

Onboarding and Software Update Architecture for IoT

Devices

by

Hemant Gupta

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the

requirements for the degree of

Master of Computer Science

in

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario

August 2018

© 2019, Hemant Gupta

Abstract

There has been a continuous growth in the usage of IoT devices. These de-

vices are subject to an increasing number of attacks which exploit their soft-

ware vulnerabilities. We need a secure architectural design for managing and

using cryptographic keys involved in both initial configuration (onboarding)

and secure automatic updates of IoT devices to perform authenticated key

management and digital signature. Low-level IoT devices (8-bit) have low

computational capabilities and a small memory size and are challenged to

carry out desktop- and server-type public-key cryptographic operations, as

needed for key establishment and authentication of software updates. We

have designed and implemented a prototype to provide secure onboarding

and update architecture and associated protocols for low-level IoT devices

(8-bit). It uses elliptic curve cryptography (Curve25519), authenticated key

establishment, and a known continuity-based key-locking mechanism that

uses a public key embedded in a current software image to verify the signa-

ture on the software update. The design addresses the scenario of transfer

of update authority, e.g., when a manufacturer or update provider ceases to

provide ongoing software updates upon going out of business.

i

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Paul van Oorschot

of Carleton University for his support, helpful guidance, insight and feed-

back on my research, which acted as a true encouragement for me through-

out my thesis journey. Without his guidance, this thesis would not have been

possible.

I would also like to thank Dr. Anil Somayaji of Carleton University for

his continuous help guidance and valuable comments. I would also like

to thank members of the Carleton Computer Security Lab (CCSL), notably

Christopher Bellman and Reza Samanfar, who helped a great deal by pro-

viding valuable feedback on my research.

I am also thankful to my committee members, Dr. Carlisle Adams and Dr.

AbdelRahman Abdou, for providing insight and valuable comments.

Finally, I would like to thank my friends and family for their support and

understanding throughout the process.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 3

1.3 Solution Overview . 4

1.4 Contribution . 4

1.5 Thesis Outline . 6

2 Background 7

2.1 Internet of Things . 7

2.2 Software Update . 9

2.3 Onboarding . 11

2.4 Authentication . 12

2.5 Hash Function . 12

2.6 Cryptographic Algorithms . 13

iii

2.6.1 Symmetric Algorithm 14

2.6.2 Asymmetric Algorithm 14

2.7 Bluetooth Low Energy (BLE) . 16

2.8 Transport Layer Security . 18

3 Related Work 20

3.1 Software Update . 20

3.2 Onboarding . 29

3.2.1 Device Pairing . 29

3.2.2 Authentication . 32

4 System Design: Architecture and Overview 36

4.1 Threat Model and Assumptions 36

4.1.1 Evaluation Criteria . 43

4.2 Architecture . 44

4.2.1 Components . 44

4.2.2 Context . 45

4.3 Solution Overview . 47

4.3.1 Onboarding Key Management (Chain of Custody) . . 49

4.3.2 Software Update . 54

4.3.3 Software Update Provider Change 60

5 Design and Implementation Details 62

5.1 Implementation . 62

5.1.1 Registration . 63

5.1.2 Data Encryption within System 70

5.1.3 Digital Signature System 74

6 Prototype Evaluation and Security Analysis 77

6.1 Security Analysis . 77

iv

6.2 Evaluation . 80

6.3 Limitations . 83

6.4 Future Work and Conclusion 84

Bibliography 86

v

List of Figures

1.1 System Design for Onboarding and Software Update 5

4.1 Threat Model for Onboarding and Software update 39

4.2 Authenticated Key Establishment 53

4.3 Software Update Logic Flow Chart 59

4.4 Software Update Provider Change Scenario 60

5.1 User Registration (a) Sign-Up process (b) Login process 64

5.2 User registration using SmartApp 65

5.3 Gateway Device Configuration using SmartApp 67

5.4 IoT Device Registration using SmartApp 68

5.5 IoT Device Registration Process 69

5.6 Key Establishment for Encryption/Decryption 73

5.7 SUP Registration Process . 75

vi

List of Tables

2.1 Extended Taxonomy of IoT Device Processors 9

4.1 Data Structures used in Design and Implementation 47

4.2 Notation used in Design and Implementation 48

6.1 Timing evaluation by 8-bit ATMega2560 with 16MHz clock . . 83

vii

Chapter 1

Introduction

The growing network of connected devices called the Internet of Things (IoT)

offers a vast array of security vulnerabilities. The security of IoT devices is vi-

tal, as current IoT devices, through interaction with the physical world, have

the potential to cause physical harm not to mention putting at risk personal

and medical data, which elevates the importance of means to provide secure

software and firmware updates. Arguably, every time a company deploys

a product as part of a global ecosystem, they have a responsibility for pro-

viding security updates for it. This is not so easily done in an IoT world of

heterogeneous devices from a vast number of vendors.

The Gemalto Survey [32], conducted in November 2017 which involves

countries like the US, UK, France, Germany, India, Japan, Australia, Brazil,

South Africa and Middle East countries, found that many people are in favour

of government regulation for IoT security. According to the survey, 61% of

businesses want regulations to clearly define who is responsible for securing

IoT devices and data at each stage. 55% of businesses also want to know

the repercussions of non-compliance. In general, most organizations (96%)

and consumers (90%) surveyed were in favor of government-enforced IoT

1

security regulation.

Many IoT devices continue to be protected only by a default password.

Recently a law was passed in California requiring that IoT device [46] manu-

facturers provide a unique password for each device. While it is a step in the

right direction, the assurance of secure software update for all low-level IoT

devices remains an open problem, as is trust establishment between devices

with no user input/output interface.

1.1 Problem Statement

Internet of Things (IoT) devices are deployed on many platforms like Ama-

zon Web Service, Google Cloud Platform, etc. Many of them are low-level

constrained devices [13]. A few IoT devices are capable enough to run a gen-

eral purpose operating system. On the other end, we have devices which are

battery operated and perform a single functionality, these are considered here

as Class IV devices (later discussed in Chapter 2). Secure software update for

Class IV level IoT devices is very difficult as they have no user input/output

interface and no previously shared secret with another device. These IoT de-

vices have low processing power and a small memory just sufficient enough

for dedicated tasks. It is challenging to deploy public-key cryptography and

to deliver software updates through the Internet for these constrained de-

vices [13]. Secure software update requires an establishment of a communi-

cation channel between all the components involved. Also onboarding [33]

is termed as a process of introducing a new node in a trusted environment

such that it has suitable keying material to communicate with one or more

trusted nodes.

2

In this thesis, we design and prototype an architecture for onboarding

and secure software update of low-level IoT devices (8-bit).

1.2 Motivation

In 2016, Mirai botnet [2] exploited default access credentials to gain control

of IoT devices and then used them for a DDoS (Distributed Denial of Ser-

vice) attack. In the future, we expect that there will be many attacks that take

place due to software vulnerability present in IoT devices like integer over-

flow [22], buffer overflow [21], and SQL injection [23]. In 2015 [106], similar

attacks took place on hard disk firmware. Malicious code was inserted by

reflashing with the help of a hacking tool. In 2013 [24], researchers demon-

strated an attack on printer firmware by utilizing a design flaw in the remote

update functionality.

As per our knowledge, most IoT devices are password protected, and

we must change our default password immediately because of the attacks

like Mirai botnet. Secure software update for low level IoT devices is still

a big issue, another problem is trust establishment with an IoT device that

has no user interface. Low-level IoT devices have low processing power and

small memory which is just sufficient enough to perform the dedicated tasks.

It is challenging (typically due to computational requirements) to use secu-

rity protocols involving public-key cryptography and to deliver software up-

dates via the Internet. Due to the increase in attacks on IoT devices, we need

a method to provide software update to the IoT devices automatically when-

ever updates are available.

3

1.3 Solution Overview

In this thesis we have developed a method for onboarding IoT devices with

secure key transfer and authenticated key establishment for Class IV IoT de-

vices. This is a primary step in achieving secure software update where we

use a digital signature to provide data origin authentication and the integrity

of the update provided for IoT devices.

Figure 1.1 shows our basic architecture. It involves four components:

1. a Class IV IoT device (see Table 2.1, page 9)

2. a Software Update Provider (i.e., SUP which provides software update

for devices)

3. a Class I level (see Table 2.1, page 9) Gateway device (to help IoT de-

vices communicate with SUP)

4. a smartphone application (i.e., SmartApp, used for device registration

with the SUP)

1.4 Contribution

We base our solution on a common architecture involving four components

as listed immediately above: an IoT device, a gateway, a smartphone appli-

cation, and a software update provider (SUP). Our design for secure software

update uses a mechanism called "key-locking" from the method of Wurster

et al. [105] [97] for self-signed binaries for smartphones. Using this, we offer

the following contributions:

4

• We implement and test the performance of public-key cryptographic

algorithms on 8-bit micro-controllers for providing secure software up-

date.

• We apply the concept of key-locking [97] to the problem of software

update on 8-bit IoT devices.

• We explain and prototype a method for onboarding IoT devices us-

ing authenticated key management involving a Gateway device and

a smartphone.

• We address the issue of changing the authority of ownership of soft-

ware update provider, in the case that a manufacturer or software up-

date provider goes out of business.

Results of this thesis have appeared at peer-reviewed conference [36].

Figure 1.1: System Design for Onboarding and Software Update. Smart Lock
[42] is an example IoT device

5

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 provides a

brief background on IoT, software update, trust, authentication, cryptogra-

phy, digital certificate and Bluetooth Low Energy (BLE). Chapter 3 summa-

rizes related work in the area of software update and onboarding for IoT

devices. Chapter 4 describes the architecture and overview of the system de-

sign. Chapter 5 presents the implementation details of a prototype. Chapter

6 provides evaluation, security analysis, limitations of the design, concluding

remarks, and suggestions for future work.

6

Chapter 2

Background

In this chapter, we provide background on the algorithms and protocols

used.

2.1 Internet of Things

The IoT is an extension of the Internet into the physical world for interac-

tion with physical entities from their surroundings [107]. IoT is also known

as the network of physical devices, vehicles, home appliances and other de-

vices embedded with software, sensors, actuators, and connectivity, which

enables these objects to connect and exchange data. It allows machines and

real-world objects to connect, communicate, and interact with one another.

An IoT device can communicate with other IoT devices through different

means including Bluetooth Low Energy (BLE), ZigBee [77], or other wireless

technologies. IoT services facilitate the integration of IoT entities into the

service-oriented architecture (SOA) world [1]. IoT services are the transac-

7

tions between two parties: service providers and service consumers. IoT has

many applications in the field of consumer and home devices, such as the

development of smart infrastructures like the smart home and smart grid,

and security and surveillance. Currently, the use of wearable and portable

IoT devices is increasing in personal fitness rather than the healthcare sector,

and in transportation, people are working on autonomous vehicles.

Borman [13] classified constrained IoT devices into three classes based on

the size of memory (i.e., RAM and Flash), ranging from 10KB to 250 KB.

We extend his classification in Table 2.1 based on our integration of research

literature and white papers. In Table 2.1 on page 9, we classify the IoT de-

vice processors into five classes based on aspects of architecture [37] [95] [73]

[79] including RAM (Random Access Memory) size (memory space avail-

able in the processor), bus size (number of bits that can be transmitted at a

time), clock frequency (number of pulses per second defining machine cycles

to complete an operation), and power consumption. Here, NA means that

the feature does not apply to the current class of devices. Another feature

in the table is ''OS supported ''[37]. There are operating systems designed

for all kind of processors. Lightweight OS’s for 8-bit and 16 bit IoT devices

help them to function properly. Another feature is ''Programming Language

Supported''[37] which indicates that the operating system supported by the

processor is written using these high-level languages, and these program-

ming languages tools are supported by these IoT platforms. The last fea-

ture is ''Asymmetric Cryptography Supported''[95] [73] [79], which shows a

device is capable enough to perform encryption/decryption and digital sig-

natures using public key cryptography. Class III and Class IV IoT devices

can support a few of the NIST recommended elliptic curves for asymmetric

cryptography according to our understanding. In our prototype we are using

Class IV devices, as Class V consists of IoT devices which are programmable

8

only once.

Class/
Features

Class I Class II Class III Class IV Class V

Bus Size (in
bits)

32 or 64 32 16 8 4 and 8

RAM Size MBs to GB KBs to
MBs

10KB-
1024KB

128B - KBs 128B to
8KB

Wi-Fi
Supported

Yes Yes No No No

Clock
Frequency

250 MHz -
400 MHz

80 MHz-
180 MHz

4 MHz-
80 MHz

128 Khz-
16 MHz

32 kHz-8
MHz

Power
Usage

10 mWatts
to Watts

uWatts < 1 uWatt < 1 uWatt unknown

OS
Supported

Linux,
Windows,
noOS

Contiki,
eCos,
nuttX,
mbedOS,
embOS,
noOS

Contiki,
eCos,
nuttX,
TinyOS,
embOS,
noOS

Contiki,
nanoRX,
nuttX,
TinyOS,
embOS,
no OS

NA

Asymmetric
Crypto
Supported

Yes Yes Yes (EC—-
a few
curves)

Yes (EC—
a few
curves)

NA

Programming
Language
Supported

C, C++,
Python,
JavaScript
GO

C, GO,
C++,
Python,
JavaScript

C, C++,
Assembly

C
preferred,
C++,
Assembly

Assembly

Example
hardware
(processor)

Raspberry
Pi 3B+
(ARMv8),
Beagle
Bone

Arm
Cortex
M3,
ARM7

AVR16,
PIC24F

AVR8,
AT89C51,
tinyAVR

AMD
Am2900,
Atmel
MARC4

Table 2.1: Extended Taxonomy of IoT Device Processors

2.2 Software Update

Another vital part of IoT security is software updates. Software updates fix

features that are not performing as intended, add software enhancements,

and most importantly, address security issues [94].

9

Software update mechanisms for the Windows operating system (e.g.,

Authenticode [54]), Linux, and Mac have common options:

1. Automatic update (download and install)

2. Automatic update (download, but ask the user permission before the

installation)

3. Manual update (download and install)

End-users commonly opt for the first of these [99]. One problem with these

scenarios is when the application vendor stops providing updates. For ex-

ample like a company is out of business. In such a scenario, the outdated

software is prone to attacks. In the case of manual downloads, downloading

updates from a random website is also dangerous.

Software updates for smartphone operating systems like Android or iPhone

are issued over the air (OTA) by the manufacturers and software update

providers (SUPs). OTA is a way to keep the end user’s software updated, in-

cluding protection from malicious attacks [67][68]. Zhu [108] proposed three

modes of OTA updates for IoT devices, similar to those noted by Barrera [8]

for smartphone applications.

1. Client-initiated (i.e., pull model), where the client queries the server

for updates periodically, when the new update is available, the client

downloads the manifest data and image. When the device is in an IDLE

state, the client installs the update. It is similar to a manual update as

the client is the one initiating the request for download and installation.

2. Server-initiated (i.e., push model) where the server pushes the firmware

10

image to the device and updates it based on the status of the device. It

is similar to automatic updates as there is no user involvement.

3. Negotiated, where the server notifies the client about the available new

firmware image, and then the client decides whether they want to in-

stall the update or not. It is very similar to automatic updates where

the system needs user permission before the installation.

Researchers from both academia and industry seek a standardized mecha-

nism for software and firmware upgrades for constrained devices.

