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Abstract—The energy consumption of mobile networks is
rapidly growing. Operators have both economic and environmen-
tal incentives to increase the energy efficiency of their networks.
One way of saving energy is to switch off cells during periods
of light traffic. However, cell switch-off is a difficult problem
to solve through conventional optimization; existing research
makes various assumptions to simplify the problem and offers
some heuristics to solve it. The problem can be constructed in
different ways depending on the system model that is chosen. We
examine the cell switch-off problem with the assumption that each
user terminal (UT) has a minimum rate requirement, and show
that it can be formulated and solved as a binary integer linear
programming (BILP) problem when interference is considered
to be constant. This formulation is equivalent to the bin-packing
problem, which is NP-hard, if the spectral efficiency of each UT
to all cells is fixed to a constant. Allowing the interference to
be a function of the UT assignment, which allows for a more
realistic construction of the problem, increases the complexity
even further and thereby necessitates a heuristic method. For
this case, we present a genetic algorithm based cell switch-off
scheme which offers good results with linear complexity.

I. INTRODUCTION

The mobile industry has experienced massive growth over

the past decade. The introduction of smartphones and tablets,

which combine cellular connectivity with powerful processing

capabilities, has allowed the mobile application space to grow

into areas such as social networking, online gaming, music

and video streaming, online file storage, and other cloud-

based services. Due to the scarcity of wireless spectrum, the

most practical way for mobile operators to boost network

capacity to serve this massive demand has been in aggressive

frequency re-use through the deployment of more base stations

(BSs). However, the rapidly growing number of BSs has

contributed heavily to the growing energy consumption of

cellular networks. In addition to the environmental concerns

associated with the sharp rise in global energy consumption,

energy consumption has also become a major component of

operating expenditures (OPEX) for mobile network operators.

In fact, energy consumption accounts for 13.5% of OPEX

in mature markets and 26.3% in maturing markets, and 65-

75% of the total power is consumed by BSs [1], [2]. There is

great interest in the research community towards reducing the

overall energy consumption of cellular networks [3].

As operators deploy greater numbers of BSs, cell sizes

are reduced and therefore less power is required to satisfy

cell edge UTs. This increases energy efficiency, since power

amplifiers account for upwards of 40% of a BS’s total energy

consumption [2]. The energy consumption break-down at a

typical 3G BS is as follows: 42% from the power amplifiers,

11% from the DC power supply, 25% from cooling, and 22%

from baseband processing [4]. Moreover, an overwhelming

ratio of the energy consumption of a BS is independent of

traffic load, which is why for the schemes presented in this

paper we assume that the energy saved in the network is

proportional to the number of cells switched off [5].

Modern cellular networks are interference-limited (as op-

posed to noise-limited), and therefore in off-peak periods

it can be possible to serve the same number of UTs with

fewer BSs without increasing the transmit power. Current

BSs are typically sectorized into three cells, and each cell

can independently be switched off to save power [6]. Energy

could be saved by adaptively reconfiguring cell parameters

and switching them on or off based on spatial and temporal

fluctuations in network traffic. For example, business areas

experience higher traffic load than residential areas in the

daytime, whereas the reverse would likely be true in evening

hours. Since cellular networks are designed to meet peak

demand, there will always be areas in the network which are

underutilized at different times of the day.

There has been discussion among industry members at

3GPP meetings on the various use case scenarios for switching

on and off cells in the network; three sample scenarios are

described in [7] and [8] as follows:

• When there are two cells operating on different radio

bands covering the same geographical area, one of the

cells could be deactivated during times of light traffic.

• In a hierarchical cell structure where a macro-cell is

deployed to provide continuous coverage to a large area

and femto-cells are deployed to increase the capacity of

specific sub-areas, the femto cells can be switched off

when light traffic is detected.

• In areas where an LTE cell is totally covered by a legacy

cell (e.g., UMTS or GSM), the LTE cell could be de-

activated when there is no demand for high-speed data.

There are a number of recently published works which

study from various angles the issue of selectively switching

off BSs. One study uses analytical methods to characterize the

energy savings that can be achieved by reducing the number

of active BSs during periods of low traffic [9]. Another study



proposes a scheme where mobile operators offering service

in the same area can save energy by switching off BSs and

allowing customers to roam on each other’s networks [10]. A

centralized and distributed version of a scheme, called “cell

zooming”, iterates at a pre-defined interval to switch off BSs

in areas with light traffic if the traffic demand can be satisfied

by neighbouring BSs [11], [12].

