Empirical Analysis and Privacy Implications in OAuth-based
Single Sign-On Systems

Srivathsan G. Morkonda
Carleton University
Ottawa, Canada
srivathsan.morkonda@carleton.ca

ABSTRACT

Single sign-on authentication systems such as OAuth 2.0 are widely
used in web services. They allow users to use accounts registered
with major identity providers such as Google and Facebook to
login to a wide variety of independent services (relying parties).
These services can both identify users and access a subset of the
user’s data stored with the provider. We empirically investigate
the end-user privacy implications of OAuth implementations by
relying parties around the world. We collect data on the use of
OAuth-based logins in the Alexa Top 500 sites per country for five
countries. We categorize user data made available by four identity
providers (Google, Facebook, Apple, and LinkedIn) and evaluate
popular services accessing user data from the SSO platforms of these
providers. Many services allow users to choose from multiple login
options (with different identity providers). Our results reveal that
services request different categories and amounts of personal data
from different providers, often with at least one choice undeniably
more privacy-intrusive. We find that privacy-friendly login choices
tend to be listed last, suggesting a dark pattern favoring options that
release more user data. These privacy choices (and their privacy
implications) are highly invisible to users. Based on our analysis,
we consider challenges (e.g., opposing goals of stakeholders) in
addressing these concerns and discuss ideas for further exploration.

CCS CONCEPTS

« Security and privacy — Domain-specific security and pri-
vacy architectures; Human and societal aspects of security
and privacy.

KEYWORDS

OAuth; web single sign-on; empirical study; privacy; identity provider

ACM Reference Format:

Srivathsan G. Morkonda, Sonia Chiasson, and Paul C. van Oorschot. 2021.
Empirical Analysis and Privacy Implications in OAuth-based Single Sign-On
Systems. In Proceedings of the 20th Workshop on Privacy in the Electronic
Society (WPES 21), November 15, 2021, Virtual Event, Republic of Korea. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3463676.3485600

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WPES °21, November 15, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8527-5/21/11...$15.00
https://doi.org/10.1145/3463676.3485600

Sonia Chiasson
Carleton University
Ottawa, Canada
chiasson@scs.carleton.ca

Paul C. van Oorschot
Carleton University
Ottawa, Canada
paulv@scs.carleton.ca

1 INTRODUCTION

An increasing number of web applications encourage users to log
in to their services in exchange for a personalised experience. How-
ever, this comes with a usability problem for users having to admin-
ister a growing list of account credentials, e.g., to choose unique
and strong passwords for accounts on each service. Managing large
sets of credentials is a difficult task for users and can result in
insecure practises such as reusing passwords and choosing weak
passwords [41]. Many web authentication schemes have been pro-
posed to improve usability and convenience. Federated single sign-
on (SSO) schemes involve a trust relationship between an identity
provider (IdP) and one or more other-party services (relying par-
ties or RPs) that allow users to identify themselves on the service
using login credentials registered with the IdP. The OAuth 2.0 pro-
tocol (for authorization) and the OpenID Connect protocol (for
authentication) are federated SSO schemes used to establish trust
in identity-related interactions between an IdP and an RP.

Instead of requiring users to create new credentials, RPs can use
the OAuth 2.0 framework [26] to outsource user identification to
an IdP with whom users are likely to have an existing account. As
part of this transaction, the RP can also request access to additional
user personal data stored with the IdP. Major identity providers
(e.g., Facebook, Google, Microsoft) expose web APIs to grant RPs
controllable access to protected user data stored on their platforms.
With the user’s permission, an IdP allows the RP access to one or
more user-data attributes, which in some cases includes sensitive
user data such as emails, contact information and documents in
personal cloud storage—raising privacy concerns. Such user data
allows the RP to extend functionality and personalise web content
to the user. It also reduces implementation costs for the RP since
they are outsourcing login-related tasks, including key management
and credential verification, to the IdP.

Prior work (e.g., [13] [21]) involving OAuth-based SSO gives
focus to security issues including leaks of user data from relying
parties to other third-party actors due to implementation flaws. In
contrast, we focus on privacy consequences for users of OAuth-
based SSO that arise when RPs gain access to user data stored on
IdP sites. In this study, we evaluate privacy practises in popular
services using OAuth for SSO. Our contributions include:

e An empirical study of privacy in OAuth-based logins in the
Alexa Top 500 sites for five countries. The study reveals
considerable variation in how relying parties implement the
different SSO options, in the data made available by identity
providers, and in apparent trends across countries.

e An explication of how user choices, typically made with-
out full facts, can result in release of considerably different
amounts of user data leading to varying privacy implications.

https://doi.org/10.1145/3463676.3485600
https://doi.org/10.1145/3463676.3485600

Browser RP (client) ~RP (server)
1

Authorization
Code request

Resource
Server

. |
! user clicks to login - -
i —_—_— Loéln using SSO|

Redirects to login

»{Authorization endpoin{ } 1

User__ ¢ page
Y

user consents to

1
1
, allow access
1
1

1

authcode —™————

A

Returns authorization code:

Access Token request
< {auth code + secret}

Y

» [Token endpoint|_

[€—Returns access token

Data access
request {token}

verifies secret

<€—Returns protected data

» [Resource endpoint~_

verifies token

Figure 1: Procedure for OAuth 2.0 Authorization Code flow (based on [26]). Diagram for the Implicit flow is in Appendix C.

o OAuthScope, a tool to extract OAuth protocol request param-
eters from sites supporting SSO logins. The tool enables the
collection and comparison of SSO data from four major IdPs
(Google, Facebook, Apple, and LinkedIn).

Note: while some enterprise SSO providers (e.g., Microsoft) are pop-
ular among users, these are primarily used in closed systems using
enterprise accounts. Since we target websites involving personal
user accounts, we do not include these providers in our study.
The next section provides background on OAuth 2.0 framework.
Section 3 introduces the OAuthScope tool. Section 4 presents the
empirical study. Section 5 provides our classification of user data
available in four identity providers. Results of the empirical study
are reported in Section 6. Section 7 presents our analysis of privacy
implications to SSO users. Section 8 describes related work. Further
discussion and concluding remarks are provided in Section 9.

2 OAUTH 2.0 FRAMEWORK (BACKGROUND)

OAuth 2.0 [26] is a web resource authorization protocol popular
in client-server deployments worldwide for granting applications
access to protected resources without sharing the user’s credentials.
For example, a website prompts a user to log in and optionally allow
access to specified user data by relying on their Google account
rather than creating new credentials on that website. The website
does not gain access to the user’s Google credentials, but instead
gains access to a subset of the user’s data and trusts Google’s veri-
fication of the user’s credentials. The user is able to use the same
Google account to log in on other websites that support Google as
a SSO option. User data is referred to as protected resources and the
user as the resource owner (RO) in OAuth 2.0 specification.

The OAuth 2.0 protocol is composed of several “grant types"
that define how credentials are granted to RPs. The procedure for
obtaining access to protected resources is defined by OAuth flows
and each flow is designed to serve different use cases (and provide
different levels of security). Since our study involves OAuth 2.0 use

in web applications, we describe the steps involved in two flows
commonly used in these applications.

2.1 Authorization Code Flow (Server-side flow)

In order for an RP to use OAuth 2.0, it must first register itself with
an IdP to obtain a client_id (used for identification of the RP in
requests). Additionally, in the case of confidential clients (RPs with
the ability to securely store secrets), an associated client_secret
is issued by the IdP. This allows an IdP to authenticate requests
from an RP. We provide an overview of the three primary steps
(labelled in Fig. 1) involved in the authorization code flow [26].

(1) RP request to IdP: The resource owner triggers the flow by
clicking a login element, sending a request constructed by
the RP to the IdP’s authorization endpoint. The RP programs
the request to add several parameters (as query components
in the request URI) specifying the access request. To indicate
this flow type, the RP must set the value of response_type
to code. The request also includes the parameters scope and
redirect_uri. The scope parameter lists one or more pro-
tected resources (e.g., name, email) the RP is requesting to
access. The allowed values for this parameter are specified by
individual IdPs based on the resources made available by the
IdP. The redirect_uri is the endpoint the RP is requesting
the IdP to redirect the RO, at the end of the flow. In order
to redirect to the intended party, the OAuth 2.0 specifica-
tion [26] requires the IdP to check if the URI specified in the
request matches with the value registered by the RP.

(2) IdP request to RO: After receiving the RP’s request, the
IdP redirects the RO to a login page on its domain (example
Uls included in Fig. 3) to login with the IdP account. If the
RO is already logged in, the IdP displays a prompt to confirm
resource access to the RP. In this process, the IdP provides the
RO with a list of data attributes the RP is requesting to access
and optionally provides the ability to deny RP the access to
one or all of the requested attributes. If the RO approves the

request, the IdP issues an authorization code and redirects
the RO back to the RP at the verified redirect endpoint. The
code is included as a query component to the redirection
URI. The standard does not specify what should happen if
the RO denies access, leaving it to the IdP’s discretion.

(3) Token exchange: From its server-side app (which is con-
sidered more secure than a channel from the RO’s browser),
the RP uses the client_secret and the authorization code
to exchange for an access token. After verifying the code and
RP’s secret, the IdP issues an access token allowing the
RP to access RO’s resources within the IdP. Access tokens
can vary in format (chosen by each IdP), but the purpose is
to represent authorization information (e.g., allowed scope
values, token expiry date). A commonly used self-contained
format is the JSON Web Token (JWT) [27] that protects the
integrity of information within the token.

