Counting Inversions and Related Problems
By Timothy M Chan and Mihai Patrascu

Saran Neti

November 14, 2010
Outline

1. Introduction
 - Permutations
 - Inversions

2. Concepts
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3. Results
 - History
 - The main result
1. **Introduction**
 - Permutations
 - Inversions

2. **Concepts**
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3. **Results**
 - History
 - The main result
What is a permutation?

- Given a set S, a permutation π of S is a set S' containing all elements of S, but in a different order.
- e.g. $\pi\{1,3,2\} = \{2,1,3\}$, $\pi\{1,3,2\} = \{1,2,3\}$ etc
- There are $n!$ permutations for a set of n elements.
What is a permutation?

- Given a set S, a permutation π of S is a set S' containing all elements of S, but in a different order.
- e.g. $\pi\{1,3,2\} = \{2,1,3\}$, $\pi\{1,3,2\} = \{1,2,3\}$ etc
- There are $n!$ permutations for a set of n elements.
What is a permutation?

- Given a set S, a permutation π of S is a set S' containing all elements of S, but in a different order.
- e.g. $\pi\{1,3,2\} = \{2,1,3\}$, $\pi\{1,3,2\} = \{1,2,3\}$ etc
- There are $n!$ permutations for a set of n elements.
What is a permutation?

- Given a set S, a permutation π of S is a set S' containing all elements of S, but in a different order.
- e.g. $\pi\{1,3,2\} = \{2,1,3\}$, $\pi\{1,3,2\} = \{1,2,3\}$ etc
- There are $n!$ permutations for a set of n elements.
Outline

1. Introduction
 - Permutations
 - Inversions

2. Concepts
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3. Results
 - History
 - The main result
What is an Inversion?

- The number of inversions in a permutation π is defined as the number of pairs $i < j$ with $\pi(i) > \pi(j)$

- e.g. The number of inversions in $\{1,6,2,9,5\} = 3$
 The actual sorted order is $\{1,2,5,6,9\}$
 The pair $\{6,2\}, \{6,5\}, \{9,5\}$ are in the “wrong” order

- Inversion is a measure of deviation from a sorted order. We want to “flip” the inversion pairs to get the sorted order.

- Question - Given a permutation, how do you count the number of inversions in it?
 i.e How messed up it is from a nice sorted order.
What is an Inversion?

- The number of inversions in a permutation π is defined as the number of pairs $i < j$ with $\pi(i) > \pi(j)$

- e.g. The number of inversions in $\{1, 6, 2, 9, 5\} = 3$
 The actual sorted order is $\{1, 2, 5, 6, 9\}$
 The pair $\{6, 2\}, \{6, 5\}, \{9, 5\}$ are in the “wrong” order

- Inversion is a measure of deviation from a sorted order. We want to “flip” the inversion pairs to get the sorted order.

- Question - Given a permutation, how do you count the number of inversions in it?
 i.e How messed up it is from a nice sorted order.
What is an Inversion?

- The number of inversions in a permutation π is defined as the number of pairs $i < j$ with $\pi(i) > \pi(j)$

- e.g. The number of inversions in $\{1, 6, 2, 9, 5\} = 3$
 The actual sorted order is $\{1, 2, 5, 6, 9\}$
 The pair $\{6, 2\}, \{6, 5\}, \{9, 5\}$ are in the “wrong” order

- Inversion is a measure of deviation from a sorted order. We want to “flip” the inversion pairs to get the sorted order.

- Question - Given a permutation, how do you count the number of inversions in it?
 i.e. How messed up it is from a nice sorted order.
What is an Inversion?

- The number of inversions in a permutation π is defined as the number of pairs $i < j$ with $\pi(i) > \pi(j)$

- e.g. The number of inversions in $\{1, 6, 2, 9, 5\} = 3$
 The actual sorted order is $\{1, 2, 5, 6, 9\}$
 The pair $\{6, 2\}, \{6, 5\}, \{9, 5\}$ are in the “wrong” order

- Inversion is a measure of deviation from a sorted order. We want to “flip” the inversion pairs to get the sorted order.