We are interested in developing an energy-saving scheme

which adapts the network to fluctuations in traffic demand

by switching on and off cells. Selecting the set of cells to

switch off can be a difficult problem to solve analytically

due to the difficulty of taking all aspects of the problem into

account such as the reduction in interference when switching

off a cell. Real-world conditions complicate the problem

even more due to issues such as irregular cell layouts and

differing transmit powers, antenna heights, and energy con-

sumption levels between cells. We believe that in these kinds

of complex scenarios, approaches from artificial intelligence

and biologically-inspired computing can be explored [13].

Examples of biologically-inspired algorithms include artificial

neural networks, genetic algorithms, particle swarm optimiza-

tion, and ant-colony optimization. In the sections that follow,

we give a brief overview of genetic algorithms (GA) and

then present our GA-based scheme which provides significant

improvements over the scheme proposed in [12].

II. OVERVIEW OF GENETIC ALGORITHMS

GAs belong to a larger class of evolutionary algorithms

which are inspired by aspects of genetic evolution such as

mutation, chromosomal crossover, and natural selection. Al-

though there are some variations, GAs all share the approach

of performing a heuristic search of a solution space with the

goal of finding the optimal solution using the aforementioned

evolutionary techniques. In order to apply a GA to a problem,

the following two requirements must be met:

i. It must be possible to encode any solution from the

solution domain as a string of “alleles”, called a “chro-

mosome”.

ii. The quality of any solution, based on the objective of

the optimization problem, should be quantifiable by using

a “fitness function”.

There are a number of key principles which should be

followed when designing the fitness function and the chro-

mosome representation for a problem. For example, the chro-

mosome representation should be as concise as possible and

should lend well to mixing and matching alleles for generating

new, higher quality solutions. Also, a fitness function should

be computationally efficient, since it will be used many times

throughout the optimization process and will therefore have

a high influence on computation time. The steps of a basic

steady-state genetic algorithm are as follows [14]:

1) Generate initial population of chromosomes either ran-

domly or through a heuristic which can find some sub-

optimal solutions.

2) Assign each chromosome a fitness value.

3) Probabilistically select two chromosomes based on their

fitness values – these will be the parent chromosomes.

4) Perform a genetic crossover to generate two child chro-

mosomes.

5) Assign a fitness value to the two child chromosomes and

insert them into the population by displacing two of the

existing chromosomes.

6) Return to Step 3, unless a stopping condition has been

met (e.g., maximum number of crossovers).

7) Select the chromosome with the highest fitness value as

the optimal solution.

A crossover is a mechanism which takes two parent chromo-

somes and combines them to produce two child chromosomes.

For example, the simplest crossover technique, called the one-

point crossover, selects a sub-string of alleles and swaps them

between the parent chromosomes. Choosing an appropriate

crossover technique can often have a dramatic impact on the

quality of the final solution.

Finally, mutation is the genetic operator which is designed

to maintain diversity in the population in order to help the

GA to avoid local optima. This is done by randomly selecting

some chromosomes, based on a small pre-defined probability,

and performing slight alterations such as flipping a binary bit

at a random position or swapping two alleles.

III. PROBLEM FORMULATION

We propose a centralized scheme which configures all of

the cells in the network by either switching them on or off.

We introduce the following notation, which will be used in

the formulation:

• xi,j : binary variable such that xi,j = 1 if UT i is

connected to sector j.

• yj : binary variable such that yj = 1 if base station j is

active.

• ρi,j : spectral efficiency between UT i and sector j.

• Bj : total bandwidth for sector j.

• Ri: minimum rate requirement for UT i.
• I: number of UTs.

• J : number of sectors.

We begin with the assumption that the spectral efficiencies

ρi,j are independent from the binary variables yj and xi,j . As

a result, the interference power must be fixed to a constant for

all UTs by assuming either (a) the best-case scenario, which

occurs when interference power is zero (i.e., SINR = SNR
for all UTs); or (b) the worst-case scenario, which occurs

when all frequency blocks are being used by all of the cells.

