
Onboarding and Software Update Architecture

for IoT Devices

Hemant Gupta and Paul C. van Oorschot

School of Computer Science

Carleton University

Ottawa, Canada

hemant@ccsl.carleton.ca

Abstract—The vast number of in-use Internet of Things (IoT)
devices is by consensus, expected to continue rapid growth.
These devices are subject to an expanding list of attacks that
exploit both software vulnerabilities and design choices. This
highlights the importance of architectural design of management
for cryptographic keys involved in both initial configuration
(onboarding) and secure, automatic update of device software and
firmware. Low-level IoT devices with constrained processors and
smaller registers and caches are computationally challenged to
carry out desktop-type and server-type public-key cryptographic
operations, e.g., as needed for key establishment and authentica-
tion of software updates. To this end, we design and prototype
an architecture for onboarding and secure software update of
low-level IoT devices (8-bit). It uses elliptic curve cryptography
(Curve25519), authenticated key establishment, and a known
continuity-based key-locking mechanism that uses a public key
embedded in a current software image to verify the signature
on a software update. We also provide an informal security
analysis. The design addresses the scenario of a transfer of update
authority, e.g., when a manufacturer ceases to provide ongoing
software updates upon going out of business.

Index Terms—Internet of Things (IoT), Security, Onboarding,
Software Update

I. INTRODUCTION

The growing network of connected devices, often called

the Internet of Things (IoT), offers a vast array of security

vulnerabilities for attackers to exploit. Security of IoT devices

is vital, as current IoT devices, through interaction with the

physical world, have the potential to cause physical harm

not to mention putting at risk sensitive personal data. This

elevates the importance of means to provide secure software

and firmware updates. Every time a company deploys a

product, arguably, as part of a global ecosystem, they have

a responsibility to provide ongoing security updates to it. This

is not so easily done in an IoT world of heterogeneous devices

from a vast number of vendors.

In 2016, the Mirai Botnet [1] exploited IoT devices. It

largely used default access credentials to infect devices and

then execute a DDoS (Distributed Denial of Service) attack

using them. Similar attacks occured in 2015 [2] on hard disk

firmware, where malicious code was inserted by reflashing

with the help of a hacking tool. In 2013 [3], researchers

2019 IEEE. This is the authors copy for personal use, IEEE permis-
sion must be obtained for all others. To appear at PST in Fredericton,
Canada,August 2019. Contact author:hemant@ccsl.carleton.ca.

demonstrated an attack on printer firmware by utilizing a

design flaw in the remote update functionality.

Many IoT devices continue to be protected by only a default

password. Recently, a law passed in California, requiring that

IoT device [4] manufacturers provide a unique password for

each device. While a small step, it is a step in the right

direction. A secure software architecture update for low-

level IoT devices remains an open problem as is device

on-boarding for devices with no user input/output interface.

Low-level IoT devices have low processing power and small

memory—just sufficient for dedicated tasks. It is challenging

to deploy public-key cryptography and to deliver software

updates through the Internet for these constrained devices [5].

Secure software update for Class IV IoT devices (see Sec-

tion II Table I) is challenging as they have no user input/output

interface, no pre-shared secret for establishing trust between

devices, and due to low computational capabilities, it is hard

to implement public-key operations. Nonetheless for secure

software update, we argue that onboarding using authenticated

key management is the first step.

We define an architecture involving four components: an IoT

device, a gateway, a smartphone application, and a software

update provider (SUP). Our design for secure software update

is derived from the method of Wurster [6] [7] for self-

signed binaries for smartphones. Using this, we contribute the

following:

• We explore the viability of secure software update using

public-key cryptography on 8-bit micro-controllers.

• We use the concept of key-locking [7] for software update

on 8-bit IoT devices.

• We explain and prototype a secure method for on-

boarding IoT devices using authenticated key manage-

ment involving a gateway device and smartphone.

• We address the issue of changing the authority of owner-

ship of software update, in the case that a manufacturer

goes out of business.

Section 2 provides background. In Section 3, we discuss

the attacker goals and threat model related to software update.

Section 4 describes the design and implementation of our

prototype used for proof of concept of secure software updates

for low-level IoT devices. Section 5 presents the evaluation

and security analysis. Section 6 summarizes the related work

in the area of software update and onboarding for IoT devices.

Section 7 provides concluding remarks and future work.

II. BACKGROUND

Software update is a vital part of IoT security. Software

updates fix features that are not performing as intended, add

software enhancement, and address security issues [8]. Figure

1 shows our basic architecture involving four components: a

Class IV IoT device (see Table I), a Software Update Provider

(i.e., SUP which provides software update for devices), a

Class I Gateway device (to help IoT devices communicate

with SUP), and a smartphone application (i.e., SmartApp,

used for device registration with the SUP). In the Internet

of Computers (IoC), software update mechanisms for the

Windows operating system (e.g., Authenticode [9]), Linux,

and Mac have common options: automatic update, download

and install; automatic update, download but ask the user

permission before installation; and manual update, download

and install. End-users commonly opt for the first of these [10].

One problem with these scenarios is if the application vendor

stops providing updates. In such a scenario, if the user is not

aware of the applications running on their system and how

to update them manually, then outdated software is prone to

attacks. In the case of manual software downloads, files from

unofficial sources may be untrustworthy.

Fig. 1. System Design for Onboarding and Software Update. Smart Lock is
used as an example IoT device

Software updates for a smartphone operating system like

Android or iPhone are issued over the air (OTA) by the

manufacturers and SUPs. OTA is a way to keep end user

software updated, including protection from malicious attacks

[11] [12]. Zhu [13] notes three modes of OTA updates for IoT

devices, similar to those noted by Barrera [14] for smartphone

applications. The first is client-initiated (i.e., pull model), in

which the client queries the server for update periodically;

when a new update is available, the client downloads the

manifest data and image and when the device is in IDLE state,

the client installs the update. The second is server-initiated

(i.e., push model) where the server pushes the firmware image

to the device and updates it based on the status of the device.

The third is negotiated, where the server notifies the client

about the available new software or firmware image and then

the client decides whether they want to install the update

or not. Researchers from both academia and industry seek a

standardized mechanism for software and firmware upgrade

for constrained devices.

