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Abstract

Every positive integer has a unique radix 2 representation which uses the
digits {0, 1}. However, if we allow digits other than 0 and 1, say {0, 1,−1},
then a positive integer has many representations. Of these redundant rep-
resentations, it is possible to choose one that has few nonzero digits. It is
well known that using representations of integers with few nonzero digits
allows certain algebraic operations to be done more quickly. This thesis is
concerned with various representations of integers that are related to effi-
cient implementations of algebraic operations in cryptographic algorithms.

The topics covered here include:

–The width-w nonadjacent form (w-NAF). We prove that the w-NAF of an
integer has a minimal number of nonzero digits; that is, no other represen-
tation of an integer, which uses the w-NAF digits, can have fewer nonzero
digits than its w-NAF.

–A left-to-right analogue of the w-NAF. We introduce a new family of radix 2
representations which use the same digits as the w-NAF, but have the prop-
erty that they can be computed by sliding a window from left to right across
the binary representation of an integer. We show these new representations
have a minimal number of nonzero digits.

–Joint representations. Solinas introduced a {0, 1,−1}-radix 2 representation
for pairs of integers called the joint sparse form. We consider generaliza-
tions of the joint sparse form which represent r ≥ 2 integers and use digits
other than {0, 1,−1}. We show how to construct a {0, 1, 2, 3}-joint repre-
sentation that has a minimal number of nonzero columns.

–Nonadjacent digit sets. It is well known that if x equals 3 or −1 then ev-
ery nonnegative integer has a unique {0, 1, x}-nonadjacent form; that is, a
{0, 1, x}-radix 2 representation with the property that, of any two consecu-
tive digits, at most one is nonzero. We investigate what other values of x
have this property.
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Chapter 1

Introduction

This thesis is concerned with various representations of integers that are re-
lated to efficient implementations of algebraic operations in cryptographic
algorithms. As a concrete example, consider the Elliptic Curve Digital Sig-
nature Algorithm1 (ECDSA). ECDSA is an elliptic curve based signature
scheme that has been incorporated into a number of standards (e.g., FIPS
186-2 [10]). The ECDSA signing algorithm requires a computation of the
form nP, and the verification algorithm requires a computation of the form
n1P1 + n2P2; here, P, P1, P2 are points on an elliptic curve and n, n1, n2 are
integers. We describe algorithms for performing these computations and
then show how they can be made more efficient by using certain represen-
tations of the integers n, n1, n2.

The operation which takes an integer, n, and an elliptic curve point, P,
and returns

nP := P + P + · · ·+ P︸ ︷︷ ︸
n

is called scalar multiplication or point multiplication. If we imagine a device
(e.g., smartcard, pager) or a piece of software that computes nP, then one
of the inputs accepted by this device/software would necessarily be the
integer n. However, strictly speaking, the input would actually be some

1A good overview of ECDSA can be found in [14].
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encoding of n. Exactly how n is encoded depends upon the application.
A very common encoding is the binary number system, but there may be
some other more convenient one. It might be that the device/software con-
verts from one encoding to another.

Suppose that n is represented (i.e., encoded) as a string of digits,
a`−1 . . . a1a0, such that

n = a`−12`−1 + · · ·+ a222 + a121 + a020;

that is, a`−1 . . . a1a0 is a radix 2 representation of n. We denote sums like the
one above by (a`−1 . . . a2a1a0)2.

If each ai is in the set {0, 1}, then we can compute nP using the well
known binary method:

Q ← ∞

for i = `− 1 . . . 0

do





Q ← 2Q
if ai 6= 0

then Q ← Q + P
return Q

The operations 2Q and Q + P are carried out by applying the elliptic curve
group law which typically requires that a number of arithmetic operations
be performed in the field over which the elliptic curve is defined. Comput-
ing 2Q and Q + P are usually expensive operations. However, when Q is
equal to the group identity element, ∞, then 2Q and Q + P can be computed
essentially for free.

The cost of the binary method is usually measured by counting the
number of addition and doubling operations that are performed with Q 6=
∞. If the representation (a`−1 . . . a2a1a0)2 has a`−1 6= 0 then the number of
such doubling operations is `− 1 and the number of such addition opera-
tions is one less than the number of nonzero digits in (a`−1 . . . a2a1a0)2.

Example 1.1. For the integer 61, we have

61 = (111101)2 .
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The number of addition operations required to compute 61P using this rep-
resentation is 4 and the number of doubling operations is 5. ♦

Continuing with the example above, if we were to compute 61P by
working through the binary method by hand, we would likely wish that
the binary representation of 61 had fewer nonzero digits. However, every
nonnegative integer has a unique binary representation so, unfortunately,
we are stuck with 5 nonzero digits and 4 addition operations. But, the situ-
ation changes if we allow the digits ai to take values other than 0 and 1.

Suppose each ai is instead in the set {0, 1,−1}. Then we can compute
nP like this:

Q ← ∞

for i = `− 1 . . . 0

do





Q ← 2Q
if ai 6= 0

then





if ai > 0
then Q ← Q + P
else Q ← Q− P

return Q

This method is sometimes called the signed binary method. In addition to
the operations 2Q and Q + P, we now require Q − P. In an elliptic curve
group, point subtraction can be done at essentially the same cost as point
addition. A nonzero integer has many {0,±1}-radix 2 representations (an
infinite number, in fact) and any one of these can be used in the procedure
above.

Example 1.2. Here are three {0,±1}-radix 2 representations of 61:

61 = (1000101)2 = (1011101)2 = (1000011)2

We use 1 to denote the digit −1. Since each representation has the same
length, when used to compute 61P, all three result in 6 doubling operations.
However, the first and third representations result in 2 addition/subtraction
operations while the second results in 4.
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To see that 61 has an infinite number of {0,±1}-radix 2 representations,
observe that we can always replace the digits 01 with 11 and construct a
new representation of 61. Thus,

61 = (1000101)2

= (11000101)2

= (111000101)2

= (1111000101)2

and so on. ♦

This leads us to the following question: Given an integer n, what is
the optimal {0,±1}-radix 2 representation of n to use in the signed binary
method to compute nP, with respect to minimizing the number of group
operations? This problem can be expressed as follows:

min length(α)− 1 + wt(α)− 1

subject to

α ∈ {0,±1}∗, n = (α)2.

Here, the function length(α) returns the number of digits that remain in the
string α after we remove any leading zeros, and wt(α) returns the number
of nonzero digits in α.

A related minimization problem is the following:

min wt(α)

subject to

α ∈ {0,±1}∗, n = (α)2.

If we take an optimal solution α = a`−1 . . . a1a0 to this related problem and
use it in the signed binary method, then nP will be computed using as
few addition/subtraction operations as possible. In 1960, Rietweisner [39]
explained how to construct an optimal solution and his results have been
rediscovered many times (cf. [17]). He showed that every integer has a
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unique {0,±1}-radix 2 representation with the property that, of any two con-
secutive digits, at most one is nonzero; moreover, he showed that no other
{0,±1}-radix 2 representation of n can have fewer nonzero digits than this
canonical representation.

Rietweisner’s canonical representations have come to be called non-
adjacent forms (NAFs). In the previous example, it is easily checked that
(1000101)2 is the NAF of 61, while the other two representations have at
least one pair of adjacent nonzero digits.

Taking (a`−1 . . . a1a0)2 to be the NAF of n in the signed binary method
minimizes the number of addition/subtraction operations. However, if the
NAF of n was substantially longer than, say, the {0, 1}-radix 2 representa-
tion of n, then it would not be a good idea to use the NAF. Fortunately, the
NAF of n is at most one digit longer than the {0, 1}-radix 2 representation
of n.

We do not have to restrict ourselves to the digits {0,±1}. In the general
case, suppose we have n = (a`−1 . . . a1a0)2 where each ai is in a set of digits
D, with 0 ∈ D. If D has the property that d ∈ D implies |d| ∈ D, then we
can compute nP like this:

for each d ∈ D with d > 0
do Pd ← dP

Q ← ∞

for i = `− 1 . . . 0

do





Q ← 2Q
if ai 6= 0

then





if ai > 0
then Q ← Q + Pai

else Q ← Q− P−ai

return Q

This method differs from the previous ones in that it requires some precom-
putation; that is, the values Pd must be computed and stored before the rep-
resentation (a`−1 . . . a1a0)2 can be processed.2 If we must compute nP for

2Actually, Pd only needs to be precomputed for those values of d ∈ D with d > 0 such
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several values of n then the values Pd need only be computed once since
they can be stored and reused.

For certain families of digit sets, this procedure has been called a window
method. The reason for this terminology is that for some digit sets a D-radix
2 representation of n can be constructed by applying windows of a certain
width to the {0, 1}-radix 2 representation of n.

Example 1.3. By applying a window of width 2 to the {0, 1}-radix 2 rep-
resentation of 61, we can construct a {0, 1, 3}-radix 2 representation as fol-
lows:

61 = (1111 01 )2

= (11 11 01)2

= (11 0301)2

= (030301)2. ♦

Window methods allow nP to be computed using fewer group opera-
tions than the signed binary method, but this comes at the expense of using
more memory.

If we use a window method to compute nP, then we can minimize
the number of required addition/subtraction operations by constructing
an optimal solution to the problem

min wt(α)

subject to

α ∈ D∗, n = (α)2.

Thus, for a fixed set of digits, it is of interest to investigate techniques for
efficiently constructing an optimal solution to this problem. Similar ques-
tions and problems arise when we consider algorithms for computing the
linear combination n1P1 + n2P2.

that d or −d appears as a digit of (a`−1 . . . a1a0)2.
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Suppose the integers n1, n2 are represented as strings of digits,
a`−1 . . . a1a0, b`−1 . . . b1b0, such that

n1 = a`−12`−1 + · · ·+ a222 + a121 + a020,

n2 = b`−12`−1 + · · ·+ b222 + b121 + b020.

Notice that these two strings have the same length. There is no loss of
generality in imposing this condition since if one string was shorter than
the other it could be padded on the left with zeros.

If each ai and bi is in the set {0, 1}, then we can compute n1P1 + n2P2

using the following method due to Straus [43]:

Q ← ∞, R ← P1 + P2

for i = `− 1 . . . 0

do





Q ← 2Q
if (ai, bi) 6= (0, 0)

then





if (ai, bi) = (1, 0)

then Q ← Q + P1

else if (ai, bi) = (0, 1)

then Q ← Q + P2

else if (ai, bi) = (1, 1)

then Q ← Q + R
return Q

As before, the cost of this method is determined by counting the number of
doubling and addition operations. If one of a`−1, b`−1 is nonzero, then the
number of doubling operations (with Q 6= ∞) is ` − 1. To determine the
number of addition operations, we need to examine the representations of
n1 and n2 together. If we write the strings a`−1 . . . a1a0 and b`−1 . . . b1b0 in
an array

a`−1 . . . a1a0

b`−1 . . . b1b0,

then the number of addition operations (with Q 6= ∞) is equal to one less
than the number of nonzero columns in this array.
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We write (
n1

n2

)
=

(
a`−1 . . . a2a1a0

b`−1 . . . b2b1b0

)

2

whenever n1 = (a`−1 . . . a2a1a0)2 and n2 = (b`−1 . . . b2b1b0)2. If A is a string
composed of 2-digit columns, then (A)2 is a radix 2 representation of a pair
of integers. (A)2 is called a joint representation.

Example 1.4. For the integers 602, 1365 we have
(

602
1365

)
=

(
01001011010
10101010101

)

2

.

This joint representation is composed of 11 columns, 9 of which are nonzero.
Thus, the cost of computing 602P1 + 1365P2 using Straus’ method is 10 dou-
blings and 8 additions.

Instead of using Straus’ method, we could compute 602P1 + 1365P2

by first computing 602P1 and 1365P2 using the binary method, and then
adding the two results. This would cost 9 + 10 = 19 doublings and 4 + 5 +

1 = 10 additions. Thus, we see that Straus’ method is less costly. ♦

Straus’ method can be easily adapted to the case where each ai and bi is
in the set {0,±1}:

Q ← ∞, R ← P1 + P2, S ← P1 − P2

for i = `− 1 . . . 0

do





Q ← 2Q
if (ai, bi) 6= (0, 0)

then





if (ai, bi) = (1, 0) then Q ← Q + P1

else if (ai, bi) = (1, 0) then Q ← Q− P1

else if (ai, bi) = (0, 1) then Q ← Q + P2

else if (ai, bi) = (0, 1) then Q ← Q− P2

else if (ai, bi) = (1, 1) then Q ← Q + R
else if (ai, bi) = (1, 1) then Q ← Q− R
else if (ai, bi) = (1, 1) then Q ← Q + S
else if (ai, bi) = (1, 1) then Q ← Q− S

return Q
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Now, we are faced with the same problem as before. A pair of nonzero
integers has an infinite number of {0,±1}-joint representations and anyone
of these could be used to compute n1P1 + n2P2 in this procedure. The cost
of computing n1P1 + n2P2 depends upon which {0,±1}-joint representation
we use. We would like to use a representation that minimizes the cost.

Example 1.5. Here are two {0,±1}-joint representations of (602, 1365)T:
(

001010101010
101010101011

)

2

,

(
01010101010
10101010101

)

2

.

The first representation is composed of 12 columns, 7 of which are nonzero.
The second representation has 11 columns and all 11 are nonzero. It is more
efficient to use the first representation to compute 602P1 + 1365P2. Notice
that each row of the second representation is a NAF.

The problem of finding a {0,±1}-joint representation that minimizes
the number of addition/subtraction operations can be stated as

min wt(A)

subject to

A ∈ ({0,±1}2×1)∗, (n1, n2)
T = (A)2.

Here, wt(A) is the function that returns the number of nonzero columns in
the representation (A)2. As the previous example shows, taking each row
of (A)2 to be a NAF does not necessarily give an optimal solution.

This minimization problem was introduced by Solinas [42] and he has
shown how to efficiently construct an optimal solution. Solinas’ approach
was to develop an analogue of the NAF for pairs of integers called the joint
sparse form (JSF). A {0,±1}-joint representation is a JSF if it satisfies the
following properties:

1. Of any three consecutive columns, at most two are nonzero.

2. No two adjacent digits are 11 or 11.
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3. For any two consecutive columns, if one row is 11 or 11, the other row
is 10 or 10.

It can be checked that the first representation in the previous example sat-
isfies each of these properties. Every pair of integers has a unique JSF, and
this representation is an optimal solution to the problem above.

Straus’ method can also be adapted to other digit sets. Thus, for a given
set of digits D and integers n1, n2, it is of interest to know if we can effi-
ciently construct a D-joint representation of (n1, n2)

T that has a minimal
number of nonzero columns.

These examples hopefully demonstrate the kind of problems that we
consider in this thesis.

1.1 Overview of Chapters

Chapter 2 We consider a generalization of the nonadjacent form called the
width-w nonadjacent form (w-NAF). The w-NAF, where w ≥ 2 is an integer,
is a canonical radix 2 representation which uses the digits

Dw := {0,±1,±3,±5, . . . ,±(2w−1 − 1)}.

Our main result is to prove that of all Dw-radix 2 representations of an in-
teger, the w-NAF has a minimal number of nonzero digits. We also give
a characterization of the w-NAF in terms of a colexicographical ordering.
Lastly, we generalize a result on w-NAF and show that any Dw-radix 2 rep-
resentation of an integer that has a minimal number of nonzero digits is at
most one digit longer than its binary representation.

This material appears in the paper “Minimality and Other Properties of
the Width-w Nonadjacent Form” [33] which will be published in Mathemat-
ics of Computation.

Chapter 3 Given the {0, 1}-radix 2 representation of an integer, its w-NAF
can be constructed by sliding a window of width w from right to left across
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this representation. The w-NAF can then be used in a window method to
efficiently compute a scalar multiple of an elliptic curve point. However,
window methods generally work best by processing the digits of a repre-
sentation from the opposite direction (i.e., from left to right). This means
that the w-NAF must be computed and stored in its entirety before com-
putations to determine the scalar multiple can begin. If the w-NAF digits
could instead be calculated left-to-right, then storing the entire w-NAF rep-
resentation would be unnecessary since its digits could be computed as
they are needed.

We introduce a new family of radix 2 representations which use the
same digits as the w-NAF but have the advantage that they result in a win-
dow method which uses less memory. This memory savings results from
the fact that these new representations can be deduced using a very simple
left-to-right algorithm. Further, we show that, like the w-NAF, these new
representations have a minimal number of nonzero digits. We also give
a characterization of these representations based on “closest approxima-
tions”.

Some of this material appears in the paper “New Minimal Weight Rep-
resentations for Left-to-Right Window Methods” [32] which will be pre-
sented at the Cryptographers’ Track of the RSA Conference (February 2005),
whose proceedings will be published in Lecture Notes in Computer Science.

Chapter 4 Joint representations can be defined as representations of vec-
tors of integers, rather than just pairs of integers. As we have seen, radix
2 joint representations are useful for computing linear combinations of el-
liptic curve points (i.e., ∑ aiPi). We consider the problem of constructing
minimal weight r-row joint representations for various sets of digits.

Joint representations can be ordered lexicographically according to the
position of their nonzero columns. We observe that minimal weight repre-
sentations and lexicographically smallest representations share some of the
same properties. Thus, for a given set of digits, it is natural to ask whether
a lexicographically smallest representation has minimal weight. We show
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that, for certain families of digit sets, this is indeed true.

Chapter 5 The NAF of an integer is a radix 2 representation which uses
the digits {0, 1,−1} and has the property that, of any two consecutive dig-
its, at most one is nonzero. Every positive integer has a unique NAF which
can be efficiently computed. We investigate if other digit sets of the form
{0, 1, x} with x ∈ Z provide each positive integer with a “nonadjacent”
representation; that is, a representation with the property that, of any two
consecutive digits, at most one is nonzero. If a digit set has this property,
we call it a nonadjacent digit set (NADS).

We present an algorithm to determine if {0, 1, x} is a NADS; and if it
is, we present an algorithm to efficiently determine the nonadjacent rep-
resentation of any positive integer. We also present some necessary and
sufficient conditions for {0, 1, x} to be a NADS. These conditions are used
to exhibit infinite families of integers x such that {0, 1, x} is a NADS, as well
as infinite families of x such that {0, 1, x} is not a NADS.

This material appears in the paper “Alternative Digit Sets for Nonadja-
cent Representations” [31] which will be published in SIAM Journal on Dis-
crete Mathematics. A preliminary version of this paper [30] was presented at
the Workshop on Selected Areas in Cryptography in August 2003 with the
proceedings published in volume 3006 of Lecture Notes in Computer Science.

1.2 Preliminaries

Most of the notation and definitions we use will be introduced as required.
However, there are some concepts that we rely on quite frequently and so
we make a note of them here.

Definition 1.6. A radix 2 representation is a finite sum of the form ∑i≥0 ai2i.

If n is an integer and n = ∑i≥0 ai2i, we call ∑i≥0 ai2i a radix 2 representation
of n. To denote radix 2 representations, the following notation is commonly
used:

(. . . a3a2a1a0)2 = · · ·+ a323 + a222 + a121 + a0.
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Each of the ai’s is called a digit. The binary number system is the radix 2
number system where each digit is equal to either 0 or 1.

Since (. . . a2a1a0)2 stands for a finite sum, all but a finite number of the
ai’s are zero. Because of this property, we can consider the length of a rep-
resentation:

Definition 1.7. The length of a representation (. . . a2a1a0)2 is the integer

min{` ∈ Z : ` ≥ 0, and for any i ≥ `, ai = 0}.

For the representation (a`−1 . . . a1a0)2, it is implicit that ai = 0 for all i ≥ `;
note that if a`−1 6= 0, then this representation has length `.

If D ⊂ Z is a set of digits, the set of all strings of digits from D is denoted
by D∗. The empty string is in D∗ and is denoted by ε.

Now, given a representation (a`−1 . . . a1a0)2, where each ai is in D, then
a`−1 . . . a1a0 is a string in D∗. Conversely, any string α ∈ D∗ corresponds
to a radix 2 representation with digits in D, namely (α)2. If α, β ∈ D∗ then
we denote their concatenation by α‖β. Also, we denote the string formed by
deleting the leading zeros from α by α̂.

It is important to note that representations and strings have different
properties. For example, the strings 30030 and 0030030 are different, how-
ever, (30030)2 and (0030030)2 denote the same representation.

If α is a string of digits then we write wt(α) to denote the number of
nonzero digits in α. The value wt(α) is often called the Hamming weight
of α.





Chapter 2

The Width-w Nonadjacent
Form

2.1 Introduction

Let w ≥ 2 be an integer. A radix 2 representation is called a width-w nonad-
jacent form (w-NAF, for short) if it satisfies the following conditions:

1. Each nonzero digit is an odd integer with absolute value less than
2w−1.

2. Of any w consecutive digits, at most one is nonzero.

It is convenient to define Dw to be the set of w-NAF digits; that is, Dw is the
set of integers which includes zero and the odd integers with absolute value
less than 2w−1. For example, if w = 3 then Dw = {0,±1,±3}. The number
42 has a 3-NAF since the representation (30030)2 (note that 1 denotes −1, 3
denotes −3, etc.) satisfies conditions (1) and (2), and

(30030)2 = 3 · 24 + 0 · 23 + 0 · 22 − 3 · 21 + 0 · 20 = 42.

When w = 2, Dw = {0,±1} and the w-NAF coincides with the well known
nonadjacent form [11]. Because of this, the w-NAF may be regarded as a
generalization of the ordinary NAF.

15
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Cryptographers became interested in the w-NAF primarily through ef-
forts to efficiently implement elliptic curve scalar multiplication. It was
known that, on average, the w-NAF of an integer has few nonzero digits,
however, except in the case when w = 2, it was not known if the w-NAF
has a minimal number of nonzero digits,

We provide an answer to this question in Section 2.3 of this chapter: we
prove that no other Dw-radix 2 representation of an integer has fewer non-
zero digits than its w-NAF. This result complements the average case anal-
ysis carried out in [8] and provides further evidence that the w-NAF is a
good representation to use to perform scalar multiplication. As well, this
result may also have applications to the theory of arithmetic codes [23].

In Section 2.4, we generalize a known result about the length of w-
NAFs. It is stated without proof in [28] that the length of the w-NAF of
an integer is at most one digit longer than its binary representation. We show
that this is in fact a property of representations with a minimal number of
nonzero digits; that is, any Dw-radix 2 representation of an integer with a
minimal number of nonzero digits is at most one digit longer than its bi-
nary representation.

In Section 2.5, we provide a new characterization of the w-NAF in terms
of a colexicographical ordering. For an integer n, we consider the set of all Dw-
radix 2 representations of n. The position of the zero and nonzero digits in
these representations define binary strings. When we order these strings
colexicographically, we show that there is always a unique smallest string;
moreover, the representation to which this unique smallest string corre-
sponds is the w-NAF of n.

Before we present our results, we first establish some of the basic theory
on w-NAFs in Section 2.2. Aside from being of value to readers new to
the w-NAF, this material provides proofs for some results which are stated
without proof in the literature.
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2.2 Known Results

The w-NAF seems to have been first described by Cohen, Miyaji and Ono
[9]. However, the w-NAF is closely related to the binary window method
and this may explain why it was proposed independently by Blake, Seroussi
and Smart [5] and by Solinas [41].

Results on the w-NAF are scattered among different papers and often
proofs are not given. For completeness, we give proofs of the following
basic facts about the w-NAF:

1. every integer has at most one w-NAF.

2. every integer has a w-NAF.

3. an integer’s w-NAF is at most one digit longer than its binary repre-
sentation.

2.2.1 Uniqueness

Proposition 2.1. Every integer has at most one w-NAF.

Proof. We suppose the result is false and show that this leads to a contra-
diction. Suppose there are two different w-NAFs, say (a`−1 . . . a2a1a0)2 and
(b`′−1 . . . b2b1b0)2, such that

(a`−1 . . . a2a1a0)2 = (b`′−1 . . . b2b1b0)2,

where ` and `′ are the respective lengths of these representations. We can
assume that ` is as small as possible. These representations stand for the
same integer, call it n.

If a0 = b0, then

(a`−1 . . . a2a1)2 = (b`′−1 . . . b2b1)2,

and so we have two different, and shorter, w-NAFs which stand for the
same integer, contrary to the minimality of `. So, it must be that a0 6= b0.
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If n is even then a0 = b0 = 0. However, a0 6= b0, so it must be that n
is odd; hence, both a0 and b0 are nonzero. Because the representations are
both w-NAFs, we have

(a`−1 . . . aw00 . . . 0a0)2 = (b`′−1 . . . bw00 . . . 0b0)2

=⇒ a0 ≡ b0 (mod 2w).

However, −(2w−1 − 1) ≤ a0, b0 ≤ 2w−1 − 1, and thus

−2(2w−1 − 1) ≤ a0 − b0 ≤ 2(2w−1 − 1).

The only multiple of 2w in this range is 0, and since 2w|(a0 − b0) it must be
that a0 − b0 = 0. However, this contradicts the fact that a0 6= b0. Thus, the
representations cannot exist and the result follows.

2.2.2 Existence

We present an algorithm which, on input n, computes a string α such that
(α)2 is a w-NAF of n. Unlike the algorithms in [5] and [41], our algorithm
handles negative integers as well as positive ones. Proving that the algo-
rithm is correct establishes that every integer has a w-NAF.

The quotient-remainder theorem tells us that, for any integer n, there
exist unique integers q′ and r′ such that

n = q′ · 2w + r′ where 0 ≤ r′ < 2w.

It is common to denote this value of r′ by “n mod 2w”. It follows that there
also exist unique integers q and r such that

n = q · 2w + r where − 2w−1
< r ≤ 2w−1.

We will denote this value of r by “n mods 2w”. For example, if w = 3 then
13 mods 23 = −3. Note that if n is odd then so is n mods 2w. As well,
when n > 0 it must be that q ≥ 0, and similarly, when n < 0, q ≤ 0. So, for
n 6= 0, we have q/n ≥ 0.
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Our algorithm makes use of the following two functions:

fw(n) :=





n/2 if n is even,

(n− r)/2w where r = n mods 2w, otherwise.
(2.1)

gw(n) :=





0 if n is even,

0w−1r where r = n mods 2w, otherwise.
(2.2)

Note that fw returns an integer and gw returns a string. For example, if
w = 3, then f3(13) = 2 and g3(13) = 003.

Now we can describe our algorithm:

Algorithm 2.2: NAFw(n)

α ← ε

while n 6= 0

do

{
α ← gw(n) ‖ α

n ← fw(n)

return α̂

As NAFw(n) executes, it builds a string, α, in Dw
∗. And assuming NAFw(n)

terminates, which we will prove in a moment, it returns this string minus
its leading zeros (i.e., α̂).

We justify the title “Algorithm” by showing that NAFw(n) terminates
for all n ∈ Z. If n = 0, then NAFw(n) clearly terminates, so we need only
consider n 6= 0. We will argue that | fw(n)| < |n| whenever n 6= 0.

If n is even, then fw(n) = n/2 and thus | fw(n)| < |n|. If n is odd,
then we consider two cases. First, suppose |n| < 2w−1. Then we see that
n mods 2w = n and thus

| fw(n)| = 0 < |n| .

Second, suppose |n| ≥ 2w−1; then we have

| fw(n)| =
∣∣∣∣
n− r

2w

∣∣∣∣ ≤
∣∣∣ n
2w

∣∣∣+
∣∣∣ r
2w

∣∣∣ <

∣∣∣ n
2w

∣∣∣+ 1
2

.
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Now,
1
2

=
2w−1

2w ≤ |n|
2w ,

and, since w ≥ 2, it follows that

| fw(n)| < 2
∣∣∣ n
2w

∣∣∣ =
∣∣∣ n
2w−1

∣∣∣ < |n| .

So, the sequence formed by taking the absolute value of the variable n dur-
ing the execution of NAFw(n) is strictly decreasing. Thus, the variable n
must reach 0, and so NAFw(n) terminates for all n ∈ Z.

Now we argue that the algorithm is correct.

Proposition 2.3. Let α be the string returned by NAFw(n) where n ∈ Z. Then
(α)2 is a w-NAF and (α)2 = n.

Proof. By the definition of gw, it is clear that (α)2 is a w-NAF, so we just
have to show that (α)2 = n. If i is a nonnegative integer, we write fw

i to
denote i applications of the map fw; that is,

fw
i = fw ◦ fw ◦ · · · ◦ fw︸ ︷︷ ︸

i

.

Since NAFw(n) terminates, there is some integer i ≥ 0 such that fw
i(n) = 0.

