs to facilitate account
recovery in the event that users lose their mobile phones (in contrast to schemes such
as FIDO UAF, in which IdPs cannot facilitate account recovery, and which thereby
require SPs to implement their own recovery mechanisms). With this alternative
design, user impersonation by rogue IdPs would require revocation of targeted users’
SP-specific keys, which would be easily detectable by users (i.e., they would lose
access to their accounts, similar to the scenario of a rogue e-mail provider performing
a password reset).

6.4.4 Configuration for Device-Based (T2) Schemes

As discussed above in Section 6.4.3, countermeasures to IdP impersonation may re-
quire additional protocol and implementation complexity for IdPs and SPs. On the
other hand, SSO is also achievable through user-to-device (T2) authentication mech-
anisms, which eliminates the requirement for users and SPs to trust remote IdPs for
authentication (T1); however, this requires additional client-side configuration effort.
As demonstrated in Table 6.3, no device-based (T2) CM scheme (A5, A6) fully offers
No-Device-Setup.

Developing usable device configuration mechanisms can be a challenge. For ex-
ample, a very high proportion of Firefox Sync 1.5 (see Section 6.1.1) users had only
set up a single device—a practice which would result in those users losing all their
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passwords if they were to lose their device or had to re-install their operating system
(assuming, as revealed by a high volume of user complaints [205], that most of those
users had not backed up their password database encryption key). Moreover, many
users did not understand the purpose of “pairing” (i.e., transferring the encryption
key to) new devices. On the other hand, Firefox Sync 2.0 simplifies configuration
by using a password-derived encryption key, which improves usability but introduces
weakness against both online and offline guessing attacks.

FIDO UAF also requires configuration for new devices. However, since the crypto-
graphic keys cannot be extracted and transferred to new devices, users must “enroll”
their new device individually on each SP account. For example, Microsoft’s SP devel-
oper guide [208] for application developers suggests that new devices can be enrolled
by asking the user to authenticate via a password and a second factor such as an
SMS or e-mailed OTP, after which the new device can generate a new cryptographic
key pair and send the corresponding public key to the SP. While it is too early to
tell with certainty what authentication mechanism the majority of SPs will use when
enrolling new UAF devices, relying on password-based authentication would nullify
most of the security and usability benefits of using UAF, since: (1) attackers would
focus on breaking the password authentication option instead of breaking UAF au-
thentication, and (2) users who already use a password manager to automatically fill
in strong passwords would see no usability or security benefit in enrolling any UAF
devices to their SP accounts.

6.5 Concluding Remarks and Recommendations

Our classification and analysis of 14 SSO schemes offers a big-picture overview of the
state-of-the-art of web SSO; the usefulness of the criteria identified in our evaluation
framework is validated by their ability to distinguish the strengths and weaknesses
of different architectural solutions. Moreover, our framework serves as a decision-
making tool to select an appropriate SSO scheme under the given circumstances by
matching the set of needs and requirements with a scheme that offers the correspond-
ing benefits. To our knowledge, this work is also the first in-depth treatment (since
the taxonomy of Pashalidis and Mitchell [155]) presenting a combined comparative
evaluation framework for CM and FIS schemes, which both address similar goals.
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Below, we summarize some important insights and recommendations drawn from our
comparative analysis in this chapter.

While none of the 14 schemes emerges as a clear winner for all use cases, based
on our analysis we believe that password managers (i.e., CM-based SSO) such as
Firefox Sync 2.0 emerge as the overall best scheme that offers users improved security
over conventional password authentication, with minimal usability impact. While
this may be the overall best option for users wishing to improve their online security,
there are no widely-accepted mechanisms by which SPs can require their users to
use a password manager. In situations where the SP must enforce higher security
guarantees (and where the SP has the resources to do so), other schemes have seen
some success; e.g., with sufficient co-ordination, large institutions such as govern-
ments, banks, and telecommunications companies can form partnerships to enable
stronger authentication while imposing little usability burden on users, as illustrated
by the success of a number of public-private partnerships around the world such as
SecureKey in Canada, GOV.UK Verify in the UK [49, 73], and BankID in Sweden
and Norway [165].