We observe that assumption (a) yields the upper-bound and

(b) yields the lower-bound for the number of cells which

can be switched off, since (a) over-estimates and (b) under-

estimates the spectral efficiencies of the UTs. The authors of

[12] followed assumption (a). However, it should be noted that

(a) is an unachievable bound, since it is physically impossible

for there to be no interference in the network; even if inter-

cell interference coordination is used, it is at the expense of

bandwidth and it still does not completely eliminate interfer-

ence. On the other hand, (b) yields an achievable bound since



it is the worst-case scenario. Following either assumption, the

problem can be formulated as a BILP problem as follows:

minimize
xi,j ,yj ,∀i,j

J∑

j=1

yj (1a)

subject to

I∑

i=1

xi,j
Ri

ρi,j
≤ Bj , ∀j, (1b)

xi,j ≤ yj , ∀i, j, (1c)

J∑

j=1

xi,j = 1, ∀i, (1d)

xi,j , yj ∈ {0, 1}, ∀i, j. (1e)

It should be noted that in general, integer programming

problems are NP-hard. In fact, when

Ri

ρi,j
= C, ∀i, j,

where C is a constant (in other words, when the bandwidth

requirement of each UT to all cells is equal) the problem is

equivalent to the well-known bin packing problem which is

NP-hard. Nevertheless, the problem can be solved efficiently

for a relatively small number of UTs and can therefore serve

as a benchmark for other heuristics. However, defining the

spectral efficiencies ρi,j as a function of the cell configuration

yj or UT assignment xi,j makes the problem non-linear and

hence much more difficult to solve, thereby necessitating a

good heuristic.

We build our heuristic based on Algorithm 1, which is the

centralized “cell zooming” heuristic proposed in [12]. The

variables are defined (based on the notation above) as follows:

• X = [xij ] (UT to cell assignment).

• W = [ωij ], where ωij is the spectral efficiency of a UT

i served by cell j.

• B = [bij ], where bij is the bandwidth required for a cell

j to satisfy the minimum rate requirement of UT i.
• Mj is the set of UTs being served by cell j.

• L = [Lj ], where Lj =
∑

iεMj

bij
Bj

gives the traffic load of

cell j.

Algorithm 1 switches off cells only in increasing order

based on traffic load. Although it intuitively makes sense to

first attempt to switch off cells with low traffic load, following

this strict ordering does not yield optimal results since the

traffic load of neighbouring cells is also relevant to finding

the optimal configuration.

Algorithm 1 does not put any UTs into outage at the

instant that it is executed. However, as time passes, the UT

distribution may change before the next time that the algorithm

is scheduled to be executed. This is why the authors proposed

that a protection margin αj be introduced, which restricts

the available bandwidth of the cells to B̃j = (1 − αj)Bj in

the execution phase of the algorithm. This leaves some spare

bandwidth at each cell to decrease the blocking probability

of subsequent UTs entering the network, and therefore results

in less cells being switched off. As opposed to executing the

algorithm at fixed intervals as suggested in [12], we believe

that a better approach is to monitor the average traffic load

and outage levels of all the cells in the network. A high (or

low) average utilization would indicate that it is an appropriate

time to re-execute the algorithm.
Another issue is that in order for the algorithm to be

executed, all of the UTs must have SINR measurements from

all of the nearby cells in order to identify those with which

their spectral efficiency is high enough to meet their minimum

rate requirement. The authors of [12] suggest that every time

when the algorithm is to be executed, all of the cells should

be switched on for a short period to allow the UTs to collect

the required SINR measurements. This implementation may

be undesirable in real-world deployments. As an alternative

solution, wireless network equipment could be equipped with

efficient, low-power components dedicated for signaling pur-

poses. This would allow cells to switch off data capabilities

and go into a low-power sleep mode which allows signalling

activity to continue. Based on the mobile industry’s growing

emphasis on energy efficiency, this idea is very conceivable for

the future. In fact, the idea of separating data from signalling

in green wireless networks is already being proposed by some

researchers in academia and industry [15].
We present our improved heuristic in Algorithm 2, which

attempts to switch off every cell in the network before termi-

nating (as opposed to terminating when it encounters a cell

which can not be switched off). Algorithms 1 and 2 are both

linear in complexity with respect to the number of cells and

UTs.
Finally, we propose a GA-based scheme in which interfer-

ence is a function of which cells are switched on. We continue

to use the iterative approach of switching off cells, which

raises the problem of ordering since each decision to switch

off a cell will impact the subsequent decisions. Therefore, we

use a GA to search for the ordering which results in the most

cells being switched off. We show that the GA succeeds in

finding an ordering which results in more cells being switched

off when compared to switching them off in the order of least

load. The GA is designed as follows:

• The genetic encoding (denoted by B in Algorithm 3) is

an array of numbers where each number represents a cell.

The order of the numbers represents the order in which

the algorithm will attempt to switch off the cells.