We will argue by induction on i.
When i = 0, fw

i(n) = 0 implies n = 0. For n = 0, we have α = ε and
then n = (α)2 as required. Suppose i > 0. Let n′ = fw(n) and let α′ be the
string returned by NAFw(n′). Note that fw

i−1(n′) = fw
i(n) = 0 and so by

induction we have that n′ = (α′)2. By the definition of Algorithm 2.2 we
see that

α = α′‖gw(n)

=⇒ (α)2 = (α′‖gw(n))2

=⇒ (α)2 = 2|gw(n)|(α′)2 + (gw(n))2

=⇒ (α)2 = 2|gw(n)|n′ + (gw(n))2

=⇒ (α)2 = 2|gw(n)| fw(n) + (gw(n))2 (2.3)
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From (2.1), we see the function fw can be defined in terms of gw as follows:

fw(n) =
n− (gw(n))2

2|gw(n)| .

Thus, the right-hand side of (2.3) equals n, and so (α)2 = n as required.

Because of Propositions 2.1 and 2.3, we now know that each integer n
has a unique w-NAF. Henceforth, we will refer to this representation as the
w-NAF of n.

2.2.3 Length

We show that the length of the w-NAF of n is at most one digit longer than
the {0, 1}-radix 2 representation of |n|. This fact seems to have been first
stated, without proof, by Möller [28]. A more general result is proved in
Section 4; however, we feel it is of interest to provide a direct proof here.

We start with a Lemma.

Lemma 2.4. Let (a`−1 . . . a1a0)2 be a w-NAF of length ` where ` ≥ 1. If n =

(a`−1 . . . a1a0)2 then n > 0 if and only if a`−1 > 0.

Proof. Note that since the length of (a`−1 . . . a1a0)2 is ` we have a`−1 6= 0.
We argue by induction on `. The result is clearly true when ` = 1. Suppose
` > 1.

If a0 = 0 we let n′ = (a`−1 . . . a1)2. Then we see that

n > 0 ⇐⇒ 2n′ > 0 ⇐⇒ n′ > 0 ⇐⇒ a`−1 > 0,

where the last equivalence follows by induction.
If a0 6= 0, then

a`−1 . . . aw . . . a1a0 = a`−1 . . . aw0 . . . 0a0,

since (a`−1 . . . a1a0)2 is a w-NAF. Thus,

n = 2w(a`−1 . . . aw)2 + a0 where − 2w−1
< a0 ≤ 2w−1.
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Since a`−1 6= 0, we have (a`−1 . . . aw)2 6= 0, thus

n > 0 ⇐⇒ (a`−1 . . . aw)2 > 0 ⇐⇒ a`−1 > 0,

where the last equivalence follows by induction. This proves the result.

Proposition 2.5. For any integers n, w, where w ≥ 2, the length of the w-NAF
of n is at most one digit longer than the binary representation of |n|.

Proof. Let ` be the length of the w-NAF of |n| and let m be the length of the
binary representation of |n|. If n = 0, then ` = m = 0, and so the result is
true. Suppose n 6= 0. Let (a`−1 . . . a1a0)2 be the w-NAF of |n|. Since |n| is
positive, by Lemma 2.4 we have that a`−1 ≥ 1. Let a = −(2w−1 − 1). Note
that,

(a`−1a`−2 . . . a1a0)2 = |n|
=⇒ (1a`−2 . . . a1a0)2 ≤ |n|
=⇒ (1 00 . . . 0a︸ ︷︷ ︸

w

00 . . . 0a︸ ︷︷ ︸
w

. . .)2 ≤ |n|

=⇒ (11 . . . 1︸ ︷︷ ︸
w

aa . . . a︸ ︷︷ ︸
w

aa . . . a︸ ︷︷ ︸
w

. . .)2 ≤ (2w−1 + · · ·+ 22 + 21 + 1) |n| .

Consider the representation on the left-hand side of this last inequality.
Reading from left to right, its digits consist of a run of ones, followed by
a run of a’s, ended by a (possibly empty) run of zeros. If we replace this
run of zeros with a run of a’s, then we have

(11 . . . 1︸ ︷︷ ︸
w

aa . . . a︸ ︷︷ ︸
`−1

)2 ≤ (2w−1 + · · ·+ 22 + 21 + 1) |n|

=⇒ 2`−1(2w − 1) + a(2`−1 − 1) ≤ (2w − 1) |n|
=⇒ 2`−1(2w − 1)− (2w−1 − 1)(2`−1 − 1) ≤ (2w − 1) |n|

=⇒ 2`−1 − 2w−1 − 1
2w − 1

(2`−1 − 1) ≤ |n|

=⇒ 2`−1 − 1
2
(2`−1 − 1) < |n|

=⇒ 2`−2 +
1
2

< |n|

=⇒ 2`−2
< |n| .
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Now, from the binary representation of |n|, we have |n| < 2m, thus

2`−2
< 2m

=⇒ `− 2 < m

=⇒ `−m ≤ 1.

This gives us the required result.

2.3 Minimality

The main topic of this section is to prove that the w-NAF has a minimal
number of nonzero digits; that is, we want to show that no other repre-
sentation of an integer, with digits in Dw, has fewer nonzero digits than
its w-NAF. We begin with a discussion of addition of representations. We
will see that the properties of addition provide a key step in our proof of
minimality.

For any α ∈ Dw
∗ and c0 ∈ Z with |c0| < 2w−1, we show that there exists

some β ∈ Dw
∗ such that (β)2 = (α)2 + c0 and

wt(β) ≤ wt(α) + 1. (2.4)

We do so by developing a certain algorithm for addition.

Given α and c0, we want to compute a representation β ∈ Dw
∗ with

(β)2 = (α)2 + c0. Let α = . . . a2a1a0 and β = . . . b2b1b0. To compute the sum
we define a sequence of integers c1, c2, . . . . Writing our variables in the
following array suggests how these values are related:

. . .
c3a3

c2a2
c1a1a0

+ c0

. . . b3b2b1b0

Starting with i = 0, we examine ai and ci and then assign values to bi and
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ci+1. The following rules are used to define bi:

ai mod 2 ci mod 2 bi

0 0 ai

0 1 ci

1 0 ai

1 1 0

Further, ci+1 is always set to the value (ai + ci − bi)/2.

We claim the representation β is in Dw
∗. To justify this claim, we first

show that each ci+1 satisfies |ci+1| < 2w−1. Note that bi ∈ {0, ai, ci}. Since
ai ∈ Dw, we have |ai| < 2w−1, and by induction |ci| < 2w−1. Thus,

bi = 0 =⇒ ci+1 =
ai + ci

2
=⇒ |ci+1| < 2w−1

bi = ai =⇒ ci+1 =
ci
2

=⇒ |ci+1| < 2w−2

bi = ci =⇒ ci+1 =
ai
2

=⇒ |ci+1| < 2w−2.

Now, it is easy to see that β ∈ Dw
∗. If bi equals 0 or ai, then clearly bi ∈ Dw.

If bi = ci, then, according to our rules, it must be that ci is odd. Since ci is
odd and |ci| < 2w−1, ci ∈ Dw. Hence, bi ∈ Dw for all i.

Based on the grade-school method of addition, it may seem natural for
the rules which define bi to be implemented inside an appropriate “for”
loop. However, for our purposes, it is more convenient if we take a different
approach. We first initialize the string β = . . . b2b1b0 to equal α = . . . a2a1a0

and then correct the digits of β as necessary. Here is a description of this
process in pseudocode:
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Algorithm 2.6: ADD-DIGIT(α, c0)

comment: α = . . . a2a1a0, ai ∈ Dw, |c0| < 2w−1

. . . b2b1b0 ← . . . a2a1a0

i ← 0
while ci 6= 0

do





(a, c) ← (ai, ci) mod 2
if (a, c) = (0, 1)

then bi ← ci

else if (a, c) = (1, 1)

then bi ← 0
ci+1 ← (ai + ci − bi)/2
i ← i + 1

return β = . . . b2b1b0

For the input α = . . . a2a1a0, let `− 1 be the largest value of i such that
ai 6= 0 (thus, the representation (α)2 has length `). By convention, we let
ai = 0 for all i ≥ `. The algorithm terminates if and only if the sequence
c0, c1, c2, . . . reaches zero. If none of c0, c1, . . . , c` are equal to zero then cer-
tainly one of c`+1, c`+2, . . . will be; this is because for i ≥ `, ci+1 is equal to
either 0 or ci/2. Thus, we see that ADD-DIGIT(α, c0) always terminates.

A short example helps illustrate how the algorithm works. Let w = 4,
then D4 = {0,±1,±3,±5,±7}. Suppose α = 13570001357 and c0 = 6. Then
the algorithm adds (13570001357)2 and 6 as follows:

13570
0
0

1
0

2
1

4
3

3
57

+ 6
13570011307

It is interesting to note that ADD-DIGIT computes a sum in Dw
∗ without

using the operator “mods 2w”.
The following Lemma verifies that the algorithm is correct.

Lemma 2.7. Let β be the string returned by ADD-DIGIT(α, c0) where α ∈ Dw
∗

and |c0| < 2w−1. Then, (β)2 = (α)2 + c0.
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Proof. Let i∗ be the value of i when ADD-DIGIT(α, c0) returns. We argue by
induction on i∗. If i∗ = 0 then

i∗ = 0 =⇒ c0 = 0 and β = α

=⇒ (β)2 = (α)2 + c0.

So, the result holds for i∗ = 0.
Suppose i∗ > 0. From the strings α = . . . a2a1a0 and β = . . . b2b1b0,

we define α′ = . . . a2a1 and β′ = . . . b2b1. Let c1, c2, . . . be the sequence of
carries which occurs during the computation of ADD-DIGIT(α, c0). From
the description of Algorithm 2.6, we see that ADD-DIGIT(α′, c1) must return
the string β′. Moreover, the value of i when ADD-DIGIT(α′, c1) returns must
be i∗ − 1. Now,

(β′)2 = (α′)2 + c1 (by induction)

=⇒ (β′‖0)2 = (α′‖0)2 + 2c1

=⇒ (β′‖0)2 + b0 = (α′‖0)2 + 2c1 + b0

=⇒ (β)2 = (α′‖0)2 + a0 + c0 (since c1 = (a0 + c0 − b0)/2)

=⇒ (β)2 = (α)2 + c0.

Returning to (2.4), if we are given α ∈ Dw
∗ and c0, with |c0| < 2w−1,

we can use ADD-DIGIT(α, c0) to compute a string β ∈ Dw
∗ such that (β)2 =

(α)2 + c0. We will show that wt(β) ≤ wt(α) + 1.

Lemma 2.8. Let β be the string returned by ADD-DIGIT(α, c0) where α ∈ Dw
∗

and |c0| < 2w−1. Then, wt(β) ≤ wt(α) + 1.

Proof. Let i∗ be the value of i when ADD-DIGIT(α, c0) returns. Consider the
sequence t0, t1, . . . , ti∗ where

ti = wt(. . . ai+1ai) + wt(ci) + wt(bi−1 . . . b1b0) .

We argue that this sequence is monotonically decreasing. Once we establish
this fact, we show that the Lemma follows.
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First, note that from the description of Algorithm 2.6, we have

ci+1 =
ai + ci − bi

2
, for 0 ≤ i ≤ i∗ − 1.

Now, bi ∈ {0, ai, ci}, and after applying a simple case analysis to this equal-
ity we can conclude that

wt(ci+1) ≤ wt(ai) + wt(ci)− wt(bi) . (2.5)

For example, suppose bi = 0. Then we must show that wt(ci+1) ≤ wt(ai) +

wt(ci). Since i < i∗, we have ci 6= 0 and thus wt(ci) = 1. Now,

wt(ci+1) ≤ 1 = wt(ci) ≤ wt(ai) + wt(ci) .

The other cases are argued in a similar manner.
For 0 ≤ i ≤ i∗ − 1 we need to show that ti ≥ ti+1. If we compare

ti = wt(. . . ai+1ai) + wt(ci) + wt(bi−1 . . . b1b0)

to
ti+1 = wt(. . . ai+2ai+1) + wt(ci+1) + wt(bi . . . b1b0)

and eliminate equal digits, we see that

ti ≥ ti+1 ⇐⇒ wt(ai) + wt(ci) ≥ wt(ci+1) + wt(bi) .

However, this last inequality holds by (2.5). Thus, the sequence of ti’s is
monotonically decreasing.

Since t0 ≥ t1 ≥ · · · ≥ ti∗ we have t0 ≥ ti∗ . Note that

t0 = wt(. . . a1a0) + wt(c0) = wt(α) + wt(c0) .

Since bi = ai, for i ≥ i∗, and ci∗ = 0 we have

ti∗ = wt(. . . ai∗+1ai∗) + wt(ci∗) + wt(bi∗−1 . . . b1b0) = wt(β) .

Thus, from ti∗ ≤ t0, we can conclude that

wt(β) ≤ wt(α) + wt(c0) ≤ wt(α) + 1.
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Now we have all the tools we need to proceed with our main result.

Theorem 2.9. If (α)2 is a w-NAF then for any β ∈ Dw
∗ with (β)2 = (α)2, we

have wt(α) ≤ wt(β).

Proof. Suppose the result is false. Then for some w-NAF, (α)2, there exists
β ∈ Dw

∗ with (β)2 = (α)2 and wt(α) > wt(β). Choose (α)2 so that its
length is minimal. Any w-NAF with length less than that of (α)2 must have
a minimal number of nonzero digits.

Let α = . . . a2a1a0 and β = . . . b2b1b0. If a0 = b0 then (. . . a2a1)2 =

(. . . b2b1)2 and so (. . . a2a1)2 is a shorter counter-example. However, this
contradicts our choice of (α)2, so it must be that a0 6= b0. Consequently,
(α)2 must be odd, since otherwise a0 = b0 = 0. Hence, both a0 and b0 are
nonzero.

Since (α)2 is a w-NAF we have

α = . . . aw00 . . . 0a0.

Write

α = α1‖
w︷ ︸︸ ︷

00 . . . 0a0 and β = β1‖
w︷ ︸︸ ︷

bw−1 . . . b1b0

where α1, β1 ∈ Dw
∗. Note that since (α)2 is a w-NAF, so is (α1)2, and further,

wt(α) = wt(α1) + 1.
We show that at least two of the digits in the string bw−1 . . . b1b0 must be

nonzero. Suppose not; then all of the digits bw−1 . . . b1b0 are zero except for
b0, and so

(α)2 = (β)2

=⇒ (α1‖00 . . . 0a0)2 = (β1‖00 . . . 0b0)2

=⇒ a0 ≡ b0 (mod 2w)

=⇒ a0 = b0 (since a0, b0 ∈ Dw).

But this is a contradiction since a0 and b0 cannot be equal. So
wt(bw−1 . . . b1b0) ≥ 2, and hence wt(β) ≥ wt(β1) + 2.
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Now,

(α)2 = (β)2

=⇒ (α1‖00 . . . 0a0)2 = (β1‖bw−1 . . . b1b0)2

=⇒ (α1)2 · 2w + (00 . . . 0a0)2 = (β1)2 · 2w + (bw−1 . . . b1b0)2

=⇒ (α1)2 = (β1)2 +
(bw−1 . . . b1b0)2 − (00 . . . 0a0)2

2w .

Let c0 = ((bw−1 . . . b1b0)2 − (00 . . . 0a0)2) /2w. Note that c0 must be an inte-
ger. We can derive a bound on |c0|. Every digit in Dw has absolute value at
most 2w−1 − 1, thus

|(bw−1 . . . b1b0)2| ≤ (2w−1 − 1)(2w − 1), and

|(00 . . . 0a0)2| ≤ 2w−1 − 1.

Combining these two inequalities gives

|(bw−1 . . . b1b0)2 − (00 . . . 0a0)2| ≤ (2w−1 − 1)2w

and thus |c0| ≤ 2w−1 − 1, or equivalently, |c0| < 2w−1.

So, we have (α1)2 = (β1)2 + c0. Let β1
′ denote the string returned by

ADD-DIGIT(β1, c0). Then (β1
′)2 = (β1)2 + c0 and, by Lemma 2.8, wt

(
β1
′) ≤

wt(β1) + 1.

Now, we come to the end of the proof. We have

wt(α) > wt(β)

=⇒ wt(α1) + 1 > wt(β) (since wt(α) = wt(α1) + 1)

=⇒ wt(α1) + 1 > wt(β1) + 2 (since wt(β) ≥ wt(β1) + 2)

=⇒ wt(α1) > wt(β1) + 1

=⇒ wt(α1) > wt
(

β1
′) (since wt(β1) + 1 ≥ wt

(
β1
′)).

But, (α1)2 = (β1
′)2 and (α1)2 is a w-NAF. Thus (α1)2 is a shorter counter-

example, contrary to our choice of (α)2. This proves the result.
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2.4 Length of Minimal Weight Representations

We have already seen that the length of the w-NAF of an integer is at most
one digit longer than its binary representation. In this section, we see that
this property is actually a consequence of a more general result. We will
show that the length of any representation in Dw

∗ with a minimal number of
nonzero digits is at most one digit longer than its binary representation.

Theorem 2.10. Let α = a`−1 . . . a1a0 be a string in Dw
∗ such that a`−1 6= 0

and (α)2 = n. If wt(α) ≤ wt(β) for any β ∈ Dw
∗ with (β)2 = n then ` ≤

blg |n|c+ 2.

Proof. We argue by induction on `, the length of (α)2. Note that since a`−1

is nonzero the length of (α)2 cannot be zero (i.e., ` ≥ 1). Also, a`−1 6= 0 tells
us that n = (α)2 6= 0 and so lg |n| is defined.

If ` = 1 then

` = 1 ≤ blg |n|c+ 1 < blg |n|c+ 2,

and so the result is true.
Suppose now that ` > 1. Let α1 = a`−1 . . . a2a1, so that α = α1‖a0. Note

that
n− a0

2
= (α1)2.

Since (α)2 is a minimal Hamming weight representation of n, (α1)2 must
be a minimal Hamming weight representation of (n− a0)/2. The length of
(α1)2 is `− 1, so by induction we have

`− 1 ≤ blg |(n− a0)/2|c+ 2

=⇒ `− 1 ≤ blg |n− a0|c − 1 + 2

=⇒ ` ≤ blg |n− a0|c+ 2.

If blg |n− a0|c ≤ blg |n|c then from the previous step we can conclude

` ≤ blg |n|c+ 2
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which is the result we want. Thus, we can restrict to the case blg |n− a0|c >

blg |n|c. In this case, it is clear that a0 6= 0.

The string α contains at least two nonzero digits, namely a`−1 and a0.
This tells us that wt(α) ≥ 2. Because a0 is nonzero and n = (α)2, we have
also that n is odd. The integer n cannot be equal to any of the digits in
Dw. To see this, suppose n ∈ Dw. Then the string β = n is in Dw

∗ and
(β)2 = n. However, wt(β) = 1 which is less than wt(α) ≥ 2, contrary to our
hypothesis. Thus, |n| > 2w−1. A consequence of this is that n and n− a0 are
either both positive or both negative.

We will suppose n is positive (the case where n is negative is argued in
the same manner). Now,

blg nc < blg(n− a0)c =⇒ blg nc+ 1 ≤ blg(n− a0)c
=⇒ blg nc+ 1 ≤ lg(n− a0)

=⇒ 2blg nc+1 ≤ n− a0,

so we see that the closed interval [n, 2blg nc+1] sits inside the closed interval
[n, n − a0]. Let d = 2blg nc+1 − n. Since n is odd, d is odd. The intervals
[n, 2blg nc+1] and [n, n− a0] have lengths d and |a0|, respectively. By compar-
ing these lengths, we see that d ≤ |a0| < 2w−1. Thus, d ∈ Dw.

Consider the string β ∈ Dw
∗ where

β = 100 . . . 0d︸ ︷︷ ︸
blg nc+2

.

Then, (β)2 = 1 · 2blg nc+1 + d · 20 = n. So, n can be represented using only 2
nonzero digits. Thus, wt(α) ≤ 2. Now, both wt(α) ≥ 2 and wt(α) ≤ 2, and
so wt(α) = 2. Thus, the string α has the following form

α = a`−100 . . . 0a0.

Now, (α)2 = n and so a`−1 · 2`−1 + a0 = n. Since n is positive and
blg nc < blg(n− a0)c it must be that a0 is negative. However, if a0 is nega-
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tive, then a`−1 must be positive. Thus,

a`−1 · 2`−1 = n− a0

=⇒ 2`−1 ≤ n− a0

=⇒ `− 1 ≤ blg(n− a0)c
=⇒ ` ≤ blg(n− a0)c+ 1.

If blg(n− a0)c ≤ blg nc + 1, then this gives us ` ≤ blg nc + 2 which is the
desired result. To finish the proof, we show that blg(n− a0)c > blg nc + 1
would lead to a contradiction. Observe,

blg nc+ 1 < blg(n− a0)c
=⇒ lg n < blg(n− a0)c (since x < bxc+ 1)

=⇒ lg n + 1 ≤ lg(n− a0)

=⇒ 2n ≤ n− a0

=⇒ n ≤ −a0

=⇒ n ∈ Dw (since n is odd),

contradicting the fact that wt(α) = 2. This concludes our proof.

Note that Proposition 2.5, which we proved directly in Section 2.2, can
now be obtained as a consequence of Theorem 2.9 and Theorem 2.10.

2.5 Colexicographic Characterization

For an integer n, consider the set of all representations of n with digits in
Dw. We can compare representations in this set in a number of ways. For
example, we can order representations according to how many nonzero
digits they have. By Theorem 2.9, we know that the w-NAF is a minimal
representation under this order, but it is not necessarily unique in this re-
spect. For example, when w = 3, the 3-NAF of 5 is (1003)2 which has two
nonzero digits, and so too do the representations (101)2, (13)2 and (31)2.
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However, there is another comparison we can make between representa-
tions which does, in fact, uniquely identify the w-NAF. This comparison is
based on the position of nonzero digits and we introduce it now.

Each representation of n identifies a unique finite length string in Dw
∗

with no leading zero digits. If (α)2 = n and α ∈ Dw
∗, then we can assume,

without loss of generality, that α has no leading zero digits. From the string
α, we derive a binary string, char(α). The string char(α) is defined as fol-
lows: if α = . . . a2a1a0 then char(α) = . . . a2

′a1
′a0
′ where

ai
′ :=





0 if ai = 0

1 otherwise.
(2.6)

For example, if α = 30030 then char(α) = 10010. For α, β ∈ Dw
∗ we write

α ¹ β if char(α) is less than or equal to char(β) when they are compared
colexicographically.

The difference between colexicographic order and the more familiar lex-
icographic order involves the direction in which the characters of a string
are read. In lexicographic order, we compare two strings by reading their
characters left-to-right. In colexicographic order, we compare two strings
by reading their characters right-to-left. For example, here are five strings
sorted lexicographically and colexicographically:

alfred alfred

doug guang

edlyn doug

guang edlyn

jerry jerry

The relation “¹” can be used to order the set of representations of n
with digits in Dw. For example, suppose w = 3 and n = 42. Below, we list
a number of strings in D3

∗ which correspond to representations of 42. For
each of these strings, we give its associated binary string. This list is sorted
under the relation “¹”.
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3 0 0 -3 0 1 0 0 1 0

1 1 0 0 -3 0 1 1 0 0 1 0

3 -3 0 0 -3 0 1 1 0 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0

1 3 0 1 0 1 1 0 1 0

3 -1 0 1 0 1 1 0 1 0

1 0 0 3 -1 0 1 0 0 1 1 0

3 0 -3 3 0 1 0 1 1 0

3 0 -1 -1 0 1 0 1 1 0

3 3 3 0 1 1 1 0

Notice that the 3-NAF of 42 is the unique smallest representation of the
ones considered. Even if we considered all the representations of 42 with
digits in D3, the 3-NAF of 42 would still be the unique smallest representa-
tion. This result is true in general and is proven in Theorem 2.11.

Theorem 2.11. Let n be an integer. Of all the representations of n with digits in
Dw, the w-NAF of n is the unique smallest representation under the order ¹.

Proof. When n = 0, the only representation of n with digits in Dw is the all-
zero representation. The all-zero representation is the w-NAF of 0, so the
result is true for n = 0. Suppose the result is false for some n 6= 0. Choose
n so that the length of the w-NAF of n is minimal. Let (α)2 be the w-NAF
of n. There is some string β ∈ Dw

∗, β 6= α, such that n = (β)2 and β ¹ α.
Recall the definition of α′ and β′ from (2.6). If n is even then a0

′ = b0
′ = 0

and so the result is also false for n/2, contrary to our choice of n. Thus, n is
odd and so a0

′ = b0
′ = 1. Since α is a w-NAF, aw−1

′ = aw−2
′ = · · · = a1

′ = 0,
and since β ¹ α, we have bw−1

′ = bw−2
′ = · · · = b1

′ = 0. Thus

β = . . . bw00 . . . 0b0

α = . . . aw00 . . . 0a0.

Since (α)2 = (β)2, we have a0 ≡ b0 (mod 2w). However, a0, b0 ∈ Dw, so it
must be that a0 = b0. But this contradicts our choice of n since we see the
result is also false for (n− a0)/2w. Hence, we have the desired result.
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2.6 Comments and Further Work

A detailed discussion of the costs and benefits of using the w-NAF win-
dow method for elliptic curve scalar multiplication, including several ex-
amples applied to the NIST recommended elliptic curves, is given in [14,
Ch. 3]. Much of this analysis is based on the fact that the average density of
nonzero digits among all w-NAFs of length ` is approximately 1/(w + 1)

(a proof of a similar result is given in [8]). Because of Theorem 2.9, we now
know that no other family of Dw-radix 2 representations can have density
lower than that of the w-NAF.

As with the result on the length of the w-NAF, the result presented in
Lemma 2.4 can be generalized to any minimal weight Dw-radix 2 represen-
tation.

The w-NAF window method for scalar multiplication is described in
[5] and [41] as a left-to-right method1. However, Algorithm 2.2 computes
the w-NAF of an integer from right to left. This means that the w-NAF
of n must first be computed and stored in its entirety before computations
to determine nP can begin. There are other representations which use the
same digits as the w-NAF but can be deduced from left to right [1, 33]. Like
the w-NAF, these new representations have a minimal number of nonzero
digits. These representations result in a left-to-right window method which
uses less memory.

The results of this chapter further strengthen the analogy between the
ordinary NAF and the w-NAF. Another property of the ordinary NAF was
recently shown to carry over to the w-NAF. In [23], a simple algorithm is
described (due to Chang and Tsao-Wu [7]) which constructs the NAF of n
by subtracting the binary representation of n from the binary representation
of 3n. A similar construction has been discovered for the w-NAF [16, 36].
Lemma 2.4 and Proposition 2.5 appear to be very natural consequences of

1The w-NAF can also be employed in a right-to-left method for scalar multiplication.
More details on this can be found in [28]. However, the left-to-right method is usually
preferred over the right-to-left method since it saves a few operations.
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this construction.
Theorem 2.9 was proven independently by Avanzi [1]. Avanzi’s proof

considers radix 2 representations where the nonzero digits have absolute
value at most 2w−1 and can be either odd or even. Even when these addi-
tional digits are included, Avanzi’s argument shows that the w-NAF still
has minimal weight.



Chapter 3

Left to Right Construction

3.1 Window Methods

A family of algorithms, known as window methods, use the approach de-
scribed in Algorithm 3.1 to perform scalar multiplication.

Algorithm 3.1: RADIX-2-WINDOW-METHOD(n, P)

fix a set of digits, D ⊂ Z.
for each d ∈ D with d > 0

do Pd ← dP
compute & store a representation (a`−1 . . . a1a0)2 = n with ai ∈ D.
Q ← ∞

for i = `− 1 . . . 0

do





Q ← 2Q
if ai 6= 0

then





if ai > 0
then Q ← Q + Pai

else Q ← Q− P−ai

return Q

For example, suppose D = {0,±1,±3}. Then Algorithm 3.1 first com-
putes and stores P and 3P. After a D-radix 2 representation of n is com-

37
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puted its digits are read from left to right by the “for” loop and nP is
computed using doubling, addition and subtraction operations. Including
negative digits in D takes advantage of the fact that subtracting an elliptic
curve point can be done just as efficiently as adding it. A D-radix 2 repre-
sentation of n can be computed by sliding a window of width 3 from right
to left across the {0, 1}-radix 2 representation of n (see Section 3.3).

Blake, Seroussi and Smart [5], Cohen, Miyaji and Ono [9] and Solinas
[41] independently suggested a specialization of Algorithm 3.1 called the
width-w nonadjacent form window method (this terminology is due to Solinas).