- Question - Given a permutation, how do you count the number of inversions in it?
 i.e How messed up it is from a nice sorted order.
Outline

1 Introduction
 - Permutations
 - Inversions

2 Concepts
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3 Results
 - History
 - The main result
Offline/Online algorithms

- An online algorithm runs in a serial manner, and produces output as and when it receives input.
- An offline algorithm runs after the entire input has been received. Can Offline be better than Online?
- e.g. Canadian Traveller’s Problem - Given a graph with some unreliable (dotted) edges, find the shortest path to a destination. You’ll know if an edge is unreliable when you reach vertex containing the edge.
Offline/Online algorithms

- An online algorithm runs in a serial manner, and produces output as and when it receives input.

- An offline algorithm runs after the entire input has been received. Can Offline be better than Online?

- e.g. Canadian Traveller’s Problem - Given a graph with some unreliable (dotted) edges, find the shortest path to a destination. You’ll know if an edge is unreliable when you reach vertex containing the edge.

![Diagram](image-url)
Offline/Online algorithms

- An online algorithm runs in a serial manner, and produces output as and when it receives input.
- An offline algorithm runs after the entire input has been received. Can Offline be better than Online?
- e.g. Canadian Traveller’s Problem - Given a graph with some unreliable (dotted) edges, find the shortest path to a destination. You’ll know if an edge is unreliable when you reach vertex containing the edge.
Outline

1 Introduction
 • Permutations
 • Inversions

2 Concepts
 • Offline/Online Algorithms
 • Radix Sort
 • Word RAM Model of computation

3 Results
 • History
 • The main result
Radix Sort - Sorting without comparison

- Radix Sort sorts number based on the “radix” or “base”.

- e.g Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066

- Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066

- Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

- Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

- For a set of n numbers, L bits each, Radix Sort takes $O(nL)$ time.

- In case of binary representation, $L = \log_2 n$, and we get the familiar $O(n \log n)$ time.
Radix Sort - Sorting without comparison

- Radix Sort sorts number based on the “radix” or “base”.
- e.g. Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066
 - Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066
 - Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090
 - Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802
- For a set of n numbers, L bits each, Radix Sort takes $O(nL)$ time.
- In case of binary representation, $L = \log_2 n$, and we get the familiar $O(n\log n)$ time.
Radix Sort - Sorting without comparison

- Radix Sort sorts number based on the “radix” or “base”.
- e.g Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066

 Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066

 Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

 Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

 For a set of n numbers, L bits each, Radix Sort takes $O(nL)$ time.

 In case of binary representation, $L = \log_2 n$, and we get the familiar $O(n \log n)$ time.
Radix Sort - Sorting without comparison

- Radix Sort sorts numbers based on the “radix” or “base”.

- e.g. Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066

- Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066

- Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

- Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

- For a set of n numbers, L bits each, Radix Sort takes $O(nL)$ time.

- In case of binary representation, $L = \log_2 n$, and we get the familiar $O(n \log n)$ time.
Radix Sort - Sorting without comparison

- Radix Sort sorts numbers based on the “radix” or “base”.

- e.g. Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066

 - Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066
 - Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090
 - Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

- For a set of n numbers, L bits each, Radix Sort takes $O(nL)$ time.

- In case of binary representation, $L = \log_2 n$, and we get the familiar $O(n \log n)$ time.
Radix Sort - Sorting without comparison

- Radix Sort sorts number based on the “radix” or “base”.
- e.g. Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066
 - Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066
 - Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090
 - Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802
 - For a set of n numbers, L bits each, Radix Sort takes \(O(nL)\) time.

- In case of binary representation, \(L = \log_2 n\), and we get the familiar \(O(n\log n)\) time.
Radix Sort - Sorting without comparison

- Radix Sort sorts numbers based on the “radix” or “base”.

- e.g. Sorting the following base-10 numbers: 170, 045, 075, 090, 002, 024, 802, 066

- Sort by Unit’s place - 170, 090, 002, 802, 024, 045, 075, 066

- Sort by 10s place - 002, 802, 024, 045, 066, 170, 075, 090

- Sort by 100s place - 002, 024, 045, 066, 075, 090, 170, 802

- For a set of n numbers, L bits each, Radix Sort takes $O(nL)$ time.