2.3 Onboarding

Onboarding [33] is a process of introducing a new node in a trusted environ-

ment such that it has suitable keying material to communicate with one or

more trusted nodes. Onboarding can be performed between two devices and

a device and an application. Traditional onboarding involves a pre-shared

secret between devices or different methods of device pairing [55] and no

public-key infrastructure for low-level IoT devices as traditional public key

cryptographic algorithms (e.g., RSA) are computationally expensive. IoT on-

boarding depends on the end-user to physically connect the device to avail-

able infrastructure and the Internet, and to configure the device properly to

the associated system. Technology is moving towards auto-onboarding, like

Intel’s secure device onboard service which uses a "zero touch model" [25],

in which the user scans the QR-code and connects the device to the Internet,

enabling the setup and activation of the product to be completed automati-

cally.

11

2.4 Authentication

Authentication is the process of verifying the identity of a user or an entity

[65]. There are three basic ways of performing authentication. It can be pro-

vided using something they know like passwords, something they have or

possess like a hardware token holding a key, or something they are, like a

biometric signature [65]. Passwords are a widely used form of authentica-

tion, but using only a password is a relatively weak form of security. NIST

has provided many guidelines for a user-chosen password [35]. Many is-

sues arise with password authentication, such as users not updating default

device passwords. A recent example of malware that exploited weak au-

thentication and access control is the Mirai Botnet [2]. Many companies and

banking sites are utilizing two-factor authentication, which includes a pass-

word and a one-time authentication token generated by the service provider

and shared with the end-user through a cell phone message or electronic

mail. Tokens issued are only valid for a limited time and can only be used

once. NIST also suggests using multi-factor authentication, which may in-

clude biometric impressions like a thumbprint and retina scan [34].

2.5 Hash Function

A hash function takes message data as input and gives a fixed length output

known as a hash value.

Hash values are used to check the integrity of the data. Commonly used

hash functions are SHA-1, SHA-256, SHA-3 [65] [39]. The message authenti-

cation code (MAC) is another mathematical function, which is used for data

12

origin authentication and can be calculated with the help of a message and

the shared secret between sender and receiver. In MAC, we assume that the

shared secret remains between the sender and receiver [65].

2.6 Cryptographic Algorithms

"The Art and Science of keeping messages secure is cryptography" [65]. It is

done with the help of cryptographic algorithms. These mathematical func-

tions are used for encryption, decryption, and digital signatures. These al-

gorithms are used to maintain the confidentiality, authentication, integrity,

and non-repudiation (assurance of someone performing an operation, which

they cannot deny) of the plaintext message. Encryption and decryption are

two related functions. Encryption (E) is the process of encoding the plaintext

message (M) into ciphertext message using a secret. Decryption is the pro-

cess of decoding the ciphertext message (C) into plaintext message (M) using

the same or different secret. Authorized parties who have the shared secret

(i.e., key) with them can participate in this process.

Encryption : C = EK(M)

Decryption : M = DK(C)

Here K refers to the key used for encryption and decryption.

We have two types of cryptographic algorithms: symmetric and asymmetric

algorithms.

13

2.6.1 Symmetric Algorithm

In Symmetric algorithms, the key used for the encryption and decryption

process is the same. Security of the algorithm depends on the strength of the

key and the medium through which it is shared between the sender and the

receiver. It might be through an out-of-band channel, or it can be calculated

through a key agreement protocol like Diffie-Hellman. K above now refers

to the symmetric key.

Symmetric algorithms are categorized in two different parts: the first one

is the algorithm that works on one bit or byte at a time on the plaintext,

these are called stream ciphers, like Rivest Cipher 4 (RC4). The other is an

algorithm that is applied on a block of bytes; these are called block ciphers

like Advanced Encryption Standard (AES) and Data Encryption Standard

(DES). AES has a block size of 128 bits. It also supports a key size of 128, 192,

and 256 bits. Longer key sizes make it harder for an adversary to succeed in

a brute-force key-guessing attack. AES has different types based on the key

size. AES-128 has a key size of 128 bits. AES-192 and AES-256 have a key size

of 192 and 256 bits respectively. Therefore, for Class IV IoT devices ,which

can only support symmetric algorithms, we use AES-256 and AES-128 bit for

symmetric encryption and decryption.

2.6.2 Asymmetric Algorithm

The second type of cryptographic algorithms are asymmetric algorithms,

also known as public-key cryptography. In public-key cryptography, the

key used for encryption (i.e., public key) is different from the key used for

decryption (i.e., private key) but both are generated using a single process.

14

Both public and private keys are generated by a single entity, and the pub-

lic key is distributed to all the other entities who want to communicate with

the first entity (i.e., the owner of the private key) with the help of a trusted

third-party or by different channels. Security of this algorithm depends on

two things, the first being how secure the private key is kept by the user, and

the second being the size of the key.

Asymmetric Encryption : EeB(M) = C

Asymmetric Decryption : DdB(C) = M

Here, eB : Public encryption key

dB: Private decryption key.

Another use of asymmetric cryptography is a digital signature which is

used for data origin authentication, non-repudiation, and to verify the in-

tegrity of the message [65]. The owner of the private key signs the message

with its private key and sends it to the receiving party along with an original

message. The receiver passes the received signature and the original message

received from the sender as inputs to the algorithm along with the public key

of the sender. The output of the algorithm is either true or false. Digital sig-

nature validation failure (i.e., false output) means the message has either not

originated from a trusted source, or is altered in transit, or an invalid key was

used.

Digital Signature : SsA(M)

Digital Signature Veri f ication : VvA(SsA(M)) == True or False

Here, sA: Signature Private key

vA: Verification Public key

15

Rivest-Shamir-Adleman (RSA) is commonly used asymmetric algorithms.

RSA is widely used for digital signatures. RSA is based on finding two large

prime numbers; the security of the algorithm depends on the factoring capa-

bility of the attacker. RSA is also classified as integer factorization cryptogra-

phy (IFC). Diffie-Hellman is classified as finite field cryptography (FFC) [65].

We commonly use 2048 bits of RSA keys to be considered secure. This length

of keys requires large computational power and transfer time, which is not

feasible for class IV IoT devices. Therefore, we use elliptic curve cryptogra-

phy.

Elliptic Curve Cryptography (ECC) is defined on the mathematical struc-

ture of the elliptic curve over finite fields [38]. Elliptic Curve Diffie Hell-

man (ECDH) and Elliptic Curve Digital Signature Algorithm (ECDSA) have

a shorter key size than the RSA and is able to provide the same or higher

security level with better performance as compared to RSA. A 256-bit public

key of the elliptic curve provides the same security as 3072 bits of RSA public

key [64] [38]. ECDH is used for key agreement for establishing a symmetric

key and ECDSA is used for digital signatures. In RSA, the public-key op-

eration is inexpensive compared to the private-key operation as we can use

short exponents for the public key. On the other hand, in the case of ECC,

public-key operations (like signature verification and encryption takes high

computational time) are more expensive [91].

2.7 Bluetooth Low Energy (BLE)

BLE [104][50] is one of the most commonly used wireless standards for IoT

devices. General Access Profile (GAP) is the layer of the BLE stack used to

16

find the network topology of the BLE system. In BLE, when two devices

are connected, they start a pairing process during which they share some

information to establish a secure encrypted connection. BLE devices come

with 4.0, 4.1, and 4.2 versions of Bluetooth. BLE uses the AES-CCM [103]

algorithm for encrypting data. The method used by BLE devices for sharing

the symmetric key is known as pairing or association. Information received

during the pairing process establishment is stored in the device so that the

process does not have to repeat whenever devices next try to connect next

[78] [28].

In BLE, the devices exchange a Temporary Key (TK), which is used to

generate a Short-Term Key (STK) used to encrypt the connection. There are

four well-known pairing Methods used in BLE for sharing a temporary key

between devices [12] are the following:

1. Just Works: For BLE 4.0 and 4.1 devices, the temporary key (TK), which

is a constant number (size 16 bit) across all BLE devices of a particular

type, is used to generate a short-term key (STK). Therefore, it is easy

for an attacker to use brute-force to get the STK. There is no method for

validating devices participating in the process. For devices that support

BLE 4.2, ECDH is used for key establishment and to perform the key

confirmation using session key. This process is still vulnerable to a man

in the middle (MITM) attack.

2. Out of Band (OOB) Pairing: The TK is shared between two devices

using an out of band channel like wireless technology, such as NFC.

The security of this method depends on the out of band channel.

3. Passkey: During this method, the TK is a random 6-digit number which

is shared between the two devices by the user. Sharing of TK is per-

17

formed by reading the LCD screen on one device which displays the

number and entering the same number on another device using a key-

pad. For BLE 4.2 devices, the passkey (6-digit number) is entered in

each of the devices by the user. Both devices exchange public keys and

use it with the passkey and a 128-bit nonce to validate the Bluetooth

connection.

4. Numeric Comparison: This method is similar to Just Works but has an

extra step. Both devices generate a six-digit random value using both

nonces, generated using the AES-CMAC [44] function. Both devices

have (i.e., shared during key establishment) and display it for the user

to verify and give approval to the connection in case of match. This

method is only supported on BLE 4.2 devices.

The OOB, passkey, and numeric comparison methods require extra re-

sources like the screen, keypad, and NFC. Just Works is simple but suscepti-

ble to MITM attacks. BLE 4.2 is used with 32-bit processors. Class IV and V

devices (e.g., August and Kevo smart lock) use Bluetooth 4.0 for communi-

cation.

2.8 Transport Layer Security

Transport Layer Security (TLS) [76] is designed to provide security over the

communication network. TLS provides security for maintaining confiden-

tiality and authenticity between two devices communicating over an inse-

cure channel. TLS protocol has two layers: TLS handshake and TLS record.

The latest version of TLS is 1.3 [75]. TLS 1.3 reduces the number of round

18

trips required for performing a handshake by sending the client key param-

eters during its first handshake message to the server. In contrast, in TLS 1.2

during handshake, the client only sends the hello message to the server and

the server replies with its key parameters. After verifying those parameters,

the client sends its parameters to the server. Another modification in TLS

1.3 is that support of all non-ephemeral key exchange algorithms like RSA

has been removed from the cipher-suites (supported by TLS 1.2). In our pro-

totype, we use TLS 1.2 (due to the unavailability of the TLS 1.3 support in

software programming toolkit, i.e., React [27] [26]).

19

Chapter 3

Related Work

In this section, we discuss the work done on academic and industrial research

exploring IoT security related to onboarding and software/firmware update

for desktops, mobile devices, and IoT devices.

3.1 Software Update

For IoT devices, secure software and firmware updates are one of the chal-

lenges faced by the industry. Over-the-air (refer OTA in Chapter 2 on page

10) is used to provide software updates for IoT devices. In a report on a

software update workshop for IoT devices, Tschofenig et al. [94] discussed

the challenges faced for software and firmware updates, and proposed solu-

tions for IoT devices. The main goal of this workshop was to explore meth-

ods for secure software updates for constrained devices [13]. Tschofenig et

al. [67] [68] also introduced IETF (Internet Engineering Task Force) drafts

for firmware update architecture for constrained devices [8]. All of these

20

drafts contained some common elements for providing secure software up-

dates, including the use of public-key infrastructure for a digital signature

to check integrity and data origin authentication. They also suggest keeping

long-term cryptographic keys (i.e., private key, symmetric key) in secure boot

memory and maintaining some minimum level of functionality in case of an

update failure. Many researchers from academia and industry are trying to

standardize one or more mechanisms for software and firmware upgrade for

constrained devices.

Barrera et al. [5] discusses a method of installing applications on the An-

droid operating system by maintaining update integrity and UID (UserID)

assignment. Update integrity is achieved by digitally signing the applica-

tion package with at least one developer signing key. UID assignment allows

developers to grant (and possible inheritance) of permissions, which help in

sharing UID’s that allow developers to split functionality, yet share binary re-

sources like fonts, images, and sound clips. Barrera’s model is suggested for

the smartphone, which has high computational capabilities—e.g., they use

RSA, which is not possible for class IV IoT devices. Since there is typically

only a single application package present in case of Class IV IoT device, the

concept of UID assignment is not directly of interest to our work.

Another paper paper by Barrera et al. [8] on software installations and up-

dates presented an overview and classification of software installation mod-

els used by four of the most popular smartphone operating systems. Authors

also share their advantages and drawbacks. It suggested three general mod-

els for software installation:

1. Walled garden model: Vendor has the most control over devices (e.g.,

Apple IOS).

21

2. End-user model: Smartphone vendors have no control over the soft-

ware once the phone is with the end-user (e.g., Android).

3. Guardian model: Security decisions are assigned to a well-informed

third-party, which makes the fundamental security decision on behalf

of the end-user. In this model, the third-party can adjust the level of

security as desired (e.g., Blackberry OS).

These models represent modern IoT environment-based architecture. Our

prototype lies between the end-user model and guardian model. In our pro-

totype, the end-user decides the software update provider for their IoT de-

vices and the software update provider provides a software update to pre-

vent the device from attacks, based on software vulnerabilities present in

device.

Wurster et al. [105] proposes a method for protecting smartphone binaries

already installed on the system from malicious modification using digital sig-

natures and generalized this concept, referring to it as key-locking [97]. Pub-

lic keys are embedded in the binaries to verify the integrity of the updates.

A ''trust on first use''(TOFU) model is used for basic initial installation. The

model has a few limitations: an attacker is still able to modify any files that

are not digitally signed, and this can be used to infect the machine. Also, a

malicious developer can easily install a new file onto the smartphone, as well

as the device, as long as the device does not have any previous information

regarding the file for validation. It can allow the malicious binary to perform

changes in the application, which helps the attacker to corrupt the applica-

tion. Moreover, each application has its own signature verification key pair.

Since many applications are running on the smartphone, there are many ver-

ification public keys available. Class IV IoT devices have small memory size

22

and computational power compared to smartphones, and performance may

be impacted.

Barrera et al. [6] propose Baton, a modification in smartphone app instal-

lation frameworks which help application developers transfer the signing

authority of an application to a new developer in a secure manner without

any user intervention. This addresses the problem of renewing a signing key

by chaining them. A certificate chain is a sequence of delegation tokens. A

delegation token is a signed collection of metadata, which acts as verifiable

support in the transition from one set of certificates to a new set of certifi-

cates. Each delegation token includes a signed hash of the delegation token

prior to itself in the chain, which allows verification of the complete certifi-

cate chain. Baton’s main limitation is that the developers have to include a

certificate chain in all versions after the certificate transition. Also, the cer-

tificate size is from 600 bytes to 2KBs due to the RSA key sizes. If we use EC

algorithms the key-sizes and signature size will be small and would make

the algorithm more space-efficient . Therefore, the application size is larger

with the certificate chain.

BRSKI [74] [31] provides a solution for securing the devices with zero-

touch methods (enabling the device to perform their functions with no in-

staller action except physical placement, a network connection and power

cables) [100] using an installed X.509 certificate in combination with the man-

ufacturer’s authorized online and offline services. This solution is generally

designed for non-constrained devices [8] such as large router platforms in

data centers. It may be used for very high-level IoT devices (Class I or II).

The IoT devices working on battery or energy constrained devices used in

deep space exploration, wireless sensor networks, and mobile ad-hoc net-

works are not suitable for BRSKI. It does not describe the mechanism of se-

23

lecting a suitable Wi-Fi Service Set Identifier (SSID) when multiple SSIDs are

available. It also does not describe how BRSKI could potentially align with

authentication mechanism.