Let Dw be the set of w-NAF digits; that is,

Dw := {0} ∪ {d ∈ Z : d odd, |d| < 2w−1}.

If, in Algorithm 3.1, the digit set Dw is used and the representation
(a`−1 . . . a1a0)2 is always chosen to be a w-NAF, then this is the w-NAF win-
dow method.

One advantage of using the w-NAF of an integer is that it has a min-
imal number of nonzero digits (see Chapter 2). A nonzero integer has an
infinite number of Dw-radix 2 representations and any of these represen-
tations could be used in Algorithm 3.1. However, the choice of repre-
sentation affects the performance of the algorithm. In the “for” loop, an
addition/subtraction operation is performed for every nonzero digit of
(a`−1 . . . a1a0)2. It is thus desirable to use a Dw-radix 2 representation of n
with as few nonzero digits as possible. No other Dw-radix 2 representation
of an integer has fewer nonzero digits than its w-NAF. 1

The w-NAF of an integer is computed by sliding a window of width w
from right to left across the {0, 1}-radix 2 representation of n. This proce-
dure deduces the digits of the w-NAF from right to left; however, the “for”
loop of Algorithm 3.1 reads these digits from left to right. This means that
the w-NAF of n must be computed and stored in its entirety before compu-
tations inside the “for” loop can begin.

1Cohen [8] presents a detailed average case analysis of the w-NAF window method.
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This problem of opposing directions occurs in many window methods
and has been lamented by both Müller [34] and Solinas [41]. If the algo-
rithm which computes the Dw-radix 2 representation of n worked in the
same direction as the “for” loop, Algorithm 3.1 could be modified so that it
uses less memory. In that case, it would be unnecessary to store the repre-
sentation (a`−1 . . . a1a0)2 since its digits could be computed inside the “for”
loop as they are needed. This savings is most relevant for memory con-
strained devices like smartcards.

We propose a new family of Dw-radix 2 representations and prove that,
like the w-NAFs, these representations have a minimal number of nonzero
digits. The digits of these representations can be deduced from left to right
and thus can be used to reduce the memory requirements of Algorithm 3.1.

Joye and Yen [18] give a very simple left-to-right algorithm for com-
puting the digits of a {0,±1}-radix 2 representation of an integer. They
also prove that the representations constructed by this algorithm have a
minimal number of nonzero digits. Their results apply to the digit set D2,
whereas ours apply to arbitrary Dw with w ≥ 2.

The outline of the chapter is as follows. In Section 3.2, we introduce the
algorithm used to construct our representations and then, in Section 3.3,
describe how it can be efficiently implemented. In Section 3.4, we prove
minimality. We end with a discussion of related work and some remarks.

3.2 The Algorithm

We introduce an algorithm for computing the digits of a Dw-radix 2 repre-
sentation from left to right. Our discussion is mainly intended to illustrate
the idea behind the algorithm. Details about how the algorithm can be ef-
ficiently implemented are postponed until Section 3.3.

In order to motivate our algorithm, we begin by describing a simple
method of computing the {0, 1}-radix 2 representation of a positive integer.
This could be used if an integer were represented in some other way; for
example, if we wanted to convert from radix 10 to radix 2.
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Suppose we want to deduce the digits of the {0, 1}-radix 2 representa-
tion of 233 from left to right. This is easily done by subtracting powers of
2. The number n = 233 is small enough so that we can quickly determine
2blg nc; this is the power of 2 closest to, but not larger than, n. Once we de-
termine 2blg nc, we replace n with n− 2blg nc and then repeat these steps until
we reach 0. Doing so gives us

n 2blg nc

233 128 = 27

105 64 = 26

41 32 = 25

9 8 = 23

1 1 = 20 .

Thus, we see that 233 = 27 + 26 + 25 + 23 + 20 = (11101001)2.
We can modify this process so that it returns a {0, 1}-string. We begin

with a string, α, which is initially empty. In each step, we append to α a
(possibly empty) run of 0’s followed by a single 1. Doing so gives us

n 2blg nc α

233 128 = 27 α ‖ 1
105 64 = 26 α ‖ 1
41 32 = 25 α ‖ 1
9 8 = 23 α ‖ 01
1 1 = 20 α ‖ 001 .

Note that the symbol ‖ denotes concatenation. When n reaches 0, α is equal
to 11101001 and we see that (α)2 = 233.

For an arbitrary nonnegative integer, we can describe this process in
pseudocode. Let D = {0, 1} and define

C := {d · 2i : d ∈ D \ {0}, i ∈ Z, i ≥ 0}.

The set C consists of all the positive powers of 2. Here is a description of
the procedure:
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α ← ε

while n 6= 0

do





c ← an element in C closest to, but not larger than, n
append digits to α according to the value of c
n ← n− c

return α

Note that ε denotes the empty string. The set C is infinite, however this is
not a concern since we do not need to store C. To choose an element in C
closest to, but not larger than, n, we simply compute 2blg nc.

Consider now the digit set D2 = {0,±1}. We would like to somehow
deduce the digits of a D2-radix 2 representation of an integer from left to
right. We can do this by modifying our previous procedure slightly. We
first define

C2 := {d · 2i : d ∈ D2 \ {0}, i ∈ Z, i ≥ 0}.

Note that C2 consists of the positive and negative powers of 2. Now con-
sider the following procedure:

α ← ε

while n 6= 0

do





c ← an element in C2 closest to n
append digits to α according to the value of c
n ← n− c

return α

The only change above is that the condition “closest to, but not larger than,
n” is now simply “closest to n”. If we apply this procedure to n = 233 we
get

n c α

233 256 = 28 α ‖ 1
−23 −16 = −24 α ‖ 0001
−7 −8 = −23 α ‖ 1
1 1 = 20 α ‖ 001 .
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When n reaches 0, α is equal to 100011001 and we see that

(α)2 = (100011001)2 = 28 − 24 − 23 + 20 = 233.

This same example is worked by Joye and Yen [18] and our representation
is identical to theirs. Note also that, as in the previous case, the set C2 does
not need to be stored. To choose a closest element from C2, we compute
2blg|n|c and then compare |n| to 2blg|n|c and 2blg|n|c+1.

In the general case, we would like to construct Dw-radix 2 representa-
tions from left to right for arbitrary w ≥ 2. Here is a procedure which does
so:

Algorithm 3.2: MSFw(n)

comment: w ≥ 2, Dw = {0} ∪ {d ∈ Z : d odd, |d| < 2w−1}, and

Cw = {d · 2i : d ∈ Dw \ {0}, i ∈ Z, i ≥ 0}

α ← ε

while n 6= 0

do





c ← an element in Cw closest to n
append digits to α according to the value of c
n ← n− c

return α

As before, the set Cw does not need to be stored. We will see in Section 3.3
that this procedure can be implemented efficiently by sliding a window of
width w + 1 from left to right across the {0, 1}-radix 2 representation of n.
A description of how digits are appended to α will be provided shortly. We
call this procedure MSFw(n).

We have given this procedure the title “Algorithm”. To justify this we
must show that MSFw(n) terminates for all n ∈ Z. If n = 0, then MSFw(n)

clearly terminates, so we need only consider n 6= 0. To finish the argument
we need a Lemma.

Lemma 3.3. Let n be a nonzero integer. If c is an element in Cw closest to n, then

|n− c| ≤ 2blg|n|c

2w−1 .
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Proof. We will assume n > 0; the proof for n < 0 is similar. First, suppose
n < 2w−1. If n is odd then n ∈ Dw and hence n = n · 20 ∈ Cw. If n is even
then n = d · 2i for some i < w − 1 and d ∈ Dw and hence n = d · 2i ∈ Cw.
Thus, if n < 2w−1 and c is closest to n then c = n. So, n − c = 0 and the
inequality is valid.

Consider the closed interval [2w−2, 2w−1]. This interval contains exactly
2w−2 + 1 integers and, as we have just seen, each one is in Cw. More gener-
ally, for i ≥ w− 2, the interval [2i, 2i+1] contains exactly 2w−2 + 1 elements of
Cw. Moreover, these elements partition the interval into 2w−2 subintervals
of equal length.

Now, suppose n ≥ 2w−1. The integer n lies in the interval [2blg nc, 2blg nc+1]

which has length 2blg nc. Since blg nc ≥ w− 1, this interval contains exactly
2w−2 + 1 elements of Cw. These elements partition this interval into subin-
tervals of length 2blg nc/2w−2. The integer n lies in a subinterval and one
endpoint of this subinterval is c. Since both endpoints are in Cw, we have

|n− c| ≤ 1/2 · (2blg nc/2w−2) = 2blg nc/2w−1.

Since n is positive, we have that |n| = n, and this gives the desired result.

To show that MSFw(n) terminates for n 6= 0, it suffices to show that
|n| > |n− c|. Suppose to the contrary that |n| ≤ |n− c|. Then

|n| ≤ |n− c|
=⇒ |n| ≤ 2blg|n|c/2w−1 (by Lemma 3.3)

=⇒ 2blg|n|c ≤ 2blg|n|c/2w−1

=⇒ 1 ≤ 1/2w−1

=⇒ w ≤ 1.

However, this is a contradiction because w ≥ 2. So, the sequence formed by
taking the absolute value of the variable n during the execution of MSFw(n)

is strictly decreasing. Thus, the variable n must reach 0, and so MSFw(n)

terminates for all n ∈ Z.
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The string α returned by MSFw(n) has been defined somewhat infor-
mally. We present a more rigorous definition based on the values that the
variable c assumes during the execution of MSFw(n). For an input, n, we
define α = . . . a2a1a0 to be the string such that

ai :=





d if c assumes the value d · 2i at some point in the algorithm,

0 otherwise.
(3.1)

Clearly, each ai ∈ Dw, and so α is a Dw-string. There is, however, one
possible problem with this definition. Suppose c assumes the two distinct
values d0 · 2i and d1 · 2i which share the same power of 2. In that case,
the value of ai is undefined. Fortunately, this problem never occurs, as is
shown in the following Lemma.

Lemma 3.4. Let c0, c1 and n be nonzero integers such that c0 is an element in
Cw closest to n and c1 is an element in Cw closest to n − c0. If c0 = d02i0 and
c1 = d12i1 with d0, d1 ∈ Dw, then i0 > i1.

Proof. We begin by bounding |c0|. Since |n| lies in the interval
[2blg|n|c, 2blg|n|c+1] and both endpoints of this interval are in Cw we have

2blg|n|c ≤ |c0| ≤ 2blg|n|c+1

=⇒ 2blg|n|c ≤ |d0| 2i0 ≤ 2blg|n|c+1.

Thus,

|d0| = 1 =⇒ i0 = blg |n|c or blg |n|c+ 1, and

|d0| > 1 =⇒ i0 = blg |n|c − blg |d0|c .

Since d0 ∈ Dw, |d0| < 2w−1 and thus blg |d0|c ∈ {0, 1, . . . w− 2}. From these
implications we can conclude that

i0 ∈ {blg |n|c − w + 2, . . . , blg |n|c+ 1}.

In the same way, we can deduce that

i1 ∈ {blg |n− c0|c − w + 2, . . . , blg |n− c0|c+ 1}.
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Now, by Lemma 3.3, we have

|n− c0| ≤ 2blg|n|c−w+1

=⇒ 2blg|n−c0|c ≤ 2blg|n|c−w+1

=⇒ blg |n− c0|c ≤ blg |n|c − w + 1

=⇒ blg |n− c0|c+ 1 ≤ blg |n|c − w + 2.

Thus, the largest possible value of i1 is less than or equal to the smallest
possible value of i0. Hence i1 ≤ i0.

To see that i1 6= i0, first note that

|n| > |n− c0| > |(n− c0)− c1| ,

and so
|n− c0| > |n− (c0 + c1)| ,

thus the integer c0 + c1 is closer to n than c0 is. If i1 = i0, then

c0 + c1 = (d0 + d1)2i0 .

Since d0 and d1 are both odd, d0 + d1 = d · 2i for some d ∈ Dw \ {0} and
i ≥ 1. Thus, c0 + c1 ∈ Cw. However, this contradicts the fact that c0 is closest
to n. So it must be that i1 6= i0, and hence i1 < i0, as required.

By Lemma 3.4, the string α is well defined. Moreover, as we saw in
our earlier examples, Lemma 3.4 tells us that α can be constructed using
operations of the form

α ← α ‖ 0td where t ≥ 0, d ∈ Dw, d > 0.

Actually, we need to be a bit more precise here. If n is odd, then α can be
constructed using only operations like the one above; however, if n is even,
then α will need to have a run of zeros appended to it before it is returned.

From the definition given in (3.1) we can now show that the string re-
turned by MSFw(n) is in fact a Dw-radix 2 representation of n (i.e., the al-
gorithm is correct). Let S be the set of values that the variable c assumes
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during the execution of MSFw(n). For α = . . . a1a0 we have

(α)2 = ∑
i≥0

ai2i = ∑
i

ai 6=0

ai2i = ∑
c∈S

c = n.

The representation returned by MSFw(n) for a given value of n is not
necessarily unique. For example, when w = 3, D3 = {0,±1,±3} and for
n = 5 we see that both 4 = 22 and 6 = 3 · 21 are elements in C3 closest to 5.
Thus, MSF3(5) will return one of the representations

(101)2 or (31)2.

From the description of Algorithm 3.2, it is apparent that MSFw(n) will
have more than one possible output only when some value of the variable
n has more than one closest element in Cw. This occurs only when a value
of the variable n is the midpoint between neighbouring elements of Cw.

We argue that there are at most two distinct outputs of MSFw(n) for
any n ∈ Z. Imagine a list of outputs of MSFw(n). Let i0 be the largest value
of i such that two outputs differ at digit i. If i0 does not exist then all the
outputs are the same; otherwise, let α = . . . a2a1a0 and β = . . . b2b1b0 be two
outputs with ai0 6= bi0 . We have

n = (. . . ai0 . . . a1a0)2 = (. . . bi0 . . . b1b0)2.

Let

n′ = (ai0 . . . a1a0)2 = (bi0 . . . b1b0)2.

At least one of ai0 and bi0 is nonzero. We assume, without loss of generality,
that ai0 6= 0. Let c0 = ai02i0 . The value c0 is an element in Cw is closest
to n′. Since ai0 6= bi0 there must be another value, say c1, closest to n′,
and this value must be encoded as the most significant nonzero digit of
(bi0 . . . b1b0)2. Since both c0 and c1 are closest to n′, n′ must be the midpoint
between c0 and c1. Thus, |n′ − c0| is as large as possible, so by Lemma 3.3
we have

∣∣n′ − c0
∣∣ =

∣∣n′ − c1
∣∣ = 2blg|n

′ |c−w+1.
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Let t = blg |n′|c − w + 1. Since n′ − c0 = ±2t, n′ − c0 ∈ Cw and n′ − c0 is
the unique element in Cw closest to n′ − c0. Similarly, n′ − c1 is the unique
element in Cw closest to n′ − c1. Thus, the least significant nonzero digits
of α and β correspond to the values n′ − c0 and n′ − c1; that is, the least
significant nonzero digits of α and β are at and bt where one of at, bt is 1
and the other −1, so

n′ = c0 + 2t = c1 − 2t or n′ = c0 − 2t = c1 + 2t.

Note that the example above demonstrates this property. Thus, there are
just two kinds of outputs: ones that encode c0 and ones that encode c1.

From the preceding discussion, we can derive the following Lemma:

Lemma 3.5. Let α and β be two outputs of MSFw(n). Then α and β have the
same number of nonzero digits.

Proof. If α = β then there is nothing to prove, so we can assume α 6= β. Let

α = . . . ai0 . . . a1a0 and β = . . . bi0 . . . b1b0,

where i0 is the largest value of i such that ai 6= bi. From our discus-
sion above, the strings ai0 . . . a1a0 and bi0 . . . b1b0 each contain exactly two
nonzero digits. Thus α and β have the same number of nonzero digits.

It is possible to implement Algorithm 3.2 in such a way that it returns
a unique representation for every n ∈ Z. For example, if c0 and c1 are
both closest to n then we might resolve this ambiguity by choosing the
larger one. Because of Lemma 3.5, we know that, however Algorithm 3.2 is
implemented, all outputs will have the same number of nonzero digits (for
a given input). In fact, any representation of n constructed by Algorithm
3.2 will have a minimal number of nonzero digits, and we will prove this in
Section 3.4. In the next section, we describe how to implement Algorithm
3.2 efficiently.
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3.3 Implementations

We first review a known right-to-left sliding window method for construct-
ing Dw-radix 2 representations. Then we describe how Algorithm 3.2 can
be implemented using a left-to-right sliding window method. We also give
a new implementation of Algorithm 3.1 which incorporates our left-to-right
representations.

3.3.1 Right-to-Left

Suppose that we want to deduce a radix 2 representation of the integer 379
using the digits D3 = {0,±1,±3}. If we know the {0, 1}-radix 2 represen-
tation of 379 then this is easily done. Consider the following table

β c β′ c′

001 0 001 0
011 0 003 0
101 0 003 1
111 0 001 1
000 1 001 0
010 1 003 0
100 1 003 1
110 1 001 1

This table describes a map, (β, c) 7→ (β′, c′), between ordered pairs. The
ordered pairs consist of a 3-digit string and a carry, c. Notice that for each
row of the table, the string β′ corresponds to ((β)2 + c) mods 23. After
initializing the carry to 0, we can apply these transformations by sliding a
3-digit window from right to left across the {0, 1}-radix 2 representation:

379 = (010111101
0
1)2 003

(010111
0
1011)2 001003

(010
1
1111011)2 0001003

(01
1
01111011)2 0030001003
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Each time the contents of the window and the value of the carry match
an entry in the left hand column of the table we output the corresponding
3-digit string, update the carry and then advance the window 3 digits to
the left. Otherwise, we output a single 0, leave the carry unchanged and
advance the window 1 digit to the left.

This process constructs an integer’s 3-NAF, and it does so using only
a look-up table. If we allow simple bit operations, like xor, the number of
rows in the table can be halved.

3.3.2 Left-to-Right

When w = 3 we have C3 = {d · 2i : d ∈ D3 \ {0}, i ∈ Z, i ≥ 0}. The first few
positive elements of C3 are

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512 . . .

Notice that for i ≥ 2, the intervals [2i−1, 2i] (the end points of which are
underlined above) each contain exactly 3 elements of C3. Consider the inte-
ger 379. From the list of values above, we see that 384 is the element in C3

closest to 379, however this can also be determined from the {0, 1}-radix 2
representation of 379.

We first determine two neighbouring elements of C3, call them c′ and
c′′, such that 379 ∈ [c′, c′′]. The value c′ is the unique element in C3 closest
to, but not larger than, 379. If 379 = (0b`−1b`−2 . . . b1b0)2 with bi ∈ {0, 1}
and b`−1 = 1, we can determine the value of c′ by simply reading the 3
digit prefix of this representation (i.e., 0b`−1b`−2). If the prefix is 010, then
c′ = (010)2 · 2`−2 = 2`−1. If the prefix is 011, then c′ = (011)2 · 2`−2 = 3 · 2`−2.
Since 379 = (0101111011)2, we see that c′ = (010)2 · 27 = 256.

The most significant nonzero digit of the representation
379 = (0101111011)2 tells us that 28 ≤ 379 < 29. Since 28 and 29 are both
in C3, it must be that[c′, c′′] ⊆ [28, 29]. The interval [28, 29] has length 28 and
contains exactly three elements of C3, thus the interval [c′, c′′] must have
length 28/2 = 27. So, we see that c′′ = c′ + 27 = 256 + 128 = 384.
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We have deduced that 379 ∈ [256, 384] where 256 and 384 are neigh-
bouring elements of C3. Now, the question is, which of 256, 384 is closer to
379. This is determined by the digit immediately to the right of the 3 digit
prefix we considered above. If this digit is 0, 256 is closest, otherwise 384
is closest. Since 379 = (0101111011)2 we see that 384 is the element in C3

closest to 379.
To continue building a representation of 379 using Algorithm 3.2, we

must now determine an element closest to 379− 384 = −5. Again, we can
use the {0, 1}-radix 2 representation of 379 to make this determination.

Suppose we have −5 = (1b`−1b`−2 . . . b1b0)2 with bi ∈ {0, 1} and b`−1 =

0. Then, as before, we can determine neighbouring elements of C3, c′ and
c′′, such that −5 ∈ [c′, c′′]. The value c′ is determined by simply reading
the 3 digit prefix of this representation (i.e., 1b`−1b`−2). If the prefix is 100,
then c′ = (100)2 · 2`−2 = −2`. If the prefix is 101, then c′ = (101)2 · 2`−2 =

−3 · 2`−2.
It is not difficult to construct such a representation of −5. Observe

379 = (0101111011)2

384 = (0110000000)2

=⇒ 379− 384 = (11111011)2.

Since the digits 11 can be replaced by 01, we have that −5 = (1011)2. Now
we see that c′ = (101)2 · 2 = −3 · 2 = −6.

The most significant nonzero digit of the representation −5 = (1011)2

stands for −23. Because the following digit is 0, we have that −23 ≤ −5 <

−22. Since −23 and −22 are both in C3, it must be that[c′, c′′] ⊆ [−23,−22].
The interval [−23,−22] has length 22 and contains exactly three elements
of C3, thus the interval [c′, c′′] must have length 22/2 = 2. So, we see that
c′′ = c′ + 2 = −6 + 2 = −4.

Now we must decide which of c′, c′′ is closest to −5. As before, we can
determine this by reading the the digit immediately to the right of the 3
digit prefix. If this digit is 0, c′ is closest. If this digit is 1, c′′ is closest. In
this case, both c′ = −6 and c′′ = −4 are closest to −5, however, this rule
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simply distinguishes one of them. Since −5 = (1011)2 we see that −4 is an
element in C3 closest to −5.

To finish building our representation of 379 we must now determine an
element closest to −5− (−4) = −1. Clearly, −1 is the element in C3 clos-
est to −1, however, we can also make this determination be applying our
previous arguments to the representation −1 = (1.000)2. We can always
examine a 3 digit prefix of a representation by taking zeros from the right
of the radix point when necessary.

The techniques we have described for determining closest elements in
C3 can be implemented as a 4-digit window slides left to right across a
{0, 1}-radix 2 representation. Consider the following table

β β′

0100 010
0101 003
0110 003
0111 100
1000 100
1001 003
1010 003
1011 010

This table describes a map, β 7→ β′, between strings. The relation between
these strings is based on choosing closest elements in C3.

The first four rows of the table are filled in by determining closest ele-
ments to integers represented as (01b`−2b`−3 . . .)2. The last four rows of the
table are filled in by determining closest elements to integers represented
as (10b`−2b`−3 . . .)2. It can be shown that if n = (b`b`−1b`−2b`−3 . . . b0)2 with
bi ∈ {0, 1} and b` 6= b`−1, then, for the element c closest to n that we choose,
we have n− c = (b`−3b`−4 . . . b0)2.
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Returning to our example, n = 379, we have

379 = (0101111011.000)2 003
(0101111011.000)2 0030
(0101111011.000)2 00300
(0101111011.000)2 003000
(0101111011.000)2 003000010
(0101111011.000)2 0030000101.000

As with the construction of the 3-NAF of 379, each time the contents of the
window match an entry in the left hand column of the table we output the
corresponding 3-digit string and then advance the window 3 digits to the
right. Otherwise, we output a single 0 and advance the window 1 digit to
the right.

If we work from the description of Algorithm 3.2 in Section 3.2, we
might construct a different representation of 379 than the one above. Since
379 − 3 · 27 = −5 and −5 has two closest elements in C3, Algorithm 3.2
might also return 379 = (30000031)2 (note that this example demonstrates
that, unlike the 3-NAFs, the representations constructed by Algorithm 3.2
can have adjacent nonzero digits). The implementation we have described
is deterministic, thus it must somehow distinguish one of two closest ele-
ments in Cw. It does so by always selecting a largest closest element.

For general w ≥ 2, Algorithm 3.2 can be implemented by sliding a win-
dow of width w + 1 from left to right across the {0, 1}-radix 2 representation
of n. This implementation is based on the following facts. If

n = (b`b`−1 . . . b1b0)2 with bi ∈ {0, 1} and b` 6= b`−1, (3.2)

then we can determine c ∈ Cw closest to n from the w + 1 digit string
b`b`−1 . . . b`−w. For this value c closest to n, we have

n− c = (b`−wb`−w−1 . . . b1b0)2. (3.3)

The resulting look-up table will contain 2w rows and describes a map from
w + 1 digit strings to w digit strings. Due to the symmetry in the table, if
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we allow simple bit operations, like xor, the second half of the table does
not need to be stored.

3.3.3 A New Window Method

In our example implementation for w = 3, our window slides either 3 digits
to the right (after the window matches an entry in the table) or one digit to
the right (otherwise). This is because the strings output in these cases have
length 3 (a string β′) or length 1 (a single 0). However, it is not necessary
for the strings β′ to all have the same length.

If we take our previous table and delete the trailing zeros from each
string β′ then we get

β β′

0100 01
0101 003
0110 003
0111 1
1000 1
1001 003
1010 003
1011 01

β j d
0100 2 1
0101 3 3
0110 3 3
0111 1 1
1000 1 1
1001 3 3
1010 3 3
1011 2 1

In the left table, the strings β′ are all of the form 0j−1d where d is a nonzero
digit in D3. The right table is just an encoding of the left table. The left
table can be used to construct D3-radix representations similar to the way
we described in the previous section. The only difference is the window
slides right 1, 2 or 3 digits at a time; the number being equal to the length
of the output string (either β′ or a single 0).

This implementation of Algorithm 3.2 can be incorporated easily with
Algorithm 3.1. From the right table, we can define a function T3 which
maps strings in {0, 1}4 to ordered pairs, (j, d), with the additional condi-
tion that if β ∈ {0, 1}4 does not appear in the table then T3(β) = (1, 0).
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Here is the resulting algorithm for scalar multiplication, which works for
an arbitrary value of w ≥ 2:

Algorithm 3.6: w-MSF-WINDOW-METHOD(n, P)

comment: w ≥ 2, Dw = {0} ∪ {d ∈ Z : d odd, |d| < 2w−1}
n = (0b`−1 . . . b1b0)2, where bi ∈ {0, 1}
βi = bibi−1 . . . bi−w

external Tw : βi 7→ (j, d)

for each d ∈ Dw with d > 0
do Pd ← dP

Q ← ∞, i ← `

while i ≥ 0

do





(j, d) ← Tw(βi)

Q ← 2jQ
if d 6= 0

then





if d > 0
then Q ← Q + Pd

else Q ← Q− P−d

i ← i− j
return Q

Constructing the function Tw : {0, 1}w+1 → {1, 2, . . . , w} × Dw for ar-
bitrary w ≥ 2 is straightforward, provided we already have the width-w
look-up table described in Section 3.3.2; we simply delete the trailing zeros
on the output strings and then encode the output strings as ordered pairs.

Building the width-w look-up table all at once is not difficult, however,
it is also possible to build the table on the fly. An algebraic expression for
the element c ∈ Cw closest to n can be obtained by subtracting the represen-
tation for n− c in (3.3) from that of n in (3.2). The resulting expression for c
is

c =
(
(b`b`−1 . . . b`−w+1)2 + b`−w

)
· 2`−w+1 (3.4)
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which is a function of the w + 1 digits b`b`−1 . . . b`−w.

3.4 Minimality

For an integer n, we define

wt∗(n) := min{wt(α) : α ∈ Dw
∗, (α)2 = n}.

So, wt∗(n) is the minimum number of nonzero digits required to represent
n using a Dw-radix 2 representation. If α ∈ Dw

∗ and (α)2 = n then it must
be that wt(α) ≥ wt∗(n); if wt(α) = wt∗(n) we say that α has minimal weight.

In this section, we will prove the following Theorem:

Theorem 3.7. Let w ≥ 2 be an integer. For any n ∈ Z, the representation
returned by MSFw(n) has a minimal number of nonzero digits.

It will be convenient to let MSFw(n) denote a string returned by the
algorithm on input n. To prove Theorem 3.7 we will show that for any
n ∈ Z, wt(MSFw(n)) = wt∗(n). In doing so, we will make use of a number
of short Lemmas concerning the functions wt∗(n) and wt(MSFw(n)).

Lemma 3.8. If n is even then wt∗(n) = wt∗(n/2).

Proof. Let (. . . a2a1a0)2 be a minimal weight representation of n. Since n
is even, a0 = 0 and so (. . . a2a1)2 = n/2. Thus, wt∗(n/2) ≤ wt∗(n). Let
(. . . b2b1b0)2 be a minimal weight representation of n/2. Then
(. . . b2b1b00)2 = n and so wt∗(n) ≤ wt∗(n/2).