When used by public clients (e.g., browser-based apps), the au-
thorization code flow is susceptible to injection attacks where an
attacker (on an infected client) intercepts a valid authorization code
before exchanging it for an access token. The recommended coun-
termeasure is the use of authorization code flow with Proof Key for
Code Exchange (PKCE) [37].

2.2 Implicit Flow (Client-side flow)

The implicit grant type is simpler than the authorization code flow
in that it allows the RP to directly obtain the access token without
exchanging an authorization code. It is useful for browser-based
(JavaScript) apps that lack the ability to securely store secrets. The
RP initiates the implicit flow by sending an access request to the IdP
with the parameter response_type=token. The IdP prompts the
user with a login screen and, if access is granted, an access token is
issued. This token is included in the URI fragment when redirecting
the user to the RP. The redirect URI is verified by the IdP to ensure
it matches the value registered by the RP. Since the access token is
returned in the redirection URI, it is included in the user’s browsing
history and, therefore, the security of the access token relies on the
security of the user’s system. A malicious application with access
to the user’s browser could misuse the access token. Additionally,
third-party scripts running within the RP site will be able to access
the token. Appendix C gives a diagram for the implicit flow.

The OAuth 2.0 implicit flow was originally designed when browsers
restricted apps to make requests only to its own domain [34]. This
browser restriction prevented browser-based apps from using the
authorization code grant since it requires sending a HTTP POST
request to the IdP’s authorization endpoint, which in many apps
(not owned by the IdP) is different from the RP. The implicit flow
in OAuth 2.0 offered a workaround that avoids using the POST
request and includes the access token directly in the redirection
URI. Though implicit flow provides the needed functionality, this
is not recommended from a security perspective due to the risks
associated with storing credentials in URIs [22]. Modern browsers
now support Cross-Origin Resource Sharing (CORS) that enables a
website to request resources from other permitted origins, removing
the need for this workaround.

2.3 Authentication (OpenID Connect)

OAuth 2.0 can be adapted to allow an IdP to authenticate users to
the RP. The OpenID Connect 1.0 [38] (OIDC) specification is de-
signed for authentication and is built upon the OAuth 2.0 protocol.
OIDC introduces a special value (openid) to the scope parameter
for specifying intent to authenticate. The OIDC specification also
extends OAuth 2.0’s response_type parameter to define additional
flows. If this parameter includes the value id_token, the OpenID
Provider (OP) will issue an ID token to the RP after a successful
authentication, encoded as a JWT [27] and containing key-value
pairs (Claims) about the user’s identity. Claims are digitally signed
using JSON Web Signature (JWS). Since many RPs use both OIDC
and OAuth 2.0, we refer to OpenID Providers as IdPs in our study.
OIDC allows any combination of id_token, OAuth 2.0 values code
and token for the response_type parameter [38]. Each combina-
tion refers to a hybrid flow that defines the values (access token,
authorization code and ID token) included in IdP response and the
endpoint (authorization and token) issuing the values.

Although the OIDC standard is built on top of OAuth 2.0 specifi-
cation, some identity providers instead use custom modifications
of OAuth 2.0 to provide authentication capabilities. In Section 5,
we briefly describe these modifications as part of our analysis of
the four identity providers.

2.4 Refresh Tokens

An OAuth 2.0 access token is issued for a limited lifetime and once
it expires, the user is required to approve access again in order for
a new access token to be issued to the RP. A common access token
type is “bearer" token that allows use by any party in possession
of the token. An unauthorized party in possession of such tokens
can use it to access protected resources. While long-lived access
tokens improve user experience by reducing the frequency of re-
quired logins, the longer life increases the risk of token leaks. The
recommended practise is to combine the use of an access token
with a refresh token, a string issued by the IdP that allows the RP to
extend existing access without involving the user to approve access
again. The RP can extend its access by exchanging the refresh token
for a new access token with a scope (identical or lesser than the
previously issued access token) defined by the IdP. In this exchange,
the IdP validates the refresh token before issuing a renewed access
token and optionally, a new refresh token. Due to the sensitivity of
refresh tokens, the specification restricts its use to only server-side
flows such as the authorization code flow [26]. Other protection
mechanisms against token theft are discussed in Appendix B.

3 THE OAUTHSCOPE TOOL

We designed and built OAuthScope, a web tool that scans and ex-
tracts OAuth 2.0 protocol-related parameters from authorization
requests made by relying parties to identity providers. We provide
a list of URLs as input, and OAuthScope visits each URL in a head-
less browser setup from a local server. It scans each site to locate
OAuth-based SSO requests to any of the four providers in our study
(i.e., Google, Facebook, Apple, and LinkedIn). For each SSO option
available on the RP, OAuthScope simulates the user action to trigger
an OAuth 2.0 request, which initiates an authorization request by
the RP to the IdP’s authorization endpoint. OAuthScope captures

the parameters included in the request, including the flow type and
scope parameter that specifies the protected resources for which
the application intends to obtain access. OAuthScope uses Selenium
WebDriver [39], an open-source browser automation framework
built primarily for automated in-browser testing of web applica-
tions. OAuthScope uses the WebDriver framework for identifying
HTML elements on an RP site and simulating web page navigation
to extract OAuth 2.0 protocol data from supported IdP sites. We
summarize the primary steps performed by OAuthScope as follows:

(1) Identify login element: After loading a website’s land-
ing page, OAuthScope searches for potential login elements
based on a set of predefined match criteria and simulates a
user click if a target element is found. Most RPs display login
forms in either a new page or a new iframe within the land-
ing page. We consider both cases and switch the WebDriver
context as necessary. Our tool captures a screenshot of the
login page, for use in manual verification of correctness.
Identify SSO elements: On the new page (or iframe), it
performs a search for HTML elements that potentially lead to
alogin page of one of the four IdPs in our study. OAuthScope
identifies SSO elements based on element texts and HTML
tag values commonly found in RPs pointing to IdPs. After
obtaining potential SSO login elements, our tool triggers
each target element and checks if the resulting page’s URL
matches with a list of predefined endpoints for each IdP in
our study. We built this list to contain OAuth 2.0 endpoints
published on each IdP’s developer documentation pages.
(3) Extract OAuth 2.0 parameters: The OAuth 2.0 framework
specifies that protocol parameters should be added as query
components of the request URI (an example is listed in Ap-
pendix A) initiated by an RP. OAuthScope extracts these
parameters encoded in the link as key-value pairs. Finally,
the parameters and login screenshots are persisted to a data-
base for further analysis.

@

~

We note that the current version of OAuthScope does not automat-
ically ensure identification of all SSO elements in all websites. A
manual inspection of the web pages to identify any skipped IdP
logins allows for ensuring that our dataset (as defined) is complete.
To facilitate this process, our tool captures screenshots of the login
pages and of the landing page for any site where our tool did not
find a login element, and stores the screenshots to a database. We
use these images to identify any SSO options missed by the auto-
mated scan and manually feed the SSO login links to OAuthScope
for extraction of the protocol parameters.

Although full automation of data collection is not required for
our evaluation, we did iteratively improve our match criteria based
on strings and tags found in RP sites during our data collection
process. This gradually reduced the need for manual involvement
in data collection. OAuthScope includes a web front-end (included
in Appendix D) for displaying and filtering entries in the dataset.

4 EMPIRICAL STUDY: OVERVIEW

We conducted a study of SSO systems in popular sites that imple-
ment the OAuth 2.0 framework for identifying users and accessing
user data stored with different IdPs. Alexa’s Top 500 sites [3] pro-
vide a snapshot of the most visited sites in a given country based

on 1-month traffic analysis. In an initial exploration, we manually
scanned the top 500 sites in a first target country and found that
three major IdPs (Google, Facebook, and Apple) are predominantly
supported as SSO options. In addition to these providers which
primarily contain personal data of users, we also included LinkedIn
as an IdP given its popularity as a platform for sharing professional
data. Similar to LinkedIn SSO, Log in with Twitter is offered by
a number of top 500 US sites. Twitter does not use the standard
OAuth scope parameter for indicating the user data released to sites
and for this reason, is not included in our analysis.

For each of these four IdPs, we collected OAuth 2.0 protocol-
related data from the Alexa Top 500 sites in five countries: Aus-
tralia, Canada, Germany, India, and the United States. Our aim was
to diversify geographically and include countries with different
privacy regulations. To simplify analysis, we did not include certain
countries (e.g., China) as the popular IdPs supported by the top
sites differed from other countries. We describe our data collection
procedure below.

4.1 Research Questions

The goal of this study is to understand the privacy implications for
users opting to use OAuth-based SSO to log in to the top websites.
To achieve this, we pursue the following research questions:

RQ1: What categories of user data do relying parties request from
SSO providers? (Sec. 6.2, 6.3)

RQ2: How prevalent is each SSO scheme in popular relying parties
across the five countries? (Sec. 6.4)

RQ3: Ifarelying party supports multiple SSO options, how do they
differ in terms of requested user-data attributes? (Sec. 6.3)

Classifying RPs by site categories may offer additional insight into
the types of user data obtained by similar RP services. However,
in this approach, many sites could be associated with multiple
categories (e.g., bloomberg.com could be labelled into both news
and finance categories) making specific correlations imprecise. The
diversity in multiple services offered within sites has led to the
removal of Alexa’s Top Sites by Category feature [4].