Borman [5] classified constrained IoT devices into three

classes based on the size of memory (i.e., RAM and Flash),

ranging from 10KB to 250 KB. We extend his classification

in Table I based on our integration of research literature and

white papers [15] [16] [17] [18]. In Table I, we classify

IoT device processors into five classes based on aspects of

architecture including RAM size, bus size, clock frequency,

power consumption and others.

TABLE I
EXTENDED TAXONOMY OF IOT DEVICE PROCESSORS.

NA refers to not applicable to the class.

Class/
Features

Class I Class II Class III Class
IV

Class
V

Bus Size 64 bit 32 bit 16 bit 8 bit 4 and 8
bit

RAM Size MBs to
GB

KBs to
MBs

10KB-
1024KB

128B-
KBs

128B to
8KB

Wi-Fi
Supported

Yes Yes No No No

Clock
Frequency

250
MHz -
GHz

80
MHz-
180
MHz

4 MHz-
80 MHz

128
kHz-
16 MHz

32
kHz-
8 MHz

Power
Usage

10
mWatts
to Watts

uWatts <1uWatt <1uWatt unknown

OS
Supported

Linux,
Windows

Contiki,
eCos,
nuttX,
mbedOS,
embOS

Contiki,
eCos,
nuttX,
TinyOS,
embOS,
no OS

Contiki,
nanoRX,
nuttX,
TinyOS,
embOS,
no OS

NA

Asymmetric
Crypto
Supported

Yes Yes Yes
(EC-Few
Curves)

Yes
(EC-
Few
Curves)

NA

Program
Language
Supported

C, C++,
Python,
GO

C,GO,
JavaScript

C, C++ C, C++,
Asm.

Asm.

Examples AM3358
ARM
Cortex-
A8,
ARMv8

Arm
Cortex
M3,
ARM7

AVR16,
PIC24F

AVR8,
AT89C51,
tinyAVR

AMD
Am2900,
Atmel
MARC4

III. SECURITY MODEL AND THREAT MODEL

In this section, we provide a security and threat model for

software updates of IoT devices. We identify attacker goals,

capabilities, and threats. Figure 2 shows the threat model of a

software update for low-level IoT devices.

Attacker’s Goal and Capabilities: One goal of an attacker

in a software update scenario is to provide a malicious image

to the device, such that it is successfully installed. We take

into account two potential attackers: an attacker who wants

to install malicious updates, and a rogue former SUP. Both

attackers may have various capabilities in our model. First,

the attacker has the basic information about the device like

the company and model number, what the update manifest

data looks like, and information about the image. The attacker

may try to act as a man in the middle, and when the gateway

device sends a query for the software update to the SUP over

the internet, the attacker provides the malicious manifest data

and update for the device. An attacker may also try to send

the malicious manifest data or image directly to the IoT device

over a low-power wireless channel, e.g., Bluetooth. Second, an

attacker can be a former SUP that was providing services for

the devices, but has now gone rogue. Such a former SUP has

all the information related to the user’s devices and can use

that to deploy a malicious software image.

T1-T8 below are the threats that we have considered to

derive the security requirements for the onboarding and secure

software update for Class IV IoT devices [8] [11] [12]. Here,

valid software image means non-malicious, signed from the

legitimate SUP, and intended for the particular device.

T1: Replay Attack/Old Firmware An attacker can send an

old version of the valid software image to the device.

T2: Offline Update An attacker targets a device that has been

offline for a long time and has missed a few updates.

An attacker sends a software image which has a version

higher than installed on the device, but not the latest,

aiming to exploit vulnerabilities in that image.

T3: Device Mismatch An attacker sends a valid firmware

image for a different type of device.

T4: Unauthenticated Update An attacker attempts to spoof

a SUP, sending a malicious software update. This may

succeed if there is no method for verifying integrity and

data origin authentication.

T5: Man in the Middle An attacker may attempt to spoof

the Gateway device during the key establishment between

IoT device and Gateway device. The attacker passively

monitors the software update or modifies the authentica-

tion and access control data sent from the Gateway to

IoT device.

T6: Non-Ephemeral Keys At some point over the expected

lifespan of IoT devices (5-15 years), an attacker aims to

deduce the private key of a device’s public-private key

pair with available computational capabilities and forge

a signature on a rogue update.

T7: Rogue SUP A former SUP, with access to the details

of the user’s devices and the signature key of the base

image of the device provisioned during manufacturing,

has gone rogue. A rogue SUP uses this to send an old

software image or a malicious software update.

T8: Password Guessing If all IoT devices of the same

company or model have the same default password, or

user-chosen weak password which can easily guessed, an

attacker may aim to get unauthorized access to the device.

We make the following assumptions for the prototype:

A1: Each IoT device has a unique password (wD), Serial

Number (ND), and Bluetooth MAC-address (BD). These

are in a sealed booklet or sticker (in a QR code format)

Fig. 2. Threat Model for Onboarding and Software Update

which comes with the device. The password is pro-

grammed into ROM of the device during manufacturing.

A2: Each IoT device generates an elliptic curve (EC) public-

private key pair (e1D, d1D) during initial initialization

and on any reset, which is stored in EEPROM (Electron-

ically Erasable Programmable Read Only Memory).

A3: Each Gateway device generates an EC public-private key

pair (e1G, d1G) and RSA public-private key pair (eG, dG)

during initial initialization or reset, which are stored in

EEPROM.

A4: During Gateway device configuration, the data encryption

public key (eG) is the only Gateway device parameter

(in QR-code format) visible to the user and is scanned

by SmartApp.

A5: SUP keeps all signature private keys for signing the

software of different IoT devices offline. These are used

to sign manifest data and software images.

A6: The verification public key (vP) of the manufacturer is

embedded in base image stored in ROM of device D

during the manufacturing process. The base image is the

same for IoT devices of the same model/type.

A7: SUP has at least one version available of the software

image (IT (D)) of the supported IoT device.

A8: The manufacturer shares its software image signing key

(sP) for D’s particular device, T(D), securely with SUPs.

A9: The manufacturer provides a list of trusted SUPs to the

user via registered email or its website or some other

trusted means outside of our scope. The user uses this list

to check for a new SUP in case of initial initialization or

SUP change. The user also uses this list for downloading

SmartApp of the SUP on their smartphone.