Constrained Application Protocol (CoAP) [83] [63] is a web transfer pro-

tocol used for constrained devices and networks and is used for web applica-

tions. CoAP over UDP [83] is fast and efficient due to the low overhead of the

Datagram Transport Layer Security (DTLS) protocol. The CoAP over UDP is

preferred for a lightweight machine-to-machine communication. However,

it lacks the reliability and service guarantees offered by TCP. It also has net-

work overhead due to many keep-alive messages. CoAP over TCP [14] re-

duces network overhead by sending fewer keep-alive messages, has better

congestion control, and better flow control than CoAP over UDP. The use of

CoAP over TCP leads to a larger code size, high network traffic (due to mes-

sage flow), increased RAM requirements, and larger packet sizes. Therefore,

developers need to check the device capabilities before using CoAP over TCP

for IoT devices. CoAP contains a complex run-time parser, which is an easy

gateway for introducing vulnerabilities. These vulnerabilities cause remote

crashes of a node or provide an adversary remote access for executing code.

A CoAP response packet size might be larger than the request packet, which

can be used by an attacker to convert a small attack packet into larger attack

packet and can cause a denial of service attack. CoAP using UDP is also sus-

ceptible to IP address spoofing attacks due to the lack of a handshake. CoAP

using web sockets is susceptible to SQL injection attacks. Due to these limita-

tions, CoAP is not suitable for use in our design; devices as web applications

are powerful and can support TLS 1.3.

CBOR web Token (CWT) [48] is a means of sharing claims between two

parties. A claim is information related to a subject and contains a name-

24

value pair. It is built from the JSON Web Token (JWT). JWT is the standard

security token format, uses JSON web signature and encryption. Concise

Binary Object Representation (CBOR) is mostly used for IoT devices. It is a

concise means of secure data transfer between two parties using encryption

and signature. CWT is used with AES-128, AES-256, and ECDSA.

Weißbach et al. [102] suggested a solution for updating distributed IoT

nodes providing the same services by introducing middleware. According

to the authors, middleware handles the coordination of software update on

several nodes with the help of three-layer architecture:

1. In the first layer, the update manager starts the process by issuing an

update prescription (contains information about next software update)

to a Local Update Manager (LUM).

2. In the second layer, the LUM checks the update prescription and for-

wards it to all local LUMs for maintaining a consistent update of the

system. Either all LUMs download the update issued in the prescrip-

tion successfully or none of them will.

3. The third layer is the application layer for user interaction and for con-

trolling the functionality of local dynamic software updates.

According to the authors, this architecture helps in maintaining the consis-

tency in the software update for a set of distributed nodes to prevent mis-

matching in communication and loss of data. The proposed solution is suit-

able for the non-constrained IoT devices due to the requirement of large re-

sources in terms of memory and computational capabilities for implementing

this architecture.

25

Shin [85] suggested a security framework using MQTT (Message Queu-

ing Telemetry Transport) by incorporating the AugPAKE protocol [84]. MQTT

[4] is a messaging protocol designed for lightweight machine-to-machine

communication. It uses a centralized broker architecture, which is based

on publishing and subscribing. It ensures message delivery and eases the

challenge of IoT devices communicating across firewalls. It runs over TCP

using the TLS. Clients publish their data to the broker and subscribe to the

broker to download the commands. MQTT automatically pushes the data to

all subscribed clients. MQTT is a higher-level protocol not suitable for our

architecture. Limitations of MQTT are as follows: using TCP connections

limits utility for low-power devices, TLS encryption is a poor match for con-

strained clients because of TCP code size, and; a large number of message

flow. MQTT is also susceptible to the injection of spoofed control packets. It

may also allow a denial of service attack. Communication using MQTT could

be intercepted, altered, re-routed or disclosed. There is one attack [17] [60]

that has taken place on IoT devices using MQTT protocol where an attacker

can access the open ports on a server and can see and control the coordinates

of airplanes, prisons with door control, electrical meters, medical equipment,

and many other systems.

Choi [20] introduced a secure firmware validation and update scheme

for consumer devices in a home networking system by utilizing an ID-based

mutual authentication to distribute a firmware image securely. Many IoT de-

vices like a smartwatch, smartphone, or laptop update their firmware while

moving; therefore, the firmware is divided into a series of chunks called frag-

ments. Each fragment is used to create a hash chain [96]. Hash chaining

achieves the authenticity of the fragmented firmware image. Limitations of

the proposed approach are that the public-private key pair of the interme-

26

diate device is generated by the server. Firmware submitted by different

developers and publishers is not digitally signed for maintaining integrity.

The proposed solution is not sufficient for firmware security as any remote

attacker can use open telnet services with no root password configured to

access the device, and the attacker can cause a malfunction and inject mali-

cious code. Using third-party libraries in firmware lowers the security level

and does not protect against firmware level rootkits and malware.

Lee [58] discussed a firmware update scheme which depends on block-

chain technology and fundamental properties of asymmetric cryptography.

A blockchain is an expanding list of records. Each block contains a crypto-

graphic hash of the previous block and transaction data. In the proposed

solution, a blockchain is used to check the firmware version and integrity.

When the firmware is not up-to-date on the device, it can be downloaded

from peer-to-peer firmware sharing network of nodes. Bit torrent trackers

are used to keep track of firmware copies that reside on peers. With the so-

lution proposed by Lee, we are unable to determine whether the provided

update is legitimate, faulty or vulnerable. Nodes can be compromised by a

physical attack, which may lead to a firmware modification attack. The limi-

tation of this scheme is high network traffic, and nodes require high compu-

tational power, which is not suitable for low-level and mid-level IoT devices.

Verification public-keys of the nodes are pre-shared. With an increase in the

number of verification nodes, there are many public keys to maintain, and it

may also increase the attack surface.

Uptane [105] is the first software update framework for automobiles to

address automotive-specific vulnerabilities. Uptane is built on TUF. TUF

[80] is an update framework which is used to design a security system for

software repositories. It uses signed metadata to detect and prevent attacks

27

before installation. TUF aims to limit the impact of compromise after it hap-

pens. Uptane has few a additional features like additional storage for re-

covery in case of software infects the Electronic Control Unit (ECU), which

maintains a vehicle manifest to keep track of versions installed on different

ECU’s, and a time server to delay the update for an indefinite time. Uptane

offers original equipment manufacturers (OEMs) two different security lev-

els based on the security sensitivity of the electronic control unit. First, it

enhances the traditional design of TUF for securing software repositories by

adding another role called director. The director role is at the server level and

is used to blacklist faulty and corrupted software versions. Another modifi-

cation is that the OEM may delegate the signing of images to the suppliers.

During an update, the primary system downloads, verifies, and distribute

the metadata and images to all secondary systems in the vehicle. The Uptane

software update framework requires vast resources with regards to memory,

computational power, and batteries. This framework is not suitable for Class

IV IoT devices.

IDIoT [7] is a model proposed based on network-based isolation and fil-

tering system to secure IoT devices from widespread network attacks by re-

stricting the functionality of IoT devices to specifically their necessary net-

work behaviour. IDIoT works as an intermediate device between IoT devices

and networks and enforces policies based on the tasks performed by the de-

vices. This design is useful when a device is unaware of the second party it

is communicating with.

Khan [52] discussed a methodology for transferring the ownership of the

IoT device automatically by maintaining device owner profiles and perform-

ing authentication. In case of new ownership, the device sends a challenge to

the trusted device. If the response is correct, the device continues performing

28

ownership detection. In case of no response or response failure, the device

protects the old data and asks the user to create a new profile. This design

is beneficial in terms of security and maintaining privacy for the selling and

buying of used IoT devices.

In our proposal, we are motivated by the idea proposed by Wurster [105]

of self-signed binaries. The issue in the case of constrained IoT devices is that

they do not have enough computational power. Therefore, we modified the

solution and made it deployable by using the single digital signature for the

complete application. Another problem with IoT devices is that their lifespan

is 10-15 years, and a single public-private key pair is insufficient for stopping

the attacker, depending on the system available to the attacker in question. In

order to solve this problem, we generate a new public-private key pair with

each update. So that after 15 years, we are not still using the same signature-

verification key-pair (which might mean it has become attackable after 15

years).

3.2 Onboarding

In this section, we discuss the work done in the field of device pairing meth-

ods and authentication.

3.2.1 Device Pairing

Device pairing is an important concept for trust establishment of wireless de-

vices. Most of the IoT devices communicate over Bluetooth and use an out

29

of band (OOB) channel for sharing secret. But these devices require extra re-

sources like speaker, microphone, light emitter and detector to support these

OOB channels. Our design provides an solution for the IoT devices which

do not have these resources to share secret. We use the conventional internet

as an OOB channel to share secret between devices using a Gateway device

and a smartphone.

The Resurrecting Duckling model [88] is based on the idea of trusting and

pairing with the first device that makes contact with a newly 'awaken' device.

If many entities are present at the time of device initialization, the first device

to sent a key to the awoken device becomes the owner of the device. Trust

between these two devices can only be broken in two cases: either the slave

device is reset, or it dies due to battery depletion.

Another method is "Seeing is Believing" [62], which uses a visual image as

an OOB channel. In this design, one device requires a camera and another de-

vice requires a display screen. The requirement of a camera or display screen

is not generally suitable for Class IV level IoT devices. Another method sug-

gested for pairing, "Blinking LEDs" [81], also uses the visual channel as an

OOB communication. In this method, one device requires a light detector or

camera, and another device requires at least one LED. The device with the

LED sends the message by blinking the LED, and another device records the

data and extracts information based on gaps between the blinking. The re-

ceiver device informs the user of success or failure, and the user informs the

other device to accept or abort.

In HAPADEP [87], both devices require a speaker. For bidirectional veri-

fication, both devices send encoded cryptographic protocol messages using a

slow more pleasant-sounding codec to each other using the wireless channel,

30

which is then verified by the user. Both devices play the audio created using

the slow codec, and the user then verifies whether the two sequences match

or not.

BEDA [86] is a secure pairing method that requires significantly less in-

frastructure and human interaction. It is based on the pairing of devices

by pressing buttons. It has many variations such as "LED-Button", "Beep-

Button", "Vibration-Button", and "Button-Button". In the first three varia-

tions, one of the devices will either blink, beep or vibrate, and the user must

press a button on receiver device. In the case of the button-button method,

the user must press the button on both devices at the same time. This proto-

col uses PAKE [15] and sends 3-bit block messages whenever the LED blinks

from one device to another, establishing the common secret.

A few other device pairing methods involve user interaction [51]:

1. "Compare and Confirm" where a user compares the number displayed

by both the devices and gives the confirmation.

2. "Select and Confirm" in which one device displays a number, and an-

other device displays a list of numbers, the user needs to select the

number displayed by the first device from the list of numbers and con-

firm.

3. "Copy and Confirm" where one device displays a random string, and

another device asks the user to enter the same string.

4. "Choose and Enter" in which a user enters the same random number or

string in both the devices.

31

3.2.2 Authentication

Wazid [101] designed a new secure, lightweight remote user authenticated

key management protocol for IoT-based smart home architecture. This pro-

posed solution uses a gateway node for communication between clusters of

IoT devices and users with the help of three-factor authentication, i.e., the

smart card, password, and personal biometrics for node and user registration

to the gateway node. It uses these three factors for performing authentication

and key agreement between the IoT node, gateway node, and user. The IoT

node may get compromised or due to constraints, exhaust due to low bat-

tery power. This may cause transmission delay, and an adversary might be

able to deploy new nodes in the network. Another limitation of this model

is that user biometrics are stored on the server to allow remote access verifi-

cation. In the case of server compromise, users biometric templates may be

compromised.

Mahto [61] proposed a model for security improvement of a one-time

password (OTP) scheme for bank transactions, using elliptic curve cryptog-

raphy (ECC) with iris biometric. The iris biometric and the key of ECC mit-

igate the weakness in the current OTP system. With the help of user’s iris,

the system generates a public-private key pair, and the public key securely

transferred to the OTP server of the service provider which is then used to

encrypt a plaintext OTP message. At the user’s end, the private key is used to

decrypt the OTP, which is used for the transaction. Mahto tested this solution

on the Class I level system.

Kogan [53] presented a time-based offline one-time password scheme,

T/Key which is based on S/Key [56] and Time-based One-time password (T-

32

OTP) [98] using a secure hash chain. T/Key compensates for the limitations

of S/Key as a password is chosen but is not valid for a long time and like

S/Key, T/Key does not utilize the same hash function at every iteration of

the hash chain. T/Key also compensates for the short-comings of T-OTP by

not storing secrets on the server side, precluding access by an attacker in case

of server compromise. T/Key is tested using an Android application and a

laptop, which are powerful devices as compared to Class IV IoT devices.

The NIST report on lightweight cryptography [95] for 2017 mainly sug-

gested the use of symmetric cryptography for constrained IoT devices. It

placed public key cryptography in scope but suggested that it must be ro-

bust against quantum attacks and use a combination of general public key

cryptographic schemes with lightweight primitives. NIST also organized a

lightweight cryptography workshop in 2015, in which performance of differ-

ent cryptography algorithms was analyzed on ARM-based microprocessors

[35].

Tschofenig [93] proposed a model of user authentication for the IoT with

the help of four logical server-side functions. Authentication and user iden-

tity management include FIDO alliance support. The server generates an

OAuth token for authentication, access permission, resource directory (a dis-

covery component for resources offered by IoT devices), and for remote ac-

cess of the IoT device. Device management allows companies to remotely

manage their devices when configuration changes are necessary, or software

updates are available.

Ozmen [73] proposed a low-cost asymmetric algorithm for wireless IoT

devices using an ECC library and the NIST-recommended secp192 curve. In

his implementation, he tested the proposed solution with an 8-bit microcon-

33

troller using the Arazi-Qi (AQ) self-certified ephemeral scheme [3] and the

Boyko Peinado Venkatesan (BPV) technique [16]. Ozmen is able to boost the

performance of key-exchange, integrated encryption, and hybrid construc-

tion. Further, they make use of the concept of self-certification. The author is

able to improve battery life over standard cryptographic algorithms.

Salman [79] proposed a pairing based cryptography method for lightweight

hardware and software based on Barreto-Naehrig (BN) curves [9] used for a

non-interactive key agreement protocol where the session key is established

without prior communication. In their experiment, they were able to achieve

improvements regarding latency, power, and energy over commonly used

algorithms for a key agreement like ECDH.

Efficient Augmented Password-only Authentication and Key Exchange

(AugPAKE) [84] is a password-authenticated protocol for Internet Key Ex-

change Protocol version 2(IKEv2). The AugPAKE protocol is secure against

active attacks, passive attacks, and offline dictionary attacks, and provides

resistance to server compromise. This protocol consists of two phases. In the

first phase, the user computes the password and transfers it securely to the

server for verification. In the second phase, the authenticated key establish-

ment takes place between the user and server by hashing the binary string,

which is the password shared in the first phase.

J-PAKE [40] is a password-authenticated key exchange protocol using jug-

gling. It means juggling between two people — if we assume a public key as

a "ball". In round one, each person sends two public keys to each other. In

round 2, each person combines the available public keys and the password

to generate a new public key and sends the new "ball" to each other. Af-

ter round 2, the two parties can securely compute a common session key. It

34

offers a security proof which some other key exchange protocols lacks, e.g.,

EKE and SPEKE, and is built on an earlier mechanism of Schnorr [41]. It

is also compatible with elliptic curves. It protects against online and offline

dictionary attacks and maintains forward secrecy.

In our design, we use the trusted network for transferring the secret key

and Bluetooth MAC-address of one device to another. With the help of Blue-

tooth MAC-address, the device can directly communicate with another de-

vice, which saves device time, which was usually used in searching for an-

other device. The secret key is used for entity authentication, as a class IV

device does not have any input/output interface and avoids user interac-

tion. ECDH with Curve25519 is used for key establishment, and the secret

key of the device is used for key confirmation.