Recall the definition of “n mods 2w” from Chapter 2, Section 2.2.2. If
we write n = q · 2w + r with r = n mods 2w then q · 2w is a multiple of 2w

closest to n. We will make use of this fact later on.
From Chapter 2, we know that the w-NAF of an integer has minimal

weight. If n is odd then the least significant digit of its w-NAF is equal to
n mods 2w. From this fact, we can deduce the following Lemma:

Lemma 3.9. If n is odd and r = n mods 2w, then wt∗(n) = 1 +wt∗((n− r)/2).
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Lemma 3.9 can proved in the same way as Lemma 3.8.
To show that wt(MSFw(n)) = wt∗(n), we will argue by induction on |n|.

For n odd, it is thus useful to establish that |(n− r)/2| < |n|.

Lemma 3.10. Let n be an odd integer and let r = n mods 2w. Then
|(n− r)/2| < |n|.

Proof. If |n| < 2w−1 then n mods 2w = n. Thus,
∣∣∣∣
n− r

2

∣∣∣∣ =

∣∣∣∣
n− n

2

∣∣∣∣ = 0 < |n| .

So we can assume that |n| ≥ 2w−1. Let q be the integer such that n =

q · 2w + r. Since n is nonzero, we have
∣∣∣∣
n− r

2

∣∣∣∣ < |n| ⇐⇒
∣∣∣∣
n− r

n

∣∣∣∣ < 2 ⇐⇒
∣∣∣ q
n

∣∣∣ 2w
< 2.

Suppose to the contrary that
∣∣ q

n
∣∣ 2w ≥ 2. The integers q and n have the same

sign, thus
∣∣∣ q
n

∣∣∣ 2w ≥ 2 =⇒ q
n

2w ≥ 2

=⇒ q
n

2w +
r
n
≥ 2 +

r
n

=⇒ 1 ≥ 2 +
r
n

. (3.5)

Because r = n mods 2w, we know that −2w−1 < r ≤ 2w−1. However, n is
odd, so r is odd and we have the slightly tighter bound −2w−1 < r < 2w−1.
Since |n| ≥ 2w−1 we have 1 ≥ 2w−1/ |n|, thus

−2w−1
< r < 2w−1 =⇒ −2w−1

|n| <
r
|n| <

2w−1

|n|
=⇒ − 1 <

r
|n| < 1

=⇒ − 1 <
r
n

< 1.

Since r/n > −1, if we continue from (3.5) we arrive at the contradiction
1 > 1. Thus,

∣∣ q
n
∣∣ 2w < 2 and this is equivalent to the desired result.
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We now give two Lemmas which involve the function wt(MSFw(n)).

Lemma 3.11. If n is an even integer then wt(MSFw(n)) = wt(MSFw(n/2)).

Proof. If n = 0 then the result is clearly true, so we can assume n 6= 0. Let
α = a`−1 . . . a2a1a0 be an output of MSFw(n) with a`−1 6= 0. Since n is even
and n = (α)2 it must be that a0 = 0. Thus, the strings α and α′ = a`−1 . . . a2a1

have the same weight. We show α′ is an output of MSFw(n/2), and then
the result follows from Lemma 3.5.

Let c = a`−12`−1; c is an element in Cw closest to n. Since a0 = 0 and
a`−1 6= 0 it must be that `− 1 ≥ 1, and so c is even. Thus, c/2 ∈ Cw. Now,

c is closest to n =⇒ c/2 is closest to n/2,

so there is an output of MSFw(n/2) where the most significant nonzero
digit encodes c/2 = a`−12`−2. By repeating this argument, we see that α′ =

a`−1 . . . a2a1 is indeed an output of MSFw(n/2). This proves the result.

Lemma 3.12. If c is an element of Cw closest to n, then wt(MSFw(n)) = 1 +

wt(MSFw(n− c)).

Lemma 3.12 follows from the description of Algorithm 3.2.
Now we have everything we need to prove our main result.

Proof of Theorem 3.7. We show that for any n ∈ Z,

wt(MSFw(n)) = wt∗(n) . (3.6)

When n = 0, MSFw(n) returns the empty string; thus

wt(MSFw(0)) = 0 = wt∗(0) . (3.7)

Also, if n is even then from Lemmas 3.8 and 3.11 we have

wt(MSFw(n)) = wt∗(n) ⇐⇒ wt(MSFw(n/2)) = wt∗(n/2) . (3.8)

Thus, if we can show that (3.6) holds for all n with |n| ≥ 1 and n odd, then
by (3.7) and (3.8), it holds for all n.
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Let n be an odd nonzero integer. We argue by induction on |n|. For our
base cases, we consider the values of n that satisfy 1 ≤ |n| < 22w−1. We deal
with this interval in two parts.

First, suppose 1 ≤ |n| < 2w−1. Then n ∈ Dw (because n is odd) and thus
wt(MSFw(n)) = 1. Any odd integer n has wt∗(n) ≥ 1, thus we see that

wt(MSFw(n)) = 1 = wt∗(n) .

Next, suppose 2w−1 ≤ |n| < 22w−1. Note that blg |n|c ≤ 2w− 2. Let c be
an element in Cw closest to n. Note that c must be even since |n| ≥ 2w−1. By
Lemma 3.3, we have

|n− c| ≤ 2blg|n|c−w+1. (3.9)

However,

blg |n|c ≤ 2w− 2 =⇒ blg |n|c − w + 1 ≤ w− 1,

and so
|n− c| ≤ 2w−1.

Since n is odd and c is even, n − c is odd and thus, n − c ∈ Dw. So Algo-
rithm 3.2 uses just two elements of Cw to represent n (namely, c and n− c);
thus wt(MSFw(n)) = 2. Any odd integer n with |n| > 2w−1 (i.e., n 6∈ Dw)
has wt∗(n) ≥ 2, and from this we see that

wt(MSFw(n)) = 2 = wt∗(n) .

With our base cases established, we now consider n odd with |n| ≥
22w−1. Note that blg |n|c ≥ 2w − 1. Let c be an element in Cw closest to n
and let r = n mods 2w. We claim that c is also closest to n− r. To see this,
first note that n lies in one of the intervals

[2blg|n|c, 2blg|n|c+1] or [−2blg|n|c,−2blg|n|c+1].

From the proof of Lemma 3.4, we know that all elements of Cw in these
intervals have the form d · 2i with d ∈ Dw and

i ∈ {blg |n|c − w + 2, . . . , blg |n|c , blg |n|c+ 1}.
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Thus,

i ≥ blg |n|c − w + 2 ≥ 2w− 1− w + 2 = w + 1,

and so 2w+1 divides c. There are two neighbouring elements of Cw, say c0

and c1, such that n ∈ [c0, c1]. Let m be the midpoint of [c0, c1]. We have

2w+1|c0 and 2w+1|c1 =⇒ 2w+1|(c0 + c1)

=⇒ 2w| c0 + c1

2
=⇒ 2w|m.

So c0, c1 and m are all multiples of 2w. One of c0 or c1 is equal to c. If c = c0,
then n ∈ [c, m]; whereas, if c = c1, then n ∈ [m, c]. In either case, it can
be shown that n− r is an element in the same closed interval (this follows
because n− r is the multiple of 2w closest to n). Thus, we see that c is closest
to n− r. Further, since both c and n− r are even, we have that

c/2 is closest to (n− r)/2. (3.10)

Now we are ready to finish the proof. Notice that, because 2w|c, we
have

n− c mods 2w = n mods 2w = r. (3.11)

By induction, we have that wt(MSFw(n′)) = wt∗(n′) for all n′ with |n′| <
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|n|. Using this and our Lemmas, we find that

wt(MSFw(n)) = 1 + wt(MSFw(n− c)) (by Lemma 3.12)

= 1 + wt∗(n− c) (by induction)

= 1 + 1 + wt∗
(

(n− c)− r
2

)
(by (3.11) and Lemma 3.9)

= 1 + 1 + wt

(
MSFw

(
(n− c)− r

2

))
(by induction)

= 1 + 1 + wt

(
MSFw

(
n− r

2
− c

2

))

= 1 + wt

(
MSFw

(
n− r

2

))
(by (3.10) and Lemma 3.12)

= 1 + wt∗
(

n− r
2

)
(by induction)

= wt∗(n) (by Lemma 3.9).

Each of the inductive steps above is justified by either Lemma 3.10 or the
fact that |n− c| < |n|. This concludes the proof.

3.5 A Characterization of Algorithm 3.2

Let n be a nonzero integer and let c1, c2, . . . , ct be a sequence of values in Cw

that Algorithm 3.2 selects on input n. By the definition of the algorithm, we
have that

c1 is closest to n
c2 is closest to n− c1

c3 is closest to n− (c1 + c2)
...

ct is closest to n− (c1 + c2 + · · ·+ ct−1).
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Let

n1 = c1

n2 = c1 + c2

...

nt = c1 + c2 + · · ·+ ct.

We can think of the values n1, n2, . . . , nt as successive approximations to the
integer n. Note that nt = n.

Claim 3.13. For 1 ≤ j ≤ t, wt∗
(
nj
)

= j.

Proof. Let (a`−1 . . . a1a0)2 be the representation of n which results when Al-
gorithm 3.2 selects the values c1, c2, . . . , ct. Note that

(a`−1 . . . a1a0)2 = c1 + c2 + · · ·+ ct.

Because (a`−1 . . . a1a0)2 has minimal weight, so too do each of the represen-
tations

(a`−1 . . . a2a1a0)2

(a`−1 . . . a2a10)2

(a`−1 . . . a200)2
...

(a`−10 . . . 000)2.

Note that each representation in this list has length `. For 1 ≤ j ≤ t, a
representation in this list has weight j if and only if it stands for the integer
nj. Thus, the claim follows from minimality.

The approximation nj has wt∗
(
nj
)

= j. It is natural to consider if, of
all the integers that have arithmetic weight j, there might be a better ap-
proximation to n than nj. The following result shows that this is never the
case.

Proposition 3.14. For 1 ≤ j ≤ t,
∣∣n− nj

∣∣ ≤
∣∣n− n̂j

∣∣

for any n̂j ∈ Z with wt∗
(
n̂j
)

= j.
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Proof. Note that wt∗(n) = t. We argue by induction on t. If t = 1 or t = 2
then it is easy to see that the result is true. Suppose the result fails for some
t > 2. We show that it also fails for t− 1. Let j be an integer in the interval
1 ≤ j ≤ t such that

∣∣n− nj
∣∣ >

∣∣n− n̂j
∣∣ for some n̂j ∈ Z with wt∗

(
n̂j
)

= j. By
the definition of Algorithm 3.2, we see that j 6= 1; and it also must be that
j 6= t (because |n− nt| = 0) Thus, 2 ≤ j ≤ t− 1.

The integer c1 is an element in Cw closest to n; we claim it is also closest
to n̂j. To see this, note that the elements of Cw partition the number line into
intervals. The length of each interval is a power of 2. Consider an interval
containing n. One endpoint of this interval must be c1. Since wt∗(n) 6= 1,
the length of this interval cannot be 1, so its length is 2i for some i ≥ 1. Let
m be the midpoint of this interval (note that m is an integer). The distance
between m and c1 is a power of 2, thus m− c1 ∈ Cw, and so wt∗(m) = 2.

Now, n is contained in the half-interval with endpoints c1 and m. Be-
cause wt∗(n) 6= 1, we see that n 6= c1; and because wt∗(n) 6= 2, we see that
n 6= m. Thus, if

|n− c1| >
∣∣n− n̂j

∣∣ , and (3.12)

|n−m| >
∣∣n− n̂j

∣∣ (3.13)

then n̂j is in the same half-interval as n, and so c1 is closest to n̂j. We show
these two inequalities are valid.

We have

|n− n1| > |n− n2| > |n− n3| > · · · > |n− nt| = 0.

Since
∣∣n− nj

∣∣ >
∣∣n− n̂j

∣∣, with j ≥ 2, we see that

|n− n1| >
∣∣n− n̂j

∣∣ , and

|n− n2| >
∣∣n− n̂j

∣∣

By noting that n1 = c1, we get (3.12). To get (3.13), first recall that m− c1 ∈
Cw. By definition of Algorithm 3.2, we see that

|(n− c1)− c2| ≤ |(n− c1)− (m− c1)|
=⇒ |n− (c1 + c2)| ≤ |n−m| .
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By noting that n2 = c1 + c2, we get (3.13). So, c1 is indeed closest to n̂j.
Now,

∣∣n− nj
∣∣ >

∣∣n− n̂j
∣∣

=⇒
∣∣(n− c1)− (nj − c1)

∣∣ >
∣∣(n− c1)− (n̂j − c1)

∣∣ , (3.14)

and, because c1 is closest to n̂j, we see that

wt∗
(
n̂j − c1

)
= wt∗

(
n̂j
)
− 1 = j− 1.

On input n − c1, Algorithm 3.2 can create a representation of n− c1 by se-
lecting the values c2, c3, . . . , ct. Note that wt∗(n− c1) = t− 1. These values
result in t − 1 approximations to n − c1. Approximation j − 1 is equal to
c2 + c3 + · · · + cj = nj − c1, however, by (3.14), we see that this approxi-
mation is not optimal. Thus, the result fails for t − 1. This concludes the
induction proof.

We have shown that any output of Algorithm 3.2 satisfies Proposition
3.14. The converse of this statement is also true.

Let (a`−1 . . . a1a0)2 be a representation of a nonzero integer n which con-
tains exactly t nonzero digits. Decompose this representation into a sum of
t representations, each of which contains exactly one of the nonzero dig-
its. Order the representations in this sum by length, longest to shortest.
Reading the representations as integers, let c1, c2, . . . , ct be the terms of this
ordered sum. For example, for the representation (31001)2, we write

(31001)2 = (30000)2 + (01000)2 + (00001)2

= 3 · 24 + 1 · 23 − 1 · 20,

and so c1 = 48, c2 = 8, c3 = −1. As before, we let

n1 = c1

n2 = c1 + c2

...

nt = c1 + c2 + · · ·+ ct.
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Note that nt = n. We have the following result:

Proposition 3.15. If, for 1 ≤ j ≤ t,

∣∣n− nj
∣∣ ≤

∣∣n− n̂j
∣∣

for any n̂j ∈ Z with wt∗
(
n̂j
)

= j, then (a`−1 . . . a1a0)2 is an output of Algo-
rithm 3.2 on input n.

Proof. We must show that, for 1 ≤ j ≤ t,

cj is closest to n− (c1 + c2 + · · ·+ cj−1),

which is equivalent to showing that, for any c ∈ Cw,

∣∣(n− c1 − c2 − · · · − cj−1)− cj
∣∣ ≤

∣∣(n− c1 − c2 − · · · − cj−1)− c
∣∣ . (3.15)

If we take j = 1 in our hypothesis, we have

|n− n1| ≤ |n− n̂1|

for any n̂1 ∈ Z with wt∗(n̂1) = 1; that is, for any n̂1 = c where c ∈ Cw. Since
n1 = c1, we see that (3.15) holds for j = 1.

Now, take any j with 2 ≤ j ≤ t. For any c ∈ Cw, let n̂j = c1 + c2 + · · ·+
cj−1 + c. Note that wt∗

(
n̂j
)
≤ j. If wt∗

(
n̂j
)

= j, then by hypothesis

∣∣n− nj
∣∣ ≤

∣∣n− n̂j
∣∣

=⇒
∣∣n− (c1 + c2 + · · ·+ cj)

∣∣ ≤
∣∣n− (c1 + c2 + · · ·+ cj−1 + c)

∣∣ ,

and this gives (3.15). Suppose wt∗
(
n̂j
)

= j0 where j0 < j. By hypothesis, we
have

∣∣n− nj0
∣∣ ≤

∣∣n− n̂j
∣∣ .

If we can show that
∣∣n− nj

∣∣ ≤
∣∣n− nj0

∣∣, then (3.15) follows as in the pre-
vious case. To deduce that

∣∣n− nj
∣∣ ≤

∣∣n− nj0
∣∣, we apply the following

claim.
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Claim 3.16. Let n be a nonzero integer with wt∗(n) = t and let j be an integer
with 1 ≤ j ≤ t. If, of all integers with arithmetic weight equal to j, n′ is closest to
n, then n′ is also closest to n of all integers with arithmetic weight at most j.

The claim can be proved using the same method of induction employed
in the proof of Proposition 3.14. Before we can apply the claim, we first
show that wt∗(n) = t. Since (a`−1 . . . a1a0)2 = n and this representation has
t nonzero digits, we have wt∗(n) ≤ t. If wt∗(n) < t, then, for j = wt∗(n), we
can take n̂j = n, and then

0 <
∣∣n− nj

∣∣ ≤ |n− n| = 0

which is a contradiction. So, wt∗(n) = t. Because we now know that
(a`−1 . . . a1a0)2 is a minimal weight representation, we see that wt∗

(
nj
)

= j
for 1 ≤ j ≤ t.

By hypothesis, we have that nj is the integer with arithmetic weight j
closest to n. Now, since j0 < j, we have wt∗

(
nj0
)

< j. Thus, if we apply
Claim 3.16, we have that

∣∣n− nj
∣∣ ≤

∣∣n− nj0
∣∣, and the result follows.

3.6 Related Work

Avanzi [1] independently obtained similar results which were presented at
SAC 2004. In particular, Avanzi describes a deterministic algorithm which
constructs Dw-radix 2 representations by scanning the binary representa-
tion of an integer from left to right. He also proves that these represen-
tation have minimal weight. As the input is scanned, Avanzi’s algorithm
works by applying arithmetic operations to windows of w + 1 digits; his al-
gorithm does not require a stored table. By comparing the expression for c
in equation (3.4) to Avanzi’s algorithm, it can be shown that Avanzi’s algo-
rithm is a deterministic implementation of Algorithm 3.2; that is, Avanzi’s
algorithm works by choosing closest elements from the set Cw.

At CRYPTO 2004, Okeya, Schmidt-Samoa, Spahn and Takagi [36] pre-
sented a very simple technique that allows Dw-radix 2 representations to be
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constructed from either right to left or left to right. They consider a canoni-
cal {0,±1}-radix 2 representation of an integer, n, constructed by the digit-
wise subtraction of the binary representation of n from that of 2n. Once
this representation is constructed, Dw-radix 2 representations can be ob-
tained by sliding windows of width-w across it. Sliding the window right
to left gives the w-NAF, and sliding the window left to right gives the same
representation constructed by Avanzi’s algorithm. Okeya et al. show that
the average density of nonzero digits in their left-to-right representations
is asymptotically 1/(w + 1), however they do not prove minimality.

The same canonical {0,±1}-radix 2 representation defined by Okeya et
al. can be found in work by Grabner, Heuberger, Prodinger and Thuswald-
ner [13]. Grabner et al. use these representations to construct minimal
weight joint {0,±1}-radix 2 representations of pairs of integers from left
to right. Heuberger, Katti, Prodinger and Ruan [16] also use the canonical
representations. They generalize the results of Grabner et al. to joint repre-
sentations of d ≥ 2 integers. As well, Heuberger et al. show how Avanzi’s
left-to-right algorithm can be obtained from the canonical representation.

What is unique to our work is the idea of choosing closest elements in
the set Cw, our simple nondeterministic algorithm, our technique for prov-
ing minimality and our method of incorporating our left-to-right represen-
tations into the algorithm for scalar multiplication.

3.7 Remarks

In proving that our new representations have a minimal number of nonzero
digits, we essentially dealt with the following two statements concerning
odd integers:

wt∗(n) = 1 + wt∗((n− r)/2) where r = n mods 2w (3.16)

wt∗(n) = 1 + wt∗(n− c) where c ∈ Cw is closest to n. (3.17)

In our proof, we noted that (3.16) is true (by the minimality of the w-NAF)
and then showed that (3.16) implies (3.17). The same arguments can be
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used to show that (3.17) implies (3.16). Thus, (3.16) and (3.17) are logically
equivalent, which is perhaps surprising.

The w-NAF has a very simple combinatorial description: they are the
representations which use the digits Dw and have the property that of every
w consecutive digits, at most one is nonzero. From this description, it is
very easy to look at a representation and quickly decide whether or not it
is a w-NAF. For our new representations, this does not appear to be quite
so easy.





Chapter 4

Joint Representations

4.1 Introduction

Let r ≥ 1 be an integer and let D ⊂ Z be a set of digits with 0 ∈ D. A
D-radix 2 joint representation is a finite sum of the form

∑
i≥0

Ai2i, Ai ∈ Dr×1.

This sum evaluates to a vector N ∈ Z
r×1. We use the following notation to

denote such sums:

(. . . A2 A1 A0)2 = · · ·+ A222 + A121 + A0,

or, 


. . . a12a11a10

. . . a22a21a20
...

. . . ar2ar1ar0




2

= · · ·+




a12

a22
...

ar2




22 +




a11

a21
...

ar1




21 +




a10

a20
...

ar0




20,

where each aji ∈ D. The column vectors Ai are defined for each i ≥ 0. Since
the sum is finite, this means that all but a finite number of the Ai’s are zero
vectors.

69
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Example 4.1. Here is a {0, 1}-radix 2 joint representation:



0111
1011
1101
1110




2

=




0
1
1
1




23 +




1
0
1
1




22 +




1
1
0
1




21 +




1
1
1
0




20 =




7
11
13
14




. ♦

Let A = . . . A2 A1 A0 be a finite length string of column vectors from
Dr×1 (i.e., A ∈ (Dr×1)∗ ). Then (A)2 is an r-row joint representation. We
denote the number of nonzero columns in (A)2 by wt(A). This value is
often referred to as the joint weight, or simply, the weight, of (A)2. We define
the length of (A)2 as follows:

length(A) := min{` ∈ Z : ` ≥ 0, and for any i ≥ `, Ai is a zero column}.

Note that if ` = length(A) and ` > 0, then A`−1 is the leftmost nonzero
column of (A)2.

Example 4.2. In the previous example, the representation has weight 4 and
length 4. It is easy to see that this is the only joint representation of the
vector (7, 11, 13, 14)T which uses the digits {0, 1}. If we instead use the dig-
its {0, 1, 2, 3}, then (7, 11, 13, 14)T has a number of different representations,
one of which is 



103
203
301
302




2

=




7
11
13
14




.

This representation has length 3 and weight 2. ♦

In this chapter, we consider the problem of constructing minimal weight
r-row joint representations. Perhaps the most important observation we
make is that minimal weight representations and colexicographically small-
est representations share some of the same properties. Once we demon-
strate this commonality, then, for a given set of digits, it is natural to ask
whether a colexicographically smallest representation has minimal weight.
We show that, for certain families of digit sets, this is indeed true.
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Notice that joint representations generalize the radix 2 integer repre-
sentations that we considered in previous chapters. It is often instructive
to specialize a result on r-row joint representations to the case r = 1 and
compare this to what we have learned so far. When we do this, we see that
many of the canonical integer representations that have been proposed in
the literature can be interpreted as colexicographically smallest representa-
tions.

4.2 Solinas’ Problems

Solinas [42] introduced the study of joint representations in his treatment
of the following problem:

Problem 4.3. Given a vector N ∈ Z
2×1, construct a minimal weight joint repre-

sentation of N using the digits {0,±1}.

This problem arose when Solinas considered how to optimize Straus’
method [43] for computing a linear combination of two elliptic curve points.

Straus’ method computes n1P + n2Q using doubling, addition and sub-
traction operations as it processes a {0,±1}-joint representation of N =

(n1, n2)
T from left to right, one column at a time. Any {0,±1}-joint repre-

sentation of N can be used. However, since an addition/subtraction oper-
ation is required for each nonzero column in the representation of N, it is
advantageous to use a minimal weight representation.

Solinas solved Problem 4.3 by describing an algorithm which constructs
a canonical joint representation for pairs of integers called the joint sparse
form (JSF). Solinas developed the JSF as a generalization of the NAF. Recall
that the NAF has the following properties:

1. every integer has at most one NAF (uniqueness),

2. every integer has a NAF (existence),

3. the NAF can be efficiently computed (efficiency),



72 4.2 Solinas’ Problems

4. the NAF has minimal weight (minimality).

The JSF satisfies analogous properties:

1. every pair of integers has at most one JSF (uniqueness),

2. every pair of integers has a JSF (existence),

3. the JSF can be efficiently computed (efficiency),

4. the JSF has minimal weight (minimality).

By property 4, we see that the JSF is an optimal representation to use with
Straus’ method. Properties 2 and 3 answer some of the practical questions
we might encounter in employing the JSF; namely, that this representation
can always be efficiently constructed. Perhaps the least important property
of the JSF, with respect to its use with Straus’ method, is uniqueness.

Solinas also posed three additional problems for further research.

Problem 4.4. Give an r-row analogue of the JSF.

This problem was solved independently by Proos [38] and by Grabner,
Heuberger and Prodinger [12]. In fact, before Solinas had posed this prob-
lem, Proos had worked on the related problem of reducing the number
of nonzero columns in a “Lim-Lee” [35] combing table1 using the digits
{0,±1}. Grabner, Heuberger and Prodinger’s solution is particularly lucid
and their proof of minimality is quite elegant.

Solinas’ next problem involves a familiar topic. The JSF is constructed
by sliding a window from right to left across the {0, 1}-joint representation
of a vector N ∈ Z

2×1. However, Straus’ algorithm works left-to-right. This
suggests the following problem:

Problem 4.5. Find an analogue of the JSF that can be built using a left-to-right
method.

1Bernstein [4] points out that the term “Lim-Lee combining table” is controversial since
this method had previously been published by Pippenger [37]
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Katti [19] briefly describes a left-to-right algorithm for computing a {0,±1}-
joint representation of a vector N ∈ Z

2×1. No analysis is given and no
claims are made about minimality. A spurious example is given that
“shows” that the output of this left-to-right algorithm can have fewer non-
zero columns than the corresponding JSF (thereby contradicting the mini-
mality of the JSF). The problem with the example is that the representation
of N = (53, 102)T that is used is not a JSF; Katti appears to have copied a
typographic error from one of Solinas’ examples (page 6 of [42]). Grab-
ner, Heuberger, Prodinger and Thuswaldner [13] independently discov-
ered Katti’s algorithm and were able to prove minimality using an argu-
ment based on generating functions. Katti and Ruan [20] also offer a proof.
At a later date, Heuberger, Katti, Prodinger and Ruan [16] show how to
extend their algorithm to an arbitrary number of rows and they also prove
minimality.

Solinas’ final problem, which has received little attention, is the follow-
ing:

Problem 4.6. Give an analogue of the JSF which uses digits other than {0,±1}
(e.g., {0, 1, 3} or {0,±1,±3}).

Most of the results presented in this chapter are concerned with this prob-
lem. Solinas suggested the digits {0, 1, 3} because every nonnegative in-
teger has a unique {0, 1, 3}-nonadjacent form that has minimal weight. A
proof of this fact does not seem to appear in the literature; however, it is not
difficult to construct one by modifying the argument used in Chapter 2 to
prove the minimality of the w-NAF (alternatively, this fact can be deduced
from Theorem 4.15). We know also that every integer has a unique 3-NAF
which uses the digits {0,±1,±3}.

The minimality of the w-NAF was proven independently by Avanzi [1].
Avanzi makes the important observation that the restriction on the set of
w-NAF digits may be relaxed to include both even and odd digits. For ex-
ample, the 3-NAF of an integer has minimal weight amongst all radix 2 rep-
resentations which use the digits {0,±1,±3}. However, it is also true that
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the 3-NAF has minimal weight amongst all radix 2 representations which
use the digits {0,±1,±2,±3}. The same is true for the {0, 1, 3}-nonadjacent
form; it has minimal weight amongst all radix 2 representations which
use the digits {0, 1, 2, 3}. These facts suggest that it might be more natu-
ral to look for an analogue of the JSF which uses digits {0,±1,±2,±3} or
{0, 1, 2, 3}.

4.3 Colexicographic Order

Let r ≥ 1 be an integer and let D ⊂ Z be a finite set of digits with 0 ∈ D.
For any N ∈ Z

r×1, consider the set of all r-row joint representations of N
which use the digits D. We can impose an order on the representations in
this set using the approach from Chapter 2.

Each joint representation of N identifies a unique finite length column-
string in (Dr×1)∗ with no leading zero columns. If (A)2 = N and A ∈
(Dr×1)∗, then we can assume, without loss of generality, that A has no
leading zero columns. From the column-stringA, we derive a binary string
char(A). The string char(A) is defined as follows: if A = . . . A2 A1 A0 then
char(A) = . . . a2a1a0 where

ai :=





0 if Ai is a zero column

1 otherwise.