- In case of binary representation, $L = \log_2 n$, and we get the familiar $O(n\log n)$ time.
Outline

1. **Introduction**
 - Permutations
 - Inversions

2. **Concepts**
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3. **Results**
 - History
 - The main result
Why Turing Machine?

- We don’t use Turing Machines in practice...no tapes, symbols or transition functions, etc.

- Practical Computers use Hierarchical Memory organization. L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk -> Tape Storage

- Faster memory is more expensive and vice versa.

- Can we build a more realistic computational model than a Turing machine?
Why Turing Machine?

- We don’t use Turing Machines in practice...no tapes, symbols or transition functions, etc.

- Practical Computers use Hierarchical Memory organization. L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk -> Tape Storage

- Faster memory is more expensive and vice versa.

- Can we build a more realistic computational model than a Turing machine?
Why Turing Machine?

- We don’t use Turing Machines in practice...no tapes, symbols or transition functions, etc.

- Practical Computers use Hierarchical Memory organization. L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk -> Tape Storage

- Faster memory is more expensive and vice versa.

- Can we build a more realistic computational model than a Turing machine?
Why Turing Machine?

- We don’t use Turing Machines in practice...no tapes, symbols or transition functions, etc.

- Practical Computers use Hierarchical Memory organization. L1 Cache -> L2 Cache -> SRAM -> DRAM -> Hard Disk -> Tape Storage

- Faster memory is more expensive and vice versa.

- Can we build a more realistic computational model than a Turing machine?
Assumptions in a Word RAM model

- Memory is organized into words of size w. A word is 32 bits, or 64 bits in modern day computers.

- If n is the maximum size of the input to the algorithm, $w > \log(n)$

- All normal (arithmetical/logical) computations are performed on a Word and they take $O(1)$ time.

- Words can be accessed Randomly. (Random Access Memory).

- Computational Times for many problems can be improved in this model.
 e.g. Sorting has been shown to take $O(n\sqrt{\log\log n})$ time.
Assumptions in a Word RAM model

- Memory is organized into words of size w. A word is 32 bits, or 64 bits in modern day computers.
- If n is the maximum size of the input to the algorithm, $w > \log(n)$
- All normal (arithmetical/logical) computations are performed on a Word and they take $O(1)$ time.
- Words can be accessed Randomly. (Random Access Memory).
- Computational Times for many problems can be improved in this model.
 e.g Sorting has been shown to take $O(n\sqrt{\log\log n})$ time.
Assumptions in a Word RAM model

- Memory is organized into words of size w. A word is 32 bits, or 64 bits in modern day computers.

- If n is the maximum size of the input to the algorithm, $w > \log(n)$

- All normal (arithmetical/logical) computations are performed on a Word and they take $O(1)$ time.

- Words can be accessed Randomly. (Random Access Memory).

- Computational Times for many problems can be improved in this model.
 e.g Sorting has been shown to take $O(n\sqrt{\log\log n})$ time.
Assumptions in a Word RAM model

- Memory is organized into words of size w. A word is 32 bits, or 64 bits in modern day computers.

- If n is the maximum size of the input to the algorithm, $w > \log(n)$

- All normal (arithmetic/logical) computations are performed on a Word and they take $O(1)$ time.

- Words can be accessed Randomly. (Random Access Memory).

- Computational Times for many problems can be improved in this model.
 e.g. Sorting has been shown to take $O(n\sqrt{\log\log n})$ time.
Assumptions in a Word RAM model

- Memory is organized into words of size w. A word is 32 bits, or 64 bits in modern day computers.

- If n is the maximum size of the input to the algorithm, $w > \log(n)$

- All normal (arithmetical/logical) computations are performed on a Word and they take $O(1)$ time.

- Words can be accessed Randomly. (Random Access Memory).

- Computational Times for many problems can be improved in this model.
 e.g. Sorting has been shown to take $O(n\sqrt{\log\log n})$ time.
Outline

1 Introduction
 - Permutations
 - Inversions

2 Concepts
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3 Results
 - History
 - The main result
Recall the Counting Inversion problem

- We can count the number of Inversions in $O(n \log n)$ time. e.g using Merge Sort.