FIDO UAF offers promising security benefits, but necessitates SPs to offer users
a backup authentication mechanism for enrolling new devices. In practice, we believe
this will result in a wide variation in the overall security and usability benefits gained
(based on the backup mechanism used). For example, Microsoft’s recommendation
[208] that SPs may fall back to password authentication may result in many FIDO
UAF SPs offering little to no security advantages over password authentication (even
usability may suffer, if users become more prone to forgetting their passwords due
to infrequent use). Therefore, we believe that FIDO UAF in its current form only
offers meaningful improvements to security if certain guidelines are followed: SPs
should eliminate password-only authentication for enrolling new devices and instead
rely on a more secure (but potentially less usable) mechanism, such as requiring
newly-enrolled devices to be authorized from a device that is already enrolled. An
account recovery scheme offering sufficient security must also be used—recall our
justification from Section 5.3 that authentication schemes offering greater security
must also be paired with account recovery schemes offering greater security, to deny
attackers an alternative attack path with weaker security. FIDO UAF in particular
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may also result in more frequent use of account recovery compared to other schemes—
recall that UAF requires each device to be enrolled with each individual SP, making
it highly likely that users may have many SP accounts with only a single device
enrolled; device loss in such cases would require use of the recovery mechanism. In
such cases, account recovery may require the availability of technical support staff
who can verify the identity of the user in-person or by telephone—such level of service
would be unrealistic to expect from most free online services, but may be possible for
organizations such as educational or financial institutions.

We highlight that certain trade-offs must be made when designing an SSO scheme,
based on the benefits being prioritized. Moreover, different stakeholders (namely
users, IdPs, and SPs) may have conflicting priorities. For example, as discussed
in Section 6.4.3, No-Impersonation-by-Third-Party is beneficial to users but more
complex for IdPs and SPs to implement. We also observe that protocols offering
“niche” benefits to users, such as OpenID 2.0 (offering the freedom to users to use
any IdP at any SP) or Mozilla Persona (offering the ability to browse privately from
IdPs) have not survived the market. Instead, OAuth based protocols have emerged
as the most dominant, which may be due in part to their higher suitability towards
providing access to users’ social media data (a drawback for users, an appeal to SPs
and IdPs).



Chapter 7

Discussion and Conclusion

Web authentication continues to be a challenge for all stakeholders involved, and for
users especially. In 2015, the average user in the United States had 130 online accounts
[30]; this number was projected to grow to 207 accounts by the year 2020, based on
a historical annual growth rate of about 14%. It is unrealistic and unreasonable to
expect that users will select and memorize a strong and unique password for each of
their online accounts. As outlined in Chapter 1, this thesis pursued three goals to
simultaneously address both the security and usability challenges that arise due to
password fatigue and other disadvantages of password authentication as discussed.
Below, we revisit these goals and discuss insights gained.

G1. We identified, developed, and evaluated device fingerprinting mechanisms
for use alongside passwords, and offered guidance on their use, to enhance the secu-
rity of password-based web authentication. The primary usability and deployability
advantages of device fingerprinting when compared to other supplementary authen-
tication mechanisms (e.g., single-use SMS codes) is that they do not require any user
interaction, client-side software installation, or specialized client-side hardware.

G2. We expanded on the concept of mimicry resistance, a dimension that has thus
far been largely overlooked in the study and design of web authentication schemes. We
developed a comprehensive framework for evaluating the mimicry resistance of web
authentication schemes and provided guidance on how to combine multiple schemes
alongside password authentication to maximize the benefits gained.

G3. We performed a comprehensive analysis and evaluation of a broad range of
SSO schemes, which reduce password fatigue by allowing users to access multiple ser-
vices through a single master credential (most commonly, a master password). While
a wide range of SSO schemes have been developed, prior to the work in this thesis
there was a lack of clarity regarding the important distinctions between them and
their practical implications. In this thesis, we provided clarity on which benefits are
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offered by different schemes, which benefits are more desirable to different stakehold-
ers (namely users, SPs, and IdPs), and which benefits are better suited to different
environments or use-case scenarios (e.g., medium-value vs. high-value accounts).