Now, for any two joint representations, (A)2, (B)2, of N, we write A ¹ B if
char(A) is less than or equal to char(B) when they are compared colexico-
graphically.

A colexicographically smallest representation of a vector N has a recur-
sive property, which is described in the following lemma:

Lemma 4.7. Let r ≥ 1 be an integer. If (. . . A3 A2 A1 A0)2 is a colexicograph-
icallly smallest representation of a vector N ∈ Z

r×1, then (. . . A3 A2 A1)2 is a
colexicographically smallest representation of (N − A0)/2.
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Proof. Let A = . . . A3 A2 A1 A0 and A′ = . . . A3 A2 A1. Let (B′)2 be a colex-
icographically smallest representation of (N − A0)/2. Suppose char(B′) is
strictly less than char(A′), colexicographically. Then

B′ ≺ A′

=⇒ B′‖A0 ≺ A′‖A0

=⇒ B′‖A0 ≺ A.

Since (B′‖A0)2 = N, we see that (A)2 is not a colexicographically smallest
representation of N.

The same recursive property is true of minimal weight joint representa-
tions.

Lemma 4.8. Let r ≥ 1 be an integer. If (. . . A3 A2 A1 A0)2 is a minimal weight
r-row joint representation of a vector N ∈ Z

r×1, then (. . . A3 A2 A1)2 is a minimal
weight representation of (N − A0)/2.

Proof. Let A = . . . A3 A2 A1 A0 and A′ = . . . A3 A2 A1. Suppose (B′)2 is a
representation of (N − A0)/2 that has fewer nonzero columns than (A′)2.
Then

wt
(
B′
)

< wt
(
A′
)

=⇒ wt
(
B′‖A0

)
< wt

(
A′‖A0

)

=⇒ wt
(
B′‖A0

)
< wt(A) .

Since (B′‖A0)2 = N, we see that A is not a minimal weight representation
of N.

Notice that these lemmas are true for any digit set D ⊂ Z. We will
describe other commonalities between colexicographically smallest repre-
sentations and minimal weight representations in the following sections.
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4.4 Unsigned Digits

For any integer w ≥ 2, we define the set of digits

Ew := {n mod 2w : n ∈ Z} = {0, 1, 2, . . . , 2w − 1}.

Notice that Ew is quite different from the set of w-NAF digits that we con-
sidered in Chapters 2 and 3. The set Ew contains only nonnegative dig-
its. As well, Ew contains both even and odd nonzero integers. Note that
|Dw| = 2w−1 + 1, while |Ew| = 2w.

If we consider joint representations which use the digits Ew then we can
observe additional similarities between colexicographically smallest repre-
sentations and minimal weight representations.

Lemma 4.9. Let r ≥ 1 be an integer. If (A)2 is a colexicographically smallest
representation of a vector N ∈ Z

r×1 which uses the digits Ew, then every nonzero
column of (A)2 must contain an odd digit.

Proof. Let A = . . . A2 A1 A0 and suppose A contains a nonzero column con-
sisting of only even digits. By Lemma 4.7, we can assume that A0 is such
a nonzero column. This implies that N is composed of only even integers.
Consider the {0, 1}-joint representation of N. The least significant column
of this representation must be a zero column. However, this representation
contradicts the fact that (A)2 is a colexicographically smallest representa-
tion of N because the least significant column of (A)2 is nonzero.

Lemma 4.10. Let r ≥ 1 be an integer. Any r× 1 vector N of nonnegative integers
has a minimal weight Ew-joint representation where each nonzero column contains
an odd digit.

Proof. Suppose (A)2 is a minimal weight representation of N that has a
nonzero column consisting of only even digits. Let A = . . . A2 A1 A0. By
Lemma 4.8, we can assume that A0 is such a nonzero column. We de-
scribe how to modify (A)2 so that A0 becomes a zero column while the
joint weight does not change. Once we establish this, the result follows
from Lemma 4.8.
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Let At be the first zero column that follows A0:

A = . . . At At−1 . . . A1 A0︸ ︷︷ ︸
nonzero

.

Row j of (A)2 is a Ew-radix 2 representation, (. . . a j2aj1aj0)2. Note that aj t =

0 and aj0 is even. We show that there is a representation (bj tbj t−1 . . . bj10)2

with
(bj tbj t−1 . . . bj10)2 = (0aj t−1 . . . aj1aj0)2.

If aj0 = 0, there is nothing to prove, so we can assume a j0 is nonzero. Ob-
serve that

(0aj t−1 . . . aj1aj0)2 = (0aj t−1 . . . aj10)2 + aj0

= 2
(
(0aj t−1 . . . aj1)2 + aj0/2

)
.

Consider the sum (0aj t−1 . . . aj1)2 + aj0/2. Let d = 2w − 1. Note that d is the
largest digit in Ew. Now,

0 < (0aj t−1 . . . aj1)2 + aj0/2 ≤ (0 d . . . d︸ ︷︷ ︸
t−1

)2 + aj0/2

< (0 d . . . d︸ ︷︷ ︸
t−1

)2 + d

= (d 0 . . . 0︸ ︷︷ ︸
t−1

)2.

From this bound, we can conclude that the integer (0a j t−1 . . . aj1)2 + aj0/2
has a Ew-radix 2 representation of length at most t. Let (bj tbj t−1 . . . bj1)2 be
such a representation. Then,

(bj tbj t−1 . . . bj1)2 = (0aj t−1 . . . aj1)2 + aj0/2

=⇒ (bj tbj t−1 . . . bj10)2 = (0aj t−1 . . . aj1aj0)2.

So, we see that we can replace the t + 1 least significant digits in row j of
(A)2, with bj tbj t−1 . . . bj10. We do this for every row of (A)2 that contains
a nonzero digit in column A0. These replacements affect only the the t + 1
least significant columns of (A)2.
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This results in a new representation of N; call it (A′)2. Let
A′ = . . . A′2 A′1 A′0. Note that A′0 is a zero column. Since (A)2 has mini-
mal weight it must be that A′t is nonzero; otherwise, wt(A′) < wt(A) which
contradicts the fact that (A)2 has minimal weight. Thus, wt(A′) = wt(A)

and so (A′)2 has minimal weight. This proves the lemma.

Example 4.11. The column transformations described in the previous proof
can be applied to any joint representation (not necessarily one that has min-
imal weight) which contains a nonzero column consisting of only even dig-
its. We apply the transformations to the following joint representation of
N = (18, 24)T which uses the digits E3 = {0, 1, 2, 3, 4, 5, 6, 7}:

(
18
24

)
=

(
023 4
017 6

)

2

=

(
0 2 50
0 6 00

)

2

=

(
1050
3000

)

2

.

Notice that the joint weight of the representation decreased when we ap-
plied one of the transformations. This could not have happened if we
started out with a minimal weight representation of (18, 24)T. ♦

There are also some differences between minimal weight and colexico-
graphically smallest representations. We will see that every r × 1 vector N
of nonnegative integers has exactly one colexicographically smallest rep-
resentation in the digits Ew, however this vector may have many different
minimal weight representations.

Example 4.12. For any w ≥ 2, it is easy to find a vector N that has more
than one minimal weight Ew-joint representation. For example,

(
128
128

)
=

(
10000000
10000000

)

2

=

(
02000000
02000000

)

2

. ♦

Lemma 4.13. Every r × 1 vector N of nonnegative integers has a unique colexi-
cographically smallest representation which uses the digits Ew.

Proof. Since {0, 1} ⊂ Ew, every vector N of nonnegative integers has a Ew-
joint representation since we can just take each row to be a {0, 1}-radix 2
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representation. Thus, every vector N has a colexicographically smallest
representation; what we need to show is that it cannot have more than one
such representation.

The zero vector has exactly one Ew-joint representation, so we can as-
sume that N is not the zero vector. Let (A)2 and (B)2 be colexicographically
smallest joint representations of N. We suppose A 6= B and then show that
this leads to a contradiction.

Let ` and `′ be the respective lengths of A and B. Write

A = A`−1 . . . A2 A1 A0 and B = B`′−1 . . . B2B1B0.

We can assume that ` is as small as possible (i.e., there is no other choice of
N which leads to a shorter A).

Let

A′ = A`−1 . . . A2 A1 and B′ = B`′−1 . . . B2B1.

If A0 = B0, then (A′)2 = (B′)2. So, by Lemma 4.7, (N − A0)/2 has two
different colexicographically smallest representations, contrary to the min-
imality of `. Thus A0 6= B0.

Neither of A0 or B0 can be a zero column. For, if B0 is a zero column,
then since A ¹ B, it must be that A0 is a zero column. But this contradicts
the fact that A0 6= B0. So, B0 is a nonzero column and the same argument
shows that A0 is a nonzero column.

By Lemma 4.9, one of the coordinates of N is an odd integer. Consider
the {0, 1}-joint representation of N. The w least significant columns of this
representation can be transformed by replacing the contents of each row
with a digit from Ew in the least significant column. This results in a Ew-
joint representation where the least significant column is nonzero and each
of the w− 1 columns to the left of it are zero columns. This representation
cannot be colexicographically smaller than A or B, so it must be that

A = A`−1 . . . Aw−1 . . . A2 A1︸ ︷︷ ︸
zero columns

A0, and B = B`′−1 . . . Bw−1 . . . B2B1︸ ︷︷ ︸
zero columns

B0;
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otherwise, A and B would not be colexicographically smallest representa-
tions. Now, from the value of N mod 2w, we can conclude that A0 = B0;
however, this contradicts the minimality of `.

Thus, it must be that A = B; that is, there is exactly one colexicographi-
cally smallest representation of N.

The preceding proof also tells us how to build the colexicographically
smallest representation of a vector of nonnegative integers. We start with
the {0, 1}-joint representation of N and slide a w-column window from
right to left across it. Each time the rightmost column of the window con-
tains a nonzero column, we replace the contents of each row in the window
with a digit from Ew and advance the window to the left. This process can
also be phrased in terms of integer operations:

Algorithm 4.14: COLEXI-SMALLEST-Ew-JOINT-REP(N, w)

comment: N is an r× 1 vector of nonnegative integers.

A ← ε

while N 6=~0

do





if N mod 2 6=~0
then Ai ← N mod 2w

else Ai ←~0
A ← Ai ‖ A
N ← (N − Ai)/2

return A

This algorithm is a slight modification of the one Solinas [41] gives for the
w-NAF (although, here we are using unsigned digits). Note that if we take
r = 1 and w = 2, then the algorithm will construct the {0, 1, 3}-nonadjacent
form of a nonnegative integer.

4.4.1 Minimality of Colexi Smallest Representations

In this section we prove the following theorem:
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Theorem 4.15. Let r ≥ 1 and w ≥ 2 be integers. Then, for any r × 1 vector of
nonnegative integers N, the colexicographically smallest Ew-joint representation
of N has minimal weight.

Proof. The proof is essentially the same as the proof that the w-NAF has
minimal weight. The result is clearly true when N is the zero vector, so we
can assume that N is nonzero.

Let (A)2 be the colexicographically smallest representation of N. Sup-
pose (A)2 does not have minimal weight. Then there is a minimal weight
representation (B)2 = N with wt(B) < wt(A). By Lemma 4.10, we can
assume that every nonzero column of (B)2 contains an odd digit.

Let ` and `′ be the respective lengths of A and B. Write

A = A`−1 . . . A2 A1 A0, and B = B`′−1 . . . B2B1B0.

We can assume that ` is as small as possible (i.e., there is no other choice of
N which gives a shorter A).

Since ` is minimal, it must be that A0 6= B0. If B0 is a zero column, then,
because A ¹ B, A0 must also be a zero column; however, this contradicts
the fact that A0 6= B0. So, B0 is a nonzero column. Since B0 contains an odd
digit, some coordinate of N must be odd. This implies that A0 is nonzero.

Let

A′ = A`−1 . . . Aw+1 Aw, and B′ = B`′−1 . . . Bw+1Bw.

Because (A)2 is the colexicographically smallest representation of N and
A0 is nonzero, all of Aw−1 . . . A2 A1 must be zero columns. So,

wt(A) = wt
(
A′
)

+ 1.

Also, if B0 is the only nonzero column of Bw−1 . . . B1B0, then from the value
of N mod 2w we could deduce that A0 = B0. However, since A0 6= B0, it
must be that at least one other column of Bw−1 . . . B1B0 is nonzero besides
B0; thus,

wt(B) ≥ wt
(
B′
)

+ 2.



82 4.4 Unsigned Digits

Now, since (A)2 = (B)2, we have

(A′‖ Aw−1 . . . A2 A1︸ ︷︷ ︸
zero columns

A0)2 = (B′‖Bw−1 . . . B2B1B0)2

=⇒ (A′)2 = (B′)2 +
(Bw−1 . . . B2B1B0)2 − (A0)2

2w .

The expression ((Bw−1 . . . B2B1B0)2 − (A0)2) /2w must evaluate to a vector
of integers. Coordinate j of this vector is computed like so:

(
(bj w−1 . . . bj2bj1bj0)2 − (aj0)2

)
/2w.

This value cannot be negative. To see this, suppose (bj w−1 . . . bj2bj1bj0)2 <

(aj0)2. Then (bj w−1 . . . bj2bj1bj0)2 must represent some integer in Ew. This
integer and aj0 are not equal, however, they are congruent modulo 2w. But,
this contradicts the fact that no two distinct integers in Ew are congruent
modulo 2w. So, it must be that (bj w−1 . . . bj2bj1bj0)2 ≥ (aj0)2. Let d = 2w − 1.
Now,

0 ≤ (bj w−1 . . . bj2bj1bj0)2 − (aj0)2 ≤ (d . . . dd︸ ︷︷ ︸
w

)2 − aj0

< (d . . . dd︸ ︷︷ ︸
w

)2

= (2w − 1)d

< 2wd.

Let B̂w = ((Bw−1 . . . B2B1B0)2 − (A0)2) /2w. From the inequality above, we
see that each coordinate of B̂w is a digit in Ew.

We have

(A′)2 = (B′)2 + B̂w.

Using an argument similar to the proof of Lemma 4.10, we can perform the
addition operation on the right-hand side of this equation and construct a
representation (B′′)2 = (B′)2 + B̂w such that wt(B′′) ≤ wt(B′) + 1.
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Now, putting everything together we have

wt(B) < wt(A)

=⇒ wt
(
B′
)

+ 2 < wt
(
A′
)

+ 1

=⇒ wt
(
B′
)

+ 1 < wt
(
A′
)

=⇒ wt
(
B′′
)

< wt
(
A′
)

.

However, (B′′)2 = (A′)2 and (A′)2 is a colexicographically smallest repre-
sentation. Since (A′)2 is shorter than (A)2 this contradicts the minimality
of `.

4.4.2 The Digits {0, 1, 3}

It is possible that there may be a simple strategy for building minimal
weight {0, 1, 3}-joint representations, however, the only thing we can say
with certainty about such a strategy is that it is not the one that builds a
colexicographically smallest representation.

Example 4.16. Suppose (. . . A2 A1 A0)2 is a colexicographically smallest rep-
resentation of N = (5, 9)T which uses the digits {0, 1, 3}. If we were trying
to construct this representation, we would first try to make A0 a zero col-
umn. However, since both 5 and 9 are odd, this is not possible. So, we
try to make A1 a zero column. This can only be done by setting A0 to
(1, 1)T = (5, 9)T mod 4. If we continue in this manner, we arrive at the
following representation:

(
5
9

)
=

(
0101
1001

)

2

.

This is the colexicographically smallest representation of (5, 9)T and it has
weight 3. However, (

5
9

)
=

(
0013
0033

)

2

and this representation has weight 2. So, for the digits {0, 1, 3}, the strategy
of building a colexicographically smallest representation does not neces-
sarily give a minimal weight representation. ♦
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4.5 Signed Digits

For any integer w ≥ 2, we define the set of digits

Fw := {n mods 2w : n ∈ Z} = {0,±1,±2, . . . ,±(2w−1 − 1)} ∪ {2w−1}.

We use the convention that “n mods 2w” returns a residue of n modulo 2w

of least absolute value, but when there are two such residues, it returns the
positive one.

Example 4.17. For w = 3, we have

F3 = {0,±1,±2,±3, 4},

while

D3 = {0,±1,±3}. ♦

Many of the results we presented for the digits Ew in the previous sec-
tion also hold for Fw.

Lemma 4.18. Let r ≥ 1 be an integer. If (A)2 is a colexicographically smallest
representation of a vector N ∈ Z

r×1 which uses the digits Fw, then every nonzero
column of (A)2 must contain an odd digit.

Proof. Let A = . . . A2 A1 A0 and suppose A contains a nonzero column con-
sisting of only even digits. By Lemma 4.7, we can assume that A0 is such
a nonzero column. This implies that N is composed of only even integers.
Consider the {0,±1}-joint representation of N formed from the {0, 1}- or
{0,−1}-radix 2 representation of each coordinate of N (in fact, any {0,±1}-
joint representation of N will do). The least significant column of this rep-
resentation must be a zero column. However, this contradicts the fact that
(A)2 is a colexicographically smallest representation of N.

Lemma 4.19. Let r ≥ 1 be an integer. Any vector N ∈ Z
r×1 has a minimal

weight Fw-joint representation where each nonzero column contains an odd digit.
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The proof of Lemma 4.19 is almost identical to that of Lemma 4.10 and so
we omit it.

It will come as no surprise that we can build a colexicographically small-
est representation of any vector N ∈ Z

r×1 using the following algorithm:

Algorithm 4.20: COLEXI-SMALLEST-Fw-JOINT-REP(N)

comment: for any n ∈ Z,−2w−1 < n mods 2w ≤ 2w−1.

A ← ε

while N 6=~0

do





if N mod 2 6=~0
then Ai ← N mods 2w

else Ai ←~0
A ← Ai ‖ A
N ← (N − Ai)/2

return A

Example 4.21. We can visualize the steps of the algorithm by considering
a window of width-w that slides over the {0, 1}-joint representation of a
vector of nonnegative integers. As the contents of the window are updated
the {0, 1}-joint representation can be affected by carry digits. When N =

(34, 55)T and w = 3 we have
(

34
55

)
=

(
0100 010
0110 111

)

2

=

(
0 100 002
0 111 001

)

2

=

(
0004002
1001001

)

2

.
♦

Notice that if A = . . . A2 A1 A0 is an output of this algorithm then any
nonzero column is immediately followed by w− 1 zero columns. From this
property, we see that the output of the algorithm on input N ∈ Z

r×1 is the
unique colexicographically smallest representation of N.

Lemma 4.22. Every r × 1 vector N of nonnegative integers has a unique colexi-
cographically smallest representation which uses the digits Fw.
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Proof. The zero vector has exactly one Fw-joint representation, so we can as-
sume that N is not the zero vector. Let (A)2 and (B)2 be colexicographically
smallest joint representations of N. We suppose A 6= B and then show that
this leads to a contradiction.

Let ` and `′ be the respective lengths of A and B. Write

A = A`−1 . . . A2 A1 A0, and B = B`′−1 . . . B2B1B0.

We can assume that ` is as small as possible (i.e., there is no other choice of
N which leads to a shorter A).

Let

A′ = A`−1 . . . A2 A1, and B′ = B`′−1 . . . B2B1.

If A0 = B0, then (A′)2 = (B′)2. So, by Lemma 4.7, (N − A0)/2 has two
different colexicographically smallest representations, contrary to the min-
imality of `. Thus A0 6= B0.

Neither of A0 or B0 can be a zero column. For, if B0 is a zero column,
then since A ¹ B, it must be that A0 is a zero column. But this contradicts
the fact that A0 6= B0. So, B0 is a nonzero column and the same argument
shows that A0 is a nonzero column.

By Lemma 4.18, one of the coordinates of N is an odd integer. Consider
the output of Algorithm 4.20 on input N. The least significant column of the
returned representation is nonzero and is followed by w− 1 zero columns.
This representation cannot be colexicographically smaller than A or B, so
it must be that

A = A`−1 . . . Aw−1 . . . A2 A1︸ ︷︷ ︸
zero columns

A0, and B = B`′−1 . . . Bw−1 . . . B2B1︸ ︷︷ ︸
zero columns

B0;

otherwise, A and B would not be colexicographically smallest representa-
tions. Now, from the value of N mod 2w, we can conclude that A0 = B0;
however, this contradicts the minimality of `.

Thus, it must be that A = B; that is, there is exactly one colexicographi-
cally smallest representation of N.
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4.5.1 Minimality of Colexi Smallest Representations

Theorem 4.23. Let r ≥ 1 be an integer. Then, for any N ∈ Z
r×1, the colexico-

graphically smallest Fw-joint representation of N has minimal weight.

Proof. Let (A)2 be the colexicographically smallest representation of N.
Suppose (A)2 does not have minimal weight. Then there is a minimal
weight representation (B)2 = N with wt(B) < wt(A). By Lemma 4.19,
we can assume that every nonzero column of (B)2 contains an odd digit.

Let ` and `′ be the respective lengths of A and B. Write

A = A`−1 . . . A2 A1 A0, and B = B`′−1 . . . B2B1B0.

We can assume that ` is as small as possible (i.e., there is no other choice of
N which gives a shorter A).

Since ` is minimal, it must be that A0 6= B0. If B0 is a zero column, then,
because A ¹ B, A0 must also be a zero column; however, this contradicts
the fact that A0 6= B0. So, B0 is a nonzero column. Since B0 contains an odd
digit, some coordinate of N must be odd. This implies that A0 is nonzero.

Let

A′ = A`−1 . . . Aw+1 Aw, and B′ = B`′−1 . . . Bw+1Bw.

Because (A)2 is the colexicographically smallest representation of N and
A0 is nonzero, all of Aw−1 . . . A2 A1 must be zero columns. So,

wt(A) = wt
(
A′
)

+ 1.

Also, if B0 is the only nonzero column of Bw−1 . . . B1B0, then from the value
of N mod 2w we could deduce that A0 = B0. However, since A0 6= B0, it
must be that at least one other column of Bw−1 . . . B1B0 is nonzero besides
B0. Thus,

wt(B) ≥ wt
(
B′
)

+ 2.
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Now, since (A)2 = (B)2 we have

(A′‖ Aw−1 . . . A2 A1︸ ︷︷ ︸
zero columns

A0)2 = (B′‖Bw−1 . . . B2B1B0)2

=⇒ (A′)2 = (B′)2 +
(Bw−1 . . . B2B1B0)2 − (A0)2

2w .

The expression ((Bw−1 . . . B2B1B0)2 − (A0)2) /2w must evaluate to a vector
of integers. Coordinate j of this vector is computed like so:

(
(bj w−1 . . . bj2bj1bj0)2 − (aj0)2

)
/2w.

Up to this point, our proof has essentially been the same as the proof of
Theorem 4.15, however, now it differs slightly. Let d = 2w−1. Now,

∣∣(bj w−1 . . . bj2bj1bj0)2 − (aj0)2
∣∣ ≤

∣∣(bj w−1 . . . bj2bj1bj0)2
∣∣+
∣∣(aj0)2

∣∣

≤ (d . . . dd︸ ︷︷ ︸
w

)2 + d

= 2wd.

So we see that

−d ≤
(
(bj w−1 . . . bj2bj1bj0)2 − (aj0)2

)
/2w ≤ d.

If we examine the lower bound more closely, we see that the only possible
way

−2w−1 =
(
(bj w−1 . . . bj2bj1bj0)2 − (aj0)2

)
/2w

is if all of the bji’s are equal to −2w−1 and aj0 = 2w−1. However, this cannot
be the case since −2w−1 is not included in the set Fw. Thus,

−2w−1
<
(
(bj w−1 . . . bj2bj1bj0)2 − (aj0)2

)
/2w ≤ 2w−1.

Let B̂w = ((Bw−1 . . . B2B1B0)2 − (A0)2) /2w. From the bound above, we see
that each coordinate of B̂w is a digit in Fw.

Now, our argument continues, to its conclusion, in the same way as
the proof Theorem 4.15. Thus, we see that the colexicographically smallest
representation does indeed have minimal weight.
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4.5.2 The Digits {0,±1}

We now know that colexicographically smallest joint representations which
use the digits Fw have minimal weight, however, we have not said anything
about joint representation which use the digits {0,±1}. In fact, the same
property is true for these representations.

In our previous proofs of minimality, we relied on the fact that the digit
sets we considered consisted of a complete system of residues modulo 2w,
for some w ≥ 2. This is not true for the digits {0,±1} and so our previous
arguments are not directly applicable. However, the statement above can
be proven using results due to Grabner, Heuberger and Prodinger [12].

Grabner et al. give a very simple r-row analogue of the joint sparse
form. To describe their representations, we need some notation. If
(. . . A2 A1 A0)2 is an r-row {0,±1}-joint representation, then for a column
Ai we define

Ai({±1}) := {j ∈ Z : aji ∈ {±1}}.

Thus, Ai({±1}) is the subset of {1, 2, . . . , r} which identifies the nonzero
digits in column Ai. For example, if A0 = (1, 1, 0, 0, 1)T, then A0({±1}) =

{1, 2, 5}. Note that if Ai is a zero column then Ai({±1}) = ∅.

Theorem 4.24 (Grabner, Heuberger, Prodinger). Let r ≥ 1 be an integer.
Then any N ∈ Z

r×1 has exactly one {0,±1}-joint representation, (. . . A2 A1 A0)2,
with the property that, for any i ≥ 0, either

1. Ai+1({±1}) is a proper superset of Ai({±1}), or

2. Ai+1({±1}) = ∅.

Moreover, this representation has minimal weight.

If a {0,±1}-joint representation satisfies the properties above we call it
a GHP-joint form.
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Example 4.25. Here is the GHP-joint form for N = (55, 89, 144)T:




55
89
144


 =




11011001
11011001
10010000




2

Notice, for example, that for the leftmost two nonzero columns we have
A6({±1}) = {1, 2} and A7({±1}) = {1, 2, 3}. Thus A7({±1}) is a proper
superset of A6({±1}), as required. ♦

If N is a vector of r nonnegative integers, then the GHP-joint form of N
can be constructed by sliding an r-column window from right to left across
the {0, 1}-joint representation of N. A GHP-joint form has the property that
of any r + 1 consecutive columns, at most r are nonzero.

Corollary 4.26. Let r ≥ 1 be an integer. Then, for any N ∈ Z
r×1, a colexico-

graphically smallest {0,±1}-joint representation of N has minimal weight.

We call this result a “corollary” since it is established by making only minor
changes to the argument Grabner et al. use to prove that the GHP-joint
form has minimal weight.

Proof. Let (. . . A2 A1 A0)2 be a colexicographically smallest representation of
N. We claim that, for any i ≥ 0, we may assume

Ai+1({±1}) is a superset of Ai({±1}), or Ai+1({±1}) = ∅.

To see this, observe that if (. . . A2 A1 A0)2 has two consecutive nonzero
columns where a row of these two columns equals 01 or 01, these digits can
be replaced with 11 or 11, respectively. Notice that such digit replacements
have no affect on the colexicographic rank of (. . . A2 A1 A0)2. We show that
(. . . A2 A1 A0)2 must be the GHP-joint form of N and then minimality fol-
lows.

Let i be the smallest integer such that Ai+1({±1}) = Ai({±1}) 6= ∅;
that is, Ai+1({±1}) is a superset of Ai({±1}), but not a proper superset. If
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i does not exist then (. . . A2 A1 A0)2 is the GHP-joint form of N and we are
done. Let At be the first zero column to the left of Ai.

Let

Ai+1 =




a1 i+1

a2 i+1
...

ar i+1




, and Ai =




a1i

a2i
...

ari




.

Column Ai is nonzero and so it must contain a nonzero digit. By possibly
permuting the rows of (. . . A2 A1 A0)2, we may assume that a1i 6= 0. Since
a1i is nonzero and Ai+1({±1}) = Ai({±1}), a1 i+1 must also be nonzero.

Suppose a1i = 1. In row 1, consider the maximal length run of ones
that begins with a1i = 1 and extends left. This run of ones is terminated by
the digit 0 or −1. Because At is a zero column, this run of ones terminates
before column t. The strings

01 . . . 11, and 11 . . . 11

can be replaced with

10 . . . 01, and 00 . . . 01,

respectively. An analogous string replacement can be done if a1i was in-
stead equal to −1. For each nonzero digit in column i, we apply this string
replacement. We denote the resulting representation by (. . . A′2 A′1 A′0)2.