• The fitness value of each chromosome is the number

of cells that are successfully switched off using this

ordering, less the average cell load. Consequently, if there

are two distinct solutions which both succeed in switching

off the same number of cells, the solution which results

in a lower average load will be favoured. The fitness

function uses Algorithm 3 to determine how many cells

can be switched off with a given ordering B.

Given the genetic encoding described above, where each

allele must appear exactly once in the chromosome, the

previously mentioned one-point crossover technique can not be

used. However, we may use ordered crossover methods which
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Fig. 1. Partially matched crossover (figure taken from [17]).

Fig. 2. Convergence time of IAGA (result from a single UT drop).

were designed for ordering problems such as the travelling

salesman problem. The technique we used is called the Par-

tially Matched Crossover (PMX) and is demonstrated in Figure

1 [16]. In this method, two crossover points are randomly

selected to form a “matching” section. A child is then created

by copying the alleles from the matching section of one parent

chromosome to the other, while moving the displaced alleles

from the second parent in a way which preserves the validity

of the chromosome.

The inclusion of an interference model in the fitness func-

tion adds some computation time to the algorithm, since

all SINRs are recalculated each time a cell is switched off.

Also, the GA performs many iterations before converging to

a final solution. However, the complexity of the algorithm

is still linear and it can be executed within a few minutes

in MATLAB using a modern personal computer. This is a

reasonable amount of time considering that the algorithm

would be executed in intervals on the scale of hours, in contrast

to other procedures such as scheduling algorithms which are

executed on the scale of milliseconds.

IV. SIMULATION SETUP AND RESULTS

The simulation setup is based on parameters and assump-

tions taken from the ITU-R guidelines for evaluating IMT-

Advanced systems [18]. The urban micro-cell (UMi) downlink

Algorithm 1 Cell zooming algorithm [12] (worst-case inter-

ference assumed).

Input: W,B
Output: X

1: L ⇐ 0
2: X ⇐ 0i×j

3: for each UT i do
4: Assign UT to cell j with highest ωij with condition

LjBj + bij ≤ Bj . Otherwise, UT i is blocked.

5: Update L and X.

6: end for
7: Switch off all cells with Mj = ∅.

8: loop
9: Select cell j with smallest Lj

10: Re-associate, if possible, all UTs from Mj to other

cells in the network.

11: if Mj = ∅ then
12: Switch off cell j
13: Update X and L
14: else
15: Terminate loop

16: end if
17: end loop

Algorithm 2 Improved cell zooming algorithm (worst-case

interference assumed).

Input: W,B
Output: X

1: L ⇐ 0
2: X ⇐ 0i×j

3: for each UT i do
4: Assign UT to cell j with highest ωij with condition

LjBj + bij ≤ Bj . Otherwise, UT i is blocked.

5: Update L and X.

6: end for
7: Switch off all cells with Mj = ∅.

8: A ⇐ Set of all currently active cells

9: while A �= ∅ do
10: Select cell j with smallest Lj

11: Re-associate, if possible, all UTs from Mj to other

cells in the network.

12: if Mj = ∅ then
13: Switch off cell j
14: Update X and L
15: end if
16: A = A− {cell j}
17: end while

scenario was chosen, with the associated parameters listed in

Table I. The UTs are distributed uniformly over the entire area,

with each UT requiring a constant bit rate of 500 kbps. The GA

was set up with an initial population of 57 random orderings

and a mutation probability of 0.1. Reproduction was done

by randomly selecting 7 solutions from the population and



Algorithm 3 Fitness function for interference-aware GA

(IAGA), used for fitness assignment in steps 2 and 5 for GA

described in Section II.
Input: B, W,B
Output: X

1: L ⇐ 0
2: X ⇐ 0i×j

3: for each UT i do
4: Assign UT to cell j with highest ωij with condition

LjBj + bij ≤ Bj . Otherwise, UT i is blocked.

5: Update L and X.

6: end for
7: Switch off all cells with Mj = ∅ and remove from B
8: for each cell j in B do
9: Recalculate cell load vector L and all spectral efficien-

cies ωij assuming that cell j is switched off

10: Re-associate, if possible, all UTs from Mj to other

cells in the network.

11: if Mj = ∅ then
12: Switch off cell j
13: Update W, X and L
14: end if
15: end for

TABLE I
SIMULATION PARAMETERS [18].