4.2 Data Collection

We found that site operators use different versions of their sites
depending on the location from where the connection is initiated.
To collect accurate representation of websites as served to local
users in each country, we use a VPN service to connect to a server
in the country when scanning and collecting data from sites. For
each country included in our study, we first manually visit each
of the Alexa Top 500 sites in the country and identify websites
that support at least one of our four chosen IdPs. We then run
each filtered site through OAuthScope to extract the OAuth 2.0
parameters for each of these IdPs supported by the website. As a
cross-check, we noted the IdPs supported by each website during
our initial manual scan and verified that OAuthScope collected all
available data from each website. For any omissions, we manually
obtained the IdP links and passed it to OAuthScope for extraction
of the protocol parameters.

The motivation for manual verification is to conduct the privacy
analysis on the complete set (i.e., dataset covering all four IdPs in
2500 sites). This ensures that websites with privacy-compromising

behaviors could not bypass detection by adding a CAPTCHA or
using other means to avoid detection by automated tools including
OAuthScope and other similar tools (e.g., [13] [47]).

In total, we gathered a dataset consisting of details from 815
RPs (Australia: 174; Canada: 159; Germany: 126; India: 172; US:
184). Our dataset consists of all RPs from each country that use at
least one of the four IdPs; if a site appeared in the top 500 list of
more than one country, it is included each time so that we could
make direct comparisons across countries. As a limitation, we note
that sites evolve over time (i.e., SSO options may change), and our
dataset reflects a point-in-time snapshot of the top sites collected
in July-September 2020.

5 API ANALYSIS OF IDENTITY PROVIDERS

User data available to third-party services through OAuth-backed
APIs vary with each IdP. The diverse native services provided by
IdPs lead to differences in the types of user data available within
each IdP’s SSO platforms. These differences make it difficult to
objectively compare permissions across multiple IdPs at different
granularity. To assist with this comparison, we reviewed OAuth-
backed attributes relating to personal user data for each IdP and
categorised them based on how the information could be used (or
misused). We grouped items into five data categories: basic (online
identity), (real world) identity, personal, interests, and other sensitive,
as shown in Table 1.

Categories. Data in the basic category includes the attributes we
consider least privacy-invasive (e.g., name, email address, profile
image) that help RPs uniquely identify its users. Here, name refers
to the user’s full name or profile username, and in the case of Apple
SSO, the user is allowed to choose a custom name to be shared with
the specific RP being accessed. Data attributes that facilitate map-
ping users to real-world identities such as user’s birthday, gender,
mobile number and street address are grouped into the identity
category. These are security-critical user data that, in the hands
of adversaries, can be misused to impersonate users (e.g., obtain
a new mobile SIM card). The personal category includes data that
enable RPs to access the user’s personal data including photos,
videos and current location. Such data could also involve secondary
individuals as part of the data being shared (e.g., a friend in the
user’s videos). We include data attributes (e.g., social content liked
by users) that could exhibit a user’s online behaviour in the interests
category. Such data can possibly be used by online trackers and
other scripts to study users. Finally, we group other user data such
as email contents, contact lists and documents that could contain
personal information under the other sensitive category.

We note that some user data can be associated with multiple
categories. For example, a passport copy uploaded to cloud storage
can be both other sensitive- and identity-related. In such cases, we
include the attribute in the category we deemed more relevant. Our
goal is to provide an overview of the types of user data accessed
by RPs, and not a mutually-exclusive categorisation of the APIs.
Table 1 groups relevant attributes from each provider into the five
categories. We selected an initial list of attributes relevant to user
data by reviewing OAuth documentation pages available on each
IdP platform. Then, we refined this list to include all attributes
requested by the top 500 sites in each of the five countries. In Fig. 3,

we include screenshots of UI shown to SSO users of the four IdPs.
We now discuss the four IdPs in the context of the data categories
made available through their OAuth-backed APIs.

5.1 Google OAuth API

Google’s OAuth 2.0 Scopes document [24] categorizes data attributes
into APIs based on the service where each is normally used within
Google’s ecosystem. For example, the Gmail API groups attributes
relevant to sending and receiving emails in a Gmail inbox. This
is useful for third-party email clients (e.g., Mozilla Thunderbird),
that externally manage users’ emails. Although not relevant to
our study, Google makes available several other attributes to RPs
through OAuth. In addition to attributes found in our dataset, we
included attributes related to personal user data from all Google
APIs in the Scope document [24]. Google’s OAuth 2.0 APIs classify
a subset of their attributes as belonging to sensitive (different from
sensitive category defined in our study) and restricted scopes. Most
RP applications requesting access to any of these attributes must
go through a verification process reviewed by Google [25].

Google’s OAuth 2.0 platform includes two types of profile-related
attributes. The profile [23] attribute under basic category shown
in Table 1 includes only the user’s name, email and public profile
image (and is included by default in response to requests), whereas
userinfo.profile includes all publicly available information from
the user’s Google profile and must be explicitly requested.

Supported flows. Google’s SSO platform uses both OAuth 2.0
and OIDC specifications to support standard flows, including the
implicit and authorization code flows. RPs specify the flow using the
response_type parameter, as discussed in Section 2. Additionally,
the value permission can be used for the parameter to specify use
of implicit flow [23]. The platform also supports the OIDC attribute,
openid [38], that allows the RP to obtain from Google an ID token
containing fields that assert the user’s identity.

5.2 Facebook OAuth API

Facebook’s Graph API [16] is the platform for third-party applica-
tions to interact with a user’s Facebook data. Applications imple-
menting SSO with Facebook use the Facebook Login interface to
identify users. This platform provides unique social user data (e.g.,
Facebook page likes and social posts created by the user) not avail-
able through other IdPs. We find that almost all of these attributes
(as marked in Table 1) are requested for access by at least one site
in our empirical study. Other permissions available in Facebook
Login allow applications to view, create, edit and delete content
on user-administered Facebook Pages. Although these permissions
are available, we limit our analysis to user-data attributes (listed in
Table 1) requested by RPs in the top 500 sites.

All SSO requests (including those that do not explicitly request
the public_profile attribute) to Facebook Login require the user to
allow the RP access to default fields (Facebook name and profile pic-
ture) [17]. RPs requesting permissions other than public_profile
(user’s name and profile picture), email and pages_show_list (list
of Facebook Pages managed by the user) are required to undergo
an approval process by Facebook [15].

Table 1: Comparison of data attributes in provider APIs. Default fields (applicable to Google and Facebook) are italicized. For
further details explaining the entries, see Google [24], Facebook [17], Apple [7] and LinkedIn [29].

Data category Google Facebook

Apple LinkedIn

email (address)

Basic email (address)

r_emailaddress
email (address) name

(online identifier) ‘g me]fl lli:l public_profile name (as provided by user) profilePicture
P headline
. birthd
user.birthday.read Ezzi_hlormeti)\,vn address
Identity user.addresses.read” user_gender birthDate
(real world) user.gender.read” -5 phoneNumbers
. user_age_range .
user.phonenumbers.read . . backgroundPicture
instagram_graph_user_profile
userinfo.profile user_location
photoslibrary™ user_photos .
Personal ftness* user_videos geoLocation
tasks* instagram_graph_user_media*
organizations
positions
. educations
. user_likes .
games projects
Interests P * user_posts . .
user.organization.read . certifications
user_link skills

volunteeringInterests
volunteeringExperiences

contacts

drive

gmail (email content)
documents®
spreadsheets™
youtube*

Other Sensitive user_friends

websites
industryName
courses
testScores
summary

*Data not requested (but available) by any site in our dataset.

Supported flows. Facebook Login supports the standard OAuth
2.0 authorization code flow (code) and the implicit flow (token).
RPs can additionally include the signed_request parameter to
obtain a user ID and the granted_scopes parameter for a list of
permissions approved by the user. Although the OIDC specification
is not supported by Facebook Login, authentication can be performed
using signed request which returns a signed base64url encoded JSON
object containing a user ID issued by Facebook.

5.3 Apple OAuth API

Apple introduced the Sign in with Apple framework in 2019 as a
privacy-friendly alternative for SSO users wanting to use third-
party web and mobile applications without disclosing their data.
It allows RPs to authenticate SSO users and to optionally request
access to the user’s name and email through the scope parameter.
When requested, Sign in with Apple allows users to either share
their original email address or create an anonymous email address
enabled by Apple’s Private Email Relay Service. This service gener-
ates an anonymous email address unique to the user-RP pair and
routes all email correspondence between the RP and user through
this email, hiding the user’s real email from the RP. Sign in with
Apple also helps RPs distinguish real users from bots through a
boolean-value real user indicator [7]. Applications on Apple’s App
Store using a third-party SSO service (e.g., Facebook, Google) are
now required to offer Sign in with Apple as an SSO option [5].

Supported flows. Sign in with Apple only supports the authoriza-
tion code flows and additionally, an ID token can be obtained (in a
JWT object) for authentication purposes. Although the platform’s
documentation [7] lacks explicit mention of the OpenlID standard,

it closely follows OpenID conventions discussed in Section 2.3. Sign
in with Apple does not support the implicit flow.