Because of the string replacements, A′i+1 is a zero column, whereas Ai+1

is a nonzero column. However, this contradicts the fact that (. . . A2 A1 A0)2

is a colexicographically smallest representation. Thus, there can be no i for
which Ai+1({±1}) = Ai({±1}) 6= ∅. So, (. . . A2 A1 A0)2 is the GHP-joint
form of N and therefore has minimal weight.

From the previous argument we see that the GHP-joint form of N is
a colexicographically smallest representation of N. A vector N can have
many different colexicographically smallest representations, however, it
has exactly one GHP-joint form.
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4.5.3 The Digits {0,±1,±2, . . . ,±m}

Following Möller [28, 27], for any integer m ≥ 2, we define

Gm := {n ∈ Z : |n| ≤ m} = {0,±1,±2, . . . ,±m}.

Note that m is not restricted to be a power of 2. We make the following
conjecture about Gm-joint representations:

Conjecture 4.27. Let r ≥ 1 be an integer. Then, for any N ∈ Z
r×1, a colexi-

cographically smallest Gm-joint representation of N has minimal weight.

When r = 1, a colexicographically smallest Gm-representation of an in-
teger will not make use of any even digits (as in Lemmas 4.9 and 4.18). If we
remove all the even nonzero digits from Gm we are left with what Möller
calls the signed fractional window digits. If we let w = blg mc+ 1, then Möller
explains how to build Gm-representations by sliding a variable width win-
dow (having width either w or w + 1) across the {0, 1}-representation of
a nonnegative integer. It is not difficult to prove that the representations
Möller builds are colexicographically smallest. That these representations
have minimal weight is proven in [27].

For general r ≥ 1, the fact that Gm does not consist of a complete sys-
tem of residues modulo 2w means that the arguments we previously used
to prove that colexicographically smallest representations have minimal
weight are not readily applicable, and so we leave this as a conjecture for
now.

An interesting special case is obtained when, for any w ≥ 2, we take
m = 2w−1:

G2w−1 = {0,±1,±2, . . . ,±2w−1}.

There is a very simple algorithm for constructing G2w−1-joint representa-
tions. It is based on a special signed binary representation that has been
proposed by a number of different authors [13, 16, 19, 20, 36].

Suppose n = (b`−1 . . . b1b0)2 with bi ∈ {0, 1}. Consider the representa-
tion (b′

`
. . . b′1b′0)2 with b′i ∈ {0,±1} which results from the digit-wise sub-
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traction of n = (b`−1 . . . b1b0)2 from 2n = (b`−1 . . . b1b00)2:

b`−1 b`−2 b`−3 . . . b0 0
− 0 b`−1 b`−2 . . . b1 b0

b′
`

b′
`−1 b′

`−2 . . . b′1 b′0

If we set b` = b−1 = 0, then we have

b′i = bi−1 − bi, for 0 ≤ i ≤ `.

Note that (b′
`

. . . b′1b′0)2 is a representation of n. The signs of the nonzero
digits of (b′

`
. . . b′1b′0)2 must alternate as we read them from left to right or

right to left. To see this, suppose b′v00 . . . 0b′u is a substring of b′
`

. . . b′1b′0.
Then,

b′v + b′u = ∑
u≤i≤v

b′i = ∑
u≤i≤v

(bi−1 − bi) = bu−1 − bv ∈ {0,±1}.

If b′u = b′v = 1 or b′u = b′v = −1, then this would contradict the equation
above. So, if bu and bv are both nonzero, they must have opposite signs.

Consider any w consecutive digits (i.e., any window of width-w) taken
from the representation (b′

`
. . . b′1b′0)2. If b′i+w−1 . . . b′i+1b′i is a substring of

b′
`

. . . b′1b′0, we would like to know what values (b′i+w−1 . . . b′i+1b′i)2 can take.
The largest possible value is

2w−1 = (1 0 . . . 0︸ ︷︷ ︸
w−1

)2;

and the smallest possible value is

−2w−1 = (1 0 . . . 0︸ ︷︷ ︸
w−1

)2.

All integers d with 0 ≤ d < 2w−1 are possible since their {0, 1}-represen-
tations have length at most w− 1 (and so their “sign-alternating” represen-
tations, as defined above, have length at most w). Clearly, the negative of
these values are also possible. So, the set of possible values is exactly G2w−1 .
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For an r× 1 vector N of nonnegative integers, let (B`−1 . . . B1B0)2 be the
{0, 1}-joint representation of N. We take B` and B−1 to be zero columns and
then define

B′i = Bi−1 − Bi, for 0 ≤ i ≤ `.

Thus, each row of (B′
`

. . . B′1B′0)2 is the sign-alternating representation of
a coordinate of N. Now, we build a G2w−1-joint representation of N by
sliding a w-column window from right to left across the representation
(B′

`
. . . B′1B′0)2.

Example 4.28. Suppose w = 4. Then, G23 = {0,±1,±2, . . . ,±8}. Below,
we list the {0, 1}-joint representation of N = (233, 377, 987)T and its sign-
alternating joint representation. We show the digit substitutions made as
the window slides right to left.




233
377
987


 =




0011101001
0101111001
1111011011




2

=




00010011 1011
00111000 1011
01000110 1101




2

=




0001 0011 0007
0011 1000 0007
0100 0110 0005




2

=




0001 00010007
0011 00080007
0100 00020005




2

=




000100010007
000100080007
000400020005




2

.
♦

It seems likely that any G2w−1-joint representation constructed in this
manner will be a colexicographically smallest representation of N, how-
ever, this remains to be proven.

The window which slides over the representation (B′
`

. . . B′1B′0)2 can also
travel left to right. This will construct a joint representation from the oppo-
site direction. If we can prove that sliding the window right to left produces



Chapter 4 Joint Representations 95

a minimal weight representation then is it a simple matter to prove that the
left to right version also produces a minimal weight representation using
an argument by Avanzi [1]. 2

For general m ≥ 2, it is also possible to use the representation
(B′

`
. . . B′1B′0)2 to build Gm-joint representations; we just allow the width of

the window to change as it slides across the representation.

2A nice application of Avanzi’s “input reversing argument” can be found in [27].





Chapter 5

Nonadjacent Digit Sets

5.1 Introduction and History

In 1960, through his investigations on how to reduce the number of ad-
ditions and subtractions used in binary multiplication and division, Re-
itwiesner [39] gave a constructive proof that every integer has a unique
{0, 1,−1}-radix 2 representation with a minimal number of nonzero digits.

Reitwiesner’s canonical representations have a simple description. A
{0, 1,−1} radix 2 representation of an integer is in Reitwiesner’s canonical
form if and only if it satisfies the following property:

NA-1 Of any two consecutive digits, at most one is nonzero.

Said another way, for such representations, nonzero digits are nonadjacent.
These representations have come to be called nonadjacent forms (NAFs).

If a finite length radix 2 representation has digit set D and satisfies NA-
1, we call it a D-nonadjacent form (D-NAF). In this chapter, we consider
the question of which sets D provide nonadjacent forms for every positive
integer. If D is such a digit set then we call it a nonadjacent digit set (NADS).

A related question has been studied by Matula. In [24], Matula defines
and investigates basic digit sets. A set of digits containing 0 is called ba-
sic if it provides every integer, positive and negative, with a unique radix-r
representation which does not include a seperate +/− sign (i.e., for such

97
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digit sets, we can write down a representation of a negative number with-
out having to put a minus sign in front of it). Matula shows that if a digit
set is basic, then r 6= 2; in this chapter we are concerned only with radix
2 representations. Another difference between our work and Matula’s is
that he imposes no relation on the digits of a representation while we are
interested only in nonadjacent representations.

We examine digit sets of the form {0, 1, x} with x ∈ Z. It is known that
letting x = −1 gives a NADS, but it is somewhat surprising that there are
many values of x with this property; for example, x = −5,−13,−1145. We
give infinite families of x’s for which {0, 1, x} is a NADS, and we also give
infinite families of x’s for which {0, 1, x} is not a NADS. We also give some
results on the necessary conditions D must satisfy in order to be a NADS.
The algorithms we present and analyze for computing D-NAFs might be
of some interest as well.

5.2 Preliminaries

We start by introducing some definitions and notation which will facilitate
our discussions.

We apply some of our terminology for representations to strings. If
0 ∈ D and a finite string α ∈ D∗ satisfies the property NA-1, then we call α

a D-NAF. If in addition, (α)2 = n we say α is a D-NAF for n. Notice that if
α is a D-NAF for n then α with any leading zeros removed is also a D-NAF
for n. We denote the string formed by deleting the leading zeros from α by
α̂.

Given a digit set D and an integer n, we define a map

RD(n) :=





α̂ where α ∈ D∗ is a D-NAF for n, if one exists

⊥ otherwise.

Here, ⊥ is just some symbol not in D. If RD(n) evaluates to a D-NAF for
n, then by definition that string has no leading zeros. For example, if D =

{0, 1,−9} then RD(7) might evaluate to 10009 since 10009 is a D-NAF, has
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no leading zeros, and (10009)2 = 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 − 9 · 20 = 7 .
If there is more than one string in D which is a D-NAF for n and has no
leading zeros then RD(n) might evaluate to any one of these strings. Later
on we will prove that 3 does not have a D-NAF, hence RD(3) =⊥.

We are interested in determining which integers have D-NAFs, so we
define the set

NAF(D) := {n ∈ Z : RD(n) 6=⊥} .

From our example with D = {0, 1, 9}we see 7 ∈ NAF(D) but 3 6∈ NAF(D).
Using this notation, our definition of a nonadjacent digit set is as follows:

Definition 5.1. D is a nonadjacent digit set if Z
+ ⊆ NAF(D).

5.3 Necessary Conditions for {0, 1, x} to be a NADS

If we suppose D = {0, 1, x} is a nonadjacent digit set then we can deduce
necessary conditions on x.

Theorem 5.2. Let D = {0, 1, x}. If there exists n ∈ NAF(D) with n ≡ 3
(mod 4), then x ≡ 3 (mod 4).

Proof. Take n ∈ NAF(D) with n ≡ 3 (mod 4). For some particular D-NAF,
say (. . . a2a1a0)2, we have

(. . . a2a1a0)2 = n

=⇒ a0 ≡ 1 (mod 2)

=⇒ a0 6= 0 .

Since a0 is nonzero and the representation is nonadjacent we have a1 = 0.
Thus

(. . . a20a0)2 = n

=⇒ a0 ≡ 3 (mod 4)

=⇒ a0 6= 1

=⇒ a0 = x .
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So x = a0 ≡ 3 (mod 4).

If D = {0, 1, x} is a NADS then 3 ∈ NAF(D), and by the previous result
x ≡ 3 (mod 4). So, if we are trying to find a value of x that makes {0, 1, x}
a NADS we need only consider those values congruent to 3 modulo 4.

5.3.1 The case x > 0

If we restrict x to be a positive integer, then we can give a complete charac-
terization of all values which make D = {0, 1, x} a NADS. It is well known
that x = 3 is such a value, and this is remarked by Solinas [42]. We give
a proof of this fact and then show that no other positive value of x makes
{0, 1, x} a NADS.

Theorem 5.3. The only NADS of the form {0, 1, x} with x > 0 is {0, 1, 3}.

Proof. Let n be any positive integer. We want to show that n has a {0, 1, 3}-
NAF. Let (. . . a2a1a0)2 be the usual {0, 1}-radix 2 representation of n. If this
representation satisfies NA-1 there is nothing to prove, so suppose it does
not. Let i be the smallest integer for which ai+1 = ai = 1. Replace digits ai+1

and ai by 0 and 3, respectively. Since 2i+1 + 2i = 0 · 2i+1 + 3 · 2i, the resulting
representation stands for the same integer. By working from right to left,
repeating this substitution as necessary, we transform (. . . a2a1a0)2 into a
{0, 1, 3}-NAF. This proves that {0, 1, 3} is a NADS.

Now consider x with x > 3. We show n = 3 does not have a {0, 1, x}-
NAF. Suppose to the contrary that for some {0, 1, x}-NAF we have
(. . . a2a1a0)2 = 3. Since 3 is odd, a0 6= 0 and so a1 = 0. Now a0 ≡ 3
(mod 4) so it must be that a0 = x. However, since each of the digits in
{0, 1, x} is nonnegative we have

3 = (. . . a20x)2 = · · ·+ a222 + 0 · 21 + x ≥ x > 3 ,

which is a contradiction. So, 3 does not have a {0, 1, x}-NAF when
x > 3.
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An example helps illustrate the construction used in the above proof.
Suppose n = 237. To find a {0, 1, 3}-NAF for 237 we start with its usual
binary representation and then, working from right to left, replace any oc-
currences of the digits 11 with 03:

237 = (11101101)2 = (10300301)2 .

A natural question to ask is if this is the only {0, 1, 3}-NAF for 237. We give
the answer in the next section.

5.3.2 Uniqueness

We show that every integer, not only just the positive ones, has at most one
{0, 1, x}-NAF where x ≡ 3 (mod 4).

Theorem 5.4. If x ≡ 3 (mod 4), then any integer has at most one finite length
{0, 1, x}-nonadjacent form.

Proof. Let D = {0, 1, x} and suppose the result is false. Then it must be that

(a`−1 . . . a2a1a0)2 = (b`′−1 . . . b2b1b0)2

where (a`−1 . . . a2a1a0)2 and (b`′−1 . . . b2b1b0)2 are two different D-NAFs
with lengths ` and `′ respectively. These representations stand for the same
integer, call it n. We can assume that ` is as small as possible.

If a0 = b0, then

(a`−1 . . . a2a1)2 = (b`′−1 . . . b2b1)2 ,

and so we have two different, and shorter, D-NAFs which stand for the
same integer, contrary to the minimality of `. So it must be that a0 6= b0.

If one of a0 or b0 is 0, then n is even, and so both a0 and b0 are 0. But a0

and b0 are different so it must be that a0 is equal to 1 or x. Without loss of
generality, we can assume the representations have the form

(a`−1 . . . a20x)2 = (b`′−1 . . . b201)2 .

This implies x ≡ 1 (mod 4), contrary to our hypothesis that x ≡ 3 (mod 4).
Thus every integer has at most one D-NAF.
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5.4 Recognizing NADS of the form {0, 1, x}

From now on we fix D = {0, 1, x} with x ≡ 3 (mod 4). In this section we
work towards a method of deciding if {0, 1, x} is a NADS. By Theorem 5.3,
this is easy when x > 0, so we will assume x < 0.

Recall that RD(n) either evaluates to the symbol⊥ or a finite string, with
no leading zeros, that is a D-NAF for n. Theorem 5.4 tells us that any n has
at most one D-NAF, so in the second case, the string returned by RD(n) is
unique. Thus, RD(n) is well defined (i.e., for every input n there is exactly
one output.).

The ability to evaluate RD(n) can be useful in deciding if D is a NADS.
If we can find n ∈ Z

+ such that RD(n) =⊥ then we know that D is not a
NADS. Also, if we have an algorithmic description of RD(n), we might be
able to analyze this algorithm and show that for any n ∈ Z

+, RD(n) 6=⊥,
thus proving that D is a NADS.

We show that RD(n) can be computed recursively and give an algo-
rithm which evaluates RD(n) in this manner. We begin with some lemmas:

Lemma 5.5. If n ≡ 0 (mod 4) then n ∈ NAF(D) if and only if n/4 ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(n/4)‖00.

Proof. Since n ≡ 0 (mod 4), the definition of the digit set D implies that
any D-NAF for n is of the form (a`−1 . . . a3a200)2, where a`−1 6= 0. Now,

n ∈ NAF(D) ⇐⇒ n has a D-NAF of the form (a`−1 . . . a3a200)2

⇐⇒ n/4 has a D-NAF of the form (a`−1 . . . a3a2)2

⇐⇒ n/4 ∈ NAF(D) ,

which proves the first part of the lemma. If n ∈ NAF(D) then

RD(n) = a`−1 . . . a3a200 = a`−1 . . . a3a2‖00 = RD(n/4)‖00 ,

which proves the second part of the lemma.

We omit the proofs of the next three lemmas since they can be estab-
lished by making only minor changes to the proof of Lemma 5.5.
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Lemma 5.6. If n ≡ 1 (mod 4) then n ∈ NAF(D) if and only if (n − 1)/4 ∈
NAF(D). Further, if n ∈ NAF(D) then RD(n) = RD( n−1

4 )‖01.

Lemma 5.7. If n ≡ 2 (mod 4) then n ∈ NAF(D) if and only if n/2 ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(n/2)‖0.

Lemma 5.8. If n ≡ 3 (mod 4) then n ∈ NAF(D) if and only if (n − x)/4 ∈
NAF(D). Further, if n ∈ NAF(D) then RD(n) = RD( n−x

4 )‖0x.

Given an integer n, if we somehow know that n ∈ NAF(D) then Lem-
mas 5.5–5.8 suggest a recursive procedure that we can use to evaluate RD(n).
To illustrate suppose D = {0, 1,−9}. It was shown in an earlier example
that 7 ∈ NAF(D). Using these lemmas, we have:

RD(7) = RD(4)‖09 = RD(1)‖00‖09 = 1‖00‖09 = 10009 .

To describe the general procedure for computing RD(n), given that n ∈
NAF(D), we use the following two functions:

fD(n) :=





n/4 if n ≡ 0 (mod 4)

(n− 1)/4 if n ≡ 1 (mod 4)

n/2 if n ≡ 2 (mod 4)

(n− x)/4 if n ≡ 3 (mod 4) ,

(5.1)

gD(n) :=





00 if n ≡ 0 (mod 4)

01 if n ≡ 1 (mod 4)

0 if n ≡ 2 (mod 4)

0x if n ≡ 3 (mod 4) .

(5.2)

Note that fD returns an integer, and gD returns a string. Here is the proce-
dure described in pseudocode:
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Procedure 5.9: EVALα-RD(n)

α ← ε

while n 6= 0

do

{
α ← gD(n) ‖ α

n ← fD(n)

return α̂

Procedure 5.9 terminates on input n if and only if fD
i(n) = 0 for some

positive integer i. An easy calculation shows that, for D = {0, 1,−9},
fD

3(7) = 0, and so the procedure terminates on input n = 7. However,
fD(3) = 3 and so fD

i(3) = 3 6= 0 for all i, thus the procedure does not
terminate on input n = 3.

Using the previous lemmas, we can show Procedure 5.9 terminates on
input n if and only if n ∈ NAF(D). Instead of making use of the lemmas
individually, it is more convenient to summarize them as follows:

Lemma 5.10. For all n ∈ Z, n ∈ NAF(D) if and only if fD(n) ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD( fD(n))‖gD(n).

Now, suppose n ∈ NAF(D). Then the finite string RD(n) can be com-
puted with a finite number of recursive steps. This implies that there is
some positive integer i such that fD

i(n) = 0, which in turn implies that
the procedure terminates. Conversely, suppose the procedure terminates.
Then fD

i(n) = 0 for some i, and clearly 0 ∈ NAF(D). Thus, fD
i(n) ∈

NAF(D), and by the lemma n ∈ NAF(D).
Procedure 5.9 is named EVALα-RD(n). We justify this name by noting

that if the procedure terminates, it returns a string with no leading zeros
(i.e., α̂) equal to RD(n). We are not able to evaluate RD(n) for all values of n
using this procedure because we have not yet described a way to recognize
when RD(n) =⊥. We proceed to do this now.

To decide if D = {0, 1, x} is a NADS, it suffices to determine if there are
any n ∈ Z

+ for which Procedure 5.9 fails to terminate. We can determine if
the procedure will terminate by examining the iterates of fD.
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Let n be a positive integer. Observe that, for n 6≡ 3 (mod 4), we have
that

n > fD(n) ≥ 0 , (5.3)

and, for n ≡ 3 (mod 4), that

n > fD(n) ⇐⇒ n >
−x

3
(5.4)

fD(n) ≥ 0 ⇐⇒ n ≥ x . (5.5)

Since x is negative, we see that any iterate of the function fD, on input
n, always results in a nonnegative integer. Consider the graph Gn having
directed edges

n → fD(n) → fD
2(n) → fD

3(n) → · · · .

The vertices of Gn are nonnegative integers. Inequalities (5.3) and (5.4)
tell us that there must be some vertex of Gn that is less than −x

3 . Sup-
pose fD

i(n) <
−x
3 . We claim fD

i+1(n) <
−x
3 as well. This is clearly true

if fD
i(n) ≡ 0, 1, 2 (mod 4). If fD

i(n) ≡ 3 (mod 4) then

fD
i(n) <

−x
3

=⇒ fD
i(n)− x

4
<

−x
3 − x

4

=⇒ fD
i+1(n) <

−x− 3x
12

=
−x
3

,

and so the claim is true. The claim also tells us that if fD
i(n) <

−x
3 , then any

subsequent iterate of fD must be less than −x
3 .

From the preceding discussion it is clear that for a positive integer n,
either:

1. Gn is a path terminating at 0, or

2. Gn contains a directed cycle of integers in the interval
{1, 2, . . . ,

⌊−x
3
⌋
}.

If we can detect a directed cycle in Gn then we can determine whether or
not Procedure 5.9 will terminate on input n. To do this we need to compute
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and store some of the vertices of Gn. However, as Procedure 5.9 executes, it
computes all the vertices of Gn, so we might as well modify the procedure
to detect a directed cycle in Gn on its own. This modification is described
as Algorithm 5.11.

Algorithm 5.11: EVAL-RD(n)

α ← ε

while n >
−x

3

do

{
α ← gD(n) ‖ α

n ← fD(n)

S ← ∅

while n 6= 0

do





if n ∈ S
then return ⊥
S ← S ∪ {n}
α ← gD(n) ‖ α

n ← fD(n)

return α̂

Now we can use the title “Algorithm” rather than “Procedure”, because
EVAL-RD(n) terminates for every n ∈ Z

+. (For some positive integers, it
was shown that EVALα-RD(n) fails to terminate, which is why it cannot
technically be called an algorithm.) As its name suggests, Algorithm 5.11
evaluates RD(n) for any n ∈ Z

+. It is possible to show that the running
time of EVAL-RD(n) is O(lg n + |x|).

Returning to our main task of recognizing when {0, 1, x} is a NADS,
Algorithm 5.11 and the preceding analysis are very helpful since they lead
us to the following result:

Theorem 5.12. Suppose x is a negative integer and x ≡ 3 (mod 4). If every
element in the set {n ∈ Z

+ : n ≤ b−x/3c} has a {0, 1, x}-NAF, then {0, 1, x} is
a NADS.
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Proof. From inspection of Algorithm 5.11 this result is almost immediate,
however we can give a formal argument using the graph Gn.

Suppose the hypothesis is true. We must argue that {0, 1, x} is a NADS.
Take any n ∈ Z

+ and consider the graph Gn. Suppose Gn contains a di-
rected cycle. Let n0 be a vertex in this cycle. Then 1 ≤ n0 ≤ b−x/3c, and
Gn0 must contain the same directed cycle. This implies that n0 does not
have a {0, 1, x}-NAF, contrary to our hypothesis. So, Gn is a path terminat-
ing at 0, and thus n has a {0, 1, x}-NAF.

Theorem 5.12 suggests a computational method of determining if
{0, 1, x} is a NADS. For each n ∈ Z

+, n ≤ b−x/3c, compute EVAL-RD(n).
If all of these values have {0, 1, x}-NAFs then {0, 1, x} is a NADS; other-
wise, we find a value which does not have a {0, 1, x}-NAF which proves
that {0, 1, x} is not a NADS. To recognize a NADS, this method requires
b−x/3c calls to EVAL-RD(n). However, we can decrease this number, as
the next result shows.

Corollary 5.13. Suppose x is a negative integer and x ≡ 3 (mod 4). If every
element in the set {n ∈ Z

+ : n ≤ b−x/3c , n ≡ 3 (mod 4)} has a {0, 1, x}-
NAF, then {0, 1, x} is a NADS.

Proof. If {0, 1, x} is not a NADS then choose the smallest integer n0 ∈ Z
+

such that Gn0 contains a directed cycle. By Theorem 5.12 it must be that
n0 ≤ b−x/3c. Let n1 = fD(n0), then (n0, n1) is an arc of Gn. If n0 6≡ 3
(mod 4) then n1 < n0 and Gn1 contains the same directed cycle, contrary to
the choice of n0. Thus, it must be that n0 ≡ 3 (mod 4). So, if the hypothesis
is true, there can be no smallest positive integer which does not have a
{0, 1, x}-NAF. Hence {0, 1, x} is a NADS.

Now we can detect a NADS of the form {0, 1, x} with about b−x/12c
calls to EVAL-RD(n). An optimized version of an algorithm which utilizes
this method is described in Algorithm 5.14. We have used this algorithm
to find all the values of x greater than −106 such that {0, 1, x} is a NADS;
some of these values are listed in Appendix B.
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Algorithm 5.14: IS-NADS(x)

N ← 3
T ← ∅

while N ≤ −x
3

do





n ← N
S ← ∅

while n 6= 0 and n 6∈ T

do





if n ∈ S
then return “no”
S ← S ∪ {n}
n ← fD(n)

N ← N + 4
T ← T ∪ S

return “yes”

5.5 Directed Graphs and NADS

For small values of x, a convenient way to demonstrate that {0, 1, x} is a
NADS is to draw a number of directed graphs. From the previous section,
we know that {0, 1, x} is a NADS if and only if each directed graph, Gn,
n ∈ {1, 2, . . . ,

⌊−x
3
⌋
}, is a path terminating at zero. If we define

G(x) :=
b −x

3 c⋃

n=1

Gn ,

then we have that {0, 1, x} is a NADS if and only if G(x) is a directed tree
rooted at zero. If {0, 1, x} is not a NADS then G(x) must contain a directed
cycle. In this section we discuss some of the properties of G(x); in par-
ticular, we give a correspondence between strings in {00, 01, 0, 0x}∗ which
represent nonzero multiples of Mersenne numbers and directed cycles of
G(x).
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Figure 5.1: G(−61)
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Figure 5.2: G(−61) with arc labels.

We start with an example. Let x = −61. Since
⌊−x

3
⌋

= 20, G(x) is
the union of G1, G2, . . . G20. A drawing of G(x) is given in Figure 5.1. In
Appendix B, it is noted that {0, 1,−61} is a NADS and from Figure 5.1 we
see that is indeed the case since G(x) contains no directed cycle.

The function gD, which was defined in (5.2), can be used to label the
arcs of each of G1, G2, . . . G20 as follows:

n
gD(n)−−−→ fD(n)

gD( fD(n))−−−−−→ fD
2(n)

gD( fD
2(n))−−−−−−→ fD

3(n)
gD( fD

3(n))−−−−−−→ · · · .

Recall that gD returns a string from the set {00, 01, 0, 0x}. These arc labels
can be applied to G(x), as shown in Figure 5.2.
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The arc labels on this drawing of G(x) allow us to easily determine the
D-NAF of any node of G(x). If n is a node then, since G(x) is a tree, there
is a unique directed path from n to the root node (i.e., Gn). The sequence of
arc labels on the reverse of this path identifies the {0, 1, x}-NAF for n. For
example, if we let n = 14, then from Figure 5.2 the directed path from 14 to
0 is

14 0−→ 7 0x−→ 17 01−→ 4 00−→ 1 01−→ 0 .

If we read the sequence of arc labels above from right to left and con-
catenate them we get the string 01‖00‖01‖0x‖0. It is easily verified that
14 = (0100010x0)2.

To see why this is true in general, suppose the path from n to 0 has
length t and consider the label gD(n) on the arc (n, fD(n)). From the defi-
nition of fD and gD we have

fD(n) =
n− (gD(n))2

2|gD(n)|

=⇒ n = 2|gD(n)| fD(n) + (gD(n))2 , (5.6)

where |gD(n)| denotes the length of the string gD(n). Replacing n by fD(n)

in (5.6) we have

fD(n) = 2|gD( fD(n))| fD
2(n) + (gD( fD(n)))2 . (5.7)

Substituting (5.7) into (5.6) we find

n = 2|gD( fD(n))|+|gD(n)| fD
2(n) + 2|gD(n)|(gD( fD(n)))2 + (gD(n))2

=⇒ n = 2|gD( fD(n))‖gD(n)| fD
2(n) + (gD( fD(n))‖gD(n))2 .