A10: The same verification public key is embedded into all

instances of the device base image for all IoT devices

of same type/model (for a given software update) by the

manufacturer.

A11: The SUP is vetted by the manufacturer, by a process out

of scope for this paper.

A12: The process used by SUP to obtain software updates from

third parties is out of scope for this research.

A13: Attacks involving the SmartApp and the SUP are out of

scope for this paper.

A14: All physical devices (i.e., IoT device and Gateway device)

can only be reset manually.

A15: Attacks involving physical access to end-user IoT devices

and Gateway devices are out of scope.

IV. DESIGN AND IMPLEMENTATION

A primary goal of our prototype is to prevent exploitation

of software vulnerabilities of IoT devices by facilitating a

secure automatic software update. The solution provides robust

security against identified threats in Section III. Software

update for Class IV IoT devices is a two-step process. First,

on-boarding is achieved with the help of the key management

scheme. For this, we use four algorithms: Elliptic Curve Diffie-

Hellman (ECDH, 256 bit key, for session key establishment),

AES-256 (for session key), SHA-256 (for key confirmation)

and RSA(2048 bit key, for encryption/decryption). Second is

the software update. This involves the transfer of software

image from SUP to an IoT device. We use the elliptic curve

signature scheme Edwards-curve Digital Signature Algorithm

(EdDSA) [19], i.e., Ed25519 using SHA-512 and Curve25519

for signing and verification of manifest data and software

image. We use the Arduino Cryptography Library (updated on

November, 2018 with version 0.2.0) for the above algorithms.

A. Components

We now discuss the types and capabilities of different

software and hardware components used in the system design

based on Figure 1.

IoT Device: A Class IV device with no OS installed, no user

input/output interface, and no visible port for configuration.

We assume an 8-byte random string unique authentication

key available in a sealed booklet of the device, in a QR-code

format. Our implementation uses an Arduino board, which is

an 8-bit microcontroller (ATMega2560) with 16 MHz clock

frequency programmed using C++ libraries. The Bluetooth

module (i.e., HC-05) is in listening mode. The device is

denoted by subscript 'D' in our notation. Each IoT device type

is provisioned with the same base image during manufacturing

(refer to assumption A6 in Section III).

Smartphone Application (SmartApp): This is used to register

the devices to the SUP. It is programmed using the React

platform running over Samsung Galaxy Note 2 with 2GB

RAM and 32 GB memory.

Gateway Device: A Class I IoT device with a custom RTOS

(real-time OS) including capabilities to handle multiple smart

home devices. It serves as a communication portal for the IoT

devices, which do not themselves have capabilities to com-

municate through the Internet. The Gateway communicates

with IoT devices over BLE and with the SUP using Wi-Fi

through a router. The Gateway can address many IoT devices

TABLE II
SYMBOLS AND TERMINOLOGY USED IN DESIGN AND

IMPLEMENTATION

Notations Variables or Symbol Meaning

IoTDataD IoT device Bluetooth MAC-address (16 byte),
IoT device unique secret password (8 byte)

knownDataD IoT device model number (16 byte),
IoT device manufacturer (16 byte),
curVersion (16 byte),
reqVersion (16 byte used for update failure)

curV ersion Current software version running on IoT device

reqV ersion Required software version for IoT device
(Used in update failure)

Manifest
Data

IoT device model mumber (16 byte),
IoT device manufacturer (32 byte),
Software version (16 byte),
Timestamp (16 byte, populate during signature)

MT (D) Manifest data of software image for the particular IoT
device model

Software
Image

IoT device model number (16 byte),
IoT device manufacturer (32 byte),
Timestamp (16 byte, populate during signature),
verNextKey, Software version (16-byte), Binary

IT (D) Software image of the particular IoT device model

verNextKeyD Verification key of next software image of IoT device

verCurrKeyD Verification key of current (i.e., running) software
image of IoT device

wD 8-byte IoT device unique secret password

W Symmetric key (AES-256) derived from IoT device
unique secret password wD

k Symmetric session key (AES-256) shared by Gateway
device and IoT device

KG = KD =
K

Long term shared secret (AES-256) generate using EC
public private keys

e1D , d1D IoT device public-private (256 bits) keys for ECDH

e1G, d1G Gateway device public-private (256 bits) keys for
ECDH

eG RSA encryption public key of Gateway device with
key size of 2048 bits

dG RSA Decryption private key of Gateway device with
key size of 2048 bits

vP Elliptic curve verification public key (Ed25519 [20])
of SUP with key size of 256 bits

sP Elliptic curve signature private key (Ed25519)
of SUP with key size of 256 bits

H(x) Hash of x using SHA-256

a||b Concatenation of a and b

ND Serial number of IoT device

BD Bluetooth MAC-address of IoT device

EK(x), DK(x) E, D denote generic encryption and decryption
either symmetric or asymmetric according to the type
of key used as subscript

VK (x) Signature verification on x using key K

SK (x) Signature on x using key K

Req(x) Send a request for data x

NULL Variable is empty

T (D) Device type of D

f (x) f generates a symmetric 256 bit key from 8 byte
password x

in a sequential order. It has only one physical port used to

configure it with the help of a laptop or desktop manually. It is

implemented using the Raspberry Pi 3B+ module (Broadcom

BCM2837B0 quad-core A53 (ARMv8)), a 32-bit board with

Bluetooth and Wi-Fi module, programmed with Node.js. The

Gateway device is denoted by subscript 'G' in our notation.

Software Update Provider (SUP): The SUP is responsible

for acquiring and checking the authenticity of the software up-

date from the third-party. Here, third party refers to an arbitrary

(legitimate) software source that provides an image to the SUP.

The SUP tests the software update image before delivering it to

the device. SUPs store the device information (serial number,

weak password, etc.) containing device-specific details in a

SUP database. SUP generates the public-private key pair used

for signing the software and firmware. It is a software module

programmed in Node.js and uses MongoDB as a database. In

our prototype, SUP runs on a laptop with specifications: i7-8th

Gen processor, 16 GB RAM and 512GB hard disk. The SUP

is denoted by subscript 'P' in our notation.