We note that our goals and corresponding contributions as summarized above are
complementary. The first two goals (G1 and G2) relate to enhancing the security of
web authentication through the use of additional authentication mechanisms that do
not impose a usability cost. The third goal (G3) relates to reducing the number of
passwords that users are required to memorize. These two approaches can be used
together to improve security. In fact, more widespread adoption of SSO (G3) can
help accelerate adoption of new authentication mechanisms (G1 and G2), since SPs
can rely on IdPs to implement mechanisms that SPs may not otherwise have the
expertise to implement themselves.

7.1 Further Insights and Future Directions

Below, we highlight further insights gained throughout our work and identify promis-
ing directions for future work.

7.1.1 Continuous Authentication

The primary focus of this thesis is on start-of-session authentication, as opposed to
continuous authentication (refer to Section 2.1 for the differences between these two
approaches). However, Chapter 3 also discussed the use of device fingerprinting for
continuous authentication throughout a session, to defend against session-hijacking
attacks. We briefly summarize insights on the cause of session hijacking, countermea-
sures, and future work for continuous authentication on the web.

Session Hijacking

Session hijacking is a threat not only to conventional password authentication, but to
all forms of web authentication used in practice. This is due to the ubiquitous reliance
on HTTP session cookies to maintain authenticated sessions. Reliance on session
cookies stems from the fact that HTTP is a stateless protocol—in other words, each
HTTP request sent by a web browser to a server is processed independently from all
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others. Session cookies enable web browsers to locally store an identifier (typically
randomly-generated, to prevent guessing attacks) to include in each HTTP request
as proof that an authenticated session has already been established for the user.
In the absence of a session identifier, the web server processing the HTTP request
would require the user to re-authenticate (e.g., by typing in their password). Session
hijacking is enabled by the theft of session cookies by attackers (typically via cross-
site scripting [152] or man-in-the-middle1 attacks); this allows attackers to generate
arbitrary HTTP requests (e.g., to perform unauthorized transactions) containing the
session identifier of an existing authenticated session to bypass user authentication.

Session Hijacking Defenses

Session hijacking can be prevented by ensuring that the following two requirements
are met:

1. All protocol messages should be exchanged between client and server over a
cryptographically secure connection, to prevent the capture of any session state
information that can be used to hijack the session.

2. Proof of user authentication should only be valid for the duration of the secure
connection in which the user was authenticated.

While HTTPS (HTTP over TLS) ensures that the first requirement is met, it does
not ensure that the second is met—instead of limiting the validity of proof-of-user-
authentication (i.e., the session cookie) to a single secure connection,2 most effort has
focused on making it more difficult (but still possible) for attackers to steal session
cookies. ChannelID token binding (discussed in Section 2.4.1) seeks to fulfill the
second requirement by cryptographically binding session cookies to the TLS session
in which they are created. However, as of the time of writing, standardization is still
ongoing and the protocol is currently only supported by Google Chrome [43].

Future work could further explore how device fingerprinting can be used to defend
against session hijacking (by fulfilling the second requirement above), both as a more

1This includes several categories of attacks that involve relaying or eavesdropping on the com-
munication (e.g., via a wireless access point under the control of an attacker) between the client and
server.

2Note that a TLS connection is not limited to a single browsing session, since the same connection
can be resumed when users visit the same website at a later time [171].
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immediately-applicable countermeasure that is compatible with all current browsers,
and to investigate whether additional benefits can be provided if used alongside Chan-
nelID.