This method of substitution can be applied again. In (5.6), n can be replaced
by fD

2(n) and then we can use this new equation to substitute for fD
2(n)

above, and so on.
Let α be the string formed by concatenating the arc labels along the

reverse of the path from n to 0. Then we have:

α = gD( fD
t−1(n))‖ · · · ‖gD( fD

2(n))‖gD( fD(n))‖gD(n) .
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From (5.6), it follows that

n = 2|α| fD
t(n) + (α)2. (5.8)

Since the length of the path from n to 0 is t, fD
t(n) = 0, and thus

n = (α)2 ,

that is, α is a D-NAF for n.
The main result of this section concerns directed cycles in G(x), so let

us consider an example that contains a directed cycle. Let x = −41. This
value of x is not listed in Appendix B, so we expect that {0, 1,−41} is not a
NADS, and the drawing of G(x) in Figure 5.3 establishes this. Note, G(x)
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Figure 5.3: G(−41) with arc labels.

consists of two components. Any node in the component of G(x) which
does not contain 0 does not have a D-NAF since there is no directed path
from that node to 0.

Consider the directed cycle of G(x). This cycle can be considered as a
directed path from 3 to itself:

3 0x−→ 11 0x−→ 13 01−→ 3 .

Reading the sequence of arc labels above from right to left and concate-
nating them we get the string 01‖0x‖0x. This string has length 6 and be-
cause of this we claim that 26 − 1 must divide (010x0x)2. Since x = −41,
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(010x0x)2 = −189 and it is easy to check that this claim is valid. The fol-
lowing result provides an explanation.

Theorem 5.15. Suppose x is a negative integer and x ≡ 3 (mod 4). Then, G(x)

has a directed cycle if and only if ∃α ∈ {00, 01, 0, 0x}∗ such that (α)2 6= 0 and
2|α| − 1 | (α)2.

Proof. Suppose G(x) has a directed cycle. Choose a node n in some directed
cycle of G(x) and let t be the length of this cycle. Then we have

n
gD(n)−−−→ fD(n)

gD( fD(n))−−−−−→ fD
2(n) → · · · → fD

t−1(n)
gD( fD

t−1(n))−−−−−−−→ n .

Some node in this cycle must be congruent to 3 modulo 4. If not, then the
iterates of fD are strictly decreasing on this cycle and we get

n > fD(n) > fD
2(n) > · · · > fD

t−1(n) > n ,

which is a contradiction. A consequence of this fact is that one of the arcs
in the cycle is labeled 0x. As before, let

α = gD( fD
t−1(n))‖ · · · ‖gD( fD

2(n))‖gD( fD(n))‖gD(n) .

Note, (α)2 6= 0 because α contains the substring 0x. Equation (5.8) gives us

n = 2|α| fD
t(n) + (α)2 .

Since fD
t(n) = n, we have

n = 2|α|n + (α)2

=⇒ −n(2|α| − 1) = (α)2 .

Thus, (α)2 6= 0 and 2|α| − 1 | (α)2, as required.

Suppose α ∈ {00, 01, 0, 0x}∗ has the property that (α)2 6= 0 and 2|α| −
1 | (α)2. The string 0x must be a substring of α; otherwise, 0 < (α)2 <

2|α| − 1, and this contradicts our hypothesis that 2|α| − 1 | (α)2. We claim
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that we can assume (α)2 is odd. To see why, let α′ be any left cyclic shift of
α. For some u ∈ Z

+, we have

(α′)2 ≡ 2u(α)2 (mod 2|α| − 1)

=⇒ (α′)2 ≡ 0 (mod 2|α| − 1) ,

and since |α| = |α′|, this gives us that 2|α′ |− 1 | (α′)2. Also, (α′)2 6= 0 because
(α)2 6= 0. Now, α contains the substring 0x, so it must have some left cyclic
shift that ends in 1 or x; that is, for some α′, (α′)2 is odd. Thus, if (α)2 is not
odd, we can replace α by α′ where (α′)2 is odd.

Let n = − (α)2
2|α|−1 . We will show n is in a directed cycle of G(x). Since α

contains the substring 0x, |α| ≥ 2, and so we have the following:

−n(2|α| − 1) = (α)2

=⇒ n = 2|α|n + (α)2 (5.9)

=⇒ n ≡ (α)2 (mod 4)

=⇒ α = α1‖gD(n), where α1 ∈ {00, 01, 0, 0x}∗ .

Using these implications, we can compute fD(n) as follows:

fD(n) =
n− (gD(n))2

2|gD(n)|

=
2|α|n + (α)2 − (gD(n))2

2|gD(n)|

=
2|α|n + (α1‖gD(n))2 − (gD(n))2

2|gD(n)|

= 2|α|−|gD(n)|n + (α1)2

= 2|α1|n + (α1)2 . (5.10)

Equation (5.10) is similar to equation (5.9). If |α1| ≥ 2, the preceding argu-
ments can be reapplied to compute fD

2(n). In doing so, we find

fD
2(n) = 2|α2|n + (α2)2 ,

where α1 = α2‖gD( fD(n)) and α2 ∈ {00, 01, 0, 0x}∗. We can continue com-
puting iterates of fD in this manner until, for some t ≥ 1, we obtain

fD
t(n) = 2|αt |n + (αt)2 ,
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where αt−1 = αt‖gD( fD
t−1(n)), αt ∈ {00, 01, 0, 0x}∗ and |αt| < 2.

There are two cases to consider. If |αt| = 0 then it must be that αt = ε,
and thus

fD
t(n) = 20n + (ε)2 = n .

Thus, n is in a directed cycle (of length t) in G(x). If |αt| = 1 then it must be
that αt = 0, and thus

fD
t(n) = 21n + (0)2 = 2n .

Recall that (α)2 is odd. Since n = 2|α|n + (α)2 and |α| ≥ 2, n is also odd.
Thus, 2n ≡ 2 (mod 4) and so

fD
t+1(n) =

2n
2

= n .

Thus, n is in a directed cycle (of length t + 1) in G(x).

Theorem 5.15 gives a complete characterization of NADS, however, it is
unclear if this characterization is helpful in finding values of x which make
{0, 1, x} a NADS. On the other hand, Theorem 5.15 is very useful for finding
values of x for which {0, 1, x} is not a NADS. We give some examples of this
in the next section.

One operation we used in the proof of Theorem 5.15 was a cyclic shift
of the string α ∈ {00, 01, 0, 0x}∗. If we consider this operation more closely,
then we can strengthen Theorem 5.15.

For any nonempty string, consider the smallest positive number of cyclic
shifts that when applied to this string results in the same string. Such an
integer always exists since, if the string has length `, then ` cyclic shifts will
suffice. We call this number the cyclic order of the string. Using the quotient-
remainder theorem, it is easy to show that the cyclic order of a string must
divide its length.

Corollary 5.16. In the statement of Theorem 5.15, we can impose the additional
restriction that the string α ∈ {00, 01, 0, 0x}∗ must have cyclic order equal to |α|.

Proof. We need to show that
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i) ∃α ∈ {00, 01, 0, 0x}∗ such that (α)2 6= 0 and 2|α| − 1 | (α)2, if and only
if

ii) ∃α ∈ {00, 01, 0, 0x}∗ such that (α)2 6= 0, 2|α| − 1 | (α)2 and the cyclic
order of α equals |α|.

Clearly, ii) implies i). To see that i) implies ii), suppose α ∈ {00, 01, 0, 0x}∗

with (α)2 6= 0 and 2|α| − 1 | (α)2, but the cyclic order of α is less than |α|. Let
d be the cyclic order of α. Since d divides |α|, we have

α = α1‖α1‖ · · · ‖α1

where α1 is composed of the rightmost d digits of α, and the cyclic order of
α1 is equal to |α1| = d. Observe that 2|α|−1

2d−1 is an integer and

(α)2 =
2|α| − 1
2d − 1

(α1)2.

Now, since (α)2 6= 0 we have (α1)2 6= 0. Also,

2|α| − 1 | (α)2 =⇒ 2|α| − 1
2d − 1

(2d − 1) | 2|α| − 1
2d − 1

(α1)2

=⇒ 2d − 1 | (α1)2.

Since d = |α1|, we see that the string α1 satisfies all the conditions of ii).

The remainder of this chapter reads as follows. In Section 5.6, we give
some infinite families of values for x for which D is not a NADS. In Section
5.7, we give some infinite families of values for x for which D is a NADS.
We conclude by mentioning some additional problems related to NADS in
Section 5.8.

5.6 Infinite Families of non-NADS

Consider the list of x values which appears in Appendix B. If we examine
the first few entries of this list we find no multiples of 3. In fact, this is true
of the whole list, and the same can be said of multiples of 7 and 31. These
observations are a consequence of the following result:
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Corollary 5.17. Let x be a negative integer with x ≡ 3 (mod 4). If (2s − 1)|x
for any s ≥ 2, then {0, 1, x} is not a NADS.

Proof. This result follows from Theorem 5.15, however it is just as easy to
give a direct proof. Let n = −x/(2s − 1). We show Gn contains a directed
cycle. We have

n(2s − 1) ≡ −x (mod 4)

=⇒ n(0− 1) ≡ −3 (mod 4)

=⇒ n ≡ 3 (mod 4) .

Note that,

n− x =
−x

2s − 1
− x =

−x− x(2s − 1)

2s − 1
= 2s −x

2s − 1
= 2sn .

Now,
fD(n) =

n− x
4

= 2s−2n

Subsequent iterates of fD will cancel out the factor 2s−2. Thus, for some i,
fD

i(n) = n and so Gn contains a directed cycle.

Corollary 5.17 says that many sets {0, 1, x} are not NADS. In particular,
it rules out sets where x is divisible by 3, 7, 31, etc. Besides numbers of
the form 2s − 1, s ≥ 2, there are many other non-allowable factors of x. For
example, if any of the integers

73, 85, 89, 337, 451, 1103, 1205, 1285, 2089

divides x then it is possible to show that, for a carefully chosen value of n,
Gn contains a directed cycle. This technique of proof is not fully satisfying
since it does little to elucidate why one integer is a non-allowable factor and
another is not. A better approach is presented in the following corollary to
Theorem 5.15.

Corollary 5.18. Suppose x0 is an integer. If ∃β ∈ {00, 0, 0x0}∗ such that (β)2 6=
0 and 2|β| − 1 | (β)2 then x0 is a non-allowable factor.
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Proof. Notice there are no restrictions put on the integer x0. Let x be a neg-
ative integer with x ≡ 3 (mod 4) and x0|x. We must show {0, 1, x} is not a
NADS. Let α be the string formed by changing every occurrence of x0 in β

to x. It is easy to see that (α)2 = x
x0

(β)2, α ∈ {00, 0, 0x}∗ and |α| = |β|. Now,

2|β| − 1 | (β)2

=⇒ 2|β| − 1 | x
x0

(β)2

=⇒ 2|β| − 1 | (α)2

=⇒ 2|α| − 1 | (α)2

Since α ∈ {00, 01, 0, 0x}∗ and (α)2 6= 0, by Theorem 5.15 we have that
{0, 1, x} is not a NADS.

We can use this result to generate non-allowable factors. All we need
to do is find an integer x0 and a string β ∈ {00, 0, 0x0}∗, where β is not an
all-zero string, such that 2|β| − 1 | (β)2. To do this we first choose a string
β′ ∈ {00, 0, 01}∗ that is not an all-zero string. Now, we find an integer x0

such that 2|β′ | − 1 | x0(β′)2. The smallest positive value of x0 that satisfies
this relation is

2|β′ | − 1
gcd(2|β′ | − 1, (β′)2)

.

We assign x0 this value. If we change each occurrence of 1 in the string β′

to x0 we get a string β ∈ {00, 0, 0x0}∗ such that (β)2 6= 0 and 2|β| − 1 | (β)2.
So, by the corollary, x0 is a non-allowable factor. Here is a short example.
Let β′ = 000010101. Then |β′| = 9, (β′)2 = 21, and so

x0 =
29 − 1

gcd(29 − 1, 21)
= 73 .

Thus, 73 is a non-allowable factor.
More generally, Theorem 5.15 be can used to generate infinite families

of non-NADS which do not necessarily involve non-allowable factors. We
know {0, 1, x} is not an NADS if we can find a string α ∈ {00, 01, 0, 0x}∗

such that −n(2|α| − 1) = (α)2. If we fix α and solve the resulting integer
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equation for x this will give us an infinite family of non-NADS. For exam-
ple, suppose we fix α = 01010x0x, then

− n(2|α| − 1) = (01010x0x)2

⇐⇒ − n(28 − 1) = (01010000)2 + x(00000101)2

⇐⇒ − 255n = 80 + 5x

⇐⇒ − 51n = 16 + x .

Thus, if x ≡ −16 (mod 51) then {0, 1, x} cannot be a NADS.
Some of our first results on infinite families of non-NADS, which were

discovered empirically, are unified as corollaries of Theorem 5.15. The fol-
lowing two results demonstrate this.

Corollary 5.19. If 3−x
4 = 11 · 2i, where i ≥ 0, then {0, 1, x} is not a NADS.

Proof. We have,

3− x
4

= 11 · 2i

=⇒ 3− x = 11 · 2i+2

=⇒ 11− x = 11 · 2i+2 + 8

=⇒ − 11(2i+2 − 1) = 8 + x

=⇒ − 11(2i+2 − 1) = (0100x)2 .

The length of the string 0100x is 5. If i + 2 ≥ 5 we can prepend zeros to
0100x and build a string α such that |α| = i + 2; thus, by Theorem 5.15 we
are done. If i + 2 < 5, it must be that i = 0, 1, 2.

When i = 0, x = −41 and from the drawing in Figure 5.3 we see G(−41)

has a directed cycle. When i = 1, x = −85 and then G3 is a directed cycle:

3→ 22→ 11→ 24→ 6→ 3 .

When i = 2, x = −173 and G3 is also a directed cycle:

3→ 44→ 11→ 46→ 23→ 49→ 12→ 3 .

In any case, {0, 1, x} is not an NADS, as required.
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Corollary 5.20. Let 3−x
4 = 7 · 2i, where i ≥ 0. Then {0, 1, x} is an NADS if and

only if i ∈ {0, 1}.

Proof. We have,

3− x
4

= 7 · 2i

=⇒ 3− x = 7 · 2i+2

=⇒ 7− x = 7 · 2i+2 + 4

=⇒ − 7(2i+2 − 1) = 4 + x

=⇒ − 7(2i+2 − 1) = (010x)2 .

Arguing as in the previous corollary, if i + 2 ≥ 4 then by Theorem 5.15,
{0, 1, x} is not a NADS. If i + 2 < 4, it must be that i = 0, 1.

When i = 0, x = −25 and when i = 1, x = −53. By drawing the
graphs G(−25) and G(−53), it is easy to verify that both of these values
give NADSs (this is confirmed in Appendix B).

Not all infinite families of non-NADS are derived from Theorem 5.15.
Consider the set of integers NAF({0, 1}). If this set is ordered, from small-
est to largest, we sometimes notice large gaps between consecutive ele-
ments. One type of gap is described as follows. For i ≥ 0, let

mi :=
⌊

2i+1 − 1
3

⌋
.
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Computing the first few values of mi, we have

i mi

0 0
1 1 = (1)2

2 2 = (10)2

3 5 = (101)2

4 10 = (1010)2

5 21 = (10101)2

6 42 = (101010)2

7 85 = (1010101)2
...

...

It is easy to see that if a ∈ NAF({0, 1}) then it is never true that mi < a < 2i.
This observation gives us another infinite family.

Theorem 5.21. Let x be an integer such that 4mi − 1 < −x < 3 · 2i for some
i ≥ 0. If there exists n ∈ {1, 2, . . . b−x/3c} with n ≡ 3 (mod 4) then {0, 1, x}
is not a NADS.

Proof. We can assume x ≡ 3 (mod 4), since otherwise {0, 1, x} cannot be a
NADS. Suppose to the contrary that {0, 1, x} is a NADS. Then, in the graph
G(x), there must be a directed path from n to 0. Let n0 be the integer on this
path that is closest to 0 and is congruent to 3 modulo 4. The arc labels on the
path from n0 to 0 give the {0, 1, x}-NAF for n0. It must be that n0 = (α‖0x)2

with α ∈ {00, 01, 0}∗ (if α contained the substring 0x this would contradict
our choice of n0).

Now,

1 ≤ n0 ≤ −x/3

=⇒ 1 ≤ (α‖0x)2 ≤ −x/3

=⇒ 1 ≤ 4(α)2 + x ≤ −x/3

=⇒ 1− x
4
≤ (α)2 ≤

−x/3− x
4

=⇒ 1− x
4
≤ (α)2 ≤ −x/3 .
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By hypothesis, we have

4mi − 1 < −x and − x < 3 · 2i

=⇒ mi <
1− x

4
and

−x
3

< 2i

Thus, for some i ≥ 0, we have

mi < (α)2 < 2i

which is a contradiction. Thus, {0, 1, x} is not a NADS.

For example, if i = 5 then −(4m5 − 1) = −83 and −3 · 25 = −96. Theo-
rem 5.21 tells us that no value of x with−83 < x < −96 can give a NADS. In
addition, the proof of Theorem 5.21 also gives us some information about
the graphs G(x) for such values of x. For each of these graphs, in the com-
ponent that contains 0 there can be no integer congruent to 3 modulo 4 (or
equivalently, no arc label in this component can be 0x). This property can
be observed in G(−85) which is drawn in Figure 5.4. Avoine, Monnerat and
Peyrin [3] have observed that the converse of this statement also holds.

Proposition 5.22 (Avoine, Monnerat, Peyrin). If G(x) has the property that
no arc in the component of G(x) that contains 0 is labeled 0x, then x must satisfy
4mi − 1 < −x < 3 · 2i for some i ≥ 0.

A proof of this fact can be found in [3], however, we provide a different
proof here.

Proof. We prove the contrapositive of the statement. Suppose x does not
satisfy 4mi − 1 < −x < 3 · 2i for any i ≥ 0. Define

i0 := blg(−x/3)c ,

and observe that
3 · 2i0 ≤ −x ≤ 4mi0+1 − 1.

The value 2i0+2 is in this interval so either

3 · 2i0 ≤ −x < 2i0+2 or 2i0+2 ≤ −x ≤ 4mi0+1 − 1.
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Figure 5.4: G(−85) with arc labels.

If the bound on the left holds, consider n = 2i0+2 + x. Clearly, n has a
{0, 1, x}-NAF. Note that

−x < 2i0+2 3 · 2i0 ≤ −x

=⇒ 0 < 2i0+2 + x =⇒ 2i0+2 ≤ −4x/3

=⇒ 1 ≤ n =⇒ 2i0+2 + x ≤ −x/3

=⇒ n ≤ −x/3.

So, n is a vertex of G(x), it is in the same component as 0 and the arc leaving
it is labeled 0x.

If the bound on the right holds, consider n = 4mi0+1 + x. Clearly, n has
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a {0, 1, x}-NAF. Note that

−x ≤ 4mi0+1 − 1 2i0+2 ≤ −x

=⇒ 1 ≤ 4mi0+1 + x =⇒ (2i0+2 − 1)/3 < −x/3

=⇒ 1 ≤ n =⇒ mi0+1 < −x/3

=⇒ 4mi0+1 + x < −4x/3 + x

=⇒ n < −x/3.

So, n is a vertex of G(x), it is in the same component as 0 and the arc leaving
it is labeled 0x.

This proves the result.

5.7 Infinite Families of NADS

If n is a nonnegative integer, w(n) denotes the number of ones in the usual
{0, 1}-radix 2 representation of n (i.e., the Hamming weight of n). We use
the function w(n) to describe two infinite families.

Theorem 5.23. Let x be a negative integer with x ≡ 3 (mod 4). If w
( 3−x

4
)

= 1,
then {0, 1, x} is a NADS.

Proof. Suppose {0, 1, x} is not a NADS. Then there is some n ∈ Z
+ for

which the graph Gn contains a directed cycle. We can assume n is a vertex
of this cycle. Let t be the number of vertices in the cycle, then

n → fD(n) → fD
2(n) → · · · → fD

t−1(n) → n .

Let n′ = fD(n). We want to relate w(n′) to w(n). There are four possible
residues of n modulo 4, and for the residues 0, 1, 2 we can determine w(n′)
exactly:

n mod 4 n′ w(n′)
0 n

4 w(n)

1 n−1
4 w(n)− 1

2 n
2 w(n)
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If n ≡ 3 (mod 4), we have

n′ =
n− x

4
=

n− 3
4

+
3− x

4
.

By hypothesis w
( 3−x

4
)

= 1, and so

w(n′) = w
(

n− 3
4

+
3− x

4

)

≤ w
(

n− 3
4

)
+ w

(
3− x

4

)

= w(n)− 2 + 1

= w(n)− 1 .

So, in any case, w(n′) ≤ w(n), but if n is odd then we have the strict in-
equality w(n′) < w(n). Applying this inequality to the integers in the cycle
of Gn we see

w(n) ≥ w( fD(n)) ≥ w( fD
2(n)) ≥ · · · ≥ w( fD

t−1(n)) ≥ w(n) .

However, some vertex in this cycle must be congruent to 3 modulo 4.
If not, then the iterates of fD are strictly decreasing on this cycle and we
get

n > fD(n) > fD
2(n) > · · · > fD

t−1(n) > n ,

which is a contradiction. So, there is some odd vertex in the cycle which
means one of the inequalities relating the Hamming weights of adjacent
vertices is strict. This implies that w(n) > w(n), which is a contradiction.

So, Gn cannot contain a directed cycle, and hence {0, 1, x} is a NADS.

When x is negative, w( 3−x
4 ) = 1 if and only if 3−x

4 = 2t, t ≥ 0. Letting
t = 0, 1, 2, 3, 4, . . . we see that Theorem 5.23 asserts that x = −1,−5,−13,
−29,−61, . . . all yield NADS. Our next result also describes an infinite fam-
ily using the function w(n). However, when compared to the previous re-
sult, proving that {0, 1, x} is a NADS for each x in this second infinite family
seems to be more difficult.
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Theorem 5.24. Let x be a negative integer with x ≡ 3 (mod 4). If w
( 3−x

4
)

= 2
and 2s − 1 does not divide x for any s ∈ Z

+, s ≥ 2, then {0, 1, x} is a NADS.

To prove this result we suppose x is a negative integer with x ≡ 3
(mod 4) and w

( 3−x
4
)

= 2. We will argue that if {0, 1, x} is not a NADS
then it must be that 2s − 1 divides x for some s ∈ Z

+, s ≥ 2.

Suppose {0, 1, x} is not a NADS. Then, by Theorem 5.15 there exists a
string α ∈ {00, 01, 0, 0x}∗ such that (α)2 6= 0 and 2|α| − 1 | (α)2. Moreover,
by the proof of Theorem 5.15, if we take n = −(α)2

2|α|−1 , then Gn is a directed
cycle and the concatenation of its arc labels gives the string α.

Let t be the number of vertices in Gn. Then we have

n
gD(n)−−−→ fD(n)

gD( fD(n))−−−−−→ fD
2(n) → · · · → fD

t−1(n)
gD( fD

t−1(n))−−−−−−−→ n .

Let n′ = fD(n). We want to relate w(n′) to w(n). There are four possible
residues of n modulo 4, and for the residues 0, 1, 2 we can determine w(n′)
exactly:

n mod 4 n′ w(n′)
0 n

4 w(n)

1 n−1
4 w(n)− 1

2 n
2 w(n)

If n ≡ 3 (mod 4), we have

n′ =
n− x

4
=

n− 3
4

+
3− x

4
.

By hypothesis w
( 3−x

4
)

= 2, and so

w(n′) = w
(

n− 3
4

+
3− x

4

)

≤ w
(

n− 3
4

)
+ w

(
3− x

4

)

= w(n)− 2 + 2

= w(n) .
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So, in any case, w(n′) ≤ w(n), but if n ≡ 1 (mod 4) then we have the strict
inequality w(n′) < w(n). Applying this inequality to the integers in the
cycle of Gn we see

w(n) ≥ w( fD(n)) ≥ w( fD
2(n)) ≥ · · · ≥ w( fD

t−1(n)) ≥ w(n) .

No vertex in this cycle can be congruent to 1 modulo 4; otherwise, one of
the inequalities above would be strict and this would imply w(n) > w(n),
which is a contradiction. Also, at least one vertex in this cycle is congruent
to 3 modulo 4; otherwise, by definition of fD, the vertices would form a
strictly decreasing integer sequence which would imply n > n, which is a
contradiction.

Since no arc in Gn is labeled 01, α is a concatenation of strings from the
set {00, 0, 0x}. Note that α is nonadjacent, and every cyclic shift of α is also
nonadjacent (i.e., α is cyclically nonadjacent).

The integer (α)2 is divisible by x. Let

A =
(α)2

x
, and a = |α| .

Since 2|α| − 1 | (α)2 we have

−xA ≡ 0 (mod 2a − 1) . (5.11)

Since w
( 3−x

4
)

= 2, for some u, v ∈ Z we have

−x = 2u + 2v − 3, u > v ≥ 2 ,

and now (5.11) implies

(2u + 2v − 3)A ≡ 0 (mod 2a − 1), where u > v ≥ 2 . (5.12)

To finish the proof we need a lemma. Before we can introduce the
lemma, we need a definition.

Definition 5.25. An integer B ∈ Z is length-` cyclically nonadjacent if B 6= 0
and there is a cyclically nonadjacent string β ∈ {0, 1}` such that (β)2 = B.
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Note that in this definition, the string β may have leading zeros. For
example, 21 is length-6 cyclically nonadjacent (6-CNA, for short) since the
string 010101 ∈ {0, 1}6 is cyclically nonadjacent and (010101)2 = 21. How-
ever, 21 is not 5-CNA because the only string in {0, 1}5 which gives a rep-
resentation of 21 is 10101, but the cyclic shift 01011 of this string is not
nonadjacent. Now we are ready for the lemma.

Lemma 5.26. If B is length-` cyclically nonadjacent and the congruence

(2u + 2v − 3)B ≡ 0 (mod 2` − 1)

holds for some u, v ∈ Z, u > v ≥ 2, then either

gcd(u, v− 1) > 1 or gcd(u− 1, v) > 1 .

Assuming, for the moment, the truth of Lemma 5.26, our proof of Theo-
rem 5.24 continues as follows. The string α is cyclically nonadjacent, there-
fore so is the string formed by changing each occurrence of x in α to 1. This
establishes that A is length-a cyclically nonadjacent, because A = (α)2

x . Now
we can apply Lemma 5.26 to (5.12) and deduce, without loss of generality,
that gcd(u, v− 1) > 1. Let s = gcd(u, v− 1). Note that

−x = 2u + 2v − 3 = (2u − 1) + 2(2v−1 − 1) .

Since gcd(2u − 1, 2v−1 − 1) = 2gcd(u,v−1) − 1 = 2s − 1 we have that 2s − 1 | x,
where s ∈ Z

+ and s ≥ 2, which is exactly what we wanted to show. (If x
was chosen so as to satisfy all the conditions of Theorem 5.24, 2s − 1 cannot
divide x, thus it must be that {0, 1, x} is a NADS.) This concludes our proof
of Theorem 5.24 , however we still have to deal with Lemma 5.26.

In proving Lemma 5.26, we will make use of the following easy result:

Lemma 5.27. For any two nonempty subsets S, T ⊆ {0, 1, . . . , `− 1},

∑
s∈S

2s ≡ ∑
t∈T

2t (mod 2` − 1)

if and only if S = T.
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Proof. We have 0 < ∑s∈S 2s ≤ 2` − 1, and similarly for ∑t∈T 2t. Thus,

∑
s∈S

2s ≡ ∑
t∈T

2t (mod 2` − 1)

⇐⇒ ∑
s∈S

2s = ∑
t∈T

2t

⇐⇒ S = T .

Proof of Lemma 5.26. We fix some notation that will help describe our proof
of Lemma 5.26. From now on, we let B be an integer which satisfies the
hypothesis of Lemma 5.26. B is `-CNA and we let β = b`−1 . . . b1b0 be the
string in {0, 1}` which establishes this. Further, let S = {i : bi = 1}. For
k ∈ Z, define

S + k = {(s + k) mod ` : s ∈ S} .

The set S + k is called a translate of S modulo `. Using this notation, we
have

(2u + 2v − 3)B ≡ 0 (mod 2` − 1)

⇐⇒ (2u + 2v)B ≡ 3B (mod 2` − 1)

⇐⇒ (S + u) ∪ (S + v) = (S + 1) ∪ S , (5.13)

where the last equivalence follows from the fact that B is `-CNA and Lemma
22. Because B is `-CNA, the union on the right-hand side of (5.13), and
hence also the left-hand side, is disjoint. We will establish Lemma 5.26 by
analyzing this set equality.

We need one more concept. We previously introduced the cyclic or-
der of a string. We define

↪→
ord(B) to be the cyclic order of the string β =

b`−1 . . . b1b0 (recall that B = (β)2). Equivalently,
↪→
ord(B) can be defined as

the smallest positive integer k such that

2kB ≡ B (mod 2` − 1) .