To establish trust between all components, our design in-

volves a secure onboarding protocol with authenticated key

management. Our IoT device (D), do not have any physical

input/output interface. D and G do not have any pre-shared

secret. We use the internet for sharing the secret between the

devices.

B. Onboarding using Key Management (Chain-of-Custody)

Chain-of-custody is a concept that enables authenticated key

exchange and helps in onboarding the IoT device and the

Gateway device. It is based on the concept of chain-of-custody

of physical evidence, which is properly logged while being

submitted or transferred to an authority. Here, the evidence is

information about the device’s unique password and who owns

and is responsible for maintaining the integrity of the evidence

before handing over or taking custody of the evidence.

As mentioned in Section IV-C, the IoT device does not have

any physical input/output interface for user interaction, and the

Gateway device has only one physical port for manual configu-

ration through a laptop or desktop. A Class IV device supports

Bluetooth 4.0 protocol which is not secure, therefore, we need

a method of onboarding to establish a secure communication

channel between the device and the Gateway. Communication

between the SmartApp, the SUP and the Gateway is over

HTTPS using TLS 1.2. While TLS 1.3 is the current standard,

we use TLS 1.2 due to its availability in supporting software

tools, and henceforth refer to it as ''TLS''.

We use RSA [21] with a key-size of 2048 bits for sending

encrypted IoTDataD (wD and BD) from SmartApp to the

Gateway device through the SUP. Due to the presence of

another component (i.e., SUP) in between the SmartApp and

the Gateway device, a direct key-establishment protocol is

not feasible. There is no direct communication between the

Gateway and the SmartApp. During the configuration of the

Gateway with SUP information, the public key of the Gateway

device is available to the user in QR-code format for scanning

with the SmartApp. In practice, the Elgamal-EC is preferred

in IoT environments for encryption and decryption of data, but

due to its unavailability in supporting software tools, we are

using RSA here.

We use ECDH with Curve25519 [20] for establishing the

session-key (k) between the device and the Gateway based

on a shared secret (K) derived during key-establishment. We

use SHA-256 for key-confirmation with k and W (i.e., W =

f(wD)). We use long-term shared secret (i.e., AES-256 (K))

for encryption/decryption of session key. This reduces the

computational burden on the Class IV device for public-key

operations conducted multiple times a day. The following is

Fig. 3. Authenticated Key Establishment

the process for authenticated key management (Figure 3):

1. User downloads and installs the SmartApp of the SUP

from a trusted source.

2. User creates their account with the SUP through Smar-

tApp by sending username, user-to-SUP-password, and

email address, and then logs in after successful account

creation.

3. After a successful login, the user initializes the Gate-

way and configures the SUP's URL, user's username,

and user's password of the SUP account with a laptop.

User initializes the Gateway device. On initialization, the

Gateway device generates an EC public-private key pair

(e1G, d1G) and RSA public-private key pair (eG, dG).

4. The user scans the RSA public key (eG) of the Gateway

device with the SmartApp (QR code) from the laptop

screen during the Gateway configuration and saves it in

local storage on the smartphone.

5. The user initializes the IoT device. On initialization,

the device generates an EC key pair (e1D, d1D) for

ECDH. The user enters the serial number (ND) and

IoTDataD which includes the unique password (wD),
and the Bluetooth MAC-address (BD) of the IoT device

by scanning the QR bar code from the IoT device sealed

booklet.

6. The SmartApp encrypts the IoTDataD of the IoT device

with the public key of the Gateway (eG), and sends to

the SUP over TLS along with serial number (ND) of

device. The SUP stores ND and encrypted IoTDataD
in the user’s queue of the IoT devices.

7. The Gateway device requests the SUP for next

IoTDataD over TLS. The SUP checks the next available

encrypted IoTDataD in the queue and dequeues it. This

process continues until complete queue is empty and

repeats after every 24 hours to check for new IoT device

information .

8. The SUP sends the stored encrypted IoTDataD of the

next IoT device to the Gateway device over TLS. The

Gateway device decrypts the IoTDataD (wD and BD)

using the RSA private key (dG) and stores them.

9. The Gateway device sends its EC public-key (e1G) to the

IoT device using the Bluetooth MAC-address (BD). The

IoT device receives (e1G) and generates a shared secret

key (KD, AES-256) using the EC public-key (e1G) of the

Gateway device and the EC private-key (d1D) of itself. It

also generates a random symmetric session key (k, AES-

256) and symmetrically encrypts k using KD.

10. The IoT device sends its public-key (e1D) and encrypted

session key to the Gateway. The Gateway receives (e1D)
and generates shared secret key (KG, AES-256) using

the EC public-key (e1D) of the IoT device and the EC

private-key (d1G) of itself such that KG = KD = K. It

decrypts session key (k).

11. The Gateway sends double hash of session key (k)

concatenated with W (W = f(wD)) to the IoT device.

The IoT device generates W = f(wD), verifies the hash,

and aborts in case of mismatch. This convinces the IoT

device that the Gateway knows W.

12. The IoT device sends the single hash of session key

(k) concatenated with W to the Gateway. The Gateway

validates the hash. If it matches, it accepts K as the ses-

sion key; else protocol fails. This convinces the Gateway

device that the IoT device knows W.

13. The Gateway device sends the request for the

knownDataD to the IoT device encrypting it with K.

The IoT device recovers knownDataD and populates it

with device model number, manufacturer, curV ersion,

and reqV ersion, and encrypts it using session key.

14. The IoT device sends the encrypted knownDataD to the

Gateway. The Gateway decrypts the knownDataD and

stores in its database with regards to the IoTDataD.

15. When the Gateway wants to communicate with the IoT

device or vice versa, it generates a new session key (i.e.,

a symmetric key) and repeats steps 12 and 15.

In case of a manual reset of any D, D and G both must repeat

steps 9 through 15 for each D. In case of the G manually reset,

all configuration is deleted which is stored in EEPROM, and

steps 1 through 15 are repeated for all IoT devices. In the case

of reboot of either D or G, there is no data loss except session

key (k) and long-term shared secret key (K). D and G both

must repeat steps 9 through 15 for each D. We are using this

chain of custody of evidence (wD) for the establishment of

trust between the IoT device and the Gateway device and key

establishment.