Future Work on Continuous Authentication

In addition to device fingerprinting, other approaches can be investigated for continu-
ous authentication on the web. Chapter 2 discussed behavioural biometrics, which is
outside the scope of this thesis but underexplored for web authentication. Moreover,
continuous authentication can be used not only to protect against session hijacking
attacks, but also to lock out attackers in the event of, e.g., device theft or credential
theft. For example, Google has developed a number of basic heuristics to detect at-
tempted attacker takeover of user accounts [130]. Note that these heuristics are based
on attacker behaviour that occurs after the start-of-session authentication. For ex-
ample, a commonly flagged behaviour pattern is for attackers to log into an e-mail
account, send phishing e-mails to all the user’s contacts, and create an e-mail filter
to delete all incoming e-mails containing the word “hacked” (in case any contact at-
tempts to inform the user that their account has been hacked). Such mechanisms are
complementary to the work in this thesis and therefore offer an additional layer of
security, warranting further exploration.

7.1.2 Further Development of Device Fingerprinting

Various avenues for further study on device fingerprinting were identified throughout
this thesis. For example, some fingerprinting vectors identified, such as clock skew fin-
gerprinting, should be further studied to determine the feasibility of mimicry attacks
and possible defenses. The proposed vector for measuring the amount of GPU mem-
ory, could be extended to detect additional GPU hardware parameters; it could also
be used as the basis of a challenge-response protocol to improve mimicry resistance.

There are also practical issues that need to be addressed, such as how device
fingerprints should be stored server-side—storing a hash of the device fingerprint
only allows servers to check for an exact match, but storing detailed information
in plaintext may raise privacy concerns. Techniques used for biometric template
storage or other implicit authentication schemes may offer further insights that can
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be applied to device fingerprint storage. Other practical issues include determining
the ideal granularity level to use for different fingerprinting vectors if an exact match
is not required (e.g., for geolocation).

7.1.3 Device Fingerprinting Through Native Applications

In addition to web applications (the focus of this thesis), device fingerprinting can
also be integrated into native applications3 for various purposes. For example, as
discussed in Section 3.4.3, account recovery can be done through device fingerprint-
ing applications built using trusted computing technologies. Device fingerprinting
performed by such applications would offer greater mimicry resistance compared to
browser-based device fingerprinting, but would be less convenient for users (a reason-
able trade-off for account recovery), since users would be required to download and
run an application on their machine.

Device fingerprinting can also be used by native smartphone applications for bi-
lateral authentication, as is done with Sound-Proof [99]. For example, the verifying
server may determine whether the user’s smartphone is connected to the same net-
work as the access device, or may geolocate both the smartphone and access device
to determine that they are in close proximity. Such fingerprinting vectors may be
used independently or in conjunction with existing techniques such as Sound-Proof
to offer greater security.

7.1.4 Improved Single Sign-On Architectures

In Section 6.4.3, we provided high-level descriptions of design changes to two SSO
schemes (SAW and Mobile Connect) to make IdP impersonation of users detectable.
Further exploration could identify other design changes that can gain different benefits
for other SSO schemes, and the associated trade-offs (if any). For example, Intel
SGX [90] (or other trusted computing technologies) may have useful applications to
SSO protocols, particularly for privacy-related benefits (B12-B14, Section 6.2.1) since
it allows clients to verify the integrity of code that is being executed server-side.

Future SSO schemes could be designed to offer new benefits that are not yet offered
3A native application is one that runs directly on the host operating system, as opposed to

running within another application such as a web browser.
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by any current schemes. For example, none of the schemes evaluated in Chapter 6
offer a mechanism for secure account sharing. Account sharing is a challenge even with
conventional password-based authentication: while password-sharing is a discouraged
practice, users often have no other choice if they wish to share their account with
others.
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Appendix A

Appendix A: UDS Properties

The following definitions of UDS properties are included essentially verbatim from
Bonneau et al. [25] for reader convenience.

A.1 Usability benefits [25]

U1 Memory-wise-Effortless: Users of the scheme do not have to remember any se-
crets at all. We grant a Quasi-Memory-wise-Effortless if users have to remember
one secret for everything (as opposed to one per verifier).

U2 Scalable-for-users: Using the scheme for hundreds of accounts does not increase
the burden on the user. As the mnemonic suggests, we mean “scalable” only
from the user’s perspective, looking at the cognitive load (e.g., having to remem-
ber a distinct secret for every verifier is a cognitive burden, but so is having to
select the relevant verifier out of a linear menu with hundreds of them), not from
a system deployment perspective, looking at allocation of technical resources.