5.4 LinkedIn OAuth API

The Sign In with LinkedIn platform allows users to authenticate
and authorize profile access to third-party applications. In addition
to r_emailaddress (user’s email address), Sign In with LinkedIn
provides two scope parameters related to a user’s LinkedIn profile.
Each parameter groups several attributes, providing less granular
access to user data compared to other IdPs. RPs can specify the
r_liteprofile (or r_basicprofile in older API versions) scope
to request access to the user’s full name, profile picture (including
image meta data) and profile headline. The r_fullprofile scope
additionally includes all the other fields (listed in Table 1) appearing
on the user’s LinkedIn profile [29]. For each SSO request, Sign In
with LinkedIn provides a user ID that allows RPs to identify users.

Supported flows. Sign In with LinkedIn defines two types of con-
sents (analogous to OAuth flows): member and application authoriza-
tion. We concern ourselves only with the former, where LinkedIn
requires the use of the authorization code flow from OAuth 2.0. In
contrast, application authorization uses OAuth 2.0’s client creden-
tials flow for systems requiring machine-to-machine authorization,
without user involvement [26], and is outside the scope of this study.
In LinkedIn documentation, we did not find explicit mention of the
OpenlD standard or whether RPs could request only the member
ID, a unique identifier specific to the RP-user pair. However, RPs
can authenticate users using the OAuth flows supported by the
platform. After a successful login, the RP obtains an OAuth 2.0
access token that includes the user’s LinkedIn member ID.

- W Australia ® Canada Germany India M United States
s 90
&
> 80
@
3 70
5 60
3
g 50
< 40 ‘
2 30
: |
L 20
5 |
10
X
0 | ml_nnm
Google Facebook Apple LinkedIn

Figure 2: Percentage of RPs per country in our dataset that
support each IdP.

6 EMPIRICAL RESULTS

In this section, we report the findings of our empirical study on the
use of OAuth 2.0 to access user data in popular SSOs.

6.1 Distribution of Providers

We identify popular IdPs that are presented as SSO options in the
top 500 sites across five countries. Our results show that Google
and Facebook are the most popular SSO options in top sites across
all five countries. Apple is the third most popular option, possibly
due to the relatively recent introduction of Apple’s SSO platform in
2019. As shown in Fig. 2, Sign in with Apple is less popular in India,
consistent with Apple’s lack of popularity in India [40]. However,
recent requirements (discussed in 5.3) for apps on Apple’s App
Store could lead to an increase in the use of Apple SSO.

6.2 Comparing requested data across countries

We use our dataset to evaluate privacy differences (in user data
released to RPs) in SSO options presented by RPs to users per
country. RPs often provide different versions of their site to users
in different countries (or regions) offering varying SSO features in
each version. For example, Rakuten.com (a popular e-commerce
site) lists three SSO options (Google, Facebook, and Apple) for US
users and requests read access to the user’s emails when signing
in with Google. However, Rakuten.ca (for Canadian users) only
provides two options (Facebook and Apple), while Rakuten.de (for
German users) shows no SSO options and requires a site-specific
account to shop on the site.

Comparing RPs in US and Germany. For a more specific com-
parison, we take each US site in our dataset and compare the user
data released via SSO options presented to US users with that of
users in Germany (using a VPN service), where stricter privacy
laws such as the General Data Protection Regulation (GDPR) apply.
In many cases, visiting a US site from Germany redirects to either
a sub-domain or a different page within the site. Other sites use
the same URL to serve different content to users in the two coun-
tries. We also search for the site’s presence on the country-specific
top-level domain and check site content against the US version to
ensure they are from the same entity.

Table 2: SSO comparison of the US and Germany versions
of RP sites. In all these sites, users in Germany are offered
fewer or no login options compared to US users.

Relying Party |Us | Germany
expedia.com FGA-|F- - -
houzz.com FGA-|FG- -
yelp.com FGA-|- GA-
aol.com F G - - |No SSO (requires site-specific login)
businessinsider.com |[F G - L|No SSO (requires site-specific login)
marriott.com F - - - |No SSO (requires site-specific login)
rakuten.com F G A - |No SSO (requires site-specific login)
buzzfeed.com F G A - |Nologin
chicagotribune.com |F G A - |No login
cnet.com F - - - |Nologin
foodnetwork.com |F G A - |No login
nvidia.com F G A - |Nologin
“..Because of the General Data Protection
. Regulation (GDPR)...can still browse the
allrecipes.com FG- -|. . . g
site and view recipes, but you can’t
create an account or sign in"
grubhub.com FG- - AGrubhub food %ehvery is not available
in your country’
people.com F G - - |“.feature is not available in your location"
. “...does not support user accounts of
slickdeals.net FG- - EU/EEA citizens due to GDPR regulations”
usatoday.com F G - - |Login page does not load

IdP: (F)acebook, (G)oogle, (A)pple and (L)inkedIn

Beyond site versions with top-level differences such as cookie con-
sent prompts, we found 80 of 184 US sites presenting a different
version to users in Germany. Of these, 17 sites (listed in Table 2)
offered reduced functionality to users in Germany, such as fewer
or no login choices. Among the 80 sites with different versions,
we found zero instances where the RP’s Germany site-version re-
quested more data than the US version. While some sites present
a login button that fail to load (or return an error) in Germany
site-version, others present EU users with a dialog stating a lack
of features that require an account due to GDPR regulations. To
access RP sites as seen by users in Germany, we used a VPN service
to appear to be visiting the site from Germany. We were unable to
collect data on 4 sites that blocked access when attempting to visit
using a VPN connection.

Country-specific differences. Table 3 provides a sorted list of
the most requested attributes for each IdP per country. The major-
ity of the RPs request one or more basic attributes (in blue) that
help identify users (e.g., to display the user’s name and profile pic-
ture on the RP site). Although relatively similar patterns emerge
across countries, we do note some variation on particular attributes.
For example, Google’s userinfo.profile is requested more fre-
quently in Germany and India, while LinkedIn’s r_basicprofile
and r_fullprofile are requested most frequently in India, fol-
lowed by Australia, and not requested at all in Canada and Ger-
many. While we cannot determine why these differences exist, we
speculate that these variations could be a result of the IdP support
offered by the top RPs in a given country (Fig. 2).

6.3 Comparing requested data across providers

For each RP in our dataset, we captured the login options presented
to users along with the type of user data requested through each

Table 3: The percentage of RPs per IdP in our dataset that
requests a particular scope attribute. Blue cells represent
attributes from the basic category. Darker cells indicate a
higher percentage of RPs making a given request.

IdP Data Attribute ‘ AUS CAN DEU IND USA
profile*

G email (address)

O openid

(¢} userinfo.profile 11 11 17 7 10

G user.birthday.read 2 1 2 1 1

L contacts 1 1 1 2 1

E gmail (email content) 0 0 1 0 1
drive 0 0 0 1 0

public_profile*
email (address)

user_birthday 9 12 14 12 8
F user_friends 7 10 9 6 13
A user_location 3 8 6 6 3
C user_hometown 3 6 4 3 2
E user_likes 2 4 3 3 3
B user_gender 2 6 6 0 2
(¢} user_photos 1 2 2 2 3
(¢} user_link 1 2 2 2 0
K user_posts 1 1 1 1 1

user_age_range 1 3 0 1 0

user_videos 1 0 1 1 1
APPLE email (address)

name (as given by user)

Z r_emailaddress
% r_liteprofile
), r_basicprofile

)
P r_fullprofile

*Attributes (scope values) included by the IdP by default

SSO option. To examine privacy differences in SSO choices offered
by RPs, we search the US sites in our dataset and find 146 of 184 RPs
with two or more available SSO options. For each of these RPs, we
categorize the data requested with each option and filter out RPs
that request the same category of attributes from each supported
option (i.e., where all of an RP’s SSO options request an equivalent
amount of data). This results in a list of 43 RPs (shown in Table 4)
that request varying categories of data across two or more SSO
login choices (i.e., where an RP’s SSO options each request different
amounts of data).

Privacy choices on an RP site. We find that 42 of 43 RPs support
at least one SSO login that requests only the basic data, suggesting
that, in these cases, minimally privacy-invasive choices are avail-
able to users (as long as they are aware). For example, airbnb.com
supports SSO logins with Facebook, Google and Apple. When a
user logs in using Facebook, the site requests access to the user’s
hometown, location, Facebook page likes, birthday, and friends list.
However, if the user logs in with Google or Apple, the request only
includes basic attributes such as the user’s name and email address.
Additionally, most RPs present the most privacy-preserving choices
as the last login option; for airbnb.com, Facebook is presented to
users first. Table 4 highlights the issue: each RP is shown with its
SSO options listed in the order presented to users. In most cases, the
first option requests more data than others, suggesting the possibil-
ity of a dark pattern where SSO users are subtly nudged towards
more privacy-invasive SSOs.

Table 4: US relying parties that support at least two
SSO login options and that request different cate-
gories of data per option. Login options are shown
in the order (earlier tends to request more data) that
they are presented on the Relying Party’s login page.