C. Software Update

Smart home devices commonly require use of a smartphone

for the initial configuration of a device that does not have any

user input or output interface. After successful onboarding of

the IoT devices and the Gateway devices, they can start their

intended functionality. The integrity of the software update

image is maintained by the digital signature using ECDSA

with Ed25519 [20]. Software updates for IoT devices might

occur monthly or annually. Therefore, even though public-key

algorithms are computationally costly on Class IV devices,

they are feasible with Ed25519 with a key-size of 256 bits

(but problematic for RSA with 2048 bit key).

We use the concept of key-locking [7], where each software

image includes a next-update verification key for verifying

the integrity and authenticity of the next software image.

Each software version has its own public private key pair for

signature and verification. Each image verification key is sent

to the IoT device embedded in the previous image. Therefore,

the lifespan of each signature-verification key pair is the period

until availability of a new update image. A manufacturer

provisions the base image with embedded verification key in

the ROM during the manufacturing process. All IoT devices

with the same model number use the same software image

version. Any SUP who wants to provide updates for IoT

devices has to ask the manufacturer of the devices for the

signing key of the base image, and it is the responsibility

of the manufacturer to approve the SUP. The manufacturer

authorizes the SUP by sharing its signature key of the base

image of the particular IoT device model. The manufacturer

also publishes the list of trusted SUPs for the user, so that

the user can configure the gateway device for future updates.

Figure 4 shows a flow chart of the software update after

authenticated key management. One assumption related to the

Fig. 4. Software update flow chart. See Table II for notation

Also, SUP is responsible for verifying a base level of

functionality and software quality, essentially checking that

the software update is acquired from trustworthy sources.

Each new software image contains the verification key to

allow signature verification of the subsequent software image.

In our model the IoT device maintains only two verifica-

tion keys in EEPROM, for the current working software

image (verCurrKeyD) and the upcoming software image

(verNextKeyD). With every successful update, the device

updates the verification keys. We query SUP for the new

software updates every 24 hours; but this is configurable

(actual updates are expected at most monthly).

After onboarding, the Gateway device contains the

knownDataD of the IoT device. When the system starts, G

sends a request for manifest data (MT (D)) to the SUP with

knownDataD. The SUP first checks whether the request is

for an upgrade or not by checking the reqV ersion field in

knownDataD. If the reqV ersion field is NULL, then it is an

upgrade request. The SUP checks its database for an available

latest software version that is higher than the curV ersion sent

by G for D, based on the device and manufacturer information

present in knownDataD. If the SUP finds the higher software

version, it generates a time stamp and appends it with MT (D).

It then checks that the curV ersion is the base image version

(first update of D) for that IoT device model. If yes, then it uses

the manufacturer’s shared signature private key; otherwise,

it uses the signature private key of the last generated key

pair for the particular IoT device model. The SUP digitally

signs the manifest data (MT (D)) of the found software image.

The SUP sends M1 = (SsP (MT (D)), MT (D)) to G over TLS.

G establishes a secure session key (k) with D. G forwards

the message M1 to D after encrypting it with the session

key as Ek(M1). D verifies the signature within M1. After

successful verification, D validates the device model number,

manufacturer information, software version and timestamp.

Timestamp is used in the manifest data and software image

to avoid a replay attack using an old software version. D

communicates success to G on successful validation.

G sends a request for the software image (IT (D)) based on

MT (D) to the SUP. The SUP then finds IT (D) in its database.

IT (D) contains a new public verification key embedded in it for

the next software update image, and also a timestamp which is

filled before signature. The SUP signs the IT (D), with the same

signature private key used to sign MT (D). The SUP sends M2

= ((SsP (IT (D))), IT (D)) to G. G forwards the signed image

to D after encrypting it with session key as Ek(M2). The

IoT device decrypts (Dk(Ek(M2))) and verifies (VvP
(M2))

the digital signature using verNextKeyD and validates the

information about the device (e.g., checks D’s model number,

manufacturer, software version greater than curV ersion and

timestamp). After successful verification and validation, D

starts the installation of the new image (update).

After successful installation, D saves the verification key

of the running software image in verCurrKeyD, and a new

verification key of the upcoming image from the SUP in

verNextKeyD. It stores both keys in the EEPROM of D. The

device then sends an acknowledgment to G of the successful

software update with new knownDataD by modifying the

curV ersion field. G stores the knownDataD.

D only keeps the last two verification public keys for

signature verification. Therefore, in case of a software instal-

lation failure during the update process, our device cannot

work either with a current image or new image as some

files have changed. D can only store one software image in

EEPROM other than the base image provisioned in ROM

during manufacturing. In the case of an update installation

failure, D reverts back to run the base (initial) image from

ROM and sends a failure notice to G along with knownDataD
after modifying the reqV ersion with curV ersion (which is

working software version before update failure). G then sends

the update query to the SUP, which is then treated as an

update installation failure of the software as reqV ersion is not

NULL. The SUP then searches in its database for the manifest

data and software image if version equal to reqV ersion sends

it to the G after signing it with the respective signature key.

D uses its verCurrkey of the last working version to verify

the digital signature of the software image in case of update

failure.

As an IoT device has an expected lifespan of 5-15 years,

an initial public-private pair for signing and verification may

become insecure due to the computational capabilities of a

future attacker. This makes the key-locking mechanism a

good fit for IoT devices. As a drawback, on manual reset

the IoT device returns to its base image provisioned during

manufacturing and clears its EEPROM. However, after reset, D

requests G for software update, and the IoT device is provided

with the latest software version image by the SUP by signing

it with the manufacturer’s shared signature private key of the

base image of D.

D. Software Update Provider Change

The ability to accommodate changing the SUP addresses

scenarios where the manufacturer or current SUP goes out of

business or the user is not satisfied with the current SUP. The

user selects the new SUP from the list of trusted SUPs shared

by the manufacturer, who already has the signature private

key of the corresponding verification key embedded in the

base image of the IoT device. SUP change requires the user

to reset the IoT device which clears its EEPROM that contains

the relevant information and sends it back to the base image

provisioned during manufacturing. The user has to register

all of the IoT devices again with the new SUP and manually

configure the Gateway device using the laptop or desktop with

new SUP information. The IoT device and Gateway need to

repeat the process of onboarding discussed in section IV. After

successful onboarding, G requests a software update for D

from the new SUP. The SUP provides D, through G, with the

latest software image for D, and this allows the user to change

the software update provider.