U3 Nothing-to-Carry: Users do not need to carry an additional physical object (elec-
tronic device, mechanical key, piece of paper) to use the scheme. A Quasi-
Nothing-to-Carry is awarded if the physical object is one that they’d carry
everywhere all the time anyway, such as their cellphone, but not if it’s their
computer (including tablets).

U4 Manually-Effortless: The authentication process does not require manual (as op-
posed to cognitive) user effort beyond, say, pressing a button. Schemes that
don’t offer this benefit include those that require typing, scribbling or perform-
ing a set of motions. We grant Quasi-Manually-Effortless if the user’s effort is
limited to speaking, on the basis that even illiterate people find that natural to
do.
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U5 Easy-to-Learn: Users who don’t know the scheme can figure it out and learn it
without too much trouble, and then easily recall how to use it.

U6 Efficient-to-Use: The time the user must spend for each authentication is accept-
ably short. The time required for setting up a new association with a verifier,
although possibly longer than that for authentication, is also reasonable.

U7 Infrequent-Errors: The task that users have to perform to log in usually succeeds
when performed by a legitimate and honest user. In other words, the scheme
isn’t so hard to use or unreliable that genuine users are routinely rejected. (We
could view this benefit as “low false reject rate”. In many cases the scheme
designer could make the false reject rate lower by making the false accept rate
higher. If this is taken to an extreme we count it as cheating, and penalize it
through a low score in some of the security-related benefits.)

U8 Easy-Recovery-from-Loss: A user can quickly regain access if the token is lost
or the credentials forgotten. We do not grant the benefit when loss-resilience
is obtained by having an authority revoke the lost credential and issue a new
one, as that’s almost always available as the ultimate recourse (except perhaps
for biometrics). This benefit essentially indicates whether the scheme offers
convenient backups or secondary recovery schemes.

A.2 Deployability benefits [25]

D1 Accessible: Users who can use passwords are not prevented from using the scheme
by disabilities or other physical (not cognitive) conditions. (Ideally one would
just say: “the scheme is usable by everyone, regardless of disabilities”. However
we feel that, for any given scheme, it is always possible to come up with a dis-
ability or condition that would exclude a category of people, and that therefore
no scheme would be able to offer this benefit. We therefore choose to award
the benefit to schemes that do at least as well as the incumbent that is de facto
accepted today, despite the fact that it too isn’t perfect. An alternative to us-
ing passwords as the baseline could be to base the metric on the ability of the
scheme to serve a defined percentage of the population of potential users.)
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D2 Negligible-Cost-per-User : The total cost per user of the scheme, adding up the
costs at both ends (any devices required at the prover’s end and any share of
the equipment and software required at the verifier’s end), is negligible. The
scheme must be a plausible choice for startups with no per-user revenue.

D3 Server-Compatible: At the verifier’s end, the scheme is compatible with text-
based passwords. Providers don’t have to change their existing authentication
setup to support the scheme.

D4 Browser-Compatible: Users can use the scheme with any current standards-
compliant web browser and no additional software. Schemes fail to provide
this benefit if they require the installation of plugins or any kind of software
whose installation requires administrative rights. Schemes offer Quasi-Browser-
Compatible if they rely on very recent web standards that are not yet available
on all the major browsers. Schemes may still offer the full benefit if they re-
quire JavaScript or other active content that any current standards-compliant
browser supports out of the box. This benefit is the dual of the previous one:
at the prover’s end, the scheme is compatible with text-based passwords and
users don’t have to change their client to support the scheme.

D5 Mature: The scheme has already been implemented and deployed on a large
scale for actual authentication purposes rather than for research. Indicators
to consider for granting the full benefit may also include whether the scheme
has undergone user testing, whether the standards community has published
documents covering the scheme, whether open-source projects implementing
the scheme exist, whether anyone other than the implementers has adopted the
scheme, the amount of literature on the scheme and so forth.