Relying Party Option 1

Option 2 ‘ Option 3

aliexpress.com
feedly.com
hootsuite.com
offerup.com
poshmark.com
quizlet.com
slickdeals.net
soundcloud.com
vimeo.com
wordpress.com
airbnb.com
allrecipes.com
autotrader.com
blizzard.com
canva.com
chess.com
coursera.org
dailymotion.com
desmos.com
dropbox.com
epicgames.com
expedia.com
fiverr.com
foodnetwork.com
gamespot.com
glassdoor.com
goodreads.com
groupon.com
houzz.com
imdb.com
kickstarter.com
loom.com
meetup.com
pinterest.com
rakuten.com
slideshare.net
smartsheet.com
theatlantic.com
timeanddate.com
tripadvisor.com
trulia.com
ultimate-guitar.com
yelp.com

p
-p - -
p

>0

—
'
'
'

RN
> >

Vo oo oo o o o !
'
'
'
'

_
R
=
.
.
.
.
L

'
[-1

'
e o»m owo®»

[
e
T T o

Qro» '

e

'
'
[T
'
U 3] =]
'
'
'
‘oo oo oo o o !
'
'
'
'

B

>
o o

oG] '
[=
[I I S|
' '
' '
' '
' '
(IS
'

'

'

'

'

P
ipnsf- - ----

o) lg=

- - - -|ADb - - - -
-p- -|ADb-- - -

[Sa= i SC SIS~~~ S -2 =l =l =l = -~
. ol 0

!

!
OTOHOOP>PTTIOOPTOOOOOOTOTHO>»>OTOTO>»O0>000T>00T0
SRS ANC S o=l = = S R - s = o = = S = e = S R s = =

0 .

!

.

.

i- - -

IdP: (F)acebook , (G)oogle , (A)pple and (L)inkedIn

Data: (b)asic, (i)dentity, (p)ersonal, i(n)terests, (s)ensitive

Table 5 shows the individual attributes requested by RPs with each
offered SSO option. This list includes the subset of all US RPs that
request access to two or more non-basic attributes from at least one
SSO option. We find that RPs request considerably more attributes
with Facebook compared to other offered IdP SSOs (note the 10
columns in Table 5 for Facebook). Since Facebook SSO provides
access to a variety of user data through its SSO platform (discussed
in Sec. 5), RPs can request access to richer user data from the IdP.
The privacy disparity in number of user data attributes released
with each offered SSO suggests a need for informing privacy-aware
users about these differences. Furthermore, many RPs (x and f in
Table 5) use client-side OAuth flows that are vulnerable to access
token misuse, as discussed in Sec. 2.2.

Table 5: Comparison of all data attributes requested by the
subset of US RPs that request at least 2 non-basic permis-
sions. This table presents a complementary view to Table 4
by highlighting the high number of attributes requested by
RPs with Facebook compared to other IdPs.

g =
iz L F., g | .
225325382 3| %
s g2 g E2 =38 <& =
NaininiiinheBule f'\'Tué) o=
222382382 8833 3|°8 3225 4«
Relying Party (SIS IRC T ST TR T ST < TR ST TR LG R OB L P
aliexpress.com .« o e .« . o
nba.com . . o«
tripadvisor.com #f |e o o o o
airbnb.com o« e e e
dailymotion.com 7 |+ . . .
groupon.com *7 . e . .
pinterest.com *f . . o .
glassdoor.com *
imdb.com . .« . o 5
fiverr.com 7
gofundme.com * . . .
yelp.com =¥ . . o o e
autotrader.com . o . 5
foodnetwork.com |+ o . . .
hootsuite.com . o o o e 5
soundcloud.com . . o o e
slideshare.net * . . o ©

RPs using client-side OAuth flows are shown with
«Facebook; TGoogle

IdP-specific differences. In cases where multiple IdPs offer ac-
cess to broadly similar types of data (shown in Table 3), RPs are
more likely to request this data from one IdP and not from the
others. For example, 13% of US RPs in our dataset request access to
user friends from Facebook SSO, but only 1% request user contacts
with Google SSO. Additionally, an RP will gain access to varying
amounts of data about a user depending on how much that user
has shared with the IdP; an RP could receive a significantly richer
profile about a SSO user who has “liked” hundreds of Facebook
pages over many years compared to a user who has not “liked” any
pages. Due to such differences, the actual data accessed by RPs
could vary per user. Moreover, for the IdPs in our study, it is not
possible for RPs to request subsets of data for a given attribute.
Hence, we limit our analysis to data attributes as requested by RPs.

6.4 Use of OAuth 2.0 and related OIDC Flows

SSO protocol data collected in our study include information about
which OAuth 2.0 flows were implemented by each RP. Table 6 sum-
marizes the different OAuth 2.0/OpenID Connect flows used by the
RPs in our dataset. Of particular concern is that a significant num-
ber of RPs use the less secure implicit flow. For example, between
29% (Germany) and 43% (US; India) of RPs use the implicit flow

with Facebook SSO. Similarly, the implicit flow with Google SSO is
used by between 17% (Germany) and 38% (India) RPs.

Using the implicit flow involves receiving access tokens directly
into the user’s browser from the IdP, suggesting that the safe storage
(compared to the authorization code flow) of tokens issued to the RP
is dependent on the user’s security practises. Apple and LinkedIn
do not support implicit flows on their SSO platforms, thus forcing
all RPs to use more secure designs. Both Google and Facebook
SSOs (shown in Table 6) support both the client-side and server-
side flows. We find some cross-country differences, notably fewer
RPs in Germany use less secure flows compared to RPs in other
countries. This could be due to stricter data protection regulations.

7 PRIVACY IMPLICATIONS

In this section, we discuss user privacy implications from our evalua-
tion of OAuth 2.0 and OpenID Connect use in popular SSO services.

7.1 Privacy choices

Our empirical results reveal that RPs often request differing amounts
of user data (shown in Table 4) for each SSO option they offer. We
also find that the privacy-friendly choices are typically presented
last in the login screens. It is possible that RPs list popular SSO op-
tions earlier or encourage users to choose certain SSO options and
request more user data to offer usability benefits (e.g., autofill forms).
However this comes at the cost of privacy and, as privacy advocates,
we argue that if a choice is inevitable between usability and privacy,
the decision should be left to the user. To allow privacy-conscious
users to make informed decisions, these differences in privacy and
usability between SSO options should be made available before the
user makes a login choice. Standard practice [44, §9.8] emphasizes
that designs should be as simple as possible and provide users with
a secure default path-of-least-resistance to complete authentication
tasks. We argue that this path-of-least-resistance should also be
privacy-preserving by default.

In addition to the type of data requested, privacy decisions by
users may also depend on how the accessed data is used by RPs.
As external observers, we have no means to assess an RP’s han-
dling or use of user data collected through its SSOs, thus we avoid
speculating about possible uses beyond our knowledge. We do note
that since a given RP frequently includes SSO options that request
different amounts of data, it appears unlikely that all requested data
is essential to provision core services since users logging in with
the more privacy-friendly SSO can still use the RP’s services.

IdP interface. Fig. 3 shows the design of SSO user interfaces pre-
sented to the user when they choose to login with an IdP. Informa-
tion about permissions requested by the RP is presented differently
by each IdP. If the user is not already logged in, some IdPs (i.e.,
Apple, Facebook, and LinkedIn) present their default login screens
before showing the SSO screen. This means that, when the RP offers
multiple SSO options, users can only view the requested permis-
sions with a specific IdP after logging in with that IdP. To make
an informed decision, users would need to click on all listed SSO
options and complete authentication with each IdP in turn, to view
and compare the complete list of permissions requested by the RP.
This design can lead to privacy-conscious users sharing more data
than intended. While some IdPs allow users to opt-out of certain

Table 6: OAuth 2.0 and related OpenID Connect (OIDC) flows used by RPs per country. N = total number of sites (among top
500) offering the IdP per country (number of RPs); n = number of RPs using the given flow; % = percentage of RPs using a
given flow (i.e., % = n/N * 100). Hybrid flows represent multi-valued response types described in Section 2.3.

1dpP OAuth 2.0/ Response Type Australia Canada Germany India us
OIDC Flow N n % N n % N n % N n % N n %
Google Authorization code code 148 95 64 132 85 64 98 74 76 151 83 55 159 95 60
Implicit token T 4 3 T 4 3 T 0 - 7 3 2 T 2 1
id_token 2 1 1 1 0 - 0 - 2 1
id_token token 34 23 35 27 17 17 55 36 50 31
Hybrid code id_token T 0 - T 0 - T 0 - T 0 - T 0 -
code token 0 - 0 - 0 - 0 - 1 1
code id_token token 13 9 7 5 7 7 10 7 9 6
Facebook Authorization code code 147 102 69 134 90 67 103 73 71 144 82 57 148 84 57
Implicit token T 4 3 T 5 4 T 0 - T 2 1 T 3 2
token signed_request 41 28 39 29 30 29 60 42 61 41
Apple Authorization code code 70 34 49 64 30 47 47 30 64 42 16 38 85 35 41
Hybrid code id_token T 3 51 T 34 53 T 17 36 T2 62 T 50 59
LinkedIn Authorization code code 9 9 100 1 11 100 3 3 100 10 10 100 1 11 100

permissions (shown in Fig. 3), others require users to grant all the
requested permissions. Given the differing amounts of private data
requested by offered SSOs, we highlight the importance of present-
ing the requested permissions for all SSOs to users prior to their
decision to login with a specific SSO provider.