V. ANALYSIS

This section discusses the evaluation and limitations of the

model, and provides an informal security analysis.

A. Implementation Evaluation

Onboarding and Software Update

We confirmed the onboarding and software update

functionality of our design using the implementation of

a prototype. We were able to share the IoT device password

to the Gateway device through the network. This secret is used

for key confirmation after key establishment. Our prototype

used ECDH (Curve25519) for key establishment and we built

a test application for the IoT device. We proceeded through

multiple software releases with an incremental version code

for the software update. In our prototype, we successfully

upgraded the version to the IoT device in sequential order

(V 1 −→ V 2 −→ V 3). Note that on testing, we did not

actually upgrade the IoT device software image itself, but

tested the logic of receiving and verifying signed images

and manifest data, testing out the key management aspects.

To test an update installation failure, we tried to upgrade

to V4 and modified it to fail in the middle. We are able

to reinstall the previous working version (i.e., V3) on the

IoT device as the two verification keys were kept in the

EEPROM of the device. The IoT device automatically

performed the update and recovery from update installation

failure. Our model is also suitable for all classes I-IV of the

IoT devices as there is no particular hardware requirement.

A Class I or Class II IoT device with higher processing

power would be able to perform the functionality of the

Gateway device as well (which includes communicating

with the SUP over TLS). With the Class III and Class IV

IoT device, we still need a Class I device serving as a gateway.

Performance Evaluation (Timing)

The time used for public key operations is non-trivial but toler-

able. Key generation operations are performed once during the

initialization or after reset. Similarly, signature verification of

software images is relatively infrequent, with expected release

of software updates for Class IV IoT devices once or twice

a year, and at most, monthly. Bernstein [22] calculated the

number of cycles used for a signing procedure. For a short

message, it takes 87548 cycles, and the verification procedure

takes under 134000 cycles per signature using key-size of

256 bits. Bernstein performed his test on 64-bit 2.4 GHz

Intel Westmere (Xeon E5620) CPU and explained the time

difference in performing signature and verification using curve

Ed25519. Bernstein’s analysis is for a 64-bit processor, rather

than an 8-bit processor, but is nonetheless informative to our

work. In our design, the IoT device is only performing the

signature verification, but for completeness we also tested the

time to carry out the digital signature.

ECDH with Curve25519 is used for key establishment. ECDH

algorithm [23] takes two scalar multiplication. Bernstein [24]

showed that curve25519 is faster than other elliptic curves.

AES counter mode (AES-GCM) is used with a key of 256 bits

as a session key for encryption and decryption. There is no

time difference in the encryption and decryption process when

using AES-GCM [25]. Table III summarizes the time taken by

symmetric and asymmetric algorithms to process a single byte

or operation. The method used to record these timings was

as follows: We performed encryption and decryption using

AES-GCM with a key size of 256 bits. This was done ten

times over 64 bytes of data. The average result was taken

(over the 10 trials), then we calculated the time taken to

encrypt/decrypt 1 byte of data. Similarly, we performed digital

signing and verification ten times over 64 bytes of data and

took the average result. In the case of ECDH 256 bits public-

private key generation and key agreement, we performed

these operations ten times and took the average result. In

the case of large data sizes, the overall time to do AES-

GCM encryption and decryption on complete data will be

increased as AES is performed on 16 bytes block at one time,

but we would expect per-byte encryption/decryption time to

remain same. In signature and verification with increase in

data size from 100bytes to 1KB-3KB, there is a subsequent

small increase in timings due to hashing (approx. 50 to 150

msec). Timing is measured using the serial monitor tool of

Arduino IDE software calculated over Arduino ATMega2560

micro-controller with 16MHz clock frequency.

TABLE III
TIMING EVALUATION ON 8-BIT ATMEGA2560 WITH 16 MHz CLOCK

Operation Time Taken

AES-GCM-256 encryption 123.52 µsec per byte

AES-GCM-256 decryption 123.06 µsec per byte

Digital Signing
(Ed25519, 256 bit ECC)

6.0035s per signature

Signature verification
(Ed25519, 256 bit ECC)

9.7786s per verification

ECDH 256 bits public-private key
generation (Curve 25519)

3.3309s per pair generation

ECDH
(key agreement, Curve 25519)

3.3325s per key agreement

B. Security Analysis

In this section, we argue informally how our design ad-

dresses the earlier-stated threats (section III).

SA1: [Threats T1, T2] The IoT device only receives update

information from the registered Gateway device. MT (D)

and IT (D) contain the information about the IoT device

software version and manifest timestamp (filled in during

signature of MT (D)) and IT (D) for the software update.

MT (D) and IT (D) are signed by the SUP. Each software

version has its own corresponding public-private key pair.

T1 and T2 are mitigated by the verification of signature

and validation of software version and timestamp present

in MT (D) and IT (D).

SA2: [Threat T3] MT (D) and IT (D) contains the information

about IoT device model number and manufacturer. The

IoT device validates the model number and the manu-

facturer information in the received manifest data and

software image to mitigate threat T3.

SA3: [Threats T4] Verification of the signature on MT (D) and

IT (D) during software update mitigates this threat.

SA4: [Threats T5] ECDH key exchange addresses man-in-the-

middle attacks. Knowledge of W is tested as part of

onboarding in steps 11-12.

SA5: [Threat T6] T6 is mitigated by the key-locking mecha-

nism.

SA6: [Threat T7] T7 is reduced somewhat by keeping the

IoT device information encrypted at the SUP to avoid

exploitation of the IoT device secret (wD) used in key

confirmation between the device and Gateway.

SA7: [Threat T8] T8 is mitigated by generating new RSA and

EC keys for the Gateway and IoT device during every

reset. A15 rules out physical device attack.

Gateway Device Analysis

The Gateway device is a Class I device (Table I). By assump-

tion A14, the Gateway device and the IoT device can only

be reset manually. Therefore, no remote attacker is able to

reset the device. The Gateway device can only be configured

using a physical connection between the laptop/desktop and

the port of the Gateway device. The end-user configures the

Gateway device with the URL of the SUP from the IoT device

manufacturer’s website (assumption A9). Due to pull model,

the Gateway device is the one requesting software update on

behalf of the IoT device. The communication between the

Gateway device and the SUP is over TLS 1.2.