- But we don’t want the actual inversion pairs, only their count. Can something better be done?

- Counting inversions can be reduced to “Dominance Counting” problem - how many points does each point dominate? Use $(i, -\pi(i))$ to map from the set π.

- It has been shown that this can be done in $O(n \log n / \log \log n)$ time. (Dietz’s data structure).
Recall the Counting Inversion problem

- We can count the number of Inversions in $O(n \log n)$ time. e.g. using Merge Sort.

- But we don’t want the actual inversion pairs, only their count. Can something better be done?

- Counting inversions can be reduced to “Dominance Counting” problem - how many points does each point dominate? Use $(i, -\pi(i))$ to map from the set π.

- It has been shown that this can be done in $O(n \log n / \log \log n)$ time. (Dietz’s data structure).
Recall the Counting Inversion problem

- We can count the number of Inversions in $O(n \log n)$ time. e.g using Merge Sort.

- But we don’t want the actual inversion pairs, only their count. Can something better be done?

- Counting inversions can be reduced to “Dominance Counting” problem - how many points does each point dominate? Use $(i, -\pi(i))$ to map from the set π.

- It has been shown that this can be done in $O(n \log n / \log \log n)$ time. (Dietz’s data structure).
Recall the Counting Inversion problem

- We can count the number of Inversions in $O(n\log n)$ time. e.g using Merge Sort.

- But we don’t want the actual inversion pairs, only their count. Can something better be done?

- Counting inversions can be reduced to “Dominance Counting” problem - how many points does each point dominate? Use $(i, -\pi(i))$ to map from the set π.

- It has been shown that this can be done in $O(n\log n/\log\log n)$ time. (Dietz’s data structure).
Outline

1 Introduction
 - Permutations
 - Inversions

2 Concepts
 - Offline/Online Algorithms
 - Radix Sort
 - Word RAM Model of computation

3 Results
 - History
 - The main result
Partition the input

1. Partition the input into two - those that begin with 0, and those that begin with 1
2. For each element that begins with 0, count how many preceding elements which start with 1. Add to inversion count.
3. Recursively do this for each of L bits in order.

- If B is the number of words per page, we can do Step 2 in $O(n/B)$ I/O operations.
- Operating Systems move around memory in terms of pages.
- So, for inputs L bits long, we need $O(nL/B)$ I/O operations.
Handling B elements in constant time

- Choose a page size such that the number of words in it $B = w/L$
 In Linux, the standard is 4KB page size. So, on a 64-bit machine, we can have input up to 36-bit numbers. Numbers as big as 4503599627370496.
- The running time becomes $O(nL/B) = O(nL^2/w)$
 For $w \approx \log n$, we can simulate word operations in constant time by table lookup.
- The running time becomes linear if $L \approx \sqrt{\log n}$
- This word-packing idea is key to speeding up in offline algorithms, as opposed to online algorithms.
An $O(n\sqrt{\log n})$ algorithm

- How do we solve the original problem with $\log n$ bits?
 1. Consider a trie (prefix tree) of depth $(\log n)/L$ over the alphabet $[0...2^L]$.
 Each node is associated with the elements of the permutation that fall under that node.
 2. For a given node in the trie, the first letters after the common prefix associated with node are L-bit numbers.
 3. Use the above subroutine to compute the number of inversions in this sequence. Add to the running count.
 4. Recurse into each child of the node.

- Each trie can be built in $O(n)$ time per level by bucketing. For $L \approx \sqrt{\log n}$, subroutine costs $O(n)$
- Since depth is $(\log n)/L$, we get $O(n\sqrt{\log n})$ time complexity.
Algorithms have different complexities under different computational models.

Non standard bounds of time complexity can arise in these conditions.

For realistic computational models lookup tables can help speed up the algorithm if used carefully.
Summary

- Algorithms have different **complexities** under different computational models.

- **Non standard bounds** of time complexity can arise in these conditions.

- For realistic computational models, **lookup tables** can help speed up the algorithm if used carefully.
Algorithms have different complexities under different computational models.

Non standard bounds of time complexity can arise in these conditions.

For realistic computational models lookup tables can help speed up the algorithm if used carefully.