35

Chapter 4

System Design: Architecture and

Overview

A primary goal of our design is to prevent unauthorized updates of software

(i.e., rogue updates that are not from a legitimate source), and to facilitate a

means to ensure that updates are properly signed. Verifying the signature on

a software image provides assurance that it is from a legitimate source. These

software updates help prevent the exploitation of software vulnerabilities of

IoT devices. In this chapter, we discuss the threats related to onboarding

and software update, and an approach to robust security against identified

threats.

4.1 Threat Model and Assumptions

In this section, we focus on the threats related to onboarding and software

updates of the IoT devices by identifying the attacker’s goals, attack sur-

36

face, and attacker’s capabilities over the system. We discuss the different

attacks possible during authenticated key management and software update

for low-level IoT devices.

Attacker’s Goal: We identify the goals of an attacker in an onboarding

and software update scenario to cause different threats explained later:

G1: The attacker may attempt to remotely control the device.

G2: The attacker may attempt to cause denial of service attack.

G3: The attacker may attempt to access the user’s private data.

As discussed previously, IoT devices contain user privacy sensitive data and

authentication keys of the user’s wireless network. Therefore, the IoT device

is one of the primary targets of a potential attacker.

Attack Surface: In the complete system involved in onboarding and soft-

ware update, IoT devices commonly store data in the local storage and at

the SUP database, i.e., the cloud. The user’s authentication-related informa-

tion is stored in the local storage of the IoT device, Gateway device and SUP

which includes user identity and device information. Device information is

sent to the Gateway device through SUP. There are several attack surfaces in

this case:

S1: IoT device

S2: Gateway device

S3: SUP

S4: SmartApp

37

S5: Communication channel between SmartApp and SUP

S6: Communication channel between SUP and Gateway device

S7: Communication channel between IoT device and Gateway device

S8: Communication channel between IoT device and SmartApp

Attacker Capabilities: We take into account two potential attackers in a

software update scenario with different capabilities:

C1: An attacker who has all basic information about the device such as the

IoT device model number, manufacturer, update manifest data tem-

plate, and information about the software/firmware image.

C2: A former SUP who has gone rogue, has all the information related to

the user’s device and manufacturer’s legitimate private signature key,

and can use that information for a malicious software update.

Figure 4.1 shows the threat model for onboarding and software update for

low-level IoT devices. We consider two possible onboarding and software

update scenarios of introducing threats based on attacker’s goal. The "T"

items in scenarios represent the number of the identified threat.

Scenario 1: Onboarding and software update for a Class IV IoT device.

Description: This scenario includes a legitimate user establishing trust

between all components involved in onboarding and sending a query to the

SUP for new updates. The SUP then replies with new software update man-

ifest data (i.e., a combination of metadata that describes the software image

which includes device model number, device manufacturer company, soft-

ware version, and sequence number) and software image.

38

T1: Replay Attack/Old Firmware An attacker may attempt to send an old

version of the valid software image to the device.

T2: Offline Update An attacker targets a device that has been offline for a

long time and has missed a few updates. An attacker sends a software

image which has a version higher than the one installed on the device

but not the latest, aiming to exploit vulnerabilities in that image.

T3: Device Mismatch An attacker sends a valid firmware image (i.e., all

information in software image used for validation is correct except the

IoT device model number and type; the same signature key is used for

different device types) for a different type of device.

T4: Update without Authentication An attacker attempts to impersonate a

SUP, sending a malicious software update that is accompanied by nei-

ther a digital signature nor a MAC. This may succeed if no method is

Figure 4.1: Threat Model for Onboarding and Software update

39

in place for verifying the data origin authentication of updates.

T5: Man in the Middle An attacker may attempt to spoof the Gateway

device during the key establishment between IoT device and Gateway

device (Figure 4.1 (1)). The attacker passively monitors the software

update or modifies the authentication and access control data sent from

the Gateway to IoT device.

T6: Attacking Non-Ephemeral Keys This is an attack aiming to exploit the

use of long-term private keys, given the lifespan of IoT devices (5-15

years). An attacker aims to deduce the private key of SUP’s public-

private key pair using available computational capabilities, and if suc-

cessful, forges a signature on a rogue update.

Scenario 2: Software Update Provider Change for a Class IV IoT device.

Description: In our model, legitimate software updates are provided by

SUPs. If a manufacturer or software update provider who is providing up-

dates to the devices goes out of business, IoT devices may continue to run on

obsolete software, leaving them prone to attacks if vulnerabilities are found

in the existing software image. The change in software update provider in-

troduces a change of software update provider from the former SUP to the

new one. This change of ownership can introduce threats for a device owner

in the case where the former SUP goes rogue.

T7: Rogue SUP A former SUP, with access to the details of the user’s de-

vices and the signature key of the base image of the device, has gone

rogue (i.e., is no longer trustworthy). A rogue former SUP may exploit

these details to send an old software image or a malicious software up-

date with a valid signature of the base image.

40

T8: Password Guessing If all IoT devices of the same company or model

have the same default password or user-chosen weak password, an at-

tacker may aim to gain unauthorized access to the device by guessing

the password.

We make the following assumptions for our proposed design solution

and prototype (notation used here is explained in Table 4.2):

A1: Each IoT device has a unique password (wD), Serial Number (ND), and

Bluetooth MAC-address (BD). These are in a sealed booklet or sticker

(in a QR code format) which comes with the device. The password

is programmed into ROM of the device during manufacturing. The

unique password (wD) is important to avoid attacks like Mirai Botnet.

There is also a law passed in California, requiring that IoT device man-

ufacturers provide a unique password for each device [46].

A2: Each IoT device generates an EC public-private key pair (e1D, d1D) dur-

ing first initialization and on any reset, which is stored in EEPROM

(Electronically Erasable Programmable Read Only Memory).

A3: Each Gateway device generates an EC public-private key pair (e1G, d1G)

and RSA public-private key pair (eG, dG) during first initialization or

reset, which is stored in EEPROM.

A4: During Gateway device configuration, the data encryption public key

(eG) is the only Gateway device parameter (in QR-code format) visible

to the user and is scanned by SmartApp.

A5: SUP’s all signature private keys for different IoT devices must not com-

promised. These are used to sign manifest data and software images.

41

A6: The verification public key (vP) of the manufacturer is stored in ROM

of device D during the manufacturing process. D itself can modify

the verification public keys after a successful software update for the

next software image verification (as will be explained in Section 4.3.2

on page 54). The base image is the same for IoT devices of the same

model/type.

A7: SUP has at least one version available of the software image (IT(D))

higher than the base image version of the supported IoT device.

A8: The manufacturer shares its software image signing key (sP) for D’s

particular device, T(D), securely with SUPs.

A9: The manufacturer provides a list of trusted SUPs to the user via regis-

tered email or its website or some other trusted means which is outside

of our scope. The user uses this list to check for a new SUP in case of

first initialization or SUP change. The user also uses this list for down-

loading SmartApp of the SUP on their smartphone.

A10: The same verification public key is embedded into all instances of the

device image for all IoT devices of same type/model (for a given soft-

ware update) by the manufacturer.

A11: Each SUP is vetted by the manufacturer, by a process out of scope for

this thesis.

A12: The process used by SUP to obtain software updates from third parties

is out of scope for this research.

A13: Attacks involving the SmartApp and the SUP are out of scope for this

thesis.

42

A14: All physical devices (i.e., IoT device and Gateway device) can only be

reset manually (refer to Section 4.3.1 on page 49 for an overall effect of

resetting a device).

A15: Attacks involving physical access to end-user IoT devices and Gateway

devices are out of scope (targeted attacks).

4.1.1 Evaluation Criteria

The primary goal of this thesis is to develop an architecture and prototype

system for an onboarding and software update. The proposed solution should

be able to provide a software update automatically. Thus, we evaluate our

prototype based on following criteria:

E1 Resource-Constraints: Ability to perform signature verification on de-

vices that are resource-constrained (i.e., Class IV IoT devices) within a

reasonable time (< 60 sec).

Challenges: Smart home IoT devices are built with limited resources.

However, some security solutions require significant memory and com-

putational capabilities. The proposed solution should be able to per-

form signature verification on IoT devices with limited resources within

a reasonable time. For practical evaluation, we implement our proto-

type on a typical Class IV IoT boards available in the market, namely,

Arduino Mega2560.

E2 Robustness: Security against all possible threats mentioned in Section

4.1 in case of software update and SUP change scenarios.

Challenges: Section 4.1 on page 36 identified several possible threats in

case of software updates. The intended solution should provide robust

43

security against all these identified threats.

4.2 Architecture

4.2.1 Components

We now discuss the types and functionalities of different software and hard-

ware components used in the system design based on Figure 1.1 on page 5.

• IoT Device: A Class IV device with no OS installed, no user input/out-

put interface, and no visible port for configuration. We assume an 8-

byte random string (a unique per-device authentication key) is avail-

able in a sealed booklet or sticker that comes with a new device, in a

QR-code format. The IoT device is only able to keep one software im-

age in memory in addition to the base image in ROM due to constrained

memory size. The device is denoted by subscript 'D' in our notation.

Each IoT device type is provisioned with the same base image during

manufacturing (refer to assumption A6 on page 42).

• Smartphone Application (SmartApp): This is used on a user’s smartphone

to register the devices over the Internet to the SUP. The SmartApp is

denoted by subscript 'A' in our notation.

• Gateway Device: A Class I device with a custom OS, including capabili-

ties to handle multiple smart home devices. It serves as a communica-

tion portal for the IoT devices, which do not have capabilities to com-

municate over the Internet. The Gateway device communicates with

IoT devices over BLE and with the SUP over the Internet through a

router. There are no user input/output interfaces except one physical

44

port which is used to configure it with the help of a laptop or desk-

top by the user. The Gateway device is denoted by subscript 'G' in our

notation.

• Software Update Provider (SUP): The SUP is responsible for acquiring

and checking the authenticity of IoT software updates before sending it

to the end-user. The SUP verifies the signature of the developers send-

ing an update and runs the test suites on the software update image be-

fore delivering it to the device. SUPs store the information (Bluetooth

MAC-address, password) for each target IoT device in a SUP database.

The SUP generates the public-private key pair used for signing the soft-

ware image updates and firmware. The Software Update Provider is

denoted by subscript 'P' in our notation.

Our design involves a secure onboarding protocol with authenticated key

management to establish trust between all components (SmartApp, SUP, Gate-

way device and IoT device). Our two devices, D and G, do not have any

physical input/output interfaces and no pre-shared secret. We use the Inter-

net for sharing the secret between the devices, as explained in Section 4.3 on

page 47.

4.2.2 Context

In this section, we discuss the data structures used for the prototype imple-

mentation. We define five data structures.

• userProfile: This refers to the information of the user during the registra-

tion process to the SUP. It includes username, emailId and user-to-SUP-

password. The username is a unique parameter in the database, and all

45

IoT devices are registered with respect to userProfile. The emailId is

also a unique parameter, used by SUP for sending any notification to

the user. The user-to-SUP-password is used for user authentication by

the SmartApp and the Gateway device and is stored in a salted, hashed

format in the SUP database.

• IoTDataD: This refers to the information about a Class IV IoT device

which contains the Bluetooth MAC-address, and a unique password

(wD) with respect to the manufacturer. During the process of IoT de-

vice registration, the user registers the IoT device to the SUP using the

SmartApp. IoTDataD is used by the Gateway device for communicat-

ing with the IoT device and key establishment.

• knownDataD: This refers to the IoT device. The user sends it as part of

a software update request to the SUP. It includes the IoT device model

number, manufacturer information, current software version (curVersion),

and required software version (reqVersion). reqVersion is used only in

case of update failure.

• mani f estDataD: This refers to a manifest, which means information

about a specific software image intended for a particular IoT device.

It includes IoT device model number, manufacturer information, soft-

ware image version, and sequence number of next update (populated

before sending to the Gateway device).

• so f twareImageD: This refers to both the metadata and binary of the

software image for the IoT device. It includes IoT device model num-

ber, manufacturer information, software image version, sequence num-

ber of next update (populated before sending to the Gateway device),

the next public verification key (verNextKeyD, used to verify the signa-

ture of next so f twareImageD), and the binary itself.

46

Table 4.1 defines the data structures, and Table 4.2 defines the notation used

in the design and implementation.

Name Variables or Symbol Meaning
userProfile username (32 bytes),

user-to-SUP-password (32 bytes),
email (32 bytes)

IoTDataD Bluetooth MAC-address (16 bytes),
Manufacturer provisioned unique password (8 bytes)

knownDataD Model number (16 bytes) of D,
Manufacturer (16 bytes) of D,
curVersion (16 bytes),
reqVersion (16 bytes used upon update failure)

mani f estDataD Model number (16 bytes) of D,
Manufacturer (32 bytes) of D,
Software version (16-bytes),
Sequence Number (8 bytes, populated when signed)

so f twareImageD Model number (16 bytes) of D,
Manufacturer (32 bytes) of D,
Sequence Number (8 bytes, populated when signed),
verNextKey,
Software version (16-bytes),
Binary

Table 4.1: Data Structures used in Design and Implementation. D refers to
the IoT device

4.3 Solution Overview

In the previous section 4.1 on page 36, we discussed relevant threats to on-

boarding and software update for IoT devices. We also discussed some re-

quirements and challenges in the proposal for a secure software update of

IoT devices. There are mainly two stages to consider for a secure software

update:

1. Onboarding, including authenticated key establishment and sharing

the unique password of the IoT device with the Gateway device.

47

Notation Meaning
D IoT device
G Gateway device
P SUP (Software Update Provider)
A SmartApp
curVersion Current software version running on IoT device
reqVersion Required software version for IoT device

(Used in update failure)
userid Unique identification Generated by SUP database

for storing userPro f ile
T(D) Device Type of D
MT(D) Manifest data image for given device model
IT(D) Software image of the particular IoT device model
verNextKeyD Verification key of next software image of IoT device
verCurrKeyD Verification key of current (i.e., running) software image of

IoT device
wD 8-byte IoT device unique password
W Symmetric key (AES-256) derived from wD
k Symmetric session key (AES-256) between G and D
KG = KD = K Long term shared secret (AES-256) generated using ECDH

keys
e1D, d1D Public-private (256 bits) ECDH keys of D from A2
e1G, d1G Public-private (256 bits) ECDH keys of G from A3
eG, n RSA encryption public key of G, key size 3072 bits from A3
dG RSA Decryption private key of G, key size 3072 bits from

A3
vP Elliptic curve verification public key (Ed25519 [57])

of SUP with key size of 256 bits
sP Elliptic curve signature private key (Ed25519)

of SUP with key size of 256 bits
H(x) Hash of x using SHA-256
a||b Concatenation of a and b
ND Serial number of IoT device
BD MAC-address of D’s Bluetooth hardware
EK(x), DK(x) Generic encryption and decryption notation,

either symmetric or asymmetric according to the type of
key used as subscript

VK(x) Signature verification of x using key K
SK(x) Signature of x using key K
Req(x) Request for data x
NULL Variable is empty
f(x) Symmetric 256 bit key from x

Table 4.2: Notation used in Design and Implementation

48

2. Secure software update

We propose an architectural solution for a software update that is new, to our

knowledge, with a primary focus on Class IV devices.

4.3.1 Onboarding Key Management (Chain of Custody)

Chain of custody is a concept that enables authenticated key exchange and

helps in onboarding the IoT device and the Gateway device. It is similar

to the concept of chain of custody of physical evidence, which is properly

logged while being submitted or transferred to an authority. Here, the evi-

dence is the information about the device’s unique password, and who owns

and is responsible for maintaining the integrity of the evidence before hand-

ing over or taking custody of the evidence.