C. Limitations

L1: Our design is unable to handle legitimate software version

downgrade.

L2: The SUP must maintain all signature private keys for

every IoT device’s type/model.

L3: We use the pull model for a software update. End-device

polling consumes gateway device power resources.

L4: We do not handle the passive man-in-the-middle attack.

An attacker might read the unencrypted image file and

later exploit any software vulnerabilities present in the

image.

L5: Key establishment using ECDH is not properly

ephemeral, i.e., by our design, the ECDH new key pair

is only generated during initialization or on device reset

and remains static otherwise.

L6: RSA key-pair is also not ephemeral. A new RSA key pair

is generated during initialization or on device reset.

L7: If the IoT device booklet is lost, we are unable to recover

the unique password used in the ECDH key confirmation,

which cause in protocol fails.

L8: We do not address vulnerabilities in software for legacy

devices.

L9: A complete and formal analysis has not been done.

L10: Baud rate (i.e., 9600) of IoT devices is a limitation if

there is a large number of IoT devices communicating

with Gateway device.

VI. RELATED WORK

We focus our discussion of related work on academic and

industrial research exploring IoT security related to onboard-

ing and software/firmware update.

A. Software Update

For IoT devices, secure software and firmware update

is a major challenge. Tschofenig et al. [8] discussed the

challenges and proposed solutions faced for software and

firmware updates. The main focus of the workshop was to find

methods for secure software updates for constrained devices

[5]. Tschofenig et al. [11] [12] explored firmware update

architectures for constrained devices [14]. In these drafts, a

common approach is the use of public-key infrastructure for

digital signature for checking the integrity and data origin au-

thentication, and using secure boot for keeping cryptographic

keys and basic functionality in case of update failure. Wurster

[6] proposes a method for protecting binaries already installed

on the system from any malicious modification using a digital

signature and enhanced this concept for key-locking [7]. Public

keys are embedded in the binaries to verify the integrity of

future software update. They use a trust on first use (TOFU)

model for basic initial installation. Baton [26] suggested a

modification in smartphones app installation framework which

helps application developers to transfer the signing authority

of an application to the new developer in a secure manner

without any user intervention. They consider renewing signing

keys by chaining them, but the solution does not address stolen

signing keys. They also put their trust of checking the integrity

and authenticity of the software updates on the application

developer and OS.

BRSKI [27] provides a solution for securing devices with

zero-touch methods using X.509 certificate. This solution is

generally designed for non-constrained devices [14] such as

large router platforms in data centers.

Choi [28] introduced a secure firmware validation and

update scheme for consumer devices in a home networking

systems by utilizing ID-based mutual authentication and key

derivation to distribute a firmware image securely. Firmware is

divided into a series of chunks called fragments, used to create

the hash chain [29]. Hash chaining is used for authenticity of

the fragmented firmware image.

Uptane [6] is the first software update framework for auto-

mobiles to address automotive-specific vulnerabilities. Uptane

has additional features over TUF like additional storage for

recovery in case of software infection of the Electronic Control

Unit (ECU), maintaining a vehicle manifest to keep track of

versions installed on different ECU’s and a time server in case

an attacker tries to delay the update for an indefinite time.

B. Onboarding

The NIST report on lightweight cryptography [16] for

2017 mainly suggested the use of symmetric cryptography

for IoT devices. It placed public key cryptography in scope,

but suggested that it must be robust against quantum attacks

and use a combination of general public key cryptographic

schemes with lightweight primitives. NIST also organized a

lightweight cryptography workshop 2015, in which perfor-

mance of different cryptography algorithms was analyzed on

ARM-based microprocessors [30].

Ozmen [17] proposed a low-cost asymmetric algorithm for

wireless IoT devices using micro ECC library and NIST-

recommended secp192 curve. In implementation, they tested

the proposed solution with 8-bit microcontroller and show

the performance of key-exchange, integrated encryption and

hybrid construction and use the concept of self-certification.

J-PAKE [31] is password-authenticated key exchange pro-

tocol using juggling. It offers a security proof and is built on

an earlier mechanism of Schnorr [32]. It is also compatible

with elliptic curves. It protects against the online and offline

dictionary attacks and maintains forward secrecy.

CBOR web Token (CWT) [33] is built from the JSON Web

Token (JWT). Concise Binary Object Representation (CBOR)

is mostly used for IoT devices. It is a concise means of secure

data transfer between two parties using CBOR encryption and

signature. CWT is used with AES-128, AES-256 and ECDSA.

Device pairing is an important concept for trust establish-

ment of wireless devices. The Resurrecting Duckling model

[34] is based on the idea of trusting, and pairing with, the first

device that makes contact with a newly 'woken up' device.

Kumar [35] compared secure device pairing methods. LED

button or vibrate-button is preferred in the scenarios where

the device does not have any audio-visual interface.

VII. FUTURE WORK AND CONCLUSION

The ubiquity of software vulnerabilities on all classes of

IoT devices illustrates the need for a mechanism for (ideally,

automatic) secure software update. We have demonstrated

with the help of our model and a prototype implementation

the viability of using public-key algorithms for a Class IV

level IoT device (i.e., ATMega2560 8-bit micro-controller

with 16MHz clock) by providing a practical instantiation

which has been tested for onboarding and software update.

Our design uses the concept of key-locking for software

update, a particularly good fit to IoT software update, as it

addresses the issue of a manufacturer going out of business.

Our model demonstrates that EC-based public key algorithms

(security equivalent to RSA-2048) can be used with Class

IV IoT devices. Our onboarding system design allows secure

transport of a secret from the IoT device to the Gateway

device through the conventional internet and maintains

integrity and data origin authenticity of the software update.

This model can be enhanced to use the push model for

software update and encryption of the image.

Acknowledgement: The authors thank the anonymous

referees whose comments helped improve this work. Paul C.

van Oorschot is Canada Research Chair in Authentication

and Computer Security, and acknowledges NSERC for an

NSERC Discovery Grant.