Informing users. Usable SSO interfaces are essential in communi-
cating SSO choices available on an RP site to users. While current
IdPs theoretically obtain consent before sharing user data during
SSO workflows, we argue that truly informed consent would enable
interested users to adequately compare their options before making
a decision and having some control over their privacy.

Android permission models involve device resources and are
arguably more complex than SSO logins, but superficially they
may appear similar from the user’s perspective. For example, when
signing in, a SSO user is presented with a list of resources similar to
install-time permissions on Android and if the user is already signed
in with an IdP, a dialog similar to Android’s runtime permission
request is shown. Prior research on Android Uls have shown that
permission warnings are ineffective in informing users about the
risks associated with granting resource access to applications [18].
Android permission warnings focus on resource access but lack
useful information for users to understand the associated benefits
and risks [35]. Even when users read permission warnings, they
are unaware of risks and simply trust the marketplaces to have
reviewed the hosted applications [28]. We can derive insights for
SSO permission requests and, through our inspection, observe that
the existing SSO UI designs similarly lack useful information for
users to convey risks associated with sharing personal data.

Although specific user interface recommendations should be
user tested, we suggest that users could be better informed when
provided (e.g., in a second-level user interface) with a comparison of
the differences between the requested data of each SSO. We do not

necessarily suggest providing users with additional information,
but rather making it easier for them to compare if they so choose.

7.2 OAuth 2.0 Implicit Flow

The OAuth 2.0 implicit flow was created due to past browser re-
strictions limiting websites to making requests only within its own
domain [34]. This prevented JavaScript-based apps from using the
authorization code flow since it involves making requests to the
IdP domain, which is likely to be different when the RP and IdP are
different entities. As discussed in Section 2.2, modern browsers sup-
port cross-origin requests, allowing the use of more secure flows.
Often privacy and security issues are closely related. Our analysis
shows that many RPs still use the implicit flow that returns access
tokens in the redirection URL. This is a security concern since URLs
are persisted in users’ browsing history and it increases the attack
surface for access token leakage [22]. An access token providing
broader access to user data means greater privacy risks created by
design choices that are susceptible to RP’s security choices. Access
tokens provide access to specified resources for a limited duration.
Users may not be aware of the risks associated with access token
leaks, especially when the RP uses client-side flows. The potential
damage to user privacy increases when the token’s scope allows
excessive access to sensitive user data. RPs can reduce the attack
surface by requesting minimum access and using secure flows.

7.3 Offline data leaks

RPs and IdPs should clearly indicate the purpose of requested ac-
cess to personal data before the user makes their choice. OAuth
enables an RP to improve usability for users through customization
based on user-data attributes from an IdP. If access is granted, the
RP can download and persist user data for further processing. As
mentioned in Section 5, many IdPs review RP apps that request

G Signin with Google

Linked [T}

Signin h

Continue to Airbnb

SurveyMonkey would like to:
Email or phone
® Use your name and photo
® Use the primary email address associated with

Forgot email?
your LinkedIn account

You can stop this sync in your LinkedIn
To continue, Google will share your name, email address, settings. SurveyMonkey terms apply. Learn more.
language preference and profile picture with Airbnb. Before
using this app, you can review Airbnb’s privacy policy and

Terms of Service.

Not you?

(a) Google (b) LinkedIn

& I3 Log in with Facebook

< Back Info that you provide

Airbnb will receive: Name and profile picture

your name and profile picture, email address, date of birth, Email address

Page likes, current town/city, friends list and home town. ©
Date of birth
[# Edit this Your biftday ©
m ?igems :
Cancel a

& This doesn't let the app post to Facebook

(c) Facebook

Apple ID ~ ApplelD v

Sign In with Apple

? Fast and easy
Sign in to apps and websites with the Apple ID you
already have.

Create an account for Airbnb using your Apple ID

W Respects your privacy
Apps can only ask for name and email. Apple will
never track you. EMAI

Share My Email

° . .
-y Hide your email)

Keep your email address private, but still receive © Hide My Email

messages from the app.

Cance Cancel
scy P
! Polic
(d) Apple

Figure 3: UI of SSO login forms on IdP sites. (a) Google and
(b) LinkedIn do not allow users to alter fine-grained permis-
sions granted to RPs. (c) Facebook allows users to selectively
opt-out of non-default permissions requested by an RP. (d)
Apple allows users to use a substitute name and anonymous
email with an RP. In cases of (b), (c) and (d), the IdP presents
its default login dialog before showing the SSO screens if the
user is not already logged in, as discussed inline. Personal
details are greyed out in these images.

access to sensitive user data. IdPs also provide an interface for users
to revoke previously granted access to an RP, invalidating all access
tokens issued to the RP. However, this does not prevent a rogue RP
from misusing any user data already accessed. Since user data is
processed on RP apps (not controlled by IdP), it is not possible for
the user or IdP to be aware of any misuse of accessed data.

Without proper security measures, even a well-intentioned RP
can be vulnerable to data breaches that increase the attack surface
for users and their data. Although using OAuth ensures that the
user’s passwords are safe from an attack on RP, leaked access tokens
can equally cause damage by allowing attackers to access user
data [12]. It can be challenging for users to track attacks on RPs,
and understanding the implications requires a mental model of
the SSO system that many users lack [43]. Another challenge for
users involves access to decommissioned accounts. RPs identify
users by trusting the IdP’s verification of user credentials. If a
user has stopped using an RP or de-linked their IdP account with
RP, it may not be possible for the user to later correspond with
the RP (e.g., to demand deletion of personal data). In Section 9,
we extend discussion of privacy concerns to consider stakeholder-
based challenges in improving user privacy and offer ideas for
further exploration.

8 RELATED WORK

Zhou et al. [47] built SSOScan, a SSO security testing tool to auto-
matically scan sites with Facebook SSO by simulating user inter-
actions. We follow a similar methodology to simulate user actions
leading to SSO login pages. However, our tool facilitates the col-
lection of SSO parameters beyond a single IdP such as Facebook,
enabling the comparison of SSO options available on RP sites. Addi-
tionally, instead of looking for security flaws, we examine privacy
implications in RPs using any of four IdPs. Drakonakis et al. [13]
built an auditing framework for evaluating login security in web
apps, including sites that support SSOs with Facebook and Google.
They simulate user interactions to automatically create accounts
and analyse login requests to find security vulnerabilities such
as data leaks to unauthorized parties. We also build on the Sele-
nium [39] framework to automate user actions. As noted in our
introduction, instead of privacy leaks to unauthorized parties, we
evaluate privacy implications in sites that are explicitly granted
access to the user’s personal data protected by IdPs (although users
might be unaware). While our tool is similar in some ways (in
that, e.g., it automatically collects data from RPs) to previous re-
search [13] [47], our empirical study differs by involving a complete
dataset, as discussed in Section 4.2.

Mainka et al. [30] investigate malicious IdPs in OpenID imple-
mentations using a testing framework and identify four novel attack
classes. Fett et al. [20] pursue formal analysis of the OAuth 2.0 stan-
dard and proofs of security properties for all OAuth 2.0 flow types.
Chen et al. [11] evaluate the use of OAuth in mobile apps and re-
veal security vulnerabilities in several apps due to implementation
flaws. In a 2012 field study of popular SSO systems, Wang et al. [45]
analysed SSO web traffic through the browser and identified flaws
in popular RPs and IdPs, allowing attackers to impersonate victims.
The Selenium-based OpenWPM platform, by Englehardt et al. [14],
is designed for large-scale analysis of user tracking on the web.

Mainka et al. [31] analyse the OpenID Connect protocol and
identify security flaws similar to vulnerabilities found in other SSO
protocols. They implement a fully-automated evaluation tool to
identify implementation flaws in OpenID Connect libraries. Bai et
al. [8] provide a tool to automatically identify security vulnerabili-
ties in implementations of web authentication protocols including
OAuth-based SSO. Yang et al. [46] propose an OAuth 2.0 security
testing framework and automatically evaluate four IdPs (Facebook,
Sina, Renren and Tencent Weibo) and 500 top-ranked web apps in
US and China. Their empirical study reveals web apps that lack
adequate protection from security exploits.

Addressing challenges related to user awareness, AppCensus [1]
(cf. [35]) uses dynamic analysis to reveal privacy implications of
granting data access to Android apps. More recently, Apple intro-
duced privacy labels [6] to highlight privacy practises to users of
i0S apps. Narayanan et al. [33] discuss dark pattern designs in on-
line services used to influence less-informed users into choices not
in their best interest. Mathur et al. [32] investigate ~11K shopping
sites and find 1,818 instances of dark patterns designed to increase
user purchases. A 2014 user study by Robinson et al. [36] finds
that users tend to misunderstand broad (as opposed to detailed)
descriptions of Facebook Login permissions. Felt et al’s [18] user
studies evaluate the effectiveness of Android permissions and find
majority of participants were unaware or did not look at permission
warnings. Unlike mobile apps where users are given only one set
of permissions, SSO users often have the choice (although hidden)
to login to a given RP with a less privacy-intrusive alternative so
user awareness could significantly impact decisions.