By design assumption, the IoT device does not have any physical in-

put/output interface (other than wireless) for user interaction, and the Gate-

way device has only one physical port for the user to configure the Gateway

through a laptop or desktop. A Class IV device supports the Bluetooth 4.0

protocol; since this protocol is not secure, we need a method of onboarding

that establishes a secure communication channel between the device and the

Gateway. In our prototype, communication between the SmartApp, the SUP

and the Gateway is over HTTPS using TLS 1.2. While TLS 1.3 is the cur-

rent standard, we use TLS 1.2 due to availability of supporting toolkits, and

henceforth say "TLS".

We now discuss the method of onboarding between the device and the

Gateway. We use RSA [69] with a key-size of 3072 bits for sending encrypted

IoTDataD (wD and BD) from the SmartApp to the Gateway device through

49

the SUP (refer to Figure 4.2). There is no direct communication channel be-

tween the SmartApp and the Gateway device. Therefore, a two-party key

agreement (e.g., Diffie-Hellman) protocol is not feasible. During the configu-

ration of the Gateway with SUP information, the public key of the Gateway

device is available to the user in QR-code format for scanning with the Smar-

tApp. The SmartApp stores it in the local storage for future usage.

We are using RSA here because of the availability of the react-native-rsa

library [72] (version 1.0.24, July 8, 2018). In practice, the Elgamal-EC [59]

[43] [30] is preferred in an IoT environment for encryption and decryption in

place of RSA, as it uses a smaller key-size.

We use ECDH with Curve25519 [57] for establishing the session-key (k)

between the device and the Gateway to generate a shared secret (K) derived

during key-establishment. We use SHA-256 for key-confirmation with k and

W. We use a long-term shared secret (i.e., AES-256 (K)) for encryption/de-

cryption while transferring a new session key from the IoT device to the

Gateway device. The long term shared secret the computational burden on

the Class IV device for performing public-key operations conducted multiple

times a day.

Note: In our current design, we are sending the serial number (ND) of the

IoT device during registration. ND is a redundant parameter in the current

design as we are storing it in the SUP database but not using it for any vali-

dation in onboarding and software update. It is useful for future work when

we are going to extend our design for storing the data of the IoT device in the

SUP database with regards to the serial number of each IoT device.

We now discuss the authenticated key management using Figure 4.2 on

page 59.

50

1. User downloads and installs the SmartApp of the SUP from a trusted

source.

2. User creates their account with the SUP through SmartApp by send-

ing userPro f ile (which includes username, user-to-SUP-password and

email address) and then logs in after successful account creation.

3. After a successful login to the SUP, the user starts the Gateway device

(G) by pressing the on/off button and G starts its initialization pro-

cess. During initialization, G generates an EC public-private key pair

(e1G, d1G) and an RSA public-private key pair (eG, dG). The user config-

ures G using a laptop with the SUP's URL, user's username and user-

to-SUP-password of the SUP account.

4. The user scans the RSA public key (eG) of G with the SmartApp (QR

code) from the laptop screen during configuration and saves the key on

the local storage of the smartphone.

5. The user starts the IoT device by pressing the on/off button and D starts

its initialization process. During initialization, D generates an ECDH

key pair (e1D, d1D). The user scans the 1D bar code of the serial number

(ND) and IoTDataD which includes the unique password (wD) and the

Bluetooth MAC-address (BD) of D through the SmartApp during the

IoT registration from D’s sealed booklet.

6. The SmartApp encrypts the IoTDataD of the IoT device with the public

key of the Gateway (eG), and sends it to the SUP over TLS along with

the serial number (ND) of device. The SUP stores ND and encrypted

IoTDataD in the user’s queue of the IoT devices in SUP’s database.

Z = EeG(IoTDataD) where IoTDataD = wD, BD

A−→ P: Z, ND;

51

7. The Gateway device requests the next IoTDataD from the SUP over

TLS. The SUP checks the next available encrypted IoTDataD in the

queue and removes it from the user’s queue of IoT devices, and stores

it locally on the SUP database. The Gateway device continuously send

request for next IoTDataD until the complete queue is empty. The pro-

cess repeats itself arbitrarily after every 24 hours to check for new IoT

device information.

G−→ P: Next Z;

8. The SUP sends the stored encrypted IoTDataD of the next D to G over

TLS. G decrypts the IoTDataD (wD and BD) using the RSA private key

(dG) and stores them locally on itself.

P−→ G: Z;

9. G sends its EC public-key (e1G) to D over a plaintext channel using the

Bluetooth MAC-address (BD). D receives (e1G) and generates a shared

secret key (KD, AES-256) using the EC public-key (e1G) of G and the

EC private-key (d1D) of itself. It also generates a random symmetric

session key (k, AES-256) and symmetrically encrypts k using KD.

G−→ D: e1G;

10. D sends its public-key (e1D) and encrypted session key to G. G receives

(e1D) and generates a shared secret key (KG, AES-256) using the EC

public-key (e1D) of D and the EC private-key (d1G) of itself such that

KG = KD = K. It decrypts session key (k).

D−→ G: e1D, EKD(k);

11. G sends double hash of session key (k) concatenated with W (W =

f(wD)) to D. D generates W = f(wD) and verifies the hash and aborts

in case of mismatch. This convinces D that the G knows W.

G−→ D: H(H(k||W));

52

Figure 4.2: Authenticated Key Establishment. Steps 1 to 5 include the config-
uration steps of the IoT and the Gateway device. Steps 6 to 8 show message
transfer over TLS. All notation is explained in Table 4.2.

53

12. D sends the single hash of session key (k) concatenated with W to the

Gateway. G validates the hash. If it matches, it accepts k as the session

key; otherwise, the protocol fails. This convinces G that D knows W.

D−→ G: H(k||W);

13. G sends the request for knownDataD to D.

14. D populates knownDataD with its device model number, manufacturer,

curVersion and reqVersion (NULL by-default) and encrypts it using the

session key. D encrypts knownDataD it with k and sends the encrypted

knownDataD to G. G decrypts knownDataD and stores in its database

with respect to the IoTDataD.

D −→ G: Ek(knownDataD);

15. When the Gateway wants to communicate with the IoT device or vice

versa, it generates a new session key (i.e., k, a symmetric key) for a new

session and repeats step 12 and 15.

In case of a manual reset of any D, D and G must both repeat steps 9

through 15 for each D. In the case of G being manually reset, all configu-

ration and data stored after initialization is deleted, and steps 1 through 15

needs to be repeated for all IoT devices. We are using this chain of custody of

evidence (i.e., wD) for the establishment of trust between the IoT device and

the Gateway device and key establishment by securely transferring it from

the SmartApp to the Gateway through the SUP over the Internet.

4.3.2 Software Update

There are two options for providing software update: the push model and the

pull model discussed in Section 2.2 on page 9. The pull model requires less

54

infrastructure than the push model in terms of complex databases. The pull

model is end-device centric, and the push model is SUP centric. There are

disadvantages for both models when updates occur automatically, without

user involvement. In the case of the pull model, the end-device periodically

checks to see if an update is available, and when it is, the SUP sends it down

to the device; it consumes resources in polling. In the case of the push model,

the SUP might require the maintenance of large and complex databases for

maintaining the information of each device. In our design, we use the pull

model for the software update.

IoT devices commonly require the use of a smartphone for the initial con-

figuration of a device that does not have any non-wireless user input or out-

put interface for the interaction. After successful onboarding of the IoT de-

vices and the Gateway devices, they can start their intended functionality.

The integrity of the software update image is maintained by the digital sig-

nature using ECDSA with Ed25519 [57] with key-size 256 bits. Software up-

dates for IoT devices might occur monthly or annually. As shown in Table

6.1 on page 83, the time taken for signature verification with curve Ed25519

is approximately 10 seconds (refer to Table 6.1 on page 83). Even though this

is a long time taken by the public-key algorithm on Class IV devices, this

is feasible once a month for a software update. In our implementation, the

Gateway device queries the SUP for new software updates every 24 hours,

but this is configurable.

We use the concept of key-locking [97], where each software image in-

cludes a next-update verification key for verifying the integrity and authen-

ticity of the future software images. Associated with each software image

version is a public-private key pair for signature and verification. Each im-

age verification public key is available to the IoT device by having been em-

55

bedded in the previous image. Therefore, the lifespan of each signature-

verification key pair is equal to the availability of a new update image. A

manufacturer provisions the first image with the verification key in the ROM

of D during the manufacturing process. All IoT devices (D) with the same

model number can (and should) use the same software image version. Any

SUP who wants to provide an update for IoT devices must obtain, from the

manufacturer of the devices, the corresponding signature key for providing

first update. It is the responsibility of the manufacturer to approve the SUP.

When the SUP receives approval, the manufacturer authorizes it by shar-

ing the signature key of the particular IoT device base software image. The

manufacturer also publishes the list of trusted SUPs for the user, so that for

future software update of IoT devices, the user can configure the gateway

device with details of any one of the SUPs.

Figure 4.3 shows a simplified flow diagram of the software update after

authenticated key management. According to assumption A7 on page 42,

the SUP always has at least one version of the software image available and

is responsible for acquiring and checking the authenticity of the software up-

date from the third-party. Here, third party refers to an arbitrary (legitimate)

software source that provides an image to the SUP. The SUP tests the soft-

ware update image before delivering it to the device. Each new software

image contains the verification key for the upcoming software image. In our

model, the IoT device maintains only two verification keys in its EEPROM:

one for the current working software image (verCurrKeyD) and another for

the upcoming software image (verNextKeyD). With every successful soft-

ware update, the device updates the verification keys.

After onboarding, the Gateway device contains the knownDataD of the

IoT device. When the system starts, G sends a request for manifest data

56

(MT(D)) to the SUP with knownDataD. The SUP first checks whether the re-

quest is for an upgrade or not, by checking the reqVersion field in knownDataD.

If the reqVersion field is NULL, then it is an upgrade request. The SUP checks

its database for an available latest software version that is higher than the

curVersion sent by G for D, based on the device and manufacturer informa-

tion present in knownDataD. If the SUP finds a latest software version greater

than curVersion, it appends a sequence number with MT(D). It then checks if

the curVersion is the base image version (first update of D) for that IoT device

model. If yes, then it uses the manufacturer’s shared signature private key;

otherwise, it uses the signature private key of the last generated key pair

for the particular IoT device model. The SUP digitally signs the manifest

data (MT(D)) of the found software image. The SUP sends M1 = (SsP(MT(D)),

MT(D)) to G over TLS. G establishes a secure session key (k) with D. G for-

wards the message M1 to D after encrypting it with the session key as Ek(M1).

D verifies the signature within M1. After successful verification, D validates

the device model number, manufacturer information, software version and

sequence number. Sequence Number is used in the manifest data and software

image to avoid a replay attack using an old software version. D communi-

cates success to G on successful validation. G sends a request for the soft-

ware image (IT(D)) based on MT(D) to the SUP. The SUP then finds IT(D) in

its database. IT(D) contains a new public verification key embedded in it for

the next software update image, and also a sequence number which is filled

before signature. The SUP signs the IT(D), with the same signature private

key which is used to sign MT(D). The SUP sends M2 = ((SsP(IT(D))), IT(D))

to G. G forwards the digitally signed image to D after encrypting it with ses-

sion key as Ek(M2). The IoT device decrypts (Dk(Ek(M2))) and verifies the

digital signature and validates the information about the device (e.g., checks

D’s model number, manufacturer, sequence number, and software version

57

should be greater than curVersion). After successful verification and valida-

tion, D starts the installation of the new image (update).

After successful installation, D saves the verification key of the running

software image in verCurrKeyD, and a new verification key of the upcoming

image from the SUP in verNextKeyD. It stores both keys in the EEPROM of D.

The device then sends an acknowledgment of the successful software update

with new knownDataD by modifying the curVersion field to G. G stores the

knownDataD.

D only keeps the last two verification public keys for signature verifica-

tion. Therefore, in case of a software installation failure in the middle during

the update process, our device cannot work either with a current image or

new image as a few files have modified, and new installation is aborted in

the middle. D can only store one software image at a time (refer to Section

4.2.1 on page 44). In the case of an update installation failure, the IoT de-

vice sends a failure notice to G along with knownDataD after modifying the

reqVersion with curVersion. G then sends the update query to the SUP, which

is then treated as an update installation failure of the software as reqVersion

is not NULL.

As an IoT device has an expected lifespan of 5-15 years, one public-private

pair for signature/verification is not secure. With the computational capabil-

ities at the disposal of today's attacker, the keys which are stronger today,

might be weak after few years. This makes the key-locking mechanism a

good fit for IoT devices. As a drawback, on manual reset, the IoT device re-

turns to its base image provisioned during manufacturing. However, on the

software update, the IoT device is provided with the latest software version

image by the SUP by signing it with the manufacturer’s shared signature

private key of the base image of D.

58

Figure 4.3: Software Update Logic Flow Chart

59

Figure 4.4: Software Update Provider Change Scenario

4.3.3 Software Update Provider Change

In figure 4.4, the SUP is not available due to a merger or bankruptcy or some

other reason. The IoT device needs a new SUP who provides software up-

dates regularly. The manufacturer shares the list of the SUPs to the user

through its webpage or registered email address. After re-configuring the

Gateway device with the new SUP’s details, the user needs to repeat on-

boarding process explained in section 4.3.1 on page 49. The ability to accom-

modate changing the SUP is helpful in scenarios where the manufacturer or

current SUP goes out of business, or the user is not satisfied with the current

SUP. Change in SUP requires the user to reset D and G, which clears their

EEPROM that contains the relevant information and sends them back to the

base image. The user has to register all of the IoT devices again with the new

SUP and manually configure the Gateway device using the laptop or desk-

top with the new SUP information. The IoT device and Gateway need to

repeat the process of onboarding discussed in Section 4.3.1 on page 49. After

successful onboarding, G requests a software update from the new SUP. The

SUP provides the D a new software update through G, and this allows the

60

user to change the software update provider.

61

Chapter 5

Design and Implementation

Details

In this chapter, we provide the design details of onboarding and a secure

software update.

5.1 Implementation

In this section, we will briefly discuss the choices that we have implemented

based on components and design requirements. Here, booklet refers to a

physical booklet that comes with the device.

Hardware and Software Components: In the section, we discussed the

capabilities of all components. Here, we discuss the implementation of these

components mentioned in Section 1.3 (refer to page 5).

• IoT Device: It is implemented on an Arduino Mega2560 board, which

has an 8-bit microcontroller (ATmega2560) with 16 MHz clock frequency,

62

commonly programmed using C++ libraries. The Bluetooth module

(i.e., HC-05) is in listening mode after initialization.

• Gateway Device: A Raspberry Pi 3B+ module is programmed in Nodejs

[71]. It is a 32-bit board with inbuilt Bluetooth and WiFi module. The

Gateway is classified as a Class I device per Table 2.1 on page 9.

• SUP: It is a software module and programmed in our prototype in

Node.js and uses the MongoDB [66] database. In our prototype, the

SUP runs on a laptop with the following specifications: i7-8th Gen pro-

cessor, 16 GB RAM, 512GB hard disk.

• SmartApp: An Android application, implemented in our prototype us-

ing the React platform [27] [26] running over the Samsung Galaxy Note

2 with 2GB RAM and 32 GB memory.

5.1.1 Registration

User Registration

User registration is the first step in onboarding. A username and user-to-

SUP-password are used for login into the SUP account, and an email address

is used by the SUP to send notifications to the user about changes in his SUP

account. The user downloads the SmartApp provided by the SUP from a

trusted website (assumption A9 on page 42). Next, the user creates an ac-

count with the SUP using the SmartApp. The SmartApp sends a userPro f ile

in a JSON format [18] which includes a username (unique), email address

(unique), and user-to-SUP-password over TLS to the SUP. The SUP checks if

the received username and email address are previously registered; if not, the

SUP generates the salted hash of the user-to-SUP-password using the bcrypt

63

library [92]. After successful validation, the SUP generates the user’s unique

identification (userid) with regards to the profile and stores the username,

email, and salted hashed user-to-SUP-password in a database, and sends a

success notification back to the user. The database generates a user’s unique

identification (i.e., userid) for each user profile for internal search and to main-

tain the sequence of profiles. Figure 5.1(a) explains the signup procedure.