REFERENCES

[1] M. Antonakakis et al., “Understanding the Mirai botnet,” in USENIX

Security Symposium, 2017.
[2] K. Zetter, “How the NSA’s firmware hacking works and why it’s so

unsettling.” https://www.wired.com/2015/02/nsa-firmware-hacking/, Feb
2015.

[3] A. Cui, M. Costello, and S. Stolfo, “When firmware modifications attack:
A case study of embedded exploitation,” in NDSS, 2013.

[4] Jackson, “Sb-327 information privacy: connected devices,” California

Legislative Information, Sep 2018.
[5] C. Bormann, M. Ersue, and A. Kernen, “Terminology for Constrained-

Node Networks.” RFC 7228, May 2014.
[6] G. Wurster and P. C. van Oorschot, “Self-signed executables: Restricting

replacement of program binaries by malware,” in HotSec, 2007.
[7] P. C. van Oorschot and G. Wurster, “Reducing unauthorized modification

of digital objects,” IEEE Trans. Software Eng., vol. 38, no. 1, pp. 191–
204, 2012.

[8] H. Tschofenig and S. Farrell, “Report from the Internet of Things
Software Update (IoTSU) Workshop 2016.” RFC 8240, Sept. 2017.

[9] P. Kotzias, S. Matic, R. Rivera, and J. Caballero, “Certified PUP: Abuse
in Authenticode Code Signing,” in ACM, CCS ’15, 2015.

[10] R. Wash, E. Rader, K. Vaniea, and M. Rizor, “Out of the loop: How
automated software updates cause unintended security consequences,”
in 10th Symposium On Usable Privacy and Security, 2014.

[11] B. Moran, M. Meriac, and H. Tschofenig, “A Firmware Update Archi-
tecture for Internet of Things Devices,” Internet-Draft draft-moran-suit-
architecture-02, IETF, Jan 2019.

[12] B. Moran, H. Tschofenig, and H. Birkholz, “Firmware Updates for
Internet of Things Devices - An Information Model for Manifests,”
Internet-Draft draft-ietf-suit-information-model-02, IETF, Jan. 2019.

[13] J. Zhu, “A Secure and Automatic Firmware Update Architecture for IoT
Devices,” Internet-Draft draft-zhu-suit-automatic-fu-arch-00, IETF, Mar
2018.

[14] D. Barrera and P. van Oorschot, “Secure software installation on
smartphones,” IEEE Security Privacy, vol. 9, pp. 42–48, May 2011.

[15] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: A survey,” IEEE Internet

of Things Journal, vol. 3, pp. 720–734, Oct 2016.
[16] H. Tschofenig and M. Pegourie-Gonnard, “Performance of state-of-

the-art cryptography on ARM-based microprocessors.” https://csrc.
nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/
documents/presentations/session7-vincent.pdf, Jul 2015.

[17] M. O. Ozmen and A. A. Yavuz, “Low-cost standard public key cryp-
tography services for wireless iot systems,” in Workshop on Internet of

Things Security and Privacy, ACM, 2017.
[18] A. Salman, W. Diehl, and J. Kaps, “A light-weight hardware/software

co-design for pairing-based cryptography with low power and energy
consumption,” in International Conference on Field Programmable

Technology (ICFPT), Dec 2017.
[19] S. Josefsson and I. Liusvaara, “Edwards-Curve Digital Signature Algo-

rithm (EdDSA).” RFC 8032, Jan. 2017.
[20] A. Langley, M. Hamburg, and S. Turner, “Elliptic Curves for Security.”

RFC 7748, Jan. 2016.
[21] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS #1: RSA

Cryptography Specifications Version 2.2.” RFC 8017, Nov. 2016.
[22] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-

speed high-security signatures,” J. Cryptographic Engineering, vol. 2,
no. 2, pp. 77–89, 2012.

[23] D. R. L. Brown, “Standards for Efficient Cryptography.SEC 1: Elliptic
Curve Cryptography.” http://secg.org/sec1-v2.pdf, May 2009. SECG-
SEC-v2.

[24] D. J. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in
PKC, Apr 24-26, pp. 207–228, 2006.

[25] STMicroelectronics, “UM0586: User manual STM32 Cryptographic
Library.” https://www.st.com/content/ccc/resource/technical/
document/user manual/34/1a/20/75/7f/84/45/cb/CD00208802.pdf/
files/CD00208802.pdf/jcr:content/translations/en.CD00208802.pdf#
page=119, Sep 2013. (Accessed on 06/23/2019).

[26] D. Barrera, D. McCarney, J. Clark, and P. C. van Oorschot, “Baton:
Certificate agility for android’s decentralized signing infrastructure,” in
ACM, WiSec, 2014.

[27] M. Pritikin, M. Richardson, M. H. Behringer, S. Bjarnason, and K. Wat-
sen, “Bootstrapping Remote Secure Key Infrastructures (BRSKI),”
Internet-Draft draft-ietf-anima-bootstrapping-keyinfra-18, IETF, Jan.
2019.

[28] B. Choi, S. Lee, J. Na, and J. Lee, “Secure firmware validation and
update for consumer devices in home networking,” IEEE Transactions

on Consumer Electronics, vol. 62, pp. 39–44, Feb 2016.
[29] A. J. Menezes, S. A. Vanstone, and P. C. van Oorschot, Handbook of

Applied Cryptography. CRC Press, 1996.
[30] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “NIST Special Publication

800-63B: Digital identity guidelines,” Jun 2017.
[31] F. Hao, “J-PAKE: Password-Authenticated Key Exchange by Juggling.”

RFC 8236, Sept. 2017.
[32] F. Hao, “Schnorr Non-interactive Zero-Knowledge Proof.” RFC 8235,

Sept. 2017.
[33] M. Jones, E. Wahlstroem, S. Erdtman, and H. Tschofenig, “CBOR Web

Token (CWT).” RFC 8392, May 2018.
[34] F. Stajano and R. J. Anderson, “The resurrecting duckling: Security

issues for ad-hoc wireless networks,” in Security Protocols Workshop,

Apr 19-21, 1999.
[35] A. Kumar, N. Saxena, G. Tsudik, and E. Uzun, “A comparative study

of secure device pairing methods,” Pervasive and Mobile Computing,
vol. 5, no. 6, pp. 734–749, 2009.