Sun et al. [43] empirically found users hesitant to adopt OpenID
due to a lack of understanding and to concerns over releasing per-
sonal information. Many users held the misconception that their
IdP credentials were shared with the RP. In 2012, Sun et al. [42]
also evaluated OAuth 2.0 implementations by three major IdPs
(Facebook, Microsoft, Google) and explored RPs supporting Face-
book SSO to find several implementation decisions causing security
concerns, including possible access token theft. Privacy implica-
tions discussed herein complement their work on security implica-
tions from identified vulnerabilities. Bonneau et al. [9] surveyed 35
password-replacement schemes and found that compared to other
schemes, federated SSO systems offer more benefits across vari-
ous usability, deployability and security properties. Alaca et al. [2]
propose a framework to evaluate 14 web SSO schemes, including
OAuth 2.0 and OpenlID, and compare various properties including
privacy benefits. They identify defining characteristics for each
scheme and highlight priorities for stakeholders.

9 DISCUSSION & CONCLUDING REMARKS

OAuth-based systems offer flexibility and convenience to users. Ser-
vices using OAuth benefit from reduced development costs related
to outsourcing identity management. When an RP supports multi-
ple SSO logins, users must commit to an SSO option (and in many
cases, complete the authentication) before finding what user data
will be requested by the RP. This design means that users never find
out what data would be requested by other SSO options, and con-
sequently, are not fully informed about available choices on the RP
site. Our empirical results reveal privacy practises where popular

RPs request vastly different amounts of user data from different IdPs,
with at least one option unquestionably more privacy-intrusive.
Moreover, we uncover a concerning trend in which privacy-friendly
choices are presented to users as the last option on RP sites, similar
to dark patterns found in website designs [32] [33]. SSO users are
likely to make privacy decisions not in their best interest, due to
the lack of information on available choices.

When granting RPs access to user data, users are not given
information on the duration of the access. This lack of information,
combined with an RP’s ability to extend previously granted access
without additional user involvement (Section 2.4), poses ongoing
danger to user privacy. Further research is needed to mitigate risks
related to allowing such continued access by RPs.

Addressing the privacy concerns identified by our analysis is
challenging because of misaligned interests of different stakehold-
ers. It is difficult to incentivize RPs to promote privacy-friendly
choices (i.e., collect less user data) as it may not be in the com-
pany’s business interest. The IdP might have its own agenda (e.g.,
encouraging adoption of its services) that may not align with that
of privacy-conscious users or the RP. Partial solutions exist in some
limited cases (e.g., signing into nytimes.com using Google SSO)
where a Google dialog is presented to advise users of the data that
would be shared with the RP if Google is chosen. This dialog is
limited as it lacks a comparison between IdP options. Although
this is only observed in limited circumstances (i.e., the user needs
to be signed into Google on the same browsing window), the UI
offers useful information, albeit incomplete, for a user signing in
using SSO. Given the conflicting goals of stakeholders, a user-tested
tool by a third-party might offer a better solution in providing rele-
vant information for users to make informed decisions. These ideas
for further exploration require separate user studies to examine
usability and the effect on privacy decisions made by SSO users.

Another factor complicating privacy improvements is that there
is no one-choice-fits-all solution because of variations in privacy
preferences across users. For example, some users may prefer to
share personal data (e.g., in exchange for using the product at no
cost) while others may value privacy above extra functionality.
This means that it is most likely that input is needed from users
to specify preferences, compared to security solutions where the
secure option can be preconfigured (no choice required from user).
This is a classic tussle between stakeholders with diverging (in
case of a privacy-conscious user and a privacy-invading RP, polar
opposite) goals—one which we do not aim to resolve in this paper.

To the best of our knowledge, we offer the first in-depth analy-
sis of OAuth-based SSO with a primary focus on user privacy as
opposed to security. We argue that the first step in addressing the
concerns identified by our analysis is awareness of the issues to en-
courage the community towards productive explorations about how
to effectively support user privacy and about exposing dark patterns
in this space. We hope that greater awareness by technically-savvy
users and privacy enthusiasts, of the privacy implications identified
through our work (Section 7), may result in further attention to
privacy violations, further community-based monitoring, and a
more privacy-friendly OAuth-based SSO ecosystem.

Acknowledgements: The second and third authors acknowl-
edge funding from NSERC through the Canada Research Chairs &
Discovery Grant programs.

REFERENCES

(1]
(2]

[10]

[11]
[12]

[13]

[14

[15]
[16]
[17

(18

[19]

[21]

[22]

[23

[24]

[25

[26

[27]

[28

[29]
[30]
[31]

[32]

[33]

Appcensus. https://www.appcensus.io/, 2020.

F. Alaca and P. C. van Oorschot. Comparative Analysis and Framework Evaluating
Web Single Sign-on Systems. ACM Computing Surveys, 53(5), 2020.

Alexa. The top 500 sites on the web. https://www.alexa.com/topsites, 2021.
Alexa. Top Sites by Category has been retired. https://support.alexa.com/hc/en-
us/articles/360051913314, 2021.

Apple. New Guidelines for Sign in with Apple. https://developer.apple.com/
news/?id=09122019b, 2019.

Apple. App privacy labels now live on the App Store. https://developer.apple.
com/news/?id=3wann9gh, 2020.

Apple. Sign in with Apple. https://developer.apple.com/documentation/sign_in_
with_apple, 2021.

G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun, Y. Liu, and J. S.
Dong. AuthScan: Automatic Extraction of Web Authentication Protocols from
Implementations. In NDSS, 2013.

J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The Quest to Replace
Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes. In IEEE Symp. Security and Privacy, 2012.

B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt. RFC 8705: OAuth
2.0 Mutual-TLS Client Authentication and Certificate-Bound Access Tokens.
https://datatracker.ietf.org/doc/html/rfc8705, 2020.

E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. OAuth Demystified
for Mobile Application Developers. In ACM CCS, 2014.

C. Cimpanu. Hackers stole GitHub and GitLab OAuth tokens from Git analytics
form Waydev. https://www.zdnet.com/article/hackers-stole- github-and- gitlab-
oauth-tokens-from-git-analytics-firm-waydev/, 2020.

K. Drakonakis, S. Ioannidis, and J. Polakis. The Cookie Hunter: Automated
Black-box Auditing for Web Authentication and Authorization Flaws. In ACM
CCS, 2020.

S. Englehardt and A. Narayanan. Online Tracking: A 1-million-site Measurement
and Analysis. In ACM CCS, 2016.

Facebook. App Review. https://developers.facebook.com/docs/app-review, 2021.
Facebook. Graph APIL https://developers.facebook.com/docs/graph-api/, 2021.
Facebook. Permissions Reference. https://developers.facebook.com/docs/
permissions/reference/, 2021.

A.P.Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android Permis-
sions: User Attention, Comprehension, and Behavior. In SOUPS, 2012.

D. Fett, J. Bradley, B. Campbell, T. Lodderstedt, and M. Jones. OAuth 2.0 Demon-
stration of Proof-of-Possession at the Application Layer. https://datatracker.ietf.
org/doc/html/draft-fett-oauth-dpop-00, 2019.

D. Fett, R. Kiisters, and G. Schmitz. A Comprehensive Formal Security Analysis
of OAuth 2.0. In ACM CCS, 2016.

M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis. O Single
Sign-Off, Where Art Thou? An Empirical Analysis of Single Sign-On Account
Hijacking and Session Management on the Web. In USENIX Security, 2018.

R. Gilbert. Information Exposure Through Query Strings in URL.
https://owasp.org/www-community/vulnerabilities/Information_exposure_
through_query_strings_in_url, 2021.

Google. Google API for Authentication. https://developers.google.com/identity/
sign-in/web/reference, 2021.

Google. OAuth 2.0 Scopes for Google APIs. https://developers.google.com/
identity/protocols/oauth2/scopes, 2021.

Google. OAuth API verification FAQs. https://support.google.com/cloud/answer/
9110914, 2021.

D. Hardt. RFC 6749: The OAuth 2.0 Authorization Framework. https://tools.ietf.
org/html/rfc6749, 2012.

M. B. Jones, J. Bradley, and N. Sakimura. RFC 7519: JSON Web Token (JWT).
https:/tools.ietf.org/html/rfc7519, 2015.

P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wetherall. A
Conundrum of Permissions: Installing Applications on an Android Smartphone.
In Financial Cryptography and Data Security. Springer, 2012.

LinkedIn. Sign In with LinkedIn. https://docs.microsoft.com/en-us/linkedin/
consumer/integrations/self-serve/sign-in-with-linkedin, 2018.

C. Mainka, V. Mladenov, and J. Schwenk. Do Not Trust Me: Using Malicious IdPs
for Analyzing and Attacking Single Sign-on. In IEEE EuroS&P, 2016.

C. Mainka, V. Mladenov, J. Schwenk, and T. Wich. SoK: Single Sign-On Security
— An Evaluation of OpenID Connect. In IEEE EuroS&P, 2017.

A. Mathur, G. Acar, M. J. Friedman, E. Lucherini, J. Mayer, M. Chetty, and
A. Narayanan. Dark Patterns at Scale: Findings from a Crawl of 11K Shopping
Websites. ACM Human-Computer Interaction, 3(CSCW), 2019.