Such an integer always exists since

2`B ≡ B (mod 2` − 1) .
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Using the quotient-remainder theorem, it is easy to show for any m ∈ Z
+

that
2mB ≡ B (mod 2` − 1) ⇐⇒ ↪→

ord(B)|m .

Applying this result, we see that
↪→
ord(B)|`.

We claim that we can assume
↪→
ord(B) = ` in the hypotheses of Lemma

5.26. We justify this claim as follows. Let k =
↪→
ord(B) and suppose k < `.

Since k|` we can write km = ` for some positive integer m. Since B is `-CNA
we have

B = (2(m−1)k + · · ·+ 22k + 2k + 1)B′ =
2` − 1
2k − 1

B′

where B′ = (bk−1 . . . b1b0)2, and B′ is k-CNA. Now, for any positive integer
j, we have

2jB ≡ B (mod 2` − 1)

⇐⇒ 2j 2` − 1
2k − 1

B′ ≡ 2` − 1
2k − 1

B′ (mod
2` − 1
2k − 1

2k − 1)

⇐⇒ 2jB′ ≡ B′ (mod 2k − 1) ,

and so it must be that
↪→
ord(B′) = k (i.e.,

↪→
ord(B′) is as large as possible). Also,

we have

(2u + 2v − 3)B ≡ 0 (mod 2` − 1)

⇐⇒ (2u + 2v − 3)
2` − 1
2k − 1

B′ ≡ 0 (mod
2` − 1
2k − 1

2k − 1)

⇐⇒ (2u + 2v − 3)B′ ≡ 0 (mod 2k − 1) .

So if we can prove Lemma 5.26 for all B with
↪→
ord(B) as large as possible,

then by the above arguments, it is true for all B.
Returning to the set equality described in (5.13), recall

S ⊆ {0, 1, . . . , ` − 1}. Since S is a subset of integers its elements can be
ordered from smallest to largest. From S we define a sequence, d(S), of
differences modulo `:

d(S) := (s1 − s0, s2 − s1, . . . , sp−1 − sp−2, s0 − sp−1)
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where

S = {s0, s1, . . . , sp−1} with s0 < s1 < · · · < sp−1 .

Because B is `-CNA, each of the differences in the sequence d(S) must be at
least 2. The definition of d(S) can be extended to the translates of S. For any
k ∈ Z, S + k can be considered as a subset of {0, 1, . . . , ` − 1} and hence it
can also be ordered from smallest to largest. Thus, d(S + k) can be defined
in the same way as d(S). It is easy to show that d(S + k) is a cyclic shift of
d(S). Because of this property there are at most p different sequences of the
form d(S + k) where p = |S|. In fact, we can show there are exactly p such
sequences.

Let

ti := `− si , for 0 ≤ i ≤ p− 1 .

The smallest element in each of the translates S + t0, S + t1, . . . , S + tp−1 is
equal to 0. Thus, for i, j ∈ {0, 1, . . . , p− 1}, we have

d(S + ti) = d(S + tj) ⇐⇒ S + ti = S + tj .

Let i ≥ j. Then we have

S + ti = S + tj

⇐⇒ 2ti B ≡ 2tj B (mod 2` − 1)

⇐⇒ 2ti−tj B ≡ B (mod 2` − 1)

⇐⇒ ↪→
ord(B) | (ti − tj)

⇐⇒ ` | (ti − tj)

⇐⇒ ti = tj .

So, each of the sequences d(S + t0), d(S + t1), . . . , d(S + tp−1) is distinct and
hence there are exactly p different sequences of the form d(S + k) where
k ∈ Z.

By applying a lexicographical ordering to the sequences d(S + t0),
d(S + t1), . . . , d(S + tp−1) we can identify a unique smallest sequence. Let



Chapter 5 Nonadjacent Digit Sets 131

t∗ be the value of ti which corresponds to this smallest sequence. Note that

(S + u) ∪ (S + v) = (S + 1) ∪ S

⇐⇒
(
(S + u) ∪ (S + v)

)
+ t∗ =

(
(S + 1) ∪ S

)
+ t∗

⇐⇒ (S + u + t∗) ∪ (S + v + t∗) = (S + 1 + t∗) ∪ (S + t∗) . (5.14)

We have 0 ∈ S + t∗, so either 0 ∈ S + u + t∗ or 0 ∈ S + v + t∗. Without loss of
generality we can assume 0 ∈ S + v + t∗. We will show S + v + t∗ = S + t∗.

Let
d(S + t∗) = (d0, d1, d2, . . . , dp−1) ,

and note that

S + t∗ = {0, d0, d1 + d0, d2 + d1 + d0, . . .} .

Also, let

d(S + u + t∗) = (u0, u1, u2, . . . , up−1)

d(S + v + t∗) = (v0, v1, v2, . . . , vp−1) .

Since d(S + t∗) is a lexicographically smallest sequence of the form d(S + k)
where k ∈ Z, we have

d(S + t∗) ≤ d(S + u + t∗) and d(S + t∗) ≤ d(S + v + t∗) .

Recall 0 ∈ S + t∗ and 0 ∈ S + v + t∗. Since 0 ∈ S + t∗, we have 1 ∈
S + 1 + t∗. By (5.14), either 1 ∈ S + u + t∗ or 1 ∈ S + v + t∗. Suppose
1 ∈ S + v + t∗. Then both 0 and 1 are elements of S + v + t∗. No two
elements in any translate of S can have a difference of 1; otherwise, this
contradicts the fact that B is `-CNA. So, it must be that 1 ∈ S + u + t∗.

We now know the smallest elements in each of the sets S + u + t∗, S +

v + t∗, S + 1 + t∗, S + t∗. The next smallest element of S + t∗ is d0. Again,
by (5.14), either d0 ∈ S + u + t∗ or d0 ∈ S + v + t∗. Suppose d0 ∈ S + u + t∗.
Then, since both 1 and d0 are in S + u + t∗ and 1 is the smallest element of
this set, we have

u0 ≤ d0 − 1 < d0 .
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However, d(S + t∗) ≤ d(S + u + t∗) implies that d0 ≤ u0 which gives a
contradiction. So, it must be that d0 ∈ S + v + t∗, and hence, d0 + 1 ∈
S + u + t∗.

From our lexicographical ordering we have d0 ≤ v0. Since the smallest
element of S + v + t∗ is 0 and d0 is also in this set, we have

v0 ≤ d0 − 0 = d0 .

Hence, v0 = d0. Similarly,

d0 ≤ u0 and u0 ≤ (d0 + 1)− 1 = d0 ,

and so u0 = d0. From these two equalities, we have that d0 and d0 + 1 are
the second smallest elements of the sets S + v + t∗ and S + u + t∗, respec-
tively. Further, our lexicographical ordering now implies that d1 ≤ v1 and
d1 ≤ u1.

The next smallest element of S + t∗ is d1 + d0. Either d1 + d0 ∈ S + u + t∗

or d1 + d0 ∈ S + v + t∗. Suppose d1 + d0 ∈ S + u + t∗. This implies that

u1 ≤ (d1 + d0)− (d0 + 1) = d1 − 1 < d1 ,

which is a contradiction. So, d1 + d0 ∈ S + v + t∗, and hence, d1 + d0 + 1 ∈
S + u + t∗.

We now have

d1 ≤ v1 and v1 ≤ (d1 + d0 + 1)− (d0 + 1) = d1 ,

so v1 = d1. Also

d1 ≤ u1 and u1 ≤ (d1 + d0)− d0 = d1 ,

and so u1 = d1. Thus we can identify the third smallest elements of the sets
S + v + t∗ and S + u + t∗. Further, we have that d2 ≤ v2 and d2 ≤ u2.

By repeating the previous arguments, we can show that each element
of S + t∗, from smallest to largest, must also be an element of S + v + t∗.
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Thus, S + v + t∗ = S + t∗ and so S + v = S. In (5.13), the union operations
are both disjoint, hence S + v = S implies S + u = S + 1. Now,

S + v = S

=⇒ 2vB ≡ B (mod 2` − 1)

=⇒ ↪→
ord(B) | v

=⇒ ` | v .

And similarly, ` | (u − 1). Thus gcd(u − 1, v) ≥ ` > 1. This proves the
lemma.

Looking at an example can help us connect the different steps in the
proof of Theorem 5.24. Suppose x = 3 − (2u + 2v) with u > v ≥ 2.
If {0, 1, x} is not a NADS then ∃α ∈ {00, 01, 0, 0x}∗ such that (α)2 ≡ 0
(mod 2|α| − 1). By the definition of x, it must be that α ∈ {00, 0, 0x}∗. We
will suppose α = 0x0x000x0x0x000x, and so |α| = 16. Now,

(0x0x000x0x0x000x)2 ≡ 0 (mod 216 − 1)

=⇒ x(01010001‖01010001)2 ≡ 0 (mod 216 − 1)

=⇒ (2u + 2v − 3)(28 + 1)(01010001)2 ≡ 0 (mod 216 − 1)

=⇒ (2u + 2v − 3)(01010001)2 ≡ 0 (mod 28 − 1)

=⇒ (2u + 2v) · 81 ≡ (21 + 20) · 81 (mod 28 − 1) .

Note that (01010001)2 = 81 is 8-CNA, and
↪→
ord(81) = 8. Let S = {0, 4, 6},

then d(S) = (4, 2, 2) and d(S + 4) = (2, 2, 4) which is the lexicographically
smallest cyclic shift of d(S). Continuing from our last implication,

=⇒ (S + u) ∪ (S + v) = (S + 1) ∪ S

=⇒ (S + u + 4) ∪ (S + v + 4) = (S + 5) ∪ (S + 4)

=⇒ (S + u + 4) ∪ (S + v + 4) = {1, 3, 5} ∪ {0, 2, 4} .

We can assume that 0 ∈ S + v + 4, and then it must be that 1 ∈ S + u + 4.
If 2 ∈ S + u + 4, this would contradict the fact that (2, 2, 4) is the smallest
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difference sequence of all translates of S. Thus, 2 ∈ S + v + 4 and then
3 ∈ S + u + 4. Similarly, 4 ∈ S + v + 4 and 5 ∈ S + u + 4. Thus,

S + u + 4 = S + 5 and S + v + 4 = S + 4

=⇒ u ≡ 1 (mod 8) and v ≡ 0 (mod 8) .

Now, −x = 2u + 2v − 3 = 2(2u−1 − 1) + (2v − 1). Since 28 − 1|2u−1 − 1 and
28 − 1|2v − 1, we have 28 − 1|x. So, if {0, 1, x} is not a NADS, then it must
be that x is divisible by a Mersenne number.

If we take u, v ∈ {2, 3, 4, 5, 6, 7, 8} with u 6= v and set x = 3− (2u + 2u)

then, after eliminating multiples of Mersenne numbers, Theorem 5.24 tells
us that each of the values −17,−37,−65,−157,−257,−269,−317 makes
{0, 1, x} a NADS.

It may not be immediately clear that there are in fact an infinite number
of x values with no Mersenne divisors and w((3 − x)/4) = 2, however,
we can deduce this from Lemma 5.26. If we let −x = 2u + 2v − 3 with
u > v ≥ 2, then, applying Lemma 5.26 with B = 1, we see that x has a
Mersenne divisor if and only if gcd(u, v− 1) > 1 or gcd(u− 1, v) > 1. So,
we can get an infinite family if we take u’s and v’s with gcd(u, v − 1) =

gcd(u− 1, v) = 1. For example, take v = 2 and let u = 4, 6, 8, 10, 12, . . .
Looking at Theorems 5.23 and 5.24, a natural question to ask is if there

is an infinite family of NADS with the property that w( 3−x
4 ) = 3. One of

our results gives a partial answer to this question. If 3−x
4 = 11 · 2i with

i ≥ 0, then w( 3−x
4 ) = 3, however Corollary 5.19 tells us that such a value of

x will never give a NADS.

5.8 Further Work and Comments

It is possible to show that for n ∈ Z
+ with n ≤ b−x/3c, the running time of

EVAL-RD(n), as described in Algorithm 5.11, is O(|x| /3) = O(|x|). Thus,
to compute EVAL-RD(n) for all positive integers in this range takes time
O(|x|2). So, we can decide if {0, 1, x} is a NADS in O(|x|2) time. The run-
ning time can be reduced to O(|x|) if more memory is used, and this is the
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approach taken in Algorithm 5.14. However, since the size of the input to
this algorithm is lg |x|, the running time is exponential. It would be inter-
esting to determine if there is a polynomial-time algorithm for deciding if
{0, 1, x} is a NADS.

Avoine, Monnerat and Peyrin [3] have significantly improved the search
bound presented in Theorem 5.12 and Corollary 5.13:

Theorem 5.28 (Avoine, Monnerat and Peyrin). Suppose x is a negative inte-
ger not divisible by 3 or 7 and x ≡ 3 (mod 4). If all positive integers congruent to
3 modulo 4 that satisfy n ≤ b−x/12c or b−x/7c ≤ n ≤ b−x/6c have {0, 1, x}-
NAF’s, then {0, 1, x} is a NADS.

They also conjecture that checking integers in the range b−x/7c ≤ n ≤
b−x/6c is unnecessary; that is, they conjecture that if {0, 1, x} is not a
NADS, and x is not divisible by 3 or 7, then there is some integer n con-
gruent to 3 modulo 4 with n ≤ b−x/12c that certifies this.

Heuberger and Prodinger [15] have considered the question of which
values of x provide each integer with a minimal weight {0, 1, x}-NAF. They
show that the only values of x with this property are −1 and 3.

The “NADS-counting” function is defined as follows

c(X) := |{x : x ≥ X, {0, 1, x} is a NADS}| .

For example, c(7) = 0, c(3) = 1 and c(−1) = 2. A plot of c(X) for 0 ≥
X ≥ −107 is given in Figure 5.5 and an interesting fractal structure can be
observed. The flat intervals of the plot are the result of Theorem 5.21. The
two smooth curves bounding c(X) in Figure 5.5 are (−X)0.64 and (−X)0.66;
these functions were discovered empirically. It would be nice to be able to
say something concrete about the asymptotic behaviour of c(X).

The function fD, defined in (5.1), bears some similarity to the Collatz
function,

f (n) =





n/2 if n is even,

(3n + 1)/2 if n is odd.
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Figure 5.5: A plot of (−X, c(X)) for 0 ≥ X ≥ −107.

The Collatz function has received considerable study, but its properties are
complex and not well understood. Perhaps this suggests that the study of
NADS is also a difficult problem.

Of the non-allowable factors of x that we discussed, perhaps the more
interesting variety of these integers are those for which none of their proper
divisors are non-allowable factors. We call a non-allowable factor simple if
it has this property. It would be interesting to know if there are an infinite
number of simple non-allowable factors.

Some of our results on NADS appear to have analogs in Matula’s [24]
theory on basic digit sets. In particular, our Theorem 5.12 corresponds to
Matula’s Lemma 6, and our Theorem 5.15 corresponds to Matula’s Theo-
rem 5. It would be interesting to find other connections between the two
works. It might be that our Theorems 5.23 and 5.24, which do not appear to
have analogs in [24], could lead to some new results in the theory of basic
digit sets.



Appendix A

The Average Density of the
Joint Sparse Form

The density of a joint representation (A)2 is defined as

wt(A)

length(A)
.

The average density of a family of joint representations is often used to cal-
culate the expected running time of algorithms which employ these repre-
sentations to compute algebraic operations. Solinas [42] uses a probablistic
argument to compute the average density of the joint sparse form. Here,
we show how this value can be computed using discrete methods.

A.1 The Joint Sparse Form

A representation (A)2, with A ∈ ({0,±1}2×1)∗, is called a joint sparse form
if it satisfies the following three properties:

JS-1 Of any three consecutive columns, at most two are nonzero.

JS-2 No two adjacent digits are 11 or 11.

JS-3 For any two consecutive columns, if one row is 11 or 11, the other row is 10
or 10.

137



138 A.2 Recurrences

To simplify some of our notation, we denote the digits of a JSF as
(

a`−1 . . . a2a1a0

b`−1 . . . b2b1b0

)

2

.

A.2 Recurrences

Let r` denote the number of JSFs of length `, and let w` denote the number
of nonzero columns amongst all JSFs of length `. The average density of an
`-column JSF can be computed as w`

`·r`
. To this end, we develop formulae for

r` and w`.

A.2.1 The Number of JSFs

We start with r`. To determine r1 we list all the length-1 joint representa-
tions which satisfy JS-1, JS-2 and JS-3. This gives us:

r1 =

∣∣∣∣
{

0
1

,
0
1

,
1
0

,
1
1

,
1
1

,
1
0

,
1
1

,
1
1

}∣∣∣∣ = 8.

Note that we have omitted the usual parentheses ( )2 around the joint
representations above.

We determine r2 in the same way.

r2 =

∣∣∣∣
{

00
10

,
00
10

,
10
00

,
10
10

,
10
10

,
10
00

,
10
10

,
10
10

,

01
10

,
01
10

,
01
10

,
01
10

,
10
01

,
10
01

,
10
11

,
11
10

,

10
11

,
11
10

,
10
01

,
10
01

,
10
11

,
11
10

,
10
10

,
10
11

}∣∣∣∣ = 24.

To determine r3, we argue as follows. Let ∗∗ denote a nonzero column.
In a length-3 JSF,

(a1
b1

)
is either a zero or nonzero column. If it is a zero

column, then the JSF must look like

∗00
∗00

, or
∗0∗
∗0∗

.
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Using the fact that r1 = 8, we count 8 and 8 · 8 = 64 JSFs in each of these
two forms.

If
(a1

b1

)
is a nonzero column, condition JS-1 implies that the JSF looks like

∗ ∗ 0
∗ ∗ 0

.

To count the number of JSFs of this form, we refer back to the set of all
length-2 JSFs. In this set we see there are exactly 16 length-2 JSFs which
have both columns nonzero. By appending a zero column to each of these
representations, we identify each JSF in this last case. Thus, there are 16
JSFs of this form. Putting everything together, we have

r3 = 8 + 64 + 16

= 8(r1 + 1) + 16 = 88.

The same technique can be used to determine r4. In a length-4 JSF,
(a2

b2

)

is either a zero or nonzero column. If it is a zero column then the JSF must
look like

∗000
∗000

,
∗00∗
∗00∗

, or
∗0∗a0

∗0∗b0
.

Of the first and second form, there are 8 and 8 · r1 JSFs, respectively. For the
third form, each length-2 JSF identifies 8 JSFs of this form. This gives 8 · r2

JSFs.
If
(a2

b2

)
is a nonzero column, then the JSF must look like

∗ ∗ 00
∗ ∗ 00

, or
∗ ∗ 0∗
∗ ∗ 0∗

.

There are 16 JSFs of the first type, and 16 · r1 JSFs of the second type. Thus,
we have

r4 = 8(r2 + r1 + 1) + 16(r1 + 1)

= 408.
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In general, for ` ≥ 4, we have

r` = 8(r`−2 + r`−3 + · · ·+ r1 + 1) + 16(r`−3 + · · ·+ r1 + 1).

If ` ≥ 5, then

r`−1 = 8(r`−3 + r`−4 + · · ·+ r1 + 1) + 16(r`−4 + · · ·+ r1 + 1),

and subtracting these two expressions we find

r` − r`−1 − 8r`−2 − 16r`−3 = 0.

The characteristic equation of this recurrence is x3− x2− 8x− 16 = 0 which
has roots

x1 = 4, x2 = −2e−iθ , and x3 = −2eiθ , where θ = arctan

(√
7

3

)
.

We look for a solution of the recurrence of the form c1x`
1 + c2x`

2 + c3x`
3. After

some algebraic manipulations, this expression can be rewritten as

ĉ14` + ĉ2(−2)` cos `θ + ĉ3(−2)` sin `θ.

We use the values of r1, r2 and r3 to determine the values of the constants.
After some calculations, we find

r` =

(
3
2

)
4` +

(−3
2

)
(−2)` cos `θ +

(√
17

14

)
(−2)` sin `θ.

A.2.2 The Number of Nonzero Columns

Now, we tackle w`. Referring back to the sets of JSFs defined during the
computation of r1 and r2, we see that

w1 = 8

w2 = 40.

We can determine w3 as follows. There are r3 length-3 JSFs and, in each
one,

(a2
b2

)
is a nonzero column. Thus,

w3 = r3 + the number of nonzero columns in positions other than
(a2

b2

)
.
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We know the value of r3. As for the other term, we calculate it in two steps.
First, we consider length-3 JSFs where

(a1
b1

)
a zero column. As noted

previously, such length-3 JSFs have the form

∗00
∗00

, or
∗0∗
∗0∗

.

In the first case, neither
(a0

b0

)
or
(a1

b1

)
is ever nonzero. In the second case,

(a0
b0

)

is nonzero 8 · w1 times and
(a1

b1

)
is nonzero 0 times.

For the second step, we suppose
(a1

b1

)
is nonzero. Such length-3 JSFs

have the form
∗ ∗ 0
∗ ∗ 0

.

In this case, we see
(a0

b0

)
is nonzero 0 times, and

(a1
b1

)
is nonzero 16 times.

Thus, we have counted every nonzero column occurring in the rightmost
two columns. Combining our results, we have

w3 = r3 + 8 · w1 + 16 = 168.

We use the same approach to determine w4. As before,

w4 = r4 + number of nonzero columns in positions other than
(a3

b3

)
.

If
(a2

b2

)
is zero, then such length-4 JSFs have the form

∗000
∗000

,
∗00∗
∗00∗

, or
∗0∗a0

∗0∗b0
.

In the first case, we count 0 nonzero columns other than
(a3

b3

)
, in the second

case, there are 8 · w1, and in the third case, 8 · w2.
If
(a2

b2

)
is nonzero, then such length-4 JSFs have the form

∗ ∗ 00
∗ ∗ 00

, or
∗ ∗ 0∗
∗ ∗ 0∗

.

In the first case,
(a2

b2

)
is nonzero 16 times and the other columns, besides(a3

b3

)
, are always zero. In the second case,

(a0
b0

)
is nonzero 16 · w1 times and
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(a1
b1

)
is nonzero 0 times. This leaves column

(a2
b2

)
. It is nonzero in every

representation of this last form. There are 16 · r1 such representations, thus
the number of times this column is nonzero is 16 · r1. Summing, we have

w4 = r4 + 8 · w1 + 8 · w2 + 16 + 16 · w1 + 16 · r1

= r4 + 8(w2 + w1) + 16(w1 + r1 + 1)

= 1064.

In general, for ` ≥ 4, we have

w` =r` + 8(w`−2 + · · ·+ w1) +

16(w`−3 + r`−3 + w`−4 + r`−4 + · · ·+ w1 + r1 + 1).

If ` ≥ 5, then

w`−1 =r`−1 + 8(w`−3 + · · ·+ w1) +

16(w`−4 + r`−4 + w`−5 + r`−5 + · · ·+ w1 + r1 + 1).

and substracting these two expressions we find

w` − w`−1 − 8w`−2 − 16w`−3 = r` − r`−1 + 16r`−3.

This results in a nonhomogenus recurrence relation. The corresponding
homogenus recurrence is

w` − w`−1 − 8w`−2 − 16w`−3 = 0,

which is identical to the recurrence we solved earlier. Recall, the roots of its
characteristic equation are

x1 = 4, x2 = −2e−iθ , and x3 = −2eiθ , where θ = arctan

(√
7

3

)
.

The homogenus recurrence has a solution of the form c1x`
1 + c2x`

2 + c3x`
3.

However, the nonhomogenus part of the recurrence, r` − r`−1 + 16r`−3, can
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also be expressed in this form. Thus, to solve the original recurrence we
look for a solution of the form

c1x`
1 + c2x`

2 + c3x`
3 + c4`x`

1 + c5`x`
2 + c6`x`

3.

After some algebraic manipulations, we can rewrite the form of the solution
as

ĉ14` + ĉ2(−2)` cos `θ + ĉ3(−2)` sin `θ +

ĉ4`4` + ĉ5`(−2)` cos `θ + ĉ6`(−2)` sin `θ.

We can use the recurrence formula to compute the following values: w1 =

8, w2 = 40, w3 = 168, w4 = 1064, w5 = 4520 and w6 = 21800. These six
values can be used to determine the value of the constants above. This
involves solving a system of linear equations. After doing so, we find

w` =

(
13
16

)
4` +

(−13
16

)
(−2)` cos `θ +

(
169
√

7
784

)
(−2)` sin `θ +

(
3
4

)
`4` +

(−31
28

)
`(−2)` cos `θ +

(
3
√

7
28

)
`(−2)` sin `θ.

A.3 Average Density

Using our formulae for r` and w`, we can now compute the average density
of a length-` JSF as follows. We have

w`

` · r`

=
784 w`

784 ` r`

.

For the numerator, we have

784 w` =637 4` − 637(−2)` cos `θ + 169
√

7(−2)` sin `θ +

588 ` 4` − 868 ` (−2)` cos `θ + 84
√

7 ` (−2)` sin `θ.

For the denominator, we have

784 ` r` = 1176 ` 4` − 1176 ` (−2)` cos `θ + 56
√

7 ` (−2)` sin `θ.
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When ` is large, the numerator is dominated by the term 588 ` 4`, and the
denominator is dominated by the term 1176 ` 4`. Thus, when ` is large we
estimate that

w`

` · r`

≈ 588 ` 4`

1176 ` 4`
=

1
2

.
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Some Nonadjacent Digit Sets

Here we list all the values of x from −1 to −10000 for which {0, 1, x} is a
NADS:

-1 -5 -13 -17 -25 -29 -37 -53 -61 -65

-113 -121 -125 -137 -145 -149 -157 -233 -241 -253

-257 -265 -269 -277 -281 -305 -317 -325 -437 -481

-485 -493 -505 -509 -517 -521 -533 -541 -557 -565

-601 -605 -613 -629 -641 -653 -673 -821 -869 -913

-937 -977 -989 -1013 -1021 -1025 -1033 -1037 -1045 -1061

-1073 -1081 -1097 -1117 -1133 -1145 -1165 -1265 -1273 -1277

-1289 -1297 -1325 -1345 -1349 -1357 -1621 -1637 -1733 -1745

-1765 -1885 -1933 -1949 -1985 -1993 -2017 -2021 -2033 -2041

-2045 -2053 -2069 -2101 -2105 -2113 -2129 -2137 -2141 -2153

-2161 -2165 -2173 -2185 -2189 -2197 -2237 -2273 -2285 -2293

-2297 -2321 -2353 -2365 -2369 -2381 -2393 -2405 -2425 -2497

-2525 -2533 -2557 -2593 -2609 -2621 -2641 -2645 -2669 -2677

-2693 -3245 -3265 -3337 -3385 -3421 -3509 -3541 -3557 -3629

-3653 -3673 -3761 -3797 -3853 -3877 -3881 -3917 -3925 -3929

-3961 -4001 -4033 -4037 -4085 -4093 -4097 -4105 -4117 -4121

-4133 -4141 -4145 -4153 -4157 -4201 -4205 -4217 -4253 -4261

-4273 -4285 -4297 -4337 -4345 -4349 -4373 -4393 -4397 -4469

145



146

-4537 -4541 -4573 -4589 -4597 -4601 -4621 -4633 -4645 -4649

-4661 -4693 -4777 -4801 -5021 -5077 -5093 -5101 -5105 -5113

-5129 -5137 -5153 -5165 -5189 -5197 -5213 -5273 -5281 -5365

-5377 -5381 -5393 -5405 -5437 -5441 -6565 -6613 -6773 -6805

-6929 -6973 -7033 -7277 -7333 -7345 -7381 -7393 -7397 -7465

-7477 -7561 -7597 -7613 -7621 -7649 -7741 -7817 -7865 -7877

-7901 -7949 -8045 -8053 -8065 -8069 -8081 -8093 -8101 -8117

-8129 -8165 -8173 -8177 -8185 -8189 -8201 -8213 -8221 -8233

-8237 -8297 -8305 -8317 -8333 -8341 -8369 -8417 -8429 -8437

-8441 -8453 -8485 -8497 -8501 -8573 -8581 -8593 -8597 -8665

-8669 -8681 -8693 -8717 -8725 -8741 -8753 -8789 -8797 -8825

-8837 -8921 -8977 -9089 -9101 -9133 -9157 -9161 -9181 -9209

-9221 -9245 -9341 -9353 -9421 -9425 -9433 -9461 -9473 -9497

-9505 -9509 -9581 -9665 -9673 -9677 -9697 -9761 -9925 -9997
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