Figure 5.1: User Registration (a) Sign-Up process (b) Login process

64

Figure 5.2: User registration using SmartApp

After successful registration, the user logs in to their account over the

SmartApp using the username and user-to-SUP-password, and the Smar-

tApp sends the information to the SUP over TLS. The SUP sends a request for

user information to the database based on the username. The SUP also gener-

ates a salted hash of the user-to-SUP-password using the bcrypt library and

compares the hashes. Upon success, the SUP sends all the user information

(which includes userid, username, user-to-SUP-password, email address) to

the JWT (JSON web token) [47] library to generate an authentication token

used for future communication until logout. The JWT library returns a token

(64-byte random string), and the SUP sends it to the SmartApp which stores

the token in local storage. The JWT library also stores the token with regards

65

to the user’s unique identification (userid). After successful login authentica-

tion, the authentication token is sent to the SUP as part of a header with each

request. The SUP sends the token to the JWT library. The JWT library verifies

the authentication token and returns the payload (i.e., user’s unique identifi-

cation (userid) generated by the database). In case of an authentication token

mismatch, the JWT library returns a failure. The user stores the token in local

storage, and uses this authentication token for future communication with

the SUP. When the user logs out of the account, the SmartApp destroys the

authentication token from the local storage. Figure 5.1(a) explains the signup

procedure.

Gateway Device Configuration

During the first initialization or after a reset, the Gateway device generates

an RSA public-private key pair (used for sending the IoT device secret data

from the SmartApp to the Gateway device) and an EC public-private key pair

(used for key establishment between D and G). Figure 5.3 shows the Gateway

device registration using SmartApp.

After the user registration and successful login to the SUP, the user per-

forms configuration of the Gateway device. The user configures the Gateway

device to communicate with the SUP by connecting the physical port of the

Gateway device to a laptop. The user enters his login credentials (username

and user-to-SUP-password) for the SUP and the URL of the SUP (available

at IoT device manufacturer’s website; refer to assumption A9 on page 42) in

the Gateway device configuration file. The RSA public key (eG) is visible to

the user on the laptop screen during configuration in QR code format, and

the user then scans the QR-Code using the SmartApp and stores it in the

66

Figure 5.3: Gateway Device Configuration using SmartApp

smartphone’s local storage. This completes the configuration of the Gateway

device. In case of the SUP changes, the user needs to reconfigure the Gateway

device with the new SUP’s information.

IoT Device Registration:

During the first-time initialization or after a reset, the IoT device generates an

EC public-private key pair (timing result is in Table 6.1 on page 83). We have

designed our solution with the intent that one Gateway device can commu-

nicate with multiple IoT devices (approximately 10).

The IoT device also has a sealed booklet or sticker which contains the

QR-codes of the serial number (ND), an 8-byte unique password (wD) with

67

Figure 5.4: IoT Device Registration using SmartApp

regards to the manufacturer, and a Bluetooth MAC-address (BD). BD and

wD are used for establishing a secure communication channel between the

IoT device and the Gateway device. The user determines the integrity of the

booklet or sticker by checking for signs of tampering on the sealed booklet

during the first time initialization.

The user opens the booklet and scans the serial number (ND), Bluetooth

MAC-address (BD), and the password (wD) from the booklet during the pro-

cess of the IoT device registration. The SmartApp encrypts the (BD) and

(wD) using the RSA public-key (eG) of the Gateway device and sends this

encrypted data along with the serial number (ND) and authentication token

(as part of a message header which is stored in local storage of the smart-

68

Figure 5.5: IoT Device Registration Process

phone after successful login of the user to the SUP via SmartApp) to the SUP.

The SUP validates the authentication token using the JWT library. Upon suc-

cessful authentication token validation, JWT returns the userid. Then, the

69

SUP stores the encrypted IoTDataD and ND in the user’s IoT device queue

in SUP database with regards to the userid. Figure 5.5 shows the sequence

diagram of the IoT device registration.

Upon successful registration of the IoT device, the Gateway device re-

quests the SUP to send the next IoTDataD. The SUP validates the authenti-

cation token using the JWT library. Upon successful authentication token val-

idation, JWT returns the userid. The SUP checks the IoT device queue with re-

gards to the userid, and removes the next available encrypted IoTDataD and

sends it to the Gateway device. The Gateway device decrypts the IoTDataD

using its RSA private key (dG) and stores the IoTDataD in its local storage. In

the case of IoT device reset, the user does not need to perform the IoT device

registration process. However, in the case of Gateway device reset, we need

to repeat the complete process of the IoT device registration.

Note: We are using the serial number (ND) of the IoT device for registra-

tion. ND is a redundant parameter in the current design. However, ND is

usable if we want to extend our design for storing the data collected by the

IoT device in the SUP database for each IoT device.

5.1.2 Data Encryption within System

Data encryption is an important part of the design. Communication between

the SmartApp, SUP, and the Gateway device utilizes HTTPS, which is HTTP

over TLS 1.2, (which provides authenticated encryption). We use TLS 1.2

instead of TLS 1.3 because of the availability of the software tool. However,

communication between the IoT device and the Gateway device is over Blue-

tooth 4.0, which is not secure as it uses a plaintext protocol. Hence, to make

the communication channel between the IoT device and the Gateway device

70

secure, we aim to securely transfer the IoTDataD to the Gateway device as

part of the IoT device registration and generate session key (k) using authen-

ticated key establishment.

We use three algorithms between the IoT device and the Gateway de-

vice: Elliptic Curve Diffie-Hellman (ECDH-256 bit key, for session key es-

tablishment), AES-256 (for session key), and SHA-256 (for key confirma-

tion)). ECDH with curve25519 provides 128-bit equivalent security with rec-

ommended prime 2255− 19 for performance on a wide range of applications.

Using the curve25519 [10] library, 32-byte (256 bit) public-private key pairs

are generated for two devices. Both devices use their private key and the

other’s public-key to generate a 32-byte shared secret using the ECDH key

establishment. This shared secret is used to authenticate and encrypt data

between the two devices.

We use the Advanced Encryption Standard (AES) block cipher as the sym-

metric key algorithm for the encryption and decryption of block size of 128

bits. For AES, NIST approved three different key lengths: 128, 192 and 256

bits. AES can be performed on 8-bit microprocessors [95]. AES-256 performs

14 rounds to convert plaintext to ciphertext. Each round consists of several

operations, one of which depends on the encryption key itself. All of these

rounds are used in reverse to convert ciphertext to plaintext using the same

encryption key.

SHA-256 [39] is a part of the SHA-2 family of cryptographic hash func-

tions. It gives a hash output of size 256 bits and is defined in the NIST (Na-

tional Institute of Standards and Technology) standard.

During the first time initialization or after a reset, the IoT device gener-

ates an EC public-private key pair, and the Gateway device generates an RSA

71

public-private key pair and an EC public-private key pair. These two devices

use ECDH for generating a shared secret (K), and for encrypting a randomly

generated symmetric session key. The IoT device and the Gateway device

share their public key with each other in plaintext. An attacker can tamper

with these public keys. Key confirmation uses the IoT device unique pass-

word (wD) and the session key (k) to test that the key is known by the IoT de-

vice and the Gateway device. Key confirmation is important from operability

perspective. The Gateway device sends its EC public key (e1G) to the IoT de-

vice using the Bluetooth MAC-address (BD). The IoT device, after receiving

the Gateway device public key, generates a AES-256 shared secret (KD) using

the EC public-key (e1G) of the Gateway device and the EC private-key (d1D)

of itself. The IoT device then generates a random symmetric session key (k,

AES-256) and symmetrically encrypts k using KD. The IoT device sends its

EC public-key (e1D) and encrypted session key to the Gateway device (e1D,

EKD(k)). The Gateway device receives the IoT device EC public key (e1D)

and generates shared secret (KG, AES-256) using the EC public-key (e1D) of

the IoT device and the EC private-key (d1G) of itself such that KG = KD = K.

The Gateway device decrypts the session key, k (DKG(EKD(k))).

We use the key confirmation method used in the SPEKE protocol [45].

The Gateway device derives the symmetric key (W, AES-256) from the IoT

device unique password, wD, such as W = f(wD). The Gateway device sends

the double hash of the session key k concatenated with W (i.e., H(H(k||W))

to the IoT device. The IoT device also generates W from the stored wD in its

ROM and then validates the double hash received from the Gateway device.

After successful validation, the IoT device has evidence that the Gateway

device knows W. After this, the IoT device generates the single hash of the

W and k (i.e., H(k||W)) and sends it to the Gateway device. The Gateway

device validates the hash. After successful validation, the Gateway device

72

Figure 5.6: Key Establishment for Encryption/Decryption

has evidence that the IoT device knows W. After successful key establishment

and confirmation that both devices have the session key (k), to be used for

encryption and decryption of data throughout the session. After the session

terminates, when the Gateway device next wants to communicate with the

IoT device, it generates a new random session key (k) and sends it to the

IoT device after encrypting it with a long term shared secret (K), which is

followed by the key confirmation process. Steps 9 to 12 in Section 4.3.1 on

page 52 shows the key establishment.

73

5.1.3 Digital Signature System

The digital signature is an important part of the software update. It allows

one to verify the integrity and data origin authentication of the software im-

age. We use the elliptic curve signature scheme Edwards-curve Digital Signa-

ture Algorithm (EdDSA) [49], i.e., Ed25519 using SHA-512 and Curve25519

for the signing and verification of the manifest data and software image.

EdDSA provides attack resistance equal to 128 bits of symmetric ciphers.

It is a variant of the Schnorr signature system with Edwards curves. It uses

public key of size 32-bytes (i.e., 256 bits) and signatures of 64 bytes for Ed25519.

We use the Arduino Cryptography Library (updated on November 2018 with

version 0.2.0) for the previously mentioned algorithms. Now the steps for the

generation of a digital signature in the case of a software update will be dis-

cussed. For notation, please refer Table 4.2 on page 48.

1. The manufacturer of the IoT device provisions the first verification pub-

lic key (vP), that will be used to verify the signature on the next image

in the ROM of the device along with the base image during the time of

manufacturing.

2. The SUP requests authorization for providing a software update for

the IoT device by asking for the signature private key (sP) from the

manufacturer.

3. The manufacturer vets the SUP, using a process that is beyond the scope

of this thesis, which is mentioned as part of assumption A11 on page

42.

4. Upon successful vetting, the manufacturer sends the signature private

key (sP) of the base image of the IoT device to the SUP. Each SUP has

74

Figure 5.7: SUP Registration Process

a software version higher than the base image version of the IoT de-

vice according to assumption A7 on page 42. The SUP stores the sP.

We acknowledge that this is a risky design choice, i.e., the security of

the entire system relies on every one of the vetted SUP’s being able to

protect this private key from compromise successfully. Each IoT device

requests a software update within 24 hours and at different time which

is hard for an attacker to know.

5. The Gateway device requests a software update (for the IoT device)

from the SUP by sending the curVersion of the software image of the

relevant IoT device.

6. The SUP finds the latest version of the image available and checks if

its version is higher than the curVersion (i.e., base image version) pro-

vided by the Gateway device according to assumption A7 on page 42.

75

If yes, then the SUP generates a new EC public-private key pair for

signature-verification and embeds the verification public key for the

next software image in the current software image with the sequence

number of the software update. After this, the image is signed with the

signature private key (sP) received from the manufacturer.

7. The SUP makes the signed image available to the Gateway device. Af-

ter the first update, the SUP will generate a new EC key pair for each

subsequent software update.

Note: This naturally allows for the evolution of stronger signing keys

over the lifetime of the IoT device.

8. The Gateway device forwards the signed image to the IoT device.

9. The IoT device verifies the signature of the image with the verification

public key (vP) programmed during manufacturing. Upon successful

verification, the IoT device extracts the new verification key from the

image and stores it in verNextKey variable in EEPROM and updates

the curVersion field in knownData.

10. The IoT device sends the knownData to the Gateway device to be stored

in the Gateway device’s local storage with regards to the IoT device

info.

With these steps, the SUP provides the first software update for the IoT

device. The method for vetting the SUP by the manufacturer and how the

SUP obtains software updates from third parties is out of scope for this re-

search, which is mentioned as part of assumptions A12 on page 42.

76

Chapter 6

Prototype Evaluation and Security

Analysis

This chapter provides an informal security analysis and discusses the evalu-

ation. It also provides the limitations and the conclusion of the prototype.

6.1 Security Analysis

In this section, we have very briefly and informally sketched how our design

addresses the threats outlined in Section 4.1 on page 36.

SA1: [Threats T1, T2] The IoT device only receives update information from

the registered Gateway device. MT(D) and IT(D) contain the informa-

tion about the IoT device software version and manifest sequence num-

ber (which is filled in during the signature of MT(D)), and IT(D) for the

software update. MT(D) and IT(D) are digitally signed by the SUP with

sP. Each software version has its own corresponding public-private

77

key pair. T1 and T2 are mitigated by the verification of the signature

and validation of the software version and sequence number present in

MT(D) and IT(D).

SA2: [Threat T3] MT(D) and IT(D) contains the IoT device model number and

manufacturer information. The IoT device validates the model number,

and the manufacturer information in the received manifest data and

software image to mitigate threat T3.

SA3: [Threat T4] Verification of the digital signature on MT(D) and IT(D) dur-

ing a software update mitigates this threat. The manufacturer autho-

rizes the SUPs for providing software updates by sharing the signature

private key of the base image of the specific IoT device model.

SA4: [Threat T5] The extended ECDH key exchange protocol (i.e., including

a confirmation step) addresses the man in the middle. Knowledge of W

is tested as part of onboarding (section 4.3 on page 47) in steps 11-12.

The communication between SmartApp, SUP, and the Gateway device

is over TLS 1.2, which provides encryption, integrity, and data origin

authentication.

SA5: [Threat T6] T6 is mitigated by the key-locking mechanism. The RSA

key pair is used in encryption/decryption of the IoTDataD for sending

it from SmartApp to the Gateway device. The EC key pairs in the Gate-

way device and the IoT device used for key establishment are generated

every time during first initialization or reset. Therefore, the vulnerabil-

ity window is minimized.

SA6: [Threat T7] Our model allows the user to change their SUP, e.g., if the

manufacturer or current SUP goes out of business, or if the user is not

satisfied with the current SUP. However, this adds a new attack surface

78

of a former SUP with all IoT and Gateway device details. T7 is reduced

somewhat by keeping the IoT device information encrypted at the SUP

to avoid exploitation of the IoT device’s secret (wD) used in the key con-

firmation between the IoT device and the Gateway device by a former

rogue SUP.

SA7: [Threat T8] T8 is mitigated by generating new RSA and EC keys for the

Gateway and IoT device upon any reset. A15, on page 43, rules out a

physical device attack.

Gateway Device Analysis

The Gateway device is a Class I device based on Table 2.1, on page 9. The

Gateway device can only be configured using a physical connection between

the laptop/desktop and the port of the Gateway device. According to as-

sumption A14 on page 42, the Gateway device and the IoT device can only

be reset manually. Therefore, no remote attacker can reset the device. We

used the pull model for the software update. The end-user configures the

Gateway device with the URL of the SUP from the IoT device manufacturer’s

website (refer to assumption A9 on page 42). Therefore, the Gateway device

is the one requesting for software update on behalf of the IoT device. The

communication between the Gateway device and the SUP is over TLS.