A. Narayanan, A. Mathur, M. Chetty, and M. Kshirsagar. Dark Patterns: Past,
Present, and Future. ACM Queue, 18(2), 2020.

(34]

(35]

[36]
(37]

[38

(39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

A

A. Parecki. Is the OAuth 2.0 Implicit Flow Dead? https://developer.okta.com/
blog/2019/05/01/is-the-oauth-implicit-flow-dead, 2019.
J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S. Egel-

man. 50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the
Android Permissions System. In USENIX Security, 2019.

N. Robinson and J. Bonneau. Cognitive Disconnect: Understanding Facebook
Connect Login Permissions. In ACM COSN, 2014.

N. Sakimura, J. Bradley, and N. Agarwal. RFC 7636: Proof Key for Code Exchange
by OAuth Public Clients. https://tools.ietf.org/html/rfc7636, 2015.

N. Sakimura, J. Bradley, M. B. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0. https://openid.net/specs/openid-connect-core-1_0.html, 2014.
Selenium. Selenium WebDriver. https://www.selenium.dev/documentation/en/
webdriver/, 2021.

M. Singh. Why Apple sells just 2.5% of India’s smartphones.
https://www.cnbc.com/2018/01/29/why-apple-sells-just-2-point-5-percent- of-
indias-smartphones.html, 2019.

E. Stobert and R. Biddle. The Password Life Cycle: User Behaviour in Managing
Passwords. In SOUPS, 2014.

S.-T. Sun and K. Beznosov. The Devil is in the (Implementation) Details: An
Empirical Analysis of OAuth SSO Systems. In ACM CCS, 2012.

S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar, K. Hawkey, and K. Beznosov. What
Makes Users Refuse Web Single Sign-On? An Empirical Investigation of OpenlID.
In SOUPS, 2011.

P. C. van Oorschot. Computer Security and the Internet: Tools and Jewels. Springer
Nature, 2020.

R. Wang, S. Chen, and X. Wang. Signing Me onto Your Accounts through Facebook
and Google: A Traffic-Guided Security Study of Commercially Deployed Single-
Sign-On Web Services. In IEEE Symp. Security and Privacy, pages 365-379, 2012.
R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu. Model-based Security Testing: An
Empirical Study on OAuth 2.0 Implementations. In AsiaCCS, 2016.

Y. Zhou and D. Evans. SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities. In USENIX Security, 2014.

OAUTH 2.0 AUTHORIZATION REQUEST

We provide an example authorization request discussed in Section 3.
RPs specify OAuth 2.0 parameters in authorization requests to IdPs.

HTTP GET /authorizationEndpoint?

response_type=code

&scope=email%20profile
&redirect_uri=https%3A%2F%2Fclient%2Ecom%2Fcb
&client_id=1p4qazfnhi

&state=hnz3krb2mn

A brief description is included for each parameter in the request [26]:

e authorizationEndpoint: endpoint URI used by the RP for
sending authorization requests to the IdP.

e response_type: specifies the OAuth flow type the RP in-
tends to use with IdP.

e scope: alist of resources requested for access by the RP.

e redirect_uri: user is redirected to this endpoint after com-
pleting interactions with the IdP. For security reasons, this
value must match the endpoint registered with the IdP dur-
ing RP’s app registration.

e client_id: aunique string issued to RP during registration.

e state: aunique (non-guessable) string generated by RP and
included in the authorization request. The IdP returns the
value when redirecting the user back to RP. To mitigate cross-
side request forgery (CSRF) attacks, the RP application must
ensure that the returned value is equal to value included in
the initial request.

https://www.appcensus.io/
https://www.alexa.com/topsites
https://support.alexa.com/hc/en-us/articles/360051913314
https://support.alexa.com/hc/en-us/articles/360051913314
https://developer.apple.com/news/?id=09122019b
https://developer.apple.com/news/?id=09122019b
https://developer.apple.com/news/?id=3wann9gh
https://developer.apple.com/news/?id=3wann9gh
https://developer.apple.com/documentation/sign_in_with_apple
https://developer.apple.com/documentation/sign_in_with_apple
https://datatracker.ietf.org/doc/html/rfc8705
https://www.zdnet.com/article/hackers-stole-github-and-gitlab-oauth-tokens-from-git-analytics-firm-waydev/
https://www.zdnet.com/article/hackers-stole-github-and-gitlab-oauth-tokens-from-git-analytics-firm-waydev/
https://developers.facebook.com/docs/app-review
https://developers.facebook.com/docs/graph-api/
https://developers.facebook.com/docs/permissions/reference/
https://developers.facebook.com/docs/permissions/reference/
https://datatracker.ietf.org/doc/html/draft-fett-oauth-dpop-00
https://datatracker.ietf.org/doc/html/draft-fett-oauth-dpop-00
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url
https://developers.google.com/identity/sign-in/web/reference
https://developers.google.com/identity/sign-in/web/reference
https://developers.google.com/identity/protocols/oauth2/scopes
https://developers.google.com/identity/protocols/oauth2/scopes
https://support.google.com/cloud/answer/9110914
https://support.google.com/cloud/answer/9110914
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7519
https://docs.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin
https://docs.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin
https://developer.okta.com/blog/2019/05/01/is-the-oauth-implicit-flow-dead
https://developer.okta.com/blog/2019/05/01/is-the-oauth-implicit-flow-dead
https://tools.ietf.org/html/rfc7636
https://openid.net/specs/openid-connect-core-1_0.html
https://www.selenium.dev/documentation/en/webdriver/
https://www.selenium.dev/documentation/en/webdriver/
https://www.cnbc.com/2018/01/29/why-apple-sells-just-2-point-5-percent-of-indias-smartphones.html
https://www.cnbc.com/2018/01/29/why-apple-sells-just-2-point-5-percent-of-indias-smartphones.html

B MITIGATING OAUTH 2.0 ACCESS TOKEN THEFT

Bearer tokens (e.g., typical access tokens in OAuth 2.0) are susceptible to token theft as they can be used by any party in temporary possession
of the token. Protection against such attacks include using mutual Transport Layer Security (mTLS) where the tokens are bound to the
client’s X.509 certificate (self-signed or signed by a trusted CA certificate), restricting their use to the client in possession of the certificate’s
private key [10]. An alternate mechanism to protect against token thefts is DPoP, or Demonstration of Proof of Possession which utilizes
public/private key pairs to bind access and refresh tokens to the key pair. The client needs to prove possession of the private key in order to
use an access token bound to the corresponding public key [19].

C OAUTH 2.0 IMPLICIT FLOW

As an extension to background provided in Section 2, Fig 4 lists the process for the OAuth 2.0 implicit flow. Returning access tokens in the
redirection URIs is a security concern as the tokens are typically retained in the user’s browsing history, increasing the attack surface for
unauthorized access token use outside the RP application.

Resource
Browser RP (client) laP Server
| Access Token
licks to | 1 user dlicks to login_ o iing 550 t Froken endpoint
i | user clicks to ogin Lo Gsing S50 reques > Foken sndoom
]
: Redirects to login
1 page
T
<: user consents to >
1 allow access
1
1
: |[&«——Redirects with access token in URl—
—
1
' < Data access
1
: request {token} »Resource endpoin ~
' verifies token
' l&——Returns protected data:
1

Figure 4: Procedure for the OAuth 2.0 Implicit flow (derived from [26]).

D OAUTHSCOPE

Fig. 5 is a screenshot of OAuthScope described in Section 3 and lists identified OAuth 2.0 parameters for each RP. This Ul is used for analysis
of data collected by OAuthScope.

© D localhost

OAuth results for Top Sites

Select database:

us .

responseType scope

Number of records: 184/

{"Google": "code" } {"Google": "email profile openid”, "Facebook": “email" }

{"Google": "code" } { "Google": "openid email profile", "Facebook": “email%2Cuser_birthday%2Cuser_hometowr
{"Google": "code" } { "Google": "profile email" }

{ "Facebook": { "Facebook™: "email" }

"token%2Csigned_request%2Cgraph_domain”
}

{"Google": "code" } { "Google": "https://www.googleapis.com/auth/userinfo.email https://www.googleapis.com,

{ "Facebook": "code" } { "Facebook": "email" }

Figure 5: Screenshot of OAuthScope tool listing OAuth 2.0 parameters included in authorization requests from top US RPs.

	Abstract
	1 Introduction
	2 OAuth 2.0 Framework (Background)
	2.1 Authorization Code Flow (Server-side flow)
	2.2 Implicit Flow (Client-side flow)
	2.3 Authentication (OpenID Connect)
	2.4 Refresh Tokens

	3 The OAuthScope tool
	4 Empirical Study: Overview
	4.1 Research Questions
	4.2 Data Collection

	5 API Analysis of Identity Providers
	5.1 Google OAuth API
	5.2 Facebook OAuth API
	5.3 Apple OAuth API
	5.4 LinkedIn OAuth API

	6 Empirical Results
	6.1 Distribution of Providers
	6.2 Comparing requested data across countries
	6.3 Comparing requested data across providers
	6.4 Use of OAuth 2.0 and related OIDC Flows

	7 Privacy Implications
	7.1 Privacy choices
	7.2 OAuth 2.0 Implicit Flow
	7.3 Offline data leaks

	8 Related Work
	9 Discussion & Concluding Remarks
	References
	A OAuth 2.0 Authorization Request
	B Mitigating OAuth 2.0 Access Token Theft
	C OAuth 2.0 Implicit Flow
	D OAuthScope