D6 Non-Proprietary: Anyone can implement or use the scheme for any purpose
without having to pay royalties to anyone else. The relevant techniques are
generally known, published openly and not protected by patents or trade secrets.
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A.3 Security benefits [25]

S1 Resilient-to-Physical-Observation: An attacker cannot impersonate a user after
observing them authenticate (observation attacks may include shoulder surf-
ing, filming the keyboard, recording the sound of keystrokes, or visualizing the
temperature of the keys on the keypad after they were touched) one or more
times. We grant Quasi-Resilient-to-Physical-Observation if the scheme could
be broken only by repeating the observation more than, say, 20 times.

S2 Resilient-to-Targeted-Impersonation: It is not possible for an acquaintance (or
skilled investigator) to impersonate a specific user by exploiting knowledge of
that user’s personal details (date of birth, names of relatives etc.). Personal
knowledge questions are the canonical scheme which fails on this point.

S3 Resilient-to-Online-Guessing: An attacker whose rate of guessing is constrained
by a policy at the server cannot successfully guess the secrets of a significant
fraction of the users. To give a quantitative example, we might grant this
property if an attacker constrained to, say, 10 guesses per account per day,
could only compromise fewer than 1% of accounts. This is meant to penalize
schemes in which it is frequent for user-chosen secrets to be selected from a
small and well-known subset.

S4 Resilient-to-Offine-Guessing: An attacker whose rate of guessing is constrained
only by available computing resources cannot successfully guess the secrets of a
significant fraction of the users. We might for example grant this benefit if an
attacker capable of attempting up to 240 or even 264 guesses per account could
still only reach fewer than 1% of accounts. This is meant to penalize schemes
where the space of credentials is not large enough to withstand brute force search
(including dictionary attacks, rainbow tables and related brute force methods
smarter than raw exhaustive search, if credentials are user-chosen secrets).

S5 Resilient-to-Internal-Observation: An attacker cannot impersonate a user by in-
tercepting the user’s input from inside the user’s device (e.g., by key-logging
malware) or eavesdropping on the cleartext communication between prover and
verifier (assuming that the attacker can also defeat TLS, perhaps through the
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CA, if it is used). This rewards challenge-response schemes and penalizes those
that reuse static secrets and thus are not replay-resistant. This benefit as-
sumes that general-purpose devices like software-updatable personal computers
and smartphones may contain malware, but that hardware devices dedicated
exclusively to the scheme can be made malware-free.

S6 Resilient-to-Leaks-from-Verifier : Nothing that a verifier could possibly leak can
help an attacker impersonate the user to another verifier. This penalizes schemes
where insider fraud at one provider, or a successful attack on one back-end,
endangers the user’s accounts at other sites.

S7 Resilient-to-Phishing: An attacker that simulates a valid verifier cannot collect
credentials that can later be used to impersonate the user to the actual verifier.
This is meant to penalize schemes where the phishers make victims authenti-
cate to lookalike sites and later use the harvested credentials against the genuine
sites. It is not meant to penalize schemes vulnerable to more sophisticated real-
time man-in-the-middle or relay attacks, in which the attackers have one con-
nection to the victim prover (pretending to be the verifier) and simultaneously
another connection to the victim verifier (pretending to be the prover).

S8 Resilient-to-Theft: If the scheme uses a physical object for authentication, the
latter cannot be used for authentication by another person who gains possession
of it.

S9 No-Trusted-Third-Party: The scheme does not rely on a trusted third party (other
than the prover and the verifier) who could, if compromised, compromise the
prover’s security or privacy.

S10 Requiring-Explicit-Consent: The authentication process cannot be started with-
out the consent of the user. This is both a security and a privacy feature (for a
counterexample, think of wireless RFID-based credit cards: a rogue card reader
embedded in the sofa could debit your card through your wallet without your
knowledge).

S11 Unlinkable: Different verifiers cannot determine whether the same user is au-
thenticating to both. This is a privacy feature.
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Further details on the UDS framework are available from Bonneau et al. [25],
from which these definitions were reproduced verbatim.
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