In case of IoT device reset, D goes to the base image, which is provisioned

during the manufacturing (refer to assumption A14 on page 43). There is a

small window for a rogue former SUP to send a malicious software update to

the Gateway device: the former SUP has both the end-user IoT device infor-

mation and the signature private key (sP) of the base image of the IoT device,

but, to provide the malicious update, the rogue SUP needs to be aware of IoT

device reset time, which is very hard.

79

Note: Security analysis of the SmartApp and the SUP is out of scope of

this thesis (refer to assumption A13 on page 42).

6.2 Evaluation

Onboarding and Software Update

We confirmed the onboarding and software update functionality of our de-

sign using the implementation of a prototype. We were able to share the IoT

device password to the Gateway device through the network. This secret

is used for key confirmation, after key establishment. Our prototype used

ECDH (Curve25519) for key establishment, as noted in Section 5.1.2 on page

70. We built a test application for the IoT device and proceeded through

multiple software releases with an incremental version code for the software

update. In our prototype, we successfully upgraded the version to the IoT

device in sequential order (V1 −→ V2 −→ V3). During testing, we did not

upgrade the IoT device software image itself, but tested the logic of receiving

and verifying signed images and manifest data, testing out the key manage-

ment aspects. To test an update installation failure, we tried to upgrade to

V4 and modified it to fail in the middle. We are able to install the previous

working version (V3) on the IoT device as the two verification keys were

kept in the EEPROM of the device (Section 4.3.2 on page 54). The IoT device

automatically performed the update and recovery from update installation

failure.

The architectural design able to fulfill all the evaluation criteria is dis-

cussed in Section 4.1 on page 36.

1. Resource Constraints: We tested our prototype on a Class IV IoT de-

80

vice, namely, Arduino Mega2560. We also performed the timing evalu-

ations (given below) and noted the time taken by Arduino Mega2560 to

perform the public-key operations, which are somewhat high as com-

pared to symmetric operations. We also found that it takes approxi-

mately 10 sec for signature verification; however, it is usable in case of

the relatively infrequent software update scenario.

2. Robustness: We sketched the informal security analysis in Section 6.1

of all the threats discussed in Section 4.1 on page 36.

Timing Evaluation

We have timed our prototype implementation on the Arduino Mega2560

board with an 8-bit micro-controller using the Arduino Cryptography Li-

brary (last updated on April 2018 with version 0.2.0). Please refer to Table

6.1 on page 83 for checking the time taken by the 8-bit Arduino Mega2560for

different cryptographic operations.

The time used for public key operations is non-trivial but affordable as

key generation operations are performed once during the initialization or af-

ter reset. Similarly, the digital signature verification of software images is

relatively infrequent, as it is expected that the release of software updates for

Class IV IoT devices will be once or twice a year, and at most, on a monthly

basis. Bernstein [11] calculated the number of cycles used for a signing pro-

cedure. For a short message, it takes 87548 cycles, and the verification pro-

cedure takes under 134000 cycles per signature using a key-size of 256 bits.

Bernstein performed his test on a 64-bit 2.4 GHz Intel Westmere (Xeon E5620)

CPU. Although the IoT device is only performing the signature verification,

we have also tested the time taken in performing the digital signature. Bern-

stein explained the time difference in performing signature and verification

using curve Ed25519. Bernstein’s analysis is for a 64-bit processor, rather

81

than an 8-bit processor, but is nonetheless informative to our work.

We use ECDH with Curve25519 for key establishment. ECDH [19] takes two

scalar multiplications. Bernstein [10] showed that curve25519 is faster than

other elliptic curves.

AES counter mode (AES-GCM) is used with a key-size of 256 bits. It is used

as a session key for encryption and decryption. There is no time difference in

the encryption and decryption process when using AES-GCM [89].

Table 6.1 summarizes the time taken by symmetric and asymmetric algo-

rithms to process a single byte or operation, as illustrated in Table 6.1 on page

83. We performed encryption and decryption using AES-GCM with a key

size of 256 bits. The test was done ten times over 64 bytes of data. The aver-

age result was taken (over the ten trials), then we calculated the time taken to

encrypt/decrypt 1 byte of data. Similarly, we performed digital signing and

verification ten times over 64 bytes of data and received the average result. In

the case of ECDH 256 bit public-private key generation and key agreement,

we have performed these operations ten times and took the average result.

In the case of large data sizes, the overall time to do AES-GCM encryption

and decryption on complete data will be increased as AES is performed on

16 bytes block at one time. But we would expect per-byte encryption/de-

cryption time to remain the same. ECDH 256-bit key generation and key

agreement are going to take the same time, as these are independent of the

data size. EdDSA signature and verification show timing of performing op-

erations, but on increasing data size from 100 bytes to 1KB-3KB, there is a

subsequent increase in timings in milliseconds (approx. 50 to 150 msec).

Timing is measured using the serial monitor tool of Arduino IDE software

calculated over Arduino ATMega2560 microcontroller with 16MHz clock fre-

quency.

82

Operation Time Taken
AES-GCM-256 encryption 123.52 µsec per byte
AES-GCM-256 decryption 123.06 µsec per byte
Digital Signing (Ed25519, 256 bit
ECC)

6.003532s per signature

Signature verification (Ed25519,
256 bit ECC)

9.778552s per signature verification

ECDH 256 bits public-private key
generation (Curve 25519)

3.330908s per pair generation

ECDH (key agreement, Curve
25519)

3.332504s per key agreement

Table 6.1: Timing evaluation by 8-bit ATMega2560 with 16MHz clock

6.3 Limitations

In this section, we discuss the limitations of our design and prototype for

onboarding and software update.

L1: Our design is unable to handle software version downgrade. But a

SUP can provide an older version of software image legitimately by

re-assigning it with a new latest version number and signed with last

generated signature private key.

L2: The SUP must maintain all signature private keys for every IoT device’s

type/model. A SUP may be dealing with many types of IoT devices

and many instances of each.

L3: We use the pull model for a software update. The end-device periodi-

cally checks to see if an update is available by polling.

L4: We mainly focus on maintaining the integrity and data origin authen-

tication of the SUP. We do not handle the passive man-in-the-middle

attack. An attacker is able to read the plaintext image file and later ex-

ploit software vulnerabilities in the software image which are remotely

exploitable by arbitrary parties without any special privileges.

83

L5: Key establishment using ECDH is not properly ephemeral, i.e., by our

design, the ECDH new key pair is only generated during initialization

or at the time of device reset. IoT device and Gateway device uses the

long-term shared secret (K) until one of the devices is reset.

L6: A single RSA key-pair of a Gateway device is also not properly ephemeral.

A new RSA key pair is generated during reset and initial initialization.

One RSA key pair for the whole lifetime of a Gateway device increases

the vulnerability that the particular key pair is susceptible to discovery.

A static RSA private key may, over time, fall within the computational

reach of an attacker.

L7: In the case of the IoT device booklet loss, we are unable to recover the

unique password used in the ECDH key confirmation in Section 4.3.1

on page 49.

L8: We did not perform the power consumption analysis for Class IV de-

vice with and without our solution.

6.4 Future Work and Conclusion

In general, studies [82] [90] [29] [94] have found large numbers of software

vulnerabilities in IoT devices, which illustrates the need for a mechanism

for an automatic secure software update. We have demonstrated, with the

help of our model and a prototype implementation, the viability of using

public-key algorithms for one Class IV IoT device (Arduino ATMega2560

8-bit microcontroller with a 16MHz clock) by providing a practical instanti-

ation, which has been tested for onboarding and software updates. Our de-

sign uses the concept of key-locking for software updates of the IoT devices.

84

So that after 15 years, we are not still using the same signature-verification

key-pair (which might mean it has become attackable after 15 years). Our

design is particularly a good fit for automatic IoT software update, as it also

addresses the issue of a manufacturer going out of business. Our model

demonstrates that EC-based public key algorithms with curve25519 (security

equivalent to RSA-3072) can be used with Class IV IoT devices. Our onboard-

ing system design allows secure transportation of the unique password (wD)

from the IoT device to the Gateway device through the conventional Internet

and maintains the integrity and data origin authenticity of the software up-

dates. IoT devices are typically left unattended, which means they are rarely,

if ever, patched and often rely on default credentials.

Due to the unique password (proposed as part of our design) of IoT de-

vice and all configuration of IoT is controlled by Gateway device present

locally, attacks like Mirai and Brickerbot [70] who exploit default username

and password or weak password of IoT device can be prevented. This model

can be enhanced to use the push model for software updates, the encryption

of the image, and the usage of a serial number for the data storage of an IoT

device at the SUP database.

85

Bibliography

[1] Abomhara, M. and Køien, G. (2015). Cyber Security and the Internet of

Things: Vulnerabilities, Threats, Intruders and Attacks. Journal of Cyber

Security, 4:65–88.

[2] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,

Cochran, J., Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis, M.,

Kumar, D., Lever, C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sulli-

van, N., Thomas, K., and Zhou, Y. (2017). Understanding the Mirai Botnet.

In USENIX Security Symposium.

[3] Arazi, O. and Qi, H. (2005). Self-certified group key generation for ad

hoc clusters in wireless sensor networks. In 14th International Conference on

Computer Communications and Networks, ICCCN.

[4] Banks, A. and Gupta, R. (2014). MQTT Version 3.1.1. http://docs.

oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[5] Barrera, D., Clark, J., McCarney, D., and van Oorschot, P. C. (2012).

Understanding and Improving App Installation Security Mechanisms

Through Empirical Analysis of Android. In Proceedings of the Second ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM

’12, pages 81–92.

86

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

[6] Barrera, D., McCarney, D., Clark, J., and van Oorschot, P. C. (2014). Baton:

Certificate Agility for Android’s Decentralized Signing Infrastructure. In

ACM WiSec.

[7] Barrera, D., Molloy, I., and Huang, H. (2017). IDIoT: Securing the Inter-

net of Things like it’s 1994. CoRR, abs/1712.03623. A subset of this paper

appeared as ‘Standardizing IoT Network Security Policy Enforcement’,

Workshop on Decentralized IoT Security and Standards (DISS 2018), 6

pages.

[8] Barrera, D. and van Oorschot, P. (2011). Secure Software Installation on

Smartphones. IEEE Security and Privacy, 9(3):42–48.

[9] Barreto, P. S. L. M. and Naehrig, M. (2006). Pairing-Friendly Elliptic

Curves of Prime Order. In Selected Areas in Cryptography, pages 319–331.

Springer Berlin Heidelberg.

[10] Bernstein, D. J. (2006). Curve25519: New Diffie-Hellman Speed Records.

In PKC 2006, 9th International Conference on Theory and Practice of Public-Key

Cryptography, April 24-26, 2006, Proceedings, pages 207–228.

[11] Bernstein, D. J., Duif, N., Lange, T., Schwabe, P., and Yang, B. (2012).

High-speed high-security signatures. J. Cryptographic Engineering, 2(2):77–

89.

[12] Bon, M. (2016). A Basic Introduction to BLE Security. digikey.com.

[13] Bormann, C., Ersue, M., and Keränen, A. (2014). Terminology for

Constrained-Node Networks. RFC 7228.

[14] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B., and

Raymor, B. (2018). CoAP (Constrained Application Protocol) over TCP,

TLS, and WebSockets. RFC 8323.

87

[15] Boyko, V., MacKenzie, P., and Patel, S. (2000). Provably Secure

Password-Authenticated Key Exchange Using Diffie-Hellman. In EURO-

CRYPT.

[16] Boyko, V., Peinado, M., and Venkatesan, R. (1998). Speeding up dis-

crete log and factoring based schemes via precomputations. In Advances

in Cryptology — EUROCRYPT’98, pages 221–235. Springer Berlin Heidel-

berg.

[17] Brad, M. (2017). Over-The-World-Through-MQTT-

Aftermath. https://www.blackhat.com/docs/us-17/thursday/

us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.

pdf.

[18] Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange

Format. RFC 7159.

[19] Brown, D. R. L. (2009). Standards for Efficient Cryptography. SEC 1: El-

liptic Curve Cryptography. http://secg.org/sec1-v2.pdf. SECG-SEC-

v2.

[20] Choi, B., Lee, S., Na, J., and Lee, J. (2016). Secure firmware validation

and update for consumer devices in home networking. IEEE Transactions

on Consumer Electronics, 62(1):39–44.

[21] Common Weakness Enumeration (2019a). CWE - CWE-120: Buffer

Copy without Checking Size of Input (’Classic Buffer Overflow’).

https://cwe.mitre.org/data/definitions/120.html. (Accessed on

08/01/2019).

[22] Common Weakness Enumeration (2019b). CWE - CWE-190: Integer

Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html. (Accessed on 08/01/2019).

88

https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf
http://secg.org/sec1-v2.pdf
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html

[23] Common Weakness Enumeration (2019c). CWE - CWE-89: Improper

Neutralization of Special Elements used in an SQL Command (’SQL Injec-

tion’). https://cwe.mitre.org/data/definitions/89.html. (Accessed

on 08/01/2019).

[24] Cui, A., Costello, M., and Stolfo, S. (2013). When Firmware Modifica-

tions Attack: A Case Study of Embedded Exploitation. In NDSS.

[25] Echevarria, R. (2017). Intel secure device onboard: Onboarding billions

of devices just got simpler. https://software.intel.com/en-us/blogs/

2017/10/03/intel-secure-device-onboard. (Accessed on 06/22/2019).

[26] Facebook (2019). "React Native 0.59 · A framework for building native

apps using React". https://facebook.github.io/react-native/. (Ac-

cessed on 06/12/2019).

[27] Facebook (2019). "React v16.8.6 – A JavaScript library for building user

interfaces". https://reactjs.org/. (Accessed on 06/12/2019).

[28] Fawaz, K., Kim, K.-H., and Shin, K. G. (2016). Protecting Privacy of BLE

Device Users. In USENIX Security Symposium.

[29] Federal Trade Commission (2015). FTC Report on Internet of Things

Urges Companies to Adopt Best Practices to Address Consumer Privacy

and Security Risks.

https://www.ftc.gov/system/files/documents/reports/federal-

trade-commission-staff-report-november-2013-workshop-entitled-

internet-things-privacy/150127iotrpt.pdf .

[30] Finney, H., Donnerhacke, L., Callas, J., Thayer, R. L., and Shaw, D.

(2007). OpenPGP Message Format. RFC 4880.

89

https://cwe.mitre.org/data/definitions/89.html
https://software.intel.com/en-us/blogs/2017/10/03/intel-secure-device-onboard
https://software.intel.com/en-us/blogs/2017/10/03/intel-secure-device-onboard
https://facebook.github.io/react-native/
https://reactjs.org/
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf

[31] Friel, O., Lear, E., Pritikin, M., and Richardson, M. (2018). BRSKI over

IEEE 802.11. Internet-Draft draft-friel-brski-over-802dot11-01, Internet En-

gineering Task Force.

[32] Gemalto (2017). "Gemalto survey confirms that consumers lack confi-

dence in IoT device security".

https://www.gemalto.com/press/pages/gemalto-survey-confirms-that-

consumers-lack-confidence-in-iot-device-security-.aspx .

[33] Gilburg, J. (2017). Zero Touch Device Onboarding for IoTControl Plat-

forms. RSA Conference.

[34] Grassi, P. A., Fenton, J. L., Newton, E. M., Perlner, R. A., Regenscheid,

A. R., Burr, W. E., Richer, J. P., Lefkovitz, N. B., Danker, J. M., Choong, Y.-Y.,

and et al. (2017a). NIST: Digital Identity Guidelines :Authentication and

Lifecycle Management. NIST Special Publication 800-63B.