Parameter Assumption or Value

Cellular layout Hexagonal grid with wrap-around
Number of cells 57 (19 sites with 3 cells each)
Inter-site distance 200 m
Min. dist. b/w UT and BS 10 m

UT distribution
Randomly & uniformly distributed,

50% UTs indoor & 50% UTs outdoor
Outdoor-to-indoor Pathloss 20 dB
Bandwidth (downlink) 10 MHz
Carrier frequency (fc) 2.5 GHz
Thermal noise level -174 dBm/Hz
BS antenna height 10 m
BS antenna gain 17 dBi
UT height 1.5 m
UT antenna gain 0 dBi
BS transmit power 41 dBm
Antenna tilt (φtilt) 12◦ [19]
Feeder loss 2 dB

Horizontal BS antenna pattern A(θ) = −min

[
12

(
θ

70◦
)2
, 20 dB

]

Elevation BS antenna pattern Ae(φ) = −min

[
12

(
φ−φtilt

15◦
)2
, 20 dB

]

Combined BS antenna pattern −min [− (A(θ) +Ae(φ)) , 20 dB]

Path loss 36.7 log10(d) + 22.7 + 26 log10(2.5)

Shadowing standard dev. 4 dB

replacing the two lowest-fitness solutions with the offspring of

the two highest-fitness solutions after doing a PMX crossover.

Using these parameters, which were chosen experimentally,

the population converges after performing about 70 crossover

operations as can be seen in Figure 2.

Figure 3 compares the results of Algorithm 1, Algorithm

Fig. 3. Comparison of non-interference-aware algorithms.

Fig. 4. Energy savings comparison of interference-aware algorithms.

2, and the optimal solution found with the BILP formulation

when worst-case interference is assumed. It can be seen that

there is a substantial improvement going from Algorithms 1

to 2, and a further improvement with the BILP solution.

Figure 4 presents the results from our GA-based scheme in

the case where interference is made to be a function of which

cells are switched on. We compare the energy savings with

a reference interference-aware heuristic based on the fitness

function that we use for the GA (see Algorithm 3), where the

cells are switched off in order of least utilization the same

way that it is done in Algorithm 2. This allows us to observe

the improvement gained by using the GA to search through

different orderings to find the best solution.

We observe from the results of the interference-aware al-

gorithms in Figure 4 that many more cells are switched off

compared to the results of the non-interference-aware scenario

in Figure 3. This is because when worst-case interference is

considered, it is much more difficult to hand off UTs from



Fig. 5. Energy savings versus blocking probability trade-off comparison of
interference-aware algorithms, with an average of 684 UTs in the network.

one cell to a neighbouring cell due to the high interference.

However, if the spectral efficiency of a UT with a neighbouring

cell is re-calculated by ignoring the received power from its

current cell, it allows for more flexibility in handing off UTs. It

is also seen in both Figures 4 and 3 that choosing which cells

to switch off becomes harder as the number of UTs increases.

The percentage gap between Algorithm 2 and the optimal

solution in Figure 3 increases as the number of UTs increases,

and the same happens between the GA-based algorithm and

the reference algorithm in Figure 4. The easiness in light-load

scenarios is due to the fact that the micro-cell environment is

heavily interference-limited and also that the UTs only require

a fixed minimum rate in order to be satisfied. In the extreme

case of only a single UT in the network, it is likely that any of

the 57 cells would satisfy its rate requirement, due to the high

spectral efficiency which results from close proximity (due to

the dense deployment) and the lack of interference.

Finally, Figure 5 compares the blocking probability of our

interference-aware GA with the reference algorithm discussed

above. A simple traffic model is chosen as was done in [12],

where the average number of UTs is fixed and new UTs enter

the network according to a Poisson process and remain for an

exponentially distributed time with a mean of 1 minute. It can

be seen that the curve for the interference-aware GA appears

to the left of the reference curve, indicating that the GA is

able to achieve lower blocking probability without negatively

impacting energy savings.

V. CONCLUSION

We have shown that in the simplest scenario that we

consider, the cell switch-off problem can be formulated as a

binary linear integer programming problem. However, integer

programming is NP-hard, and therefore in more sophisticated

system models (e.g., when interference is made a function of

cell configuration, or when advanced tools such as coordinated

multipoint transmission/reception or inter-cell interference co-

ordination are taken into account) it is necessary to develop

suboptimal heuristics which are computationally efficient. For

the non-interference-aware scenario, we improved upon a

reference heuristic with linear complexity. We then extended

the heuristic, while maintaining linear complexity, to be

interference-aware and further improved its performance by

using a genetic algorithm.
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