[35] Grassi, P. A., Garcia, M. E., and Fenton, J. L. (2017b). NIST: Digital Iden-

tity Guidelines. NIST Special Publication 800-63.

[36] Gupta, H. and van Oorschot, P. C. (2019). Onboarding and Software

Update Architecture for IoT Devices. In Privacy, Security, and Trust.

[37] Hahm, O., Baccelli, E., Petersen, H., and Tsiftes, N. (2016). Operating

Systems for Low-End Devices in the Internet of Things: A Survey. IEEE

Internet of Things Journal, 3(5):720–734.

[38] Hankerson, D., Menezes, A. J., and Vanstone, S. (2003). Guide to Elliptic

Curve Cryptography. Springer-Verlag, Berlin, Heidelberg.

[39] Hansen, T. and E. Eastlake 3rd, D. (2006). US Secure Hash Algorithms

(SHA and HMAC-SHA). RFC 4634.

90

https://www.gemalto.com/press/pages/gemalto-survey-confirms-that-consumers-lack-confidence-in-iot-device-security-.aspx
https://www.gemalto.com/press/pages/gemalto-survey-confirms-that-consumers-lack-confidence-in-iot-device-security-.aspx

[40] Hao, F. (2017a). J-PAKE: Password-Authenticated Key Exchange by Jug-

gling. RFC 8236.

[41] Hao, F. (2017b). Schnorr Non-interactive Zero-Knowledge Proof. RFC

8235.

[42] Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., and Wagner, D.

(2016). Smart Locks: Lessons for Securing Commodity Internet of Things

Devices. In Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security, ASIA CCS ’16, pages 461–472. ACM.

[43] Igoe, K., McGrew, D., and Salter, M. (2011). Fundamental Elliptic Curve

Cryptography Algorithms. RFC 6090.

[44] Iwata, T., Song, J., Lee, J., and Poovendran, R. (2006). The AES-CMAC

Algorithm. RFC 4493.

[45] Jablon, D. P. (1996). Strong password-only authenticated key exchange.

ACM SIGCOMM Comput. Commun. Rev., 26(5):5–26.

[46] Jackson (2018). SB-327 Information privacy: connected devices. Califor-

nia Legislative Information.

[47] Jones, M., Bradley, J., and Sakimura, N. (2015). JSON Web Token (JWT).

RFC 7519.

[48] Jones, M., Wahlstroem, E., Erdtman, S., and Tschofenig, H. (2018). CBOR

Web Token (CWT). RFC 8392.

[49] Josefsson, S. and Liusvaara, I. (2017). Edwards-Curve Digital Signature

Algorithm (EdDSA). RFC 8032.

[50] Julien, C., Liu, C., Murphy, A. L., and Picco, G. P. (2017). BLEnd:

Practical Continuous Neighbor Discovery for Bluetooth Low Energy. In

91

ACM/IEEE International Conference on Information Processing in Sensor Net-

works.

[51] Kainda, R., Flechais, I., and Roscoe, A. W. (2009). Usability and Secu-

rity of Out-of-band Channels in Secure Device Pairing Protocols. In 5th

Symposium on Usable Privacy and Security. ACM.

[52] Khan, M. (2017-08-28). Enhancing Privacy in IoT Devices through Au-

tomated Handling of Ownership Change. http://urn.fi/URN:NBN:fi:

aalto-201709046805.

[53] Kogan, D., Manohar, N., and Boneh, D. (2017). T/Key: Second-Factor

Authentication From Secure Hash Chains. In ACM CCS.

[54] Kotzias, P., Matic, S., Rivera, R., and Caballero, J. (2015). Certified PUP:

Abuse in Authenticode Code Signing. In ACM CCS.

[55] Kumar, A., Saxena, N., Tsudik, G., and Uzun, E. (2009). A comparative

study of secure device pairing methods. Pervasive and Mobile Computing,

5(6):734–749.

[56] Lamport, L. (1981). Password Authentication with Insecure Communi-

cation. Commun. ACM, 24(11):770–772.

[57] Langley, A., Hamburg, M., and Turner, S. (2016). Elliptic Curves for

Security. RFC 7748.

[58] Lee, B. and Lee, J.-H. (2017). Blockchain-based Secure Firmware Update

for Embedded Devices in an Internet of Things Environment. J. Supercom-

put., 73(3):1152–1167.

[59] Li, L., Abd El-Latif, A., and Niu, X. (2012). Elliptic curve EIGamal based

homomorphic image encryption scheme for sharing secret images . Signal

Processing, 92:1069–1078.

92

http://urn.fi/URN:NBN:fi:aalto-201709046805
http://urn.fi/URN:NBN:fi:aalto-201709046805

[60] Lundgren, L. (2017). Taking Over the World Through MQTT - After-

math. https://www.blackhat.com/us-17/briefings.html.

[61] Mahto, D. and Yadav, D. K. (2017). One-time password communication

security improvement using elliptic curve cryptography with iris biomet-

ric. International Journal of Applied Engineering Research, 12:7105–7114.

[62] McCune, J. M., Perrig, A., and Reiter, M. K. (2005). Seeing-is-believing:

using camera phones for human-verifiable authentication. In 2005 IEEE

Symposium on Security and Privacy, pages 110–124.

[63] Melnikov, A. and Fette, I. (2011). The WebSocket Protocol. RFC 6455.

[64] Menezes, A. J. (1994). Elliptic Curve Public Key Cryptosystems. Kluwer

Academic Publishers.

[65] Menezes, A. J., Vanstone, S. A., and van Oorschot, P. C. (1996). Handbook

of Applied Cryptography. CRC Press, Inc.

[66] MongoDB (2017). "The most popular database for modern apps |

MongoDB, Version 3.6". https://www.mongodb.com/. (Accessed on

06/19/2019).

[67] Moran, B., Meriac, M., and Tschofenig, H. (2019a). A Firmware Update

Architecture for Internet of Things Devices. Internet-Draft draft-moran-

suit-architecture-02, IETF.

[68] Moran, B., Tschofenig, H., and Birkholz, H. (2019b). Firmware Up-

dates for Internet of Things Devices - An Information Model for Manifests.

Internet-Draft draft-ietf-suit-information-model-02, IETF.

[69] Moriarty, K., Kaliski, B., Jonsson, J., and Rusch, A. (2016). PKCS #1: RSA

Cryptography Specifications Version 2.2. RFC 8017.

93

https://www.blackhat.com/us-17/briefings.html
https://www.mongodb.com/

[70] Mustapha, H. and Alghamdi, A. M. (2018). DDoS Attacks on the Inter-

net of Things and Their Prevention Methods. In Proceedings of the 2Nd In-

ternational Conference on Future Networks and Distributed Systems, ICFNDS.

ACM.

[71] Node.js Foundation (2019). Node.js 12.4.0. https://nodejs.org/en/.

(Accessed on 06/12/2019).

[72] NPM (2018). react-native-rsa-native - npm, 1.0.24. https://www.npmjs.

com/package/react-native-rsa-native. (Accessed on 06/12/2019).

[73] Ozmen, M. O. and Yavuz, A. A. (2017). Low-Cost Standard Public Key

Cryptography Services for Wireless IoT Systems. In Workshop on Internet

of Things Security and Privacy. ACM.

[74] Pritikin, M., Richardson, M., Behringer, M. H., Bjarnason, S., and Wat-

sen, K. (2019). Bootstrapping Remote Secure Key Infrastructures (BRSKI).

Internet-Draft draft-ietf-anima-bootstrapping-keyinfra-18, Internet Engi-

neering Task Force.

[75] Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version

1.3. RFC 8446.

[76] Rescorla, E. and Dierks, T. (2008). The Transport Layer Security (TLS)

Protocol Version 1.2. RFC 5246.

[77] Ronen, E., Shamir, A., Weingarten, A., and O’Flynn, C. (2018). IoT

Goes Nuclear: Creating a Zigbee Chain Reaction. IEEE Security Privacy,

16(1):54–62.

[78] Ryan, M. (2013). Bluetooth: With Low Energy Comes Low Security. In

Workshop on Offensive Technologies. USENIX.

94

https://nodejs.org/en/
https://www.npmjs.com/package/react-native-rsa-native
https://www.npmjs.com/package/react-native-rsa-native

[79] Salman, A., Diehl, W., and Kaps, J. (2017). A light-weight hardware

software co-design for pairing-based cryptography with low power and

energy consumption. In International Conference on Field Programmable Tech-

nology (ICFPT).

[80] Samuel, J., Mathewson, N., Cappos, J., and Dingledine, R. (2010). Sur-

vivable Key Compromise in Software Update Systems. In ACM CCS.

[81] Saxena, N., Ekberg, J. ., Kostiainen, K., and Asokan, N. (2006). Secure

device pairing based on a visual channel. In 2006 IEEE Symposium on Se-

curity and Privacy.

[82] Schneier, B. (2014). Essays: The Internet of Things Is Wildly In-

secure—And Often Unpatchable. https://www.schneier.com/essays/

archives/2014/01/the_internet_of_thin.html.

[83] Shelby, Z., Hartke, K., and Bormann, C. (2014). The Constrained Appli-

cation Protocol (CoAP). RFC 7252.

[84] Shin, S. and Kobara, K. (2012). Efficient Augmented Password-Only

Authentication and Key Exchange for IKEv2. RFC 6628.

[85] Shin, S., Kobara, K., and and (2016). A security framework for MQTT. In

2016 IEEE Conference on Communications and Network Security (CNS), pages

432–436.

[86] Soriente, C., Tsudik, G., and Uzun, E. (2007). BEDA: Button-Enabled

Device Pairing. IACR Cryptology ePrint Archive, 2007:246.

[87] Soriente, C., Tsudik, G., and Uzun, E. (2008). HAPADEP: Human-

Assisted Pure Audio Device Pairing. In Information Security, pages 385–

400, Berlin, Heidelberg. Springer Berlin Heidelberg.

95

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html

[88] Stajano, F. and Anderson, R. J. (1999). The Resurrecting Duckling: Secu-

rity Issues for Ad-hoc Wireless Networks. In Security Protocols, 7th Interna-

tional Workshop, April.

[89] STMicroelectronics (2013). UM0586: User manual STM32 Cryp-

tographic Library. https://www.st.com/content/ccc/resource/

technical/document/user_manual/34/1a/20/75/7f/84/45/cb/

CD00208802.pdf/files/CD00208802.pdf/jcr:content/translations/

en.CD00208802.pdf#page=119. (Accessed on 06/23/2019).

[90] Tal, S. and Oppenheim, L. (2014). Too Many Cooks: Exploit-

ing the Internet of TR-069 Things. http://mis.fortunecook.ie/

too-many-cooks-exploiting-tr069_tal-oppenheim_31c3.pdf.

[91] Thiranant, N., Lee, Y. S., and Lee, H. (2015). Performance Comparison

Between RSA and Elliptic Curve Cryptography-Based QR Code Authen-

tication. In 2015 IEEE 29th International Conference on Advanced Information

Networking and Applications Workshops (WAINA).

[92] Tidelift (2019). Bcrypt 3.0.6 on npm - libraries.io. https://libraries.

io/npm/bcrypt. (Accessed on 06/19/2019).

[93] Tschofenig, H. (2016). Fixing User Authentication for the Internet of

Things (IoT). Datenschutz und Datensicherheit, 40(4):222–224.

[94] Tschofenig, H. and Farrell, S. (2017). Report from the Internet of Things

Software Update (IoTSU) Workshop 2016. RFC 8240.

[95] Tschofenig, H. and Pegourie-Gonnard, M. (2015). Per-

formance of State-of-the-Art Cryptography on ARM-based

Microprocessors. https://csrc.nist.gov/csrc/media/

events/lightweight-cryptography-workshop-2015/documents/

presentations/session7-vincent.pdf.

96

https://www.st.com/content/ccc/resource/technical/document/user_manual/34/1a/20/75/7f/84/45/cb/CD00208802.pdf/files/CD00208802.pdf/jcr:content/translations/en.CD00208802.pdf#page=119
https://www.st.com/content/ccc/resource/technical/document/user_manual/34/1a/20/75/7f/84/45/cb/CD00208802.pdf/files/CD00208802.pdf/jcr:content/translations/en.CD00208802.pdf#page=119
https://www.st.com/content/ccc/resource/technical/document/user_manual/34/1a/20/75/7f/84/45/cb/CD00208802.pdf/files/CD00208802.pdf/jcr:content/translations/en.CD00208802.pdf#page=119
https://www.st.com/content/ccc/resource/technical/document/user_manual/34/1a/20/75/7f/84/45/cb/CD00208802.pdf/files/CD00208802.pdf/jcr:content/translations/en.CD00208802.pdf#page=119
http://mis.fortunecook.ie/too-many-cooks-exploiting-tr069_tal-oppenheim_31c3.pdf
http://mis.fortunecook.ie/too-many-cooks-exploiting-tr069_tal-oppenheim_31c3.pdf
https://libraries.io/npm/bcrypt
https://libraries.io/npm/bcrypt
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf

[96] van Oorschot, P. C. (2019). Computer Security and the Internet Security:

Tools and Jewels. Springer Nature.

[97] van Oorschot, P. C. and Wurster, G. (2012). Reducing Unauthorized

Modification of Digital Objects. IEEE Trans. Software Eng., 38(1):191–204.

[98] View, M., Rydell, J., Pei, M., and Machani, S. (2011). TOTP: Time-Based

One-Time Password Algorithm. RFC 6238.

[99] Wash, R., Rader, E., Vaniea, K., and Rizor, M. (2014). Out of the Loop:

How Automated Software Updates Cause Unintended Security Conse-

quences. In 10th Symposium On Usable Privacy and Security.

[100] Watsen, K., Abrahamsson, M., and Farrer, I. (2019). Secure Zero Touch

Provisioning (SZTP). RFC 8572.

[101] Wazid, M., Das, A. K., Odelu, V., Kumar, N., Conti, M., and Jo, M.

(2018). Design of Secure User Authenticated Key Management Protocol

for Generic IoT Networks. IEEE Internet of Things Journal, 5(1):269–282.

[102] Weißbach, M., Taing, N., Wutzler, M., Springer, T., Schill, A., and

Clarke, S. (2016). Decentralized coordination of dynamic software updates

in the Internet of Things. In 2016 IEEE 3rd World Forum on Internet of Things

(WF-IoT), pages 171–176.

[103] Whiting, D., Housley, R., and Ferguson, N. (2003). Counter with CBC-

MAC (CCM). RFC 3610.

[104] Willingham, T., Henderson, C., Kiel, B., Haque, M. S., and Atkison, T.

(2018). Testing Vulnerabilities in Bluetooth Low Energy. In ACMSE.

[105] Wurster, G. and van Oorschot, P. C. (2007). Self-Signed Executables:

Restricting Replacement of Program Binaries by Malware. In USENIX Hot-

Sec.

97

[106] Zetter, K. (2015). How the NSA’s Firmware Hacking Works

and Why It’s So Unsettling. https://www.wired.com/2015/02/

nsa-firmware-hacking/.

[107] Zhou, W., Jia, Y., Peng, A., Zhang, Y., and Liu, P. (2019). The Effect

of IoT New Features on Security and Privacy: New Threats, Existing So-

lutions, and Challenges Yet to Be Solved. IEEE Internet of Things Journal,

pages 1–1.

[108] Zhu, J. (2018). A Secure and Automatic Firmware Update Architecture

for IoT Devices. Internet-Draft draft-zhu-suit-automatic-fu-arch-00, IETF.

98

https://www.wired.com/2015/02/nsa-firmware-hacking/
https://www.wired.com/2015/02/nsa-firmware-hacking/

